
EFFECTIVE REMOTE MODELING IN LARGE-SCALE DISTRIBUTED

SIMULATION AND VISUALIZATION ENVIRONMENTS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Sandeep Kishan Singhal

August 1996

c
 Copyright 1997 by Sandeep Kishan Singhal

All Rights Reserved

ii

I certify that I have read this dissertation and that in my opinion it

is fully adequate, in scope and in quality, as a dissertation for the

degree of Doctor of Philosophy.

David R. Cheriton
(Principal Adviser)

I certify that I have read this dissertation and that in my opinion it

is fully adequate, in scope and in quality, as a dissertation for the

degree of Doctor of Philosophy.

Patrick M. Hanrahan

I certify that I have read this dissertation and that in my opinion it

is fully adequate, in scope and in quality, as a dissertation for the

degree of Doctor of Philosophy.

Craig Partridge

Approved for the University Committee on Graduate Studies:

iii

Abstract

The best Qualification of a Prophet is to

have a good Memory.

– George Savile

A Distributed Interactive Simulation application provides a group of users with the illusion of a

single, coherent virtual world, even though the users may be physically located at different machines

connected by a network. These applications demand that each user sees a consistent virtual world

view, that users are able to interact closely with one another and with other simulation entities in

the virtual world, and that maximum realism is provided by hiding the distributed nature of the

application from users.

Faster processors, more powerful graphics hardware, and higher-capacity networks are support-

ing the development of distributed simulation applications containing more simulation entities and

more detailed models of entity appearance and behavior. Consequently, these networked virtual

environments are seeing increased use for multiplayer video games, military and industrial train-

ing, and collaborative engineering (e.g. collaborative design and distributed simulation of complex

engineering models). Large distributed interactive simulation applications are growing to include

well over 100,000 dynamic entities. Achieving the size and detail required by future simulations is

constrained by limits in network bandwidth, network latency, and host processing power.

This thesis describes network protocols and algorithms to support remote modeling, allowing a

host to model and render remote entities in large-scale distributed simulations. These techniques

require fewer network resources and simultaneously support a broader range of entity types than

previous approaches. The thesis begins by describing the Position History-Based Dead Reckoning

(PHBDR) protocol, a simple, efficient protocol which provides smooth, accurate remote position

modeling and minimizes dependencies on network performance and entity representation. We use

iv

PHBDR as a foundation for building three additional protocols:

� Axis Point Protocol: Models remote entity orientation by tracking the position of points in

the entity’s local coordinate system. This protocol is designed to extract information from a

broad range of entity representations.

� Multiple-Detail Channels: A protocol architecture for remotely modeling complex entities—

those having non-rigid structure or articulated parts—at different levels of detail depending

on locally available computational and network resources. This technique allows each host

to allocate its local network and computational resources toward entities that are of primary

local interest.

� Projection Aggregation Entities: A protocol for dynamically bundling information from a

group of remote entities based on their type and location. This protocol is used for remotely

modeling distant or uninteresting entities at a low level of detail.

In presenting these techniques, this thesis shows that a simple, efficient protocol can provide

smooth, accurate remote position modeling and that it can be applied recursively to support entity

orientation, structure, and aggregation at multiple levels of detail; these protocols offer performance

and costs that are competitive with more complex and application-specific approaches, while pro-

viding simpler analyses of behavior by exploiting this recursive structure. In support of this claim,

this thesis shows that:

� PHBDR is a simple, efficient protocol that provides smooth and accurate remote modeling

for a broad range of entities and explicitly recognizes network latency.

� PHBDR is still smooth and accurate when used to model entity orientation, entity structure

at multiple levels of detail, and entity aggregations.

� The recursive protocol structuring provides better network performance and reduced software

complexity when compared with the application-specific approaches deployed in previous

systems.

v

Acknowledgements

Gratitude is the memory of the heart.

– Jean Baptiste Massieu

I have discovered that the process of writing a Doctoral thesis is much like a barn raising common

in pioneer communities during the nineteenth century. In a barn raising, relatives, friends, neighbors,

and even complete strangers would gather to help a family erect a new barn. The barn’s completion

was met with a community-wide celebration. That tradition reveals how the first pioneers, while

being adventurous, recognized the need to exchange knowledge and experience with each other

by developing and maintaining a strong sense of community. Probably the biggest lesson I have

learned in graduate school is the importance of such collaboration among modern-day research

pioneers. Dozens of people have offered suggestions and insight, information, and encouragement

that contributed to this thesis and the research it describes. Indeed, for my own little thesis barn

raising, I am indebted to relatives, friends, neighbors, and complete strangers.

I thank my advisor, Professor David Cheriton, for his advice and support in performing this

research. He has a unique intuition for what will and will not work, and his on-the-spot suggestions

often saved me hours of fruitless programming. David always demanded that my research yield

high-impact results and “not embarrass the grandkids.” He has taught me that real engineering is a

series of design tradeoffs. Finally, he has provided an invigorating research environment in which

people are expected to question any and all ideas put before them.

