TANGO: A MULTIPROCESSOR SIMULATION AND
TRACING SYSTEM

Helen Davis
Stephen R. Goldschmidt
John Hennessy

Technical Report: CSL-TR-90-439

July 1990

This research has been supported by DARPA contract N00014-87-1-0828. Authors
also acknowledge support in part by fellowships provided by the Hertz Foundation and
Xerox.

Tango: A Multiprocessor Simulation and Tracing System
Helen Davis, Stephen R. Goldschmidt and John Hennessy
Technical Report: CSL-TR-90-439
July 1990

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science
Stanford University
Stanford, California 943054055

Abstract

Tango is a software simulation and tracing system used to obtain data for evaluating parallel
programs and multiprocessor systems. The system provides a simulated multiprocessor
environment by multiplexing application processes onto a single processor. Tango achieves
high efficiency by running compiled user code, and by focusing on the information of
greatest interest to multiprocessing studies. The system is being applied to a wide range of
investigations, including algorithm studies and a variety of hardware evaluations.

Kev Words and Phrases. multiprocessors, simulation, trace generation, parallel
programming, memory systems, performance evaluation

Copyright © 1990
by
Helen Davis

Stephen R. Goldschmidt
John Hennessy

Tango:
A Multiprocessor Simulation and Tracing System

Helen Davis
Stephen R. Goldschmidt
John Hennessy
Computer Systems Laboratory
Stanford University, CA 94305

Abstract

Tango is a software simulation and tracing system used
to obtain data for evaluating parallel programs and mul-
tiprocessor systems. The system provides a simulated
multiprocessor environment by multiplexing applica-
tion processes onto a single processor. Tango achieves
high efficiency by running compiled application code,
and by focusing on the information of greatest interest
to multiprocessing studies. The system is being ap-
plied to a wide range of investigations, from algorithm
studies to detailed hardware evaluations.

1 Introduction

The potentia advantages of multiprocessing have moti-
vated studies in parallel algorithms and multiprocessor
architectures. One area of particular interest to us is
the availability of increased performance for individ-
ual applications. In our research, we need to do de-
tailed evaluations of proposed hardware designs, and
to understand the behavior of applications running on
novel systems with more processors than are currently
available to us. This paper describes Tango, a software
simulation system developed to support these studies
by providing useful data for evaluating paralel pro-
grams and multiprocessor systems.

Simulators, such as Tango, play an important role in
studies of both hardware and software systems. Results
from simulations can provide vauable information to
guide the development and verification of anaytica
models. Systems too complex to model accurately in
detail can often be simulated and resulting measure-

ments used in accurate design evauations. Simulation
can aso help identify system bottlenecks, determine
resource requirements, or predict performance on hy-
pothetical or unavailable hardware.

The understanding of paralel processing depends
critically on two types of events which do not oc-
cur in serid programs. shared data communication
and synchronization operations. These global opera-
tion are the primary concern in many multiprocessing
studies. Many multiprocessing studies involve conven-
tiona processing elements (PE) and focus on network
and memory system design, so computations local to a
process are generdly only relevant with respect to how
they impact the timing of globa operations. Allowing
users to focus on global operations was key in making
Tango ssimple and efficient.

In this paper, we discuss approaches to measuring
multiprocessors and present the general methodology
and design of the Tango system. First, we discuss
critical issues in simulation and our goas in building
Tango. Then, in Section 3, we consider basic tech-
nigues that have been used gather information about
program execution and the approach taken in the de-
sign of Tango. After describing our computing envi-
ronment, we present the implementation of Tango in
Section 4. Tango has been used to support a vari-
ety of experiments and, in Section 5, we give a brief
description of some of our experiences. Preliminary
evaluations show Tango has a wide performance range,
depending on the configuration and data gathered; we
examine performance trade-offs in Section 6.

2 Issues and Goals

Simulation efficiency and accuracy are critical issues
in smulator design and evauation. Efficiency is im-
portant, since interesting applications tend to be long-
running, and time and space limitations may force users
to limit tracing to short sections of program execution.
This is a problem for applications that consist of a
number of distinct phases of computation, since lim-
ited tracing may only capture one phase of the com-
putation and thus give a miseading impression of the
overall program behavior. The problem of efficiency
is even more acute in multiprocessor studies than in
uniprocessor studies. This is because simulation costs
are higher, since the interactions of processes must be
modeled and serialization is required when simulating
more processors than are available. Also, synchroniza-
tion events are rdatively infrequent but have a large
impact on performance.

The accuracy of a simulator’'s output is also an im-
portant consideration to its users. Any simulation or
tracing facility must assume a target machine mode
that defines the available operations and their timings.
The accuracy of the information gathered depends on
the accuracy and appropriateness of this machine model
with respect to the systems and measurements of inter-
est. Accurately tracing the execution of paralel pro-
grams is difficult because of the non-determinism of
many parallel programs. The execution path through
a parallel program, and sometimes results, may de-
pend on the real time behavior of the hardware system.
Small changes in the ordering and timing of events may
also have an unpredictable impact on program execu-
tion time and process interactions. Tracing and sim-
ulation is therefore very system dependent, and data
gathered for one multiprocessor may even represent an
impossible execution ordering on another. Therefore,
for parallel programs, accurate global ordering and tim-
ing of operations are required to ensure a correct sim-
ulation of a program’s execution path, interactions be-
tween processes, and performance.

Simulators vary greatly in their generality and flex-
ibility for supporting a variety of studies. This is be-
cause tradeoffs must be made between a system’s ef-
ficiency, accuracy, and generality. If a system is too
inefficient or too inaccurate, it will restrict the amount
and the type of information that can be gathered. Simu-

lating a multiprocessing system in more detail will gen-

eraly increase accuracy, but will reduce efficiency and
generality. Performance tradeoffs result in many sys

tems being targeted for a specific set of studies. Some
systems accurately support studies using a particular
architecture, but are rdatively inefficient, and cannot
be used to accurately study program execution on al-

ternative architectures. Other systems are more general

and efficient, but have limited accuracy when studying

the impact of implementation design decisions. Tango

must efficiently support both software and hardware
studies.

Our goa in Tango was to provide a general purpose
simulation facility that yields required accuracy as effi-
ciently as possible. We believe simulation costs should
depend on the amount and accuracy of the information
required, not the maximum accuracy and tracing avail-
able. As a result of this “pay only for what you need”
philosophy, Tango provides an unusualy flexible in-
terface for program monitoring, tracing, and memory
system simulation. The user may monitor (and option-
ally trace) shared data references, all data references, or
just synchronization operations. The user can incorpo-
rate various memory models so that the most efficient
memory simulation possible for a set of experiments
may be used. The simulation costs for an application
may vary by severa orders of magnitude, depending
on the information gathered and the complexity of the
memory system simulation used.

3 Measurement Techniques

The measurements we desire relate specifically to par-
allel aspects of multiprocessing systems. From this
perspective, we can view computation as consisting of
global events separated by local computation. Global
events are operations that can be observed by some
other process, and are assumed to be shared memory
and synchronization operations (or messages). Local
computations are any operations that are private to a
particular process, and are assumed to be determinis-
tic ‘and are generaly unaffected by computation within
other processes. We are concerned with the time spent
doing local computation, but not in the details, such as
the number of floating point operations or parallelism
within processing elements. Characterizing execution
in this manner will alow concise and efficient collec-

tion of the information pertinent to parallel processing.

In this Section, we consider basic techniques that
have been used to gather information about program
execution. The techniques presented are fairly generd,
but we will concentrate on their suitability to multipro-
cessing studies. We conclude the section by describing
the basic approach and structure of Tango.

3.1 Monitoring

Monitoring is a technique in which observations of exe-
cution on an existing machine are made. It can be used
to gather statistics summarizing execution behavior, or
to produce a trace of events for later post-processing.
Monitoring may be done using hardware or software
techniques. Monitoring the machine with special hard-
ware [6] is attractive because it can be done with lit-
tle intrusion on program execution, and can therefore
be very efficient and accurate. Simple counters, such
as those provided by the CRAY-XMP, can be used to
count events [5, 13, 31]. Alternatively, more complex
hardware may provide special processing and storage
of traces [22]. A related approach, which requires no
special hardware, was taken by Agarwal et. a. [3].
He modified the microcode of the VAX to produce ad-
dress traces. This technique is somewhat less efficient
than attached hardware, dowing programs down by a
factor of 10, but is simpler to implement and more
flexible in the data that can be gathered. Hardware
monitoring can provide data about the aggregate sys-
tem behavior, and so is especialy valuable in studies
of multiprogramming, system software behavior, and
operating system palicies. Unfortunately, there are a
limited set of signals that can be practically monitored,
which makes hardware monitoring inflexible; it may be
impossible to directly monitor the events of interest, or
to relate low-level machine actions to the application
events. Hardware monitoring requires detailed under-
standing of the hardware and access to the hardware,
which makes the technique inappropriate for studying
design proposals.

