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Abstract

This paper focuses on some of the important new translatability issues that arise in the problem of interop-
eration between two database schemas when mappings between these schemas are inherently more com-
plex than traditional views or pure Datalog programs can capture. In many cases, sources cannot be
redesigned, and mappings among them exhibit some form of incompleteness under which the question of
whether a query can be translated across different schemas is not immediately obvious. The notion of
guery we consider here is the traditional one, in which the answers to a query are required to be definite:
answers cannot be disjunctive or conditional and must refer only to domain constants. In this paper, map-
pings are modeled by Horn programs that allow existential variables, and queries are modeled by pure
Datalog programs. We then consider the problem of eliminating functional terms from the answers to a
Horn query where function symbols are allowed. We identify a class of Horn queries called “term-
bounded” that are equivalent to pure Datalog queries. We present an algorithm that rewrites a term-
bounded query into an “equivalent” pure Datalog query. Equivalence is defined here as yielding the same
function-free answer.

1. This work was originally written in October 1994 but has never been published before taking the current form of a
technical report. Earlier in 1994, | shared the ideas in this work with Xiaolei Qian, whose work in [9] embodies some
of these main ideas. The ideas from [9] were in turn picked up by Oliver Duschka and used in [10] to derive what is
essentially equivalent to our result.

2. Work supported by ARO grant DAAH04-95-1-0192



1. Motivation

Query mediation vs. schema design

Much work on heterogeneous information systems interoperation is couched in terms of schema and view
integration. These studies revolve around methodologies for designing good unifying schemas and for
restructuring schemas [4]. In many situations however, the opportunity for designing or reengineering
schemas is just not present. Yet, we are required to interoperate among these heterogeneous data sources.
This new situation is contrasted with the traditional one in Figure 1 for the task of query translation. This
new challenge has been found in the design of mediators [8]. Mediators are often designed to provide
information within a narrowly scoped domain, for instance, to answer queries over some schema specific

to that domain.

FIGURE 1. Query translation vs. Schema design
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For instance, a mediator can be designed to answer commonly asked questions about documents. The
mediator does not store document data itself. Its purpose is to provide a consistent informational interface
for queries about documents while hiding all the complexities and heterogeneities among the underlying
data sources it accesses. An appropriate vocabulary (or schema) about documents needs to be developed
independently of the actual sources and exported to all potential users. The assumption here is that at the
time the mediator is designed, the precise configuration of sources is unknown, let alone their schemas.

This assumption represents a major departure from traditional work on integration. “Mounting” a new data
source to the mediator essentially consists of providing the mediator with a mapping between the mediator
schema and the new source schema. From the mediator’s point of view, a new source schema may present
itself with arbitrary degree of mismatch.

* Mismatch between domainsThe data source uses zipcodes to represent location but the mediator
publishes locations in terms of cities. Knowing the zipcode of a location does not necessarily tell you
precisely which city. But it does narrow down to a small set of possible cities [1].

* Mismatch between relations:Different sources use different “cuts” at relating individuals in the same
collection, these cuts being not totally mutually independent. For instance, a data source only captures
the “project-peer " relationship but the mediator advertises thmployee-manager " relationship.
Knowing that two individuals are peers on one project does not tell more than that they are managed by
the same individual whose identity remains unknown nevertheless.

» Difference in abstraction levels:A data source records the partial order of events but the mediator
exports the total order of events (e.g. exact time points at which events occurs).



While mappings in the traditional integration setting are essentially functional (views or Datalog pro-
grams), the possibility now of severe schema mismatch has made mappings inherently more complex. A
class of mappings we are consideringiacemplete mapping#\ mapping (between a source schema and

a target schema) is incomplete when an instigigg.0f a source schema does not always map into a
unique instanceéryget Of the target schema. That is, more thanlgggetis possible but there is not

enough information to resolve the ambiguity. It is also possible that the “instgpggfcontains existen-

tial variables that denote objects whose identities cannot be inferred.

