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Abstract

Instruction dependency introduced by conditional branch instructions, which is
resolved only at run-time, can have severe performance impact on pipelined ma-
chines. A variety of strategies are in wide use to minimize this impact. Additional
instruction-traffic generated by these branch-strategies can also have an adverse ef-
fect on the system performance. Therefore, in addition to the likely reduction a
branch prediction strategy offers in average branch delay, resulting excess i-traffic
can be an important parameter in evaluating its overall effectiveness. The Objec-
tive of this paper is two-fold : to develop a model for different approaches to the
branch problem and to help select an optimal strategy after taking into account the
additional i-traffic generated by the i-buffering.

The model presented provides a flexible tool for comparing different branch
strategies in terms of the reduction it offers in average branch delay and also in
terms of the associated cost of wasted instruction fetches. This additional criterion
turns out to be a valuable consideration in choosing between two almost equally per-
forming strategies. More importantly, it provides a better insight into the expected
overall system performance. Simple compiler-support-based low implementation-
cost strategies can be very effective under certain conditions. An active branch
prediction scheme based on loop-buffer can be as competitive as a branch-target-
buffer based strategy.

Key Words and Phrases: Branch prediction, conditional branches, degree of
dependency, instruction dependency, instruction traffic, pipelining.
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1 Introduction
This pa,per  is an attempt to provide a common platform for modeling differ-
ent schemes for reducing the branch-delay penalty in pipelined processors
as well as evaluating the associated increased instruction bandwidth. The
first section presents the details of the model. In the following section we
summarize several existing branch-strategies and attempt to map them to
our model. The next section derives certain inferences from the results
obtained and leads us to some hybrid strategies.
Throughput in a pipeline environment is obtained by overlapping differ-
ent instructions in different stages of execution. This implies predicting
successive instructions before the completion of an instruction execution.
Instruction dependency, i.e., the dependency of an instruction on the result
of its predecessor limits this prediction ability. Resource dependency can be
defined as the dependency arising out of system resources shared between
independent instruction streams. Although normally these dependencies
are mutually independent, sometimes they interact. As an example of possi-
ble interaction of this instruction dependency with the resource dependency,
consider two pipelined processors in a shared-memory model. One possible
approach to minimize performance degradation due to conditional branches
(instruction dependency) would be to fetch both the streams, sequential as
well as the branch-target instruction stream. As a direct side-effect of this,
instruction trafhc on the shared system bus goes up resulting in more con-
flicts. Thus, an attempt to reduce the impact of instruction dependency
increases the performance impact due to resource dependency. As a result,
overall system performance might even go down, instead of going up.

Previous Research

Tjaden and Flynn [8] provide an early framework in the area of formalizing
the concept of instruction dependency. Impact of conditional branches
on system performance was further substantiated by Riseman and Foster
[5]. Interest in different branch-strategies for minimizing the performance
impact has been renewed with the advent of new RISC machines. Most of
the recent work in this area has mainly concentrated on specific branch-
strategies and on improving prediction accuracy. Smith [6] discusses in
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Instruction J in its pth-stage requires the result
available from the qth-stage of instruction I.

dij=qi-pj-Xij
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Fig. 1: Instruction dependency in a pipeline.

detail different strategies for improving prediction accuracy. Lee/Smith
[3] and McFarling/H ennessey [4] examine a range of schemes for reducing
branch penalty. In comparing different branch strategies operational cost
of increased instruction-traffic has so far been mostly ignored.
Consider a pipeline with S segments (Figure 1) executing an instruction J,
which enters the pipeline the very next clock after instruction I. Assume a
pipeline segment delay as equivalent to the system clock-period. Suppose
the instruction J at the start of its pj th stage of execution requires the result
available at the completion of the qi th stage of execution of instruction I.
The degree of dependency in such a case is defined as dij = (qi- pj), where
we assume Qi > pj. I and J above refer to successive instructions. Instead
of entering the pipeline the very next clock after I, suppose J follows after
an additional delay of xij clocks. The degree of dependency is reduced to

dij = (qi - pj - xij) (1)

Any segment freeze possibility, i.e., the possibility that a data item may
spend more than one clock in a certain pipeline segment, is ignored.
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If dij 5 0: I and J are considered to have null pipeline depen-
dency, which means this dependency has no impact
(null impact) on the pipeline throughput.

If dij > 0: I and J are considered to have positive pipeline
dependency, which suggests this dependency has im-
pact of dij clocks on the pipeline throughput. In other
words, there is no pipeline output for dij clocks.

Degree of dependency is maximum when pj = pj(Gn)  = 1, gi = qi(max)  = S,
and xij = xij(An)  = 0; i.e., when dij(,a) = (S - 1) = maximum pipeline
dependence.
We next consider instruction dependency due to brunch instructions. Let
I represent a conditional branch instruction. In such a case, a following
instruction J (x = 0) can not be fetched until the execution of I is complete.
Assuming instruction fetch (IF) t gs a e as the first stage of the pipeline (pj =
1) and the execution (E) stage, which tests the condition-code, as the last
pipeline-stage (pi = S), this leads to maximum pipeline dependency of
(S - 1). Note that, although the condition code testing by the the branch
instruction I can be typically done in a stage prior to the execution stage,
normally it can only be done after the previous instruction I - 1 clears
the execution stage and sets the condition-code. In other words, branch
instructions can potentially result in the maximum possible slowdown of (S-
1) clocks. In general, branch instructions may not need to wait until the last
pipeline stage for their resolution, especially the unconditional branches.
Let Sb refer to the pipeline stage that resolves the branch. In the case of
unconditional branches, Sb would typically be the instruction-decode stage,
whereas in the case of conditional branches it would refer to the execution
stage of the pipeline that normally sets the condition-code, which may not
be the last stage as is the case when the execution stage is followed by a
write-back stage.
We have not considered so far any freeze situations. A pipeline stage is
considered frozen if it is not ready to accept a new data item at the end
of the current clock period. Such a situation typically results when some
unexpected condition is encountered, such as a cache-miss on an instruction
or an operand fetch, or a branch that unexpectedly disrupts the sequential
instruction fetch. This freeze implies the addition of wait-cycles for the
subsequent pipeline stages as they are forced to wait extra cycles for the
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frozen stage output. A successful brunch instruction involves the fetch and
execution of an out of sequence instruction. Fetching the branch target
instruction consists of (i) target address calculation and (ii) target fetch.
Each of these steps has freeze-potential as compared to fetching a sequential
instruction. In modeling the impact of branch instructions, other possible
freeze conditions are deliberately ignored, including any instruction-fetch
freeze in the sequential path.
Let