Professor Patrick Hanrahan and Consulting Professor Craig Partridge read this thesis critically,

and it benefited greatly from their comments. Professors Marc Levoy and Gio Wiederhold also

pointed me toward several related references, while Anthony Tomasic first observed the relationship

between real-time aggregation and data warehousing applications.

I have become notorious for walking down the hallways and bothering everyone with my latest

vi

research problems. My work benefited greatly from discussions with numerous members of my

research group, particularly Ken Duda, Michael Greenwald, Hugh Holbrook, and Matt Zelesko.

I especially thank Hugh who, along with Eric Halpern, implemented most of the PARADISE

distributed simulation system on which many of my protocols were deployed. Luis Gravano, David

Hoffman, and Hugh McGuire were always willing to drop everything, listen to my ideas, and offer

valuable suggestions, even though my research was wholly unrelated to their own.

Numerous other people took time out of their busy schedules to provide information about

their (often unpublished) work: Judith Dahmann (The MITRE Corporation), John Hines and

Adam Whitlock (Naval Research and Development (NRaD)), Marty Johnson (Science Applications

International Corporation (SAIC)), Yoshifumi Kitamura (ATR Communication Systems Research

Laboratories), Duncan Miller and Dan Van Hook (MIT Lincoln Laboratories), Nobutatsu Nakamura

(NEC Information Technology Research Laboratories), Kenny Sato (Sumitomo Electric Industries

Limited), Dan Schab (Naval Air Warfare Center–Training Systems Division (NTSC)) who also

provided the F-16 flight traces used in Chapter 4, Greg Troxel (BBN), and Michael Zyda (Naval

Postgraduate School (NPS)). Randy Garrett (Institute for Defense Analysis (IDA)/DARPA) first

offered me the opportunity to become involved with the STOW program and learn about cutting-

edge military simulation technology; he and Stuart Milner (also of DARPA) ensured the availability

of any information I needed and could always direct me to people capable of answering my

questions. This thesis has truly benefited from an understanding of real application demands that I

gained courtesy of these individuals.

The Stanford U.S.–Japan Technology Management Center translated several technical papers

from Japanese to support my research. I thank Richard Dasher, Tom Cunningham, and Gary Brown

for making this valuable service available to me. Tadashi Nakatani graciously translated additional

materials from Japanese for me.

This research was funded by a graduate fellowship from the Fannie and John Hertz Foundation,

by DARPA grant DABT63–91–K–0001, and by an equipment grant from IBM.

Graduate school involves more than writing a thesis, for it is also a time of intellectual curiosity.

Besides discussing a wealth of research-related matters with my officemates, Jonathan Stone and

Stuart Cheshire, I shared discussions ranging from the efficacy of three-phase transaction commit-

ment to the viability of airline deregulation in Europe. I have learned so much from interacting with

these two individuals, and I only hope that they found our interactions equally rewarding.

For those times in the past year when I was frustrated, depressed, disillusioned, lonely, or upset,

Risa, Brooke, Karen, and Derek always listened to my problems with a sympathetic ear. Your moral

vii

support allowed me to keep things in perspective. You are a wonderful group of people, and I wish

each of you the very best.

Finally, my debt to my parents, Ram and Sushma, is one that I can never describe fully, let alone

begin to repay. Your faith in me has always exceeded my own. I continually strive to match your

own dedication, integrity, and strength. Thank you for not ever asking me what a Ph.D student does

all day.

My biggest regret is that my younger sister, Nidhi, could not live to see the completion of this

thesis. At the time of her death, I had not even graduated from high school, and a Ph.D was the last

thing on my mind. However, I can imagine no other person who would have relished its completion

more than I do. It is therefore in her memory that I dedicate this volume.