Example 1.1

A travel advisor mediator publishes a direct flight schefiight(City1,City2) . Unfortunately the

only relevant data source available is a database containing information on package deals offered by some
travel agency, e.g. the relatipackage(Source,Dest,Cost) . The problem is that traveling with these
packages might or might not involve making intermediate connections, and there is no way to know which
is the case. The database might not provide information about direct flights, but can be useful for answer-
ing other queries such as reachability questions. Thus, instead of giving up on the database, we must try to
exploit whatever mapping we have, even if it is only a partial one:

(OX)( OY)( OC)(package(X,Y,C) O reach(X,Y))
(OX)( OY)( ®)(reach(X,Y) O dflight(X,Y) Odflight(X,2) Oreach(Z,Y))

Note the existential variableand the disjunction in the second rule. They prevent certain queries from

being answered definitely, such as questions on direct flights. Nevertheless, not all queries against the
dflight  schema have uninteresting empty answers. For instance, whether there is a fligktaaut loé
reformulated as whether there is a package startingXrdrhe transitive closure of thiflight  relation

(i.e. a reachability question) can be rewritten as the transitive closurepaiclage relation (ignoring

costs). Even though a reformulated query is not semantically equivalent to the original query, it is equiva-
lent in the sense that it does not miss any answer that can be logically deduced to the best of our incomplete
knowledge. O

Accomodating dynamic configuration

The precise configuration of information sources usually cannot be predicted in advance and is often not
under the mediator’s control. Under this new operating requirement, traditional approaches to integration
typically do not scale well. Mounting a new data source generally involves the creation of new semantic
relationships between the new schema and all existing schemas. However, requiring all possible mappings
for all possible schema combinations to be specified is neither practical nor desirable. This can be a nui-
sance, especially if there are many existing schemas or if they have sizable vocabularies. Furthermore,
some of these existing data sources may be subsequently unmounted, rendering many of the mappings just
created effectively useless. The logical solution is to modularize mappings. That is, mappings are specified
between the mediator schema and each source schema individually. If a source schema does not have an
informationally complete set of relations, the resulting mapping is bound to contain partial information.
This approach leaves implicit the relationships that result from any potential synergistic interactions
among sources to be discovered by the mediator.

Example 1.2
A book mediator exports a viewvookinfo(bookid,title,place) . A “locator” source has the relation
pub(bookid,publisher) , While a “reference” source contains information about books in the relation

document(bookid, title) . The “locator” source is mapped with:
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( OB)( OP)( ) (pub(B,P) O bookinfo(B,T,P)).
while the “reference” source is mapped with:
(OB)( OT)( CP) (document(B,T) O bookinfo(B,T,P)).
Assume that the semanticshaiokinfo  requires that a book has at most a title and a publisher:
bookinfo.bookid functionally determinebookinfo.title, bookinfo.publisher

Without requiring the database administrator to specify cross database mapping, naredkitifat is
the join ofpub anddocument , the system should have sufficient information to infer that the dpoeky
info(B,T,P) can be logically reformulated as a join

document(B,T) & pub(B,P).

In fact, knowingdocument(b,t) andpub(b,p) , one can dedudmookinfo(b,t,? 1) and
bookinfo(b,?  ,,p) . Since b” uniquely determines the other componefitscan be identified with
“p”and?, with “t”. 0O

Information sources often interact semantically. Combining multiple sources has the potential of yielding
more information than simply taking the union of these sources considered separately. The question then is
how to fully exploit incomplete mappings in the task of query mediation.

Mediation with incomplete mappings

Mediators operate in environments that are essentially more stringent than much traditional work on inte-
gration has assumed. Mappings among schemas now assume a level of complexity that goes beyond sim-
ple views or Datalog programs. Incompleteness in mappings exemplifies this added complexity. Without
the ability of exploiting complex mappings, mediation would be severely hampered. A technical challenge

is how to mediate queries among sources under incomplete mappings without losing too much informa-
tion.

If we characterize these mappings as first order theories, incompleteness would take the forms of disjunc-
tions and existentially quantified variables, among others. Even if we restrict these theories to be Horn
(with possible existential variables), whether a target query can be translated to an equivalent source query
is not immediately obvious. The notion of query we consider here is the traditional one, in which answers
to a query are required to be definite: they cannot be disjunctive or conditional and must refer only to
domain constants. Because of incompleteness, some queries will admit no definite answers, yet other que-
ries are answerable either partially or completely. The issue is how to maximize the completeness of the
answer to a query, relative to what we know (mappings). Partial knowledge is not totally useless. In many
cases, a solution to a query can be deduced if one is able to reason carefully around the incomplete infor-
mation to reach a logical definite conclusion.

