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Abstract

The best Qualification of a Prophet is to
have a good Memory.
— George Savile

A Distributed Interactive Smulationapplication provides agroup of users with theillusion of a
single, coherent virtua world, even though the users may be physically located at different machines
connected by a network. These applications demand that each user sees a consistent virtual world
view, that users are able to interact closely with one another and with other simulation entitiesin
the virtual world, and that maximum realism is provided by hiding the distributed nature of the
application from users.

Faster processors, more powerful graphics hardware, and higher-capacity networks are support-
ing the development of distributed simulation applications containing more simul ation entities and
more detailed models of entity appearance and behavior. Consequently, these networked virtua
environments are seeing increased use for multiplayer video games, military and industria train-
ing, and collaborative engineering (e.g. collaborative design and distributed simulation of complex
engineering models). Large distributed interactive simulation applications are growing to include
well over 100,000 dynamic entities. Achieving the size and detail required by future simulationsis
constrained by limitsin network bandwidth, network latency, and host processing power.

Thisthesis describes network protocols and algorithmsto support remote modeling, allowing a
host to mode and render remote entities in large-scale distributed simulations. These techniques
require fewer network resources and simultaneously support a broader range of entity types than
previous approaches. The thesisbegins by describing the Position History-Based Dead Reckoning
(PHBDR) protocol, a simple, efficient protocol which provides smooth, accurate remote position
modeling and minimizes dependencies on network performance and entity representation. We use



PHBDR as afoundation for building three additiona protocols:

¢ Axis Point Protocol: Models remote entity orientation by tracking the position of pointsin
the entity’sloca coordinate system. This protocol is designed to extract information from a
broad range of entity representations.

¢ Multiple-Detail Channels: A protocol architecture for remotely modeling complex entities—
those having non-rigid structure or articulated parts—at different levels of detail depending
on locally available computational and network resources. This technique alows each host
to alocate its local network and computational resources toward entities that are of primary
local interest.

¢ Projection Aggregation Entities: A protocol for dynamically bundling information from a
group of remote entities based on their type and location. This protocol is used for remotely
modeling distant or uninteresting entitiesat alow level of detail.

In presenting these techniques, this thesis shows that a simple, efficient protocol can provide
smooth, accurate remote position modeling and that it can be applied recursively to support entity
orientation, structure, and aggregation at multiplelevels of detail; these protocols offer performance
and costs that are competitive with more complex and application-specific approaches, while pro-
viding simpler analyses of behavior by exploiting this recursive structure. In support of thisclaim,
thisthesis shows that:

¢ PHBDR is a simple, efficient protocol that provides smooth and accurate remote modeling
for abroad range of entities and explicitly recognizes network latency.

¢ PHBDR is still smooth and accurate when used to model entity orientation, entity structure
at multiplelevels of detail, and entity aggregations.

¢ Therecursive protocol structuring provides better network performance and reduced software
complexity when compared with the application-specific approaches deployed in previous
systems.
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Chapter 1

| ntroduction

A Distributed Interactive Smulation application, as illustrated in Figure 1.1, provides a group of
users with the illusion of a single, coherent virtual world, even though the computations run on
heterogeneous systems that may be dispersed over a physicaly large geographic area (e.g. around
thereal world). The virtual world consists of a set of entities, objects that participate in some way
in the simulation. Simulation entities may include, for example, human-controlled and computer-
controlled vehicles; aterrain (and associated features such as rocks, trees, and buildings), and even
logical objects such as the current weather state or an object group. In thisinteractive environment,
each host presentsitslocal user with arealistic viewport onto the virtual world. For example, the
rendered scene depicts al of the virtual world entities that would normally be visible to that user.
Asaresult, the user is unaware of which users are controlling the various entities, which computers
are performing detailed computational modeling of the various entities, and where those humans
and computers are physically located. Besides supporting geographic separation of the users, the
distributed nature of these applications supports fault-tolerant simulation environments and allows
the creation of large systems at relatively low cost compared to large, centralized architectures.
Faster processors, more powerful graphics hardware, and higher-capacity networks are support-
ing the development of distributed simulation applications containing more simul ation entities and
more detailed models of entity appearance and behavior. Consequently, these networked virtua
environments are seeing increased use for multiplayer video games, military and industrial training,
and collaborative engineering (e.g. collaborative design and distributed simulation of complex en-
gineering models). These applications demand that each user sees a consistent virtual world view,
that users are able to interact closely with one another and with other entitiesin the virtual world,
and maximum realism is provided by hiding the distributed nature of the application from users.
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User’s host displays visible scene and
hides network location of actual entity
models

Remote host modeling
helicopter

Remote host modeling
windsurfer

NETWORK

Remote host modeling
helicopter

4 N
Remote host modeling
helicopter
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User’s host displays visible scene and
hides network location of actual entity
models

Figure 1.1: Distributed Interactive Simulation Application Presents a User with a Coherent Virtual
World

To alow a loca user to move about the virtual world and interact with remote participants,
the host must accurately display the position, orientation, and structure of all virtual world entities
visible to that user. For each entity, each host maintains an entity model—some state information
along with afunction that takes the state information as input and can generate the entity’s current
position, orientation, and structure on each frame. We designate one host’s model as the “ source”
(alsoknownasthe*“local” or “true”) model representing the most accurate current state of the entity.
Because the state of an entity model is updated in response to user input, the source model typically
resides at the host whose local user isdirectly controlling the entity* to minimizethe delay between

!Non-interactive models do exist; such models are either autonomous—inwhich casethe sourcemodel may reside on
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Figure 1.2: Simulation Nodes Exchange Information About Locally Modeled Entities

user actions and source model updates. All other simulation hosts maintain “remote” (also known
as “shadow” or “ghost”) models providing less accurate versions of the entity’s current state. The
source host must transmit informati on across the network to update theremote entity model s at other
hosts, as shown in Figure 1.2. The transmitted state information may take many forms, depending
on the type of models maintained at the remote hosts. Every host periodically receives information
from source models at other hosts and updates the corresponding entity model maintained locally.
On each frame, each host queries its entity models (both source models and shadow models) for
current entity position, orientation, and structure information. It then displays al visible entities
on the screen, according to the local viewer's position in the virtual world. To provide smooth,
seamless animation, the host should update all entities—bothlocal and remote—at the loca frame
rate. The user thus notices no differences between local and remote entities on the display.

1.1 Remote Modeling and Remote Rendering

Remote modeling is the task of maintaining a shadow representation of the position, orientation,
and other attributes of an entity modeled at another host. Remote rendering is the task of smoothly

any host—or derived from information received from an actual physical object—in which case the source model would
typically reside on a host located near the physical object.
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integrating remote entity models with local entity models on a single display. Effective remote
modeling and rendering should provide the local user with positional, behavioral, and structural
fidelity about the entity.

Interactive users expect a positionally accurate view of remote entities. Positional fidelity means
that the average position and orientation error of each remote model should be small. For example,
in an auto-racing simulation, the user expects an accurate visual positioning of nearby competitors
cars in order to steer his own car and avoid collisions. Any significant perceived inaccuracy leads
to confusion, incorrect actions, and inconsistent responses.

Animation of remote participants should aso exhibit behavioral fidelity, meaning that the
velocity and accel eration of each remote model should reflect the true entity’s behavior. Even when
positional fidelity is impossible, the scene should still aim to provide some level of behaviora
fidelity. For example, the user wants to see that a distant car is swerving, even if the actua rate of
motion isincorrect.

As distributed simul ations become more sophisticated, remote rendering also needs to provide
structurd fiddlity. Structural fidelity means that the remote model reflects real-time changes to the
shape of non-rigid entities. For example, a swimming octopus does not retain a static form, and
a piece of jello dynamically changes shape as it wiggles. Without providing structural fidelity,
a distributed simulation cannot aim to provide a good sense of reality, because rea entities are
usually not rigid. Even an otherwise rigid entity might undergo a structural change after a sudden
collision. An entity may also have articulated parts—attachments exhibiting rel ativel y independent
motion—such as a retractable radio antenna on an automobile or a rotating satellite receiver on a
survelllance vehicle. Future simulationsmust transmit and process information regarding structural
changes to the entity, although these changes may occur at aframe-rate granularity.

Existing distributed simulations have used a broad range of techniquesfor providing positional
and behaviora fiddity in remote models, but these systems have only made limited efforts at
supporting structural fidelity; most approachesin this arenahave only handled statically-configured
articulated parts[37].

Distributed simulation systemsare evolving along several dimensions. First, they aregrowingin
sizetoincludedozensof sitesand well over 100,000 entities[1]. Second, each simulation isexpected
to include a growing variety of entity types. Newer simulations also include entities that support
dynamic terrain, weather, and el ectromagnetic transmissions. Third, the entity models themselves
are becoming more detailed and dynamic. Entity modds describe fine-grain motion, structural
change, and values of numerous state attributes besides position and orientation. Asaresult of these
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trends, the remote modeling and remote rendering problems are growing in importance, size, and
complexity. However, in meeting these demands, simulation designers must contend with several
resource constraints.

1.2 Barriersto Remote Modeling/Rendering in Large-Scale Distributed
Simulation

Within a year, we expect a top-of-the-line general-purpose workstation to contain a 500 MHz
processor [19], contain 500 MB of memory, and be connected to a 100 Mbps Ethernet. We can
reasonably expect that future machines will provide an order of magnitude more computational
power and memory. Furthermore, gigabit-per-second Ethernet is aready seeing experimental
deployment.

Despitethese devel opments, today’s commercially available hardware cannot support theremote
modeling and rendering requirements of a high-detail, 100,000 entity simulation. Moreover, the
next generation of hardware is unlikely to keep up with the growing requirements on distributed
simulation. These simulationsface—and will continueto face—three resource limitations. network
bandwidth, network latency, and host processing power.

1.2.1 Network Bandwidth

Distributed simulation design isconstrained by the network bandwidth that isavailable for exchang-
ing information among simulation nodes. This information includes updates about entity position
and orientation, updates about other attributes of entity state such as color and infrared emissions,
and data supporting simulation tasks such as entity collision detection and agreement, audio/video
communications among participants, and clock synchronization.

For example, each entity must provide frequent updates (i.e. between two and 5 per second)
to minimally support display and collision detection computation for close-range entities. In a
large simulation containing 100,000 entities, the resulting wide-area bit rate would range between
96 M bps (assuming atiny 480-bit update packet and two updates per second per entity) and 375 Mbps
(assuming a more likely 750-bit update packet and five updates per second per entity). Indeed, a
traffic modd [92] for a 100,000-entity military exercise predicts a sustained wide-area load of
230 Mbpswith peak load of up to 700 Mbps. Even using multicast to prune the distribution of data,
the data requirements still exceed the capacity of 100 Mbps Ethernet LANS[39]. Even worse, these
bandwidth model s assume controlled interactions between entities, update rates averaging only one
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per second, and the absence of video data. Notably, network tail circuits, which typically rangein
bandwidth between 1 Mbps and 45 Mbps, represent the most severe bandwidth bottleneck.

Network bandwidth will continue to be a limited resource for large-scale simulation. As
we increase the number of entities and the level-of-detail of the individua entity models, more
information must be exchanged among simulation nodes, so the simulation’s network bandwidth
requirements increase. For example, tight interactions between entities may require up to ten
updates per second from each entity, particularly for distributed engineering models. Each entity
can be reasonably expected to dynamically update at least four vertices (which is a conservative
estimate and does not consider updates of non-position attributes). Even using multicast, a LAN
bandwidth requirement of over 2 Gbpsis not at al far-fetched, and again, we have not made any
allowance for video data.

Finaly, even if network technology could meet the bandwidth demands of a large distributed
simulation, the bandwidth problem would remain. We have completely ignored the bandwidth
demands of other applications, including other distributed simulations, sharing the same network.
If network bandwidth wereto becomefreely avail abl e, we can reasonably expect that most networked
applications will have correspondingly high bandwidth requirements of their own. Therefore, it
will always be advantageous to minimize the bandwidth demands of a particular simulation.

1.2.2 Network Latency

Distributing entity models onto multiple machines allows for greater scalability, but it also forces
simulation hoststo contend with network latency, or delay. Thisdelay includes several components,
including transmission delay across the physical network medium, queueing delay in intermediate
switches and routers, and processing delays at the endpoint hosts in preparing the packet for
transmission and processing the incoming packet. Average one-way packet latencies between well-
connected hosts (with at least T-3 connectivity) range from 45 ms (across the United States) to 85 ms
(between the western United States and Europe or Asia); hosts with worse connectivity, including
low-bandwidth SL/IP connections, can see latencies in the hundreds of milliseconds. Even worse,
thejitter or variationin latency is considerable: latencies five timesworse than the average case are
common [78].

This latency means that simulation hosts cannot ever expect to maintain a perfectly consistent
view of the virtual world. Any transmitted entity state update will be delayed by the network,
and each remote site will see a different latency. Consequently, simulations must be explicitly
designed to handle inconsistencies. For example, when two entities modeled at different hosts
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collide, no single host generdly has enough information to immediately determine whether the
collision actually happened and be sure that its decision is consistent with the perception at other
hosts. Making such a consistent decision would require zero-latency datatransmission.

Network latency simply cannot be eliminated. For example, speed-of-light propagation delays
alonedemandthat thelatency beat |east 13 msacrossthe United States or 45 msbetween thewestern
United States and Europe or Asia. Though work is being done to improve packet processing latency
a endpoint hosts [62, 63], these optimizations are addressing a relatively minor component of the
end-to-end latency, which isdominated by router queueing and physical medium delays. Moreover,
latency isagrowing concern because large distributed simulations are incorporating sites separated
by longer distances. At the sametime, the interactions between simulation hosts are becoming more
complex and, therefore, time-sensitive.

1.2.3 Computational Power

Simulation hosts incur computational overhead to receive and process incoming network packets
about remote entities as well as to prepare and transmit updates about local entities. Current
platforms cannot meet the networking demands of large-scal e distributed simulations.

Even after using extrapolation techniques at remote hosts to reduce the required packet rate
generated by asingle entity, 100,000-entity simulations can still deliver a sustained 72,000 packets
per second to each host [103] with burst rates of 480,000 packets per second [92]; again, these
numbers are extremely conservative and assume controlled interactions between entities, update
rates averaging only one per second, and the absence of video data. We assume that the packet
reception interrupt and link-layer processing costsroughly 1 1:s 2 or 500 cycles. UDP/IP processing
accounts for approximately 4,125 cycles (roughly 1,500 instructions at a tightly optimized CPI
of nearly 2.75)° Finally, running applications require roughly 1,000 cycles to recover from the
cache pollution introduced during the interrupt handler.* Packet reception and UDP/IP processing

2Mogul and Ramakrishnan[62] report 142 usfor these operations. We conservatively use aconsiderably |ower estimate
to account for their previous-generation Alpha workstation and the delaysintroduced by their system instrumentation.

SMosberger, et a [63] report 510 instructions for IP processing of a 160-bit payload (equivalent to application
data payload of 128 hits after accounting for UDP header) on an Alpha workstation; the true instruction count should
be considerably higher for any non-trivial payload. They report 1,594 instructions for TCP processing, and Kay and
Pasqguale [45] report only a 10% performance difference between TCP and UDP for small packets. We conservatively
allocate 1,000 cycles for UDP processing. The 2.75 CPI estimate is probably low for our top-of-the-line workstation,
because the processor speed has increased considerably relative to the memory speed.

“4The results reported in [61] for a500 Mhz processor are still valid because reading data from the second-level cache
still costson the order of 15 cycles. Thereported cost rangesfrom 142 cyclesto 15,000 cycles, depending on the workload.
Again, we choose a conservative value.
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therefore requires at least 5,625 cycles per packet, for a total CPU load of 80% to process the
sustained 72,000 packets per second. This load processes amost no payload data, includes no
application-level processing, excludes required machine tasks such as clock interrupts, and does not
account for the burst packet rates. Moreover, we have intentionally underestimated our parameters
by at least afactor of two. Clearly, today’s general-purpose workstations are not equipped to handle
the packet delivery demands of large simulations.

The packet delivery demands of distributed simulations are unlikely to be satisfied by future
generations of workstations. First, the packet processing requirements increase with the number
of participating entities, complexity of their models, and interactions between users. Second,
packet processing—and particularly interrupt handling—is memory-bound. Memory speeds are
not increasing at arapid rate.

Even if the endpoint host could sustain the simulation’s packet load, minimizing the number
of cycles that are diverted toward packet reception and processing would remain as a fundamental
goal. Packet reception and generation are not the only computational demands on simulation
hosts: simulation hosts are required to render a high-resolution scene on a graphical display at an
interactive frame rate, detect and resolve entity collisions, monitor user input devices and process
their inputs, and model both local and remote entity state. The complexity of these other tasksisalso
increasing rapidly as simulations become more complex. For example, high-resolution graphical
rendering by itself already demandsthefull resourcesof today’ sworkstations, and collision detection
complexity can increase roughly quadratically with the number of entities. Moreover, these non-
packet-processing tasks have far greater impact on the user’s perception of the simulation’squality.
Therefore, we ultimately wish to devote as many CPU resources as possibletoward theseinteraction
tasks.

1.3 TheNeed for Fidelity Control and Aggregation

Given that workstations and networks cannot satisfy the requirements of current and future large-
scale simulation, we must seek to reduce the bandwidth and computational demands of distributed
simulation without introducing additional latency for information dissemination. Three basic ap-
proaches are available:

¢ Transmit lessinformation about each entity and/or transmit entity updates less frequently.

o Limit the number of entitiesthat are of interest to each host.
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Figure 1.3: Reducing the Modeling Detail and Fidelity of Distant Entities To Reduce Local Packet
Rate and Computational Requirements

¢ Have each packet provide information about multiple entities.

Our first option is to transmit less information about each entity or transmit that information
less frequently. However, completely dispensing with transmitting certain types of information
could have a detrimenta effect upon the quality of the simulation, particularly for users who are
interacting closely with the source entity. Consequently, to support tight interactions, the source
must still supply al of the available data. We observe, however, that some receivers may be ableto
selectively ignore some of thisinformation. For example, if an entity is far from the local viewer
in the virtual world, then that host may not require updates to that entity’s color or structure, and it
might be ableto accept |essfrequent position updates. Figure 1.3 illustratesa scene in which distant
cars receive lower positional and structural fidelity and are therefore rendered as simple “blobs”
The graphical detail and modeling fidelity requirements on each entity are likely to change during
the simulation. Asthe viewer accelerates, the distant cars should receive increased graphical detail
and modeling fidelity, and the host must receive more frequent and more descriptive updates for
those cars. Similarly, as the viewer moves away from the cars, the host can receive less frequent
and less descriptive packet updates. We conclude, therefore, that reducing the amount of received
datais possible, but we cannot reduce the amount of transmitted data: Only the receiver is capable
of determining how to reduce modeling detail without sacrificing the realism of the local display.

Our second option for reducing packet and computational load isto limit the number of entities
from which each host receives update information. For example, a host might only subscribe to
information from the NV closest entities, where N is some constant. However, this approach hasthe
greatest potentia for distorting the simulated world presented to the user becauseit effectively aters
the user’s natural visibility range. We conclude that because of the lossin realism, this approach is
inappropriate for simulationsinvolving humans.
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Our third option is to aggregate, or group, information from multiple updates into a single
packet. For example, updates about all of an octopus’ legs might be combined into a single packet.
Similarly, asingle packet might update thelocation of an entire school of fish, or it might summarize
information about al entitieslocated in a particular region of the virtual world. Remote hosts can
then use this aggregated information to update their models of each entity. However, aggregation
poses three challenges. First, the simulation designer must decide what information to aggregate
within each packet. If areceiver isonly interested in afraction of theinformation withinaparticul ar
aggregation, then the bandwidth and computation required for a large aggregation packet may
exceed the bandwidth and computation required for the one or two small update packets that the
receiver actualy required. Because each receiver is potentially interested in a completely different
set of entities, designing optimal aggregations is a daunting task. Second, different components of
the aggregation update are likely to be generated at different times. Collecting these components
and packaging them into an aggregation packet necessarily introduces an additional delay on the
transmission of each data component; aggregated information islesstimely than direct information
transmission. Consequently, aggregation isnot an appropriatetechniquefor close-rangeinteractions
requiring high detail and low latency. Third, the simulation designer must designate which host is
responsiblefor collecting and packaging the data components of the aggregation update. This host
must be located near the information sources to minimize the latency introduced by aggregation.
This task is made difficult because aggregation membership may change during the course of the
simulation. We conclude, therefore, that aggregation is a viable approach to reducing bandwidth
and computational load, yet it cannot replace direct per-entity transmission and must be designed
with care.

To implement large-scale simulations, each host needs the ability to receive lower-detail and
lower-frequency updatesfor a selected set of entitieswhileretaining the ability to receive full-detall
and high-frequency updates for the remaining entities. Furthermore, hosts should have the ability
to receive packets contai ning aggregated updates for those entities where information latency is not
the primary constraint; again, the host must retain the ability to receive low-latency updates directly
from the entity. Thisthesis addresses these needs for large-scal e distributed simulations.
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1.4 Original Contribution of ThisThesis

This thesis shows that a simple, efficient protocol can provide smooth, accurate remote position
modeling and that it can be applied recursively® to support entity orientation, structure, and aggrega-
tion at multiplelevelsof detail; these protocol s offer performance and coststhat are competitivewith
more complex and application-specific approaches, while providing ssmpler analyses of behavior
by exploiting thisrecursive structure.

In support of thisthesis, | showed that:

1. The Position History-Based Dead Reckoning (PHBDR) protocol is a simple, efficient
protocol that providessmooth and accur ateremote modeling for abroad rangeof entities
and explicitly recognizes network latency. | demonstrate a method for systematically
analyzing remote modeing protocol performance over a broad range of expected entity
behaviors by means of mathematical analysis, controlled simulation on a representative set of
entity paths, and deployment experience. Analysisof PHBDR showsthat within the expected
available bandwidth, it can support the remote modeling requirements of the next generation
of large-scae simulation.

2. PHBDR is still smooth and accurate when used to model entity orientation, entity
structure at multiple levels of detail, and entity aggregations. | define the Axis Point
protocol for modeling entity orientation, Multiple-Model Channels for representing dynamic
entity structure, and Projection Aggregation Entities for representing groups of entities. |
use results from the basic PHBDR protocol andysis to andyze the performance of these
recursively-defined protocols. This approach reduces the amount of analysis that would
otherwise be necessary had each protocol been devel oped independently.

3. Therecursive protocol structuring provides better network performance and reduced
software complexity when compared with the application-specific approaches deployed
in recent systems. The recursive protocol design promotes code re-use at the source and
remote hosts. The recursive structuring permits each source host to efficiently support
multiple remote modeling protocols, each providing a different representation of the entity’s
behavior. The availability of multiple protocols yields a net reduction in the simulation’s

5By “recursively” here, | mean that it may be used as a component within a more complex protocol. Although the
term “component architecture” might be more appropriate, we use the term “recursive structuring” asit is consistent with
existing work in the area[16, 106].
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aggregate bandwidth requirements because each remote host locally determinesits own data
reguirementsand only subscribesto high-bandwidthinformationwhen justified by bandwidth
availability, computational resources, and user interests.

The next chapter surveys how existing distributed simulation systems have solved the remote
modeling problem, how they have used aggregation to support scalability, and the limitations
of those approaches. Chapter 3 introduces Position History-Based Dead Reckoning (PHBDR),
our basic protocol and algorithms to model the position of rigid entities. The protocol makes
minimal assumptions about the simulation environment and is computationally simple. Chapter 4
presents a systematic approach to analyzing dead reckoning protocol behavior and applies that
approach to evaluating PHBDR's network bandwidth requirements and remote modeling error. The
eval uation showsthat PHBDR providessmooth, accurate modeling of abroad range of entity curves.
The next three chapters discuss how the simple PHBDR protocol may be applied recursively to
address move complex remote modeling requirements: Chapter 5 discusses the Axis Point protocol
that recursively employs the PHBDR protocol to remotely model the orientation of rigid entities.
Chapter 6 describes how PHBDR is used to model the structure of complex entities at different
levels of fiddlity, depending on local computational and network availability. Chapter 7 employs
PHBDR to support low-fidelity remote modeling of entity groups based on the entity type and
location. Chapter 8 concludes this thesis with a discussion of the successes and limitations of this
work, as well as an indication of what work remainsin thisarea.



Chapter 2

Related Work

Distributed simulation applications have adopted widely disparate approaches for disseminating
information about entity motion and modeling those entities at remote hosts. To some extent, this
broad range of techniquesreflects the relative lack of experience in devel oping this class of applica
tions. The heterogeneity also arises because simulation systems are designed to operate in network
environments providing different latency and bandwidth characteristics. For example, loca-area
networks offer low-latency communication best suited for small simulations requiring tight coher-
ence among the participating hosts, but a wide-area network offers high-latency communication
best suited for larger simulations able to tolerate larger discrepancies between hosts. Furthermore,
asystem designed for atelephone dialup network has traditionally been incompatible with asystem
designed for a private leased-line network or the Internet.

This chapter describes how existing distributed simulation systems transmit updates about
entity state over the network. We begin by discussing the variety of deployed approaches to
remote modeling and rendering, allowing each host to maintain areal-time representation (position,
orientation, and other state information) for each entity and present a smooth, accurate graphical
view to the user. We then discuss techniques used to reduce the bandwidth and computational
demands of large-scale simulations. We conclude by summarizing the limitations of the prior work
and discussing how the techniques described in this thesis provide a scalable solution to remote
modeling and rendering in avariety of network environments.

13
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2.1 Tradeoffsin Real-Time Remote Modeling

Asillustrated in Figure 2.1, the design of the data dissemination system introduces a fundamental
tradeoff between remote modeling accuracy and the flexibility of the simulation system. At one

High Modeling Accuracy High System Performance
Tight Coupling Loose Coupling

‘ Shared Frame-Rate Dead :
: Database - Multicast <=——= Reckoning |
| Consistency Updates Protocols [
| |

Figure 2.1: Tradeoffs in Remote Rendering for Distributed Simulation Applications

extreme, distributed simulation systemsare tightly coupl ed and therefore guarantee perfect accuracy
in the remote modeling. To achieve this accuracy, such systems demand high network bandwidth
to support frequent updates, low latency and limited jitter, and a limited number of participants;
consequently, tight couplingisimpractical for large-scal e interactive systems. At the other extreme,
systems are loosely coupled and therefore tol erate some inaccuracy in the remote modeling. Such
systems, though typicaly adding computational complexity, require less network bandwidth and
less frequent updates, are more resilient to network latency and jitter, and support better rea-time
performance across alarger number of heterogeneous platforms.

Three remote modeling techniques are in use by most current systems. shared database consis-
tency, frame-rate updates, and dead reckoning protocols. Shared database consistency represents
one extreme of the design tradeoff by potentialy providing the greatest accuracy but the least scala
bility. Dead reckoning protocolsfall into the other extreme by accepting imperfect remote modeling
to support larger simulations. Frame-rate updates represent an intermediate solution. In the follow-
ing sections, we describe each of these approaches, highlight how they have been implemented in
existing distributed simulation systems, and discuss their advantages and disadvantages.

2.1.1 Shared Database Consistency

Shared database consi stency provides absol ute consi stency between the different hosts parti cipating
in a distributed simulation application. The consistency approach guarantees that hosts share the
same information about each entity’s position, orientation, structure, and other state. As aresult,
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al hostsdisplay identica views of each entity, thereby eliminating any possibility of inconsistency
or confusion between interacting players.

Architecturally, this technique strives to hide the network environment from the application.
From an application developer’s perspective, all simulation entities appear to be maintained locally.
The resulting simplicity of the application programming model contributes to the popularity of
this technique, particularly for devel opers who are modifying existing uniprocessor simulationsfor
networked operation.

A centra server provides the simplest implementation of shared consistency. In the Shastra
system [2] from Purdue University, for example, a central server provides the infrastructure for
collaborative design applications. The first node to start a collaborative application is designated
as the application’s group leader. This group leader communicates with a Shastra session manager
process to control the admission of additional clients into the distributed application environment.
All communication between application nodes flows through the session manager, which provides
reliable and ordered delivery of update messages to all clients. Because any user may modify the
state of any simulation entity, the session manager prevents multiple clients from simultaneously
modifying the same data. Hosts communicate with the session manager to obtain access, modify,
and copy permissionsto the shared entities; the session manager uses a token-passing mechanism
to provide fair access to the shared entities.

Instead of using a centralized server to provide shared database consistency, the DIVE virtual
reality system [14] utilizes a distributed data management model. The system is built above the
ISIS communications library [7] that provides reliable, in-order delivery of network data. Using
this network software base, DIVE creates the abstraction of a shared database, replicated at each
participating host, that stores al entity information. DIVE alows a user to see, move, and interact
with any entity inside the virtua world. When a user wishes to update the position of an entity, his
local host obtains a distributed shared lock on that entity in the database, updates the local copy,
reliably broadcasts the change throughout the shared database, and finally rel eases the lock.

Somerecent systemshave attempted to maintain theillusion of ashared database whilealowing
receiving hoststo independently determinethe desired data consistency level for remote entity state
information. Withthe BrickNet toolkit[82], for example, hoststransmit updatesto the central server
asynchronously. Datasubscribers can then select from abroad range of approaches, ranging between
absol ute and | oose consistency, for receiving updates. The Networked VR virtual reality project [66]
from NEC Research Laboratories carries this idea one step further by allowing each remote host
to independently choose when to actually receive updates. The server (referred to as a “Didogue
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Manager”) maintains two outgoing buffers for each client. A FIFO buffer stores sequential data
and holdsincremental update information. This buffer is used when transmitting a complete entity
description would be prohibitively expensive. For example, the FIFO buffer is typically used to
transmit incremental changes to the entity’s shape model. The second buffer, an overwrite buffer,
is used for most other types of data, such as position, orientation, color, etc. Because datain the
overwrite buffer is self-contained and completely describes the associated attributes, data in this
buffer is overwritten whenever more up-to-date information becomes available. Clients explicitly
request buffer information from the server, thereby applying a*“pull” rather than a* push” model for
communications[65].

Although the easy programming model and guaranteed consistency are desirable features, the
shared database consistency approach does not easily scale to large-scale simulations containing
thousands of entities over awide-area network. Absolute consistency imposes significant commu-
nication overhead. In a DIVE application, for instance, each host much perform several message
exchanges on each frame to obtain the lock on the entity state, reliably transmit the update, and
release thelock. Moreover, because the host must wait until the transaction is complete before ren-
dering the new frame, the local frame rate is limited by network latency and remote host response
time. The network aso cannot exhibit high jitter; hosts display updates to an entity’s position only
after they become available through the shared database, variable network | atencies for updating the
database destroy theillusion of smooth motion at remote hosts. These bandwidth, latency, and jitter
issues make absol ute consistency only practical over local-area networks. Finaly, al participating
hosts must possess comparable computational power, because the local frame rate is determined by
the response time of the slowest host.