Software can aso be used to monitor program exe-
cution on an actua machine. One option, previously
used in uniprocessor studies, is to have a tracing facil-
ity single-step the program and monitor the execution
of each assembly language instruction, much as de-
buggers do. Instructions can then be disassembled and

interpereted to gather a wide variety of statistics, or
a complete reference trace. Due to its relative imple-
mentation simplicity and flexibility, this idea has been
extended to multiprocessing monitoring systems. The
difficulty in extending this technique comes from the
fact that there is no clear way to “single-step” a paral-
lel program. Some systems execute one instruction per
target PE, using a round robin scheme or some other
simple algorithm [11, 17]. IBM PSIMUL creates a
separate sequentia tracing process for each target PE,
which are then run using the norma system scheduler
on a multiprocessor [28]. In genera, multiplexing tech-
nigues such as these may distort the application behav-
ior, since the sequencing of various global events will
not necessarily match the ordering that would occur
during an actual execution. Since parallel programs
are often non-deterministic, it is difficult to estimate
the error that results in these systems, or to know if
the monitored execution path would ever occur on an
actual machine. In addition, single-stepping a program
is not a very efficient scheme and can sow programs
down by factors of 100,000 or more, and al timing
information is lost. Therefore, athough this technique
offers flexibility and a ssimple implementation, it is not
efficient and assuring accuracy is difficult.

Another software technique, which is much more
efficient than single stepping, is to modify software to
be “saf-instrumenting” and gather information in an
execution-driven manner “ on-the-fly” during its exe-
cution [15, 30]. These modifications may be explic-
itly made by the user (this is an option in most sys-
tems), inserted by a pre-processor or compiler sys
tem {4, 7, 12, 32], integrated into the language sys-
tem [10, 15, 19, 27], included in library or operat-
ing system kernel code [9, 16, 23], or some combina
tion [1, 22, 24, 26]. The information that can be gath-
ered will depend on where instrumentation is added.
The application can be instrumented in terms of the
abstractions used by the programmer; this makes it eas-
ier to report results in terms the user will understand,
and aso easier to study the use of the abstractions pro-
vided. The instrumented software approach can lead
to smple, flexible, and often efficient tracing system
implementations. As will be described in Section 4.3,
Tango uses this basic instrumentation method to mon-
itor simulated program events.

The accuracy of monitoring systems depends on how

they perturb system behavior. Severa types of program
distortions that result when using various monitoring
techniques are discussed by Agarwd in [3]. If moni-
toring is very intrusive, then there will be large errors
in any timing information and-the program’s execution
path may even be wrong. If the frequency and cost of
instrumentation is low, the perturbation due to monitor-
ing may be insignificant, and traces may include fairly
accurate timing information for each event. However,
while accurate monitoring is attractive for studying ex-
isting machines, extrapolating results to proposed dis-
similar machines is problematic. In particular, in our
multiprocessor studies, we would like to study systems
with more processors than are currently available to us,
and systems with novel network and memory systems.
In these cases, it is particularly difficult to assure that
results obtained from simple monitoring of an existing
machine can accurately be used in studies of proposed
architectures.

3.2 Simulation

High flexibility is provided by software systems that
simulate the behavior of a target system. In this case,
software running on an available machine is used to
emulate the program execution on some target machine.
This approach is very adaptable and information can
be gathered on the behavior of abstract and unimple-
mented machines. It is especialy useful when studying
detailed aspects of proposed hardware, or behavior in-
trinsic to an application. Unfortunately, simulation is
often complex and time consuming, requiring hundreds
or thousands of times longer than than running an ap-
plication directly {3, 11]. To make simulation more
tractable, the entire target multiprocessing system is
not simulated, and the components that are simulated
are not aways smulated in full detail. In particular,
simulation of the execution of system code, multipro-
gramming, and 1/O effects is complex and so is often
omitted. When focusing on network and memory sys-
tem design, it is aso possible to avoid costly emulation
of simple processor instructions (such as arithmetic in-
structions) by executing them directly on the available
host machine. In the remainder of this section we dis-
cuss two techniques, trace-driven and execution-driven
simulation, which both gain efficiency by directly ex-
ecuting application code.

Application

i

l Address Generator |

I Timing Simulator

!

Statistics

Figure 1. Basic structure of a trace-driven simulator.

3.2.1 Trace-Driven Simulation

The implementation of a conventional uniprocessor
simulator is often divided into two components. an
event generator and a post-processor. The event gen-
erator produces a stream of execution events that is
input for a post-processor; the post-processor gathers
behavioral dtatistics, and may aso emulate the target
system in enough detail to estimate the timing the pro-
gram would have on the target machine. This parti-
tioning allows the techniques used in event generation
to be divorced from those used for post-processing and
timing simulation; this can simplify the simulation sys-
tem implementation, and allows the results of a single
trace generation run to be re-used with different post-
processors and simulation models. The trace generator
may use a model to produce a synthetic trace, mon-
itor a program’s execution on an actua machine (as
discussed in Section 3. 1), or interpret the program and
emulate its execution on a target machine. The post-
processor may gather simple event frequency counts,
or include a timing simulator which may mimic the
very detailed actions of the hardware system. When
the post-processor is a simulator, this decomposition is
often referred to as trace-driven simulation. For our
studies, it is useful to think of the event generator as
an address trace generator, which generates a trace
of memory operations (including any synchronization
operations), and the post-processor as a timing simu-
Zator for the target network and memory system (see
Figure 1).

Even when performance evauation is the primary
goa of simulation, the program execution path and the
actions taken by a system must be known. Hence, sim-

Application
1

Address Generator

PE and memory
functiona model

smalessscersaseceaccsscccsanasenes 1
Yo

PE timing model

Memory Timing
Simulator

{ memory timing model

/

Statistics

Figure 2. Simulation task decomposition common in
(uniprocessor) trace-driven simulators.

ulation requires simulating both the functional execu-
tion and also the progression of time of an application
on some target system. Where these tasks are imple-
mented varies in trace-driven simulators. When traces
contain addresses, but no memory data or timing infor-
mation, the functional execution is encapsulated in the
address generator, and the timing simulation is imple-
mented in the memory timing simulator. When the time
between traced operations is difficult to reconstruct in
the memory system timing simulator (for example, if
a variable number of PE instructions is executed be-
tween traced events), issue times may be included in
traces. In this case, the PE timing model as well as the
functional simulation is incorporated into the address
generator; the timing simulator contains a memory tim-
ing model, but no knowledge about the PE system (see
Figure 2). Trace-driven simulation has worked well
in uniprocessor studies because, in many cases, pro-
gram execution is deterministic and so the functiona
execution can be correctly performed independent of
memory system timing information, which can then be
determined later.

Trace-driven simulators have aso been used in mul-
tiprocessor studies [2, 11, 27]. In extending this ap-
proach to multiprocessing, severd implementation is-
sues arise. The address generator must generate event
traces for multiple execution streams; this may be

Application

PE and memory
“. functionalmodel

PE timing model
partial memory §
i timing model i

—
e [[T
!]

Memory Timing
Simulator

i memory timing model

Statistics

Figure 3: Common structure for a trace-driven multi-
processor simulator.

done by having each stream independently generate a
trace [28], or by having some centralized manager con-
trol the progression of each stream [11, 17]. If the num-
ber of processors used by the simulator is less than the
number of simulated processes, scheduling is required
to multiplex execution streams. The event traces for
each execution stream must be correlated with those
from other streams; usualy event time-stamps or a
global trace file is used to guarantee that correlation
is possible. The most difficult issue in trace-driven
multiprocessor simulators is that of assuring accuracy.
Many paralée programs are nondeterministic and so the
order of traced events, and the execution path through
the program, will depend on the latency of operations.
For example, the process to next acquire a lock in a
program depends on the relative execution rates of al
competing processes. Therefore, some memory timing
assumptions are embedded into the address generator.
The result is a system in which detailed memory tim-
ing simulation is trace-driven, but the address generator
does include a smple memory timing model. In gen-
eral, after the functional simulation is done, the trace-
driven simulator may adjust timing values, but cannot
change the execution path through the program ! (see
Figure 3). Therefore, the accuracy of the later tim-
ing smulation will be limited by any inaccuracy in

1For some restricted programming models in which tasks do not
interact, some task re-ordering may be possible [27].

the timing assumptions made by the address genera-
tor. So, for non-deterministic parallel programs, trace-
driven simulators may yield incorrect execution traces
and erroneous timing information. It seems likely that
the overall behaviora characteristics of some programs
will remain similar in spite of the errors, while in other
programs the repercussions may be less predictable.
More work needs to be done to determine how much
error occurs, its impact on program behavior, and the
predictability of the error.