To summarize, in the problem we study here, we assume that adequate mappings between two fixed sche-
masS; andS, are given. How these mappings are created is a separate subject outside the scope of this
paper. They may be more expressive than simple traditional views or Datalog programs. Furthermore, we
assume some class of queries aga@p#tat is permissible and some class of queries aggitisat can be

handled. Without requiring our data model to be extended, the question we like to study is, under some
class of mappings betwe&pandS,, whether a given query throu§h can be reformulated as an equiva-



lent query ovess,, and whether there are efficient algorithms to carry out the reformulation task. Definite
answers to queries are assumed throughout.

Related work

One approach to query reformulation between semantically heterogeneous data sources consists of extend-
ing the data model to match the expressive power of the query language enriched to capture the more com-
plex mappings. DeMichiel's work [1] on extended relational model and operations exemplifies this

approach where indefinite answers to queries are allowed.

In spirit, Qian’s query mediation approach to semantic interoperation [5] is the most related to ours, in
which source and target queries are expressed in a traditional first order query language and are required to
return definite answers. However, translatability issues and computational aspects of query reformulation
are not addressed in her work.

Paper outline

This paper is organized as follows. In the next section , the general technical problem of query translation
is outlined. Section 3 defines the class of “term-bounded” queries for which a translation algorithm is pre-
sented in Section 4. Proof of correctness of the algorithm is given in Section 5, along with the main theo-
rem. Section 6 concludes the paper.

2. Problem Formalized

We will study the query reformulation problem in a relational model/deductive framework [7]. In this pre-
liminary study, we assume both target and source accept any Datalog query against their own schema. The
source EDB relations may contain only constant symbols but no functional terms.

Let She a schema consisting of a set of predicates. A Datalog query &yadiesoted)(S) is a Datalog
program whose EDB predicates belontand that has a distinguished IDB predicaregswer” (the
query predicate). A mapping(S,S) between a target scher§sand a source scherfais a first order
theory that relates predicatesSrandS;. We study the question of whether there is a Q€8 that is
“equivalent” to the original quer®(S) underM(S,S). If the question can be decided, we would like to
find algorithms that comput@(S) givenQ(§) andM(§,S).

The notion of equivalence needs to be clarified here. First, query answers are required to be definite: if
answer(X,...,X,) is the query predicate, we are only interested in the set of all (aplesg,) wherea; are

domain constants and such thaswer(a,...,g,) can be deduced. In other words, we rule out indefinite
answers such as disjunctions of answer facts and sentences about the answer predicate involving existential
variables. We then say tha{S) is equivalent t&Q(S) underM(S,S) when the answer generated@¢s)
(automatically definite) is identical to the definite answer deducible @(®&) andM(S,S), for all exten-

sions ofS,.

If we restrictM(S,S) to be a pure Datalog program, it is easy to translate an original QU®&)yo an
equivalent quer®(S) that can be processed by the source database. q&ds simply the union of

Q(]) andM(S,S) where the§ predicates are simply relabeled as IDB. However, in the general case where
mappings are expressed as an arbitrary first order theory, there is no efficient way to eit¥Syavéo
reformulate it into an equivale@(S).



Fortunately, we have identified a class of mappings that arise frequently in practice and that seem to admit
a more tractable solution. We will concentrate on mappings that are Horn programs, i.e. Datalog programs
augmented with function symbols. These function symbols are created as a result of skolemizing existen-
tial variables. In other words, while pure Datalog programs consist of Horn clauses having no function
symbols and where variables are universally quantified, we allow some variables to be existentially quanti-
fied. Within this class of programs, we identified a subclass we tafleeboundedor which we will

present an algorithm that eliminates functional terms.

3. Term-Bounded Horn Queries

A Horn program with function symbolsterm-boundedf there is an upper bound on the size of derivable
tuples, independent of the EDB relations. Again, these EDB relations contain no function symbols. The
size of a tuple is the height of the tree that represents terms and subterms in the tuple. In this class of pro-
grams, unbounded growth of functional terms within derivable facts never happens.