2.1.2 Frame-Rate Updates

By transmitting frame-rate updates, simulation designersrelax the state consistency between hosts
in order to achieve greater scal ability than that provided by shared database consistency techniques.
Under the frame-rate update approach, entity state updates are transmitted (typically in broadcast
mode) unreliably at the source host's frame rate. Although updates may be lost (or delayed
long enough to be subsumed by another update), the simulation designer assumes that the high
update frequency will make such inconsi stencies unnaticeable. Because the application maintains
no shared locks over simulation entities, multiple hosts could attempt to modify the same entity
simultaneously. Systemseliminatethisconflict by explicitly associ ating each entity with aparticul ar
host from which update packets must originate; update packets for that entity originating from any
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other host are ignored.

By relaxing the absolute consistency requirement, frame-rate updates permit permits greater
decoupling between participating hosts. Each host simulates loca entities and transmits updates
without regard to how or where those updates are being delivered. The loca simulation is less
directly affected by network latency or remote host performance. In particular, sending hosts do
not need to wait for lock acquisition/release or update acknowledgements on each frame. At the
receiving host, the application simply waits for update packets to arrive and modifies the local
representation of the entity accordingly. The frame-rate update approach keeps the underlying
communication library quite simple.

The SGI Flight Simulator represents the most significant use of the frame-rate update technique.
In this multi-player “dogfight” application, each player attempts to shoot down opponents’ planes.
On each frame, each host simply broadcasts the complete 140-byte data structure describing the
local airplane. New players are recognized at remote hosts when an update packet arrives with a
previously unseen player name. Hosts eliminate playersif no update packet with that player’s name
arrives within a suitable timeout period.

Ancther implementation of the frame-rate update technique was demonstrated at the IMAG-
INA’'93 conference [72]. In thistwo-player system, participants could see and talk to one another
while interacting with a virtual environment. In this system, two machines—one in Paris and the
other in Monte Carlo—were connected by a 64 Kbps data link over which the hosts exchanged an
inventory listing the position of 100 entities (400 bytesin al). Each host transmitted 10 updates per
second, resulting in an approximate 100 ms response time that the participantsfelt to be inobtrusive
and, therefore, acceptable. A similar system to support intravascular tele-surgery has aso been
demonstrated [3]. In this system, the source host transmitted an appropriate viewpoint position,
along withtheposition of thesurgical catheter device. At theremote host, the appropriateimagewas
re-constructed on each frame. The source and destination hosts were separated by nearly 220 miles
and were connected by a 156 Mbps ATM link. In this case, frame-rate updates were appropriate
given theavailability of adedicated point-to-point link and the need for high data consistency within
amedical application.

While the SGI Flight Simulator, the IMAGINA'93 demonstration, and the intravascular tele-
surgery demonstration limited themselvesto modeling rigid entities, ATR Communication Systems
Research Laboratories has developed a virtual space tel econferencing system for the remote mod-
eling of human faces [105, 64]. This task poses additional complexity because of the dynamic
structure of the entitiesbeing modeled. Each host stores a prototype wire-mesh model of a Japanese
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face. Before the teleconference starts, multiple photographs of each speaker are taken, and those
images are processed to customize the prototype for that person’s particular facial features. These
revised prototypesare exchanged. To generate update packets during the tel econference, the system
captures multipleimages of the speaker and processes the images to determine the current physical
location of facial features such as the tip of the chin, corner of the eyes, nose position, etc. The
system transmits the position of these facia features over the network. The remote host uses the
update packet data to anchor corresponding points on the wireframe model and then apply atexture
mapping before displaying the image. A newer version of the system [67] uses a 3D digitizer to
generate a wireframe model for each speaker without the need for a prototype model. The tele-
conferencing system tracks the position of blue tape marks on the speaker’s face, thereby reducing
the image processing complexity and achieving higher frame rates with the same computational
resources. Update packets in the current system describe 11 facia points, 4 body points, and 10
points on a hand-held dataglove for atotal of 528 bits. Using a 1,000 node wireframe model, the
teleconference isrendered at 10 frames per second [47].

In contrast to broadcast-based systems, the VEOS System [9] from the University of Wash-
ington uses a so-called “epidemic” approach to distributing frame-rate updates. VEOS entities are
organized hierarchically. During each iteration of the entity’s event loop (or “frame”), the entity
stores updated state information into alocal buffer known as the “boundary view.” At the end of
each iteration, a communications daemon pushes information from this buffer into an output FIFO
for each sibling and parent entity that has expressed interest in that data. Those recipient entities, in
turn, export that information to other entities during their next frame. If aFIFO aready containsan
old version of thisinformation—for example, if the information has not yet been absorbed into the
destination entity’s “external view”—then the stale version in the buffer is simply overwritten. As
aresult, al entitiesreceive updates in-order and always receive the most recent update available.

To reduce network traffic in frame-rate update systems, arelevance filtering mechanism elimi-
nates traffic from entities that are irrelevent to the local user. The RING system [29], for example,
implements relevence filtering by sending all entity updates to servers that maintain a record of
the current location of each viewer and forward updates only to viewers that can see that entity.
Alternatively, one can implement relevence filtering by transmitting updatesto a different multicast
address for each entity, with remote hosts only subscribing to updates from entities of local interest.

Techniques similar to frame-rate update approaches are aso used in virtua redlity systems
which must use information obtained from a Head-M ounted Display (HMD) to remotely model the
user's positionand orientation and render an appropriateimage. Thepositiontracker device samples
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a set of sensors and computes the position and orientation from these sensor measurements; it then
transmitsthe position values (usually over a dedicated line) to the rendering computer, typicaly at
arate of 2060 Hz. The position determination technique employed by the tracker may be divided
into severa categories [57]:

¢ Mechanical: The user is physically connected to a point of reference by a series of jointed
linkages. The sensor triangulates the user’s exact location based on the joint angles.

¢ Optical: The sensors detect the direction and intensity of a set of fixed-position LED trans-
mitters, the appearance of a pattern placed in a fixed location, or the distortions of reflected
laser light.

¢ Magnetic: The system uses electric current to create a low-frequency magnetic field which
the sensors detect and measure.

e Acoustic: Sensors detect the direction and intensity of high-frequency sound waves trans-
mitted from a fixed source.

¢ Inertial: Accderometersand gyrometersrespectively measurechangesto theentity’svel ocity
and orientation; the sensors use these changes to maintain a model of the entity’s current
velocity (and, therefore, position) and orientation. Often, information from these two devices
are combined to produce a more robust estimate of orientation [97, 26].

The frame-rate update technique has severa limitations. First, the assumption of |ow-latency
data dissemination is often unachievable. Latencies of 250 ms are not uncommon over wide-area
networks. HMD position tracking typically requires maximum latencies of 50-170 ms, and studies
of multimediaapplications[4, 21] indicate that humans become uncomfortablewith inconsistencies
on the order of 100 ms; the inconsistencies become intolerable at 200 ms. Indeed, the IEEE
communications standard for distributed simulation [38] demands maximum end-to-end latency of
under 100 ms. (Notably, the IMAGINA’93 demonstration, linking Paris to Monte Carlo—roughly
600 miles—representsthe point at whichthelatency problems start exceeding theselimits.) Second,
the delay jitter over wide-area networks means that packets do not arrive at a fixed rate, and they
may not even arrivein order. If apacket is delayed, the remote host must redisplay the entity at its
previous position because it cannot wait for the datato arrive. Third, most existing networks cannot
support the necessary bandwidth for frame-rate updates. Transmitting 128-byte update packets at
60 frames per second, only 520 entities are needed to impose a 40% load on a 100 M bps Ethernet.
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Finally, the sender’s frame rate may be slower than that of a receiver, in which case the remote
entity on that receiver’s display does not exhibit the same smoothnessas | ocal entities. For example,
ModSAF and other computer-generated forcesin military simulationsoften only run at 2—4 Hz [92],
hardly enough to effectively feed aremote manned simulation which typicaly runs a over 15 Hz.

Faced with these prablems of latency, jitter, bandwidth, and frame-rate correspondence, large-
sca e simulations need to transmit information at a lower frequency [70], to relax the sensitivity to
network delay, and to permit receivers to update the remote model at their own frame rate.

2.1.3 Dead Reckoning Protocols

Dead reckoning protocols represent the other extreme of the remote rendering technique design
space, for they sacrifice coherence to maximize system scalability. Inadead reckoning system, hosts
model the state (position, velocity, and acceleration) of each remote entity by applying predictive
extrapolation based on update information sent from each entity’s local host. Dead reckoning at
remote hosts typically reduces bandwidth regquirements because update packets can be transmitted
a lower-than-frame-rate frequencies. Because remote entities are updated at a slower rate than
local entities (whose modelsare driven by user input, rather than incoming packets), receivers must
use extrapolation to provide seamlessly integrate remote and local entities on the display. Each
receiver performs this extrapolation independently, so it can provide a smooth rendering despite a
slow source host.

On the other hand, dead reckoning does introduce several limitations. First, dead reckoning
does not guarantee that all hosts share identical state about each entity. Instead, dead reckoning
protocols require hosts to tolerate and adapt to potentia discrepancies. Second, simulations that
rely on dead reckoning protocol s are usually more complex to devel op, maintain, and evaluate. The
application devel oper must be aware of the network’s behavior and typically tailors the simulation
software and algorithmsto operate within awide-area network environment. For example, because
the extrapolation of entity position and orientation is imperfect, collision detection requires a
distributed agreement protocol. To avoid presenting a jerky view of the entity’s position on the
display, the host must aso apply apply some smoothing or convergence agorithm to correct the
extrapolated model after a new update arrives.

Dead reckoning protocols have evolved over the past severa years, both in terms of their
sophistication and in terms of how well their modeling behavior is understood.
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2131 Early Dead Reckoning Systems: Amaze

The Amaze multiplayer game[5] represents one of the earliest implementationsof adead reckoning
protocol in distributed simulation. Hoststransmit positionand vel ocity updates about local player(s)
roughly once per second. Remote hosts use the velocity information to predict the entity’s future
position, though they ignore network latency effects because of the low latencies of the LAN
environment on which the system is deployed. Given a packet specifying position point z¢ and
velocity vector x(, the dead reckoned position at time ¢ after packet arrival is:

z(t) = xg + gt (2.1)

In this game, the slow speed of entities relative to update rate simplifies the remote modeling
problem considerably because the potential error in the remote model is always small. Therefore,
the Amaze system did not integrate a convergence a gorithm, so the rendered position of the remote
entity “jumps’ immediately to the new position when an update arrives.

2132 Commercial Systems: SIMNET, DIS, and STOW

The U.S. Army’s Simulation Networking (SIMNET) system [69] first introduced dead reckoning
protocolson alarge scale. SIMNET implements a networked battle simulation system in which up
to fifteen participants manipul ate tanks and planes within avirtua battlefield. Asinthe SGI Flight
Simulator, update packets contain a complete description of the entity, including its position and
velocity (but not acceleration). However, SIMNET movesaway from thefixed-rate update approach
used by earlier systems. The transmitting host maintains two model s of each entity: the true model
representing the entity’s actua position (updated by user input, autonomous control, and external
forces) and the remote model (that applies dead reckoning to the entity’s transmitted update packets
using the same algorithm used in Amaze). The host transmits an update packet either when thetrue
and dead reckoned models differ by some error threshold or when no update has been otherwise
sent within a five second timeout period. This timeout allows remote hosts to recognize when an
entity is no longer on-line, and it allows a new entity to enter the simulation simply by sending an
update packet.

The Distributed Interactive Simulation (DIS) protocol [37], |IEEE standard 1278, targets larger
virtual environments populated by hundreds, if not thousands, of participants. The DIS dead
reckoning protocol [36] is similar to the SIMNET protocol in most respects, though its update
packets al so include accel eration, orientation (specified in Euler angles [76]), and angular velocity
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information. Therefore, with an update packet specifying position point o, velocity vector xg, and
acceleration vector 2, the dead reckoned position at time ¢ after packet arrival is:

L2 (2.2)

x(t):wo+w6t+2 0

Entities may adopt different timeouts for update transmissions, although five seconds remains
the default; moreover, particular entities may be configured to use the first-order dead reckoning
employed by SIMNET and Amaze. The DIS dead reckoning algorithms have been adopted by
successor programs such as STOW (Strategic Theater of War) [1].

The relatively wide deployment of the DIS protocol has encouraged some initial efforts to
analyzeitsperformancein terms of both remote modeling accuracy [ 79, 101] and network bandwidth
requirements[51]. Thiswork has used flight simulator traces to compare the performance of various
dead reckoning protocols with the goa of validating the second-order positiona and first-order
orientation dead reckoning algorithms used by the DIS protocol. A more control-theoretic analysis
was undertaken by Foster and Massel [25] using regression anaysisto produce aformulapredicting
the average dead reckoning error as a function of dead reckoning threshold. This work aso
analyzed the effects of numerical precision on dead reckoning error. Other work has concentrated
on improving the effectiveness of modeling entity orientation, either by using better implementation
techniques [91] or by using quaternions to represent orientation [11].

2.1.3.3 Recent Research: Moving Toward Specialized Dead Reckoning Algorithms

Recognizing the difficulty of the remote modeling problem, most recent research systems have
strived to develop speciaized algorithms for a particular class of entity or motion. For example,
the NPSNET system [70], developed at the Naval Postgraduate School, provides an experimental
land-based virtual battlefield environment over LAN network environments (with recent support
added for Wide-Area Networks[53]). NPSNET optimizesthe DIS dead reckoning protocol for tank
motion by transmitting only the entity position, atwo-dimensional velocity vector, and an “aignto
ground” flag that causes remote hosts to adjust the entity’s pitch and roll to ensure that it is drawn
on the ground. This latter feature eliminates the need to explicitly transmit orientation information
in most cases.

Amnon Katz and Kenneth Graham at the University of Alabamahave optimized adead reckoning
algorithm for aircraft that move with a constant “angle of attack” [43]. This condition arises when
the aircraft moveswith a constant accel eration vector when described in its body coordinate system;
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the resulting path is a spiral (with circular paths representing a special case). The remote host
receives the initia acceleration vector x, which may be decomposed into a constant component
magnitude Ag; representing acceleration in the direction of the entity’s motion and a constant
component magnitude Ag,, representing acceleration normal to the entity’s motion. Furthermore,
the entity’s initial velocity vector z; may be decomposed into unit vectors tangentia to the body
(eg,) and normal to the bodly (eg,,). With the entity’sinitial speed so = |/, the forward speed over
timeistherefore

s(1) = s+ Age (2.3)
They define the following constants:
Ao
= — 24
a o, (24)
2
¢ = _ Aonsg (2.5)

and the following expressions:

g = Aoy lsln) (2.6)
Aot 50
z, = ce®’(2acos 4 sing) (2.7)
Yy, = ce*9(2acosf —sing) (2.8)
and hence the dead reckoned entity positionis:
(1) = w0+ (wp — 20¢) e + (yp — c)epy, (2.9)

Furthermore, their “phugoid scheme’ recognizes that for these curves, an aircraft’s orientation
is determined solely by the spiral’s radius and the aircraft’s speed. Consequently, accurate dead
reckoning can be performed using only position, velocity, and acceleration updates; the airplane’s
position and vel ocity determineits orientation.

Dead reckoning is commonly used for tracking an entity’s position and orientation based on
inputsfrom remote sensors while accommodating for noisein the sensor readings, low frequency in
the sensor updates, or high latency in sensor information. The common approach to these problems,
particularly that of inaccurate sensor readings, isto employ aform of Kalman filtering [42, 87, 41].
A state matrix encodes the current position and velocity estimate and is used to derive position
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estimatesat any given (present or future) time. When anew sensor reading arrives, the Kalman filter
updates the current position estimate by convolving the position sample derived from sensor/radar
with the current estimate provided by the state matrix; the relative weights given to these two values
is determined from an estimate of the error variances in the sensor or radar readings. A similar
weighting is used to update the velocity estimate. Though the Kalman filter provides a general-
purpose framework for predicting and smoothing updates, researchers have continued to customize
the Kalman filter algorithm based on the application.

Early specialization was done at the Naval Research Laboratories where dead reckoning ago-
rithmswere optimized to model ship motion aong the earth’s spherical surface based on inaccurate
position estimates transmitted from a remote sensor. With regard to specidizing the Kalman filter,
Willman [104] wrote;

The tracking agorithms are based on the Kalman filter and Bayesian smoother for a
specific motion model in which a ship’s motion is approximated as the vector sum
of a constant (average) velocity and a two-dimensional (random) Brownian motion.
The intensity of the Brownian motion ... is selected to correspond to the extent
of maneuvering performed by the ship with respect to a constant-speed, great-circle
course.

Trunk and Wilson [93] specialized the Kalman filter to track ship motion based on signalsreceived
from multipleradars; each radar signal provided both range and direction information, though only
one component of each measurement was accurate. Moreover, because the basic Ka man smoother
would not quickly detect when a ship changes direction, Trunk modified his Kalman smoother
to lend more weight to recent radar measurements when the filter's current position estimate and
the radar’s current position estimate diverge significantly. These Kalman filter approaches share
the disadvantage of being computationally complex (requiring on the order of 110 addition and
multiplication operations on each time step), and their state matrix update cannot accommodate
out-of-order updates.

The MIT Media Lab used a specialized Kalman filter to predict the position of drumsticks as
they were played above a sensor pad [27]. Whenever the sensor was hit by a drumstick, a computer
attached to this sensor was responsiblefor generating the sound of adrum shot. However the latency
between the sensor impact and the sound generation was noticeabl e, so the researchers attempted to
synchronizethe drum sound with the sensor impact by predicting the position of thedrumsticks. The
computer received position updates from the drumsticks 30 times per second and used the Kalman
filter to generate a second-order approximation of thedrumstick positionfor 33 msinthefuture. The
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approach was effective for most cases; however, the researchers discovered that the predictor would
often “overshoot” and predict a drum shot because drummers regularly move the sticks downward
toward the drum without actually touching it. To counter this effect, the researchers introduced an
“emergency” signa that allowed the sound generator to disregard the previous prediction when a
sudden change in the drumstick behavior is detected; the emergency signal was effective because
of the relatively low latency between the physical sensors generating updates and the computer
system processing that information. The dead reckoning approach wasfinely tuned to the particular
application and required the generation of a specific noise model for user motions. Moreover, the
approach did not provide general applicability because the predictivetimeinterval wasshort (33 ms)
compared to that needed over wide-area networks, the relative drumstick motion distances were
short (250 mm), and updates occurred regularly and at high frequency.

Most recently, positiontracking has becomeincreasingly commonwith Head-M ounted Displays
(HMD) which, as discussed above, can exhibit position generation latencies of up to 170 ms—
enough to cause “simulator sickness” among users of virtual reality systems. To compensate for
this latency, the graphics system applies a customized dead reckoning algorithm to predict the
participant’s current location based on the delayed position and orientation information provided
by the sensor system. An early helmet-mounted display system developed for the Air Force [74]
used a simple dead reckoning algorithm that treated acceleration as arandom number between -1.0
and 1.0. To achieve better performance, Liang, Shaw, and Green [49] employed an agorithm more
specifically tuned to head motion:

2" = —pa’ +1/202Bw(t) (2.10)

where 2z’ and 2" are the angular velocity and acceleration, w(t) is a noise function, g is a time
factor representing the smoothness of the prediction, and ¢ is a variance factor that controls how
aggressively the orientation is changed. This dead reckoning algorithm assumes that the user’'s
viewing direction is generaly fixed and changes infrequently. Though it provides good resultsin
thisapplication, thisdead reckoning algorithmis not generally applicable. The experimental Virtua
Laboratory system at IBM [102] provides another example of this move toward specialized dead
reckoning protocolsfor sensor tracking. The Virtual Laboratory employsa custom dead reckoning
algorithm to predict the position of the participants' handsin a bouncing ball simulation.

To support this trend toward specialized dead reckoning algorithms, the VERN system [8]
aims to provide an entity-oriented development framework into which specialized dead reckoning
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algorithms can be integrated. The system defines an Abst r act VERNCDj ect class, subclassed
by Abst ract Pl ayer and Abst r act Ghost classes. To create an entity, adevel oper subclasses
from Abst r act Pl ayer andimplementsaconput eNext St at e member function that returns
the current state of theentity. At theremote host, the devel oper subclassesfrom Abst r act Ghost
and implements the pr ocessMsg (process an incoming message) and conmput eNext St at e
(compute the current state for the entity) member functions. The VERN system also allowsthe user
to change the dead reckoning protocol error threshold in rea-time.

The current state-of-the-art in dead reckoning a gorithms raises severa limitations. First, dl
existing protocols are tightly coupled to their underlying network environment. Most systems
have been designed for use over a local-area network providing high reliability and predictable
latency characteristics. Even the DIS protocol design, targeted for use over wide-area networks,
does not directly address the variabl e performance of long-haul communication networks. Second,
existing simulation protocols do not accommodate the variable modeling fidelity needs at each
remote simulation host but instead associate a single dead reckoning error threshold with the source
transmissions. As simulations contain increasing numbers of entities, hosts cannot afford to model
al entitiesin full detail. Instead, the simulation needs to support a continuum from low-fidelity
modeling to high-fidelity modeling so that individua hosts can select the appropriate level-of-
detail based on local requirements. Finally, analyses of dead reckoning protocol behavior have
concentrated almost exclusively on single entity types (tanks, fighter aircraft, drumsticks, etc.)
These analyses do not offer a general-purpose technique for ng the protocol’s behavior over
more genera entity motion.

2.1.34 Rdated Techniques From Signal Processing

Dead reckoning in distributed simulation essentially represents a generalized signal prediction
problem. Signal prediction is commonly used in speech processing (to extrapol ate a speech pattern
between discrete samples or to accommodate sample l0ss), economic prediction and forecasting,
and medicine. We have already seen special-purpose uses of signal processing in sensor prediction
for HMD position tracking.

The basic signal prediction problem can be formulated as follows [12]: A signd f is band-
limited to the range [—W =, Wr| for some W > O (that is, f can be decomposed into the sum of
sine waves with frequencies ranging up to Wr). The signa f is sampled at regular intervals %
Based on » samples taken within thetimeinterval [to — 7, to], we wish to extrapol ate the signal’s
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behavior for timet > tg. To address this problem, we construct a convolution series estimatefor f:
(S () = Z f( ) (Wt — k) (2.11)

Inthisexpression, ¢( ) isakernd function suchthat (Wt — k) # 0only for k € [toW —n, toW],
namely theinterval for which samplesof f(%) are available.
The simplest set of kernel functions can be derived [68] by applying the Fourier transform of

thesignal. In thiscase,
sn((Wt— k)r)

AW ) = = e

(2.12)

Observe that (Wt — k) is1for t = & andisO at &l other sample pointst = % (j # k). For
example, withn = 3 samples, we estimate the curve as:

in(Wt— L)r 1 in(Wt—2)r 2 in(Wt—3)r
s =t () + Sz () + Swr=ar 1 ()
(2.13)
However, the extrapolation error increases rapidly as ¢ increases from % toward % because al
terms approach zero expectingtorely on a f (%) term to provide support.

A better set of functions ¢ can be derived by convolving a set of central B spline curves, with
convolution coefficients computed by solving a linear system of equations (see [12] for a more
complete description of the rather complex procedure). For example, to extrapolate a signal over a
period of - given n = 3 samples,

0, 1< At
AWt —k)—3, Kbt << k2
e(Wt—k)y=3 13-5Wt—k), k2 <4< k43 (2.14)
AWt —k)—8, B << kit
0, Bt ¢

If /" iscontinuous and bounded, then we can derive a maximum error bound on the estimator:
155 f = fIl < 18] f"||w 2 (2.15)

In general, an estimator that relies on » samples has an error bound that isO (W ~").
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These approaches to signal estimation pose a number of limitations when applied to the sim-
ulation domain. First, the estimators rely on a uniform sampling frequency from the source and
assume that we can derive some estimate for W (representing the maximum underlying frequency
of the entity’s motion, whichis correlated to the motion’soveral complexity). With dynamic entity
motion, any fixed sampling frequency isliableto either oversample the entity position—and hence
generate high network traffic—or undersampl e the entity position—and hence sacrifice accuracy in
the remote model. In redity, thetrue value of W changes over time and cannot easily be estimated.
Second, when compared to competing dead reckoning algorithms, eval uating the estimator function
Sy [ requires roughly twice the computation at each timestep ¢ because al of the coefficient terms
(2 ) must be recomputed. Finally, the signal estimator assumes that the signal’s second derivative
is bounded and continuous. In many simulation domains, this assumption is not valid because the
acceleration of physical objects may change almost arbitrarily.

Oneother approachto signal prediction employsagradient descent method for finding thelocally
optimal coefficientsin the prediction equation [56]. With thistechnique, however, computationtime
can vary dramatically on each timestep. Consequently, thisapproach haslimited utility in real-time
systems, such as distributed simulation, which must process many entity updates within each frame
interval.

2.2 Approachesto Supporting L arge Distributed Smulations

Over the past decade, distributed simulations have grown in size, starting with the Amaze system
(which included roughly four hosts connected over an Ethernet) to the STOW 97 system (originally
envisioned to include 100,000 entities connected over a wide-area network). Larger simulations
require more network bandwidth because each entity independently transmits state updates. In
addition, each host requires more computational resources to receive the entity state update packets,
model those simulation entities, and perform tasks such as scene rendering and collision detection.
Asdiscussed in Chapter 1, multicasting update packetsto allow receiving hoststo filter data streams
from entities that are not of local interest only partially addresses the bandwidth and computation
problems. Each unfiltered entity must still provide updates at the rate needed by the host requiring
the maximum remote modeling fidelity.

Simulation designers have attempted to reduce network bandwidth requirements and received
packet rates in two ways: protocol-specific optimizations and entity aggregation.
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2.2.1 Protocol Optimizations

Simulation protocol s can often be optimized or specialized to reduce the bandwidth or packet rate.
These optimizations are typically derived by anayzing the traffic generated in prior simulationsto
detect data duplication and other inefficiencies.

For example, the DIS protocol requires each simulation entity to periodically broadcast its
compl ete state; this periodic broadcast makes DIS simul ation resilient to packet loss or intermittent
connectivity. However, analyses of DIS and STOW exercises have shown that up to 50% of the
wide-area network traffic is generated by dead or otherwise inactive entities transmitting periodic
state updates [98, 99]. Moreover, even for active entities, only a portion of the state (position,
orientation, etc.) changes frequently, so the traffic contains considerable information that was
previously transmitted.

To address these issues, newer simulations such as the STOW program, optimizethe basic DIS
protocol by placing an Application Gateway (AG) [13] on each LAN. The AG isresponsible for
managing the flow of information between the LAN and the tail circuit/backbone. For example,
because must of thetraffic in DI'S simulations consisted of redundant updates from inactive entities,
the AG provides a Quiescent Entity Service (QES). The AG detectswhen aloca entity has become
inactive and reliably informs the other AGs. Until the entity becomes active again, the local AG
blocks its update packets from the WAN, and each AG is responsible for locally generating state
updates on the entity’s behalf.

Most aspects of an entity’s state do not change frequently, so successive entity update packets
containredundant information. Early versionsof STOW AGsimplemented the Protocol Independent
Compression Algorithm (PICA) [100] to eliminate this redundant state information from the DIS
packets. Each receiver maintains a numbered “reference” state for each entity. The AG receives
the state updates generated by each entity and only transmits the bitwise difference between the
entity’s current state and itsreference state over WAN. When the length of these difference packets
exceeds a threshold, the AG transmits a new reference state with a new sequence number. Because
each difference packet includes the sequence number of its corresponding entity reference state,
receivers can detect lost reference state packets and request retransmission from the AG.

The Log-Based Receiver-Reliable Multicast (LBRM) [33] protocol is optimized to support in-
active entitiesthat generate occasional updates. Whileinactive, each entity generates |ow-frequency
heartbeat packets, but after transmitting an update packet, it transmits heartbeat packets at a high
rate to ensure rapid packet loss detection. Other optimizations, such as statistical acknowledge-
ment and distributed logging, alow LBRM to quickly detect large-scale loss and provide faster
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packet loss recovery. Based on its update frequency, an entity would therefore either use periodic
unreliablemulticast or an occasional reliable multicast. Zelesko and Cheriton [106] present aframe-
work for optimizing protocol s to enable such optimizations based on functionality and performance
reguirements.

2.2.2 Entity Aggregation

Entity aggregation attempts to merge a group of entity updates into a single update packet, thereby
reducing packet header overhead in the network and reducing packet-processing overhead at re-
ceivers. An aggregation is alogical simulation entity representing a group of other entities. For
example, an aggregation may be used to represent a battalion of tanks. Alternatively, an aggrega
tion entity might represent all simulation entities located within a particular region of the virtual
world. The merged update packet transmitted by an aggregation entity may either ssimply bundle
the component entity updates [13] or summarize the component entities using an entirely new
representation.

A key challenge in entity aggregation is determining which entities to group together. Three
approacheshavebeen usedin previousdistributed simul ation systems: network-based, organi zation-
based, and grid-based.

2.2.21 Network-Based Aggregations

Networ k-Based Aggregationsgroup simulation entitiesby their physical locationinthe network [ 13].
For example, al entities located at a single site or on a single LAN may form the basis for an
aggregation. This aggregation approach is best suited for environments in which the wide-area
network or network tail-circuits represent the primary bandwidth bottleneck. However, entitieson a
LAN need not share any relationship to one another, either in terms of entity type or entity location
within the virtual world. A receiver who subscribes to the aggregation would typicaly receive
a considerable volume of information from entities that are of no loca interest. Consequently,
network-based aggregations are most beneficial only when there is some correspondence between
the entity locationsin the virtual world and their physical locations.

2.2.2.2 Organization-Based Aggregations

Organi zation-Based Aggregationsgroup simulation entitiesby their organi zational hierarchy (armies,
brigades, battalions, platoons, etc.) [23]. Though easy to construct and maintain, this aggregation
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structure offers limited val ue because each organization’s member entities may travel within differ-
ent regions of the virtual world. For example, a battalion might divide into two sub-units. Even if
undivided, large aggregations might be spread over a broad region. Also, destroyed tanks become
separated from thelive platoon membersasthe battleadvances: Inmilitary simulations, for example,
up to half of thesimulation entitiesare destroyed. However, for common operationssuch ascollision
detection and scene rendering, each host wants data about all entities |ocated within anearby region
of thevirtual world. If only organization-based aggregations are available, the host must subscribe
to information from al organizations represented within that region, even though most of the orga-
nizations' member entities may actualy be far from the viewer. Consequently, organization-based
aggregations are most beneficial only when there is some correspondence between the static entity
organization and the dynamic entity |ocation within the virtual world.

