
A More Aggressive Use Of Views To Extract

Information
�

Nam Huyny

Stanford University

huyn@cs.stanford.edu

Abstract

Much recent work has focussed on using views to evaluate queries. More speci�cally, queries are rewritten to

refer to views instead of the base relations over which the queries were originally written. The motivation is that

the views represent the only ways in which some information source may be accessed. Another use of views that

has been overlooked becomes important especially when no equivalent rewriting of a query in terms of views

is possible: even though we cannot use the views to get all the answers to the query, we can still use them to

deduce as many answers as possible. In many global information applications, the notion of equivalence used

is often too restrictive. We propose a notion of pseudo-equivalence that allows more queries to be rewritten

usefully: we show that if a query has an equivalent rewriting, the query also has a pseudo-equivalent rewriting.

The converse is not true in general. In particular, when the views are conjunctive, we show that all Datalog

queries over the source do have a pseudo-equivalent Datalog query over the views. We reduce the problem of

�nding pseudo-equivalent queries to that of rewriting Horn queries with Skolem functions as Datalog queries.

We present an algorithm for the class of term-bounded Horn queries. We discuss extending the problem to larger

classes of Horn queries, other non-Horn queries that result from \inverting" Datalog views and adding functional

dependencies. The theory and methods developed in our work have important uses in query mediation between

heterogeneous sources, automatic join discovery and view updates.

�This work was written in October 1995 but has never been published before taking the current form of a technical

report. The history can be traced as follows. This work was derived from [Hu96], a paper I wrote in October 1994 and

whose original ideas were shared with Xiaolei Qian earlier in 1994. Qian's [Qian96] embodies some of these main ideas.

The ideas from [Qian96] were in turn picked up by Oliver Duschka and used in [DG96] to derive what is essentially

equivalent to our result.
yWork supported by ARO grant DAAH04{95{1{0192.

1

Q0

Q

\same" answers

R

M

V

Figure 1: Answering Queries Using Views

1 Introduction and Motivation

The problem of using views to answer queries has received a lot of attention recently ([LMSS95,

CKPS95, RSU95]). A common framework used in these works as well as in this paper is depicted in

Figure 1. In this �gure, R represents a collection of base relations, V represents a collection of views,

and M is a collection of view de�nitions that de�ne the views in terms of the base relations. Given

a query Q posed to R, the problem is to �nd a query Q0 that produces the \same" results as Q but

that uses only the views in V .

The approaches used in [LMSS95, CKPS95, RSU95] essentially look for \exact matches" Q0 for

Q: the answers produced by Q0 from V must be exactly those answers Q would have produced from

R, had we had access to R. The motivation is that V represents the only ways in which R may be

accessed.

While the importance of using views to �nd exact matches cannot be overemphasized, another use

of views that has been overlooked becomes crucial especially when no equivalent rewriting of a query

in terms of views is possible: even though we cannot use the views to get all the answers to the query,

we can still use them to infer as many answers as possible.

EXAMPLE 1.1 (Simple graph search) Consider a databaseR = (P1; P2) (with the corresponding

predicates p1 and p2), a collection V consisting of a single view V (with predicate v) de�ned on R by

the rule:

v(X; Y) :{ p1(X;Z); p2(Z; Y):

and a query Q (with predicate q):

q(X) :{ p1(X; Y); p2(Z;X):

Imagine a directed graph whose edges labelled p1 (resp. p2) denote the relation P1 (resp. P2). V

represents patterns in a graph where the head of a p1-edge coincides with the tail of a p2-edge, while

Q searches for patterns where the tail of a p1-edge coincides with the head of a p2-edge (see the two

leftmost graphs in Figure 2).

Clearly, V alone cannot provide an exact match for Q. To see this, the rightmost graph in Figure

2 shows an instance for R where V becomes empty but Q = fcg. However, one can still use V to

deduce answers for Q. For instance if we know v(a; c) and v(c; e), we can deduce q(c), and this is the

best we can do for Q. In a sense, in the absence of any exact match, the query Q0 (with predicate p0)

de�ned by

q0(X) :{ v(Y;X); v(X;Z):

2

X Y

p1

p2

?

V iew V

X

Database R

? ?

p2

p1

Query Q

b

c

d

p2

p1

Figure 2: Searching a graph

TRANSLATE

Q

Q0

V

R

M

Global World View
exported by the mediator

Actual Data Source

Figure 3: Query Mediation

can still serve as a good substitute for Q. It turns out that Q0 is actually the \best" match for Q.