Y, = average number of clocks spent during a target-address-calculation freeze

Yf = average number of clocks spent in case of a page-fault during target-fetch

P, = probability of a target-address-calculation freeze

Pf = probability of a target-fetch freeze

Therefore, the performance penalty k potentially associated with instruc-
tions I and J, where I is a branch instruction and J is dependent on I with
a degree of dependence dij, can be written as:

k = dij + Pa * Ya + Pf * Yf (2)

1.1 Classification of Branch Strategies

The above equation (2) can be used for classifying different branch strate-
gies on the basis of the approach taken to reduce the branch penalty, k:

a) Reduce the dependency: Branch strategies in this category are aimed
at reducing the pipeline dependency, dij, between a branch instruction
I and the following dependent instruction J. An attempt is made to
make the positive pipeline dependency as close to the null pipeline
dependency as possible. As expressed by equation (I), this attempt
can be classified into the following sub-categories:

i) Increase pj: A branch strategy which fetches both the sequential
as well as the branch-target instruction without waiting for the
branch outcome, increases pj by removing the dependence of IF
stage on the completion of execution stage and thereby reducing
dij.
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ii) Decrease QiI Branch strategies may add hardware to evaluate
the condition-codes for branches ahead of the execution stage,
thereby reducing qi for branch instructions to reduce the depen-
dence, dij .

iii) Increase Xij: Delayed-branch strategies fall into this category.
Following a branch instruction, an attempt is made to insert
instructions that need to be executed irrespective of the branch
olrt,come. This reduces dij by increasing xij.

b) Other branch strategies are aimed at reducing the associated freeze-
penalties:

i) Reduce the address-calculation freeze: Loop-buffers tend to re-
duce the freeze-penalty associated with target-fetch by capturing
the loop environment.

ii) Reduce the target-fetch freeze: Branch-target buffers attempt to
eliminate the target-address-calculation delay.

1.2 Branch Predict ion

Almost all the branch strategies do not absolutely eliminate branch delay
but do so only with a certain probability. They make an implicit assump-
tion about the most likely branch outcome and commit themselves to the
sequential or the branch path to varying degrees. This commitment nor-
mally reduces the penalty associated with the chosen path but increases
the penalty of taking the discarded path in case of incorrect prediction. As
a result, overall performance improvement becomes critically dependent on
the probability of correct prediction.
Let:



Pt = probability of branch-to-be-taken prediction
pC = probab’l’t1 1 y of correct prediction

Pn,n = probability of predicted: no branch and actual: no branch
Pn,b = proba i i y of predicted: no branch and actual: branchb 1 t
Pb,n = probability of predicted: branch and actual: no branch
pb,J, = probab 1 ti i y of predicted: branch and actual: branch
kn,n = performance penalty when predicted: no branch and actual: no branch
kn,b = performance penalty when predicted: no branch and actual: branch
kb,n = performance penalty when predicted: branch and actual: no branch
kb,b = performance penalty when predicted: branch and actual: branch

Therefore:

Pn,n = (1-Ph)*Pc
Pn,b = (1-pt)*(1-pc)
Pb = Pt*(l-PC)
%,b = Pt * PC (3)

Consider a branch strategy which on an average predicts 6 out of every
10 branches as likely to be taken, and 2 out of every 10 predictions are
incorrect. This results in pt = 0.6 and p, = 0.8, which leads to pn,n = 0.32,
Pn,b = 0.08,  pb,n = 0.12, and pb,J, = 0.48. This means, on an average out of
every 100 branches, 32 are not taken as predicted, 8 are taken in spite of
not-to-be-taken prediction, 12 are not taken though predicted as likely to
be taken, and 48 are taken in accordance with the prediction. Therefore,
56 out of every 100 branches are taken. The number of branches actually
taken, h,b + pb,b) is independent of the employed branch strategy.
The average branch penalty (in terms of additional cycles per branch) is
given by:

I( = Pn,n  * kn,n + pn,b * kn,b + Pb,n  * kb,n + pb,b * kb,b 0

Let the branch frequency in terms of number of branch instructions (con-
ditional and unconditional) per instruction, be b. Branch performance
throughput, G, can be expressed as:

G = l/(1 + A- * b) (5)
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Thus, for K = 0 or b = 0, performance throughput is assumed to be at its
peak rate of 1 instruction per cycle. In other words, all the other pipeline
overheads [l] are being ignored.

1.3 Cost of Branch Prediction

The discussion above has centered around assessing the performance of
different branch strategies. Consider the two primary costs involved: (i)
implementation cost and (ii) operational cost. Implementation cost (H)
refers to the hardware/software costs involved in implementing the branch
strategy. For example, delayed-branch strategy typically requires modifica-
tion in the user program at compile-time and hence adds to the software
cost. Since such costs are harder to quantify, this cost is ignored in the dis-
cussion to follow. On the other hand, the relatively less obvious operational
cost refers to the adverse impact of implementing the strategy perceived
at run-time; for example, the additional instruction traffic that results on
the system bus with every incorrect branch-prediction. Although incorrect
predictions are the primary source of extra i-traffic, even delayed correct
prediction can cause wasted instruction fetch. For example, any sequential
instruction fetch after the fetch of a branch instruction but before its decode
would be a waste, even if the branch is successfully predicted. For archi-
tectures that allow machine-state update by instructions in the predicted
path, there is an additional run-time overhead of shadowing the original
machine-state to be able to recover in case of an incorrect prediction. For
the sake of simplicity, this cost is not included in our calculations and we do
not expect it to alter our conclusions about the relative merits of different
strategies. Thus, the only operational cost emphasized in this study is that
of the additional i-traffic.
Interestingly, freeze conditions, which tend to increase the branch delay,
reduce the average additional i-traffic. When a certain path is predicted,
freeze situations reduce the number of instructions that can be fetched,
which reduces the number of wasted i-fetches in the case of incorrect pre-
diction. Consider, for example, a branch-instruction fetch and decode fol-
lowed by branch-target fetch, assuming a successful branch. Thus, target
fetch starts after a delay of 1 clock (branch decode) and as a result, a max-
imum of (Sb - 2) instructions from the branch-path can be in the pipeline
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when branch instruction completes execution. If the branch turns out to
be unsuccessful, these (Sb - 2) fetches are a waste. In reality, this
is reduced due to possible freeze situations mentioned above and
calculated as shown in the appendix.

