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Abstract

Emerging high speed networks will carry tra�c for services such as video-on-demand and

video teleconferencing { that require resource reservation along the path on which the tra�c is

sent. High bandwidth-delay product of these networks prevents circuit rerouting, i.e. once a

circuit is routed on a certain path, the bandwidth taken by this circuit remains unavailable for

the duration (holding time) of this circuit. As a result, such networks will need e�ective routing

and admission control strategies.

Recently developed online routing and admission control strategies have logarithmic com-

petitive ratios with respect to the admission ratio (the fraction of admitted circuits). Such

guarantees on performance are rather weak in the most interesting case where the rejection ratio

of the optimum algorithm is very small or even 0. Unfortunately, these guarantees can not be

improved in the context of the considered models, making it impossible to use these models to

identify algorithms that are going to perform well in practice.

In this paper we develop routing and admission control strategies for a more realistic model,

where the requests for virtual circuits between any two points arrive according to a Poisson

process and where the circuit holding times are exponentially distributed. Our model is close

to the one that was developed to analyse and tune the (currently used) strategies for managing

tra�c in long-distance telephone networks. We strengthen this model by assuming that the rates

of the Poisson processes (the \tra�c matrix") are unknown to the algorithm and are chosen by

the adversary.

Our strategy is competitive with respect to the expected rejection ratio. More precisely,

it achieves expected rejection ratio of at most R� + �, where R� is the optimum expected re-

jection ratio. The expectations are taken over the distribution of the request sequences, and

� = O(
p
r logn), where r is the maximum fraction of an edge bandwidth that can be requested

by a single circuit.

Our result should be viewed in context of the previous competitive routing and admission

control strategies that require r � 1= logn, but are not able to formally analyse the (intuitively

clear) relation between r and the performance achievable in realistic situations.

1 Introduction

1.1 Overview

In order to provide quality of service guarantees, the new high-speed networks will allocate resources

in terms of virtual circuits. In particular, creating a virtual circuit will require reservation of
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bandwidth on some path between the endpoints of the connection. Admission control algorithms

are needed since network resources are limited.

Due to high bandwidth-delay product of the future high-speed networks, rerouting of circuits is

not supported. In other words, once the circuit is routed along some path, the resources along this

path are unavailable for the duration (or \holding time") of this circuit. The task of the routing and

admission control strategy is to decide which circuits should be rejected vs. those that should be

accepted, and to choose the paths for the accepted circuits.

The problem of admission control and routing in general topology networks was considered in

the context of competitive analysis [35, 18, 11, 25] in [5, 6, 7]. Roughly speaking, the statement

that a particular strategy has competitive ratio � means that its performance is at most a factor of

1=� of the performance of the best possible o�ine algorithm. The congestion-minimization model

was considered in [5, 10], where an algorithm was proposed that can route all of the requests using

O(log nT )-factor more capacity than the adversary, where n is the number of nodes in the network

and T is the ratio of the maximum to the minimum holding time of the circuit. The throughput model

was considered in [6], where it was shown how to modify the algorithm in [5] to make it accept at

least O(logLT ) fraction of the circuits accepted by the adversary (using the same capacity), where

L is the maximum allowable number of edges (hops) used by a circuit.1

The main disadvantage of the above competitive strategies is that they provide very weak guar-

antees on performance. Although one can argue that the value of L is relatively small, the value of T

can easily be in the hundreds or thousands. For example, consider a very small network where L=4

and T=128. If a request sequence can be completely satis�ed by the adversary, the algorithm in [6]

guarantees to accept at least 3% of the circuits, which is not very useful from the practical point

of view. Unfortunately, the lower bounds in [5, 6] imply that one can not do better in this model.

In fact, if the holding time of a circuit is unknown at the time the request to route this circuit is

issued, it is possible to prove even stronger lower bounds [9, 24]. This lead [14] to consider an alter-

nate model, where the arrival times of requests are arbitrary, but the holding times are distributed

exponentially. For this model, they showed a strategy that routes expected O(1= logL) fraction of

circuits routed by the optimum algorithm that has a complete knowledge of request arrivals. This

bound is still not useful from the practical point of view.

Another problem with the competitive approaches mentioned above is that they can not be used

to analyze the intuitively obvious fact that the performance increases if we decrease r, the maximum

fraction of link capacity that can be requested by a single circuit. All of the above strategies require

that r � 1= log n, but do not suggest how to improve the performance when r is much smaller.2

There is a large body of work on practical routing and admission control strategies for long-

distance telephone networks (POTS). Examples include reservation based strategies such as RTNR

used by AT&T [3] and DNHR [2, 4, 1] used by British Telecom (see also [19, 28, 29, 27, 26, 16]).

The analyses of these strategies assume that the requests arrive as a Poisson process, and the holding

times are distributed exponentially. Moreover, they assume that the underlying graph is complete

and that the tra�c matrix is �xed and uniform, i.e. same rate of arrival for circuits between any

pair of points. It is important to mention that all of the above papers assume that the processes

describing utilization of di�erent edges are independent. Such assumption might be justi�ed when

the underlying topology is a complete graph where almost all of the circuits are routed on a single

edge (which is the case in POTS), but is clearly wrong for general topology networks.