Example 3.1:The following program

answer :- integer(X).
integer(succ(X)) :- integer(X).
integer(X) :- base(X).

is excluded from the class since the minimum model conitaier(succ ' (c)) for arbitraryi , given
the extensionHase(c) }. 0O

Example 3.2:The following program:

answer :- ancestor(X,Y).

ancestor(X,Y) :- parent(X,Y).

ancestor(X,Y) :- parent(X,Z) & ancestor(Z,Y).
parent(X,f(X,Y)) :- grandparent(X,Y).
parent(f(X,Y),Y) :- grandparent(X,Y).

computes the transitive closure of tieeent relationship from grandparent EDB. The function sym-
bolf was introduced as a result of skolemizing the existential variable. This program is term-bounded
since the only derivable facts are necessarily of the parant(a,f(b,c)) , parent(f(a,b),c) ,
ancestor(a,b) , ancestor(a,f(b,c)) , ancestor(f(a,b),c) , orancestor(f(a,b),f(c,d)) ,
wherea,b,c andd stand for domain constantg.

Pattern classes

Each of these forms instantiates what we calhation nesting pattern clags simply,a pattern classA

pattern class is defined by a particular nesting of function symbols: all variables and other constant sym-
bols in an atom play no role in determining its class. If predicate and function symbols have fixed arity
(which we assume here), then the at@@&),Y) , p(f(X),X) ,p(fL),V) ,and p(f(a),X) , for
example, are instances of the same pattern class. This class is depicted in Figure 2.



FIGURE 2. Pattern class p(f(_),_)
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On the other hand, even thouglx) subsumeg(f(X)) , they belong to two different pattern classes, as
depicted in Figure 3. The reason behind this definition of pattern class will be clear in a moment. But
essentially, a pattern class is used to make explicit the exact function nesting patterns of all the ground
facts that could be generated by an atom belonging to that class.

FIGURE 3. Pattern classes p(_) and p(f())

— .3

Characterization

While safetyof Horn programs (that their answers are always finite) has been shown to be undecidable [6],
it is not clear whether stronger notions of safety suaffastive computabilit{3] andterm-boundedness
are decidable, even though sufficient tests exist for effective computability.

Similarly, while term-boundedness is not obviously decidable, there are non trivial sufficient conditions
that can be easily checked. For instance, if function symbols occur only the non recursive portion of a Horn
program (i.e. if the mutually recursive rules do not have function symbols), it is easy to see that the Horn
program is term-bounded. A more refined test that keeps track of how functional terms flow between IDBs,
using a device similar tierm circulation grapt2], can be used to characterize a larger subclass of term-
bounded Horn programs. However, let us emphasize that testing for term-boundedness is not an end by
itself. It is only useful to assure termination of our procedure that eliminates functional terms.

4. Eliminating Functional Terms

Informally, the algorithm works on each rule all of whose variables are known to be bound to domain con-
stants. The starting point obviously consists of those rules whose bodies only refer to EDB predicates. The
exact form of tuples (a.k.a. pattern class) each such rule can generate can be precisely predicted. The rule
head is then “flattened”, i.e. replaced with a “flat” head by means of a new predicate (a.k.a. flat predicate)
that represents the pattern class. All rules having subgoals unifiable with the head will have an arbitrary
number of these subgoals replaced by flat predicate subgoals. This is reminiscent of a bottom-up symbolic
evaluation where pattern classes are propagated from the base predicates toward the query predicate. All
pattern classes that can potentially be generated are made explicit and encoded as flat predicates. At the



end, all remaining rules that cannot be flattened are discarded. Also, those top level rules whose heads rep-
resent pattern classes for the predicate “answer” involving function symbols are discarded as well.

Example 4.1:This simple example briefly illustrates the algorithm.
[r1] a(B,f(B,N)) :- d(B,N).
[r2] p(f(B,N),N) :- d(B,N).
[r3] answer(B,N) :- a(B,P) & p(P,N).
rl’s head is flattened intal(B,B,N) by definingal(X,Y,z) =a(X.f(Y,2)) , andrl is replaced by:
[r4] al(B,B,N) :- d(B,N).
rl’'s head unifies with3 's first subgoal, creating a new rule:

[r5] answer(B,N) :- a1(B,B,N) & p(f(B,N),N).