2.2.2.3 Grid-Based Aggregations

Grid-Based Aggregations group simulation entities by their location within the virtual world. The
virtual world is divided into rectilinear or hexagonal grids whose associ ated aggregation transmits
packets bundling information about entities in that region. Most existing implementations of grid
aggregations [54, 52, 86, 60] dispense with a designated aggregation entity and instead simply
associate a multicast address to each grid. Each entity transmits updates to the multicast group
associated with its current virtual world location, so athough the data is not bundled into the same
packet, the multicast group allows remote hosts to select the virtual world region(s) of interest.
Grid-based aggregationspose severa disadvantages. They mask the organizational rel ationships
between the various entities. For example, if ahost only providessummary views of atank battalion
to a commander, then it must subscribe to information from al regions that potentially contain
one of those tanks, even though each grid contains numerous entities that are not of local interest.
Grid-based aggregations and similar Area of Interest (AQOI) techniquesdo not alow remote hoststo
receive information at different levels-of-detail depending on the entity type—a capability that can
be desirable for rendering regions containing many heterogeneous entities. Moreover, establishing
an optimal grid sizefor use by al simulation hostsisdifficult because theidea grid size dependson
the amount of inter-host interaction in the simul ation scenario and on the number of entitiesrunning
on each host [73]; a poor grid size selection can affect network bandwidth requirements by up to
150%, and even the alignment of grids with respect to the coordinate system origin can affect data

!|deally, these regionswould be determined dynamically based on a“ clustering analysis?” but thisapproach isinfeasible
in real-time simulations because of the NP-hard nature of the dynamic clustering problem with constantly moving entities.
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traffic by 15% or more. Because grid-based aggregations do not alow hosts to access entities by
their organization or type and because of the configuration complexities, they have limited value for
reducing network traffic or computational load.

A simple dynamic grid-based aggregation scheme was deployed by Schilit and Theimer [80]
to address data distribution regquirements in mobile computing environments. In this environment,
servers are responsible for providing continuous information to clients who have subscribed to
various types of data. The server dynamically monitors the destination for each piece of data,
detects when multiple data streams are sending information to the same client set, and creates a
multicast group to aggregate those transmissions. lIdeally, a distributed simulation might apply
a similar technique to aggregate information from multiple entities when the receiver sets are
substantially similar. However, their implementation has limited value in our domain because it
only detects exact matches among the data distribution groups and because the linear searching
required for each data transmission does not not scal e effectively.

2.2.2.4 Multidimensional Data Cubes

Database vendors are starting to offer tools to support On-Line Analytical Processing (OLAP),
a method for navigating and analyzing complex data [88, 46]. OLAP systems present the user
with theillusion of a multi-dimensiona spreadsheet, with each dimension representing a different
category for grouping information. However, unliketraditional spreadsheetswhoseaxesarelinearin
nature, OLAP dimensions are hierarchical. For example, in an inventory database, one dimension
may represent stores which are organized into a hierarchy of territories, regions, etc., while a
second dimension would represent product type organized into another hierarchy. Users access
a particular “cube” in the database by selecting a node along each dimension. For each cell, the
OLAPtool provides summary information for the underlying data. For example, auser might select
“Western Region” and “Casual Shoes’ to receive a summary of the casua shoe inventory in the
western region. Finaly, the OLAP tool provides “drill down” and “roll up” capabilities along each
dimension. Hence, the user can expand the current cube to study the casual shoe inventory within
each sales region of the western territory, or he may expand the cube to explore the inventory of
different types of casual shoes.

Implementations of OLAP systems are quite disparate [20]. Some systems compute the aggre-
gateinformationfor all cubesat an OLAP server, so that client requests can be serviced immediately.
However, this approach is not scalable because of the exponential number of possible cubesin a
complex data set. Consequently, such cube generation istypically done nightly on abatch basis, so
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the aggregation does not necessarily accommodate real-time information sources. Newer systems
dlated for rel ease throughout 1996 are attempting to generate cubes dynamically, either by collating
information from adatacache at the client host or by transmitting the cube request to an OL AP server
host that generates an SQL query to the database server and then collates the resulting records. The
performance of these dynamic approachesisgenerally poor (responsetimeismeasured in minutes).
Moreover, they do not support dynamic updating of the aggregated information as data valuesin
the underlying database change.

Degspite the relative infancy of the deployed implementations, the “multi-dimensional cube”
model is a powerful model for aggregating complex information, and in many ways, it addresses
many of the limitations imposed by network-based, organization-based, and grid-based aggrega-
tions. In particular, it offers clients the ability to select the dimension(s) of interest, rather than
demanding a single criterion for grouping data.

2.3 Conclusion

We have described a representative sample of approaches to remote modeling and rendering,
revealing the considerabl e variety of techniques used by existing distributed simulation systems, We
have al so described how recent systems attempt to support high entity counts within the bandwidth,
latency, and computationa constraintsimposed by awide-area network environment.

Our survey of existing simulation systemsrevea s the following general characteristics:

¢ Most simulation systemsare designed for networks providing high bandwidth and low latency
and jitter, and they usualy operate among a small number of homogeneous hosts. Such
systems, which rely on shared database consistency or frame-rate updates, are not suitable
for large simulations on wide-area networks.

¢ Support for high entity counts is typicaly added only after a system has been built and
deployed on a LAN environment. This support has often involved ad hoc techniques, such
as application gateways and network-based aggregation, to reduce the bandwidth demands
imposed by the original system design.

¢ The current trend is toward remote modeling protocols that are tailored for the particular
entity types being modeled. These dgorithms are rarely usable in other systems.

¢ No common methodology has emerged for evaluating the performance of remote modeling
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protocols. Instead, previous analyses have only concentrated on a small class of entity
behaviors

¢ EXxisting aggregation techniques often group unrelated entities together, thereby limiting the
bandwidth reduction gained by combining entity updates.

The techniques described in this thesis take a different approach from most existing work:
Develop a generd-purpose remote modeling protocol for large-scale simulations over wide-area
networks, and provide support for entity-specific customization within this basic framework. The
Position History-Based Dead Reckoning (PHBDR) protocol providesfast, accurateremote modeling
of ascalar value based only on ahistory of previous updatesto that value. It makes no assumptions
about the value being modeled other than that it is continuous,? though entity-specific constraints
can always be introduced to optimize the remote modeling accuracy. By modeling three scalars,
hosts can represent the remote entity’s position in the virtual world. To provide scalability, PHBDR
packets are small, and its computationa requirements are minimal. Findly, its remote modeling
tolerates network latency and jitter.

The PHBDR protocol provides a base for developing more sophisticated remote modeling
protocols. The AxisPoint protocol usesPHBDR to model remote entity orientation. Multiple-Detail
Channels (rigid-body, approximate-body, and full-body) use PHBDR to model non-rigid entity
structure at different levels-of-detail. Projection Aggregation Entities use PHBDR to model entity
groups. Asdemonstrated in [16] and [106] with transport-level protocols, this recursive protocol
structuring keeps the design simple, eases testing of protocol implementation, and simplifies the
analysis of protocol effectiveness.

Table 2.1 shows how the techniques in this thesis are used to support different entity types at
different fidelities. In summary, Position History-Based Dead Reckoning and itsderivative protocols
provide an integrated architecture for remote rendering in large distributed simulation environments.
M oreover, we demonstrate the effectiveness of these protocolsin arbitrary simulation environments
by analyzing their network behavior and modeling accuracy. This domain-independent analysis
represents asignificant departure from previouswork, which has either neglected analysisaltogether
or chosen to focus on particular entity behaviors.

2That is, the scalar's value, when graphed as a function of time, is C°.
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Remote Modding Fidelity
Entity Type Low | Medium High
Rigid PHBDR PHBDR PHBDR
Axis Point Axis Point
Semi-Rigid PHBDR PHBDR PHBDR
Axis Point Axis Point Axis Point
Rigid-Body Channel Approximate-Body Chan- | Full-Body Channel
Non-Rigid/ Projection Aggregation rgl'relojection Aggregation PHBDR
Entity Group Entities Entities Axis Point
Full-Body Channel

Table 2.1:

Use of the Techniques Presented in this Thesis




Chapter 3

Position History-Based Dead Reckoning
(PHBDR)

In this chapter, we describe a protocol for accurately modeling the real-time position of remote
entities and for generating smooth graphical representations of those entities on the user’s display.
The Position History-Based Dead Reckoning (PHBDR) protocol [83, 84] provides remote modeling
of a scalar value (and by extension, the position of a single vertex). The protocol implementation
only assumes that the value being modeled is continuous, hosts have near-synchronous clocks, and
the network offersaunidirectional datagram service. To derivethe greatest benefit from the protocol
in alarge system, the network should provide some sort of multicast service, but this feature is not
absolutely essential. The protocol makes no other assumptions about the simulation domain, the
type of entity being represented, or the network performance.

Furthermore, the PHBDR protocol reduces the real-time dependencies between hosts as much
as possible by transmitting less time-sensitive information over the network than existing tech-
niques. Receivers process the received information independently based on the locally perceived
latency. Thisdecouplingisessential for supportinglarge-scal e simulationsoperating over wide-area
networks.

We begin by providing an overview of the PHBDR protocol. We describe how source hosts
generate update packets from the true entity model. We then describe how remote hosts use
those update packets to produce a dead reckoned representation of entity position. We conclude
the chapter with a discussion of how a simulation designer selects appropriate values for various
PHBDR protocol parameters

36
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Figure 3.1: Hosts Multicast Position Update Packets for Local Entities

3.1 Overview of the PHBDR Protocol and Algorithm

The position history-based protocol transmits timestamped packets containing three scalar coordi-
nates describing the entity position along the x, y, and z axes. The protocol is supported by an
algorithm at the source host for generating update packets and a dead reckoning agorithm at the
remote host for processing update packets, asillustrated in Figure 3.1. The source host maintains
an entity model whichissampled to generateitslocal frame-rate display. The host also periodically
transmitsthe entity’s current position over an associated multicast addressto remote sites across the
network. Based on information in these update packets, the remote host maintains a remote entity
position model which is sampled at the loca frame rate. This dead reckoning algorithm alows
remote hosts to generate a visually accurate animation of remote entitiesin spite of typical network
delays.

3.2 Source Generation of Updates

Figure 3.2 depicts the processing performed at the source host. The host concurrently maintains
two models of each entity: 1) the true position, which is determined by user input, autonomous
control, and externa forces; and 2) the remote tracking position (described in the next section)
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Figure 3.2: Update Packet Generation at the Source Host

which estimates the position based on previous network updates. By caculating the difference
between these two positions, the source host therefore approximates the dead reckoning error at
remote hosts. A maximum error threshold is associated with each entity, and the host transmits an
update packet for the entity whenever the estimated dead reckoning error exceeds this threshold.
The source transmitsan update for the entity if none is otherwise generated within atimeout period
to limit the time a remote host relies on old information when a packet islost. Thisuse of an error
threshold is similar to that used by SIMNET [69], DIS [36], and NPSNET [70].

An update packet only reports the entity’s current position along each axis. Remote sites use
this absolute state information to estimate the entity’s position, velocity, and acceleration. Each
packet includes a timestamp which is used by receivers to account for transmission latency. The
algorithm assumes accurate clock synchronization between al participating hosts. Implementations
of distributed clock synchronization algorithms, such asNTP[58], are widely available and provide
accuracy to less than one millisecond [59]—enough for most real-time simulations.
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3.3 Recelver Processing of Updates

Upon receiving an update packet, aremote host performs the steps pictured in Figure 3.3 to update
its model of the entity. The first phase, the remote tracking step, uses a short history of updates
to predict the entity’s position, velocity, and acceleration until the next update arrives. This step
compensates for network latency, network jitter (variation in latency), and the inability to transmit
update packets at high frequencies. The dotted linein Figure 3.4 indicates the predicted entity path
generated by the tracking step. The second phase, the convergence step adjusts the local estimate
of velocity and acceleration so that the entity’s current displayed position smoothly converges to
the predicted path at the convergence point, as shown by the dashed line in Figure 3.4. Because
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Figure 3.5: Angle of Embrace Determines Adaptive Tracking

the host predicts the entity’s future location, the current displayed position usualy differs from the
true position provided in the update packet. Rather than directly “jumping” to the correct position,
smooth convergence provides the viewer with amore natural animation of remote entities.

Instead of using fixed tracking and convergence algorithms, the position history-based protocol
adapts the algorithmsto the recent behavior of the remote entity.

3.3.1 AdaptiveTracking Algorithm

The tracking algorithm adapts to the entity’s behavior by using either a second-order (parabolic)
estimation between the three most recent updates or a first-order (linear) estimation between the
two most recent position updates, as shown in Figure 3.5. To determine which of the two tracking
techniquesto use, theremote host cal cul atesthe angl e between thethree most recent update positions.
This angle, defined in differential geometry as the angle of embrace, estimates the loca Gaussian
curvature of the entity’s path [17].1 A large angle of embrace—implying that the entity is not
changing direction significantly—invokes second-order (quadratic) tracking along each dimension,
as shown in Figure 3.5a. On the other hand, a small angle—implying that the entity has recently
made a significant change in direction—invokesfirst-order (linear) tracking along each dimension,

For three updates o, x1, and z», the angle of embrace is computed by computing the vectors =1%o and %2,
normalizing them, taking their dot product, and applying the arc-cosine:

cos ™ (Jetko| - |zi¥a])
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as shown in Figure 3.5b.

The second-order tracking techniqueis used when the entity is not changing directionrapidly. If
thethree most recent positionsalong aparticular dimensionare zg at timetg, 1 attimet; = to+dox,
and (themost recent update) =, at timet, = t;+d12, thentheremoteentity tracking traces aparabola
joining those three position points. Using Aitken’s algorithm [22]? to interpol ate these points, we
derive an initial position at time  of a(t) | _ = v, initial velocity

1 1
_ di2 20— (1_2 + i) T+ <_ + 7) T2 (3.1)
=2 (do1 + d12)do1 du = dio diz  do1+di2

and acceleration of

2 2 2
= To — z1+ T
) do1(do1 + d12) 07 dogdr (do1 + d12)da2 2

z"(t (3.2)
By common subexpression elimination, these parameters are computed in eight multiplicationsand
four additions. This formulation has the advantage of being invariant to affine transformations (in
particular, coordinate system tranglation and rotation).

We assume that the host processes the most recent update at time 2 + dgeiay, Where dgeiqy
represents the latency introduced by the network. To achieve a smooth visual effect, we set
the displayed position to converge with the tracked position after a convergence period d., =
d1p seconds. We therefore treat the interval between the two most recent update packets as a
crude estimate of packet rate with the intention that path correction will be complete when the next
update packet arrives (assuming a roughly constant update rate).> The convergence point (at time

2The Aitken algorithm operates by recursively generating lower-order polynomialsfor subsets of the given points and
then convolving those interpolating polynomials together to construct an interpolation for the entire point set. In the case
of three points =0, z1, and z at respective times to, ¢1, and ¢, we produce two functions:

t1—1 t— 1o
t) = z z
Jou(t) P— O+t1—to 1
and
o — 1 t— 11

t =
fra(t) tz—tlxl tz—tlxz
and then convolvesthem to get the interpolating polynomial:

tr—1
i — to

t—t
fora(t) = Fa(t) + " foa(1)
i — to
The independence to affine coordinate transforms results from the fact that all curves are rooted (at the base case) on
linear interpolation, which isinvariant to coordinate system rotation.
30ne can envision using a more complex packet rate estimation technique, possibly based on a smoothed average of

theinter-arrival times between the last few packets. However, becauseof the dynamic nature of the entity motion, it isnot
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Figure 3.6: Using Adaptive Tracking to Model Sudden Path Changes Using (a) Three and (b) Two
Previous Position Updates

tep = t2 + dgeray + d.p) for second-order tracking istherefore

dgelay + 2d12 %o
do1(do1 + d12)

_do1+ 2d12 + daelay 1 do1 + 3d12 + dgciay
do1d12 (do1 + d12)d12

(1) = (dgetay + d12) (

xo) + 20(3.3)

Thefirst-order tracking techniqueis used after the entity makes a sudden turn, as might happen
after acallision. In this situation, second-order tracking as described above is inaccurate, because
the older update position provides little information for predicting the future position of the entity.
The dotted line in Figure 3.6a shows that a second-order curve over-compensates for the turn and
introduces new error in the remote tracking; the resulting displayed path, represented by the dashed
line, does not reflect the entity’s true behavior. A first-order approach, on the other hand, is more
accurate because it ignoresinformation from before theturn, as shownin Figure 3.6b. Theresulting
displayed path converges to the true position more rapidly, as reflected in the dashed line. To
generate afirst-order tracking equation, we apply straightforward linear interpolation between the

clear whether such effort would yield apacket arrival estimate that is better enough to justify the additional computational
costs. The use of the most recent packet arrival distance seems to provide a reasonable engineering tradeoff between
estimation and computation.
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two most recent position updates; the tracking curve therefore has initial position at timet, of

x(t) -, =22 (3.4)

and velocity L L
"t) = —x0— — 3.5
=) Ay % At (39)

These parameters are computed in one multiplication and one addition. Once again, the tracking
path isinvariant to affine transformationsin to coordinate system.

We set the displayed position to converge with the tracked position after a convergence period
of d., = min (d12, Arnaz—cp) SeCONds after the latest updateis processed at the host, where A, — ¢
represents an upper bound on the convergence period. This upper bound is necessary because the
most recent update packet may have resulted from an unusual event (such as a cdlision), so the
inter-packet arrival time does not necessarily provide any information about when another update
is likely to arrive. Moreover, in the case of a collision, the correction should occur reasonably
quickly because discrepancies in the visual effect are more important to the viewer. The resulting
convergence point (at timet,, = t2 + dgeiqy + d.p 1Stherefore either

d cta d cta
(1) :—(Zly—l—l)xlﬁ—(fily—l—Z)xz (3.6)
t =12+ dgetay + d12 12 12
or
d cta —I_Amax—c d cta —I_Amax—c
(1) :_d’yd px1+<d’yd p+1)x2(3.7)
12 12

t=12+ ddelay + Amax—cp

The adaptive tracking algorithm accounts for network latency by processing position updates
as if they had arrived at the time they were actualy sent. In effect, the receiving host rolls
back the tracking step to the packet transmission time. This use of timestamps reduces the rea -
time dependencies between remote host dead reckoning and network performance by effectively
providing loose “eventual consistency” semantics on the entity state information at remote hosts.
For example, although different hosts might encounter different latencies on each update packet or
some hosts might receive update packets out-of-order, all hosts eventualy track the ertity in the
same manner (modulo packet 10ss) because the tracking algorithm processing is determined by the
packet’s absolute timestamp. Furthermore, the effects of packet |ossare eliminated over timeas that
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information is outdated by new updates. Because of this common tracking at all remote sites, the
source host can reasonably approximate error in the remote tracking position and therefore generate
appropriately timed update packets. Convergence, on the other hand, begins from the packet arrival

time; hence, although all of the remote tracking models are identical, each host applies a different
convergence model based on the packet delays observed localy.

3.3.2 Adaptive ConvergenceAlgorithm

While the tracking algorithm described in the previous section allows remote hosts to model the
entity’s actual position, the convergence a gorithm ensures that the locally displayed entity position
is smooth. The convergence algorithm also adapts to the entity’s recent behavior. Based on the
angle of embrace calculated during the tracking step, the convergence algorithm selects between a
first-order and second-order path. A smaller angle indicates that the entity motion is curved, and
a second-order (constant acceleration) path is therefore generated. A large angle indicates that the
entity motion is nearly linear, so afirst-order (constant velocity) path is used.

Second-order convergence uses the Aitken algorithm described earlier to generate a smooth
parabolic curve between the entity’s previous absol ute position, the current displayed position, and
the convergence point on the tracked path,* as shown in Figure 3.7a If the previous absolute

positionis zq1 at timet¢y = to + do1, the current displayed position iS To geiqy a timety + dgejqy,

and the convergence point (determined in the previous section) isz., at timet.,, then convergence
hasinitial position z(t) ‘th%dem = T2+delay, INitiad velocity

—depr1

x'(1 =
() (d12 + daetay) (d12 + daeray + dep)

t=12+ ddelay

A SR Y
dlZ + ddelay dcp 2t delay

(d12 + daetay) Tp
(dlZ + ddelay + dcp) dcp

(3.9)

“We could have used the Aitken algorithm to generate a smooth convergence path between the currently displayed
path and the tracking path; this would result in a third-order path preserving a smooth velocity. However, should an
update packet arrive before convergencecompletes, we would need to generate afourth-order curveto continue providing
asmooth convergence(i.e. between the current convergence path and the new tracking path). Ultimately, either the degree
of the convergence path must remain unbounded, or the user must still accept an occasional discontinuity in the velocity.
Credit goes to Hugh Holbrook for this observation.
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Figure 3.7: Convergence Smoothly Corrects the Current Displayed Position

and acceleration
$”(t) _ le _ 2x2—|—delay + zxcp
(dlZ + ddelay) (dlZ + ddelay + dcp) (dlZ + ddelay) dcp (dlZ + ddelay + dcp) dcp

(3.9)
By common subexpression elimination, the parameters are computed in nine multiplications and
six additions.

When the motion is amost linear, first-order convergence joins the current displayed position
to the convergence point as shown in Figure 3.7b. Using first-order convergence, theinitial position

isx(t) ‘ = T2+delay and thevelocity is

t:t2+ddelay

(D) = ﬂ_;% (3.10)
These parameters are cal culated in one multiplication and one addition.

The convergence process terminates once the entity’s displayed position reaches the conver-
gence point. Until the next update arrives, the displayed entity follows the position, velocity, and
accel eration predicted by the remote tracking algorithm.

Table 3.1 summarizes how angle of embrace determines the adaptive tracking and convergence
algorithms.



46 CHAPTER 3. POSITION HISTORY-BASED DEAD RECKONING (PHBDR)

Angle Between Curve Tracking Convergence
Three Recent Updates | Characterization |  Model | Modd
Small Rapid Turn First-Order Second-Order
Medium Smooth Curve Second-Order | Second-Order
Large Straight Line Second-Order | First-Order

Table 3.1: Adaptive Algorithms for Extrapolation and Convergence

Source/Remote
Parameter Agreement Needed Characteristic Setting

Small-Medium Entity changes behavior frequently High
Angle Threshold Yes Entity behavior stable Low
Medium-Large Ample CPU, entity of local interest High
Angle Threshold No Limited CPU, entity not of local interest | Low

Entity cannot make sharp turns High
Braz—cp No Entity motion may be arbitrary High

Table 3.2: Criteria for Setting PHBDR Tracking and Convergence Parameters

3.4 Setting Dead Reckoning Parameters

The PHBDR protocol requires that four parameters be set for each entity: an error threshold (used
by the source to decide when to transmit an update), smal-medium and medium-arge angle
threshol ds (used by the receiver to select between first- and second-order tracking and convergence,
and A,,,»—., (used by the receiver to bound the convergence time during linear extrapolation).
The appropriate values for these parameters depend on the physical dynamics of the particular
entity being modeled. In this section, we provide some guidance on setting the small-medium
and medium-arge angle thresholds and A, . —.,. These parameters are summarized in Table 3.2.
The remaining protocol parameter, the error threshold, is discussed in depth in the next chapter in
conjunction with discussions of the network |oad and remote modeling error produced by PHBDR.

34.1 Settingthe Small-Medium Angle Threshold

The “small” angle category signalsto the remote host’s tracking a gorithm that the entity’s motion
represents a collision rather than smooth motion. Consequently, entities capable of experiencing
frequent changes in behavior (as a result of rapidly changing acceleration, for instance) require a
high small-medium angle threshold, thereby forcing most of the motion to fall within thefirst-order
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collision tracking category. For example, a bee, which changes direction frequently, should have
a high small-medium angle threshold to ensure that first-order dead reckoning is used on almost
all packets; a passenger aircraft, which changes direction rarely, should have alow small-medium
angle threshold to ensure that second-order (smooth) dead reckoning is used on amost al packets.

The particular entity type determines the appropriate threshold value, and because its value
affects the tracking path, the source and remote hosts must agree upon its value. Typicaly,
therefore, remote hosts would obtain its value from a simulation database which aso provides,
for example, graphical descriptions of the entities. Empirically, we have found that setting the
small-medium angle threshold at 90 degrees provides a conservative parameter that minimizesthe
number of collisions assumed by the tracking a gorithm.

34.2 Settingthe Medium-Large Angle Threshold

The“large” angle category signalsthat the convergence a gorithm at the remote host may conserve
computational processing by replacing a smooth curve path with a straight line path without dis-
torting the visua effect. Thevalue of thisthreshold therefore depends on the entity’s distance from
the viewer and the entity type (together representing its importance to the viewer), as well as the
locally available computational resources.

Because this value is only used in convergence, each remote site may independently adjust
the threshold for each entity based on local requirements. When computational resources are not
an issue, setting the medium-large angle threshold at 175 degrees eliminates almost all visual
distortion.

343 Settingao—cp

The parameter A,,,,..— ., bounds the convergence period after the dead reckoning algorithm detects
asudden change in the entity motion; this parameter is necessary because sharp turnsand collisions
often occur without warning, so the norma packet inter-arrival time potentially yields a long
convergence period and an unredistic path. Consequently, smaller values for A,,,,_., alow
the convergence algorithm to generate sharper turns on the display, while larger values force the
convergence agorithm to generate smoother convergence paths.

The appropriate value for A,,,,,—,, therefore depends on how sharp are the turns that the entity
is capable of making. A ball, for instance, can move amost arbitrarily, so asmall valueof A, 5 —
is appropriate. On the other hand, a human typically does not make sharp turns (like a complete
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reversal of direction), so alarger value of A,,,.,_., IS desirable. Empiricaly, we have found that
setting A, - —p 10 0.25 seconds produces areasonabl e visual effect in most cases, though thisvalue
depends on the particular entity type.

3.5 Conclusion

We have presented the Position History-Based Dead Reckoning (PHBDR) protocol which provides
asimple, efficient protocol for remote modeling of entity position. The PHBDR protocol exhibits
several novel characteristics:

¢ Source hosts only transmit position information, and remote sites use position history from
multiple updates to accurately track entity position.

¢ A timestamp indicating time of generation is included in the protocol packet, alowing the
receiver’s dead reckoning process to compensate for variable delay in packet delivery.

¢ Theadaptive tracking and convergence characterize the entity’s overall behavior to determine
how many updates to includein the curve-fitting process.

The protocol makes minimal assumptions about the simulation environment. It only assumes
that the entity’s position is continuous, simulation hosts have synchronized clocks, and the network
provides a unidirectional datagram service. It only relies on entity position information which,
unlike velocity and acceleration, is universally available from entity models, including models
derived from sensors attached to physical entities. These assumptions allow the PHBDR protocol
to be used in abroad range of simulation environments.

Having provided a simple, efficient dead reckoning protocol, we now proceed to evaluate its
network bandwidth utilization and positiona fidelity. The next chapter demonstrates that PHBDR
provides smooth and accurate remote modeling for a broad range of entities while using minimal
network bandwidth.



Chapter 4

Analyzing PHBDR Network and Error
Perfor mance

We have presented the Position History-Based Dead Reckoning (PHBDR) protocol, a simple,
efficient protocol to support remote modeling in distributed simulations. However, the protocol is
only useful if it requires minimal network bandwidth utilization and offers smooth, accurate remote
modeling.

Assessing the behavior of a dead reckoning algorithm is difficult because it depends heavily
on the type of entity motion, the network latency between the source and remote hosts (which is
affected by the distance between hosts), and network jitter—thevariation in network latency (which
is affected by the variability in network congestion).

To evaluate a dead reckoning protocol systematically, we use athree-step process:

1. Classification of curves into groups representing the different types of entity behavior of
interest.

2. Mathematical analysisof the protocol to understand itsworst-case modeling behavior on each
curve type, followed by controlled simulation of the protocol over selected entity paths from
each curve category to evaluate its performance over the expected set of entity behaviors.

3. Deployment of the protocol in a distributed simulation application to validate the evaluation
and confirm the visua quality of the remote modeling from a user’s perspective.

This chapter applies this procedure to analyze and evaluate the PHBDR protocol. We begin by
describing the curve classification used in the evaluation and argue that this classification is broad

49
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Jerk Jerk Sample Algorithm(s) Responsible For Providing
Magnitude | Smoothness Motion Most Accurate Remote Display
None N/A Line, Parabola | Tracking
Low No Spikes Near Parabola | Tracking, Convergence
High No Spikes Oscillation Tracking
Low Spikes Bouncing Convergence
High Spikes Random Neither

Table 4.1: Summary of Five Curve Classes

enough to describe most behaviors likely to arise in a simulation. After analyzing the PHBDR
performance on each curve type, we incorporate experience in a deployed simulation environment
to summarize the key advantages and limitationsof the PHBDR protocol.

4.1 Entity Path Classification

To systematically evaluate the PHBDR protocol, we divide entity behavior into five categories,
as listed in Table 4.1, This classification is based on the third derivative, or jerk—the change in
acceleration exhibited by the entity. The third derivative most significantly affects the protocol’s
positional fidelity because PHBDR generates first-order and second-order curves for both tracking
and convergence. Our classification covers al combinations of jerk magnitude and smoothnessand
is therefore dl-inclusive. Although an entity’s mation is generally complex, its behavior can at
least locally be described by one of these cases. For each curve category, we explore how the dead
reckoning protocol works under different network conditions.

At the remote host, the PHBDR protocol accurately tracks any entity exhibiting constant accel-
eration (zero jerk) because it uses second-order curvesto locally model smooth motion. Inthiscase,
the remote tracking model matches the true position exactly. For these curves, network latency is
irrelevant because updates only serve to signal that the entity’s behavior has not changed.

PHBDR is aso highly accurate for smooth curves whose acceleration changes slowly (small
magnitude jerk) because those paths locally exhibit near-parabolic behavior. In these cases, the
parabolic remote tracking model closely approximates the true motion. Consequently, the dead
reckoning error at each position update is relatively small (linearly proportional to jerk), so the
convergence algorithm quickly corrects the error by dlightly exaggerating the acceleration applied
between position updates. As perceived by remote hosts, network latency increases the effective



4.2. EVALUATING PHBDR ON COMPLEX CURVE TYPES 51

error threshold proportionally to the cube of network latency; this behavior is identical to that
experienced with high magnitude jerk and is discussed further in Section 4.2.1.

The next section discusses the three remaining entity curve types, whose behavior is more
complex and lessintuitive:

¢ High magnitude jerk with no spikes: For example, a bus traveling along a winding road
exhibits smooth jerk.

¢ Low magnitude jerk with occasional spikes: Jerk may spike when an external force is
temporarily applied to the entity. For example, a bouncing entity or an entity moving along
rough ground exhibits near-zero jerk except that when it hits the ground, the jerk spikes and
changes the velocity. In this case, the convergence algorithm must quickly recover from
errors resulting from the unpredicted collision with the ground [97].1

¢ High magnitude jerk with frequent spikes: This case includes al remaining types of
motion, including random mation. For example, a person in acrowd moves around smoothly
a varying velacity but is occasionally pushed by someone else. Tracking and convergence
algorithmsare of little benefit in predicting or correcting the remote entity display.