This more aggressive use of views to extract information is further motivated by situations in which

V represents the real information sources and R's role is to merely provide the predicates that give

a global meaning to the predicates in V and to any global query Q. Such situations are found when

trying to integrate heterogeneous sources [Chaw94, Qian93, Wie92].

EXAMPLE 1.2 (Integrating heterogeneous sources) To its end users, a mediator ([Chaw94,

Wie92]) gives the illusion of a homogeneous source of information while drawing on actual data sources

that are autonomous in many ways: schema design contents, participation, and query processing

capability.

Figure 3 shows a mediator designed to export a certain global view of the world R, usually within

a narrowly scoped domain. A query Q, posed to the mediator in terms of R, must be translated

into a query Q0 that the actual data sources V can process. In order to carry out the translation,

the mediator has access to mappings M that de�ne the source schemas (in V) in terms of the global

schema (in R). Data sources may be individually mapped, and a new mapping is created when a new

data source is \mounted" the �rst time to the mediator.

In order to be useful, mediators must maximize the information returned as answers to queries.

The goal is to return all answers that can be deduced based on the contents of the sources and their

query processing capability, all available mappings and natural constraints in the global view.

3

Examples 1.1 and 1.2 suggest a new notion of query pseudo-equivalence that is clearly not the same

as the notion used in the other approaches searching for an exact match.

De�nition 1.1 (Pseudo-Equivalence):

Let V and R be two sets of relations, and let M be a set of view de�nitions that express the

relations in V in terms of the relations in R. Let Q be a query over R and Q0 a query over V . We say

Q0 is pseudo-equivalent to Q if

8V : Q0(V) =
\

R s:t: V=M(R)

Q(R)

Query Q0 produces all the results that are logically entailed by V , the view de�nitions in M that

constrain R, and the query Q. Note that in this formulation of pseudo-equivalence, the model that

varies is V , while R is constrained, though not uniquely in general, by V . By contrast, in the traditional

notion of equivalence, de�ned by [8R : Q0(M(R)) = Q(R)], R varies while V is uniquely de�ned by

R. But how are the two notions related?

Proposition 1.1 If Q has an equivalent query Q0, then Q also has a pseudo-equivalent query (in fact,

Q0 is pseudo-equivalent to Q). The converse is not true.

Proof: (Sketch) Assume that there is a Q0 equivalent to Q. That is, for all R, Q0(M(R)) = Q(R).

It is su�cient to show that Q0 is also pseudo-equivalent to Q. Let us �x V and let R be a database

such that V = M(R). Then Q0(V) = Q0(M(R)). By hypothesis, Q0 is equivalent to Q and thus,

Q0(M(R)) = Q(R). So Q0(V) = Q(R) for any R such that V =M(R).

To the converse, we use Example 1.1 as a counterexample. We already mentioned why no query

over V equivalent to Q could exist. For the rest, it su�ces to show that Q0, as de�ned in Example

1.1, is pseudo-equivalent to Q. Assume X 2 Q0(V). Then any database R that satis�es V = M(R)

must contain tuples of the form p1(?1; ?2), p2(?2; X), p1(X; ?3), p2(?3; ?4), and therefore tuple q(X)

must be in Q and X 2 Q(R). Conversely, assume X 2 Q(R) for any R satisfying V = M(R). Any

such R must contain tuples of the form p2(?1; X), p1(X; ?2). We claim that V must contain tuples of

the form v(X; ?) since otherwise, it is consistent to have some R that does not contain any tuple of

the form p1(X; ?) while still satisfying V =M(R), contradicting what we just said. Similarly, V must

also contains tuples of the form v(?; X). Thus, q0(X) must be in Q0 and X 2 Q0(V).

Challenges

The problem of �nding pseudo-equivalent queries has three parameters { the class LM of mappings

between R and V , the class LQ of input queries Q, and the class LQ0 of pseudo-equivalent queries Q0

{ that together, bear on the complexity of the problem. While LM, LQ and LQ0 are usually dictated

by the application's requirements, it is important to develop the theory that would steer us away

from the undecidable cases (see Theorem 6.1). We will therefore generally restrict ourselves to various

subclasses of Datalog.

Results

In this paper, we establish the following:

4

� Under \conjunctive" mappings M, any nonrecursive Datalog query Q has a pseudo-equivalent

Q0 in nonrecursive Datalog. We give a closed-form solution for Q0.