Note that the functional term has propagated thres¢ghbody into thep subgoal and the first subgoal in
r3 has had predicatereplaced byl. Next,r2 's head is flattened intal(B,N,N) by lettingp1(X,Y,2)
= p(f(X,Y),2) , andr2 is replaced with:

[r6] p1(B,N,N) :- d(B,N).
r2 's head unifies with3 's second subgoal am8 's second subgoal, creating two new rules:

[r7] answer(B,N) :- a(B,f(B,N)) & p1(B,N,N).
[r8] answer(B,N) :- al1(B,B,N) & p1(B,N,N).

Now that the flattening process is dorge, r5 andr7 can be discarded since they remain unflattenable.
The result, a pure Datalog program equivalent to the original program:

[r4] a1(B,B,N) :- d(B,N).
[r6] p1(B,N,N) :- d(B,N).
[r8] answer(B,N) :- al(B,B,N) & p1(B,N,N).

can further be simplified intanswer(B,N) :- d(B,N) by expanding the subgoalsréf. [
Algorithm 4.2: Eliminating functional terms.

INPUT: A term-bounded Horn program with the query predicate “answer”.

OUTPUT: An equivalent Datalog program using no functional terms.

METHOD:

* |Initialize INPUT-SET to the set of rules in the program, OUTPUT-SET to the empty set. Mark all EDB
predicates “flat”.

* While there is a rule in INPUT-SET that is “flattenable” (i.e. all of whose subgoals have been marked
“flat”), remove it from INPUT-SET, “flatten” it and put the result in OUTPUT-SET. This may cause
new rules to be added to INPUT-SET.

* Atthe end, OUTPUT-SET contains the result. Its query predicate is the new predicate that represents
the pattern class for “answer” involving no function symbols.



To “flatten” a ruler with headp(t 4,....t )

1. We first check if 's head is an instance of a pattern class that has been recorded so far.

2. If the check is negative, we record the pattern class for the head, create a new preicatked

“flat”) that becomes the representative for that class, and revigiteead in terms g’ . Note that the
rewritten head is now flat, and is also recorded as a “flat head pattern”. The giritig tfie number of
leaves in the tree that represents the pattern class (the choice of which argymerttrodsponds to
which leaf is not important as long as the correspondence is maintained). We continue in step 4.

. If the check is positive, we retrieve the predigatéhat is the representative for the existing pattern

class. We then rewrite’'s head in terms gf . If the new head is subsumed by an existing flat head pat-
tern, we are done. Otherwise we record the new flat head pattern and continue in step 4.

For every rule in INPUT-SET that hassubgoals in its body, create copies in each of which a different
subset of thg-subgoals is selected to unify witfs head and rewrite in terms @f. Note that some of

these copies may be discarded because there is no variable substitution that makesatigbels in

the subset unify with’s head. A small but important detail about unification is in order here. Unifica-
tion, in addition to being a standard one that favors the subgoal’s variables, is also sensitive to “flat”
variables (in a rule, a variable is flat if it is an argument of a flat predicate). Namely, a flat variable can-
not be bound to a functional term. When unifyirig head with a subgoal, some of the subgoal’s vari-
ables are flat since they are shared with some other flat subgoal, @adhalid variables are flat since

all r 's variables are flat. All the resulting rule copies are added back to INPUT-SET.

Example 4.3

Consider the “grandparent” program from Example 3.2, which involves recursion. Let us trace the applica-
tion of the algorithm to translate the program, which we repeat here for convenience:

[r1]lanswer(X,Y) :- ancestor(X,Y).
[r2]ancestor(X,Y) :- parent(X,Y).
[r3]ancestor(X,Y) :- parent(X,Z) & ancestor(Z,Y).
[r4]parent(X,f(X,Y)) :- grandparent(X,Y).
[r5]parent(f(X,Y),Y) :- grandparent(X,Y)

Initially:

FLAT = {grandparent }, INPUT-SET ={r1 ,r2 13 ,r4 15}.