tw = additional i-traffic when predicted: no branch and actual:
tn,b = additional i-traffic when predicted: no branch and actual:

tb,n = additional i-traffic when predicted: branch and actual: no

number
can be

no branch
branch
branch

tb,b = additional i-traffic when predicted: branch and actual: branch

The average cost of additional i-traffic (in terms of wasted i-traffic per
branch instruction) is:

T = pn,n * tn,n + pn,b * tn,b  + pb,n * tb,n + pb,b * tb,b (6)

The total cost, C (in terms of wasted i-traffic per instruction), can be
expressed as:

C=(l+T*b) 0

Combining equations (5) and (7), the cost-performance parameter MR (re-
ferred to as the Merit Ratio in the discussion below) can be expressed as:

MR = G/C = l/((l + T * b) * (1 + I- * b)) (8)

Thus, for an ideal machine which can always correctly predict the branch
outcome and, if needed, can start fetching the target path right after the
branch-instruction fetch would have, K = T = 0 and hence, G = C = 1,
resulting in unit merit ratio, it&R, irrespective of the branch frequency, b.
The following simplifying assumptions (some of which have been referred
to earlier) should be kept in mind (Figure 2):

a) Instruction fetch stage is assumed to consist of Sf slots (each con-
taining a prefetched instruction) followed by the decode stage. No
assumption is made about the remaining stages.
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I-Fetch Decode

S,: number of sub-stages in the fetch-stage
SbU: pipeline stage that resolves unconditional branches
Sb, : pipeline stage that resolves conditional branches

Fig. 2: An instruction pipeline.

b) As mentioned before, sb refers to the pipeline length only up to the
stage that resolves the pending branch instruction. In the case of
unconditional branches, we assume branches are resolved as soon as
they are decoded, therefore, sb = Sbu = Sf + 1; whereas in the case
of conditional branches, $-, = sbC is dependent on the pipeline stage
that sets the condition-code.

c) The operational cost of additional traffic refers only to the i-traffic
and ignores any wasted data traffic.

d) Additional i-traffic during freeze-handling, e.g., in page-fault han-
dling, is ignored.

e) Finally, for the sake of simplicity, the handling of multiple pending
branches in the pipeline is restricted. If a branch is predicted as
likely to be taken, it is assumed that we do not encounter additional
branches with to- be-taken prediction before resolving the first branch.
This assumption can be a source of some significant inaccuracy only
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for very long pipelines with prediction schemes which allow this pos-
sibility.

The following section describes different branch strategies. A typical
system may use a combination of following strategies, in which case
effective branch delay, K, and excess i-traffic, T, can be obtained
by adding the components due to each strategy (weighted by the
application probability of the strategy).

2 Branch Strategies

Some common strategies employed to reduce the delay caused by
branches include the following. Different parameters described above
involving performance penalty and increased i-traffic are calculated
for each strategy in the appendix.

Predict Branch Never Taken (PBNT) This represents a simple
strategy for branch-handling. Instruction-fetch and decode continue
uninterrupted from the sequential path until the branch gets executed.
Thus, implicitly a prediction is always made at the fetch of a branch-
instruction that it will not be taken. If this turns out not to be the
case, the (sb - 1) instructions fetched in the preceding stages of the
pipeline are discarded and we start fetching from the target path.

Loop Buffers (LB) A loop b ffu er refers to a high-speed memory
in the IF stage of the processor. The size of the loop buffer is a crit-
ical parameter and is normally not very large. Some CDC machines
(6600, 7600 and Star-loo)  as well as CRAY-1 have used this idea.
These buffers (Figure 3) can detect if the branch target (forward or
backward) lies within the environment captured by the buffer and if
so, the delays associated with both the IF stage memory-fetch as well
as the possible freeze are eliminated. Since a hit in the loop-buffers
avoids any external memory-access, it also reduces the average extra
i-traffic in case of incorrect prediction. The size of a8 loop as well as the
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Loop Buffer

(256 bytes)

Instruction to be deaxied

in case of a hit

Most significant address bits

compared to determine a hit

Fig. 3 Loop Buffer

average repetitiveness of a loop (average loop-count) determine the
hit probability for a loop-buffer. High loop-count tends to minimize
the impact of first-time misses and hence increases the hit-probability.
Once a loop is captured in the loop buffer, branch target fetches are
similar to sequential fetches (other than the target-address calcula-
tion). Although loop-buffers may appear to be similar to i-caches,
they are relatively much smaller in size and lower in implementation
cost. Branches are again always predicted as not likely to be taken,
similar to the previous case.

Pre-calculate Target Address (PTA) This strategy pre-calculates
branch-target address irrespective of the branch outcome. Thus, ad-
dress calculation is assumed to start in parallel with the pipeline soon
after the branch-fetch and decode. This significantly reduces any ad-
dress calculation delay. In other respects, this strategy is similar to
the PBNT (predict-branch-never-taken) scheme and branch is still
always considered as less likely to be taken.
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Fetch Target in OF-slot: (FTOF) Very often branch-instruction
execution does not require any operand-fetch. Some IBM machines
(370 series) use the operand-fetch (OF) slot of the pipeline for fetching
the target. Thus, the branch can still be assumed as less likely to be
taken, thereby choosing to fetch instructions from the in-line path,
except in the OF-slot when one attempt is made at fetching from
the branch target-path, assuming the target-address is available. In
case the branch is unsuccessful, the target fetched in the OF-slot is
wasted.

Predict Branch Always Taken (PBAT) In contrast to the PBNT
scheme, this strategy assumes that any branch is always more likely to
be taken and hence, whenever a branch is decoded, instruction fetch
switches to the branch-path. Sequential path fetch can be stopped
and switch to the branch path can be made only after the decode
of the branch instruction. As a result, one or more (S,) sequential
instructions are fetched in any case. These instructions would be
considered useful if the branch is finally not taken, and wasted if the
branch is taken.