4.2 Evaluating PHBDR On Complex Curve Types

In this section, we evauate the PHBDR performance over the three remaining curve categories:
high magnitudejerk with no spikes, low magnitudejerk with occasional spikes, and high magnitude
jerk with frequent spikes. Based on measurements of the average packet rate and remote tracking
error generated by the PHBDR protocol on these three types of curves, we make the following
observations:

Curve Type Tradeoff: Although ahigher packet rate generally produces higher positiona fidelity
in remote models, the proportion of smooth versus sudden changes in jerk exhibited by the
entity motion determinesthe preci serel ation between thesetwo variables. Moreover, different
curve types exhibit different sensitivity to network latency.

Threshold Estimation: The curve type also determines the appropriate protocol error threshold
required to achieve a reasonable balance of positiona fidelity and network bandwidth: the

"We assume here that the entity is tracked in isolation, without advance knowledge of the impending collision.
Section 4.4 discusses extending the protocol to leverage such information.
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appropriate protocol error threshold lies between one and two times the average tolerable
visualization error.

Balanced Degradation: A higher protocol threshold degrades positional and behaviora fidelity
equally, whileretaining afaithful representation of the true motion.
4.2.1 High Magnitude Jerk With No Spikes

If the jerk is continuous, then we may bound the error of the interpolating curve generated by the
second-order tracking model. In particular, the tracking error at time ¢ = to 4 d equals [40]:2
236

EI’I’OI’[w(t)] = 3 (d)(d — d01)(d — do1 — d12) (4.1)

where ¢ is some time between time to and time ¢,. We replace z(3(¢) with 7., Signifying the
maximum jerk. Also, because we are interested in the future error, let d = do1 + d12 + d fyture. We
get:

Error[$(7')] S ]m6al’ (d01 + dlZ + dfuture)(dlZ + dfuture)dfuture

= P (e + 21205 ure + (dord putre + dordiz + d)d e ) (42)

With atarget steady-state packet rate D between packets, we can make a substitution for doz, d2,
and dfuture :

Error[z(t)] < ‘]—”é“xGD?’

Jrmaz D> (4.3)

From this equation, we can draw a number of conclusions. First, each incremental reduction in
the error threshold causes a larger increase in the packet rate (reduction in D); conversely, each
increase of the error threshold has incrementally smaller effects on the packet rate (increasein D).
This result signalsin modeling this class of curves, packet rate, rather than average error, is likely
to be the limiting constraint. This behavior represents one endpoint in the Curve Type Tradeoff.
Second, we observe that the remote tracking error increases only linearly with jerk. The PHBDR

2\We retain the same variables used in defining the protocol in Chapter 3. the three most recent updates «o, z1, and =2
were transmitted at times to, t1 = to + dm, and t2 = ¢1 + di2, respectively. The remote host receives the last update at
time t2 4+ dgeiay Where dq.iq, denotesthe network latency.
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protocol therefore has limited sensitivity to the dynamics of the entity motion. For example, to be
competitive with traffic [103] exhibited by many entities under the existing Distributed Interactive
Simulation (DIS) protocol (IEEE Standard 1278) [37], PHBDR must achieve a target packet rate
of one per second (D = 1). Under these conditions, the maximum tracking error (modulo network
latency) equals the jerk, and the average tracking error equals only %. Third, because network
latency delaysthe arrival of update packets, effectively increasing the error threshold seen at remote
hosts, it can have a significant impact on the remote tracking error. By the point that a remote host
processes the update, the network latency d .14, hasincreased the tracking error by an additional
Jmae(8D?dgeray + 3Dd% 1, + detyy) (4.4)

delay delay

which is dominated by the 3D2ddelay term because we assume that d e, < D; We expect dgeiqy
to equal 0.1 seconds, reflecting typical latencies across the Internet in the United States, and as we
have seen, D should equal roughly 1 second. Substituting these values, the network latency raises
the maximum error by 0.37,,,..- (or 30%) and the average error by 0.115,,,,., (Or 46%).

To validate the conclusions derived from this analysis, we run simulations on selected curves
from this curve category

4211 Oscillatory Motion

Oscillation can be regarded as one of the worst case situations for dead reckoning among curves
having smooth jerk. Inthiscase, thejerk smoothly changes withintherange[—(2x f)?A, (2x f)?A],
where A represents the amplitude of the oscillatory motion and f represents its frequency. Non-
oscillatory motion whose jerk increases or decreases monotonically also exhibits similar remote
modeling characteristics.

At tight protocol thresholds, the PHBDR a gorithm yiel dstight positional fidelity for high-speed
oscillatory motion by transmitting update packets soon after the entity’s behavior changes, as shown
in Figure 4.1a. Table 4.2 liststhe average remote modeling error and packet rates corresponding to
each curve in the figure. We observe that tight error thresholds produce high positional fidelity at
the expense of a higher update rate. When the protocol error threshold is increased, remote sites
model the oscillation amplitude with less positional fidelity because they receive fewer updates for
each oscillation period. Despite the lower positional fidelity, we observe that the remote mode still
exhibits oscillatory motion, thus maintai ning reasonabl e behavioral fidelity. Thisbehavioral fidelity
arises because at higher error thresholds, PHBDR is simply sampling the motion at a rate lower
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PHBDR Rendering of Sinusoidal Oscillation (amplitude 50 meters, period 9 seconds,

timeout 5 seconds, zero latency, threshold (a) 1, (b) 10, (c) 25, and (d) 50 meters)
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Error Average Error Between True Model and Packet Rate Per
Threshold || Remote Modeling | Remote Rendering || Oscillation | Second
1 (2%) | 038 (0%) | 0.84 2%) 19.44 | 216

10  (20%) | 3.85 (8%) | 7.58 (15%) 936 | 104
25 (50%) | 11.56 (23%) | 16.11 (32%) 540 | 0.0
50 (100%) || 19.59 (39%) | 28.63 (57%) 360| 040

Table 4.2:  Summary of Average Error (Absolute and As Percentage of Amplitude) and Packet
Rate for Oscillatory Motion

thanitsnatural Nyquist frequency. Although sub-sampling an oscillatory motion yieldsan incorrect
oscillation frequency (and, therefore, incorrect position), it is still guaranteed to demonstrate some
sort of oscillatory behavior.

We also observe from Table 4.2 that the rendered position (incorporating both tracking and
convergence) exhibits a higher error than the remote position model (incorporating only entity
tracking). This discrepancy arises because the convergence algorithm artificially sustains an error
in order to retain the illusion of smooth entity motion on the display, while the tracking algorithm
mai ntainsan up-to-dateview of theentity’sreal position based on provided update packets. Because
we are most interested in the visua effect produced by the simulation, we only consider the remote
rendering error throughout the rest of this chapter.

4212 Circular Motion

Circular or spherical motion results when jerk smoothly changes in direction but retains a constant
magnitude. Analysis of circular motion has broader applicability, however, for a large family of
curves can belocally approximated ascircles[101]. Figure 4.2ashowsthe average remote rendering
error as afunction of the protocol error threshold, and Figure 4.2b shows the corresponding packet
rate as afunction of the protocol error threshold. Although the datais based on circles of radius 50,
the results generalize for circles of any radius: a smaller radius simply means that the entity must
move with a higher jerk in order to maintain the same speed.

The graph reveals that the average displayed error increases linearly with increasing protocol
threshold. On the other hand, the packet rate rises rapidly with tighter threshold. These results
confirm our mathematical analysis that remote rendering on these curves is more sensitive to
bandwidth usage than to remote modeling error. If al other factors are equal, the protocol error
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Figure 4.2: Average PHBDR Protocol (a) Rendering Error and (b) Packet Rate for Circular Motion
(radius 50 meters) With Zero Network Latency

threshold value for this class of curves must be determined primarily by bandwidth limitations,
rather than visua error requirements. This characteristic represents one endpoint of the Curve Type
Tradeoff.

The dotted line of Figure 4.2a supports the Threshold Estimation observation, which sets the
protocol error to between one and two times the average visua error tolerance (or between % and
j, based on the prior anaysis). For this endpoint in the Curve Type Tradeoff, the protocol error
threshold should be set equa to the average tolerable error.  As shown by the dotted line, this
threshold provides a remote model that provides the minimum acceptable positional fidelity and
therefore optimizes the network bandwidth, which is the sensitive resource for this curve class.

4.2.2 Low MagnitudeJerk With Occasional Spikes

In the second class of entity motion, the acceleration remains nearly constant most of the time
but occasionally changes suddenly. For example, when two entities collide, they instantaneously
exhibit high accel eration asmomentum isreversed. The velocity consequently undergoes an a most
instantaneous change. After changing direction, each entity’s accel eration returnsto a stable state.
A bouncing entity offers one example of thisclass of behavior, asillustrated in Figure 4.3. The
jerk is zero as the entity is moving, but it exhibits a positive spike as the entity changes direction
and a negative spike as the entity returns to a stable acceleration. The corresponding accel eration
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Figure 4.3:  Entity (a) Position, (b) Velocity, (c) Acceleration, and (d) Jerk During a Collision

remains constant as the entity is moving, but it spikes as the entity bounces and velocity reverses
direction.

Prior position information provides insufficient information for predicting a collision and the
subsequent spikein jerk. We must therefore rely on the convergence a gorithm to quickly recover
from the error after the behavior change is reported. Because the acceleration changes instanta
neoudly at the collision point, the remote modeling error increases quadratically after the collision
until it exceeds the protocol error threshold. Therefore, the protocol error threshold does not have
asignificant effect on packet rate. Instead, alarger protocol error threshold only servesto delay the
update packet transmission by alowing the source to tolerate a larger divergence between the true
and remote models.

M oreover, supposethat the entity accel eration and vel ocity respectively change in magnitude by
ap and v during the collision, where a, and v, are calculated from the instantaneous accel eration
and velocity before and after the collision. We ignore the effect of jerk, because by assumption,
its magnitude is near-zero before and after the collision. Therefore, we can apply the basic physics
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equations of motion to derive the remote tracking error at timet = 42 + d fyryre:

1
Error[z(1)] = E“Adfmme + vad future (4.5)

In the case of an “elastic bounce,” where the entity’s acceleration does not change, this expression
reduces to:
Error[z ()] = |vad future] (4.6)

Thislinear relationship between error and packet rate isfundamentally different from that exhibited
with paths exhibiting high jerk. To achieve better remote modeling of bouncing motion, we should
transmit packets more aggressively but not necessarily more often. We conclude, therefore, that
the error threshold value for this class of curves should be determined primarily by the visual error
tolerances, rather than network bandwidth limitations. This behavior represents the second extreme
in the Curve Type Tradeoff.

Aswehaveseen with other typesof curves, network latency increasesthe protocol error threshold
perceived at remote hosts. However, Equation 4.6 indicates that latency has aless dramatic effect on
the average error for bouncing motion than it does for oscillatory or circular motion. The network
delay dge14, introduces an average additional error of |vadgerqy |, OF |0.1va| based on our Internet
latency estimates. Assuming a maximum one second delay on the packet transmission after the
bounce motion (corresponding to the target one packet per second update rate), we see that the
network latency increases the maximum remote tracking error by only 10% and the average remote
tracking error by only 21%, considerably less than the respective 30% (maximum error) and 46%
(average error) effects seen with oscillatory and circular motion.

We use simulations on bouncing motion to confirm these analyses.

Figure 4.4a shows the PHBDR rendering error performance for bouncing motion as afunction
of the protocol error threshold. The figure confirms that the average rendering error rises nearly
linearly with increased protocol threshold. Figure 4.4b shows the relationship between packet rate
and protacol error threshold. The figure confirms that the number of transmitted packets is almost
independent of the protocol threshold. The large drop in packet rate after the threshold equas
20 meters occurs as transmission of update packets from one bounce begin to overlap with the
occurrence of the next bounce. Figure 4.4 therefore confirms our mathematical analysisindicating
that changes to the protocol error threshold affects average error more significantly than network
bandwidth utilization. If al other factorsare equal, the protocol error threshold should be determined
primarily by the visual error tolerances.
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Figure 4.4: Average PHBDR Protocol (a) Error and (b) Packet Rate for Bounce Motion of Height
25

The dotted line of Figure 4.4a shows that this curve class represents the other extreme for the
Threshold Estimation observation. For bounce mation, the protocol error threshold should be set
to twice the average visua error tolerance to achieve the desired positional fidelity. However, the
average modeling error does depend on how frequently the entity jerk exhibits sharp spikes. More
frequent acceleration changes demand lower thresholds to achieve the same average positiona
fiddity.

Figure 4.5 shows the protocol’s visua behavior on bouncing motion. Figure 4.5a shows that
for tight threshol ds, the remote modeling supportsthe desired positiona fidelity. With an increased
protocol error threshold, the remote model loses positiona fidelity but still retains considerable
behaviord fidelity, as shown by Figure 4.5b. In particular, the remote model still exhibits the same
bounce-like motion and frequency as the true path. In this case, however, the remote model has
switched to afirst-order approximation of the entity’s motion because the a gorithm detects a sudden
change in direction (small angle of embrace) between successive updates.

The degradation of positiona and behaviora fidelity becomes more pronounced when the
threshold is increased further, as in Figure 4.5¢c. Although positional fidelity is degraded, the
remote model retains significant similarities to the true motion. The remote entity model exhibits
the bounce-like behavior present in the true motion, though it has been degraded by presenting a
lower-frequency bouncewith varying height. Moreover, although the positiona fidelity is degraded,
the remote entity position generally remains within its true positional range. This remote modedl is
therefore still usable by users who are far from the entity in the virtua world.
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Figure 4.5: PHBDR Protocol Rendering of Bounce Motion (height 25 meters; timeout 5 seconds;
threshold (a) 1, (b) 10, and (c) 25 meters)

4.2.3 High Magnitude Jerk With Frequent Spikes

If jerk has high magnitude and exhibitsfrequent changes, the resulting entity motionischaracterized
by both smooth, rapid acceleration changes and sharp, unpredictable changes. Such behavior
includes most random motion, such as a person weaving through a crowd or a particle traveling
through awind tunnel. Accurate remote modeling of these curves relies on a high update rate from
the source host. Thetracking step cannot accurately predict the future position because the behavior
islikely to change at any moment, and the convergence step us unlikely to recover from a display
error before the entity’s behavior changes again.

Despitethe complexity of thisclass of curves, the PHBDR protocol provides reasonable support
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for such erratic behavior. Figure 4.6 demonstrates the algorithm’s behavior on a sample path from
this curve class. The curve trace was generated by randomly perturbing the entity’s accel eration
on each frame by a small amount (up to one percent) and introducing large acceleration jumps
(by reversing the direction of acceleration) after 0.5% of the frames (on average, once every 3.33
seconds). In this example, we observe that the error and packet rate behavior represent a hybrid
of that seen for circular and bounce motion in Figures 4.2 and 4.4. In fact, al curves that we
have studied from this class generate an intermediate behavior between the other two curve classes,
depending on the proportion of smooth and sudden changes in jerk. If the curve is dominated
by smooth jerk changes, then it exhibits oscillation-like behavior, while a dominance of sudden
jerk changes results in more bounce-like behavior. Based on our anayses of the oscillation and
bouncing motion, we conclude that the Threshold Estimation observation similarly alows us to
trade off positional fidelity and network utilization across the spectrum represented by this class of
CUrves.

In summary, no remote modeling algorithm can accurately support random motion without
introducing a packet rate approaching the frame rate. However, by sampling only position and
smoothing between these periodic samples, the PHBDR protocol provides good behaviora fidelity
with an acceptable positional fidelity.

4.3 Advantages of the PHBDR Protocol

Having systematically studied the behavior of PHBDR, we now extract the key advantages offered
by the protocol. To place these advantages in context, we consider them in relation to the current
Distributed Interactive Simulation (D1S) protocol (IEEE Standard 1278) [37] that sees wide usein
deployed distributed simulation systems. The DIS dead reckoning protocol [36] transmits position,
velocity, and acceleration information whenever the remote entity model exceeds a threshold or a
five second timeout el apses. Using datafrom the most recent packet, DI'S dead reckoning a gorithms
generate a second-order model to predict the future entity location.

In comparing the PHBDR and DI S protocols, we consider three criteriac remote model stability,
dependencies between hosts, and network and computational |oad.

4.3.1 Remote Modd Stability

The stability of a remote model refers to how it is affected by short-term changes to the entity’s
behavior. For example, were-consider therapid bouncing motionillustrated in Figure4.5. Figure4.7
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Figure 4.6: Average PHBDR Protocol (a) Error and (b) Packet Rate for Sample Motion Exhibiting
High Jerk with Frequent Spikes
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Figure 4.7: DIS Rendering of Bounce Motion (height 25 meters; timeout 5 seconds; threshold (a)
1, (b) 10, and (c) 25 meters)

illustrates how the DIS protocol performs on the same entity motion. Figures 4.5a and 4.7a revea
that at tight protocol error thresholds, both protocols perform comparably. At wider thresholds, as
illustrated in Figures 4.5b—c and 4.7b—c, the a gorithms behave quite differently. We observethat at
ahigh error threshold, the DIS remote model faithfully preserves the bounce frequency. However,
it regularly positions the entity outside the range of its true motion, so the user sees the entity in
locations that it never exists. Although hosts would typically employ these high error thresholds
when the entity is far from the local viewer in the virtual world, this unbalanced degradation of
behaviora and positional fidelity is potentially confusing to users.

On the other hand, the PHBDR protocol, by using several position updates instead of extra
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derivatives, generaly degrades positional and behaviord fidelity more evenly. Behaviorally, the
protocol smoothes the entity motion and hence presents a lower-frequency bounce. More im-
portantly, the remote entity model generally stays within the positional range of the actual entity
motion, so athough the displayed position is inaccurate, it amost aways places the entity in a
realistic position. Users effectively see lessfidelity in both position and behavior, but the presented
model is still constrained by the true motion. This balanced fidelity reduction is more meaningful
for users.

The smoothing characteristics of the PHBDR protocol arises because it relies on information—
namely entity position—that changes least rapidly and least randomly. For example, a physical
entity’s position must be continuous, and the position is generally an indirect and, therefore,
delayed response to velocity and acceleration changes. By relying on position information alone,
PHBDR is consequently less sensitiveto short-term changes in an entity’svel ocity and accel eration.
Furthermore, the adaptivetracking and convergence techniquesallow the PHBDR protocol to simply
ignore accel eration altogether when its value seemsto be changing rapidly. Asaresult, the protocol
accurately models a variety of entity behaviors, including straight lines, sharp turns, and smooth
Curves.

The stability of the PHBDR protocol contrasts with the DIS protocol which relies on more
transient entity attributes. Velocity and acceleration can change rapidly and even instantaneously,
and errors in their representation have second- and third-order effects on position. If a source
host happens to send an update during a velocity or acceleration spike, receivers extrapolate the
entity using inaccurate information that exaggerates the entity’s motion. These factors potentially
affect the remote moddling of a broad set of entities. Most entities, though they appear to be
moving smoothly, are constantly subjected to external forces which rapidly change the velocity and
accderation. For instance, as acar drives along aroad, the vertical motion changes rapidly because
road surfaces are not perfectly smooth.

We observethat our techniguesfor achieving remotemodel stability inthe PHBDR protocol have
broader applicability. For example, DIS-style protocols could be re-engineered to detect and ignore
instantaneous vel ocity and accel eration values that appear to represent short-term fluctuations. The
details of implementing this hybrid approach represent an area for future research. However, even
with thisoptimization, DIS protocol s still face a significant disadvantage, namely that not all entities
can provide accurate velocity and acceleration information. For example, entity modds derived
from sensors attached to physical entities can usually generate position samples but cannot always
generate velocity and acceleration. PHBDR, which relies only on position information, therefore
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still supports a more general class of entities.

4.3.2 Decoupling Receiversfrom Network and Source Host Perfor mance

By using timestampsto synchronize the remote tracking at receiving hosts, the PHBDR protocol is
effective at addressing network | atency and jitter issuesin real-time visualization systems. Although
each host receives the packet with a different latency, it assures “eventua consistency” semantics
whereby all remote hosts eventually share the same tracking model for the entity. Furthermore, the
protocol supports out-of-order packet arrival, because the receiver simply inserts the update in the
correct order in the dead reckoning state for the entity and discards the update if it predates all of
the updates currently held in the entity’s position history. Thisapproach departs from the published
DIS dead reckoning protocol, under which remote hosts process update packets when they arrive,
without regard for intervening network latency. Under the DIS protocol, therefore, each remote
host may have asignificantly different model of the entity’s current position.

However, the eventual consistency provided by timestamps represents a general-purpose tech-
nique that has greater applicability than the PHBDR protocol. Figure 4.8 shows the DIS protocol
performance when it is modified to use timestamps in a manner similar to that of PHBDR. The
figure shows two traces of F-16 aircraft performing “Air Combat Maneuvering” (ACM) turns, rep-
resenting typical motion in one-on-one aircraft combat.2 For a given packet rate, an increase in
network latency produces a near-linear reduction in the average positiona fidelity of the PHBDR
remote model. The graph reveals that the modified DIS protocol exhibits nearly identical behavior
when faced under network latency. Without timestamp information, DIS dead reckoning error is
higher by an order of magnitude. From these graphs, we see that using timestamps to provide
eventua consistency semanticsin DIS iswarranted.

Moreover, timestamps eliminate amost all real-time dependencies between the source and
destination host frame rates. Each remote host generates positional information for each frame by
sampling its entity model at the local frame rate. Consequently, the remote host can generate a
smooth visual representation even though its frame rate may be faster than the source frame rate.
Timestamps therefore provide an element of decoupling between simulation hosts. Aswe shall see
in later chapters, decoupling represents a significant architectural direction for devel oping scalable
simulation systems.

Using timestamps does not eliminate all real-time dependencies, however. To be effective,

3Thesetraces are provided courtesy of Dan Schabat the Naval Air Warfare Center-Training Systems Division (NTSC).
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Figure 4.8:  Remote Rendering Error on Two Traces of F-16 Turning Maneuvers With Network
Latency (protocol error threshold 20 feet)

PHBDR requires synchronized clocks at all simulation hosts, and it assumes that the source host is
executing the position error threshold check at a reasonably high frequency to assure that update
packets are quickly transmitted when remote tracking error arises.

4.3.3 Bandwidth and Computational L oad

By transmitting only position information, the PHBDR protocol transmits smaller packets than
competing agorithms such as DIS. The protocol transmits three 64-bit position parameters, a
32-bit timestamp, a 32-bit entity identifier, and a 224-bit UDP/IP header for a total of 480 bits.

4In this discussion, we ignore the size of any other entity state information contained in update packets.



4.3. ADVANTAGES OF THE PHBDR PROTOCOL 67

5 ? S
& 354 b 354
(O] (O]
(@) (@)
S 301 —e—  PHBDR Protocol g 30+ —e—  PHBDR Protocol
<>E —_— DIS Protocol 3: —_— DIS Protocol
251+ 251+
L 4
20— ¢ 20+
15+ 15+
10 +— 10 +—
51+ 51+
0 — 0
0 500 1000 1500 0 500 1000 1500
Bandwidth (bps) Bandwidth (bps)

Figure 4.9:  Bandwidth—Error Comparison Between PHBDR and DIS Protocols on F-16 Traces
Shown in Figure 4.8

For comparison, the DIS protocol transmits three 64-bit position parameters, three 32-bit velocity
parameters, three 32-bit accel eration parameters, a 32-bit timestamp, a 32-bit entity identifier,® and
a 224-bit UDP/IP header for atotal of 672 bits. We see, therefore, that the PHBDR protocol can
transmit 1.4 times as often as DIS and maintain the same bandwidth. If a single update packet
aggregates information from multiple entities or vertices, the packet size difference approaches a
factor of 2.

DI S performs best when generating remote model sfor entities moving a ong smooth curves with
monotonically changing accel eration becausethe most recent instantaneous accel erationinformation
received by DISismore accurate than the smoothed accel eration computed by PHBDR. Figure 4.8
demonstrate the superior modeling behavior of DIS on two examples of such curves. However, if we
account for the smaller packets generated by the PHBDR protocol, the comparisonisquite different.
Figure 4.9 plotsthe bandwidth requirements of each protocol against the resulting positional fidelity
(assuming no network latency). We see that for these curves which represent the best case for
DIS, the PHBDR protocol performs comparably in the worst case and outperforms DIS in many

5The DIS protocol actually uses a48-hit entity identifier that includes a 16-bit site identifier, 16-bit exercise identifier,
and 16-bit entity identifier. Because the site information is already encoded by the source host address contained in the
IP header, we presume that a 32-bit exercise/entity identifier will be sufficient for future versions of the DIS protocol.
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Figure 4.10: Expected Number of Supported Entities Using PHBDR in a Multicast Environment
with 200 Hosts

situtations.

The bandwidth reduction provided by PHBDR has a significant effect on the scalability of a
distributed simulation. In a broadcast-based simulation, for example, PHBDR protocol updates
would saturate the 45 Mbps tail circuits (which, given the emergence of gigabit-per-second LAN
capacity and the rapid investment in high-bandwidth WANSs, we expect will continue to be the
primary bandwidth bottleneck in future networks) at 80% utilization with 75,000 entities, each
transmitting one update per second. An equivalent DIS simulation, including a 10% lower update
rate per entity to assure equivalent remote modeling error, would saturate the tail circuits with
fewer than 59,000 entities. In alarge simulation, the use of multicast for information dissemination
potentially prunessomeof theentity updatesfrom varioustail circuits, thereby increasing the number
of potential entities that the system can support. For example, assuming a network configuration
with 200 hosts, Figure 4.10 shows the expected number of entities that the simulation can support
as afunction of the probability that a given host is interested in a given entity. These numbers are
guite conservative, because they fail to consider any locality exhibited by the entity subscription
patterns among hosts at the same site. As one would expect, having fewer hosts behind each tall
circuit allows multicast to have a greater effect on reducing bandwidth. Additionally, reducing the
probability that a host subscribes to a given entity’s data allows the simulation to support more
entities overall. We see that to support the STOW 97 program target of 100,000 entities [1], each
host should only see between 5% and 15% of the availabl e entities, or 5,000—15,000 entities. Given
our target of oneupdate per second per entity, these entity countstranslateinto 5,000-15,000 packets
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PHBDR DIS

Parameter Values | Values

Current displayed position, vel ocity, and acceleration 9 9

Most recent position, velocity, and accel eration update and its timestamp 10
Two previous position updates and their timestamps 8

Convergence time 1 1
Velocity and acceleration at convergence point 6°
Small-medium and medium- arge angle thresholds 2
Amax—cp 1

Tota 27 20

“Alternatively, thisinformation can be recomputed from the position history information at the end of the convergence
period, thereby saving these six floats of storage per entity.

Table 4.3: State Values Stored Per Entity Under the PHBDR and DIS Protocols

per second, which is achievable on modern high-end workstations. Chapter 7 describes the effects
of additional bandwidth reduction techniquesto improve the scalablity of distributed simulations.

The scalability of the PHBDR protocol is aso enhanced because it introduces minimal compu-
tational load on sending or receiving hosts when compared with protocols that only use the most
recent packet for modeling remote entities, and the PHBDR can actually reduce computational
load. For smooth curvature motion (which requires the most computation), the protocol requires 51
multiplication and 30 addition operationsto update the entity’s tracking and convergence modelsin
response to an incoming update. By using local curve fitting to characterize the entity’s path, the
algorithm automatically shifts computation away from entities exhibiting “ uninteresting” behavior
(such as linear motion) or about which it has the least information (such as those that have just
exhibited a sharp turn or change in behavior). In the case of amost linear motion, the PHBDR
requires only 27 multiplication and 15 addition operations to process an update; after the entity un-
dergoes a sudden changein direction, PHBDR requires 30 multiplicationand 21 addition operations
to process the update.

The PHBDR protocol aso has the desirable property of storing per-entity state information that
iscomparable in size to that required by the existing DIS protocol. Maintaining too much state can
adversely affect computation speed because entity state must typicaly reside in the host’s cache to
achieve maximal real-time performance. The PHBDR protocol stores 27 values for each entity, as
listed in Table 4.3; at the expense of some additional computation, thisinformation can be reduced
to 21 values. As acomparison, the DIS protocol stores 20 values for each entity.
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4.4 Addressing Limitationsin the PHBDR Protocol

The PHBDR protocol uses positioninformation from multipleupdate packets to provide stability in
theremote model, but providing thisstability also introduces some di sadvantages, someof whichwe
observed while deploying the algorithm in the PARADI SE distributed simulation system devel oped
in the Distributed Systems Group at Stanford University. We propose potentia protocol extensions
to address these limitations, though studying their effectiveness is an area for future research.

44.1 Delayed Reaction to Sudden Behavior Changes

The PHBDR protocol maintains a history of three updates; after a sudden change to the entity’s
behavior—such as after a collision—threenew updates are required before all information about the
previous path is discarded from remote hosts. This problem is most visible, for example, when an
entity stops moving. Until three update packets indicate that the entity has kept the same position,
the remote model oscillates around the entity’s true location. Similar problems have been faced by
previous prediction algorithms [74]. On the other hand, using the DIS protocol, remote hosts use
only information from the most recent update packet, so when an entity stops moving, the remote
host reacts immediately because the update packet shows a zero velocity and accel eration.

To address this issue, a host can transmit state-replace packets based on domain knowledge
about alocal entity’s behavior. The state-replace packet includes three new position updates with
corresponding timestamps. In response to a state-replace packet, remote hosts replace any position
information previously stored about the entity with the new position updates from the packet. For
example, after an entity stops moving, the entity would transmit a state-replace packet containing
three updates showing the entity in its fixed position. Similarly, when an entity changes direction
after a collision, a state-replace packet would include three position sampl es taken soon afterward.
In order to transmit state-replace packets, however, the source must be able to recognize sudden
behavior changesand determinethat the new behavior will persist. Detecting such behavioral change
reguires entity-specific information that is not always available from an entity model at the source
host. Wetherefore do not include state-repl ace packets as part of the basic PHBDR protocol because
doing so would contradict our goa of constructing a general -purpose dead reckoning algorithm that
can be used on al source entity models. Instead, extensions to support particular entity behaviors
can be built on top of the general-purpose PHBDR base when better remote modeling is required.
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4.4.2 Reaction to Packet Loss

Because remote hostsstoreinformation from multiple update packets, the PHBDR protocol can aso
be more sensitive than competing algorithms to packet loss. If a remote host does not receive an
update packet, then its model will not be compl etely recovered until up to three new updates arrive.
In the DIS protocol, however, each packet encapsulates al of the desired entity dead reckoning
state, so ahost can completely recover from a packet loss when the next update packet arrives.