Flatten [4 ] and |5 ], definingparent1(X,Y,2) = parent(X,f(Y,2) andparent2(X,Y,2) =
parent(f(X,Y),2)

[r41-rd]parentl(X,X,Y) :- grandparent(X,Y). 1

[r6+r2]ancestor(X,f(X,Y)) :- parentl(X,X,Y). 2

[r7+r3]Jancestor(X,Y) :- parentl(X,X,Z) & ancestor(f(X,Z),Y).
[r51-r5]parent2(X,Y,Y) :- grandparent(X,Y).
[r8+r2]ancestor(f(X,Y),Y) :- parent2(X,Y,Y).
[r9+r3]ancestor(f(X,2),Y) :- parent2(X,Z,Z) & ancestor(Z,Y).

FLAT = {grandparent , parentl ,parent2 }, INPUT-SET ={r1 ,r2 ,r3 ,6 ,r7 18 19 }.

1. [ri-rj] denotes ri being the result of flattening rj, and therefore replacing rj.
2. [ri+r]] denotes ri being a copy of rj where some subgoals are replaced with a flat predicate just defined.



* Flatten [6 ] and |8 ], definingancestorl(X,Y,Z) = ancestor(X,f(Y,2)) , and
ancestor2(X,Y,2) = ancestor(f(X,Y),2)

[r61-r6Jancestorl(X,X,Y) :- parent1(X,X,Y).
[r10+rl]answer(X,f(X,Y)) :- ancestorl(X,X,Y).
[r11+r3]ancestor(X,f(Z,Y)) :- parent(X,Z) & ancestorl(Z,Z,Y).
[r12+r9]ancestor(f(X,2),f(Z,Y)) :- parent2(X,Z,Z) & ancestorl(Z,Z,Y).
[r81-r8]ancestor2(X,Y,Y) :- parent2(X,Y,Y).

[r13+r3]ancestor(X,Y) :- parent(X,f(Z,Y)) & ancestor2(Z,Y,Y).
[r14+r7]ancestor(X,Y) :- parentl(X,X,Y) & ancestor2(X,Y,Y).

FLAT = {grandparent , parentl ,parent2 ,ancestorl ,ancestor2 },
INPUT-SET = {1 ,r2 r3 ,r7 ,r9 ,r10 ,r11 12 r13 14 }.

* Flatten [10 ], [r11 ], [r12 ] and [14 ], defininganswerl(X,Y,Z) = answer(X,f(Y,2)) ,
ancestor3(X,U,Y,V) = ancestor(f(X,U),f(Y,V)) , ancestor4(X,Y) = ancestor(X,Y)

[r101-r10]Janswerl(X,X,Y) :- ancestorl(X,X,Y).
[r111-r1l]ancestorl(X,Z,Y) :- parent(X,Z) & ancestorl(Z,Z,Y).
[r15+rl]answer(X,f(Y,Z)) :- ancestorl(X,Y,Z).
[r16+r3]ancestor(X,f(Y,U) :- parent(X,Z) & ancestorl(Z,Y,U).
[r17+r9]ancestor(f(X,2),f(Y,U)) :- parent2(X,Z,Z) & ancestorl(Z,Y,U).
[r121-r12]ancestor3(X,Z,Z,Y) :- parent2(X,Z,Z) & ancestorl(Z,Z,Y).
[ri8+r1]answer(f(X,2),f(Z,Y)) :- ancestor3(X,Z,Z,Y).
[r19+r3]ancestor(X,f(U,Y)) :- parent(X,f(Z,U)) & ancestor3(Z,U,U,Y).
[r20+r7]ancestor(X,f(Z,Y)) :- parentl(X,X,Z) & ancestor3(X,Z,Z,Y).
[r141-rl4]ancestor4(X,Y) :- parentl(X,X,Y) & ancestor2(X,Y,Y).
[r21+r1]Janswer(X,Y) :- ancestor4(X,Y).

[r22+r3]ancestor(X,Y) :- parent(X,Z) & ancestor4(Z,Y).
[r23+r9]ancestor(f(X,2),Y) :- parent2(X,Z,Z) & ancestor4(Z,Y).

FLAT = {grandparent ,parentl ,parent2 ,ancestorl ,ancestor2 ,answerl ,ancestor3
ancestor4 }, INPUT-SET ={r1 ,r2 ,r3 ;7 ,r9 r13 ,r15 ,r16 ,r17 ,r18 ,r19 ,r20 ,r21 ,r22 123 }.