� For mappings M whose \inverses" M�1 are recursive but \term-bounded" Horn programs,

we give an algorithm that essentially rewrite any query Q in recursive Datalog to a pseudo-

equivalent Q0 in recursive Datalog. Special cases include M's that are conjunctive and M�1's

that are nonrecursive Horn programs.

Related work

One approach to query translation between semantically heterogeneous data sources consists of ex-

tending the data model to match the expressive power of the query language enriched to capture

the more complex mappings. DeMichiel's work [DeM89] on extended relational model and operations

exempli�es this approach where inde�nite answers to queries are allowed.

In spirit, Qian's query mediation approach to semantic interoperation [Qian93] is related to ours,

in which source and target queries are expressed in a traditional �rst order query language and are

required to return de�nite answers. However, translatability issues and computational aspects of query

reformulation are not addressed in her work.

Incomplete deductive databases have been studied in [Im86] and [KL88] but with an emphasis

on query evaluation. In [KL88], Kifer et al. identi�ed a class of Horn queries that can be e�ciently

evaluated which traditional top-down or bottom-up evaluation techniques would fail to terminate. In

[Im86], Imielinski studied the complexity of processing di�erent classes of Horn queries and presented

both positive and negative results. While negative results in query evaluability can be clearly carried

over to our translation problem, it is much less clear how positive results would apply here.

Applications

The theory and methods developed here for �nding pseudo-equivalent queries would not only provide

a powerful approach to extract information from heterogeneous sources and to fully achieve their

meaningful integration, but also have other interesting uses:

EXAMPLE 1.3 (Automatic join discovery) Consider a book mediator who exports the global

schema bookworld(Isbn,Title,Publisher). The mediator is given access to two real data sources: a

reference source with relation ref(Isbn,Title), and a locator source with relation publish(Isbn,Company).

The alert reader would immediate note that relation bookworld is nothing but the join of ref and publish.

But in reality, having to prespecify all potential joins is neither desirable nor practical, especially when

the underlying data sources can be independently \rolled" in. In fact, all we need to give the following

de�nitions to the mediator:

ref(I; T) :{ bookworld(I; T; P):

publish(I; C) :{ bookworld(I; T;C):

The mediator should be able to exploit the natural constraints that apply to the world of books,

namely the functional dependencies

bookworld:Isbn ! bookworld:T itle

bookworld:Isbn ! bookworld:Publisher

5

to infer the following join formulation of bookworld

bookworld(I; T; P) :{ ref(I; T); publish(I; P):

EXAMPLE 1.4 (Approach to view updates) Consider a database R and a set of views V over

R, both of which allow updates. Assume that some of the views in V are not an updatable view, say,

inserting tuples into some view would not result in unambiguously updating R. One way to handle the

view update problem is to extend the data model for R. A better alternative is to leave the inserted

tuples in V but not propagate them to R. Use of these inserted tuples is delayed until query evaluation

time. If we have techniques to translate queries against R into pseudo-equivalent queries against V ,

we know that these inserted tuples will be fully considered in computing the query results. If V is

fully maintained, we do not even need to consult R in order to �nd complete answers to queries.

EXAMPLE 1.5 (Query simpli�cation) As we will show later, our query translation technique

essentially consists of precomputing all the potential uni�cations between subgoals and rule heads

all of whose forms are known independently of the actual EDB extension. The structure of the

query thusly translated has considerably been simpli�ed and enables the potential of traditional query

optimization techniques to be fully realized.

Paper Outline

The rest of this paper is organized as follows. In the next section, we provide the basics for Datalog,

mappings and terminology conventions used. In Section 3, we reduce the problem of �nding queries

Q0 (pseudo-equivalent to Q) to that of computing the function-free answers of Horn programs QH .

We also present a closed-form solution for the special case where the views in V and Q are conjunctive

queries. In Section 4, we consider the general case where QH are recursive but \term-bounded" Horn

programs and present an algorithm that rewrites QH to Q0. Finally in Section 6, we summarize our

work and discuss possible extensions.

2 Preliminaries

Datalog and Horn programs

In this paper, queries and mappings are expressed by Datalog (and possibly Horn) programs. A

Datalog program is a collection of Horn rules that have a single positive atom in the head and positive

atoms (called subgoals) in the body. The only di�erence between Datalog programs and Horn programs

is that function symbols are not allowed in the former but are allowed in the latter. The rules are

assumed to be safe (see [Ull88]). Predicates used in a Datalog program are partitioned into EDB

predicates and IDB predicates. An EDB predicate is a predicate that does not appear in rule's head

(that is, only occurs in rule bodies). An IDB predicate is a predicate that appears in some rule's head

(and possibly in rule bodies). Among the IDB predicates, there is a distinguished predicate called the

query predicate that generates answers for the query. A conjunctive query is a Datalog program with

only one rule. A query in nonrecursive Datalog can always be expanded into (and thus modelled by)

a union of conjunctive queries.