To alarge extent, the protocol’s transmission timeout and use of position history limit the effect
of packet loss on the PHBDR protocol. The timeout guarantees that a single lost packet can only
disrupt the remote entity model for a bounded period of time. Furthermore, the path stability
provided by the position history, as discussed in Section 4.3.1, additionally mitigates the effects
of packet loss: After missing a packet, the host continues to generate its entity model based on a
long-term history of information. DIS-style protocols that only store one packet must continue to
provide an entity model based only on instantaneous information.

Simulations that use PHBDR can take additiona steps to further mitigate the effect of packet
loss. The position history protocol can be modified so that besides including the current position,
each update packet includes the previous one or two transmitted position samples. In effect, each
position sample is transmitted multiple times over the network, thus increasing the chance that
it eventually arrives at each receiver. Under this approach, all update packets effectively behave
like state-replace packets. However, this optimization does impose a bandwidth cost and more
computation at the receivers. Alternatively, the simulation designer can employ a scalable reliable
multicast protocol, such as Log-Based Reliable Multicast [33], that alows remote hoststo locally
detect and recover missing position updates. This approach is best suited for entities that produce
more occasiona updates.

When the remote modeling error islarge, particularly when thereisahigh lossrate for position
updates, the convergence algorithm can generate entity motion that might appear “unnatural” to
viewers [48]. For example, when rendering an F-16 aircraft, the convergence algorithm might
cause the aircraft to move faster than physically possible, or it might cause the aircraft to take an
unexpected path.

These convergence problems can be solved in two ways. First, when the remote host finds that
its model of the entity and the displayed position differ too much, then it can choose to simply
avoid convergence atogether and “jump” the entity to the correct location. In many situations,
the viewer would prefer to see this jump—which would be ascribed to network problems—rather
than see a smooth, but inappropriate maneuver. Determining whether jumping or convergenceisan
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appropriate display techniqueis adecision that must be made based on the particul ar entity type, the
type of viewer, and the type of simulation application. To further assure that the convergence does
not produce an unredlistic display, the remote host may apply some entity-specific information to
constrain the path generated by the basic convergence algorithm. For example, the remote host can
ensurethat the generated F-16 path never exceedstheaircraft’s maximum physical speed. Onemight
also employ constraints based on terrain topography, similar to those used by Talluri and Aggarwal
for remote robot navigation [90], or based on the location of terrain features, similar to those used
by Tsutsui for car navigation [94]. In a production simulation, entity-specific information may be
available, though requiring such information is inconsistent with the goals of the basic PHBDR
protocol.

4.4.3 Quiescent Entity Traffic

To provideresilience against packet | 0ss, the transmission timeout requires al entitiesto generate at
|east one update packet within any given timeout period. Consequently, most of thetraffic generated
by inactive entities is timeout updates. In extreme cases, a stationary entity must transmit updates
after every transmission timeout even though no state has changed. Even though no single entity
generates timeout-based updates at a significant rate, the aggregate number of these updates might
represent a significant overhead for large simulations in which most entities are idle at any given
time. Indeed, this problem arises with al protocols having transmission timeouts, including DIS.

To reduce the amount of extratraffic generated by stationary entities, we can extend the PHBDR
protocol to support variable transmission timeouts. Variable timeouts introduce some overhead
at remote hosts to maintain dynamic timeout information for each known entity, but this minor
computational overhead is dwarfed by the potentia reduction in packet rates. We consider two
variable timeout schemes: atiered-timeout approach and a exponential -backoff approach.

The tiered-timeout approach defines asmall number of specific timeout levels that are selected
explicitly by the entity based on its behavior. For example, when the entity becomes idle, it
transmits an timeout-length-announce message, announcing that it will use a longer transmission
timeout with its (lessfrequent) update packets. When the entity’s behavior becomes more dynamic,
a corresponding timeout-length-announce message restores the transmission timeout to the original
(short) duration. To further extend thistechnique, an entity may transmit atimeout-length-announce
packet with aflag representing an infinite timeout value, effectively signalling that it will no longer
need to transmit any updates. To begin transmitting updates again, the entity must reliably multicast
a new timeout-length-announce packet, possibly along with a state-replace packet to provide an
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initial dead reckoning state for remote hosts.

Using the exponential-backoff approach, theentity’stimeout valueisdeterminedimplicitly based
onitsrecent update behavior. Under thisapproach, the entity applies exponential backoff toincrease
the transmission timeout if it has not transmitted any update packets within the previous timeout
period. The timeout is bounded by some maximum value, and any position update transmission
immediately restoresthe timeout to the origina (short duration) value. Thisapproach can be further
optimized with an explicit packet to set the timeout to infinity when the maximum timeout value
has been in place for some period of time.

444 Dependenceon Time Synchronization

Onedisadvantage of thePHBDR protocol isareliance on timesynchronization among thesimulation
hosts. Though time synchronization is typically not a serious concern on Unix hosts connected to
the Internet, it does pose a challenge for distributed simulation applications on non-Unix operating
systems. In these environments, network time synchronization protocols are not ubiquitous.
Where clock synchronization is not possible, hosts can implement a simplified version of the
NTP [58] protocol by adding additional information to position update packets. In each outgoing
packet, host / includesatuple (h;, ;, d;) for each host h; from which an update packet has arrived
since host £ last transmitted an update. In this tuple, ¢; is the timestamp contained in the update
received from h;, and d; isthe elapsed time since that packet arrived. If host h; receives the update
from £ at timet., it can estimate the one-way delay between h and h; as t/_%d Using thisdelay
information, the host can estimate the current time at each of the other hosts and set the local clock
to an average value. Though thistechnique does not allow hoststo account for network jitter effects,
it does allow them to account for network latency. This latency estimation techniqueis a multicast

adaptation of the technique proposed by Floyd, et a [24].

4.4.5 Uniformly High Network Latency

Because the source host does not model the effects of network latency on its transmitted update
packets, it does not have an accurate real-time representation of the entity model stored at remote
hosts. Although the protocol’stimestamp does provide eventua consistency semantics, the network
does introduce a minimum transmission latency, thereby assuring that the shadow model at the
source is temporarily more accurate than the modd actually maintained by remote hosts. This
problem becomes most significant when all receivers perceive a high latency, such as when the



74 CHAPTER 4. ANALYZING PHBDR NETWORK AND ERROR PERFORMANCE

source's outbound tail circuit is slow.

To address this issue, the source can maintain an estimate of the minimum latency between it
and thereceiving hosts and uses this estimateto dynamically reduce the protocol error threshold that
it uses. Thisapproach effectively allows the source to generate update packets before the receiving
hosts actually encounter the error threshold. One potential method for maintaining this latency
estimate would involve having the source include the current estimate inside transmitted update
packets. If areceiver perceives a significantly lower latency, then it sends the current perceived
latency to the source, and the source applies an exponential smoothing algorithm

ddelay:new = addelay:old + (1 - a)ddelay:sample (47)

on any latency updates that it receives. Moreover, to ensure that the latency estimate adapts to
increases in network latency, the source automatically increases the current latency estimate by a
fixed factor 5 on each update transmission. Intuitively, the source continually tests higher latency
estimates, and receivers provide feedback when the estimate grows too large. To achieve stability,
the relationship between « and # isimportant. To maintain the latency estimate within afactor of ¢

of the true minimum latency,
ﬁ o + €
a(l+e)

(4.8)

45 Conclusion

In this chapter, we have presented a systematic approach for evaluating dead reckoning protocols.
To perform this evaluation, we classify curves that represent different types of entity behavior
of interest in the simulation. We then apply a combination of mathematical analysis, controlled
simulation, and deployment experience to measure the protocol’s performance in the worst case
and common case. By applying this evaluation approach across different protocols, simulation
developers can gain valuableinsight into a protocol’s overall behavior over abroad variety of entity
paths, and they have a better framework for comparing different protocols.

We have demonstrated this evaluation approach by applying it to the PHBDR protocol. In
performing this analysis, we have observed that PHBDR provides accurate entity modeling over a
broad range of entity behaviors. Our analysis has demonstrated that PHBDR offers the following
additional benefits:

¢ Stable curve modeling despite transient changes in entity velocity and acceleration.



4.5. CONCLUSION 75

¢ Smaller packet size and lower bandwidth requirements than protocols that rely on velocity
and acceleration information, as well as memory and computation requirements that are
comparabl e to these existing protocols.

¢ An effective mechanism using timestamps to provide “eventua consistency” semantics on
remote modeling state across all remote hosts.

We have also shown that the proportion of smooth and sudden jerk changes in the entity motion
determines the rel ationship between bandwidth requirements and remote modeling fidelity, as well
as the effects of network latency on fidelity. Information about the entity behavior, desired packet
rate, and desired positional fidelity can therefore be used to determine an appropriate protocol error
threshold.

Moreover, our evauation has demonstrated that many of the techniques used by PHBDR are
generaly applicable and could be incorporated in existing protocols such as DIS. For example,
DIS can easily be enhanced to make effective use of timestamps to account for network latency.
Furthermore, DIS could be engineered to ignore suspi cious i nstantaneous vel ocity and accel eration
values, thereby achieving many of the desirable path stability properties exhibited by the PHBDR
protocol.

Our evaluation has revealed some limitations of the PHBDR protocol arising mostly from its
caching of multipleupdates. In particular, the protocol exhibitslonger-term sensitivity to packet loss
andisslow to react to changing entity behavior. However, wehave shown that such limitationscan be
removed by requiring the sourceto transmit redundant information andto explicitly signal significant
changes in entity behavior, when such changes can be determined accurately. Implementation of
these and other extensionsis an area for future research.

As discussed in the previous chapter, a significant strength of PHBDR is its simplicity. By
modeling the location of a vector using only a short history of that vector, the PHBDR agorithm
provides a building block to address more complex remote modeling problems. In the next three
chapters, we show how the PHBDR protocol can be used recursively to remotely model the ori-
entation of a rigid-body entity, the structure of semi-rigid and non-rigid entities, and the behavior
of entity groups. In presenting these recursive protocols, we demonstrate how their analysis is
simplified by applying results from the analysis in this chapter.



Chapter 5

Using the PHBDR Recursively to M odel
Entity Orientation

The PHBDR protocol provides remote modeling of the position of asingle vertex and is therefore
sufficient for modeling the position of arigid entity having fixed orientation. In this chapter, we
describe how PHBDR can be applied recursively to support remote modeling of entity orientation.

5.1 TheAxisPoint Protocol

The AxisPoint protocol, illustratedin Figure 5.1, uses position history to dead reckon the orientation
of theentity’slocal coordinate system. Astheentity rotates about any axis passing throughitsorigin,
thepoints X (1,0, 0),Y(0,1,0),and Z(0, 0, 1)intheloca coordinatesystem moveaongthesurface
of the unit sphere centered at (0, 0,0). To model the entity’s orientation, the Axis Point protocol
simply applies PHBDR to local coordinates X (1,0,0) and Y'(0, 1, 0) as they move over the unit
sphere. Together, these two points completely determine the entity’s rotated coordinate system,
because their cross product defines the position of Z(0,0, 1).

5.1.1 Source Packet Generation

On each frame, the entity’s source host determines the entity’s origin O(0, 0, 0), X-axis X (1, 0, 0),
and Y-axis Y (0, 1, 0) in world coordinates. The vectors OX and OY" then represent the axis point
positions, which are passed to instances of the PHBDR protocol. (Alternatively, if the source is
maintaining a rotation matrix for rendering the entity model, then the vectors OX and OY can

76
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Figure 5.1:  The Axis Point Protocol Tracks Rotation of X(1,0,0), (0, 1,0), and Z(0, 0, 1) Along
the Unit Sphere Surface

be extracted directly without any additional computation.) When either of the PHBDR protocol
instances desires to transmit an update packet (either because the remote modeling error of the axis
point has exceeded a protocol error threshold or because a transmission timeout has arrived), the
source host transmits an orientation update packet.

Orientation update packets contain a timestamp and entity identifier aong with a six-tuple
containing the OX and OY vector coordinates. As discussed in the next section, remote hosts
dead reckon the position of these two vectorsto model the entity’s orientation. To improve network
efficiency, the orientation and position updates for a single entity may be merged, so that al entity
updates include nine coordinates (three position coordinates and six axis point coordinates).

By transmitting the axis point vectors directly, the protocol imposes minimal computational
overhead on the source and destination hosts. However, the entity’s orientation could be described
using other formats to optimize bandwidth or provide compatibility with existing code.

¢ Euler/Tait-Bryan angles[76]: This representation involves transmitting athree-tuple of rota-
tionangles (4, ¢, v). To determinetheloca coordinate system orientation from these angles,
onefirst rotates it about the Z-axis by angle 4, then rotates it about the new Y-axis by angle
, then finally rotates it about the new X-axis by angle «». The vectors OX and OY can be
computed from this information by multiplying the three rotation matrices described by the



78 CHAPTER 5. USING THE PHBDR RECURSIVELY TO MODEL ENTITY ORIENTATION

Euler angles and extracting the first and second columns of the resulting matrix:

1 0 0 cos(¢) 0O sin(¢) cos(§) —sin(d) O

0 cos(¢) —sin(%) 0 1 0 sin(d) cos(d) O

sin(y)  cos(y) —sin(¢) 0 cos(¢) 0 o 1
cos(¢) cos(f) — cos(¢) sin(9) sin(¢)

= | sin(v)sin(¢) cos() + cos(¢)sin(8)  —sin(¢) sin(¢) sin(8) + cos(v)cos(8)  —sin(¢)) cos(¢)
—cos(¢) sin(¢) cos(f) + sin(¥)sin(f)  cos(y) sin(¢) sin(8) + sin(y)cos(8) cos(¢) cos(¢)
(5.1

¢ A quaternion[81]: Thisrepresentation involvestransmittingafour-tuple(w, z, y, z) encoding
arotation vector R(r,.,7,,r.) and angled, such that w = cos (%) and (, y, =) represents R
normalized to length sin (%) . To determinethe local coordinate system orientation from this
information, one would rotate the coordinate system by angle # about vector E. The vectors
OX and OY are extracted from thefirst and second columns of the resulting matrix:

1-2y? -2  2zy+ 2wz 2vz — 2wy
20y — 2wz 11— 222222 2yz+ 2wz (5.2)
2vz + 2wy 2yz — 2wa 11— 22— 2y?

These formats require the remote host to extract axis point coordinates from the information
providedintheupdate packet, thereby effectively trading off bandwidthfor additional computational
complexity.

512 Receiver Packet Processing

Asshownin Figure5.2, each remotehost first recoversthevectors O X and O} from theinformation
contained in the orientation update packet, and each of these vectors is dead reckoned using
PHBDR's adaptive tracking and convergence agorithms as described in Chapter 3.

On each frame, the host queries the appropriate PHBDR modules for the current extrapolated
position of the axis points X (1,0,0) and Y (0, 1, 0) which are being modeled in the entity’s local
coordinatesystem. It computesthecross-product X x Y to producethecurrent positionof (0,0, 1).
These three vectors directly provide the three columns for the 3 x 3 rotation matrix, which after
being orthogonalized, is used to orient the entity’s local coordinate system. The host applies this
rotation matrix to each entity polygon and then applies a translation within the world coordinate
system using the dead reckoned position of the entity’sorigin. Finaly, the host renders the polygon
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5.2 Analyzing Axis Point Protocol Behavior

Suppose the true coordinate system A and the dead reckoned coordinate system A’ differ by a
rotation of angle ¢ about unit vector E(rx, ry, 7>). The Axis Point protocol transmits an orientation
update when the remote tracking error for X (1,0, 0)or Y (0, 1, 0) exceeds aprotocol error threshold
6, reflecting how much the true and dead reckoned coordinate systems differ. Therefore, when an
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Figure 5.3: Relationship Between Rotation and Position Threshold on X Axis Point: (a) As

coordinate system rotates, axis point moves along circle on surface of unit sphere; (b) Position error
is the length of a chord through this circle. The behavior of the Y axis point is similar.

update is transmitted,*

I §
f=2sn (2,/1—min(r%,r§)) (54

Figure 5.3 illustrates the derivation of this expression. As the coordinate system rotates about 7,
the X axis point maps out acircle of radius /1 — r2 dong the surface of the unit sphere. The true
and dead reckoned coordinate systems therefore place the X axis point at different locations along
thiscircle, so the position error measured by the PHBDR protocol is actually the length of a chord
through that circle. Similarly, the'Y” axis point moves along acircle of radius /1 — 2.

By expanding the above equation, we see that § € [Zsin—1 (%) ,2sin71 (%)] with the exact
value determined by the direction of axis R. If R is perpendicular to one of the axis point vectors
X(1,0,0) or Y(0,1,0), then § is at the bottom of itsrange, and # is maximized when R is parallel

to (-, -1, 0). Assuming no axis bias in the entity’s rotation, § averages

\/i’ ﬁv
% 7 6
2/ 2 1—7‘2008_1< )sin‘l <7) dr
0 \/1—T2 2\/1—T2 (55)
- )
V2 -1 r
1— r2cos ( ) dr
/0 A

IMore generally, if the axis points are P, 7, . . ., Px, then when an update is transmitted,

=1 i
o (zm_ (R P (R P, (1. 1302)) -
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Figure 5.4: Relation Between Orientation Threshold and Rotation Angle

We computed values of this average by approximating the integrals as a sum with dr intervals of
10-6. Figure 5.4 plotsthe minimum, average, and maximum values of # when an orientation update
istransmitted. Although theaxis point error thresholdsdo not provide for afixed coordinate system
error, the graph showsthat the error range of ¢ isrelatively small for expected orientation thresholds
under 45 degrees.

As we have seen, steady-rate motion about a fixed rotation axis causes each axis point to
follow a circular path along the surface of the unit sphere. Moreover, for a given rotation axis &,
only one of the axis pointswill cause update packet generation, namely the axis point P, yielding
the smallest value of (E . E)Z. Consequently, analysis of the Axis Point protocol is reduced to
understanding PHBDR performance on simple circular motion, an entity behavior that we studied
in Section 4.2.1.2. Figure 5.5 simply uses the data from Figure 4.2, combined with the position
threshold information from Figure 5.4, to describe the packet rate behavior of the Axis Point
protocol. For various rotation rates, the figure shows the axis point update rate required to produce
a given average rotation error in the remote model. We can make several important observations
from this data. First, we observe that the update rate rises linearly with the rotation rate; thislinear
relationship is expected, based on the data in Figure 4.2b, because accel eration increases with the
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Figure 5.5: Packet Rate to Maintain Desired Average Rotation Error Under Steady Rotation

square of therotation rate. Second, as the error tolerance is reduced, the packet rate increases more
rapidly. Thisresult issimply areflection of the Curve Type Tradeoff observation seen for circular
motion. Findly, the variable rotation angle tolerance represented by axis point positiona error (as
depicted in Figure 5.4) only trandates into a 10-15% variability in update rate.

5.3 Evaluating the Axis Point Protocol

The Axis Point protocol provides several advantages over competing orientation dead reckoning
protocols, such asEuler (Tait-Bryan) angles[ 76] used by the Distributed Interactive Simulation (D1S)
dead reckoning protocol [36] and quaternions [81] used in newer distributed simulation systems
such as NPSNET [18]. These advantages fall into three categories: minimal assumptions about
the source entity model, reduced code complexity and size, and improved numerical performance.
After discussing these advantages in turn, we describe some open issues with the effective use of
the Axis Point protocol.

5.3.1 Decoupling From Source Entity M odel

The biggest advantage of the Axis Point protocol lies in its minimal assumptions about the entity
model being used by the source host. In particular, the protocol only requires the source to
provide the position of certain vertices in the entity’s local coordinate system. The Axis Point
protocol effectively decouples the orientation dead reckoning protocol from the actua orientation
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Representation of \
Entity Orientation | Computation To Obtain Axis Points

Rotation Matrix None
Euler Angles 6 sin/cos, 6 multiplications, 2 additions
Quaternion 14 multiplications, 7 additions

Table 5.1: Computation Required to Obtain Axis Point Data

representation in the entity model.

In fact, as shown in Table 5.1, axis point information is readily available no matter how the
entity’sorientationisactually represented at the sourcehost. Notably, most common graphic systems
already use rotation matrices for rendering. Axis point coordinates can be extracted directly from
the source host’s rotation matrix, and at the remote host, they directly produce arotation matrix for
rendering. On the other hand, quaternions do not provide an efficient representation of orientation
if the entity model uses rotation matrices or Euler angles to model the entity. A numerically
stable conversion from arotation matrix to a quaternion requires eight multiplications, 17 additions,
and two square roots [28], and converting Euler angles to a quaternion requires six trigonometric
functions, four additions, and 15 multiplications. Corresponding inverse conversions are equally
expensive at the remote host. This computation is significant because it must be incurred on each
frame at the source in order to test whether an orientation updateis required.

The minimal assumptions made by the Axis Point protocol on the source entity model differ
significantly from the high data requirements of Euler angles used by the DIS protocol. The DIS
protocol requires the source host to explicitly model the entity’s angular velocity and acceleration
and transmit those values in update packets. However, accurate angular velocity and acceleration
information is not readily available for all entities—particularly for live entities connected to the
simulation viamotion sensors. Consequently, the Axis Point protocol is easier to implement over a
broader variety of entity models.

Aswe have seen, the Axis Point protocol does not require the source host to explicitly model the
entity’s angular velocity and acceleration. The source host is aso hot required to explicitly model
the axis point velocity and accel eration within the entity’s local coordinate system. The Axis Point
protocol isrecursively structured above the PHBDR praotocol that only requires the vertex position
to perform extrapolation and convergence. Notably, the Axis Point protocol would be less effective
if it relied on the DIS protocoal to track the axis points, because axis point velocity and acceleration
information is certainly not ordinarily available from an entity mode.
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5.3.2 Code Complexity and Size

By employing recursive protocol structuring on top of the PHBDR protocol, the Axis Point protocol
implementation does not need to provide significant new functionality and is, therefore, relatively
easy to implement. At the source host, the Axis Point module simply samples the entity model
to abtain the axis point representation and pass those coordinates to two instances of the PHBDR
modules. When one of the PHBDR modules desires to transmit an update packet, the Axis Point
module constructs a packet containing information about both axis points. At the remote host, the
Axis Point module simply needs to unbundle the orientation update packet and pass the contained
axis points to two instances of the PHBDR modules. It must aso sample the dead reckoned axis
point positionson each frame and construct a rotation matrix. In summary, the Axis Point software
is only responsible for sampling entity orientation at the source host, packaging and unpackaging
orientation update packets, and providing the entity orientation upon request at the remote host. By
reusing the already tested a gorithms provided by the PHBDR modul es, we significantly reduce the
development time and ease the software debugging when compared to a orientation dead reckoning
protocol that requiresan entirely new set of supporting agorithmsfor extrapolation and convergence.
Notably, quaternion protocols are privy to subtle programming errors.

Because of its limited additional functionality, the Axis Point protocol requires almost no new
code at either the source or destination hosts. In our implementation, the Axis Point protocol
introduces approximately 100 new lines of C ++ code on top of the PHBDR implementation (not
counting general-purpose support routines for manipulating matrices). As a point of comparison,
the basic PHBDR protocol requires about ten times as much code to implement packet generation,
tracking, and convergence. If we were to implement the Axis Point protocol without the benefit
of the PHBDR protocol base, we would have needed to re-implement most of this functionality.
Indeed, as we will see in the next section, dead reckoning protocols that use Euler angles and
guaternions end up requiring far more complex tracking and convergence agorithms than those
used by the PHBDR protocol.

The recursive protocol structuring greatly simplified the complexity of the protocol anaysis.
We were able to analyze the Axis Point protocol by simply expanding on our anaysisof the PHBDR
protocol performance on circular vertex motion. Without the benefits of abase protocol, the protocol
analysis would have required an evaluation of all rotation behaviors.

Finally, the simplicity of the Axis Point protocol gives it the same advantage offered by the
PHBDR protocol, namely theflexibility to be customizedto support specialized entity requirements.
First, different thresholds may be introduced for each axis point to reflect the remote model fidelity
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Figure 5.6: Extending Axis Point Dead Reckoning for (a) Dominant Rotation Axis, (b) Non-Aligned
Rotation Axis, and (c) Multiple Rotation Axes.

required for different types of rotations. For example, when modeling an airplane in flight, remote
viewers may be more sensitiveto inaccuraciesin the plane’s pitch than to inaccuraciesin the plane's
roll. AsshowninFigure 5.6a, atighter threshold would beintroduced about the Y axispoint (whose
motion represents rotation about the X axis point). Second, axes other than XadY may be used,
depending on the entity’s dominant rotation behavior. 1n changing the axis point vectors, we exploit
our earlier observation that the Axis Point protocol generates update packets more aggressively
for rotations that are perpendicular to the axes being dead reckoned. For example, if the entity
usually rotates about axis £, then modeling an axis perpendicular to R allows more accurate remote
orientation modeling by causing update packet generation to occur consistently at the minimum
end of the dlowablerotation range, asillustrated in Figure 5.6b. Third, the Axis Point protocol can
support more than two axes for complex entities, and axes may be added or removed dynamically
from the remote model. Figure 5.6¢ shows an entity which is about to undergo a transient rotation
about a fixed axis. By introducing an additiona axis point for dead reckoning, the simulation can
guarantee precise modeling of that rotation. Thisreal-timeflexibility allowsthe simulation to adapt
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Axis Point Cost Quaternion Cost
Operation Add Mult Add | Mult | Cog/Acos

Packet Arrival: Tracking

Second-Order 32 24 49 109 12

First-Order 6 6 11 23 2
Packet Arrival: Convergence

Second-Order 54 36 48 102 10

First-Order 6 6 11 23 2
Per Frame:

Generate Rotation Matrix 6 3 15 9

Table 5.2: Comparison of Packet Processing Computation in Axis Point and a Quaternion-Based
Protocols

to changing entity behavior.

5.3.3 Numerical Performance

The Axis Point protocol provides acomputationaly efficient technique for providing second-order
dead reckoning of entity orientation. Based on our analysisin Chapter 4, the protocol only requires
between 84 and 162 arithmetic operations to process an orientation update, and it requires almost
no computation between updates. The Euler angle approach, however, isfar more complex because
the rotation angles are not independent of one another. As a result, first-order orientation dead
reckoning requires roughly 180 operations to process a packet and an additional 100 operations on
each frame [91]. Second-order orientation dead reckoning with Euler anglesisrarely done because
of its computational complexity. Moreover, athough first-order dead reckoning using quaternions
is not computationally expensive, a second-order protocol using quaternions requires roughly twice
the computation as the Axis Point protocol. Table 5.2 compares the computational requirements of
the two protocols. Quaternions are considerably more costly than axis point vectors to manipul ate.
Quaternion addition involves a 4-dimensional vector cross product, while multiplying ascalar with
aquaternion requires a renormalization of the result.

The Axis Point protocol also does not rely on trigonometric operations whose operations are
notoriously inaccurate and vary considerably across platforms. By using only arithmetic operations,
the Axis Point protocol minimizes the propagation of floating point errors. This characteristic is
critical to systems that send packet updates infrequently. On the other hand, the first-order Euler
angle protocol effectively solves a differential equation on each frame—an operation that relies on
numerically unstabl etrigonometricand inverse-trigonometric functions[11]. AsshowninTable5.2,
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second-order dead reckoning with quaternions al so requires trigonometri c operationsto renormalize
the quaternions.

Finaly, the Axis Point protocol has the advantage that as the entity rotates, the orientation
parameters that it produces are continuous. That is, the axis points physically move aong the
surface of the unit sphere, so they do not exhibit any “jumps’ or other anomalies. Furthermore, if
the rotation is constant, then the axis points move in a uniform (circular) manner. However, as an
entity rotates, the Euler angles are discontinuous or ill-defined. For example, as an entity rotates
about the Z-axis, the Euler rotation angle increases from 0 degrees to 359 degrees and then returns
to O degrees. Thereisalso asingularity point at which the entity’s orientation may be defined by an
infinite number of Euler angle tuples. Remote hosts must compensate for these discontinuities, but
the problem is typically underconstrained because of insufficient information between updates.

5.3.4 Limitationsof the Axis Point Protocol

The biggest drawback of the Axis Point protocol is the independence of the six vector coordinate
models. The basic PHBDR protocol imposes no constraints on the vector coordinates, so the dead
reckoned axis points are not guaranteed to lie on the unit sphere. Consequently, each axis point
vector must be renormalized during each frame. Similarly, because PHBDR does not ensure that
the dead reckoned axis point vectors will always be orthogonal, the X-axis and Y-axis vectors
may need to be made orthogonal by projecting one vector onto a plane perpendicular to the other.
The normalization and orthogonalization operations are straightforward and do not introduce much
computational overhead, but they may cause occasiona anomalies in the orientation modeling,
particularly when an entity is rotating rapidly. These anomalies are short-lived, however, and rare
enough to be shadowed by the other advantages of the Axis Point protocol.

The other significant drawback of the protocol lies in the ambiguity of the axis point error
thresholdsin determining the tolerable rotation error. Asshownin Figures5.4 and 5.5, agiven axis
point error represents a range of rotation errors which may translate into a 10%—15% variability in
the orientation update rate. We do not deem this variation to be significant, however, and expect
simulation designers to set axis point error thresholds based on the associated maximum rotation
error.
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5.4 Conclusion

In this chapter, we have presented the Axis Point protocol which supports the remote modeling
of entity orientation. The protocol shares many of the advantages of the PHBDR protocol, most
notably its minimal dependencies on the entity model itself. The AxisPoint protocol only relieson
the entity model to providetheloca coordinate position of particular vertices and, unlikealternative
protocols, does not require the model to provide the angular velocity or acceleration. The dead
reckoning of orientation isalso decoupled from the actual representation of orientation used by the
modél itself. Finaly, becauseit recursively usesthe PHBDR protocol, the AxisPoint protocol does
not require velocity or acceleration information about the axis point vectors, so it does not impose
new modeling requirements on the source host.

By recursively using the PHBDR protocol’s tracking and convergence agorithms, the Axis
Point protocol also provides the following benefits:

¢ Reduced implementation complexity and size, resultingin faster development timeand easier
debugging.

¢ Greatly simplified analysisby reusing resultsfrom the PHBDR protocol analysisto understand
the Axis Point protocol.

¢ Minima computational complexity and numerical stability while providing a second-order
dead reckoning model.

We have aso seen that a recursive protocol structure for entity orientation does come with
some costs. For example, because PHBDR does not constrain the axis point vectors, the remote
host is responsible for normalizing and orthogonalizing the dead reckoned vertex positions on each
frame. Moreover, the protocol’s precise behavior depends on the particular axis around which the
entity is rotating; positional error on one of the axis points therefore represents a range of possible
rotation angle error values, rather than a single rotation angle error. Clearly, a dead reckoning
protocol designed specifically to handle entity orientation could eliminate such inefficiencies, but
by providing such optimizations, we would lose the simplicity provided by the recursive protocol
structure.

Together, the Position History-Based protocol and the Axis Point protocol provide a mechanism
for remote modeling arigid entity’s position and orientation. In the next chapter, we continue our
exploration of recursive protocol structure on the PHBDR protocol by considering protocols that
support remote modeling of non-rigid and semi-rigid entity structures at variable fidelities.