1The case of a single-edge network was considered in [13], and line network was considered in [12]; see [31] for the

survey of competitive routing strategies.
2Algorithms for special topologies that do not rely on this assumption are given in [8, 21].
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1.2 Our results

In this paper we consider the case where the requests arrive according to a Poisson distribution and

where the holding times are exponentially distributed. We bound the expected performance of our

algorithm in terms of the expected performance of the o�ine algorithm, where the expectation is

taken over the distribution on the inputs, and where the o�ine algorithm has a complete a priori

knowledge of all the requests and all the termination times.

Let � =
p
r log n, where r the maximum fraction of an edge bandwidth that can be requested by

a single circuit. If an o�ine algorithm can achieve expected rejection ratio R�, then our algorithm

achieves expected rejection ratio of at most R� +O(�).

In contrast to the previously proposed strategies in the Poisson-arrivals model [19, 22, 30],

we do not assume that the processes describing utilization of di�erent edges are independent.

Moreover, contrary to these papers, we assume that the tra�c matrix (rates of arrivals between

source/destination pairs) is unknown and chosen by the adversary.

Our algorithm is similar to the algorithms in [5, 10, 6] in that it routes along a shortest path,

where the length is an exponential function of edge congestion. Rejections occur if the length of

the shortest path exceeds a threshold. As opposed to the previous approaches that used a static

threshold, our algorithm uses a dynamic threshold that depends on the previous rejections.

The model and the analysis technique proposed in this paper show how to take advantage of the

situations where r, the maximum fraction of an edge bandwidth that can be requested by a single

circuit, is very small, i.e. r � 1= log n. (The fact that small r leads to better performance was

empirically observed in a simulation study in [15].) This is in contrast to the previous approaches

which required r � 1= log n, but could not improve performance for the cases where r is smaller.

The routing and admission control strategies developed in this paper, draw heavily on the

approach developed in the context of approximation algorithms for the multicommodity 
ow prob-

lem [33, 20, 23] and in particular, minimum-cost multicommodity 
ow problem [32, 17]. Roughly

speaking, these algorithms are based on the following idea: de�ne a potential function such that if it

is su�ciently small, then the current solution is close to optimum. Repeatedly compute the gradient

of the potential function and use it to reroute some of the 
ow. The heart of these algorithms is the

proof that the proper choice of the potential function together with the rerouting step cause reduction

in the potential function. In our case, we can not use rerouting, and hence it is impossible to apply

these algorithms directly. Instead, we show that our routing strategy maintains the expectation of

the potential function below a certain threshold. Because of the choice of the potential function,

this implies high-probability bounds on the congestion.

It is interesting to note that adding a simple scaling to our strategy (such as in [23]), results in an

algorithm that can be used to compute approximate multicommodity 
ow. The resulting algorithm

is somewhat similar to the one in [36], but slower than the algorithms in [23, 32, 17].

It seems that a possible alternative to our algorithm is to learn the tra�c matrix and then route

according to a fractional multicommodity 
ow solution. In practice it is possible that the tra�c

matrix will change before su�ciently good statistical estimations can be computed. In contrast

to methods that relay on availability of statistical information [22, 30, 34], our algorithm achieves

provably good performance even if the tra�c matrix changes in discrete intervals. In particular,

in the congestion minimization case, our algorithm achieves expected congestion of 1 +O(�) larger

than the expected congestion achieved by the o�ine algorithm on the worst one of the matrices that

were used to generate the tra�c.

Using a transformation similar to the one in [5], one can modify our algorithm to solve the

online load-balancing problem for unrelated machine scheduling. If job durations are distributed

exponentially and jobs arrivals are Poisson with unknown rates (di�erent rates for di�erent job
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types), we can achieve expected load that is within 1 + O(�) of the expected load of the o�ine

algorithm, where the expectation is over the input sequences, with the same � as above.

2 Model and De�nitions

The network is represented as a capacitated graph G(V;E; u) (the results apply both to directed

and undirected cases), where u(e) represents the capacity of the edge e 2 E. Request for a virtual
circuit is a tuple (v; w; r; �) where nodes v and w are the source and destination of the request, r

is the requested bandwidth, and � is the \pro�t" per time unit that we get if the request is routed

(accepted).

When presented with request (v; w; r; �), the goal of the admission control and routing strategy

is to decide whether to accept or to reject the request and, if the decision is to accept, to reserve

bandwidth r along some path between the endpoints v and w. This bandwidth remains reserved for

the duration (holding time) of this circuit. Congestion on edge e at time t, i.e. the fraction of the

bandwidth of edge e reserved at time t, is denoted by �t(e).

We will consider the model where we have k types of circuits. Type i is associated with

source/destination pair vi; wi and bandwidth ri. We assume that the arrival of requests for type i

circuits is a Poisson process with unknown rate �i. Accepting type i circuit will generate pro�t �i
per time unit. We will assume that the holding times are exponential with mean T .