3.2.2 Tango Execution-Driven Simulation

Tango may be used in a trace-driven simulator con-
figuration, much as described in the previous section;
however, Tango also alows the user to perform simula-
tions in an execution-driven manner [8]. In execution-
driven simulation, the execution of the application is
interleaved with the simulation of the target system ar-
chitecture. One possible Tango configuration partitions
the smulation into two modules that share memory and
interact during execution: an address generator that
simulates PE operations, and a memory simulator that
simulates memory operations. In the smplest case, the
memory simulator is a subroutine that is evauated on
demand whenever memory operations are encountered
in the execution stream by the address generator. Al-
ternatively, the memory simulator may be a separate
process with its own internal state. This minimizes
the size of application processes, simplifies accessing
shared data, and allows easier smulation of interactions
between references. When a separate process is used,
the address generator and the memory simulator inter-
act in a co-routine fashion: when the address generator
encounters a memory operation, it issues the operation
to the memory simulator; the memory simulator simu-
lates forward until some memory operation completes,
or immediately before the next memory operation to be
issued by the address generator. Notice that whenever
Tango execution-driven simulation is used, the address
generator makes NO assumptions about the timing of
memory operations — it always calls the memory sim-
ulator for accurate memory timing information.

In many studies, PEs are assumed to have a consis-
tent view of memory, and so program variables have a
single data value at any time. In studies such as these,
the memory simulator can be smplified by storing and
manipulating data values in the address generator. The

Application

Address Generator

.................................

Memory Timing
Simulator

; memory timing model

Figure 4. Basic structure of Tango, an execution-driven
simulator.

address generator issues a request into the memory sys-
tem timing smulator whenever a timing estimate is
needed. The memory simulator responds with the op-
eration’s latency, or delays responding to that request
until the appropriate simulated time has elapsed. This
is a commonly used configuration in our studies, and
is pictured in Figure 4.

A memory simulator used with Tango can be fur-
ther smplified, and the system made more efficient,
by reducing the number of operations issued to it. As
discussed in Section 1, often only the global opera-
tions are of interest in multiprocessing studies. Some
studies have shown that network traffic consists pri-
marily of shared data accesses [11], so it may be that
private data accesses do not significantly impact the
network/memory system. It is therefore often adequate
to simulate only the shared data accesses in the mem-
ory timing simulator, and to use a constant access delay
for private data operations (which is easily incorporated
into the address generator). Similarly, when studies are
concerned primarily with synchronization, it may be
possible to simulate those operations in detail and use
simple compile-time estimates for al data references.

Unlike trace-driven simulation, execution-driven
simulation permits accurate simulation and tracing of
non-deterministic parallel programs. It aso alows
users the option of avoiding the time and space re-
quired to store large trace files. The added accuracy
and flexibility of execution-driven simulation is nec-
essary in systems, such as Tango, that must support
a wide range of experiments. In the next section we
discuss in more detail how this simulator structure was
implemented in Tango.

4 Tango I mplementation

This section describes our computing environment and
the implementation of Tango., While the details of our
environment are not important, we do assume that syn-
chronization operations are explicit, and that shared
data operations can be distinguished from private data
operations at run-time. During the compilation pro-
cess under Tango, the user application is automatically
augmented with code to ssimulate time, manage the sim-
ulation, and optionally monitor events. Compile time
options allow the user to specify a simulation system
that meets the desired level of accuracy with the max-
imum efficiency.

4.1 Environment

Our applications are written in C or Fortran using
macros developed at the Argonne National Labora
tory (ANL) {20, 21] 2. The macro package provides
machine-independent abstractions for shared memory
allocation, process creation and control, communica-
tion, and synchronization. The macro package is eas
ily ported to new multiprocessors and runs on many
systems, including the Alliant FX8, Encore Multimax,
Sequent Balance, Intel iPSC, SGI 4D/240S, Denelcor
HEP, Cray 2, and clusters of workstations on an Ether-
net. In the UNIX shared-memory version of the ANL
macros we use, each process may have access to glob-
aly shared memory as well as memory private to that
process. The macros present a variety of abstractions
that the programmer can use. For example, Lock ac-
quires a binary lock, while Unlock releasesit. Barrier
holds processes at a particular synchronization point in
the program until a specified number have reached that
point, a which time they are al released. Getsub is
used to implement dynamically distributed loops. It
returns the next available loop index; when no loop in-
dices remain, all processes wait until al loop iterations
have been executed (i.e, there is an implied barrier
a the end of a distributed loop). Currently our appli-
cations all use a shared memory programming model,
although our system can be used to study applications
written using a message passing model.

Our implementation is designed to run on a unipro-

2QOther work using this set of macros includes a monitoring
system developed by Lucier [19].

cessor under an operating system that provides support
for shared memory and semaphores. Currently Tango
is running on the MIPS M/120 and the SGI 4D/240S

under System V, and on the DECstation 3 100 under

Ultrix. The number of application processes is limited
by the number of processes and semaphores the system

allows and by various table sizes. The limit is currently

256 in our systems.

4.2 Implementation of Simulation

As discussed in Section 3.2.1, simulation requires both
a functiona simulation and aso a timing simulation.
In Tango, the functiona simulation of a program is
done by running an augmented version of the user’'s
compiled application on an available machine. The
simulation of time is done with software clocks, which
are updated by code inserted into the user’s application.
This section discusses how these simulation tasks are
realized in Tango.

4.2.1 Functional Simulation

A process is created for each process in the application,
and is assumed to be associated with a unique proces-
sor in the target multiprocessor system. 3 We simu-
late the functional behavior of a process by compiling
the associated application code and executing it on an
available machine. Nove target machine instructions,
such as proposed synchronization primitives, that do
not exist on the available machine are implemented in
libraries and macro packages. Running compiled appli-
cation code in this manner is much simplier and much
more efficient than using a software interpreter which
emulates every instruction. Since we are not interested
in the very detailed behavior of the computation, our
approach adequately mimics the behavior of the target
system.

The compiled application processes are multiplexed
to run on a uniprocessor in a way that preserves the or-
dering and timing of the events of interest with respect
to the target system’'s simulated global time. The mem-
ory system simulator may be implemented as a subrou-

3Tango is being upgraded to alow smulations of multipro-
grammed systems or applications running with more processes than
processors, however, to simplify our discussion we omit these is-
sues from this paper.

tine or as a separate process. Since a process executing
between events of interest is assumed not to be affected
by any other process, preserving the order of events can
be done by rescheduling processes immediately before
these events. At that time, the process farthest behind
in simulation time is scheduled to execute next. Thus,
no operation under study is issued until it is known
to be the next event of interest. The multiplexing of
processes is implemented by a distributed scheduler:
each application process is augmented to reschedule it-
self before each event of interest. Using a distributed
scheduler avoids extra context switches and overhead
associated with repeatedly calling a centralized sched-
uler.

4.2.2 Timing Simulation

The progression of time is simulated as it would oc-
cur on the target multiprocessor, and the actual time to
perform the simulation does not affect reported times.
Simulating a global system clock would be complex
and slow in Tango, so instead there is a software clock
associated with each process that represents its simu-
lated time.

During simulation, the individual process clocks do
not run in lockstep, but instead are loosely synchro-
nized so that the timing of the operations of interest
can be preserved. Efficiency is therefore gained with-
out compromising accuracy. There are three primary
options for controlling the relative progression of time
among application processes. The strictest, and most
costly, option is to synchronize the process clocks at all
data references and synchronization operations. This
is only necessary for detailed simulations in which the
complete data cache must be simulated in detail. Un-
der a second option, the process clocks are kept within
one global operation of each other, differing only by
the duration of sequences of exclusively private com-
putation. Since global operations include shared data
and synchronization operations, this option is useful for
studies that are not concerned with private data oper-
ations, but require precisely-ordered shared data refer-
ences. For higher simulation efficiency, a third option
assures only that clocks be within one synchronization
event of each other. This option is most useful when
studying synchronization. It can aso be when using
programming models in which processes only com-
municate through messages or explicit synchronization

operations, or when trading-off some accuracy for in-
creased efficiency.

A process's clock is updated in each program basic
block, at smulated memory references, and at synchro-
nization points. For the purpose of timing estimates,
the target PE is assumed to have a basic instruction
set architecture that can be approximated by the archi-
tecture of the machine used to run Tango simulations.
Each assembly language instruction of the available
machine is assigned a default delay corresponding to
the latency of the target machine. During the compi-
lation process, the application is augmented to update
process's clock by these latency values. Since al of
the instructions in a program basic block are executed
whenever any one is, Tango incorporates al of the in-
crements within a basic block into a single increment.
Using this approach, whenever the delay for an opera-
tion can be determined at compile time, the progression
of time is simulated very efficiently by smply incre-
menting a counter. Sequences of computation local to
a PE, for example, have such predictable delays. When
the ddlay is not known at compile time, the clock up-
date is done by calling routines to perform the nec-
essary calculation or simulation. In particular, shared
memory latencies may be known at compile time when
a smple memory model is used, but in other studies la-
tencies will have to be calculated at run-time by a sim-
ulator. When doing algorithm studies, such as deter-
mining program resource requirements, a simple shared
memory model is more architecturally independent and
so may be the most appropriate model. In other stud-
ies, such as comparing distributed memory systems,
it may be necessary to model the impact of network
contention or non-uniform memory access times. In
this case, Tango can cal routines that interface with
a memory system simulator to accurately emulate the
target memory system. The latency of synchroniza-
tion operations can be caculated similarly. Synchro-
nization wait times, during which a process is delayed
due to contention or a dependency on another process,
are not known a compile time, and so are determined
a run-time. When a synchronization operation results
in unblocking other processes, the process doing the
operation updates the simulation time of the released
Processes.