Predict Branch Always Taken with Target Copy (PTTC)
This scheme is an effort to further reduce the branch penalty as-
sociated with the predict-branch-always-taken strategy, and modifies
the instruction sequence at compile-time. A portion of target code
(as dictated by the effective pipeline length for branch resolutions) is
copied following the branch instruction (Figure 4). As a result, if the
branch is actually taken all the pending instructions in the pipeline
fetched sequentially a,re valid. In contrast to the previous strategy,
target-fetch does not have to freeze for target-address calculation.
Note that target-fetch freeze (due to page-faults, etc.) would still be
encountered at a later point when the target fetch begins from the
calculated target-address beyond the copied portion. In case of unsuc-
cessful branch, all the pending target instructions fetched sequentially
are wasted.
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CMP Rl, R2
JZ xx

*ADD R3, R4
*SUB R3, R5
*INC R4
*ADD R3, R4

MOV R6, R7
ADD R6, R2
MOV Rl, mem

xx: A D D  R 3 ,  R 4
S U B  R 3 ,  R 5
INC R4
A D D  R 3 ,  R 4

xx+4:  M O V  R 6 ,  R 3

Instructions marked with an asterisk (*) are the instructions copied from the target
(xx) at compile-time. In case of a successful branch, control transfers to the
label xx+4,  after executing the marked (*) target instructions through sequential
fetch. In case the branch is not taken, marked instructions are discarded without
execution after fetch and decode.

Fig. 4 Predict Branch Always Taken with Target Copy (PTTC,)
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Fetch Both the Paths (FBI') Versions of this strategy are em-
ployed in some IBM machines (370/168,3033).  It uses the brute-force
approach of fetching both the sequential and non-sequential instruc-
tion streams in case a branch is decoded. Again the branch-path
fetch cannot begin until the branch instruction has been decoded and
the target address formed. This is equivalent to predicting that the
branch would either be taken or not taken. Since such a prediction
is t autologically correct, p, = 1. Therefore, in this case pt should be
interpreted as simply the probability that the branch would be taken
(not as branch taken probability as per prediction).

Delayed Branch (DB) A s mentioned earlier, this strategy aims
at reducing the pipeline dependency, d, for branch instructions by
increasing the delay, x, bet ween the branch instruction and its first
dependent instruction. Instructions (if any) that are common to both
the sequential and the non-sequential branch path are inserted be-
tween the branch instruction and its first dependent instruction. Let
u represent the average number of such useful (non-NOP) common
instructions. We assume that branch is always predicted as not likely
to be taken.

Taken/Not-taken Switch in the Decode Stage (TNTD) This
strategy assumes a branch taken/not-taken switch in the instruction
decode stage. When a branch instruction is decoded a prediction is
made as to whether the branch will be taken or not. This predic-
tion information can be obtained and improved for better accuracy
in many different ways [6]. In its simplest form, the prediction may be
static and explicitly enoded as part of the specific branch opcode at
compile-time based on some data collected regarding the past behav-
ior of the branch. For example, backward branches are considered
more likely to be taken than not due to their common association
with loops. On the other hand, prediction strategy may be dynamic,
evolving towards better accuracy. Still, as before, target-fetch can
not begin until branch-fetch and decode.
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Fig. 5 Branch Target Buffer

Branch Target Buffer (BTB) Target buffer refers to a small asso-
ciative memory in the IF stage of the processor [3]. Instruction-fetch
addresses are associatively matched with the buffer contents and in
case of a hit it predicts the most likely branch outcome as well as the
most recent target address (Figure 5). As a result, target-fetch does
not need to wait for the branch-decode and target-address calculation.
If the branch is likely to be taken, first target-instruction fetch imme-
diately follows the branch-instruction fetch. Following branch-decode,
at the completion of actual target-address calculation, a comparison is
made with the predicted target-address. A mismatch here flushes any
fetches made from the incorrect target, aborts any freeze in the incor-
rect target-path and restarts target-fetch at the calculated address.
We also assume that this comparison output is available along with
the actual target, without any additional clock-overhead. Correct tar-
get prediction probability, &, depends on the frequency of branch
target changes. A hit in the branch target buffer (BTB) implicitly
also assumes that the fetch-address contains a branch instruction.
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In case of writable  code segments, there is a (small) likelihood, P,,
that a non-branch instruction gets predicted as a branch instruction.
To make things worse, if such an instruction is predicted as a branch
likely to be taken then it has an impact on the system throughput even
in the absence of any branch-instruction, as it blocks the sequential
address fetch during the following cycle until the actual instruction-
decode. This throughput deterioration is modeled using the following
modified version of equation (5):

G = 1 /(l + I< * b + Sf * Pw * Pt) (9)

Similarly, this probability of a BTB-hit with branch-to-be-taken pre-
diction for a non-branch instruction also modifies equation (6), which
so far included additional i-traffic only due to branch-instructions.
The following equation reflects an additional wasted instruction-fetch
in case a non-branch instruction is predicted as to be taken branch
and there is no target-fetch freeze:

T = Tb * (1 - Pw) + (Sf N Yf * Pf) * Pt * Pw (10)

where Tb refers to the excess i-traffic due to branch-instructions given
by equation (6) and N refers to the probability-based reduction ex-
plained in the appendix.

In case of a miss in BTB, branch instructions are handled in a manner
similar to PBNT strategy. In other words, branch is assumed as not
likely to be taken by default in case of a BTB-miss. The overhead
involved in BTB-updates is ignored. Therefore, this strategy can be
equivalently considered as a combination of two strategies, one as
described above with BTB-hit probability Pth and the other the same
as in the case of PBNT scheme with BTB-miss probability.

Calculation for different excess i-traffic parameters gets somewhat
involved in this case and hence their derivation is described below
in qualitative terms. Details of the calculation can be found in the
appendix along with other parameters.
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9

ii)

iii)

If a branch is predicted as likely to be taken, target-fetch be-
gins immediately from the predicted address, and target-address
calculation starts soon after the decode. If the calculated target-
address mismatches with the predicted address, instructions fetched
so far from the incorrect address are wasted and instruction
fetches begin from the calculated (actual) target address.
In the previous case, if the branch is not taken then in addition to
the fetches made from the predicted target, instructions fetched
from the actual target address are also wasted.
If branch is predicted as not likely to be taken, we assume no
attempt is made to calculate the target-address and instruction-
fetch cant inues from the sequential path. If this prediction turns
out to be false, sequential instructions fetched are discarded,
target-fetch immediately begins at the predicted address and
the actual target calculation starts simultaneously. If the calcu-
lated target mismatches with the predicted target, this fetched
sequence is also wasted.