In this paper we concentrate on two related models. In the congestion-minimization model, the

routing strategy is required to accept all of the requests. The goal is to minimize the maximum (over

all edges) congestion �. In the throughput-maximization model, the routing strategy is allowed to

reject some of the requests. The goal in this case is to maximize the total pro�t associated with the

accepted requests, while not exceeding the available capacity.

In both models, we compare performance of our algorithms to the performance of an o�-line

algorithm that has a priori knowledge of all the requests and termination times. We prove that, with

very high probability, the performance of our algorithm (measured either by maximal congestion

or by pro�t), is within a small factor from the average performance of the o�-line algorithm. The

probability and average are taken with respect to the distribution of the inputs.

Let f it (e) denote the total bandwidth allocated on edge e at time t for type i circuits. We will

use f it to denote the vector (f
i
t (e1); f

i
t (e2); : : : ) and ft =

P
i f

i
t . It will help to view ft as a multi
ow

where there is a commodity for each request type, and the demand for commodity i is determined

by the total bandwidth of circuits of type i that are alive at time t.

Congestion on edge e at time t is de�ned by

�t(e) = �(ft(e)) =
X
i

f it (e)=u(e)

where u(e) is the bandwidth of this edge. The overall congestion of ft is denoted by �(ft) =

maxef�(ft(e))g:
In order to relate the performance of our algorithm to the performance of an o�-line algorithm

we consider a multicommodity 
ow f� associated with the tra�c matrix. In the context of the

congestion model, f� denotes a solution to the concurrent 
ow problem [33], with demands di =

�iriT (the average amount of bandwidth required for circuits of type i). In other words, f� is a


ow that satis�es demands �iriT , and minimizes congestion �� = �(f�) = maxeff�(e)=u(e)g.
In the context of the throughput-maximization model, we will use f� to denote the solution to

the max-sum multicommodity 
ow, i.e. f� will be a 
ow that satis�es demands d0i � di, satis�es

capacity constraints, and maximizes the pro�t due to the satis�ed demands
P
d0i�i.
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3 Congestion-Minimization Strategy

In this section we describe a congestion-minimization routing strategy. We show that this strategy

ensures that during overwhelming proportion of the time, the maximum congestion stays within

(1 + �) of the expected congestion achieved by an optimum o�-line algorithm. This will be done by

relating expected congestion to ��, the lower bound on the expected congestion given by a solution

of the corresponding concurrent 
ow problem. We will assume that the capacities are scaled such

that �� � 1.

3.1 Online Algorithm

The algorithm maintains the current bandwidth assigned to each edge, i.e. the current congestion

�t(e). A request from source node v to destination w that arrives at time t is routed along a shortest

path with respect to edge-costs given by:

cost(e) =
1

u(e)
a�t(e)

The parameter a is de�ned by

a = (p�1m)1=�(1)

where m is the number of edges. The values of p and � depend on the optimization criteria and will

be discussed later. Roughly speaking, we will show that p represents the fraction of time when the

congestion exceeds �� by more than a factor of (1+O(�)). We assume that the requested bandwidth

ri satis�es the following granularity condition for each edge e it can be routed on:

ri

u(e)
� �2

log p�1m
(2)

Note that, for constant �, this condition is essentially the same as the granularity condition required

in [6].

3.2 Bounding O�ine Performance

Theorem 3.1 LetM be an optimum o�ine algorithm that has a priori knowledge of all the requests

and the holding times. De�ne a random variable �Mt to be the maximal congestion achieved byM
at time t; let f� and �(f�) be de�ned as in Section 2. Then E f�Mt g � ��, where the expectation

is taken with respect to the distribution of arrivals and terminations of circuits.

Proof : De�ne a vector of random variables (fMt (e; i))i;e as the bandwidth of edge e assigned byM
to circuits of type i at time t. De�ne the random variables

�Mt (e) =
1

u(e)

X
i

fMt (e; i)

�Mt = max
e

�Mt (e)

Observe that E ffMt (e; i)g is a multicommodity 
ow that satis�es demands di = �iriT between

vi and wi. Its congestion at e is given by E f�Mt (e)g. Since �� is the optimum congestion, we have

�� � maxe E f�Mt (e)g. It remains to observe that maxe E f�Mt (e)g � E fmaxe �Mt (e)g, which is

true since for every e we have E f�Mt (e)g � E fmaxe �Mt (e)g.
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3.3 Analysis

Given any multi
ow f , we de�ne the following potential function:

	(f) =
X
e

a�(f(e))

where a = (p�1m)1=�. The performance bound on the routing algorithm will be proved by a

sequence of lemmas. First we observe that if 	(ft) is not much larger than 	(f�), then �(ft) is

very close to �(f�), i.e. very close to optimum. The heart of the proof is the claim that as long

as 	(ft) is larger than 	((1 + 3�)f�), the derivative with respect to time of the expected value of

	(ft) is negative. From this we conclude that the expectation of 	(ft) stays below 	((1 + 3�)f�),

which implies that, with high probability, �(ft) does not exceed (1 +O(�))�(f�).