4.3 Monitoring Simulation Events

Tango can be used to gather a wide variety of useful
information about the execution of an application. Inte-
grated into Tango is a simple facility to log interesting
events in trace files. A compile time option also al-
lows the use of a monitoring interface, very similar to
the memory system simulation interface, which alows
users to incorporate various monitoring tools or to call
their own custom monitor as the program executes.

Simple logging is performed by code added to the
ANL macros and the application’s assembly code. Syn-
chronization events, such as barriers or lock operations,
are implemented in the macros and so are easily logged
by modifying the macros to cal a trace routine. Data
references cannot aways be inferred statically from the
source code, and so the assembly language of an ap-
plication is augmented to optionaly log them. Thus,
the data reference stream produced is generated by the
application running on the available system, and it is
assumed that the target system has a similar instruction
set architecture.

The user can statically or dynamically turn tracing on
and off for particular sections of code by using provided
macros in the source code. When tracing is turned
off statically, the specified code will not be augmented
with tracing code; no tracing overhead is incurred for
these sections. In other sections, code is inserted to
conditionally produce a trace, depending on the run-
time tracing status.

When an application is run, the simulation will pro-
duce summary output files and, optiondly, a trace file
for each process. A synchronization summary file con-
tains the name and type of each synchronization vari-
able used by the application and is useful for post-
processing routines. The simulation also writes a pro-
cess summary file for each process, which contains the
gtarting and ending time for the process and memory
access counts. When tracing is enabled, the simu-
lation produces an event trace file for each process.
Each event in the trace is a 12 byte binary record and
includes. the issuing process, the originating source
code line, the a memory reference or synchronization
event type, the address of the data accessed, and a
time-stamp.

Figure 5 shows how genera monitoring is incorpo-
rated into the structure of the Tango system. A monitor

Application

Address Generator Memory Timing
promm————— TN Simulator
{ PE #nd memory i
i functional model 1
O o e P
; PEtimingmodel "~
i

Figure 5: Structure of the Tango simulator with an
integrated monitoring facility.

routine is called at interesting program events. As with
tracing, user options specify interesting events to be all
data references, shared data references, or synchroniza-
tion events and user events. The monitor may interface
to the memory system simulator to alow data specific
to a particular memory hardware system to be gathered
and displayed. Simple monitors may consist of func-
tions which process trace information during smula
tion to avoid having to store the raw trace data. More
complex monitors may run concurrently with the simu-
lation system and provide information to user interface
tools, such as run-time performance display tools. A
monitoring system is currently being developed that
will incorporate a general interface for incorporating
architecture-specific information and also display data
gathered from trace files or during simulation.

4.4 Application Process States

The behavior of a process during a Tango simulation
depends on what simulation options the user has cho-
sen. To illustrate how a Tango simulation proceeds,
we will consider the actions taken by a process when
Tango is configured to run with an incorporated moni-
tor and a memory timing simulator (Figure 6). A pro-
cess starts in the Ready state, waiting to be released
by some process doing a reschedule operation. When
the process is released, it is the process farthest back in
simulated time. The process then executes (augmented)
application code in the Computation Simulation state
until it reaches either a monitoring event, an inserted
reschedule operation, or a operation that needs to be
simulated by the memory system simulator. At a mon-
itoring event, the process enters the Monitoring state

Synchronization
Simulation

Memory
Simulation

Figure 6: Tango application process state diagram.

by calling a monitoring routine; when the routine fin-
ishes, the process returns to the Computation Simula-
tion state and continues executing the application. The
reschedule operation is used to ensure correct ordering
among processes. At a reschedule operation, a process
transitions into the Ready state by placing itself on the
ready queue and releasing the process farthest behind in
simulated time. When a memory reference that needs
to be simulated at run-time is reached, Tango will cal
the memory system simulator. If Tango is configured
to incorporate a memory simulator implemented in a
separate process, the process first enters the Memory
I ssue Wait state and remains blocked until its operation
can be issued in order with any other concurrent op-
erations. After memory simulation, the process again
enters the Ready sate. If instead the memory simu-
lator is a simple subroutine, the Memory |ssue Wait
state is not required. In this case, when a process in the
Computation Simulation state reaches a memory ref-
erence, it goes directly into the Memory Simulation
state, which consists of evaluating the memory timing
function.

High level synchronization operations are simulated
differently in various architectura models. Libraries
for synchronization abstractions can be written using
target machine primitives. In this case, the libraries
are executed as application code, and the synchroniza-
tion primitives are issued into memory system simu-

10

lator like memory references. Alternatively, synchro-
nization abstractions can be simulated by a modified
version of the ANL macros. If a memory system sim-
ulator is being used, the process issues a pseudo op-
eration into the memory simulator whenever a process
first reaches a synchronization abstraction. This en-
sures that the synchronization abstraction is executed
in the correct order with respect to simulated memory
operations. If a memory simulator is not used, resched-
ule operations inserted into the macros maintain correct
ordering among synchronization operations. After a
synchronization operation is completed, the process is
put into the Ready state.

4.5 Compilation into a Tango Simulator

The Tango system is easy to use because it does not re-
quire the user to modify application code, and because
default options exist for users not interested in cus
tomizing their simulation system to a particular hard-
ware architecture. The application source code is only
modified if the user wants to selectively disable tracing
or simulation. During the compilation process, the ap-
plication is integrated into a simulation system by auto-
matically augmenting the application code and by using
specia libraries and a modified macro package. The
compilation process consists of five steps. macro ex-
pansion, compilation into assembly language, augmen-
tation, assembly, and linkage. A shell script, tango, is
commonly cdled from a UNIX makefile to simplify the
process of compiling a simulation. Given a list of file
names, the script will perform al of the steps necessary
to produce an executable simulation. Script parameters
are used to select simulation and monitoring options,
and aso to specify the target machine model name (the
script will infer which macro files and libraries to use
from the model name).

Figure 7 shows the production of a simulator system
using Tango. Steps required for normal compilation
are drawn in solid lines, while steps and files added
when using Tango are drawn with dashed lines. The
first step is to expand the macros which provide ma-
chine and synchronization abstractions. An extended
macro library is used; it implements synchronization
primitives in terms of the target machine primitives,
calls the memory simulator at synchronization events,
provides user macros to turn on and off simulation and

c Fortran

Application presrareeremeenee Application o
| i C | [Fortran |
. Macros | s IMaciros :

Fortran
expand

Fortran
compile

/" Tango ! PE
. augment *""’"—*—q parameters

assemble {ecemeecacasibasany jeveenesesesssnanane [emserssasensasarse;
i Tango i:iMemory i . il User
i Support iiSimulator ;i Monitor i | library

Memory
{ parameters

! PO Trace ‘PnTrace | | Lock :
Program s T :Summary ;
Output :Summary ; i Summary ; i !

...

Figure 7: Production of a simulation system using Tango.

1

tracing, and declares routines and structures used in
Tango. The output of the macro expansion is a stan-
dard language (C or Fortran) source file, and a standard
compiler is used to produce an assembly language file
from this source. An added augmentation step inserts
code for incrementing the virtual time for each pro-
cess, calling the memory simulator a data references,
and writing trace records. A standard assembler is used
to convert the augmented code into an object module.
The final step is to link the object modules of the mod-
ified program with the memory simulator and Tango
support routines.

In addition to the Tango macro library and run-time
libraries, two parameter files are used as input to the
simulator. The CPU Parameters file is read during
the augmentation step, and contains timing values for
each operation provided by the host machine used to
run simulations. The Memory Parameters file is read
during simulation, and contains synchronization delay
and memory system parameters. One may use default
files or substitute customized parameter tiles.

5 Using Tango

Tango will be used to support a variety of studies, in-
cluding research in characterizing workloads, evaluat-
ing hardware, and program evaluation. To demonstrate
the flexibility and use of Tango, this section briefly de-
scribes a few research efforts that are currently using
Tango.

Application Studies

Anticipating the performance of applications on un-
realized machines is often too difficult to do analyti-
cally. Tango provides a simulated multiprocessor envi-
ronment and gives the user much control and flexibility
in specifying the simulated machine model used. Users
can study the behavior of applications running on a va-
riety of proposed machine models, or may select a very
idealized machine mode to identify performance bot-
tlenecks inherent in an agorithm. Figure 8 shows the
speedup curve for Pthor, aparallel logic simulator [29].
Prior to the availability of Tango, the user ran experi-
ments on an available multiprocessor and was limited
to measurements involving fewer than 16 processors.