Chapter 6

Multiple-Detail Channelsfor M odeling
Non-Rigid Entities

Uptothispoint, wehave associated each entity with asingle multicast addressover whichit transmits
position and orientation updates, and we have targeted an average of one update packet per second.
However, position updates with a single error threshold cannot satisfy the data requirements of all
hosts in a large-scale simulation. On one hand, nearby viewers expect to see the entity rendered
with full graphical detail and with maximum structural and positional fidelity. These users require
update rates approaching the frame rate, and they expect the update packets to provide information
about the entity’s dynamic structure and articulated parts that move independently from the entity’s
body motion. On the other hand, distant viewers can tol erate rendering the entity with less graphical
detail and with less structural and positiona fidelity. Each viewer may see hundreds of entities,
and receiving high-frequency updates and detailed structural information from each oneimposesan
excessive bandwidth and computational demand, thereby limiting the scalability of the simulation.
Inthischapter, we addressthisneed for entitiesto provide high-frequency updateswith structural
detail for nearby viewers without burdening al other hosts that only require low-frequency updates
withminimal structural detail. Inthenext section, wedescribe our solution, multiple-detail channels,
which recursively usesthe PHBDR and Axis Point protocol s described in Chapters 3and 5. Wethen
present an extended example of one implementation of this multiple-detail channel architecture.

89
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Figure 6.1: Multiple-Detail Channels Provide Independent Streams of Entity Update Information

6.1 TheMultiple-Detail Channel Architecture

Each entity provides multiple-detail channels, separate data streams, each providing data to support
remote modeling at a different level-of-detail, as shown in Figure 6.1. The source host associates
each channel with itsown multicast address, adifferent model of the entity’s structure, and different
PHBDR error thresholds. For example, a high-detail channel satisfies nearby viewers by describing
the motion of al vertices in the entity’s structure and by using small error thresholds on each of
those vertices. A low-detail channel, on the other hand, satisfies distant viewers by describing very
little about the entity’s dynamic structure and by using high error thresholds for the entity’s motion.
The source host transmits an update packet to a channel’s multicast group whenever the remote
modeling error for avertex exceeds itserror threshold for that channel.

Each remote host independently subscribesto the channel (s) whose updates support the graphical
detail and modeling fidelity required by the local viewer without exceeding the locally available
bandwidth and computational resources. To alow remote hoststo locate and select the channel sthat
are available for an entity, the distributed simulation must provide a directory service. In response
to aquery identifying an entity, the directory should provide the address of the source host for that
entity, the multicast address for each channel, a description of the structural model associated with
each channel, alist of PHBDR error threshol ds associated with each vertex in the structural model,
and an estimate of the target update rate for the channel.

Source hostsface atradeoff in deciding how many channelsto providefor an entity. By offering
more channels, the source increases the chances that each remote host can select a channel that
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Figure 6.2: Sample Entity for Modeling Multiple-Detail Channels: Jello Icosahedron With Vertices
Connected by Springs

closely matches the local modeling fidelity, bandwidth, and computation requirements. However,
each supported channel also imposesacost, both interms of computation at the source host (it must
model verticesfor each channel independently) and in terms of bandwidth in the network links near
the source (because the first hops must carry traffic for most of the channels).

To satisfy this tradeoff between supporting a large variety of remote modeling needs while
controlling computation and bandwidth near the source, the source only provides three channelsfor
each entity. Thechannelsprovide order-of-magnitudedifferencesin structura and positiond fidelity
and aso provide order-of-magnitude differences in packet rate. The three channels—which we
refer to as therigid-body channel, approximate-body channel, and full-body channel—respectively
support far-range, mid-range, and near-range viewers.

In the next three sections, we define each of these channel types and describe an example
implementation based on the SGI “jello” application. As illustrated in Figure 6.2, the jdlo is
modeled as an i cosahedron whose vertices are connected by e astic springs. The application places
the jello entity inside arotating cube. Asthe jello bounces onto the sides of the cube, the collisions
deform the springs between the jell0’s vertices and cause changes to the jello’s physical structure.
The viewer consequently sees a“wiggling” jello entity.
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6.2 Rigid-Body Channel for Far-Range Viewers

Over arigid-body channel, the source host transmitsinformation that allows remote hosts to model
the entity as arigid body, hence ignoring all changes to the entity’s structure. Because it does not
provide dynamic structural information, rigid-body channels require the least network bandwidth.
In addition, because remote hosts do not need to model the entity’s dynamic structure, the models
supported by this channel impose the least computational demands on remote hosts.

Remote hosts subscribe to the rigid-body channel when the limited computational and network
resources are better allocated toward modeling other entities at higher structural and positional
fidelity. Consequently, this channel is used when the entity is distant from the loca viewer, so
structural changeswould be imperceptibleor uninteresting. In alarge simulation in which hundreds
or thousands of entities are visible to each host, hosts must subscribe to rigid-body channels for
most visible entities to avoid consuming excessive bandwidth and computational resources.

The channel is aso appropriate for entities whose structure changes rarely. For example, if an
entity’s structure only changes after it is involved with a significant collision, then the rigid-body
channel does not burden hosts with real-time structural information that is usually unchanging.
Instead, over a rigid body channel, the source host can simply disseminate a completely new
structura representation after a rare significant structural change occurs.

Rigid-body channels can support two types of rigid body entity models. Position-Only and
Position-and-Orientation.

6.2.1 Position-Only M odel

To support a position-only model, the source applies the basic PHBDR protocol to the entity and
only transmits the entity’s position. For rigid entities, the entity position is simply the location of
the entity’sloca coordinate system origin within the virtual world's globa coordinate system. For
non-rigid entities whose local coordinate system is ill-defined, the entity’s position either be the
location of a designated entity vertex or the entity’s center-of-mass. After the entity undergoes a
significant structural change, the source host transmits a new structural model along the channel.
For a position-only moddl of the jello entity, for example, the source transmits the location of
the jello’s center vertex. The remote model ignore the motion of the other vertices and instead
represents the entity with its default structure and default orientation. Simulating the behavior of
the position-only model of the jello application, we derive the data in Figure 6.3a which shows
the average remote modeling error for the 12 surface vertices in the jello model, as a function
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Figure 6.3: Position-Only Model for the Jello Application: (a) Modeling Error and (b) Vertex Update
Rate

of the error tolerance on the jello’s center point position. Most of this error arises because the
remote host does not model the orientation of the entity. Because the jello has a diameter of two,
a “perfect” position-only model of the jello would produce an average error of % ~ 1.27 on the
surface vertices.r Any error above this minimum arises from inaccuracies in modeling the jello’s
center point. Figure 6.3b showstherel ationship between theerror threshold and the resulting update
rate produced by the channel. The graph reveals that accepting a 20% increase in modeling error
reduces the packet rate by over 90%. For the jello, we see that the observed error and packet rate
behavior are similar to that observed for PHBDR with “bouncing” motion in Figure 4.4.

6.2.2 Postion-and-Orientation Model

To support a position-and-orientation model, the source host uses the PHBDR protocol to transmit
entity position information and uses the Axis Point protocol to transmit entity orientation informa-
tion. For rigid entities, the source can directly extract axis point vectors from the entity model.
However, as illustrated in Figure 6.4, estimating the orientation of non-rigid entitiesis harder be-
cause theindividual vertices do not have a fixed location with respect to each another. To compute
the entity’s orientation in this case, the source must approximate its dynamic structure in terms
of the entity’s rigid structure model. As shown in Figure 6.4c, the source ideally would calculate

YIn reality, the observed “perfect” error is closer to 1.23 because the jello’s rotation is not perfectly uniform and is
instead slightly biased toward its initial orientation.
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Figure 6.4: Estimating Orientation of Non-Rigid Entities: (a) Rigid structure of entity; (b) Dynamic
structure of entity; (c) Optimally orienting the rigid model to minimize error between rotated rigid
vertices and actual entity vertices; (d) Approximation using one axis point vector directly and
orthogonalizing other axis point vector.

the orientation of the rigid entity model that minimizes the total (or maximum) error between the
rotated rigid body vertices and the entity’s dynamic vertices. Thiscomputationwould be performed
on each frame to determine the appropriate axis point vectors that the Axis Point protocol module
would process and later transmit in update packets. However, this orientation computation is effec-
tively a non-linear optimization problem and is therefore infeasible for real-time use. To achieve
real-time performance, weinstead rely on an approximation to the true axis point vectors, as shown
in Figure 6.4d. The source host first computesthe vectors joining the entity’s center point tothe axis
points. One of the axis points (point 3 in the figure) is selected as a reference point, and the other
axis point vector (corresponding to point 4 in the figure) is adjusted to form the appropriate angle
with the reference vector, as required by the rigid model of the entity. Using this approximation,
the reference axis point vector is more accurate and the second axis point vector is less accurate
than the vectors produced using the ideal optimization approach. However, we deem that the loss
of positiona fiddlity iswell justified by the savingsin computational complexity.
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Figure 6.5:  Position-and-Orientation Model for the Jello Application: (a) Modeling Error and (b)
Vertex Update Rate

For example, our implementation of thejello application usesthe rigid-body vertices V4(0, 0, 1)
and V,(0.900665, 0, 0.434515) as axis points. The source first computes the vectors 013 and OV5
formed by joining the entity’s center O(0, 0, 0) to V7 and V5 respectively. Thefirst axis point vector
is formed by simply normalizing OVi. The second axis point vector is computed by normalizing
OV5 and rotating it about the vector (O x OV5) until it forms an angle cos~1(0.434515) from
OVi. The resulting axis point vectors are then provided to the Axis Point protocol module to
determine whether an orientation update packet should be transmitted.

Simulating the behavior of the position-and-orientation model of thejello application, weobtain
the datain Figure 6.5 which shows the average remote modeling error of the 12 surface verticesin
the jello modd and the vertex update rate, as a function of the error tolerance for the axis points.
Curves are shown for different error tolerances on the center vertex position, corresponding to the
values shown in Figure 6.3. Whenever either axis point requires an update, we transmit both axis
points, so each axis point update is treated as two vertex updates for the purposes of measuring
the packet rate. Figure 6.5a reved s that a position-and-orientation model yields an average surface
vertex error that is 35%-80% lower than that produced by a position-only model. Figure 6.5b
reveals that the resulting packet rate is 12%—272% higher than that of a position-only model. We
seethat simply providing orientation information provides asignificant reduction in modeling error,
but as the error threshold is tightened, the significant bandwidth requirements are not balanced by
correspondingly large improvementsin modeling fidelity.
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6.3 Approximate-Body Channel for Mid-Range Viewers

Over an approximate-body channel, the source host transmits information that allows remote hosts
to model an approximation of the entity’s dynamic structure. Remote hosts still modd the entity
using a rigid structure, but they dynamically adjust that rigid structure in a controlled manner
according to some transmitted parameter(s). Such models attempt to isolate the entity’s overall
motion within the global coordinate system from the structural motion made by individua vertices
intheloca coordinate system.

Remote hosts subscribe to the approximate-body channel for non-rigid entities that are close
enough so that thelocal viewer can notice structural changes but far enough for theviewer totolerate
some inaccuracy in the structural representation. Because it provides some information about the
entity’s structure, this channel consumes more bandwidth than arigid-body channel, and receivers
must dedicate more computational resources to handle the higher update rate and dead reckon the
additional entity attributes.

Thechannel may a so beappropriatefor entitieswhose structural changeissmall comparedtoits
overal translational and rotational motion. For example, approximate-body channel sareappropriate
for modeling a human because the attached arms and legs have limited range of movement [71] or
for modeling a tank whose turret only rotates about a fixed attachment point. In these cases, the
source host only needs to transmit the articul ated part’s angle of rotation about its attachment point.

To develop agood entity model for an approxi mate-body channel, the simul ation devel oper must
consider entity-specific information—particularly regarding what types of structural changes are
commonly experienced by the entity—to determine how the rigid-body model may be dynamically
adjusted. However, the radia-length model and local-coordinate-vertex model are two example
models that do not require significant a priori information about the entity. We now consider them
inturn.

6.3.1 Radial-Length Model

The radial-length model is best suited for entities whose vertices primarily move radially toward
and away from the entity’s center point. To support a radial-length model, the source transmits
the position of the entity’s center point and axis points, much like the rigid-body position-and-
orientation model. In addition, the source transmits the entity’s current average radius, as shownin
Figure 6.6a. The source computes the average radius by measuring the distance between the center
point and each of the entity’s exterior vertices.
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N

Figure 6.6: Computing Average Radius for a Dynamic Entity Structure: The solid line represents
the entity’s dynamic structure, and the dashed line represents the entity’s rigid structure model.

The remote host maintains a rigid-body representation of the entity structure. It uses the
PHBDR and Axis Point protocols to respectively model the entity’s position and orientation based
on information provided in the update packets. It aso uses the PHBDR protocol to dead reckon
the entity’s average radius. Thisvalueis used to dynamically scale the entity’s rigid-body structure
before rendering.

To apply the radial-length model to thejello entity, the remote host maintains PHBDR proxies
for thejello’scenter point in global coordinates, two axis pointson the surface of the unit sphere, and
the average radius of the jello’s 12 exterior vertices. Simulating the behavior of the Radial-Length
Channel on thejello application, we obtain the datain Figure 6.7, which shows the resulting average
remote modeling error for the 12 surface vertices in the jello model and the vertex update rate, as
afunction of the PHBDR protocol error threshold for the average radius. The curves demonstrate
behavior with twelvedifferent error tol erance configurationsfor the center vertex and axispoints. As
in Figure 6.5, each axis point update is treated as two vertex updates for the purposes of measuring
the packet rate.

The graphs reveal that radia information only offers a modest reduction in the average error
provided by the position-and-orientationmodel: on average, theradial lengthinformationintroduces
an 11% increase in packet rate to obtain a 3% improvement in structural fidelity. For the jello, the
radial-length modd’s effectiveness is limited for several reasons. First, each collision between
the jello and the rotating cube only displaces a subset of the jello’s exterior vertices. Therefore,
by computing the average radius and treating all surface vertices as equidistant from the jello’s
center, the model only loosely approximates the actual behavior of the jello’s structure. Second,
the individual vertex displacements are relatively small, not exceeding 10% of the jello’sradius, so
displacements to a single vertex affect the average radius by less than 1%. Such a small change
to the parameter does not affect the entity’s structural model significantly. Third, because the
jello’s vertices are connected by springs, vertex displacements exhibit oscill atory motion with high
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Figure 6.7: Radial-Length Model for the Jello Application: (a) Modeling Error and (b) Vertex
Update Rate

frequency which, as discussed in Section 4.2.1, requires high packet rates to model in detail.

We conclude that radia-length models are most appropriate when the entity’s exterior vertex
motion is closely correlated (e.g. the entity’s structure expands and contracts radialy as a single
unit) and when the entity’s structura change is significant when compared to its rigid-body radius.
Approximate structural modeling is also easier when the entity’s structure does not change too

rapidly.

6.3.2 Local-Coordinate-Vertex M odel

To support alocal-coordinate-vertex model, the source transmits the entity’s center point and axis
points, much like the rigid-body position-and-orientation model. In addition, the source transmits
the position of each of the entity’s structura vertices within their local coordinate system. The
procedure for generating this information is illustrated in Figure 6.8. The source first computes
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Figure 6.8: Computing Local Coordinate System Position of Entity Vertices: (a) Computed entity
position and orientation; (b) Applying translation and rotation in reverse to center at origin; (c)
Sampling vertex positions within local coordinate system.

the entity’s position and orientation as if it were a rigid body, using the procedure illustrated in
Figure 6.4d. Having computed the position and orientation, the source reverses the translation and
rotation to center theentity at the origin of itslocal coordinate system. Theresulting vertex positions
describe the entity’s new structure and are transmitted in the update packet.

The remote host uses the PHBDR and Axis Point protocols to respectively model the entity’s
position and orientation based on information provided in the update packets. It also dead reckons
the position of each structural vertex within the entity’s local coordinate system. By tracking the
motion of these vertices, the host maintains an approximation of the entity’s dynamic structure.

To render the entity, the host effectively reverses the steps of Figure 6.8. It constructs an entity
geometry by retrieving the current dead reckoned position of the structural vertices. It then applies
the rotation indicated by the dead reckoned axis pointsand finally translates the entity based on the
dead reckoned center vertex position.

For example, to apply a local-coordinate-vertex model to the jello entity, the remote host
maintains PHBDR proxies for the jello’s center point in global coordinates, two axis points on the
surface of the unit sphere, and the 12 surface vertices in thejello’sloca coordinate system. Within
the local coordinate system, each of these surface vertices moves within asmall tolerance governed
by the elasticity of the springs attaching it to adjacent vertices. Because each collision between the
jello and the rotating cube introduces a force onto those springs, the motion of each vertex initially
resembles a series of collision (as discussed in Section 4.2.2) and then exhibits oscillatory motion
(asdiscussed in Section 4.2.1.1).

Simulating the behavior of thelocal-coordinate-vertex model on the jello application, we derive
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Figure 6.9: Local-Coordinate-Vertex Model for the Jello Application: (a) Modeling Error and (b)
Vertex Update Rate

the data in Figure 6.9 which shows the resulting average remote modeling error of the 12 surface
vertices in the jello model and the vertex update rate, as a function of the error tolerance for the
component verticesin their loca coordinate systems. The curves demonstrate behavior with twelve
different error tolerance configurationsfor the center vertex and axis points. Asin Figure 6.5, each
axispoint update istreated as two vertex updatesfor the purposes of measuring the packet rate. The
figurereveal sthat thelocal-coordinateinformation ismost val uablein remote model swhose position
and orientation are already being modeled accurately. For example, loca vertex information has
the greatest effect when the center vertex and axis point error thresholds are small (around 0.01,
in the case of the jello). For these parameters, the local coordinate system information introduces
a 300%—-400% increase in packet update rate to obtain an error reduction of 28%-50% below that
of a position-and-orientation model. Furthermore, the packet rate numbers are overstated because
each packet only carries on vertex update (except for axis point updates). In redlity, the source

Center=1, Axis=0.01
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could bundle multiple vertex updates into a single update packet to reduce the overhead introduced
by packet headers. For thejello entity, the local-coordinate-vertex model is more effective than the
radial-length model because it models the independent motion of each surface vertex.

Overdl, thelocal-coordinate-vertex model’s structural fidelity isdetermined by the nature of the
structural vertex motion in the entity’slocal coordinate system. Though it can handle independent
behavior by each structural vertex, the model still requires the motion to be relatively simple. For
example, like the radia-length model, it cannot model high-frequency oscillatory motion without
imposing a high update rate.

6.4 Full-Body Channel for Close-Range Viewers

Over a full-body channel, the source host transmits the highest level of detail about the entity’s
dynamic position, orientation and structure. To provide this level of information, these channels
impose higher bandwidth regquirements than either the rigid-body or approximate-body channels.
Furthermore, because the remote host must receive each of the updates and must model the detailed
structure of the entity, full-body channels require the greatest amount of computational resources.
Consequently, at any given time, only a small fraction of the remote entities visible to a host can
receive this level of modeling.

Remote hosts subscribe to the full-body channe for non-rigid entities that are located near the
viewer within the virtual world. These entities require the highest positional and structural fidelity
because their accurate visuaization most directly affects user actions. By alocating network
bandwidth and computational resources toward these close-range entities, hosts force more distant
entities to use fewer resources by using a lower-detail channel. Full-body models are also most
appropriate for modeling entities that exhibit no structural constraints. Such entities include entity
groups, like aflock of birds, where each member moves independently of the others.

6.4.1 SelectingMarker Vertices

In providing the full-body channel, the source uses the PHBDR protocol to transmit the position
of the entity’s marker vertices in the global coordinate system. The marker vertices are selected
by the source to describe the entity’s structure, and they may simply correspond to the verticesin
a triangular mesh representation of the entity’s geometry. For each marker, the source computes
the set of adjacent marker vertices within the entity’s structure and distributes this information to
remote hosts via the simulation directory service.
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Figure 6.10: Number of Marker Vertices Determines Structural Fidelity Supported by Full-Body
Channel: (a) Source model of a string; (b) Remote model with few marker vertices; (c) Remote
model with more marker vertices

Thereceiver usesthe PHBDR protocol to independently dead reckon each marker vertex. Upon
receiving an update packet for theentity, it appliesthe marker positioninformation to the appropriate
PHBDR proxy(ies). To display the entity, the host determines the current dead reckoned position
for the marker vertices and then uses the marker adjacency information to construct and render the
entity’s current geometry.

As shown in Figure 6.10, the number of marker vertices associated with the entity determines
the structura fidelity supported by the full-body channel. By selecting more marker vertices, the
source provides more information about the entity’s structure, thereby improving the achievable
structural fidelity. On the other hand, each marker vertex imposes a bandwidth and computation
cost, and beyond acertain point, the additional information offers diminishingreturnsfor conveying
structural information.

To dynamicaly add or remove a marker vertex during the simulation, the source host reliably
multicasts an announcement over the entity’s full-body channel. This announcement specifies
which marker point is being added or deleted, as well as any changes in marker adjacency. The
source al so updates the simulation directory service so that new subscribers can obtain the updated
entity structure. By changing the set of marker vertices, the source can adopt to lasting changes
to the entity’s underlying structure. For example, to support remote modeling of a growing plant,
the source must periodically add additional marker vertices to account for the increasing distance
between the existing markers.

The source may also provide “ephemeral” marker vertices in its update packets. When trans-
mitting an ephemeral marker vertex, the source provides three position values with corresponding
timestamps; the remote host uses these three updates to dead reckon the ephemeral marker vertex,
but that proxy is only kept until the next update packet arrives for the entity. (Each ephemeral
marker update is effectively atype of state-replace packet, as discussed in Section 4.4.) Ephemeral
markers are appropriate for entities undergoing transient structural changes that do not justify the
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Figure 6.11:  Remote Modeling of a Rubber Band: (a) Before being stretched; (b) After being
stretched; (c) With an added ephemeral marker vertex

overhead of creating a new permanent marker vertex. For example, when arubber band stretches,
it creates an area containing no marker vertices, as shown in Figure 6.11. Changing the marker
set each time the rubber band is stretched or released is generally impractical because the structure
potentially changestoo rapidly. However, if the ephemeral marker persists for some period of time
(e.g. if the rubber band is stretched around an object), then the source may choose to add it to the
permanent marker set for the entity, thereby eliminating the need to transmit multiple updates for
the marker inside each update packet.

To provide afull-body channel for the jell o entity, the source host designates the twelve vertices
forming theicosahedron asthemarker vertices. It usesthe PHBDR protocol to update these vertices
in the global coordinate system.? Modeling the jello based on information provided by the full-
body channel, we derive the datain Figure 6.12 which shows the resulting average remote modeling
error for the 12 surface vertices in the jello model and the vertex update rate, as a function of the
PHBDR error tolerance on each marker. Because the motion of each vertex is dominated by the
jello’srotation rather than its translation, the error and packet rate numbers closely resemble those
observed for circular motion, for example, as shown in Figure 4.2.

2Tofacilitate re-use of much of thejello’s original rendering code, we also transmit the the position of thejello’s center
point, but this information could be eliminated by re-writing the rendering code.
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Figure 6.12: Modeling the Jello Using Data From a Full-Body Channel: (a) Modeling Error and
(b) Vertex Update Rate

6.5 Relationship Between the Different Channels

Figure 6.13 illustrates the relationship between the three channels for the jello application. The
figure shows where each channel falls within the space of the fidelity—bandwidth tradeoff. The
curves reved that the models exhibit order-of-magnitude differences in bandwidth and structural
fidelity, thereby satisfying a broad range of possible requirements at remote hosts.

Although we have only demonstrated these order-of-magnitude distinctionsfor the jello appli-
cation, we fully expect similar results for other complex entities. For example, we expect that a
full-body channel will describe on the order of ten marker vertices for a complex entity, while a
rigid-body channel only transmitsinformation about one or three vertices. Moreover, the full-body
channel employs tighter PHBDR error thresholds than the rigid-body channel. These factors to-
gether assure order-of-magnitude differences in update rate. Similarly, as we have seen, ignoring
orientation and structure information significantly reduces the modeling fidelity for entities that
rotate freely or undergo dynamic structural change.

We have not addressed how the source host sel ects appropriate protocol asthe PHBDR protocol
parametersare determined by the entity’ s Typi cally, the source host determinesthese error thresholds
statically based on the expected modeling fidelity requirements of remote hosts. When those
reguirements cannot be determined in advance, the source host may apply two approaches. provide
multiple channels within each category or dynamic rethresholding.

If sufficient computational and network resources are available, a source may provide multiple
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Detail Channels

channels for each category, with each channel offering a different protocol error threshold. This
multipleapproach alleviates the pressure of selecting an appropriate error threshold for each vertex,
and it provides greater flexibility to remote hosts desiring to customize their entity models.

Alternatively, source hosts can support dynamic rethresholding based upon feedback provided
by active subscribers to each channel. Each remote host subscribes to the channel providing
the closest match to the locally desired bandwidth and structural fidelity. The remote host then
periodicaly (e.g. once per minute) unicasts its ideal bandwidth utilization and modeling error to
the source. Based on the set of recently-received requests, the source then chooses an appropriate
error threshold, either by satisfying the median or average of the requests, by satisfying the highest
fidelity requirement, or by satisfying the lowest bandwidth requirement. In environments that
include dynamic rethreshol ding, source hosts must ensure that the channel information provided by
the simulation directory serviceis kept up-to-date.
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6.6 Conclusion

Multiple-detail channels demonstrate how the basic PHBDR and Axis Point protocols can be used
to support the low-fidelity, medium-fidelity, and high-fidelity requirements simultaneously present
within a simulation, as well as supporting a broad range of entity types from stationary and rigid
to moving and non-rigid. Multiple channels improves scalability by decoupling the hosts in a
distributed simulation, allowing each host toindependently determinethelevel-of-detail at whichto
model remote entities. Each host istherefore free to allocate its own computational and bandwidth
resources among entities to best meet the visualization needs of the local user. The dynamic
rethresholding feature would further permits remote hosts to influence the remote modeling fidelity
supported by the source.

In the worst case, multiple-detail channels introduce minimal additional overhead above the
traditional single-detail approach, and in the common case, they reduces the aggregate traffic and
computation throughout the simulation. Multiple-detail channels require more computation at the
source host to maintain the additional representations and transmit updates. The network links near
the source a so see the additional traffic from the lower-detail channels. Finaly, remote LANS may
see extra traffic if local hosts subscribe to different channels for the same entity. However, if the
source only provides one channel, it must provide high-detail information to support near-range
viewers. Therefore, the additional resources to support lower-detail channels are proportionally
minima. Furthermore, because we expect that most remote hosts do not require high-detail
channels for a given entity, they subscribe to channels containing less traffic. As a result, most
network links (particularly the bottleneck tail circuits) no longer fall on the high-detail channel’s
multicast distribution tree.

One might argue that in outlining a multiple-detail channel architecture, we are permitting
the devel opment of specialized dead reckoning protocols, the very thing we were trying to avoid.
However, the architecture tightly bounds the range of permitted entity models. For instance, model
developers must build on top of the PHBDR module and the model must conform to the rigid-body,
approximate-body, or full-body channel structure. Even the approximate-body channel, which
offers the most design flexibility, only permits the developer to make controlled changesto arigid
entity structure. The local-coordinate-vertex model therefore be regarded as the most extreme
implementation of this channel type.

Up to this point, each channel has supported the remote modeling of a single entity. Although
alow-detail channel allows hosts to reduce the update rate and detail for adistant entity, it is often
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desirable to reduce the bandwidth and computation for a group of entities, particularly when their
positions are either unimportant or imperceptible to the local viewer. The next chapter discusses
how multiple-detail channels and PHBDR are further extended to support the remote modeling of
entity groups.



Chapter 7
Entity Aggregation

When bandwidth and computational resources are limited, hosts must prioritize resource utilization
toward those simulationentitiesthat havethe greatest importancetothelocal viewer. Multiple-detail
channels allow hoststo selectively model entities with alower level-of-detail, thereby reducing the
local resources allocated toward those entities, while nearby entities continue to receive full-detail
remote modeling of position, orientation, and structure. However, even over low-detail channels,
each entity transmits update packets independently, so the receiving host must contend with per-
entity network bandwidth and packet processing overheads. These costs can be prohibitivein large
simulationsin which each host may potentially be aware of thousands of entities.

In this chapter, we discuss aggregation, a technique that allows a single message to describe
multiple entities. We begin by discussing the implementation of Projection Aggregation Entities
(PAEs), which dynamically group entitiesby both their type and their location. After discussing the
performanceof PAEswhenintegrated with multiple-detail channels, we describetheimplementation
of PAE hierarchies. We conclude the chapter by describing potential uses for PAES for optimizing
simulation operations such as scenerendering and collision detection, aswell assupporting evolution
of simulation systems.

7.1 Projection Aggregation Entities and Their | mplementation

A Projection Aggregation Entity (PAE) is asimulation entity that combines the organization-based
and grid-based aggregation approaches [85] discussed in Chapter 2 to bundle update information
from a group of entities. Each PAE includes entities from a single organization located within a
single octtree grid of the virtual world. The organization therefore is effectively “projected” onto

108
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Figure 7.1:  Projection Aggregation Entities Represent the Intersection of an Entity Organization
and a Virtual World Grid Region

thevirtual world grid, asshown in Figure 7.1. Thefigurerepresentsavirtual world divided into two
grids (G'1 and (2) and contains two platoon organizations (P1 and P2). The entities are divided
intofour PAES, namely (P1, G'1), (P1,G2),(FP2,G1),and (P2, G2). For example, PAE (P2, G'1)
bundles updates from all members of platoon P2 that are currently located insidegrid 1. A PAE’s
membership changes dynamically as entities move about the simulation virtual world.

By integrating organizational and location information, PAES describe entity groups that are
meaningful to remote hosts. For example, if the PAE were to group entities only by organization,
it would bundle information about entities that may be scattered throughout the virtual world.
Similarly, if the PAE grouped entities only based on virtua world grid location, it would bundle
information from unrelated entity types. Fine-grain entity groups, as provided by PAEs, give
receiving hosts better control over selecting the particular entity types and virtual world locations
about which to receive aggregated information.

As shown in Figure 7.2, the PAE subscribes to the multicast groups carrying updates for its
current member entities. The PAE simply collectsthose individua entity updates and bundles them
into a single update packet. This update packet is transmitted along a multicast address assigned
to the PAE. The PAE is associated with a transmission policy which determines how long to wait
before transmitting the bundled data.