The following lemma shows that small value of 	 implies small congestion.

Lemma 3.2 Let f1; f2 be two multi
ows. Assume that 	(f1) � �	(f2): Then �(f1) � log �m

log a
+

�(f2):

Proof : From the de�nition and 	 we know that 	(f1) � a�(f1) and 	(f2) � ma�(f2). Hence

a�(f1) � �ma�(f2), and the lemma follows.

We will �x some time t0 and analyze the behavior of the potential function at t0. We will also

work with t > t0 and denote �t = t� t0. Denote by �t;t0
f (e) the random process associated with the

change in the congestions on edge e in the interval [t0; t]: �
t;t0
f (e) = �t(e) � �t0(e). Observe that

�t;t0
f (e) is determined by two types of events: arrival of new circuits, and departures of existing ones.

Instead of using �t;t0
f (e), we will consider a simpler process ��t;t0

f (e) that will provide a su�ciently

good approximation to �t;t0
f (e) around t0. Towards this end, we will modify the events associated

with �t;t0
f (e) in two di�erent ways.

First, consider the circuit terminations that a�ect �t;t0
f (e). Termination of a circuit of type i

that was using edge e, causes �t;t0
f (e) to be decremented by ri. To compute ��t;t0

f (e), we associate

each circuit that exists at time t0 with a Poisson process of rate 1=T . Each �ring of such process

associated with a circuit of type i causes ��t;t0
f (e) to be decremented by ri. Observe that because the

holding times are distributed exponentially with mean T , the �rst event (and only the �rst event)

of this process corresponds to the real termination event of the corresponding circuit.

The second di�erence between �t;t0
f (e) and ��t;t0

f (e) is due to the di�erent way we compute the

increments. The increments in �t;t0
f (e) are due to routing a circuit on edge e. A circuit is routed

on the shortest paths with respect to the costs computed at its arrival time. Instead, the increments

in ��t;t0
f (e) will be computed as if all the circuits arriving in [t0; t] are routed on shortest paths with

respect to the costs at t0.

The exact distribution for ��t;t0
f (e) can now be written as

1

u(e)

X
i�k

riP

 
�f i(e)

ri
�t

!
� riP

 
f it0(e)

ri

1

T
�t

!

where �f is an uncapacitated fractional multicommodity 
ow that satis�es the demands �iri and

minimizes the cost
P

e
�f(e)a�to (e)=u(e), and P (�) is a Poisson process with rate �.

Every event (e.g. routing of a new circuit or termination of an existing one) causes an increment

or a decrement in �t;t0
f (e) and ��t;t0

f (e). Note that some of the events (those that are associated with

the modi�ed termination processes) a�ect ��t;t0
f (e) only. Observe that �t;t0

f and ��t;t0
f are di�erent

only if at least 2 events of any type occured in the [t0; t] interval. This observation is the basis of

the following Lemma.
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Lemma 3.3 ���E na�t;t0
f

(e)
o
� E

n
a
��
t;t0
f

(e)
o��� � Q(�t)2

where Q is independent of t, �t, and the state at t0.

Proof : Let X be a random variable which counts the number of events that change ��t;t0
f (e). Note

that X does not count all of the events. Conditioning on X, we get���E na�t;t0
f

(e)
o
� E

n
a
��
t;t0
f

(e)
o��� � E

n���a�t;t0
f

(e) � a
��
t;t0
f

(e)
���o

�
1X
j=0

Prob(X = j)max
X=j

���a�t;t0
f

(e) � a
��
t;t0
f

(e)
���

By de�nition of X, we have

max
X=j

���a�t;t0
f

(e) � a
��
t;t0
f

(e)
��� � a

rj

u(e)

where r = maxi ri. If X = 0 then �t;t0
f (e) = ��t;t0

f (e). If X = 1, we have �t;t0
f (e) = ��t;t0

f (e) as well,

unless the event that is counted by X is an arrival of a new circuit that departs before time t. Let A

denote this combination, i.e. arrival and termination of a single circuit in the (t0; t) interval. Thus

���E na�t;t0
f

(e)
o
� E

n
a
��
t;t0
f

(e)
o��� � 1X

j=2

Prob(X = j)a
rj

u(e) + Prob(A)a
r

u(e)

Recall that �t = t � t0. Let l denote the number of circuits on e at time t0. Observe that X is

a Poisson process which counts two types of events: arrivals of new circuits, which is a Poisson

process with average
P
�i�t, and events that decrement ��t;t0

f (e), which is a Poisson process with

average l�t=T . Denote the rate of increase in X by �� =
P
�i+ l=T ; the average of X is ���t. Then

1X
j=2

Prob(X = j)a
rj

u(e) =
1X
j=2

e�
���t (

���t)j

j!
a

rj

u(e) =

e�
���t

�
e
���ta

r
u(e) � 1� ���ta

r
u(e)

�
� e�

���t(���ta
r

u(e) )2e
���ta

r
u(e)

where the last inequality follows from the fact that for all x > 0, we have ex � 1 + x + x2ex. The

probability of the event A can be estimated by

Prob(A) �
X
i

�i�t(1� e��t=T )

Combining �t < 1 with these estimates implies the claim of the lemma.