6

Skolemization

In �rst order logic, when an existentially quanti�ed variable is under the scope of some set of variables,

it is legitimate to replace all occurrences of the former variable by a term, and this replacement

process is call skolemization. The term's function is a new function symbol known as a Skolem

function, and the remaining subterms are all the variables de�ning the scope. For instance, the

sentence (8X; Y)(9Z)p(X; Y; Z) is rewritten as (8X; Y)p(X; Y; f(X;Y)) after skolemization, using a

new Skolem function symbol f . Skolemization is used to eliminated existential quanti�cations without

loss of information.

Mappings

Generally, a mapping is a collection of sentences that de�ne V 's predicates in terms of R's predicates,

and also capture semantics constraints in R. For the purpose of this paper, the sentences are Datalog

programs.

Queries

We use the standard notion of queries whose answers are ground atoms. In other words, we do not

consider queries with disjunctive answers or answers containing quanti�ed variables.

3 Using inverse mappings to �nd pseudo-equivalents

Inverse Mappings

Given a collection V of relations and a collection M of view de�nitions that de�ne V 's relations as

Datalog programs over R, what can we deduce about R? Instead of using M directly, the approach

we take is to \invert"M and use the inverse mapping M�1 instead. A well known trick to invertM

consists of:

� First, \complete" all the IDB predicates in M. For each IDB predicate v, consider all the rules

in M using predicate v in the head, say v(Tk) : �Bk for k = 1; . . . ; n, where T k denotes the

arguments in the head. If Zk denotes body variables that do not occur in the head, the formula

v(X),
n[

k=1

(9Zk)(Bk ^X = Tk)

expresses the assumption that v is completely de�ned; here, we are only interested in the forward

implication. Please refer to [Clark78] for more details.

� Then, \skolemize" the existential variables. For each declaration of an existential variable, we

introduce a new function symbol (a.k.a. Skolem function). Then each occurrence of that variable

is replaced with a term with the new function and whose arguments are the free variables.

EXAMPLE 3.1 Consider Example 1.1 where we assume view V is completely de�ned.

Completing predicate v produces:

v(X; Y), (9Z) [p1(X;Z)^ p2(Z; Y)]

Replacing the existential variable Z with a new (Skolem) function symbol g in the formula, we get:

7

v(X; Y), p1(X; g(X; Y)) ^ p2(g(X; Y); Y)

Using only the forward implication, we obtain the following rules for the inverse mapping M�1:

p1(X; g(X;Y)) :{ v(X; Y):

p2(g(X; Y); Y) :{ v(X; Y):

Conjunctive mappings

For the special case where the mapping M is conjunctive, each view predicate v in V is de�ned by a

single rule in M of the form:

v(X) :{ G1; . . . ; Gj; . . . ; Gn:

where each Gj is a subgoal with some R predicate and uses variables Xj , and X �
Sn
j=1Xj . For any

predicate p from R that occurs in some subgoal Gj , completing v produces a rule of the form:

p(X
0

j) :{ v(X):

where X
0

j is formed from Xj by replacing any variable u in Xj�X with the term fu(X). The Skolem

function fu is a new symbol that depends only on v and u.

So inverse mappingsM�1 for conjunctive views are very simple nonrecursive Horn programs whose

rules have single goal bodies, and where Skolem functions only occur in rule heads.

Pseudo-equivalence for nonrecursive Datalog queries

A nonrecursive Datalog query Q (with predicate q) can be expressed as a collection of rules of the

form:

q(X) :{ H1; . . . ; Hj; . . . ; Hm:

where each Hj is a subgoal with some R predicate.

Let us de�ne query Q0 (with predicate q0) to consist of rules of the form

q0(X
0
) :{ R1; . . . ; Rj; . . . ; Rm:

where each subgoal Rj , which uses some predicate v from V , is the result of replacing Hj with the

body of some rule p(Y) :{ v(Z) from M�1 when p(Y) successfully uni�es with Hj . If any function

symbol remains in the resulting rule, the rule is ignored.

Proposition 3.1 We claim that Q0 is pseudo-equivalent to Q.