Finally, as mentioned before, the above set of parameters is used to
calculate the average branch delay, &, and excess i-traffic, Th, where
the subscript refers to the BTB-hit case. In the case of BTB-miss,
the corresponding parameters K, and T, are calculated from the
components given for PBNT case. Combining these cases, we get:

Ii- = Ii-h * Pth + Km * (1 - Pth)

Tb = Ti * Pth + Zn * (1 - pth)

3 Results

(11)

(12)

This section deals with our model environment and some results. The
model described above can be used to obtain the average branch de-
lay (K), the average number of wasted i-fetches per branch (T), and
the overall merit ratio (MR) once the variables outlining the system-
environment are defined. For the purposes of our model, we assume
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certain nominal values for some of these variables. We assume a nom-
inal operating environment with branch frequency b = 0.25, where
80% of the branches are conditional. Probability of a freeze during
target address calculation is assumed to be 0.5 with a freeze duration
of 2 cycles. Thus, on average, we freeze for a clock for target address
calculation. Probability of freeze during target-fetch is ignored. For
delayed-branch approach, an average of one useful common instruc-
tion (i.e., u = 1) is assumed. One such machine employing delayed
branch approach is MIPS [4], w ic could use only a single delay sloth’ h
about 70% of the time. There may be special cases where a signifi-
cant number of delayed branch slots may be utilized. For example,
Hsu/Davidson  [ll] suggest a scheme whereby on machines such as
CRAY-1, where conditional branch resolution may take 14 clocks, a
large number of these time-slots may be filled with guarded instruc-
tions. These instructions are considered ‘guarded’ because, in case
the branch resolution is not as expected, they are effectively turned
into NOPs. Only the last two strategies described in the previous
section provide support for active branch prediction; the rest rely on
their respective default prediction of branch always taken or branch
never taken. Based on Smith [6], we assume a correct prediction prob-
ability of 0.85 for conditional branches, resulting in an overall correct
prediction probability around 0.9, assuming a unconditional branches
are always predicted correctly. In the case of Branch Target Buffer,
probability of correct target address prediction is optimistically set
at 0.9, assuming stable branch targets [6]. Probability of BTB-hit for
non branch instructions in case of writable  code segments is assumed
very low at 0.05. We assume nominal Plh = 0.6 and nominal Pth =
0.8 .  Peuto/Shustek  [9] p  tre or a hit ratio of 0.6 for a loop buffer of
&256 entries, whereas Lee/Smith [6] report a hit ratio of around 0.8
for a target buffer with 256 entries and a set size of 4 or 8. Set-size
refers to the degree of associativity in contrast to fully-associative
BTB search.

We concentrate initially on three system parameters in our discussion
below: successful branch probability ( conditional and unconditional
combined) &, , varying the number of sub-stages in the instruction-
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fetch stage (Sf> f 11o owed by a fixed number of remaining pipeline-
stages, and finally we vary the total number of pipeline stages required
for conditional branch resolution (S,,) assuming a fixed number of IF
sub-stages. Results are obtained for the three performance parame-
ters, average branch delay (K), average number of wasted i-fetches
(T), and the cost-performance merit-ratio (MB),  as a function of these
three system parameters. While one of these system parameter is
varied, others are kept at their nominal values. We assume nominal
cb = 0.6, nominal Sbc = 5, and nominal Sf = 1. It should be noted
that nominal value of 0.6 for P&, which represents successful branch
probability of conditional and unconditional branches combined, im-
plies that conditional branches are assumed equally likely to be taken
or not taken.

3.1 Inferences

The following inferences can be made regarding the three performance
parameters as a function of the successful branch probability (Figs.
6-11,  Appendix):

a) As one might expect, BTB-strategy outperforms others for the
entire typical operating range (0.55 < P& < 0.7).

b) Predict-branch-always-taken scheme with target copy (PTTC)
emerges as a good second choice around P& of 0.65 or more. In-
terestingly, even without any active-branch-prediction support,
it exhibits better performance potential than BTB around P& 2
0.75. This advantage stems primarily from the fact that this
scheme does not have to pay the delay penalty of incorrect tar-
get address prediction. BTB-strategy has a cost of incorrect
target address prediction even with correct branch prediction.
On the other hand, as a cautionary note, the PTTCscheme  also
exhibits the steepest slope in terms of all three performance pa-
rameters as opposed to the relatively stable performance curves
of active-prediction schemes (BTB-strategy and the taken/not-
taken switch strategy).
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c) In terms of excess i-fetches, the loop-buffer scheme (LB) per-
forms almost as well as the best performing BTB-strategy. As
explained earlier, loop-buffers can significantly cut down the cost
of excess i-traffic resulting from incorrect predictions.

d) At nominal P& (0.6), both strategies PBNT and PBAT have
the same branch delay. Which of the two should be the pre-
ferred scheme? A look at the additional i-traffic cost can help
resolve the issue. The PBAT scheme has lower cost of wasted i-
fetches and hence has better merit ratio (MR). In the absence of
any possible address-calculation-freeze (or target-fetch-freeze) ,
on average the PBNT scheme wastes more instructions during
misprediction than PBAT for any Sbc. A similar dilemma be-
tween PTTC strategy and strategy DB can be resolved in favor
of the DB scheme, due to its lower added i-traffic cost. Also note
that in both the scenarios just described, implementation costs
are almost identical for the two strategies in question, hence
operational cost in terms of excess i-traffic T provides an impor-
tant decisive input. Interestingly, at P& = 0.5, three different
strategies: predict branch never-taken, target-fetch in the OF-
slot, as well as the scheme to fetch both the paths, show the
identical merit-ratio. Implementation-cost can probably be the
only decisive input in such a scenario.

e) Not only does excess i-traffic cost, T, help us choose between
two almost equally performing strategies (as shown above), it
can also caution us about otherwise very well performing strate-
gies. The FBP strategy (fetch both the paths) provides an in-
teresting study in this regard. In terms of average branch delay
(10, it performs almost as well as the best performing BTB
strategy. But after considering the cost of wasted i-fetches, in
terms of the overall merit ratio (AIR), it is not much better than
the worst-performing PBNT strategy. Thus, a conclusion based
solely on average branch delay I< may be an elusive one as far as
the overall system-performance is considered. Garcia/Huynh [2]
discuss the efforts made to reduce the resulting high contention
on t’l?e svstem bus in an early IBM 370 implementation using
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this strategy.