STANFORD, CALIFORNIA

30 AUGUST 1996

viii

Contents

Abstract iv

Acknowledgements vi

1 Introduction 1

1.1 Remote Modeling and Remote Rendering : 3

1.2 Barriers to Remote Modeling/Rendering in Large-Scale Distributed Simulation : : 5

1.2.1 Network Bandwidth : 5

1.2.2 Network Latency : 6

1.2.3 Computational Power : 7

1.3 The Need for Fidelity Control and Aggregation : : : : : : : : : : : : : : : : : : 8

1.4 Original Contribution of This Thesis : 11

2 Related Work 13

2.1 Tradeoffs in Real-Time Remote Modeling : 14

2.1.1 Shared Database Consistency : 14

2.1.2 Frame-Rate Updates : 16

2.1.3 Dead Reckoning Protocols : 20

2.1.3.1 Early Dead Reckoning Systems: Amaze : : : : : : : : : : : : 21

2.1.3.2 Commercial Systems: SIMNET, DIS, and STOW : : : : : : : 21

2.1.3.3 Recent Research: Moving Toward Specialized Dead Reckoning

Algorithms : 22

2.1.3.4 Related Techniques From Signal Processing : : : : : : : : : : 26

2.2 Approaches to Supporting Large Distributed Simulations : : : : : : : : : : : : : 28

2.2.1 Protocol Optimizations : 29

ix

2.2.2 Entity Aggregation : 30

2.2.2.1 Network-Based Aggregations : : : : : : : : : : : : : : : : : : 30

2.2.2.2 Organization-Based Aggregations : : : : : : : : : : : : : : : : 30

2.2.2.3 Grid-Based Aggregations : 31

2.2.2.4 Multidimensional Data Cubes : : : : : : : : : : : : : : : : : : 32

2.3 Conclusion : 33

3 Position History-Based Dead Reckoning (PHBDR) 36

3.1 Overview of the PHBDR Protocol and Algorithm : : : : : : : : : : : : : : : : : 37

3.2 Source Generation of Updates : 37

3.3 Receiver Processing of Updates : 39

3.3.1 Adaptive Tracking Algorithm : 40

3.3.2 Adaptive Convergence Algorithm : 44

3.4 Setting Dead Reckoning Parameters : 46

3.4.1 Setting the Small–Medium Angle Threshold : : : : : : : : : : : : : : : 46

3.4.2 Setting the Medium–Large Angle Threshold : : : : : : : : : : : : : : : : 47

3.4.3 Setting ∆max�cp : 47

3.5 Conclusion : 48

4 Analyzing PHBDR Network and Error Performance 49

4.1 Entity Path Classification : 50

4.2 Evaluating PHBDR On Complex Curve Types : : : : : : : : : : : : : : : : : : : 51

4.2.1 High Magnitude Jerk With No Spikes : : : : : : : : : : : : : : : : : : : 52

4.2.1.1 Oscillatory Motion : 53

4.2.1.2 Circular Motion : 55

4.2.2 Low Magnitude Jerk With Occasional Spikes : : : : : : : : : : : : : : : 56

4.2.3 High Magnitude Jerk With Frequent Spikes : : : : : : : : : : : : : : : : 60

4.3 Advantages of the PHBDR Protocol : 61

4.3.1 Remote Model Stability : 61

4.3.2 Decoupling Receivers from Network and Source Host Performance : : : : 65

4.3.3 Bandwidth and Computational Load : 66

4.4 Addressing Limitations in the PHBDR Protocol : : : : : : : : : : : : : : : : : : 70

4.4.1 Delayed Reaction to Sudden Behavior Changes : : : : : : : : : : : : : : 70

4.4.2 Reaction to Packet Loss : 71

x

4.4.3 Quiescent Entity Traffic : 72

4.4.4 Dependence on Time Synchronization : : : : : : : : : : : : : : : : : : : 73

4.4.5 Uniformly High Network Latency : 73

4.5 Conclusion : 74

5 Using the PHBDR Recursively to Model Entity Orientation 76

5.1 The Axis Point Protocol : 76

5.1.1 Source Packet Generation : 76

5.1.2 Receiver Packet Processing : 78

5.2 Analyzing Axis Point Protocol Behavior : 79

5.3 Evaluating the Axis Point Protocol : 82

5.3.1 Decoupling From Source Entity Model : : : : : : : : : : : : : : : : : : 82

5.3.2 Code Complexity and Size : 84

5.3.3 Numerical Performance : 86

5.3.4 Limitations of the Axis Point Protocol : : : : : : : : : : : : : : : : : : : 87

5.4 Conclusion : 88

6 Multiple-Detail Channels for Modeling Non-Rigid Entities 89

6.1 The Multiple-Detail Channel Architecture : 90

6.2 Rigid-Body Channel for Far-Range Viewers : 92

6.2.1 Position-Only Model : 92

6.2.2 Position-and-Orientation Model : 93

6.3 Approximate-Body Channel for Mid-Range Viewers : : : : : : : : : : : : : : : 96

6.3.1 Radial-Length Model : 96

6.3.2 Local-Coordinate-Vertex Model : 98

6.4 Full-Body Channel for Close-Range Viewers : : : : : : : : : : : : : : : : : : : 101

6.4.1 Selecting Marker Vertices : 101

6.5 Relationship Between the Different Channels : : : : : : : : : : : : : : : : : : : 104

6.6 Conclusion : 106

7 Entity Aggregation 108