Proof: (Sketch) The last step in the construction of Q0 essentially throws away all the answers to

the query predicate that contain functional terms. While these answers represent those that depend

on the actual relations in R (that are still constrained by the given V and mapping), the remaining

answers that are retained correspond to those de�nite answers that logically follows from the given V

and mapping (the largest set of answers that result from using any R).

EXAMPLE 3.2 Consider a query Q de�ned the rules q(X) :{ p1(X; Y) and q(Y) :{ p2(X; Y). Con-

sider the view V from Example 3.1. The subgoal p1(X; Y) in the �rst rule for Q uni�es with the head

of p1(X
0; g(X 0; Y 0)) :{ v(X 0; Y 0), and the corresponding rule for Q0 becomes q0(X 0) :{ v(X 0; Y 0). Sim-

ilarly, the rule for Q0 that corresponds to the second rule for Q can be derived as q0(Y 0) :{ v(X 0; Y 0).

8

Corollary 3.1 Under conjunctive mappings, any nonrecursive Datalog query Q(R) has a pseudo-

equivalent query Q0(V) in nonrecursive Datalog.

4 Solving the translation problem for conjunctive views

The previous section suggests a method to solve the translation problem

� For mappings M that de�ne conjunctive views

� And for Q and Q0 in recursive Datalog.

One of the key observations is to equate the set of answers for Q0 that are deducible from V , M,

and Q, with the least �xpoint of a new query QH 1 formed by combining Q with all the rules that

result from completing the predicates in V , that is

QH = Q [M�1

where QH uses q for its query predicate and the V predicates are the only EDB predicates (the

EDB predicates in M are relabelled as IDB). In other words, QH , a Datalog program with function

symbols, is treated as a query over V .

Proposition 3.1 generalizes as follows.

Proposition 4.1 QH computes the same function-free answers as Q0.

We have e�ectively reduced the problem of �nding Datalog pseudo-equivalents of Q to that of

�nding Datalog queries Q0 that have the same function-free least �xpoint as the Horn query QH for

all database V .

While Horn programs in general may not have a �nite least �xpoint, the query QH in question here

(i.e. constructed out of conjunctive views and Datalog queries) is only a special case of term-bounded

queries, a larger class of Horn queries that do have �nite answers.

We will show an algorithm that rewrites any given term-bounded Horn query over V to a Datalog

query over V that produces the same function-free answers, for all databases V .

De�nition 4.1 (Term-bounded queries): A Horn query with function symbols is term-bounded

if for every EDB, the size of all derivable tuples for every IDB relation is bounded.

We assume the EDB relations contain no function symbols. The size of a tuple is the maximum

height of the components of the tuple. These components may be functional terms whose leaves are

constant symbols from the EDB and whose interior nodes are function symbols from the query. With

this class of programs, unbounded growth of functional terms within derivable facts never happens

for any given EDB. Term-boundedness is not a new concept and has been extensively studied in the

literature [KRS88], [Sh87].

1The annotation \H" is used to remind us that the query is a Horn program whose function symbols are the result of

skolemization.

9

<q.j>

Inverse
Mapping M�1

Query Q

<v.j>

0

0 or 1

0

<p.j>

Figure 4: Syntactic check for term-boundedness of QH

Syntactic characterization

While the problem of determining if a Horn query is term-bounded is generally undecidable, there are

many syntactic characterizations of Horn queries that only guarantee their term-boundedness but are

not necessary. We will give a simple one here, with the understanding that there are others in the

literature such as [KL88], [VG90], that can de�ne larger classes of term-bounded Horn queries.

Consider a directed graph whose nodes represent components of predicates used in the program.

An n-ary predicate p would be represented by n nodes denoted <p.1>, . . . ,<p.n> in the graph. For

each rule

p(. . . ; Tj; . . .) :{ . . . ; q(. . . ; Ui; . . .); . . .

where Tj denotes the term in the jth component of the head and Ui the term in the ith component of

the subgoal with predicate q, there is an edge in the graph from <Q.i> to <P.j> if Tj and Ui share

some variable. The edge is labeled \1" if there is a shared variable X such that the longest path from

the root of Tj to any leaf X in Tj is greater than the longest path from the root of Ui to any leaf X

in Ui. Otherwise, the edge is labelled \0".

The Horn query is term-bounded if the graph has no cycle with at least one edge labelled \1".

Briey, the reason is that when no such cycles are present, no component will be able to \feed" on

itself.