12

speedup

! ! | | ! |

40 50 60
number of processors

Figure 8. Observed speed-up for Pthor application.

With Tango, the user could see program scalability lim-
itations that were not evident with lower numbers of
processors.

Synchronization and Concurrency

Delays associated with synchronization can substan-
tialy increase the running time of a parallel program.
Tango has been used to identify program bottlenecks
due to synchronization and to determine program syn-
chronization resource requirements. Tango is aso be-
ing used to study the use of synchronization and con-
currency abstractions and to evaluate hardware support
for them.

If a program includes frequent mutually exclusive
accesses to shared data, its speedup can be limited.
This was the case in a global wire router developed by
Rose [25]. Figure 9 is a plot of the average time spent
waiting to acquire locks as a function of the number of
processors used to solve the problem. The wire_lock is
used to distribute wiresto route, and is an example of
awell behaved lock. The time required to access the
lock is small and relatively independent of the number
of processors. The routelock is a shared datalock and
an example of a performance critical lock: the wait
time increases dramatically with increasing numbers
of processors because of contention. Since the lock is
accessed frequently, thislimitsthe achievablespeedup.

281

Wait Time se)
n
T

18 +—

121+

O route_lock (18353 entries)
O wire_lock (3616 entries)

3+
0 J-&S‘i e — <
0 3 6 9 12 15

Number of Processors

Figure 9: Wait time at locks in wire-router application.

In a second version of the program, the locking was
eliminated, and the speed-up increased from less than
6 to more than 9 with 15 processors. As can be seen
in this experiment, Tango trace data can be used to
easily point out performance critica locks. Then the
programmer can focus on program modifications that
will increase speedup.

Architectural Evaluation

In addition to evauating hardware support for synchro-
nization, Tango trace data is being be used in the evau-
ation of multiple CPU contexts, networks, and memory
systems.

The time required for a process context switch can
be greatly reduced by storing the state of a few differ-
ent processes in the CPU. If process switches require
only a few machine cycles, the impact of large mem-
ory latencies might be diminished. Prdiminary work
has been done to measure the impact on both proces-
sor utilization and application performance of context
switching when the processor might otherwise be idle
waiting for remote data.

A current focus of research is distributed shared-
memory organizations and scalable cache consistency
mechanisms. The DASH architecture [18], which is be-
ing developed at Stanford University, consists of small

13

clusters of processors which are connected by a fast
interconnection network. A cluster consists of a por-
tion of the main memory and severa processors-cache
modules on a shared bus. Measurements of data traffic
and delays resulting from sharing and nonloca refer-
ences are being used in evauating aternative networks
and cache consistency protocols [14].

Shared Memory Behavior

The shared memory access behavior of a program can
dramatically affect its performance. Low locdity or
high sharing can result in a long memory access laten-
cies and high network contention. Research considers
the impact of data locality, sharing, false sharing, place-
ment, partitioning, and replication on performance.

One approach being studied to improve performance
on non-uniform memory access machines involves
scheduling each task to a processor which has efficient
access to the task’s data. New macros are being de-
veloped to dynamically assign tasks to processors and
data to memories in order to reduce the frequency of
accesses to non-local data. Processors give priority to
tasks whose data is in nearby storage. In one appli-
cation, changing the scheduling strategy has aready
resulted in a 20% improvement in execution time.

6 Tango Performance

This section investigates the performance of the Tango
system and sources of simulation overhead. Although
we have not yet tuned Tango to optimize its efficiency,
the level of performance currently achieved by the sys-
tem demonstrates the viability of the approach. As
we shall see, simulation times depend primarily on the
complexity of the memory system simulation, the type
of events simulated at runtime, and the application’s
synchronization and data reference characteristics.

Measurements reported in this paper were taken on a
DECstation 3100 workstation running Ultrix 2.0. The
Ultrix rus age () facility was used to measure execu-
tion times.

6.1 Applications

The complete execution of three programs were sim-

Table 1. Application characteristics.

Operations as a % of instructions executed
Application || Source | Uniprocessor Instructions Synch Shared datg Private data)| Total
lines | run-time (ms)| executed (x 10°)||operations | references references
Mincut 462 640. 47.8 1.28 9. 25.5 35.7
Mp3d 1530 2410. 10.1 0.00071 20.6 33 239
Pthor 8000 272. 0.397 0.83 16.9 26.2 43.8

ulated to measure simulation performance of Tango.
Table 1 shows the basic characteristics of the programs.

Pthor is a compiled logic-level circuit simulator [29].
It uses the Chandy-Misra simulation agorithm to avoid
reliance on a single global time, and uses a separate
task queue for each process. Pthor is a moderate-sized
application; the source line count in the table does not
include the circuit model. The test problem is a small
circuit with 56 gates and latches, which explains the
small number of instructions executed and the short
uniprocessor run-time.

Mincut is a graph bisection agorithm using simu-
lated annedling. The agorithm repeatedly selects a
random node and decides whether to move it across
the partition based on chance, the move's impact on
the quality of the partition, and the simulated temper-
ature. Processes perform moves asynchronously, lock-
ing only the relevant data structures, but perform bar-
rier synchronization before and after each reduction in
the temperature. The quality of the resulting partition
depends somewhat on the number of processes, as does
the number of accepted moves. The test problem is a
500-node graph with an average degree of eleven.

Mp3d is a three-dimensiona rarified flow model us-
ing the Stanford particle method. The agorithm simu-
lates individua particles moving and colliding in three-
dimensiona space. The mgjority of the parald execu-
tion time is spent moving particles, which are statically
assigned to processors. The only significant synchro-
nization is due to the barriers between program phases.
For these experiments, Mp3d is run with 10,000 par-
ticles in an empty 288-cell space array for five time
steps.

The number of processes simulated is generdly lim-
ited to thirty in the data presented here, although we
present some data for 90 processes. All three applica

14

tions can be simulated with more processes. Mp3d, for
instance, has been simulated with up to 127 processors.

6.2 Memory Simulators

As described in section 3.2.2, the memory system sim-
ulator incorporated into Tango may be implemented as
either a subroutine or as a separate process. In our
measurements, we compare the minimum overhead as-
sociated with these two interfaces. To put the Tango
overhead into perspective, we aso evauate the cost
of simulating with a subroutine-style simulator that is
being used to study program behavior on a proposed
architecture.

The Multiple-1ssue memory simulator uses the most
genera, and expensive, simulator interface. The sim-
ulation code runs as a separate UNIX process, and the
application processes block each time the simulator is
invoked. Simulated operations are issued in the cor-
rect global-order, and concurrent operations are issued
to the memory simulator together. The interface used
is intended to be used for detailed smulations that re-
quire accurate simulation of the interactions between
multiple outstanding references. However, we use a
very simple modd of constant latencies for references
to isolate the overhead associated with Tango from that
of the memory simulator.

A second memory simulator, the Single-hue sim-
ulator, is used to determine the overhead associated
with the subroutine-style memory simulator interface.
This memory simulator is intended to demonstrate the
Tango overhead that might occur in studies that do not
consider the affects of contention very accurately. For
this reason, the global order of synchronization oper-
aions is maintained, but the globa order of memory
data operations is not. This means that processes are
rescheduled only for synchronization operations. Like

the Multiple-Issue simulator, the Single-Issue simulator
implements constant latencies.

The third memory simulator, called Hyphen, 4 uses
the same simple Tango interface as the Single-lssue
simulator, but has a more realistic memory timing
model. The simulator models a grid of processing
nodes in which each node is a bus-based multiproces-
sor. This model simulates two levels of caching a each
processor and accounts for bus contention in an inexact
fashion, requiring correct globa ordering of al simu-
lated operations. As a result, processes are rescheduled
a both synchronization and data references. The Hy-
phen simulator is not intended for very accurate hard-
ware design evaluations, but it is being used for de-
tailed studies of program behavior. Results from this
model should indicate the costs associated with a rea-
sonably accurate, but low cost, memory system simu-
lator.

In al three models, synchronization is simulated by
a general default mechanism. The operations are sim-
ulated by ANL macros (see Section 4. 1), but the mem-
ory simulator is still called at significant events, so that
the memory simulator may provide any desired addi-
tional latency. For locks, the request, acquire, and re-
lease phases are each issued to the memory simulator
as separate events. When a process must block due
to contention at a lock, additional block and release
events are issued to the memory simulator. For bar-
riers, the entry and exit of each process is treated as
a separate event, so the number of events grows lin-
early with the number of processes. Because barriers
are infrequent in the applications we are studying, the
increase in simulated events due to barriers is small.

6.3 Sources of Overhead

To run under Tango, the applications have been modi-
fied to multiplex processes, simulate time, and option-
aly log events. Each of these activities adds to the
cost of simulation.