The PAE update packet consists of a UDP/IP header followed by a sequence of (entity/vertex
identifier, timestamp, position) tuples extracted from the bundled entity update packets. Data
bundling reduces the packet rate and associated computational overhead seen by remote hosts
who subscribe to the PAE’s multicast address. Bundled data also consumes less bandwidth than
individual vertex updates because packet headers are eliminated.
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Figure 7.2: Projection Aggregation Entities Collect and Bundle Updates From Member Entities

On the other hand, bundled information is not appropriate for high-fidelity remote modeling
because bundled updates are not as timely as the individual updates received directly from the
individual entities. The PAE imposes an intermediate delay in order to collect multiple update
packets. The length of thisdelay isdetermined by the transmission policy used by the PAE.

7.1.1 Transmission Policiesfor Projection Aggregation Entities

PAEs use atransmission policy to determine how long to wait before transmitting a bundled update
packet. In choosing a transmission policy, the PAE trades off the amount of bandwidth reduction
provided by the bundled packets against the amount of delay introduced on the bundled data. For
transmission policy may minimize latency by transmitting frequent packets, each bundling fewer
updates. On the other hand, the transmission policy may introduce more latency in order to transmit
fewer packets, each bundling more updates.

We consider two transmission policies, timeout-based transmission and quorum-based trans-
mission, each providing a different bandwidth and latency tradeoff.

7.1.1.1 Timeout-Based Aggregation Transmission

With atimeout-based transmission policy, the PAE collectsindividual entity updates and transmits
them after waiting for some timeout period 7. Assuming that the member entities transmit updates
independently of one another, the aggregation entity artificially delays each update on average
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by an extra 5 plus the additional network transmission latency introduced because the update is
transmitted twice—once to the aggregation entity and once to the final destination.

The timeout-based technique guarantees a bound on the delay seen by an individual update
packet and, therefore, the error seen by remote hosts. On the other hand, the bandwidth and packet
rate reduction provided by the timeout-based technique varies depending on the dynamic ratio
between the timeout value and the member entity transmission rates. Suppose, for example, that
the PAE represents n member vertices (i.e. entities), each generating updates (either by exceeding
its respective threshold or by timing out) every ¢ seconds, on average. Without aggregation, the
entities transmit a total of % packets per second. However, aggregation reduces the packet rate
to a maximum of % packets per second, with each packet bundling an average of “* updates.
Assuming that ¢t and 7 share the same order-of-magnitude, aggregation reduces the packet rate by
a least afactor of n. Assuming further that each entity position update requires d bits of dataand
each packet header requires /. bits. The total bandwidth requirement without aggregation is ﬂ@
bits per second. The PAE reduces this bandwidth to h%%”l bits per second, a reduction factor
of (5}, Assuming that a 224-bit UDP/IP packet header, 32-bit timestamps, 32-bit entity
identifiers, and 192-bit position updates (three 64-hit val ues), the timeout-based transmission policy

reduces bandwidth by a factor of (115 — 1 %) ranging up to 53%.

7.1.1.2 Quorum-Based Aggregation Transmission

Under a quorum-based transmission technique, the PAE transmits an aggregate update packet
when some minimum proportion p of the member vertices (the quorum) have provided an update.
Intuitively, the value of p determines the overall level of consistency provided for the aggregate: p
closeto % provides high consistency because the aggregation transmitsan update when only asmall
number of member vertices are updated, while p close to one yields weak consistency because the
aggregation entity must wait for most member vertices to change before transmitting an update.
Quorum-based aggregation transmissions reduce packet rate and bandwidth when the group
contains heterogeneous entities because, unlike timeout-based transmission in which the packet rate
is fixed, the quorum-based update rate adapts to reflect the packet rates of the component entities.
Because each quorum-based update packet contains a pre-specified number of component updates,
remote hosts are guaranteed to see a particular bandwidth and packet rate reduction; the value
of p determines the level of network resource reduction. However, to achieve these guaranteed
network savings, the quorum-based approach sacrifices the predictable positiona fidelity offered
by the timeout-based approach because the quorum-based transmission does not bound how long
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Figure 7.3:  Average Packet Rate and Update Delay Produced by Timeout-Based and Quorum-
Based Transmission for Aggregations

an individual update may wait before being transmitted in an aggregation packet.

Suppose that the aggregation contains »n vertices which individually generate updates (either
by exceeding their respective thresholds or by timing out) on average every t; < to < -+ < 1,
seconds. Without aggregation, the PHBDR protocol generates (% +E4t %) packets per
second. Using quorum-based transmission, ¢,, represents the time in which pn vertices have
transmitted updates.! Because a packet is transmitted whenever pr points exceed their thresholds,
guorum-based transmission generates t’%n packets per second. If each position update requires
d bits of data and each packet header requires i bits, then the bandwidth requirement without
aggregation is (h + d) (% +E+et %) bits per second. Quorum-based transmission reduces
this requirement to h;%“l bits per second.

7.1.1.3 Comparing the Transmission Approaches

Figure 7.3 compares the packet rates and delays produced by timeout-based transmission and
quorum-based transmissionfor amix of heterogeneous entities. The simulated aggregation contains
aset of entities that one might expect to see within a single virtual world region in a ground-based
military simulation [103]: 15% fixed-wing aircraft, 10% rotary-wing aircraft, 15% tanks, 10%
trucks, and 50% dismounted infantry. The timeout-based curves were generated by changing

IStatisticians refer to t,,, asthe (pn) order statistic of ¢;.
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the timeout period 7, while the quorum-based curves reflect the effect of changing the quorum
proportion p.

The figure reveals the tradeoffs reflected by the two transmission policies. Timeout-based
transmission bounds the delay placed on updates at the expense of a higher update rate. Moreover,
the transmission behavior is independent of the aggregation size, which is a desirable property
because the membership of an aggregation changes dynamically as entities move about the virtual
world. On the other hand, the quorum-based approach transmits up to one-third fewer packets
than timeout-based transmission, but its delay characteristics are less predictable. In particular,
any individual update may be delayed indefinitely, and the delay characteristics depend on the
aggregation size.

Based on these results, therefore, we conclude that timeout-based transmission is generaly
preferable for PAES in highly dynamic simulation environments having ample wide-area network
bandwidth. Quorum-based aggregations are more appropriate when the entity motion is more
localized or when wide-area network bandwidth is alimited resource.

7.1.2 Optimizing PAEsfor Scalability

We optimize the PAE implementation to minimize the computational and bandwidth overhead for
managing large numbers of PAEs, for changing PAE membership, and for creating and destroying
PAEs. These optimizations are needed to support fine-grain entity groups, such as those provided
by PAES, in large-scale simulationsfor several reasons:

¢ PAE membership changesfrequently. In particular, an entity leaves one PAE and joinsanother
PAE whenever it moves to anew grid region in the virtual world.

¢ The number of potential PAEs is large, bounded by the product of the number of grids and
the number of entity organizations. This bound grows rapidly as simulationsinvolve larger
virtual worlds and involve more participants. Even if only non-empty PAEs exist in the
simulation, the number of active PAES can still be quite large.

¢ PAEs may be created and destroyed rapidly as a result of entity motion about the virtual
world. For example, when members of platoon P1 first enter a grid area 3, a new PAE
(P1,G3) must be provided to bundle those entity updates. Similarly, when '3 no longer
contains entities from P1, PAE ( P1, G3) should be destroyed.
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Figure 7.4: PAEs as Logical Entities Created and Managed by OAEs

These scalability barriers arise because PAES mirror the dynamic nature of the entity motion. As
entitiesmove more rapidly, PAEs must a so rapidly change to reflect new opportunitiesfor bundling
updates.

7.1.2.1 Creating and Locating PAEs

To support dynamic PAEs, we create a set of Organization-Based Aggregation Entities (OAESs)—
simulation entities representing an entity organization such as a platoon of tanks—as shown in
Figure 7.4. Because entity organizations are rarely created or destroyed, OAEs are long-lived
entitiesthat can be statically configured at the start of the simulation. Each OAE is associated with
amulticast address and a port address which are registered in a simulation directory service.

PAEs are then implemented as logical entities created by the OAEs. The OAE subscribes to
high-fidelity data from each of its members and organizes the entities into PAES based on their
locations within the virtual world. Each PAE is dynamicaly assigned a multicast address for
transmitting bundled updates and a port addressfor receiving remote requests. The OAE announces
the creation of the new PAE by transmitting a message to its own multicast address describing the
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PAE’s grid region, multicast address, and port address.

To start receiving bundled updatesfor aset of entitieswithinavirtual world region, aremote host
must first determine which PAE multicast group(s) provides the appropriate bundled data packets.
It does this by querying the simulation directory service for the multicast and port addresses of the
OAE. It then transmits a query to the OAE’s port address asking for a list of PAEs covering the
virtual world region of interest. Inresponseto thisquery, the OAE returnsalist of PAES, their grids,
multicast addresses, and port addresses. Finally, the host subscribesto the PAE multicast groupsto
receive bundled updates, and it subscribes to the OAE’s multicast group to learn about new PAEsin
the region of interest.

Our use of OAEs to create and manage logical PAES has severad advantages. First, OAES can
treat PAES as lightweight entities that can be created quickly. The creation of PAEs is distributed
and does not require a centralized process to determine the need for a new PAE, assign a host to
execute the PAE software, and start the PAE at that host. Instead, each OAE is responsible for
selecting, creating, and managing its own PAEs. Second, having OAEs disseminate information
about PAEsreduces thelatency for providing that information to potential subscribers. In particular,
by not requiring information about the new PAE to be entered into the simulation directory service,
we eliminate at least one network round-trip time. Third, the multi-level directory provided by the
simulationdirectory and the OAEs provides better |oad bal ancing than could be provided by asingle
large directory service. Our implementation partitions static information (about OAES) from the
more dynamic information (about PAES), thereby allowing each directory service to be optimized
for its particular access patterns.

The OAE query mechanism might also be used to create a PAE only when a remote host
actually expresses interest in the corresponding grid region. This “create-on-demand,” or delayed
binding, approach would have the advantage of eliminating unnecessary PAES from the simulation
and, consequently, reducing overhead at the OAE host. With the create-on-demand approach,
however, remote hosts would need to periodically refresh their PAE queries, because a PAE would
be destroyed if no matching query is received within some timeout period. The scalability of this
approach is an area for future research.

7.1.2.2 Reducing the Number of PAEs Created and Destroyed

Although OAESs implement PAEs as logical entities, creating or destroying PAES still represents a
significant computational overhead throughout thedistributed simulationfor initiating or terminating
a multicast summary data stream, announcing the group, and changing multicast subscription
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patterns at remote hosts. In particular, we want to minimize situations where a single PAE is
repeatedly created and destroyed as entities enter and leave a particular grid region. To accomplish
thisgoal, we employ two techniques: deferred PAE destruction and low-frequency entity sampling.

When aPAE’s grid no longer contains entities from that organization, the managing OAE defers
the destruction of that PAE (i.e. the release of the multicast address) for a timeout period. If an
entity from the organization re-enters the grid before the timeout expires, then the PAE is not
destroyed. Thisdeferred destruction should be particularly effective in large-scale simulationssuch
as the STOW 97 training system in which entity motion exhibits considerable locality within the
virtual world [96]. In cases where entity motion does not exhibit locality, deferred destruction risks
leaving alarge number of multicast addresses assigned to empty PAES that will not become active.
To mitigate this problem, OAEs employ low-frequency entity sampling.

OAEs assess the location of member entities and re-organize PAEs at a low frequency (e.g.
once every few seconds), rather than continuously. The lower frequency both reduces the number
of PAEs created or destroyed as a result of short-term entity motion and significantly reduces the
overhead required to manage the PAEs. However, the low-frequency sampling may cause an entity
to be associated with the wrong PAE for some period of time. For example, suppose that the OAE
provides PAEs for grids G1 and G2. If an entity moves from grid G'1 to grid G2, it will still be
bundled by the G1 PAE until the OA E next samplesthe member entity positionsand re-organizesthe
PAE membership. Subscribersto the (G2 PAE will therefore experience some delay before learning
about the new PAE member. However, we deem short-term inaccuracies in the PAE membership
to be acceptable because the duration of these inaccuracies is bounded by the latency introduced
by the PAE bundling and because bundled updates are only used for low-fidelity entity modeling at
remote hosts.

By grouping entities based on multiple criteria, PAEs give remote hosts fine-grain control in
replacing low-latency, per-entity updates with higher-latency bundled updates. In the next section,
we discuss how this flexibility enhances the effectiveness of multiple-detail channels discussed in
the previous chapter.

7.2 Integrating PAEsWith Multiple-Detail Channels

PAEs and the multiple-detail channel architecture described in Chapter 6 both aim to reduce band-
width and computational load by providing lower-bandwidth alternatives to full-detail information.
We now consider how effectively the two techniques integrate to reduce tail circuit bandwidth and
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Updates Bandwidth | Subscription
Channel Name | Per Sec. Packet Contents (bps) Percentage
UDP/IP packet header
Full-Body 8 (entity ID, time, vertex position) 46080 5

[12 independent vertices)|

UDP/IP packet header

Approximate-Body (entity ID, time, center position)
(Radia-Length) | S (entity ID, time, axis point positions) 7520 15
(entity ID, time, radius length)
Rigid-Body UDP/IP packet header
(Position-Only) 1 (entity 1D, time, center position) 480 30
Projection UDP/IP packet header
Aggregation 0.2 (entity 1D, time, center position) 265¢ 50
Entities (PAES) [25 tuples per packet]
| Total WAN | 1122 | | 54345 | 100 |

“We assume that each PAE packet bundles five updates from each of five entities.

Table 7.1: Channel Options for Subscribing to Jello Entity Updates

to reduce packet rate and computation at remote hosts.

We consider a simulation consisting of complex entities such as the jello mode described in
the previous chapter. A subscriber may therefore subscribe to one of four channels, as shown in
Table 7.1. The subscription percentages estimate the proportion of “visible” entities at each host
likely to be serviced by that channel. For example, we expect that 50% of the entities visible to
each host can be replaced by bundled PAE updates, while only 5% will require full-body modeling.
As a conservative estimate, we assume that each PAE bundles only five vertex updates.

7.2.1 Tail Circuit Bandwidth Reduction

In current network environments, affordable off-the-shelf LAN technology is rapidly approaching
gigabit-per-second capacity, while investment in high-bandwidth WANSs is easily justified because
those costs can be amortized over alarge number of users. Consequently, we expect that tail circuit
links will remain the bandwidth bottleneck over the next severa years. With thisin mind, we
consider how PAESs, when combined with the multiple-detail channel architecture, affect tail circuit
bandwidth requirements.

For the purposes of these experiments, we assume that all traffic must flow across the WAN
backbone (i.e. each data channel has at |east one subscriber somewhere in the simulation). Intro-
ducing lower-detail channels (including PAES) increases the WAN bandwidth requirementsby 11%
over a system providing only afull-body channel.
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Figure7.5 showsthetail circuit bandwidth requirementsasafunction of thenumber of simulation
hostslocated behind that tail circuit and interested in agiven entity. These numbersrepresent worst-
case results, because we assume that each host behind the tail circuit behaves independently; in
reality, in most simulations, users on the same LAN tend to exhibit considerable locality in the
virtual world too, so their entity subscription patterns exhibit some correlation.

This graph compares the bandwidth requirements from providing four channels (three of the
multiple-detail channels plus a PAE) against the requirements from providing only a high-detail
channel. When the number of interested hosts behind the tail circuit exceeds 125, the four-channel
bandwidth reaches its maximum at 125% of the high-detail channel bandwidth. At this point, data
from all of the channelsisreaching thetail circuit. We expect to see a 50% reduction in tail circuit
bandwidth when approximately fifteen hosts behind the tail circuit are independently subscribing
to the entity. The multiple-detail channels clearly provide a desirable bandwidth reduction through
thetail circuits.

The graph a so depicts acurve “without PAES’ that considersthe three multiple-detail channels
alone, where al PAE subscriptions are replaced by subscriptions to the rigid-body channel. In
comparing the “four channel” and “without PAES’ curves, we observe that adding PAEs does not
significantly affect thetail circuit bandwidth when compared to the basic multiple-detail architecture
without PAEs. This observation reved s that thetail circuit bandwidth is heavily dominated by the
high-detail channel data, so incremental reductions from lower-bandwidth alternatives do not have
asignificant effect.
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7.2.2 Host Packet Rate and Computation Reduction

Based onthe numbersin Table 7.1, ahost expressing interest in jello entitieswould see, on average,
7.37 packets per second for each entity of interest if PAES bundles are available. On the other
hand, without PAE bundles, the same host would see an average of 7.55 packets per second for
each entity of interest, so PAEs reduce the packet rate by roughly 2.4%. However, the packet rate
difference is more significant for hoststhat do not require high-fidelity remote entity modeling. For
example, if awide-areaviewer only employsrigid-body entity models, the packet rate without PAES
is approximately 1 per second, while the packet rate with PAES is approximately 0.52 per second,
representing a reduction of 48%.

We concludethat PAEs do not noticeably increasee the bandwidth requirements over bottleneck
tail circuits. However, for hosts that can afford to further reduce the remote modeling fidelity for
particular entities, PAE updates can significantly reduce the packet rate and consequent computation.
Because this packet rate benefit imposes little cost to the simulation system, we observe that PAES
are avaluable tool for supporting scalability.

We have established the effectiveness of PAEs for reducing the packet rate seen by receiving
hosts, and we have discussed optimizations to reduce the number of PAEs that are unnecessarily
created and destroyed. However, the number of PAEsin alarge simulation can still be substantial.
In the worst case, a PAE would be created for each entity. In addition, remote hosts must subscribe
to al PAEs of local interest. If the PAES contain too few entities or cover too small agrid region,
then the overhead for managing PAE subscriptions overwhel ms the performance benefits of PAES.
To address these problems, we arrange PAESs into a hierarchy.

7.3 ThePAE Hierarchy

PAEs are arranged in a hierarchy, much like the natura arrangement for entity organizations and
an octtree of virtual world grid regions. To support this hierarchy, we provide OAEs representing
organizations at each level of the organizationa hierarchy. When a PAE is created by an OAE, it
first registers itself with a parent PAE, and it unregisters itself before being deleted. The parent
aggregation represents a broader organization and a grid of equal or larger size, asillustrated in
Figure 7.6. For example, if aplatoonispart of acompany, then each of the platoon’s PAEs associates
itself as a descendant of the company PAE covering the same virtual world region. Consequently,
each OAE provides PAEs for any virtua world regions containing any direct or indirect descendant
entity. For example, if a tank is a member of a platoon organization, then the platoon’s OAE
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Figure 7.6: A PAE Hierarchy Describes Entities with Increasing Organization and Location
Granularity: (a) Location of entities in the virtual world, (b) Organizational structure of entities, and
(c) Corresponding PAE hierarchy.

provides a PAE whose associated grid covers the tank’s location. Similarly, if that platoon is part
of acompany organization, then that company’s OAE also provides a PAE whose associated grid
covers the tank’s location.

Figure 7.7 illustrates how the PAE hierarchy isintegrated with the OAE hierarchy and a similar
Grid-Based Aggregation Entity (GAE) hierarchy in a simulation. As we have seen, each OAE
can be queried for the PAESs representing the locations of all descendant entities, and each PAE
can be queried for the current set of member entities. With a PAE hierarchy, the list of a PAE's
member entities may include both regular entities and sub-PAESs representing aggregations for sub-
organizations in sub-grids. For example, the members of atank company’s PAE would include the
PAEs for the platoons with members in the same grid as well as any tanks in the company that are
not assigned to a platoon.
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The behavior of a PAE whose members include other PAEs is amost identical to that of a
PAE whose members only include regular entities. A parent PAE simply subscribes to the bundled
updates from its sub-PAES, as well as the updates directly provided by its regular member entities.
The parent PAE bundles al of the updates into a larger update packet. We observe that PAES
associated with high-level organizations provide the greatest level of bandwidth reduction because
they potentially bundle the largest number of entities. At the same time, these PAEs also introduce
the highest latency intotheir updates, partialy becausethey incorporate the delay already introduced
by the sub-PAEs.

Hierarchica PAEs maximize the ability of remote hosts to customize their incoming data
flows. For example, the PAE hierarchy alows a host to easily query for and subscribe to bundled
information about al tanksin the simulation or bundled information about all entitieswithinalarge
region of the virtual world.

To improve the scalability of the PAE hierarchy, we introduce optimizations that restrict the
grid size associated with the PAEs for each OAE and that reduce the number of changesto the PAE
hierarchy. The next two sections discuss each of these optimizationsin turn.
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7.3.1 RestrictingtheGrid Size Associated With PAEs

Each OAE dynamically determines the appropriate grid size(s) associated with its PAEs based on
the locations of its member entities. During the simulation, as an OAE’s entities spread apart,
the associated PAE grid size should increase, and as those entities move closer together, the PAE
grid size should decrease. Dynamic PAE grid sizes are appropriate because they ensure that those
streams provide meaningful data reduction. For example, if al PAES in the simulation used the
same fixed grid size, the simulation would either create many small PAEs (with high overhead to
maintain) or just afew large ones (which do not offer the desired fine-grain filtering at remote hosts).

However, if OAEs independently determine their PAE grid sizes, then the PAE hierarchy can
become inefficient. For example, if a company’s PAES use a smaller grid size than that used by a
descendant platoon’s PAEs, then a platoon PAE pq:00, May need to have multiple parent PAEs.
Therefore, each parent PAE would either transmit bundled updatesincluding entitiesthat do not fall
within the associated grid or filter the bundled updates to discard information about entities outside
the region.

Consequently, we require that PAEs must be associated with grids that are at least as large as
the grids associated with the member PAEs. To implement thisrestriction, each PAE tracksthe grid
size associated with each of its member PAES. The PAE registration packet includes the associated
grid size. If this grid size exceeds the parent PAE’s grid size, then the parent PAE signals to the
OAE to perform a PAE remapping to increase the PAE's grid size, possibly merging it with other
PAEs. When adescendant PAE unregistersitself, the parent PAE determines whether it can safely
reduce itsassociated grid size, and if it can, it similarly signalsthe OAE for a PAE remapping which
would potentially divide the PAE into smaller units.

A PAE remapping can be relatively expensive because it involves the creation and destruction
of PAEs. However, itisan infrequent occurrence. In typica simulations, an organization’s member
entitiestend to exhibit arelatively constant level of dispersion. To reduce the number of remappings
further, we defer the PAE remapping operation.

7.3.2 Reducing Changesto the PAE Hierarchy

OAEs defer changes to their associated PAE grid sizes in case the change should be reversed
shortly thereafter. This delay resembles the deferred destruction of individual PAES, discussed in
Section 7.1.2. Deferring a PAE remapping hel psto reduce the number of PAEs created and quickly
destroyed because of short-term entity motion. For example, before signalling to an OAE to change
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the PAE grid size, the PAE establishes a timeout. When the timeout arrives, the PAE signals the
OAE to perform the PAE remapping. However, if conditions change before the timeout arrives so
that the PAE’s grid size change is no longer necessary, then the timeout is canceled.

Our use of timeouts attempts to localize changes to the lower levels of the PAE hierarchy. For
example, when a PAE has no members, it defers its destruction. If that PAE turns out to be the last
member of its parent PAE, then the parent PAE similarly defersits own destruction, and thisdeferred
destruction proceeds recursively up the PAE hierarchy. The higher-level PAEs effectively employ
longer timeouts than their descendant PAEs. A similar delay pattern arises when OAES perform
PAE remappings to change the associated grid sizes. Despite the potentia brief inconsistenciesin
the PAE hierarchy, this delay has the desirable effect of isolating larger PAES as much as possible
from oscillatory behavior near the leaves of the hierarchy. Consequently, larger PAES (associated
with large organizations and grid areas and providing the lowest fidelity information) are more
created and deleted less frequently. This design means that remote hosts more actively manage
subscriptions for smaller PAES, corresponding to entities of greatest local interest, and spend less
time managing subscriptionsto the larger PAEs of secondary local interest.

We evd uate the effectiveness of this deferred PAE remapping by using a 4096x4096x4096
virtual worldwith 10top-level organizati ons, each contai ning five sub-organi zationswith 20 member
entities (for a total of 1000 entities). Our simulations run for 5,000 time steps, divided into ten
“epochs’ of 500 steps. At the beginning of an epoch, each entity is associated with a unit direction
vector that it followsduring theepoch’stimesteps. During eachtimestep, weapply arandom scaling
factor (ranging between 0 and 3) to the direction vector. Inthissimulation, each OAE associatesthe
samegrid sizeto each of itsmember PAEs and selectsthegrid sizeto limit the number of active PAES
to eight. We consider two extremes of entity behavior. In the first scenario, the “cohesive case”
all entities in an sub-organization share the same direction vector (but independent vector scaling
factors) during each epoch. Hence, members of each sub-organization tend to remain relatively
clustered in the virtual world. In the second scenario, the “fragmented case,” each entity receives
its own direction vector. Hence, members of each sub-organization exhibit no clustering behavior
as they move about the virtual world. Most real scenarios would fall somewhere between these two
extremes.

Figure 7.8 shows how delaying PAE remappings by OAES reduces how many remappings are
actually performed. The data demonstrates that even a small quarter-second remapping delay can
eliminate as much as 60% of the PAE remappings. This effect is more pronounced with “cohesive”
entity motion because each organization's entities exhibit more constant dispersion during the



124 CHAPTER 7. ENTITY AGGREGATION

3500 +—
3000 +— ® Fragmented
2500 A Cohesive
2000 +—
1500 +—
1000 +—
500 +—

Number of Remappings

00 02 04 06 08 1.0
Remap Delay (sec)

Figure 7.8: Number of PAE Remappings Performed by OAEs as a Function of Remapping Delay

simulation, so any changes are usudly short-lived events. In the “fragmented” case, however, each
organization’s entities exhibit more variable dispersion, so a higher percentage of remappings are
actually executed.

7.4 Potential Integration of PAEsWith Other Simulation Tasks

Besides providing fine-grain entity groups that allow remote hosts to reduce their bandwidth and
computational requirements, the PAES can potentialy be integrated with other simulation tasks,
such as scene rendering and collision detection. Each of these operations can benefit from the
ability to process multiple entities as a single unit. Group processing is used to merge information
about the member entities, to prioritize or filter the handling of individua entities, or to summarize
entity information that is not otherwise available.

In this section, we consider three potential uses for the PAE structure:

¢ Entity Rendering: Using PAE information to render an entity group directly rather than
modeling the individual entities.

¢ Callision Detection and Scene Rendering: Using information from the PAE hierarchy to
prioritize entities for processing and filtering entities that should not be processed at all

¢ Simulation Evolution: Using PAEs as proxies for more detailed representations of the simu-
lation entities.
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7.4.1 PAE Summary Protocol for Rendering Entity Groups

Instead of simply bundling updates from individual entities, PAES can multicast summary update
packets about its members. The summary updates contain enough information for remote hosts
to model those entities with extremely low positional fidelity. Remote hosts therefore use the
PAE summary updates to represent groups of remote entities that do not locally merit high-fidelity
modeling because they are far from the viewer or because the entity typeis not of primary interest
to that viewer.

74.1.1 PAE Summary Update Generation

PAE summary updates describe the location of the PAE's members, as shown in Figure 7.9.
The summary packet contains a count of the number of entities represented by the PAE (including
descendant PAES), asingle position point summarizing thelocation of those entities, and information
regarding the distribution of those entities around that point.

The summary position point is calculated by averaging the positions of the PAE’'s member
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entities; each member PAE istreated asaregular entity except that its summary positionisweighted
by the number of entities that it represents. Rather than recomputing the summary position point
whenever an entity moves, the PAE can incrementally update its summary position by weighting
the change in each entity’s position based on the overal number of member entities. The summary
position must be periodically recomputed to bound the accumul ation of round-off error.

The member entity distributionisencoded using the radius of abounding sphere centered at the
PAE’s summary position and containing al of the PAE’'s member entities. The PAE describes the
entity density by transmitting the mean and standard deviation of entity distance from the summary
position. Aswith the summary position, member PAES are treated like regular entities except for a
weighting factor, and these density values can be updated incrementally as entities move.

As discussed in the next section, remote hosts use the PHBDR protocol to dead reckon the
parameters included in the PAE summary update. The PAE transmits a summary update whenever
it detects a discrepancy between the loca values of these parameters and the values currently
extrapolated by remotehosts. Theactua error tolerances depend ontheoverall fidelity requirements
of the simulation, but we set the tolerances to keep the update rate lower than that generated by
individual entities and thus minimize the bandwidth overhead introduced by the PAE summaries.
Remote sites needing more detailed or frequent information can subscribe to one of the multiple-
detail channels provided by the entities themsel ves.

PAE summary updates containing entity count, summary position, and entity distribution in-
formation are sufficient for most ssimulations. Where additional information is needed, remote
hosts can often rely on domain-specific information to generate approximate position models. For
example, if a host models aradar, it might use a table of reflection characteristics based on entity
type and distance to approximate the radar signature of a PAE's member entities.

74.1.2 PAE Summary Update Processing

Figure 7.10 illustrates how remote hosts might render the entity group from the PAE summary
information in Figure 7.9b. The summary position determines the location of aloca coordinate
system used for the PAE group rendering, and the bounding sphere defines the range of locationsfor
members of the entity group. Low-resolution renderings of the entities are then placed within the
bounding sphere using the distribution mean and standard deviation values provided inthe summary
packet. To place each entity, the simulation generates a random direction vector (i.e. from 0° to
360°) and a random distance from the summary position, applying a normal distribution with the
provided mean and standard deviation.
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Figure 7.10: Rendering of an Entity Group Based on PAE Summary Information

Because the PAE’s summary position, radius, and mean distance from the center point change
over time, remote hosts dead reckon these parameters using the PHBDR agorithms. As these
parameters are extrapolated, hosts update their models of the position of the PAE members. On
each frame, the PAE's local coordinate system is trandlated to the extrapolated center point. Each
entity isthen translated along its associated direction vector according to the extrapolated change
to the bounding sphere radius and mean distance. Consequently, dead reckoning allows remote
hosts to present a dynamic view of the PAE's members despite receiving only occasiona summary
updates. Dead reckoning also lowers the PAE summary update rate by reducing the error between
the true summary parameters and the parameters used at remote hosts. Like any other simulation
entity, a PAE is represented as a set of attributesto dead reckon, aong with arendering routine.

The PAE summary protocol reduces the bandwidth and computation required at remote hosts.
PAE summary packets, by only transmitting a fixed number of parameters about the entity group,
are typically smaller than the bundled updates from the individual entities. Because summary
packets are being used to generate low-fidelity positional models, they also can be transmitted less
frequently than bundled updates. Moreover, receiving hosts no longer need to employ individua
PHBDR protocol modules to extrapolate the position of each entity in the group. Instead, six
PHBDR modules (three for the summary position and one each for radius, mean distance, and
standard deviation) are shared among all of the group’s member entities. For non-trivial groups,
therefore, remote hosts need to perform less computation to process each update packet. This
computational savings can be quite significant. In a large simulation, a host may be aware of
hundreds, if not thousands, of entities, most of which are not of any significant interest to the local
viewer. PAE summariesallow the host to maintain some basic information about the entity’s general
location, so that it can track when the entity later becomes more important to the viewer and merits
amodel with higher positional and structural fidelity.
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Grid Overlap
Entity Type Collisions None | Partial or Full
Not of Interest No further evaluation No further evaluation
Potentially of Interest No further evaluation | Compute potential collisions between PAE members

Table 7.2: Pairwise PAE Analysis to Discard Impossible or Uninteresting Collisions

We have aready seen how PAE summary updates might replace a group of entity models that
are not of local interest. Because PAEs simultaneously group entities by both organization and
location, remote hosts can also apply fine-grain criteria when selecting which entities to model in
detail. Remote hosts can also use these fine-grain criteria to filter entities from other expensive
simulation operations such as collision detection and scene rendering.