The following conclusions can be drawn regarding the three perfor-
mance parameters as a function of Sf, i.e., number of buffer stages in
the IF-stage (Figs. 12-14):

a>

b)

4

Again BTB outperforms every other strategy in terms of average
branch delay (K) for any amount of buffering in the IF-stage.

Similar to our earlier observation, the P T TC scheme stays as
the second-best strategy in terms of average branch-delay.

Although the TNTD scheme provides lower branch-delay than
the loop-buffer scheme, due to its significantly lower cost of
wasted i-fetches, loop-buffer comes out as the second choice in
terms of the merit-ratio (AIR).

4 Finally, all the strategies show an almost identical performance-
slope on the merit-ratio curve. In other words, all the strategies
show identical sensitivity with respect to Sf.

As a function of the total number of pipeline segments, we have the
following inferences (Figs. 15-17):

a) BTB-strategy continues to be the first choice for any number of
segments in terms of overall merit-ratio. But for long pipelines
(S& > 6) it slips, and instead the fetch-both-paths scheme
(FBP) wins with its constant branch delay with respect to S&.

b) For small number of segments (< 5) there is no obvious second
choice in terms of the average branch delay, whereas for large
number of segments (> 5), active-prediction schemes clearly
start outperforming others (except PTTC). This emphasizes the
need for active branch prediction for long pipelines.

c) It is interesting to note that just a branch taken/not-taken switch
in the decode stage (TNTD scheme) significantly reduces the
branch delay. In other words, the incremental reduction in
branch delay obtainable through BTB rapidly goes down with
larger s&.
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Therefore, in the typical operating range (0.6 < P& < 0.75),  we have
three competing strategies: Loop-Buffer (LB), Predict Branch Al-
ways Taken with Target Copy (PTTC) and Branch Target Buffer
(BTB). It is also interesting to note that our branch-delay numbers
for PBNT, DB and BTB strategies under nominal conditions come
quite close (within 30%) to those reported by McFarling/Hennessey
[4]. Note that in addition to a difference in technique (analytical vs.
simulation), our nominal conditions, although close, are not exactly
the same as theirs. In the following section we discuss some hybrid
strategies based primarily on these three strategies. Delayed branch
(DB) strategy and TNTD strategy also show good performance po-
tential in possible combinations with the above strategies.

4

The

a>

b)

4

Hybrid Strategies

following hybrid strategies are considered:

Predict Branch Always taken with target-copy and delayed branch
(TTCDB): This strategy is a combination of PTTC (predict
branch always taken with target-copy) and DB (delayed branch)
schemes. This is the only hybrid strategy considered with almost
no additional implementation cost and only some software (com-
piler) cost.

Predict Branch Always taken with target-copy, delayed branch
and Loop buffer (TTDLB): T his strategy adds loop buffer (as
described in LB scheme) with the previous strategy (TTCDB).

Taken/Not-taken Switch in the Decode Stage with Loop buffer
(TNTLB): This strategy represents a combination of the LB and
TNTD schemes given above. At the start of branch-instruction
decode, the following sequential instruction is checked for a hit in
the loop-buffer. In case of a miss, it is fetched from outside with
regular memory-access delay associated with the fetch-stage. If
the branch is predicted as likely to be taken, right after the
target address calculation, loop-buffer access is attempted. In
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case of a hit, again we save the usual delay associated with the
out-of-sequence fetch.

d) Taken/Not-taken Switch in the Decode Stage with Branch target
buffer ( TNBTB): Finally, we consider a combination of TNTD
and BTB strategies above. In case of a miss in the BTB, in-
stead of falling back on the default PBNT (predict-branch-never-
taken) case, this strategy assumes a branch taken/not-taken
switch in the decode stage similar to TNTD scheme. Model
parameters in this case would be same as in the case of BTB,
except that average branch-delay and excess i-traffic parameters
Km and T, in case of BTB-miss are calculated using TNTD case
instead.

4.1 Inferences

Sensitivity-plots of the performance parameters K, T, and MR are
obtained with respect to the same three system parameters, P&, Sf,
and St,, (Figs. 18-26). The following observations can be made:

a) Around the nominal values of system-parameters, out of the
hybrid-strategies, the minimum implementation cost TTCDB
strategy performs better than every other non-hybrid strategy
of the previous section except B TB. For P& around 0.7, it even
outperforms BTB strategy in terms of average branch delay (K)
as well as merit-ratio (MR).

b) Around our nominal conditions, the last three hybrid strategies:
TTDLB, TNTLB, and TNB TB are almost equally competitive.
For shorter pipelines ( sbc < 5), T TDLB has a slight edge over
the other two, whereas for longer pipelines, active branch predic-
tion becomes more important and TNTLB and TNBTB schemes
perform better than the rest and continue to follow each other
closely. Therefore, on a system with a branch-taken/not-taken
prediction switch in the ID stage, if one were to choose between
the addition of either the loop-buffer or the branch target buffer,
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4

d)

careful consideration should be given to implementation-cost is-
sues which may tilt the balance slightly in favor of the loop-buffer
based TNTLB scheme.

Around P& = 0.7 or more, at nominal $-,c, TTDLB strategy
starts outperforming the others and emerges as the first choice
in terms of all the three performance parameters. Around P& =
0.7, TTDLB reduces the branch delay to less than one-third as
compared to the ‘don’t do anything’-type PBNT strategy.

Similar to the non-hybrid strategies in last section, all the hybrid
strategies show identical sensitivity with respect to the number
of sub-stages in the IF-stage, Sf.

Effect of Loop/Target-buffer hit probability: Target-buffer based
strategies show more sensitivity to the hit-ratio, Pth, than the loop-
buffer based strategies in terms of average branch delay (Figure 27).
On the other hand, loop-buffer based strategies are more sensitive
in terms of the excess i-traffic cost with respect to the correspond-
ing hit-ratio Ph (Figure 28). As a result, both classes of strategies
exhibit almost identical slope on the merit-ratio performance curve
(Figure 29).