From the above lemma, we see that ��t;t0
f (e) is a good approximation to �t;t0

f (e):

Corollary 3.4
@

@t
E

n
a�

t;t0
f

(e)
o���

t=t0
=

@

@t
E

n
a
��
t;t0
f

(e)
o���

t=t0

Roughly speaking, the following theorem states that if the expectation of 	(ft0) exceeds 	((1+

3�f�)), then its derivative with respect to time is negative.
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Theorem 3.5 Assume that granularity condition (2) is satis�ed for some � < 1=3. Let ft be the


ow generated by the algorithm at t. Then

@

@t
E f	(ft)gjt=t0 �

1

T
(1� �) (	((1 + 3�)f�)�	(ft0)) ;

where f� is a 
ow that satis�es the demands di = �iriT .

Proof : By de�nition of �t;t0
f (e), we have

E f	(ft)g =
X
e

E

n
a�t(e)

o
=
X
e

a�t0
(e)
E

n
a�

t;t0
f

(e)
o

Using Corollary 3.4, we get

@

@t
E f	(ft)gjt=t0 =

X
e

a�t0
(e) @

@t
E

n
a
��
t;t0
f

(e)
o���

t=t0
(3)

To calculate E
n
a
��
t;t0
f

(e)
o
we will use the fact that the moment generating function of random vari-

able X that is distributed as Poisson with rate �, is equal to M (X; �) = E
�
e�X

	
= exp

�
�(e� � 1)

�
.

We will denote by �Pi the Poisson variable that counts the number of arrival of new circuits of type

i, and Pi will denote the Poisson variable that counts the number of terminations of circuits of type

i. We know that �Pi has rate
�f i(e)

ri
�t and Pi has rate

f it0
(e)

ri

1

T
�t. Taking into account that the arrivals

and the terminations are independent, we get:

E

n
a
��
t;t0
f

(e)
o

= M
�
��t;t0
f (e); log a

�
=

Y
i�k

M

�
ri �Pi � riPi;

1

u(e)
log a

�

=
Y
i�k

M

�
�Pi;

ri

u(e)
log a

�
�M

�
Pi;�

ri

u(e)
log a

�

= exp

0
@X

i�k

�f i(e)

ri
�t(elog a

ri
u(e) � 1)+

f it0(e)

ri

1

T
�t(e� log a

ri
u(e) � 1)

!

Hence

@

@t
E

n
a
��
t;t0
f

(e)
o���

t=t0
=
X
i�k

�f i(e)

ri
(e

ri log a

u(e) � 1) +
f it0(e)

ri

1

T
(e
�ri log a

u(e) � 1)

Since log a ri
u(e)
� � � 1 and ex � 1 + x+ x2 for jxj � 1, we have

@

@t
E

n
a
��
t;t0
f

(e)
o���

t=t0
�

X
i�k

�f i(e)

ri

ri log a

u(e)
� f it0(e)

ri

1

T

ri log a

u(e)
+

�f i(e)

ri

�
ri log a

u(e)

�2

+
f it0(e)

ri

1

T

�
ri log a

u(e)

�2

�

log a
1

T

�
(1 + �)�(T �f(e)) � (1� �)�t0(e)

�
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Combining this estimate with (3), we get

@

@t
E f	(ft)gjt=t0 �

log a

T

X
e

a�t0
(e)
�
(1 + �)�(T �f(e))� (1� �)�t0(e)]

Recall that �f satis�es demands �iri and 
ows along the shortest paths with respect to the costs

a�t0
(e)=u(e). The fact that f� satis�es the demands �iriT implies thatX

e

�(T �f(e))a�t0
(e) �

X
e

�(f�(e))a�t0
(e)

Hence,

@

@t
E f	(ft)gjt=t0 � log a

1

T

X
e

a�t0
(e) [(1 + �)�(f�(e))� (1� �)�t0(e)]

=
1

T

@

@t
	(ft0 + t(f� � ft0 + �(f� + ft0)))jt=t0

=
1

T

@

@t
	(ft0 + (1� �)t(

1 + �

1� �
f� � ft0))

����
t=t0

=
1

T
(1� �)

@

@t
	

�
ft0 + t(

1 + �

1� �
f� � ft0)

�����
t=t0

Since 	 is convex, the last expression is bounded by

1

T
(1� �)

�
	

�
1 + �

1� �
f�
�
�	(ft0)

�
� 1

T
(1� �) [	 ((1 + 3�)f�)�	(ft0)]

which proves the theorem.