Multiplexing application processes onto a uniproces-
sor requires scheduling at each event for which cor-
rect globa ordering must be guaranteed. The cost of
scheduling processes is dominated by the cost of any
required context switches. The Tango scheduler uses

*Hyphen simulates a simplified model of the DASH architecture
described in [29].

15

system semaphores and full-weight UNIX processes.
As a result, a context switch requires an estimated 180-
250 microseconds. When large numbers of processes
are being simulated, amost every cdl to the scheduler
results in a context switch.

Each process updates its virtual clock at the begin-
ning of each basic block to account for delays that are
known a compile time. This typicaly requires five
assembly language instructions, so if each basic block
has five to ten instructions, these updates should pro-
duce a sowdown factor of 1.5 to 2. Depending on the
simulation options and the particular application, 40%
to 99% of the application code can be simulated in this
way. Thus, most of the timing simulation is performed
very efficiently.

The remaining application code consists of synchro-
nization or memory operations that must be simulated
a run-time. Invoking the simulator requires about 70
instructions when a subroutine-style smulator is used,
but a context switch is required when the simulator
runs on a separate process. If the simulator is only
caled at shared data references, there is an overhead
of about a dozen instructions per memory reference to
distinguish shared data references from private data ref-
erences. In addition to this intrinsic Tango overhead,
there is the cost of the memory timing simulation itself,
which varies considerably, depending on its complex-
ity.

Because Tango supports efficient execution-driven
simulation, trace files are rarely needed. When they
are, Tango produces separate trace logs for each pro-
cess, so global event ordering is not required for trac-
ing. The cost of writing events to disk dominates the
cost of generating a trace log. Using buffered UNIX
writes to a local disk, each 12-byte record requires
about 31 microseconds to write.

Augmenting the program with assembly language in-
structions and linking in Tango libraries increases the
size of programs, as shown in Table 2. The increase
in size depends on the memory model used, the static
frequency of instrumented operations, and the average
basic block size. The increase is typicaly a factor of 2
to 3, and in no case did it exceed 3.51 for the applica
tions studied. Program size does not affect simulation
results, but it will degrade simulation performance by
increasing the amount of memory swapping. In addi-
tion, the number of processes that can be simulated is

Table 2: Program size increase under Tango.

Relative object code size for programs
Event type smulated | Memory model Mp3d Mincut
(84232 bytes) | (64256 bytes)
None (Tango not used) | None 1 1
Synchronization Single-issue 1.90 1.87
Multiple-issue 2.01 2.01
Hyphen 2.10 214
Global Single-issue 2.60 1.94
Multiple-issue 2.71 2.08
Hyphen 2.80 221
Global and private refs | Single-issue 3.25 214
Multiple-issue 3.36 2.28
Hyphen 3.51 241

sometimes limited by the available swap space.

6.4 Program Measurements

To evaluate Tango's performance, we compared the ex-
ecution time of the three sample applications run di-
rectly on a uniprocessor (without Tango) to the time
required to run the same applications for simulation
using various Tango options. Each application was run
from start to finish, including initiaization code.

6.4.1 Simulation Overhead per Operation

Most of the overhead in Tango is associated with sim-
ulating events that must be simulated a run-time by
invoking the memory simulator. To understand the
nature of this overhead, we measured the amount of
overhead per simulated event. Figures 10, 12, and 13
show the average overhead per event when simulating
only globa events, that is, shared data and synchro-
nization operations. In the graphs, solid curves repre-
sent the observed Tango costs, computed by subtract-
ing the uniprocessor runtimes from the Tango runtimes
and dividing by the number of events simulated. Since
much of the overhead is due to the high cost of process
context switches, we made an attempt to compensate
for this by subtracting 180 microseconds per Tango-
induced context switch; these adjusted overheads are
shown by the dashed curves.

16

The most important feature to note in these three
graphs is that when more than a few processors are
simulated, the simulation overhead does not increase
significantly as more processors are simulated. Gener-
aly, the growth is cost is less than 10% as the num-
ber of processors is increased from 10 to 30. When
simulating the Mincut program with the Single-lIssue
memory model, however, the increase is about 28%
when the number of processors is increased from 10
to 30. As we describe later, the number of synchro-
nization operations increases in this program, which
increases the average overhead. The general leveling-
off of simulation costs indicates that simulation costs
become relatively independent of the number of proces-
sors simulated, and so we can use Tango to efficiently
simulate many processors.

With the Single-Issue simulator, shown in Figure 10,
the three applications exhibit similar overheads when
simulating a single process. However, as the number of
processes simulated increases, Mp3d shows no increase
in cost, while the overheads for the other applications
grow. We attribute these increases to two factors: firgt,
increased likelihood that a process will block at each
rescheduling point, and second, changes in the syn-
chronization behavior of the applications which aso
increase the frequency of blocking.

When the Single-Issue simulator is used, memory
operations have a small fixed cost, while synchroniza-
tion operations require rescheduling and are more ex-

msec per global event

A= - -A MP3D, overhead excluding switches
0.10 — O- -~ -0 MINCUT, overhead excluding switches

Q ---0CSIM, overhead excluding switches
0094 a-o» MP3D, overhead

e} O MINCUT, overhead
0.08 — O——0O CSIM, overhead

0.07

0.06

0.05

0.04

0.03

0.02

0.01

| | |
30

processors

0.00

Figure 10: Simulation overhead per event for Single-
Issue simulator at globa events.

pensive to simulate. It is instructive, therefore, to look
at the cost of simulating synchronization events only.

Figure 11 plots the cost per simulation event for Min-
cut when the simulator is caled only a synchronization
events. The simulation cost can be seen to initially rise
very quickly and then level off. This is partly due to an
increase in the cost of rescheduling to preserve the or-
der of events, and partly because the cost of simulating
locks increases when there is contention. Reschedul-
ing at synchronization points requires a context switch
whenever the current process is ahead of another. Thus,
as the number of processors simulated increases, there
is an increase in the likelihood that a context switch will

be required. This results in an initia rise in the num-

ber of context switches. Eventually there is a context
switch for each operation, and the overhead reaches a
maximum.

More frequent contention for locks also contributes
to the increasing average cost per synchronization
event. In the system used for our measurements,
synchronization primitives are implemented in macros
rather than in the memory system. Using this approach,
a context switch is required whenever a process blocks
due to contention for a lock or synchronization vari-
able. This means that if contention rises in the pro-
gram as more processes are used, there will be addi-
tional Tango overhead due the increasing number of

msec per global event

17

o
e
o

e
w
[

e
w
=3

0.25

0.15

0.10 0-0 MINCUT, overhead

t | \ L
60 70 80 90 100

processors

0.00
0

10 20 30 40 50

Figure 11: Simulation overhead per event for Single-
Issue simulator at synchronization events.

context switches. This accounts for much of the in-
crease in overhead for Mincut, since it contains a lock
that quickly becomes a point of high contention. Pthor
aso contains a lock which has some contention, how-
ever the lock has less contention and is accessed less
frequently than the lock in Mincut.

In Mincut, the average cost of global events also in-
creases because the number of synchronization events
increases by a factor of two due to non-determinism
in its agorithm (from 0.6 million operations with one
processor to amost 1.2 million operations with 10 pro-
cessors). The number of synchronization operations
also increases in Mp3d, since the number of smula
tion events required for barriers increases linearly with
the number of processes. However, the fraction of
synchronization operations is still so low that smu-
lation performance is not significantly affected (even
with ninety processes, it is less than 0.3%).

In Mp3d, the memory events outnumber synchro-
nization events by roughly three orders of magnitude,
s0 the average cost per global event is not significantly
affected by the cost required by synchronization events.
In Mincut and Pthor, on the other hand, synchronization
events are relatively frequent and so these programs are
more sensitive to any rise in the frequency or cost of
simulating synchronization operations.

A- A MP3D, overhead

0o-o0 MINCUT, overhead

A- - -A MP3D, overhead excluding switches
O- - —O MINCUT, overhead excluding switches

0.9

0.8

mso ser global event

04 -
03 |-
- Q=== ==T====-=- :2
o4 =Z"
02)-ox -~
"
/
o1 |4
!
0.0
10 20 30
processors

Figure 12: Simulation overhead per event for Multiple-
Issue simulator at global events.