Effect of Target-fetch freeze probability: In our discussion so far we
have ignored any potential for a freeze (due to, say, page-fault) while
attempting to fetch the branch-target. Assuming a fetch-freeze dura-
tion (Y,> of 10 clocks, we take a look at the performance sensitivity
with respect to the fetch-freeze probability, Pf. Loop-buffer based
strategies are at an advantage in such a case because a hit in the
loop-buffer also eliminates any page-fault type potential associated
with external memory access. As a result, loop-buffer based strate-
gies show more performance stability with respect to Pf than the
BTB-based strategies. For example, if Pf increases from 0 to 0.1, the
average branch delay for loop-buffer based TNTLB strategy increases
by 20%, whereas that in the case of BTB-based TNBTB strategy
increases by more than 75% (Figs. 30-32).
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5 Conclusions

This paper studies the effectiveness of different branch-strategies in
terms not only of the reduction in branch delay but also the associ-
ated cost of excess i-fetches. The model presented here for comparing
different strategies is flexible, enabling sensitivity analysis to estimate
the incremental performance impact. We have ignored any on-chip
cache in our discussion in order to highlight the increase in i-traffic  due
to mispredictions. This informat  ion about additional i-traffic helps
to bring out the overall performance difference between some appar-
ently equally well performing strategies if one were to only consider
the improvement in average branch delay. All the branch strategies
analyzed show almost identical sensitivity with respect to buffering
in the instruction-fetch stage. A branch strategy using a branch-
taken/not-taken switch in the decode stage is found to be almost as
effective in combination with the loop-buffer as with the branch tar-
get buffer. In a typical microprocessor environment with less than 5
segments with a successful branch probability around 0.6, a branch
strategy based on default prediction of branch always taken, along
with compiler support for target-copy and delayed branch, is shown
to provide performance potential comparable to a branch strategy
based on Branch Target Buffer.
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Appendix

Additional i-traffic calculation under freeze conditions:

Additional i-traffic

where

ml =

=

m2 =

=

m3 =

m4 =

=

N =

p o s  (2) =
=

wasted i-fetches, assuming address-calculation
as well as target-fetch freezes
pos (N - Y, - fi) * Pa * Pf

wasted i-fetches, assuming address-calculation freeze
but no target-fetch freeze
pos (N - Y, - yf) sl: Pa * (1 - Pf)

wasted i-fetches, assuming no address-calculation freeze
but target-fetch freeze
pos (N - Y, - uf) * (1 - Pa) * Pf

wasted i-fetches, assuming no address-calculation freeze
and no target-fetch freeze
pos (N - Y, - uf) * (1 - Pa) * (1 - Pf)

maximum possible i-fetches assuming no freeze
(N = (&, - 2) in the above example)
2 for 2 > 0
0 for I < 0-

For the sake of brevity, in following sections the above calculation
would be expressed as:

T = N - Pa * Ya - Pf * Ya

where - refers to the probability-based reduction in N, as explained
above.
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The above calculation is based on an import ant assumption that there
is no additional i-traffic generated during the freeze conditions. Ex-
cess i-traffic would be generated if the freeze conditions require any
i-fetches (for example, during page-fault handling). Incorrect predic-
tions not only result in wasted instruction fetches but may also result
in unnecessary operand fetches. For our analysis, this increase in
d-traffic or any interference of operand fetches with the instruction
fetches is ignored.
Given below are the details of calculation for the different branch-
delay and excess i-traffic parameters associated with each strategy:

Predict Branch Never Taken (PBNT):

pt = 0
kn,n = 0

kn,b = (&,-l)+P’*Y,+Pf*Yf
tn,n = 0

tn,b = (sb - 1)

Loop Buffers (LB): Considering plh as the hit-probability for the
loop-buffers, different parameters for this case are:

pt = 0
kn,n = 0
kn,b = ((sb - 1) + pa * Y, + pf * fi) * (1 - 8h) + ((sb

+pa * x) * 8h

tn,n = 0

tn,b = (& - 1) * (1 - qh)

2)

Pre-calculate Target Address (PTA):

pt = 0
kn,n  = 0
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kn,b = (Sb-l)+p&#P~,@,-(Sb-l-Sf))+Pf*Yf

tn,n  = 0
tn,b = (sb - 1)

Target-fetch in the OF-slot (FTOF):

pt = 0
kn,n = (I-J&)*(1-Pf)+Pa*Pf

kn,b = CYl * Pa * Pf + a2 * P, * (1 - Pf)
+a3 * (1 - P,) * Pf + a4 * (1 - Pa)  * (1 - Pf)

where

a1 = (sb-l+x+K)

a2 = (sb - 1 +y,)

a3 = (&-I+&)

01 = (sj-, -2 )
tn,n = (1 -Pa) * (I- Pf)

tn,b = P1*P,*Pf+Pl*P,*(l-Pf)

+p2 * (1 - Pa) * Pf + p2 * (1 - Pa) * (1 - Pf)

where

P1= (sb - 1)

P2= (sb - 2)

Predict Branch Always Taken (PBAT):

pt = 1
kb,n = (sj,  - 1 - sf)

h,,b = Sf + Pa * K + Pf * Yf

tb,n = (sb - 1 - s,) - p, * ya - pf * yf

tb,b = sf
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Predict Branch Always Taken with Target Copy (PTTC):

pt = 1
kb,n  = (sb - 1)

kb,b = P,*pos(Y,-(sb-1-Sf))+Pf*Yf

tb,n = (sly 1)

tb,b = 0

Fetch Both the Paths (FBP):

PC =
kn,n =

k’b,b =

tn,n  =

tb,b =

1
0 (branch not taken)
Sf + Pa * Y, + Pf * Yf (branch taken)
(sb - 1 - s,) - pa * y, - Pf * Yf (branch not taken)
(Sb - 1) (branch taken)

Delayed Branch (DB):

pt = 0
kn,b = pas (sb - 1 - u) + p, * y, + pf * yf
kn,n  = 0
tn,b = pas  (sb - 1 - u)

tn,n = 0

Taken/Not-taken Switch in the Decode Stage (TNTD):

kb,n  = (sb - 1 - sf)

kb,b = Sf + Pa * y, + Pf * Yf

kn,b = (sb - 1) + pa * y, + pf * yf

kn,n = 0

tb,n = (s,-1-sf)-P;t*Y,-Pf*E;
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tb,b = sf

tn,b = (sb- 1)

t 11.11 = 0

Branch Target Buffer (BTB): Model parameters in case of BTB-
hit are given below:

kb,n = (&,-  1)

kb,b = (Pf *yf)*Pct+(Sf  +R*Y,+pf*yf)*p  -P,t)

kn,b = ((sb - 1) + pf * yf) * Pet

+((sb - 1) + pa * y, + Pf * yf) * (1 - Et)

kn,n  = 0
tn,n = 0

Additional i-traffic, when branch is predicted as to-be-taken and is
actually taken:

tb,b = (01 + 02 + 03 + 04) * (1 - p,,)