The previous theorem provides bounds on the derivative with respect to time of expectation of

	(ft), where the expectation is taken over all possible arrival/departure events after time t0. In

particular, it implies that if 	(ft0) < 	((1 + 3�)f�), then this derivative is negative. We would like

to infer from this that the expectation of 	(ft) never exceeds 	((1 + 3�)f�). Towards this end, we

need to strengthen the above theorem and show a similar bound on the derivative of the expectation,

where the expectation is taken over all of the events up to t, and not only the events that occured

after time t0.

Theorem 3.6 Assume that at time t = 0 the system was in a state where �e(f0) � �e(f
�), and

at time t0 � 0 it reached a state de�ned by probability measure �. Let � denote the probability

measure of the events that occur after time t0. Denote by ft the (random) 
ow that is generated by

the algorithm after time t elapsed, where ft is determined both by � and �. Then

@

@t
E�;� f	(ft)gjt=t0 �
1

T
(1� �) (	 ((1 + 3�)f�)� E� f	(ft0)g)

Where f� any 
ow that satis�es the demands di = �iriT .

Proof :

@

@t
E�;� f	(ft)gjt=t0 = lim

t!t0

E�;� f	(ft)g � E�;� f	(ft0)g
�t

= lim
t!t0

E� fE � f	(ft)gg � E� f	(ft0)g
�t

= lim
t!t0

E�

�
E � f	(ft)g �	(ft0)

�t

�

9



At this point we would like to exchange the order of the limit and the expectation. To justify

replacing the limit and expectation we �rst note that it is enough to prove that for every edge e

lim
t!t0

E�

8<
:a�t0

(e)
E �

n
a�

t;t0
f

(e)
o
� 1

�t

9=
; = E�

8<
: lim

t!t0
a�t0

(e)
E �

n
a�

t;t0
f

(e)
o
� 1

�t

9=
;

Instead of proving the equality directly we can prove the same equality for ��t;t0
f (e) instead of �t;t0

f (e)

and then use the bound in Lemma 3.3. By Lebesgue's bounded convergence theorem it is enough

to show that there is a random variable g, de�ned on the same probability space as �, such that for

all t in some neighborhood of t0

a�t0
(e)

E �

n
a
��
t;t0
f

(e) � 1
o

�t
< g point wise

and E� fgg <1. The existence of such g is proved in Lemma 3.7. The fact that g has �nite integral

is proved in 3.8.

Using the fact that the limit and the expectation can be exchanged we get that the original

expression is equal to:

lim
t!t0

E�

�
E � f	(ft)g �	(ft0)

�t

�
= E�

�
lim
t!t0

E � f	(ft)g �	(ft0)

�t

�

= E�

�
@

@t
E � f	(ft)gjt=t0

�

� E�

�
1

T
(1� �) (	((1 + 3�)f�)�	(ft0))

�

=
1

T
(1� �) (	((1 + 3�)f�)� E� f	(ft0)g)

where the inequality is implied by Theorem 3.5.

Lemma 3.7 There exist constants b1; b2; b3 such that for all t � 1

a�t0
(e)

E �

n
a
��
t;t0
f

(e) � 1
o

�t
� b1(b

l
2 + lbl3)

where l is the number of circuits in the system and where the constants depend on the initial state.

Proof : Let r be the maximal ri. Let X be de�ned as in Lemma 3.3, i.e. the number events changing
��t;t0
f (e) in the interval [t0; t]. X is a Poisson random variable with mean E fXg = �t (

P
i �i + l=T ) =

�t �X. Note that X is de�ned di�erently for each initial state. De�ne a random variable g1 on product

of the probability spaces of � and � as

g1 =

(
aX

r
u(e) X > 0

0 X = 0

X was de�ned such that
��� ��t;t0

f (e)
��� � X r

u(e)
and hence a

��
t;t0
f

(e) � 1 � g1 point wise (since when

10



X = 0 we know that a
��
t;t0
f

(e) = 1). Estimating the expected value of g1 gives

E � fg1g =
1X
j=1

aj
r

u(e)Prob(X = j)

= e��t �X
1X
j=1

aj
r

u(e)
(�t �X)j

j!

= e��t �X

�
e�t �Xa

r
u(e) � 1

�

� e��t �X�t �Xa
r

u(e) e�t �Xa
r

u(e)

Where the last inequality follows from the fact that ex � 1 + xex for x � 0. Using the last estimate

and the de�nition of l gives

a�t0
(e)

E �

n
a
��
t;t0
f

(e) � 1
o

�t
� a

rl
u(e)

E � fg1g
�t

� a
rl

u(e) e��t �X �Xa
r

u(e) e�t �Xa
r

u(e)

which together with the de�nition of �X and �t � 1 proves the lemma.

Lemma 3.8 For every constant b

E
�
lbl
	
<1

E
�
bl
	
<1

Proof :

E
�
lbl
	

=
1X
j=0

jbjProb(l = j) =
1X
j=0

jbje�
�l
�lj

j!

= e�
�lb�l

1X
j=1

(b�l)j�1

(j � 1)!
= e�

�lb�leb
�l <1

The proof for the second case follows using the same calculations.