EXAMPLE 4.1 Consider the general case of conjunctive views as presented in Section 2. Consider

a Datalog query Q using q as the query predicate. The graph corresponding to QH is depicted in

Figure 4.

In this graph, all edges in the lower band, which might be labelled \1", are only pointing upward,

and all the potential cycles are con�ned to the upper band and have no edges labelled \1".

As a corollary, Horn queries formed by combining Datalog queries with conjunctive views are all

term-bounded.

Eliminating functional terms

Informally, the algorithm works on each rule all of whose variables are known to be bound to function-

free symbols. The starting point obviously consists of those rules whose bodies only refer to EDB

predicates. The exact function pattern of tuples each such rule can generate can precisely be predicted.

The rule head is then \attened", i.e. replaced with a \at" head by means of a new predicate (called

10

at predicate) that represents the head's function pattern. All rules having subgoals uni�able with

the head will have an arbitrary number of these subgoals replaced by at predicate subgoals. This is

reminiscent of a bottom-up symbolic evaluation where function patterns are propagated from the base

predicates toward the query predicate. All function patterns that can potentially be generated are

made explicit and encoded as at predicates. At the end, all remaining rules that cannot be attened

are discarded. At the end, in order to remove answers that contain function symbols, those rules

whose heads use attened variations of the original query predicate that encode non trivial function

patterns are discarded.

Algorithm 4.1 (Function symbol elimination by bottom up rewrite)

INPUT: A term-bounded Horn program with the query predicate answer.

OUTPUT: An equivalent Datalog program using no functional terms.

METHOD:

� Initialize INPUT-SET to the set of rules in the program, OUTPUT-SET to the empty set. Mark

all EDB predicates \at".

� While there is a rule in INPUT-SET all of whose subgoal predicates have been marked \at",

remove it from INPUT-SET, \atten" it and put the result in OUTPUT-SET. This may cause

new rules to be added to INPUT-SET.

� At the end, OUTPUT-SET contains the result. Its query predicate is the at predicate that

encodes the trivial function pattern (i.e. involving no function symbols) for answer.

To \atten" a rule r with head p(t1; . . . ; tn):

1. We �rst check if r's head is an instance of a function pattern that has been recorded so far.

2. If the check is negative, we record the new function pattern, create a new predicate p0 (marked

\at") that becomes the representative for that pattern, and rewrite r's head in terms of p0.

Note that the rewritten head is now at, and is also recorded as a \at head pattern". The

arity of p0 is the number of leaves in the tree that represents the function pattern the choice of

which argument of p0 corresponds to which leaf is not important as long as the correspondence

is maintained). We continue in Step 4.

3. If the check is positive, we retrieve the predicate p0 that is the representative for the existing

function pattern. We then rewrite r's head in terms of p0. If the new head is subsumed by

an existing at head pattern, we are done attening r. Otherwise we record the new at head

pattern and continue in Step 4.

4. For every rule in INPUT-SET that has p-subgoals in its body, create copies in each of which a

di�erent subset of the p-subgoals is selected to unify with r's head and rewrite in terms of p0.

Note that some of these copies may be discarded because there is no variable substitution that

makes all the p-subgoals in the subset unify with r's head. Variables that are used in subgoals

with at predicates are known to be bound to constant symbols and therefore cannot unify with

functional terms. All the resulting rule copies are added back to INPUT-SET.

Theorem 4.1 If Algorithm 4.1 terminates, the initial INPUT-SET and the �nal OUTPUT-SET com-

pute the same �xpoint.

11

Proof: (Sketch) We use induction on the number of \atten" steps. Consider the following invariant:

at each step, INPUT-SET [OUTPUT-SET is equivalent to the original program. Note that equiva-

lence here means that the two programs compute the same least �xpoint where tuples with function

symbols are allowed.

Initially, the invariant trivially holds. Now we want to show that if the invariant holds before a

\atten" step, it still holds after. Let's denote P1 (resp. P2) the program in INPUT-SET [OUTPUT-

SET before (resp. after) a \atten" step. P2 cannot generate more tuples than P1, since new rules

added to P1 are just instances of some of P1's rules. P2 cannot generate less, since all possible

invocations of the rule to be attened are considered, each possibility resulting in a rule copy to be

added to P1. Therefore, in terms of the original IDB predicates, P1 and P2 generate the same sets of

tuples.