* Flatten [15 ], [r17 ], [r18 ], [r20 ], [r21 ] and [23 ], defininganswer2(X,U,Y,V) =
answer(f(X,U),f(Y,V)) , andanswer3(X,Y) = answer(X,Y)

[r151-r15]answerl(X,Y,Z) :- ancestorl(X,Y,Z).
[r171-r17]ancestor3(X,Z,Y,U) :- parent2(X,Z,Z) & ancestorl(Z,Y,U).
[r24+r1l]answer(f(X,2),f(Y,U)) :- ancestor3(X,Z,Y,U).
[r25+r3]ancestor(X,f(Y,V)) :- parent(X,f(Z,U)) & ancestor3(Z,U,Y,V).
[r26+r7]ancestor(X,f(Y,U)) :- parentl(X,X,Z) & ancestor3(X,Z,Y,U).
[r181-r18]Janswer2(X,Z,Z,Y) :- ancestor3(X,Z,Z,Y).
[r201-r20]ancestorl(X,Z,Y) :- parentl(X,X,Z) & ancestor3(X,Z,Z,Y).
[r211-r21]answer3(X,Y) :- ancestor4(X,Y).
[r231-r23]Jancestor2(X,Z,Y) :- parent2(X,Z,Z) & ancestor4(Z,Y).
[r27+rl]answer(f(X,Z),Y) :- ancestor2(X,Z,Y).

[r28+r3]ancestor(X,Y) :- parent(X,f(Z,U)) & ancestor2(Z,U,Y).
[r29+r7]ancestor(X,Y) :- parentl(X,X,Z) & ancestor2(X,Z,Y).
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FLAT = {grandparent , parentl ,parent2 ,ancestorl ,ancestor2 ,answerl ,ancestor3 |,
ancestor4 , answer2 , answer3 },
INPUT-SET = {1 ,r2 ,r3 ,r7 ,r9 ,r13 ,r16 ,r19 ,r22 ,r24 125 ,r26 ,r27 ,r28 ,r29 }.

* Flatten [24 ], [r26 ], [r27 ] and [29 ], defininganswer4(X,Y,Z) = answer(f(X,Y),2)

[r241-r24
[r261-r26
[r271-r27
[r291-r29

answer2(X,Z,Y,U) :- ancestor3(X,Z,Y,U).
ancestorl(X,Y,U) :- parent1(X,X,Z) & ancestor3(X,Z,Y,U).
answer4(X,Z,Y) :- ancestor2(X,Z,Y).

ancestor4(X,Y) :- parentl(X,X,Z) & ancestor2(X,Z,Y).

e b bed bl

FLAT = {grandparent , parentl ,parent2 ,ancestorl ,ancestor2 ,answerl ,ancestor3 |,
ancestor4 , answer2 , answer3 , answer4 },
INPUT-SET = {1 ,r2 ,r3 7 ,r9 ,r13 ,r16 ,r19 ,r22 ,r25 ,r28 }.

No more rule in INPUT-SET can be flattened. Simeswer3 is the new query predicate, useless rules can
be dropped, namelyf{01 ,r151 ,r181 ,r241 ,r271 ,r61 ,r111 ,r121 ,r171 ,r201 ,r261 }, to yield the
final program:

[r41] parentl(X,X,Y) :- grandparent(X,Y).

[r51] parent2(X,Y,Y) :- grandparent(X,Y).

[r81] ancestor2(X,Y,Y) :- parent2(X,Y,Y).

[r141] ancestor4(X,Y) :- parent1l(X,X,Y) & ancestor2(X,Y,Y).

[r211] answer3(X,Y) :- ancestor4(X,Y).

[r231] ancestor2(X,z,Y) :- parent2(X,Z,Z) & ancestor4(Z,Y).

[r291] ancestor4(X,Y) :- parent1(X,X,Z) & ancestor2(X,Z,Y). U

5. Proof Of Correctness

We first prove that if the algorithm terminates, the resulting program will computes the same set of tuples
as the original program. We then prove that for a term-bounded input program, the algorithm always termi-
nates. And finally, as a corollary, we state our theorem.