Consider the case where at time 0 the system is in some �xed state f0, and at time t the system is

in some (random) state ft, with an associated probability measure �. We assume that the transition

from f0 to ft occured due to random events (arrivals and terminations) in the interval [0; t] together

with routing decisions made by our routing algorithm. As before, let f� be any 
ow that satis�es

the demands di = �iriT .

Lemma 3.9 Assume that

	(f0) � 	((1 + 3�)f�) :

Then, for every t > 0, we have

E f	(ft)g � 	((1 + 3�)f�) :

Proof : If the claim of the theorem does not hold, then at some time t we have E f	(ft)g >

	((1 + 3�)f�). Consider maximum t0 < t such that E f	(ft0)g = 	((1 + 3�)f�) : The existence of

such t0 follows from the continuity of the function, which is implied by the di�erentiability. Then

0 < E f	(ft)g � E f	(ft0)g =
Z t

s=t0

@

@t
E f	(ft)g

����
t=s

ds

By construction, for s 2 [t0; t], we have E f	(fs)g > 	((1 + 3�)f�). Theorem 3.6 implies that for

s 2 [t0; t] the derivative @
@t
E f	(ft)g

��
t=s

< 0, leading to a contradiction.
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Theorem 3.10 Assume that for every edge e, we start in a state where �e(f0) � �e(f
�). If the

granularity condition (2) is satis�ed, then the routing algorithm maintains that for every t > 0,

�(ft) � �(f�) + 4� with probability greater than 1� p.

Proof : Markov's inequality, together with Lemma 3.9, implies

Prob
�
	(ft) � p�1	((1 + 3�)f�)

	 � 1� p:

Recall that we have chosen a = (p�1m)1=�. Using the assumption that �(f�) � 1, together with

Lemma 3.2, implies that, with probability of at least 1� p,

�(ft) �
log p�1m

log a
+�((1 + 3�)f�) � 4�+�(f�):

4 Throughput and Pro�t Maximization

In this section we address the throughput-maximization model. Each circuit is associated with a

pro�t parameter �. The pro�t accrued as a result of routing a circuit is �rt, where r is the bandwidth

and t is the actual holding time of the circuit. We assume that there exist k types of circuits, where

a circuit of type i arrives with rate �i, requires a path of bandwidth ri between vi and wi, and is

associated with a pro�t parameter �i. As before, we assume that the arrival rates �i are unknown.

A routing and admission control algorithm should decide whether to accept or reject a circuit; if

the circuit is accepted, enough bandwidth should be reserved along a path between the source and

destination for the duration of the circuit. The total bandwidth reserved on every edge should not

exceed its capacity. (This is in contrast to the congestion model discussed in the previous section,

where we allow to exceed capacity but do not allow rejections.) The performance measurement is

the average pro�t generated by the accepted circuits, where the average is taken with respect to the

distribution of the input events.

The pro�t-maximization algorithm is shown in Figure 1. We will assume that the algorithm

knows the average rate of pro�t generated by all incoming circuits D =
P
�iri�iT and the average

duration T . We will also assume that the algorithm is given some target feasible rejection rate R�

(i.e. R� is the expected fraction of the pro�t lost by an o�ine algorithm).

We translate the problem into a congestion-minimization problem by adding an additional \edge"

rej. Each circuit is either routed on a path between its endpoints, or is assigned to rej. The capacity

of rej is given by u(rej) = (R�+O(�))D. The algorithm keeps track of all the circuits, both rejected

and accepted. Since termination times of rejected circuits never become known, the algorithm picks

them using the same distribution as the termination times of the accepted circuits.

The current cost of rej is computed using the same formula as the costs of the original edges:

cost(rej) =
1

u(rej)
a�t(rej)

where the congestion at rej is de�ned by

�t(rej) =
1

u(rej)

X
i

�if
i
t (rej):

The decision whether to assign to rej or to a shortest-path route depends on their relative costs.

Circuits assigned to rej are rejected. Circuits assigned to a path with insu�cient available capacity

12



Given a new circuit (v; w; r; �) compute:

cost-accept  Cost of (v; w) shortest path

w.r.t. the cost a�t(e)=u(e).

cost-reject  �a�t(rej)=u(rej)

If cost-reject < cost-accept then

Reject the circuit.

Add the circuit to f(rej).

Compute a random termination time.

Else (cost-reject > cost-accept)

Update f as if the circuit is routed along

the shortest path.

If ( routing will cause capacity violation)

Reject the circuit.

Compute a random termination time.

Else

Route the circuit

Figure 1: Pro�t maximization algorithm

are rejected as well. The rest of the circuits are accepted. Note that f it counts both the rejected

and the accepted circuits.

Observe that, as in Theorem 3.1, R�D is bounded by solution to the weighted max-sum mul-

ticommodity 
ow problem with demands �iriT , where 
ow corresponding to type i requests is

weighted by �i.

In order to address the pro�t-maximization model, we will use the fact that the algorithm

presented in the previous section can be used to solve a more general problem. More precisely,

the capacity �ei reserved for a circuit of type i on edge e can be made to depend on the edge and

circuit-type pair.