When the simulator is implemented as a separate
process, as with the Multiple-Issue modd (Figure 12),
two context switches are required each time the simu-
lator is invoked, one to enter the simulator and one to
exit. Rescheduling may also result in context switches,
and occurs a both synchronization events and simu-
lated data references. Rescheduling causes an initia
rise in overhead that is even greater than that seen with
the Single-Issue model, since rescheduling occurs more
frequently. However the total observed overhead soon
begins to decrease as more processors are simulated.
This is because, with the Multiple-Issue model, con-
current memory operations are issued to the memory
simulator in a single invocation; as the number of pro-
Cessors is increased, more operations are issued in par-
alel and so there are fewer memory system simulator
invocations. If the cost of process context switches is
omitted, the computational overhead is nearly constant.
The tota overhead is 7-30 times higher than seen with
the Single-lssue model. In spite of this larger over-
head, we found this interface useful for al three of
our detailed hardware simulators, since it alows com-
plex models to be more easily incorporated into Tango.
For each of these hardware simulators, simulation costs
are overwhelmingly dominated by the memory system
simulator, so the overheads intrinsic to Tango are less
important. The larger overhead for the Multiple-1ssue

18

- 107
§ A-A MP3D, overhead
® ,gL ©0-0 MINCUT, overhead
a A- - -A MP3D, overhead excluding switches
© 0 - ==O MINCUT, overhead excluding switches
o 081
g
3
£ 0.7 1+
1
0.6 - o
Lr/ ——— —A
[o
0.5 r-%
t - o
04T g:a- =TT -A
Sxgzz==---"7
0.2 +
01 -
0.3
| | I}
0.0
0 10 20 30
processors

Figure 13: Simulation overhead per event for Hyphen
simulator at globa events.

model makes it evident that, although this interface is
convenient for hardware design evauations, it is worth-
while for Tango to provide the low-cost interface for
other studies.

Figure 13 shows the overhead per event for the Hy-
phen modd. The Hyphen modd, unlike the single-
event model, must reschedule on every shared data
event, so it suffers significant overhead due to context
switches with both Mincut and Mp3d. Even alowing
for context switches, the Hyphen modd runs about 10
times dower than the Single-Issue model, despite their
using the same interface. This confirms that Tango
overheads are small relative to the costs of even a sim-
plified simulator for a complex memory system.

Note the differences in the shape of the cost curve
for Hyphen and the other memory simulators. In Hy-
phen, simulation overhead first decreases as processors
are added and then begins to increase. This is due to
the cost of simulating bus contention in the Hyphen
model. Contention simulation is done on a cycle-by-
cycle basis, so the cost of simulating contention for
an event is proportiona to the number of cycles since
the last event. For a single Mincut process, there are,
on the an average, 10.7 simulated events per 1000 cy-
cles. As the number of processes increases, the hum-
ber of cycles between events initially decreases, since
the programs speed up. This cost reduction bottoms

ratio of runtimes (Tango/NoTango)

g
g

T 11T

10000

1000 1

.

100

TTTTH]

- n n Single-Issue at Synchronization Events
0-0 Single-Issue at Global Events

? 0 0 Single-Issue at Global Events and Local Refs

[A== -, Multiple-Issue at Synchronization Events

- O- - -0 Multiple-Issue at Global Events

" 0- - -0 Multiple-Issue at Global Events and Local Refs

10

0 10 20 30

processors

Figure 14. Relative simulation times for Mincut.

out at about three processes, where seriad initialization
code and contention delays cause the average interva
between events to level off. With larger numbers of
processors, the extra work required for each event be-
gins to dominate the savings from reduced cycles per
call. The shape of the overhead curve is similar to that
observed for our hardware simulators which simulate
on a more detailed, cycle-by-cycle fashion.

6.4.2 Program Slow-down

In the previous section we considered the simulation
overhead per event. The frequency of simulated events
also strongly affects the elapsed time for a simulation.
Figure 14 shows the observed slow-down as the num-
ber of simulated processors is varied for Mincut, and
Figure 15 shows the dow-down for Mp3d. To make
the graphs more comparable, the timing values have
been normalized relative to the uniprocessor times for
each application without Tango.

In looking a Figure 14, we see that the dow-down
when simulating Mincut with 30 processors has a wide
range, from less than 700 to over 18,000. As we would
expect from the previous section, the simulation cost is
aways larger when using the Multiple-lssue memory
model. For each memory model, the cost is shown for
simulating (1) at only synchronization operations, (2)
a globa events (shared data and synchronization op-

ratio of runtimes (Tango/NoTango)

19

g
g

L LRLILLALY]

A- A Single-Issue at Synchronization Events
O——-a20 Single-Issue-Way at Global Events

o Single-Issue at Global Events and Local Refs
Multiple-Issue at Synchronization Events
Multiple-Issue at Global Events

Multi&Issue at Global Events and Local Refs

10000

oo ©°
|i|

| .

ar

|
O

1000 &
?8@§==;_@:===::::::::::@
100 &=
== —

10

o
=5
»n
o

30
processors

Figure 15: Relative simulation times for Mp3d.

erations), and (3) at local references as well as global
events. In many multiprocessor studies, local refer-
ences are of little interest, since performance is deter-
mined primarily by the globa operations. For Mincut,
74% of the data references are to private data, so omit-
ting these events cuts costs by 3 1%-64%, depending on
the memory model used. Similarly, if the user focuses
on synchronization behavior, savings of 44%-91% are
achieved.

Much lower simulation costs were observed when
simulating Mp3d, as shown in Figure 15. When sim-
ulating 30 processors, even the most expensive Mp3d
simulation has less sowdown than the fastest Mincut
simulation. This is primarily because Mincut performs
synchronization much more frequently, which is ex-
pensive to simulate in the default configuration. The
maximum simulation cost for Mincut is also higher
because it has more frequent data references (35% of
instruction reference data in Mincut, while less than
24% do in Mp3d). The lower frequency of data ref-
erences in Mp3d results in fewer cdls to the memory
simulator and more operations being simulated more
efficiently by just executing application code. As with
Mincut, there is a large range of dowdowns observed
for Mp3d, depending on the memory model used and
the types of events simulated. Since there are very
few synchronization operations, both memory models
perform very well simulating synchronization opera-

tions only. In Mp3d, there is little performance benefit
in omitting the simulation of private data references,
since fewer than 4% of the instructions reference pri-
vate data.

6.5 Possible Performance Enhancements

Since one-third to two-thirds of Tango's simulation
overhead is due to the cost of UNIX context switches,
its performance could be enhanced by porting it to a
light-weight threads package. This would provide less-
costly context switching, but would require porting not
only Tango, but also our applications and programming
macros which have been written using UNIX processes.

The number of context switches, and so the cost
of smulation, could aso be reduced by alowing the
simulation of application processes to be more loosely
coupled. For some studies, accurate results do not re-
quire that every reference be simulated in the correct
order. In particular, in some programs, maintaining just
the order of synchronization operations will ensure that
the correct execution path through the program is sim-
ulated. In other cases, the path through the program
may not be exactly correct, but the overal program
behavior may be similar. The impact of imprecisdy
ordered memory issues on memory system timing will
depend on its simplicity and how it models contention
and cache coherency. More research is needed to de-
cide when the order of simulation events may be re-
laxed, and how to measure any impact on simulation
results.

In hardware studies, or studies of detailed memory
behavior, the overhead spent in Tango is small com-
pared to the time spent in the memory system simula
tor. Thus, significant time-savings can be achieved by
choosing the simpliest memory system simulator ade-
guate for a set of experiments. This leads to a need to
better understand the performance and accuracy impli-
cations of simulating memory systems at various levels
of abstraction.

If smulation accuracy can be compromised some-
what, it might be possible to substantialy increase
simulation performance. Unfortunately, when program
timing errors are introduced, it is generaly not possi-
ble to determine a tight-bound on the potentia error
in simulation results. More work needs to be done to
determine how to measure the resulting loss of accu-

20

racy when trading-off accuracy for increased efficiency.
It would be very interesting to explore the possibility
of using run-time monitoring of system parameters to
provide better indications of confidence in simulation
results.

If Tango itself were modified to be a parald pro-
gram, the overhead due to seridizing the parald pro-
grams might be reduced. Tango was implemented with
multiple processes, and it would not be difficult to .
have these processes run in paralel. Unfortunately, the
costliest Tango runs are those with complex memory
system simulators that require preserving the order of
memory operations. Thus, a simple parallel Tango im-
plementation would not gain much performance due to
frequent ordering dependencies and seridization in the
memory system simulator. An effective parald Tango
implementation involve considering a what level of de-
tail the system needs to be modeled for various studies,
parallel memory system simulation, and trading-off ac-
curate event ordering for additional speed.

7 Conclusions

As we consider building larger multiprocessors, we
need to do detailed evauations of proposed hardware
designs and to understand the behavior of applications
running on more processors than are currently available
to us. We have found the Tango multiprocessor sim-
ulation facility to be extremely useful in supporting a
wide range of research projects. Tango imposes few re-
gtrictions on the programming model or target machine,
which makes it a general purpose tool applicable for
use in many studies. Since Tango monitors synchro-
nization abstractions, it can report results in terms of
the abstractions being used by the programmer, and can
be easily used to study those abstractions. When simu-
lating non-deterministic programs, trace-driven simula-
tion techniques which isolate timing simulations from
address generation will yield incorrect results. Tango
offers users the option of using execution-driven sim-
ulation, which ensures accurate ordering of program
events even for non-deterministic programs. We have
found compiled simulation to be very efficient and
worthwhile. By allowing users to focus on the events
of most interest and to incorporate various timing sim-
ulators, Tango does not sacrifice efficiency or accuracy
for generality, but instead offers users a system built

on a “pay only for what you need” principle.