5.1 Equivalence

To prove equivalence, we use induction on the number of “flatten” steps. Consider the following invariant:
at each step, INPUT-SET OUTPUT-SET is equivalent to the original program. Note that equivalence

here means that the two programs compute the same least fixpoint where tuples with function symbols are
allowed.

Initially, the invariant trivially holds. Now we want to show that if the invariant holds before a “flatten”
step, it still holds after. Let's dendg (resp.P,) the program INPUT-SET] OUTPUT-SET before (resp.

after) the “flatten” P, cannot generate more tuples tifignsince new rules addedmg are just instances

of some ofP;’s rules.P, cannot generate less, since all possible invocations of the rule to be flattened are
considered, each possibility resulting in a rule copy to be added Therefore, in terms of the original

IDB predicatesP, andP, generate the same sets of tuples.

Assume the algorithm terminates. After the last “flatten” step, all rules in INPUT-SET cannot be flattened,
i.e. they each contain a goal whose predicate is not flat. These rules are useless, since none can start gener-
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ating tuples (for this, a rule must have all its subgoals with a flat predicate). Therefore, INPUT-SET can be
dropped without affecting the program’s answer.

5.2 Termination

To prove termination, we show that there can only be a finite number of “flatten” steps. A step falls into
one of the following three cases:

1. a new (flat) predicate (i.e. a new class pattern) gets created.
2. no new predicate gets created but the new head is not subsumed by any existing flat head pattern.

3. no new predicate gets created and the new head is subsumed by some existing flat head pattern.

First, we show there can only be a finite number of steps in case 1. The key point is that the algorithm only
generates pattern classes that are possible. That is, for any pattern class generated, there is always an EDB
extension that causes a tuple of the corresponding form to be generated (to see this, just consider the OUT-
PUT-SET, all rules in that set are well founded). Now, if there were an infinite number of pattern classes
generated, there must be an EDB extension that causes an infinite number of tuples to be generated. This is
not possible since the input program is assumed to be term-bounded. So the number of steps of case 1 is
bounded. Second, for a given class pattern, there can only be a finite number of different flat head patterns
consistent with the class pattern. Therefore, the number of steps of case 2 is also bounded. As a result,
finally, the total number of rule copies the algorithm generates (by means of steps of the first two cases) is
bounded, and therefore the number of steps of case 3 is bounded.

As a corollary, the existence of an algorithm for eliminating functional terms from a term-bounded Horn
guery is a constructive proof of the following theorem:

Theorem 4.4:Any term-bounded Horn query has an equivalent pure Datalog .query

6. Concluding Remarks

Mappings between different schemas can be arbitrarily complex. We are interested in those mappings
under which query reformulation admits reasonably efficient algorithms. The major contributions of this
paper are twofold. It sets an important new research direction that will have significant impact on practical
interoperation among heterogeneous systems. It also presents an algorithm that rewrites some Horn queries
with function symbols into pure Datalog queries, an important first step in that direction.

Let us emphasize again that the safety problem of Horn queries is not the same as the problem of determin-
ing equivalence of Horn queries and pure Datalog queries where we want to eliminate those answers that
contain functional terms and especially the ones with unbounded sizes. We are extending our results to
larger classes of Horn queries that allow certain forms of unbounded growth of terms. These queries can be
expressed as infinite unions of conjunctive subqueries such that after those subqueries involving functional
terms are eliminated, the remainders are still equivalent to Horn queries but with no function symbols.
Another observation is that queries that result from skolemizing variables in Datalog queries are special
cases of general Horn programs. We are investigating ways of exploiting this restriction to extend our
results.

While the problem is not entirely solved for Horn queries, there are some essentially non Horn constructs
that look interesting. Functional dependencies are a special case of clauses using equality. When repre-
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sented as Horn clauses (i.e. by substituting predicate literals for equality literals), an interesting question
arises as to what extent completeness is still preserved.

This paper focuses on the case of source and target queries in Datalog and the strict requirement of their
equivalence. It is worth pointing out other cases of interest that are no less important in practice: source
and target queries can range over various classes of language, completeness is no longer strictly required
and where mediation now is extended from a query translation task to the added task of coordinating que-
ries over sources.
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