Assuming min (a, b) stands for a or b, whichever is minimum, we
have:

01 = min (pm (sf + Ya - Yf)(& - 1)) * Pa * Pf

02 = min (( sf + Ya)( sb - 1)) * Pa * (1 - Pf)

03 = pos (Sf - Yf) * (1 - Pa) * Pf

(74 = Sf * (1 - P,) * (1 - Pf)

Additional i-traffic, when branch is predicted as to-be-taken but it
turns out to be an incorrect prediction:

Let Pfp and YfP refer to the freeze potential and freeze duration, re-
spectively, at the predicted target and Pfc and U, refer to the same
at the actual calculated target. Note that this distinction is made
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only for better understanding of the following details; numerically we
assume Pfp = Pfc = Pf and YfP = YfC = Yf. Discarded i-fetches in this
case would be:

tb,n = (( sb - 1) - Pf * yf) * Pet + S * (1 - Pet)

where
s =

and
61 =
62 =
63 =

64 =

65 =

67 =
($3  =

61 + 62 + 63 + 64 + 65 + 66 + 67 + 68

(POS (sf - &) + & - 1 - sf) * pfP * (1 - p,c) * (1 - p )a

(POS (Sf - E&p) + POS (sb - 1 - sf - Y,c))  * Pfp * Pfc * (1 - Pa)

(sb - 1) * (1 - pfp)  * (1 - pfc) * (1 - Pa)

(Sf + POS (sb - 1 - Sf - Xc))  * (1 - Pfp)  * Pfc * (1 - Pa)

(min  (POS (sf i- Y, - yfp),  (sb - 1)) -k POS (sb - 1 - sf - y,>)

*Pfp  * (1 - Pfc)  * pa

(min  (POS (Sf + Ki - yfp),  (Sb - 1)) + POS (sb - 1 - Sf - K - Y,c))

* Pfp * Pfc * Pa

(sb - 1) * (1 - Pfp)  * (1 - Pfc) * Pa

(min  ((sf  i- K)) (sb - 1)) -i- POS (sb - 1 - sf - K - &))

*( 1 - Pfp) * Pfc * pa

Additional i-traffic, when branch is predicted as not-to-be-taken but
is actually taken:

tn,b = (sb - 1) + 7 * (1 - P,t)

where

7 = 71 * Pa * Pf + 72 * Pa * ( 1 - Pf ) + 73 * ( 1 - Pa) * pf

+y4 * (1 - Pa) * (1 -Pf)

and

71 = min (POS (Ya - Yf), sb - 1)

72 = min (Ya,Sb - 1)
73 = 74 = 0
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Predict Branch Always taken with target-copy and delayed
branch (TTCDB):

pt = 1
kb,n = pas (sb - 1 - u)

kb,b = Pa * pos (Y, - (& - 1 - sf)) + pf * fi
tb,n = pas  (sb - 1 - u)

tb,b = 0

Predict Branch Always taken with target-copy, delayed branch
and Loop buffer (TTDLB):

pt = 1
kb,n = pas  (sb - 1 - u) * (1 - Plh)  + pas (sb - 2 - u) * ph
kb,b = Pa * pas  (Y, - (sb - 1 - s,)) * Plh + (p,. * pas  ( ya - (sb - 1 - sf))

+pf * T/f) * (1 - 8h)

tb,n = pas  (&, - 1 - u) * (1 - plh)

tb,b = 0

Taken/Not-taken Switch in the Decode Stage with Loop
buffer (TNTLB):

kb,n =

kb,b =

kn,b =

kn,n  =

tb,n =

tb,b =

tn,b =

tn,n =

(sb - 1 - sf)

(( sf - 1) + p, * ya) * fib + (sf + pa * y, + pf * 6) * (1 - 91,)

((&, - 1) + pa * ya + pf * yf) * (1 - ph) + ((sb - 2) + pa * K) * 81,

0
((sb - 1 - s,) - pa * ya - pf * yf) * (1 - fib)

sf * (1 - 8h)

(sb - 1) * (1 - fib)

0
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Non-hybrid strategies:

PBNT: Predict branch never taken
LB: PBNT + Loop Buffer
PTA: PBNT + Pre-calculate target address
FTOF: PBNT + Target-fetch in the OF-slot
PBAT: Predict branch always taken
PTTC: PBAT + Target-copy
FBP: Fetch both the paths
DB: PBNT + Delayed branch
TNTD: Branch taken/not-taken prediction switch in the ID stage
BTB: Branch target buffer

Hybrid strategies:

TTCDB: Predict branch always taken with target-copy and de-
layed branch (PTTC+ DB)

TTDLB: Predict branch always taken with target-copy and de-
layed branch and loop buffer (TTCDB + LB)

TNTLB: Branch taken/not-taken prediction switch in the ID
stage and loop buffer (TNTD + BTB)

TNBTB: Branch taken/not-taken prediction switch in the ID
stage and branch target buffer (TNTD + BTB)
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Nominal values:

Average branch frequency: 0.25
Average fraction of conditional branches: 0.8
Overall fraction of successful branches: 0.6
(conditional/unconditional combined)

# of pipeline stages until unconditional branch resolution: 2
# of buffer sub-stages in the instruction-fetch stage: 1
# of pipeline stages until conditional branch resolution: 5

Prob. of freeze during target address formation: 0.5
Duration of target-address-calculation freeze: 2 cycles

Prob. of freeze during target-fetch: 0
Duration of target-fetch freeze: 10 cycles

Prob. of loop-buffer hit: 0.6

Prob. of BTB hit: 0.8
Prob. of correct address prediction from BTB: 0.9
Prob. of BTB-hit for non-branch instruction: 0.05

Average # of delay-slots filled in delayed branch approach: 1

For cases with active prediction schemes: (TNTD, BTB, TNTLB, TNBTB)

Correct prediction prob. for unconditional branches: 1.0
Correct prediction prob. for conditional branches: 0.85
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