Obvious performance improvements can be gained
by porting Tango to a light-weight threads environ-
ment. It would be interesting to see how much perfor-
mance could be gained by a parald implementation of
Tango. Current experiments using Tango have focused
on the behavior of systems executing a single appli-
cation implemented using a few standard synchroniza-
tion primitives. In the future, Tango will be extended
by developing libraries to provide additional program-
ming abstractions and more complete multiprocessor
environments. Possible directions for extensions in-
clude additional support for: additional synchroniza-
tion abstractions, process scheduling, data allocation
strategies, and visudlization tools.

8 Acknowledgments

Helpful discussions throughout this work with Mark
Horowitz, Greg Nelson, Michael Powell, Anoop Gupta, and
Richard Simoni are appreciated. Applications were devel-
oped and generously made available to us by Jonathan Rose,
Larry Soule, and Jeff McDonald. We also appreciate com-
ments on drafts of this paper made by Josep Torrellas. This
work was supported in part by fellowships provided by the
Hertz Foundation and Xerox, and in part by DARPA con-
tract N00014-87-K-0828; this support is gratefully acknowl-
edged.

References

[11W. Abu-Sufahand A. Y. Kwok. Performance prediction
tools for cedar: A multiprocessor supercomputer. In
Proceedings of the 12th Annual Int1 Symposium on
Computer Architecture, pages 406-413. ACM-IEEE,
1985.

2] A. Agarwd, Richard Simoni, John Hennessy, and
M. Horowitz. An evaluation of directory schemes
for cache coherence. In Proceedings of the 15th An-
nual /nt' I Symposium on Computer Architecture. ACM-
|EEE, Jun 1988.

[3] A. Agarwal, R. L. Sites, and M. Horowitz. ATUM:
A new technique for capturing address traces using
microcode. In Proceedings of the 13th Annual Int1
Symposium on Computer Architecture. ACM-IEEE, Jun
1986. Published asVal. 14, No. 2, of Computer Archi-
tectureNews.

21

[4] Anita Borg, R. E. Kesder, Georgia Lazana, and
David W. Wall. Long address traces from RISC ma
chines. Generation and analysis. Technica Report
89/14, DEC Western Research Laboratory, Sept 1989.

[5] T.A. Cargill and B.N. Locanthi. Cheap hardware sup-
port for software debugging and profiling. In Proceed-
ings of the Second Int1 Conf. on Architectural Support
for Programming Languages and Operating Systems.
ACM-IEEE, Oct 1987.

[6] Robert J. Carpenter. Performance measurement instru-
mentation for multiprocssor computers. Technical Re-
port NBSIR 87-3627, Institute for Computer Sciences
and Technology, National Bureau of Standards, Aug
1987.

[71 Ding-Kai Chen. MaxPar: An execution driven sim-
ulator for studying parallel sytems. Technical Report
CSRD 917 and UILU-ENG-89-8013, University of Illi-
nois, Oct 1989.

[8]1 R.C. Covington, S. Madala, V. Mehta, and J. B Sinclair.
The Rice paralldl processing testbed. In Proceedings
of the 1988 ACM SIGMETRICS Conf. on Measurement
and Modeling of Computer Systems. ACM, May 1988.

{91 Helen Davis and John Hennessy. Characterizing the
synchronization behavior of parallel programs. In Pro-
ceedings of the ACM/SIGPLAN PPEALS Parallel Pro-
gramming: Experience with Applications, Languages
and Systems. ACM, July 1988. Published as Vol. 23,
No. 9, of SIGPLAN Notices.

Kenneth W. Dritz and James M. Boyle. Beyond
“speedup”: Performance analysis of parallel programs.
Technical Report ANL-87-7, Argonne Nationa Labo-
ratory, Feb 1987.

{111 S. J Eggers. Simulation analysis of data sharing
in shared memory multiprocessors. Technical Report
UCB/CSD 89/501, University of California, Berkeley,
1989.

[12] Susan J. Eggers, David R. Keppel, Eric J. Koldinger,
and Henry M. Levy. Techniquesfor efficient inline
tracing on a shared-memory multiprocessor. In Pro-
ceedings of the 1990 ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Systems.
ACM, May 1990.

[13}J.S. Emer and D. W. Clark. A characterization of pro-
cessor performance in the VAX- 1 1/780. In Proceedings
of the 11 th Annual Symposium on Computer Architec-
ture. ACM-IEEE, June 1984.

[14] Kourosh Gharachorloo, Daniel Lenoski, JamesLaudon,
Phillip Gibbons, Anoop Gupta, and John Hennessy.
Memory consistency and event ordering in scalable
shared-memory multiprocessors. In Proceedings of the

(10]

17th Annual Int”! Symposium on Computer Architec-
ture. ACM-IEEE, May 1990.

{15] Teemu Kerola and Herb Schwetman. Monit: A perfor-
mance monitoring tool for parallel and pseudo-parallel
programs. In Proceedings of the ACM SIGMETRICS
Conf. on Measurements and Modeling of Computer
Systems. ACM, May 1987.

Kern Koh and Colin G. Harrison. GETTIMECARD - a
basis for parallel program performance tools. Technical
Report RC 14993, IBM T. J. Watson, Sept 1989.

Frank Lacy. An addresstrace generator for trace-driven
simulation of shared memory multiprocessors. Techni-
cal Report UCB/CSD 88/407, University of California,
Berkeley, March 1988.

D. Lenoski, K. Gharachorloo, J. Laudon, A. Gupta,
J. Hennessy, M. Horowitz, and M. Lam. Design of
scalable shared-memory multiprocessors. The DASH
approach. COMPCON 90, 1990.

Bradley J. Lucier. Performance evaluation for multi-
processors programmed using monitors. In Proceedings
of the 1988 ACM SIGMETRICS Conf. on Measurement
and Modeling of Computer Systems. ACM, May 1988.

Lusk, Overbeek, and et al. Portable Programs for Par-
allel Processors. Holt, Rinehart and Winston, Inc.,
1987.

E. L. Lusk and R. A. Overbeek. Use of monitorsin
fortran: A tutoria on the barrier, self-scheduling do-
loop, and askfor monitors. Technical Report ANL-84-
51 Rev. 1, Argonne National Laboratory, Jun 1985.

Allen D. Maony, Daniel A. Reed, Ruth A. Aydt James
W. Arendt, Dominique Grabas, and Brian K. Totty. An
integrated performance data collection, anaysis, and
visualizationsystem. Technical Report TTR1 1, Uni-
versity of Illinois at Urbana-Champaign, March 1989.

(16]

(17

(18]

(19]

(20]

(21]

(22]

(23] Barton P. Miller. DPM: A measurement system for
distributed programs. Technical Report WISCCS 592,

University of Wisconsin-Madison, 1985.

Barton P. Miller, Morgan Clark, Steven Kierstead, and
Sek-See Lim. IPS-2: The second generation of a par-
alel program measurement system. Technical Report
WISCCS 783, University of Wisconsin-Madison, 1988.

Jonathan Rose. LocusRoute: aparallel globa router for
standard cells. In 25th ACM/IEEE Design Automation
Conference. ACM-IEEE, 1988.

Zary Segall and Larry Rudolph. PIE: A programming
and instrumentation environment for parallel process-
ing. IEEE Software, pages 22-37, Nov 1985.

(24]

(25]

[26]

22

[27]1K. So, A. S. Bolmarcich, F. Darema-Rogers, and V. A.
Norton. SPAN - a speedup analyzer for parallel pro-
grams. Technical Report RC12186, IBM, Sept 1986.

[28] K. So, F. Darema-Rogers, D. George, V. A. Norton, and
G. F. Pfister. PSIMUL - a system for parallel simula-
tions of the execution of parallel programs. Technical
Report RC11674, IBM, Oct 1987.

[29] Larry Soule and Anoop Gupta. Parallel distributed-time
logic smulation. IEEE Design & Test of Computers, .
pages 32-48, Dec 1989.

[30] C. Stunkel and W. Fuchs. TRAPEDS: Producing traces
for multicomputers via execution driven simulation. In .
International Conference on Measurement and Model-
ing of Computer Systems, 1989. to be obtained.

{31] Charles P. Thacker and Lawrence C. Stewart. Firefly: a
multiprocessor workstation. In Proceedings of the Sec-
ond Int'l Conf. on Architectural Support for Program-
ming Languages and Operating Systems. ACM-IEEE,
Oct 1987.

[32] Pen-Chung Yew, Alexander Veidenbaum, and Hoichi
Cheong. Chief: a parallel simulation environment for
parallel systems. Technical Report CSRD 915, Univer-
sity of Illinois at Urbana-Champaign, Aug 1989.