Assume the algorithm terminates. After the last \atten" step, all rules in INPUT-SET cannot be

attened, i.e. they each contain a goal whose predicate is not at. These rules are useless, since none

can start generating tuples (for this, a rule must have all its subgoals with a at predicate). Therefore,

INPUT-SET can be dropped without a�ecting the program's answer.

Theorem 4.2 Algorithm 4.1 terminates.

Proof: (Sketch) There can only be a �nite number of \atten" steps. A step falls into one of the

following cases:

1. A new at predicate, encoding a new function pattern is created.

2. No new predicate is created but the new head is not subsumed by any existing at head pattern.

3. No new predicate is created and the new head is subsumed by some existing at head pattern.

First, we show there can only be a �nite number of steps in Case 1. The key point is that

the algorithm only generates function patterns that are possible. That is, for any function pattern

generated, there is always an EDB extension that causes a tuple of the corresponding form to be

generated (to see this, just consider the OUTPUT-SET, all rules in that set are well founded). Now,

if there were an in�nite number of function patterns generated, there must be an EDB extension that

causes an in�nite number of tuples to be generated. This is not possible since the input program

is assumed to be term-bounded. So the number of steps in Case 1 is bounded. Second, for a given

function pattern, there can only be a �nite number of di�erent at head patterns consistent with the

function pattern. Thus, the number of steps in Case 2 is also bounded. As a result, �nally, the total

number of rule copies the algorithm generates (by means of steps of the �rst two cases) is bounded,

and therefore the number of steps in Case 3 is bounded.

EXAMPLE 4.2 Consider the view from Example 1.1 and the following recursive Datalog query Q:

q(X; Y) :{ p1(X; Y):

q(X; Y) :{ p2(X; Y):

q(X; Y) :{ q(X;Z); q(Z; Y):

Algorithm 4.1 rewrites the corresponding QH to the following recursive Datalog query Q0:

q0(X; Y) :{ v(X; Y):

q0(X; Y) :{ q0(X;Z); q0(Z; Y):

12

Corollary 4.1 For any term-bounded Horn query, there is a pure Datalog query that computes the

same function-free answers.

Corollary 4.2 For conjunctive views V = M(R), any recursive Datalog query Q(R) has a pseudo-

equivalent query Q0(V) in recursive Datalog.

5 Related work

One approach to query translation between semantically heterogeneous data sources consists of ex-

tending the data model to match the expressive power of the query language enriched to capture

the more complex mappings. DeMichiel's work [DeM89] on extended relational model and operations

exempli�es this approach where inde�nite answers to queries are allowed.

In spirit, Qian's query mediation approach to semantic interoperation [Qian93] is related to ours,

in which source and target queries are expressed in a traditional �rst order query language and are

required to return de�nite answers. However, translatability issues and computational aspects of query

reformulation are not addressed in her work.

Incomplete deductive databases have been studied in [Im86] and [KL88] but with an emphasis

on query evaluation. In [KL88], Kifer et al. identi�ed a class of Horn queries that can be e�ciently

evaluated which traditional top-down or bottom-up evaluation techniques would fail to terminate. In

[Im86], Imielinski studied the complexity of processing di�erent classes of Horn queries and presented

both positive and negative results. While negative results in query evaluability can be clearly carried

over to our translation problem, it is much less clear how positive results would apply here.

6 Discussion

Rewriting General Horn Queries

There are certain Horn queries that are not term-bounded but for which a top-down approach extend-

ing some of the ideas used in our algorithm (e.g. functional patterns in goals) appears to work well.

An approach using top-down expansion to guide bottom-up rewrite probably deserves further study.

However, the following result gives a lid on the classes of translatable Horn queries beyond which no

translation algorithm can be found.

Theorem 6.1 There is no algorithm that e�ectively translates any arbitrary Horn query into a Datalog

query that has the same function-free �xpoint. The result remains negative even if we restrict ourselves

to queries that contain only linear recursive rules with 8 � 9 � 8� pre�xes.

Proof: (Sketch) This result is a straightforward consequence of the main undecidability result in

[Im86] where it was shown that the derivation problem for conjunctive queries with linear recursive

IDB rules with 8 � 9 � 8� pre�xes is undecidable.

General case of Datalog views

When views are allowed to be any Datalog query, completing the view predicates would result in a

program that has the following features:

� Skolem terms for those body variables that are projected out in the original rules

13

� Disjunctions and literals involving equality in rule heads, when predicates in the original program

are de�ned by multiple rules

� Recursion when the original program is recursive

As soon as we step beyond conjunctive views, that is, in considering a union of conjunctive queries

(a fortiori recursive rules), we introduce disjunctive rule heads in the resulting mapping, which takes

us outside the domain of Horn programs. Expanding rules of the form

H1 _H2 _ . . ._Hm :{ G1; G2; . . . ; Gn

into Horn rules with negation that is not of the simple kinds does not seem to get us closer to the

solution.