Theorem 4.1 The generalized congestion-minimization algorithm has the same performance as

stated in Theorem 3.10 if the following generalized granularity condition is satis�ed.

�ei
u(e)

� �2

log p�1m

The proof of the theorem is identical to the original proof. Note that setting �ei = ri corresponds to

the algorithm described in the previous section.

The new granularity conditions needed for pro�t-maximization algorithm are as follows:

ri

u(e)
� �2

log ��1(m+ 1)
(4)

�iri

D
� �2

log ��1(m+ 1)

For simplicity, we assume that at time 0, the system is empty. (This assumption can be relaxed

as for congestion model.)
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Theorem 4.2 If the granularity conditions (4) hold, and a = (��1m)1=�, the expected fraction of

rejected pro�t achieved by the pro�t maximization algorithm is bounded by R� + O(�), assuming

� � 1=3.

Proof : Set u(rej) = (R� + 18�)D. Better constants can be achieved if we assume that �� 1=3.

Note that rejections are caused by two di�erent conditions: assignment of a circuit to rej or

assignment to an over-congested path. We will estimate the average loss of pro�t in each one of

these cases separately.

Let f� be a solution to a weighted max-sum multicommodity 
ow problem with demands di =

�iriT . The 
ow f� satis�es demands d0i � di, where
P

i(di � d0i)�i = R�D. De�ne f�� on the graph

together with the additional edge rej as follows:

f��
i
(e) = (1� 4�)f�i(e)

f��
i
(rej) = di � (1� 4�)d0i

Observe that f�� satis�es capacities (1 � 4�)u(e) and satis�es demands d0i(1 � 4�). Thus, by

Lemma 3.9, we have for every t:

E f	(ft)g � 	((1 + 3�)(f��))

Markov inequality implies that, with with probability 1� �,

	(ft) � ��1	((1 + 3�)(f��))

Lemma 3.2 implies that with probability 1� �:

�t(ft) �
log ��1(m+ 1)

log a
+ (1 + 3�) max

e2fE;rejg
�(f��(e))

� �+ (1 + 3�)max

�
1� 4�;

(R� + 4�)D

(R� + 18�)D

�

� �+ (1 + 3�)max

�
1� 4�;

1 + 4�

1 + 18�

�
� �+ 1� � = 1

Thus, the expected lost pro�t due to assignment of circuits to rej is bounded by (1� �)u(rej)+
�D � (R� + 19�)D. The average lost pro�t rejected due to assignment to over-congested edges is

bounded by �D because the probability for the system to be congested at a given time is bounded

by �, and the input is independent of the current state. The claim follows.

5 Extensions

5.1 Changes in the Tra�c Matrix

The model described in this paper assumes a �xed tra�c matrix. In this case, a possible alternative

to our algorithm is to learn (estimate) this tra�c matrix and then route according to a fractional

multicommodity 
ow solution. In practice it is possible that the tra�c matrix will change too

fast for this approach to be practical. In contrast to methods that relay on gathering of statistical

information, our algorithm has the same performance even if the tra�c matrix changes in discrete

intervals. For example, in the congestion minimization case, our algorithm achieves congestion that

is within O(�) of the maximal congestion over all tra�c matrices used to generate the input.
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To observe that the same estimates works when the tra�c matrix is changing in some discrete

intervals we should note the following two facts:

� In Corollary 3.4 it is enough to assume that the tra�c matrix is �xed for some small interval

[t0; t].

� In Lemma 3.9 it is enough to assume that E f	(ft)g is a piecewise di�erential function.

5.2 Computation with Rounding Errors

Finding the exact costs on each edge might involve an unreasonable number of bit operations. In

this subsection we will show that working with some �nite precision in a 
oating point model has

limited e�ect on the performance of the algorithm.

Theorem 5.1 If computations of costs is done up to some 1�� precision then all the results apply,

with an addition factor of (1 + �)2.

Proof : Let �c(e) = a�(e)=u(e) and ~c be some �nite precision approximation to �c such that 1 � � <

�c(e)=~c(e) < 1 + �. Let �f be as in theorem 3.5, and ~f the equivalent 
ow which is the minimal cost


ow with respect to ~c. Since the algorithm routes 
ow using ~f rather then �f , following the proof of

theorem 3.5 we know that

@

@t
E f	(ft)gjt=t0 � log a

1

T

X
e

a�t0
(e)
h�
�(T ~f(e)) � �t0(e)

�
+ �

�
�(T ~f(e)) + �t0(e)

�i

Using the de�nitions of �c; ~c; �f; ~f we know thatX
e

�c(e) ~f(e) � (1 + �)
X
e

~c(e) ~f(e) � (1 + �)
X
e

~c(e) �f (e) � (1 + �)2
X
e

�c(e) �f(e)

Using the rest of the proof of 3.5 we get that

@

@t
E f	(ft)gjt=t0 �

1

T
(1� �)

�
	
�
(1 + �)2(1 + 3�)f�

��	(ft0)
�

All the other theorems apply without any change.
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