7.4.2 UsingthePAE Hierarchy to Filter Entities

Arranging PAESs into a hierarchy enhances the entity filtering capability because top-level PAES
represent larger entity groups and larger grid regions. Thistop-levd filtering is particularly useful
in operationsthat otherwiserequire processing all entitiesin the simulation, regardless of their loca
modél fidelities. Using the PAE hierarchy, a host can quickly filter those entities that do not need to
be manipulated during the operation and thereby reduce its processing.

We assume that remote hosts cache information about the current PAE hierarchy, particularly
the entity organizations and grid locations represented by each active PAE and the membership
relationships among PAEs. We outline how hosts can use this cached hierarchy information to
optimize two common simulation operations: collision detection and scene rendering, and we then
describe adata structure that supports fast traversal of cached PAE hierarchy information.

7.4.2.1 Collision Detection

A collision detection algorithm can use PAEs to quickly filter both unlikely and uninteresting
collisions involving loca entities, as shown by Table 7.2. We assume that each host maintains
a prioritized list of which types of collisions are important to detect accurately based on local
user requirements. The PAE collision detection filtering discards entity pairs that either are not
co-located within the same grid region in the virtual world or do not lie within the interest list for
the local user. After filtering impossible or irrelevant collisions, the collision detection algorithm
then attempts to order the processing of the remaining potential collisions based on the prioritized
interest list for the local user.
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Algorithm collDetect (P A E'setl: PAEsincludinglocal entities
PAFEset2: PAElist);
for all p1 € PAEsetl dobegin
for all p, € PAFEset2dobegin
if grid(p1) intersects grid(p,) and
(p1, p2) type collisions may have local interest
then begin
if loadFunction(py,p2)
then collDetect(children(p1),children(p-))
else CO”Hand|e(p1, pz)
end;
end;
end;
end.

Figure 7.11: Collision Detection Algorithm With PAEs

The collision detection agorithm, which is fully specified in 7.11, begins by comparing PAEs
that includelocal entitiesagainst each of thetop-level PAEsinthehierarchy. For each pair, if thegrids
do not intersect or collisions between the corresponding entity types are not interesting, then further
collision detection is not performed on that pair of PAEs. For example, although automobilesmight
be located in the same region as caterpillars, the interest comparison might prevent the host from
testing collisions between local automobiles and PAEs only containing remote caterpillars. If the
collisionis possible and has potential interest, then aload function evaluates whether more detailed
collision detection is desired, based on available computationa resources. When computational
resources are limited, the load function prioritizes collisions based on the entity typesinvolved and
an assessment of the possible effects of each collision. For example, the load function would select
collisionsamong automobilesfor more detailed processing than col lisionsbetween automobilesand
grass. If the entity pair is accepted by the load function, then the PAES' children (which partition
entities by finer-grain type and smaller grid) are considered pairwise for further filtering; on the
other hand, if theload function rejects the entity pair, then we simply assume that all entitieswithin
the two PAEs are colliding.

Coallision detection using the PAE hierarchy turns out to be a natural extension to time-critical
collision detection [35] that checks for collisions between successively tighter approximations to
entities’ surfaces. Unlike time-critical collision detection, whose iterations only consider entity
location information, the PAE hierarchy successively provides both entity location (through smaller
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Algorithm renderScene;
viewing P AFEs — list of viewing PAES
PAEset — ligt of PAE hierarchy root(s)
colIDetect(viewing PAEs, P AFEset)
end.

Algorithm collHandle (p1: viewing PAE,
p2: colliding PAE);
iterator — newlterator(p2,
grid and organi zation rendering
prioritiesfor p1,
node prioritization function for p1)
while node — nextltem(iterator) do begin
render(node)
end;
end.

Figure 7.12: Scene Rendering Algorithm With PAEs

grids) and entity type (through smaller organizations) approximations. Conseguently, both impos-
sible and uninteresting collisions can be discarded.

7.4.2.2 Rendering

To improve rendering, hosts can again use the PAE hierarchy to prioritize entities based on both
their location and their type.

The rendering agorithm, fully specified in 7.12, constructs one or more temporary viewing
PAESs representing a viewing frustrum entity (which might be treated as a top-level organization),
as shown in Figure 7.13.  To render the scene, we select a set of PAES to display by using the
collision detection algorithm of the previous section between the viewing PAEs and the simulation
PAEs. A PAEissdected for display if it intersects(collides) with aviewing PAE and the entity type
is of interest to that viewing PAE. When rendering the view from a car, the viewing PAEs would
only collide with PAEs whaose grids are aso located in front of the car. Furthermore each viewing
PAE might express adifferent entity interest set, depending on how far it isfrom the viewpoint. For
example, viewing PAEs|ocated morethan ten feet from the viewer might have no interest in insects.
Asafurther example, this rendering a gorithm can generate amap of the tanksled by a commander
simply by making the viewing PAES only interested in the organizations that he commands.

Having filtered invisible or unimportant PAES, the rendering algorithm then traverses each
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Figure 7.13: Viewing PAEs Bound the Viewing Frustrum and Filter the Types of Entities Displayed
in Each Region

selected PAE to an appropriate level of detail. Computationa resources can therefore be alocated
to the more critical (closer and more interesting) PAEs. A potentia implementation might assign a
rendering priorityto each organization and grid. Gridscloser totheviewer receiveahigher rendering
priority, as do organizations that are of greatest interest to the viewer. For each selected PAE, a
node prioritization function is applied to the rendering priorities for the associated organization and
grid. If the prioritization function val ue exceeds athreshold, then the PAE’'s members are processed
recursively; otherwise, the PAE summary is rendered. Some hysteresis is desirable to ensure that
the positiona fidelity employed for a particular entity does not change constantly and to ensure
smooth transitions between different graphical representations for the entity.?

Scene rendering using the PAE hierarchy potentially provides greater flexibility than existing
rendering algorithms. First, they extend the semantics of scene rendering to consider entity type as
well as entity location. Traditional graphics applications represent the virtual world hierarchically
using an octtree or other spatial data structure. The rendering routine then simply traverses the
hierarchy and renders each node. Newer toolkits, such as SGI's IRIS Performer [75], only traverse
the hierarchy to alevel-of-detail based on the entity’s distance from the viewer. However, existing
rendering techniques do not directly consider entity type information. PAES, on the other hand,
alow early filtering of uninteresting entity types, and the node prioritization function uses both
the entity type and entity location information to determine the rendering detail. For example,
PAEs allow a renderer to prioritize the cars in a scene and only render caterpillars if sufficient
computational resources remain. Second, by providing a low-fidelity model for entity groups,

2How to smoothly transition between different graphical modelsis a standard problem in computer graphics [44, 95,
77, 30, 34] and is therefore beyond the scope of this thesis.
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PAEs may be used within a cost—benefit scheme for rendering multi-resolution datain interactive
environments [30]. This algorithm selects entities that provide the lowest cost—benefit ratio, where
“cost” isdefined by the rendering complexity and “benefit” is some heuristic measure of thevalue of
rendering to the user’s perception. Once an entity has been selected for rendering (regardless of the
chosen resolution), al other resolution models of the entity are removed from consideration. PAES
can be introduced into this agorithm by simply associating a cost corresponding to the number
of polygons rendered in the group summary; the benefit measures the vaue of displaying those
entities, reduced by some measure of the diminished resolution. Third, PAE summaries alow
the generation of low-resolution graphical representations of entity groups. They contrast with
traditional approaches to automated generation of low-resolution models [31] which only provide
models on an entity-by-entity basis.

Despite these benefits, however, the effectiveness of using PAE summaries and the PAE hier-
archy for scene rendering depends on whether the rendering algorithm adversely affects the user’s
perception of the scene. The agorithm’s success depends on the ability to dynamically determine
and adjust the various organi zation and grid node rendering priorities, as well as on the sdlection of
an appropriate node prioritization function. Theseissues are al areas for future research.

7.4.2.3 Traversingthe PAE Hierarchy Using Deep Iterators

Simulation operations, such as scene rendering, may need to traverse the cached PAE hierarchy
information to a depth that depends on computational load and entity type. To implement this
variable-depth traversal of the PAE hierarchy, the simulation implementor can use deep iterators
that are parameterized with the node detail criteria (in our case, the selected PAE, the rendering
priorities, and thenode prioritization function). Inresponsetoanext | t en() cal, thedeepiterator
returns the next PAE that should be rendered according to the prioritization criteria. Consequently,
the traversal depth is transparent to the drawing routine, which simply needs to render the PAES
returned by theiterator.

Figure 7.14 compares the computational cost of deep iterators against a recursive function
traversing the PAE hierarchy. The measurements were taken on an RS/6000 model 370, rated at
70 integer SPEC marks, running AlX 3.2.5 and using the native C ++ compiler on full optimiza-
tion. Deep iterators introduce some overhead because they must explicitly store intermediate state
information during the traversal and cannot rely on the program stack for thistask. By alocating
a state-history buffer whose length is doubled whenever the traversal depth requires more storage,
we reduced the deep iterator overhead to within 5%. Although this overhead is dwarfed by the
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Figure 7.14: Performance of Deep Iterator Versus Recursive Function Over (a) Fixed-height PAE
hierarchies (height 5) and (b) Fixed-degree PAE hierarchies (degree 2)

computational cycles for processing each node, we are confident that further tuning of the deep
iterator implementation can eliminate most of the remaining overhead.

7.4.3 Supporting Simulation Evolution: Treating All Entities As PAEs

We can generalize the definition of PAES to include all simulation entities, so that remote hosts
process all entity updates as PAE summaries that differ only in their dead reckoning and rendering
algorithms. Under this generalized definition, each PAE is parameterized with alist of attributesto
dead reckon (the default being the summary position, radius, and distribution) and an appropriate
rendering routine (the default being the randomized aggregation renderer described in Section 7.4.1).
For regular entities, the associated dead reckoning attributes would include position, axis points,
and structural vertices, while the associated rendering routine would be the one typically used for
that entity.

For example, under this implementation, remote hosts treat an individua tank model as alow-
detail replacement for full models of the tank’s components, much like a PAE summary update
replaces detailed models of each of its members. The tank is therefore a PAE corresponding to
the organization “tank parts’ and the grid region containing the tank. For example, atank update
(containing position and orientation information) is effectively just summarizing information about
its whedls, turret, etc. Detailed models of the individual tank parts may not even be available
anywhere in the distributed simulation, but remote hosts need not be aware of thisfact.

This ability to unify all simulation entities as PAEs isimportant for supporting the evolution of
distributed simulations. For example, after a simulation is deployed, the developer may choose to
introduce model s for the tank’s components. We assume that the original tank continuesto provide
summary information about its position and orientation. However, because the tank is treated as a
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PAE, the new component models can simply be inserted as its descendants in the PAE hierarchy.
Each of these components, in turn, is also a PAe that can be expanded as the simulation becomes
more sophisticated. Remote hosts can continue to rely on the tank PAE summaries and do not need
to be aware of the new components. However, hosts that are capable of modeling the individua
componentscan easily accessthat data by continuingto traverse the PAE hierarchy to the new depth.

7.5 Conclusion

In this chapter, we have considered the remote modeling problem for groups of entities. Like
multiple-detail channels, which allow remote hosts to selectively change the model’s structural
and positional fidelity for a particular entity, aggregation allows remote hoststo selectively change
the positiona fidelity for a group of entities. Projection Aggregation Entities permit reductionsin
network and computational load in large distributed simulations. A host can dynamically locate
and subscribe to a PAE instead of receiving individual updates from each group member. The PAE
hierarchy extends the implementation by allowing hoststo fully customize the incoming data flows
based on the desired modeling fidelity and tolerable data latency.

We have described a variety of implementation optimizations to support the use of PAES in
dynamic, large-scal e simulation environments. We used Organization Aggregation Entities (OAES)
to provide a distributed management and directory service for PAEs and used aggressive deferred
timeouts to limit the number of PAEs that must be created or destroyed. Our implementation of
PAEs, OAEs, and GAEs is contained in a 4000-line C ++ class library which has been deployed
within the PARADISE distributed simulation environment developed at Stanford University.

We have described several potentia uses for PAES to support various simulation operations.
Using PAE summary updates, remote hosts can selectively replace a set of entity models with a
PAE summary model that provides low-fidelity remote modeling for the group. By using PAES
to filter entities based on both their type and their location, hosts can improve the speed and
effectiveness of collision detection and scene rendering, particularly when computationa resources
arelimited. Finaly, by providing asingleabstraction for all simulation entities, PAEs can explicitly
support the evolution of more detailed entity models within a deployed simulation. Ultimately, the
effectiveness of these techniques depends on whether the resulting scene is credible to users, and
therefore, evaluating these techniquesis an area for future research.

Projection Aggregation Entities therefore can represent a foundation for remote modeling in
distributed simulations. At the lowest level, a PAE might represent a single entity which, in turn,
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provides multiple-detail channels of its own. The PHBDR protocol ties everything together by
supporting remote modeling of vertices at all levels-of-detail.



Chapter 8

Conclusion

Theadvent of fast processorsand high-capacity networks has madelarge-scal edistributed simulation
applications feasible. However, most existing systems have been designed to operate in LAN
environments characterized by high bandwidth, low latency and jitter, and a small number of
participants running on homogenous hardware; this fact is demonstrated by the dominance of
broadcast-based protocols and frame-rate transmission to support information dissemination in
these applications. Traditionally, the migration to WAN networks—with the associated lower
bandwidth, higher latency and jitter, and larger numbers of participants—has been an afterthought.
The STOW program isa classic example of thismigration, where ad hoc protocol optimizationsare
introduced on top of a LAN-based protocol (DIS).

The research presented in this thesis has taken a completely different approach to distributed
simulation protocol design. We have attempted to design protocols and algorithmsintended specif-
icaly for applications running in large-scale WAN environments. Large-scale WAN simulations
represent a problem in their own right and are clearly more demanding than smaller LAN-based
applications. The large-scale simulation must carefully trade off the timeliness and detail of state
information at remote hosts against the network bandwidth, packet rate, and computationa load
imposed on the network and hosts.

8.1 PHBDR: An Accurate, Efficient Remote M odeling Protocol

This thesis first defined the Position History-Based Dead Reckoning (PHBDR) protocol, which
is designed to provide accurate remote modeling of a vertex position. PHBDR employs severa
techniques to achieves good positiona fidelity in the remote mode!:

136
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¢ Using adaptive tracking and convergence to dynamically select an appropriate path approxi-
mation. Thisadaptive technique a so permitsthe algorithm to rapidly react to sudden changes
of direction in the entity motion.

¢ Relyingonly on positioninformation rather than higher derivatives(vel ocity and accel eration)
whoseinstantaneousval ues can be morevolatile. Relying on positioninformation permitsthe
PHBDRto better model thelong-term behavior of theentity and makeit rel atively independent
of short-term oscillations. PHBDR effectively smoothesentity motion by applying alow-pass
filter over the position samples.

¢ Accounting for network latency and jitter by rolling back the dead reckoning model to the
update packet’stransmissiontime. Thetimestampin the update packet ensuresthat all remote
hosts maintain the same tracking model despite variable network delays. The source host
can therefore maintain an accurate representation of how the entity is being modeled (but not
how it isbeing displayed) at remote hosts, and, using thisinformation, it can transmit update
packetsat appropriateintervals. Moreover, the use of timestamps makes PHBDR more robust
because the effects of failures (e.g. network congestion and host failure) are localized.

In demonstrating the positional fidelity of PHBDR, this thesis aso represents the first attempt
that we know of to systematically analyze the behavior of protocols used in distributed simulation
applications. Previous analyses (such as those presented in [51, 101, 79]) have focused on a
particular type of entity, typically high-speed military aircraft, and therefore do not assess how well
aprotocol performswhen confronted with new types of entity behavior. Even more recent attempts
to test a broader variety of entity behaviors [50] have provided results with limited applicability.

In contrast to these previous approaches, we have employed a combination of mathematical
analysis, controlled simulation, and run-time experience to evaluate the PHBDR behavior. We
selected and eva uated a small number of representative entity behaviors based on how quickly and
smoothly their acceleration changes. We used experiments and analysis to validate the protocol’s
performance on the selected entity scenarios; because the behavior of any given entity demonstrates
characteristics from each of the analyzed behaviors, we can feel reasonably confident in the proto-
col’s overall success over abroader set of entities. Finaly, actual deployment experience provided
validation of our analytical and scenario-based results and exposed additional issues to consider.

PHBDR also offersreduced computational complexity and lower bandwidth requirementswhen
compared with existing dead reckoning algorithms. These desirable characteristics result from the
following design techniques:
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¢ Transmitting only position information. Eliminating velocity and acceleration information
represents a significant reduction in the size of update packets. For instance, the PHBDR
protocol requires approximately 30% less bandwidth than existing DIS protocols.

¢ Relying on adaptive algorithmsto shift computation away from * uninteresting” entity motion.
Processing an update packet for simple entity motion (such as linear motion or a sharp turn)
requires half the computation required for curved motion. Even in the worst case, the
computational requirements are only 80 addition and multiplication operations. Furthermore,
these operations are numerically stable.

¢ Maintenance of minimal state information per entity. A table maintains 27 state values per
entity (or as few as 21, at the expense of some additional computation) which are passed
to the PHBDR software module along with the incoming update packet. Consequently, the
overal memory requirements are kept small, and the core PHBDR implementation is kept
independent of the particular entity type.

Finaly, the PHBDR protocol is general-purpose in that it makes minimal assumptions about
the vertex behavior (other than that its motion is continuous) or about the simulation environment
(other than the availability of synchronized clocks and a unidirectional datagram service). These
assumptionsindeed have little consequence, because entity motion is amost certainly continuous,
fine-grain distributed clock synchronization is awell-understood problem with numerous deployed
solutions, and most available networks provide datagram services. Moreover, hosts are relatively
decoupled from the network behavior or the behavior of other hosts. These minimal assumptions
permit PHBDR to be used in awide variety of situations and, more importantly, to form the basis
for constructing more complex protocols.

8.2 Effective Orientation, Structure, and Aggregation Modeling

Using the PHBDR protocol as a base, this thesis then presented a variety of other protocols: the
Axis Point protocol for modeling entity orientation, multiple-detail channels for modeling entity
structure, and Projection Aggregation Entities (PAES) for modeling entity aggregations.

The Axis Point protocol is superior to both Euler angles and quaternions for modeling entity
orientation. It offers computational simplicity and numerical stability, continuous parameters as
the entity rotates, and easy translation to and from rotation matrices common in graphical systems.
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Furthermore, axis point information is readily derived from Euler angles and quaternions, so the
technique integrates easily into existing systemsthat employ other representations.

Multiple-detail channelsallow source hoststo simultaneously support avariety of remote models
for non-rigid entities. We have demonstrated experimentally inacase study that |ow-detail structural
models can generate packet rates that are two orders of magnitude lower than those produced by
high-detail structural models.

PAEsprovide an effective way to group entitiesby simultaneously applying multipleaggregation
criteria, particularly entity type and entity location. By supporting these multiple aggregation
criteria, PAEs alow hosts to select entity groups based on the criteria that are most important
locally, rather than based on some single criterion which might not offer the desired data reduction
characteristics. Moreover, our design and implementation demonstrates that the potentially large
number of PAEs can be effectively managed in a distributed environment. PAEs aso potentially
integrate effectively with other simulation operations such ascollision detection and scenerendering.
Finally, the PAE hierarchy potentially allows simulation developers to introduce more detail into
entity models without disturbing existing simulation code. To support the additional detail, hosts
simply need to know how to render the new entity components; the data management is otherwise
unchanged.

This set of technigques demonstrate our underlying design philosophy to support the decoupling
of simulation hosts by giving each host maximum autonomy. This autonomy alows each host to
select the set of incoming data streams that most effectively utilize limited local bandwidth and
computational resources to provide an accurate visualization for local users. As an example, for
uninteresting entity types or entities located far from the viewer, the host subscribes to PAESs that
require low bandwidth and minimal computation. For closer entities, the host uses more specific
PAEs and rigid-body entity channels which support better entity models. Finaly, for entities that
are directly visible to the local viewer, the host subscribes to approximate-body and full-body
channel sthat require high bandwidth and considerabl e computati on to provide maximum positional
and structura fidelity modeling. If the simulation does not provide this receiver-side flexibility, it
cannot be scalable; to support close-range viewers, source hosts must always provide the highest
resolution information, so if a host cannot selectively reduce the bandwidth/computation, it will
receive an overwhelming amount of datafrom all of the visible entities.

Together, therefore, these techniques enable the scalability of distributed simulation. The
adage “more [fine-grain data channels transmitted by the source] is less [data received by the
remote hosts]” should become the guiding design principle for large-scale distributed simulations.
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However, to provide this variety of information for al entities, source hosts must implement the
entire family of dead reckoning protocols described in this thesis. This potential complexity is
aleviated considerably by our recursive design of the underlying protocols.

8.3 TheValue of Recursive Protocol Design

To meet the broad range of modeling requirements without introducing a large code complexity,
thisthesis has adopted arecursive protocol design approach. The simple PHBDR protocol provides
abase from which other protocols are constructed. The AxisPoint protocol, for instance, internally
employs two instances of PHBDR. Each of the multiple-detail channels relies on the PHBDR
protocol and the Axis Point protocol to model the motion of each entity vertex. If PAE summaries
are used to render entity groups, then the PHBDR protocol is used to model the PAE summary
position, bounding sphere radius, and entity distribution information.

The recursive protocol design eased the protocol analyses. Once a basic protocol has been
validated, we used those results as a foundation for validating the more complex protocols. For
example, having demonstrated the effectiveness of PHBDR on circular entity motion, we could
confidently construct the Axis Point protocol, because vertices on the axis vectors trace circular
paths along the unit sphere. Moreover, with the PHBDR and Axis Point protocols analyzed, their
use in multiple-model channelsto represent several vertices at onceisanatura extension requiring
minimal additional analysis.

The most obvious advantage of a recursive protocol design is in alowing code reuse at both
the source and remote hosts. For example, we implemented the PHBDR protocol as a C ++
class library that is simply linked into each of the more advanced protocols. A single class,
TrueQbj ect Si ngl e (animplementation of the Tr ueCbj ect interface), represents any source
vertex that is being dead reckoned, while DeadReckonObj ect Si ngl e (an implementation
of the DeadReckon(hj ect interface) represents the remote model for that vertex. Advanced
protocols such as multiple-model channels simply reuse the PHBDR protocol by creating other
implementationsof Tr ueChj ect andDeadReckonObj ect that respectively composeinstances
of TrueChj ect Si ngl e and DeadReckonObj ect Si ngl e. This code reuse aso reduces the
complexity of testing the correctness of a protocol implementation. Given the correctness of the
PHBDR protocol library, testing efforts only need to be expended on the “glue’ in the higher
protocol that links PHBDR instances together.

Recursive structuring a so provides greater flexibility for supporting evolution of the simulation
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system. In particular, the structure provides awell-defined framework for adding new protocolsinto
the simulation or customizing existing protocol sfor particular entity types. New protocolsareintro-
duced by simply adding more implementations of the Tr ueCbj ect and DeadReckon(hj ect
interfaces, while entity-specific customizations are performed by subclassing from the particular
protocol implementation being customized. The biggest remaining issue is how to determine the
appropriate protocol implementationto instantiatefor agiven entity. However, thisdeterminationis
easily facilitated by providing the needed informationin an entity directory service, and if theremote
host does not have the necessary implementation available, it can substitute the corresponding im-
plementati on superclass which providesamore generic dead reckoning service. The use of |loadable
languages such as Java [89] for dynamically receiving dead reckoning protocol implementations
represents an exciting an area for future research.

8.4 FutureWork

Within the simulation domain, the techniques described in this thesis can be improved in severa
ways. First, additional work is needed to address the limitations to the PHBDR protocol, as
discussedin Section4.4. In particular, variabletimeouts, state-replace packets, and minimum latency
estimation appear to offer particularly effective protocol extensions. Second, more experience is
needed with multiple-detail channelsover abroader variety of entity typesto provide better guidance
on constructing approximate structural models. We envision a tool that can analyze an entity’s
geometric description and some specification of the entity’s behavior to automatically construct a
set of remote models for representing the entity’s dynamic structure at different levels of detail.
Third, PAEs currently rely on octtrees for classifying entity location, but octtrees are cumbersome
to manipulate because small changesin an entity’s position can cause rather significant changes to
the entire octtree structure. Ultimately, one would want to replace “grid-based aggregations” with a
hierarchy of bounding spheres, which are better suited for fast collision detection and computation;
circular regions have been demonstrated to be at least 5% more effective than rectilinear regions
in the two-dimensional case [73]. Findly, we have yet to understand how the ability to load
software modules at run-time—a capability provided by languages such as Java [89]—may impact
distributed simulations. At a minimum, such languages have the potential to permit hoststo support
abroader range of remote modeling algorithms by simply downloading dead reckoning, rendering,
and collision detection modul es as needed.

However, distributed simulation is just one example of a broader class of applications that
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demand real-time state consistency across multiple hosts while minimizing bandwidth utilization
and computational load. As high-bandwidth networks and cheap, high-performance machines
become commonpl ace, more peoplewill use applicationsinvol ving real -time monitoring and control
of remote devices, collaborative document editing, and distributed development and testing of
engineering prototypes.

Although the challenges faced by these applications resemble those faced by distributed simu-
lation, devel opers currently construct application-specific solutions. To alarge extent, thisthesisis
guilty of the sameerror: it has concentrated on protocol sto support the remote modeling of physical
entitieswithin adistributed simulation application. For example, the PHBDR protocol assumesthat
the values being model ed are continuous; moreover, it is particularly optimized to handle particular
types of entity behavior, such as smooth motion and collisions. Although PHBDR does relax most
of the assumptions made by previous dead reckoning protocols, clearly, one could go further in
that direction. Similarly, the multiple-detail channel design assumes that the model ed entities have
a physica structure, and PAES assume that level-of-detail selection at hosts is based primarily on
entity type and location.

In the long term, we envision a suite of basic protocols and techniques that can support a
broader variety of dissemination-oriented applications. Besides supporting entity and other remote
modeling, such alibrary would probably allow applications to query for available bandwidth and
computational resources, select and manage data channel subscriptions based on these resource
constraints, and perform information discovery. Effective subscription-based alocation and sharing
of limited bandwidth resources is an area of active research [55, 32]. A key challenge in deploy-
ing a dissemination support library is determining to what extent it can provide general-purpose
functionality without sacrificing the performance offered by application-specific code.

The decoupling techniques developed by this thesis aso should be generaly useful in large
distributed applications, such as multimedia dissemination systems, information retrieval systems,
or even the World-Wide Web [6]. In each of these applications, sources might be engineered
to provide information at multiple levels of detail, and clients could be configured to select the
appropriate detail based on user needs and resource availability. We expect that thisapproach might
be particularly useful in addressing the variable bandwidth connectivity (ranging from kil obit-per-
second mobile links to gigabit-per-second LANS) that data sources must contend with in today’s
network environment. Research remains to understand the appropriate levels of detail that sources
would provide for these applications and to evaluate the effectiveness of the multiple channel
approach when it is used in domains outside simulation. Initial work in this direction has begun in
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support of video dissemination over heterogeneous networks [10, 15].

Finally, prior work has well established the effectiveness of recursive protocol design for
transport-layer protocols. Asfar aswe know, the protocol family presented in thisthesis represents
the first example of this design technique for application-level protocols. Based on our positive ex-
periences with its use for addressing the remote modeling problems, we are confident that recursive
structuring will be useful not only in other areas of distributed simulation such as collision detec-
tion but also in other high-performance distributed applications. After the software devel opment
community gains additional experience with the technique, we envision the emergence of libraries
and frameworks specifically aimed at supporting the development of recursive protocols.

8.5 Pergspective

With increasing video resolution, network bandwidth, and processor speed, distributed simulation
and visualization systems are becoming increasingly common in the scientific, industrial, and en-
tertainment industries. At the same time, peopl€'s expectations of distributed interactive simulation
have aso increased considerably. These expectations—whether they be of entity counts, distance
between participants, detail of entity models, or interaction level between entities—have always
stayed afew years ahead of the available hardware, software, and network technology.

As an example of the expectations growth, the SIMNET system in 1989 supported up to 200
entities. Theinitia goal for the 1994 STOW system was 10,000 entities, and the initial goal for the
1997 STOW system was 100,000 entities. Moreover, though desired entity counts may not continue
to grow at this pace, the complexity of those entity modelsis surely going to increase at a similar
rate over the next few years. We therefore estimate that the compl exity expectations for distributed
simulations are increasing by afactor of ten every three years, as shown in Figure 8.1.

Until recently, meeting these expectations meant simply waiting for one or two years until the
technology curve advanced. However, this “wait until we can do it” approach is no longer viable
becausethe growth rate of expectations and theincreasing widespread uses of distributed simulations
are outpacing the technology growth rate. For example, processor performance only doubles every
two-to-three years. Moreover, though a system might be devel oped to support current simulation
demands, it is unlikely to immediately scale and be deployable in a wide-area environment where
it isbeing used simultaneously by multipleindependent user groups. To illustrate these limitations,
the deployed 1994 STOW system supported only 1,500 entities, and the 1997 STOW system is
expected to service 5,000 entities. Asreveaed by Figure 8.1, we estimate that the complexity of



144 CHAPTER 8. CONCLUSION

«» 100000 -
Q -
= - ® — Expected _ -
0 —A—  Deployed Phd
©
3 10000
S
>
Z

1000

| | | | | |
1988 1990 1992 1994 1996 1998

Year

Figure 8.1: Divergence of Expected and Deployed Simulation Complexity in the STOW Program

deployed systemsis only increasing by afactor of three every three years.

We conclude therefore that distributed simulation and visualization systems must now be re-
designed to meet future demands; we can no longer afford to simply carry existing systemsforward
onto new hardware technology. Moreover, we expect this need for re-design to persist for several
years.

With this perspective in mind, thisthesis has attempted to take afresh look at distributed simula-
tion with the overriding goal of scalability. We believe that this approach isindicative of how future
research into distributed simulations—and into large-scale and real-time distributed applications
generally—will proceed. Considerable work remains to be donein thisrapidly emerging area, for
these applications still face numerous fundamental challenges. However, our new techniques do
offer apromising basis for devel oping more advanced systems.
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