Adding dependencies

Example 1.3 suggests using functional dependencies [Ull88] as a way to reduce uncertainties introduced

by existential variables. Multivalued dependencies may also be used to achieve similar e�ects. In fact,

if we apply this weaker form of dependencies to our example, we obtain a Horn program

bookworld(I; T; f(I; T)) :{ ref(I; T):

bookworld(I; g(I;C); C) :{ publish(I; C):

bookworld(I; T1; P2) :{ bookworld(I; T1; P1); bookworld(I; T2; P2):

that will be rewritten into:

bookworld(I; T; P) :{ ref(I; T); publish(I; P):

Nevertheless, this particular example does not show the added power of equality-generating de-

pendencies that may produce many more possible term substitutions. This suggests a way to extend

the uni�cation used in our current translation algorithm to include the capability to perform term

subsumptions.

Acknowledgments

We thank Prof. Je� Ullman for his valuable comments regarding both technical contents and presen-

tation of this material.

References

[CKPS95] S. Chaudhuri, R. Krishnamurthy, S. Potamianos and K Shim. Optimizing queries with

materialized views. In Proceedings of the International Conference on Data Engineering,

1995.

[Chaw94] S. Chaw et al. The TSIMMIS project: integration of heterogeneous information sources. In

IPSJ, Tokyo, Oct. 1994.

[Clark78] K. Clark. Negation as failure. In J. Minker and H. Gallaire, editors, Logic and Data Bases,

Plenum Press, New York, 1978.

[DeM89] L. DeMichiel. An approach to performing relational operations over mismatched domains.

IEEE Trans. on Knowledge and Data Engineering, Vol. 1 No. 4, Dec. 1989, pp. 485-493.

14

[DG96] O. M. Duschka and M. R. Genesereth. Answering recursive queries using views. Submitted

for publication.

[Hu96] N. Q. Huyn. Query reformulation under incomplete mappings. Technical Report STAN{

CS{TR{96{1576, Stanford University, Computer Science Department, 1996.

[Im86] T. Imielinski. Complexity of query processing in the deductive databases with incomplete

information. Department of Computer Science, Rutgers University, DCS-TR-206, 1986.

[KL88] M. Kifer and E. L. Lozinskii. SYGRAPH: Implementing logic programs in a database style.

IEEE Trans. on Software Engineering, vol. 14 No. 7, July 1988, pp. 922-935.

[KRS88] R. Krishnamurthy, R. Ramakrishnan and O. Shmueli. A Framework for testing safety and

e�ective computability of extended Datalog. Proc. ACM Symp. on Management of Data,

1988, pp. 154-163.

[LMSS95] A. Levy, A. Mendelzon, Y. Sagiv and D. Srivastava. Answering queries using views. In

Proc. ACM Symposium on Principles of Database Systems, San Jose, California, May

1995, pp 95-104.

[Qian93] X. Qian. Semantic interoperation via intelligent mediation. Proc. 3rd Int. Workshop on

Research Issues in Data Engineering: Interoperability in Multidatabase Systems, April

1993, pp. 228-231.

[Qian96] X. Qian. Query folding. In Proceedings of the 12th Int. Conf. on Data Engineering, 1996,

pp 48-55.

[RSU95] A. Rajaraman, Y, Sagiv and J. Ullman. Answering queries using templates with binding

patterns. In Proceedings of the ACM Symposium on Principles of Database Systems, 1995,

pp 105-112.

[Sh87] O. Shmueli. Decidability and expressiveness aspects of logic queries. In Proc. 6th ACM

Symp. on Principles of Database Systems, 1987, pp. 237-249.

[Ull88] J. D. Ullman. Principles of Database and Knowledge-Base Systems, Vol. 1 and 2, Computer

Science Press, Rockwille MD, 1988.

[VG90] A. Van Gelder. Deriving constraints among argument sizes in logic programs. In Proc. 9th

ACM Symp. on Principles of Database Systems, 1990, pp. 47-60.

[Wie92] G. Wiederhold. Mediators in the architecture of future information systems. IEEE Com-

puter, Vol. 25, No. 3, March 1992, pp. 38-49.

15