7.1 Projection Aggregation Entities and Their Implementation : : : : : : : : : : : : 108

7.1.1 Transmission Policies for Projection Aggregation Entities : : : : : : : : : 110

7.1.1.1 Timeout-Based Aggregation Transmission : : : : : : : : : : : 110

xi

7.1.1.2 Quorum-Based Aggregation Transmission : : : : : : : : : : : 111

7.1.1.3 Comparing the Transmission Approaches : : : : : : : : : : : : 112

7.1.2 Optimizing PAEs for Scalability : 113

7.1.2.1 Creating and Locating PAEs : : : : : : : : : : : : : : : : : : 114

7.1.2.2 Reducing the Number of PAEs Created and Destroyed : : : : : 115

7.2 Integrating PAEs With Multiple-Detail Channels : : : : : : : : : : : : : : : : : 116

7.2.1 Tail Circuit Bandwidth Reduction : 117

7.2.2 Host Packet Rate and Computation Reduction : : : : : : : : : : : : : : : 119

7.3 The PAE Hierarchy : 119

7.3.1 Restricting the Grid Size Associated With PAEs : : : : : : : : : : : : : : 122

7.3.2 Reducing Changes to the PAE Hierarchy : : : : : : : : : : : : : : : : : 122

7.4 Potential Integration of PAEs With Other Simulation Tasks : : : : : : : : : : : : 124

7.4.1 PAE Summary Protocol for Rendering Entity Groups : : : : : : : : : : : 125

7.4.1.1 PAE Summary Update Generation : : : : : : : : : : : : : : : 125

7.4.1.2 PAE Summary Update Processing : : : : : : : : : : : : : : : : 126

7.4.2 Using the PAE Hierarchy to Filter Entities : : : : : : : : : : : : : : : : : 128

7.4.2.1 Collision Detection : 128

7.4.2.2 Rendering : 130

7.4.2.3 Traversing the PAE Hierarchy Using Deep Iterators : : : : : : : 132

7.4.3 Supporting Simulation Evolution: Treating All Entities As PAEs : : : : : 133

7.5 Conclusion : 134

8 Conclusion 136

8.1 PHBDR: An Accurate, Efficient Remote Modeling Protocol : : : : : : : : : : : : 136

8.2 Effective Orientation, Structure, and Aggregation Modeling : : : : : : : : : : : : 138

8.3 The Value of Recursive Protocol Design : 140

8.4 Future Work : 141

8.5 Perspective : 143

Bibliography 145

xii

List of Tables

2.1 Use of the Techniques Presented in this Thesis : : : : : : : : : : : : : : : : : : 35

3.1 Adaptive Algorithms for Extrapolation and Convergence : : : : : : : : : : : : : 46

3.2 Criteria for Setting PHBDR Tracking and Convergence Parameters : : : : : : : : 46

4.1 Summary of Five Curve Classes : 50

4.2 Summary of Average Error (Absolute and As Percentage of Amplitude) and Packet

Rate for Oscillatory Motion : 55

4.3 State Values Stored Per Entity Under the PHBDR and DIS Protocols : : : : : : : 69

5.1 Computation Required to Obtain Axis Point Data : : : : : : : : : : : : : : : : : 83

5.2 Comparison of Packet Processing Computation in Axis Point and a Quaternion-

Based Protocols : 86

7.1 Channel Options for Subscribing to Jello Entity Updates : : : : : : : : : : : : : 117

7.2 Pairwise PAE Analysis to Discard Impossible or Uninteresting Collisions : : : : : 128

xiii

List of Figures

1.1 Distributed Interactive Simulation Application Presents a User with a Coherent

Virtual World : 2

1.2 Simulation Nodes Exchange Information About Locally Modeled Entities : : : : : 3

1.3 Reducing the Modeling Detail and Fidelity of Distant Entities To Reduce Local

Packet Rate and Computational Requirements : : : : : : : : : : : : : : : : : : 9

2.1 Tradeoffs in Remote Rendering for Distributed Simulation Applications : : : : : : 14

3.1 Hosts Multicast Position Update Packets for Local Entities : : : : : : : : : : : : 37

3.2 Update Packet Generation at the Source Host : : : : : : : : : : : : : : : : : : 38

3.3 Dead Reckoning of Entity Models at the Remote Host : : : : : : : : : : : : : : : 39

3.4 Tracking and Convergence Steps at Remote Sites : : : : : : : : : : : : : : : : 39

3.5 Angle of Embrace Determines Adaptive Tracking : : : : : : : : : : : : : : : : : 40

3.6 Using Adaptive Tracking to Model Sudden Path Changes Using (a) Three and (b)

Two Previous Position Updates : 42

3.7 Convergence Smoothly Corrects the Current Displayed Position : : : : : : : : : 45

4.1 PHBDR Rendering of Sinusoidal Oscillation (amplitude 50 meters, period 9 sec-

onds, timeout 5 seconds, zero latency, threshold (a) 1, (b) 10, (c) 25, and (d) 50

meters) : 54

4.2 Average PHBDR Protocol (a) Rendering Error and (b) Packet Rate for Circular

Motion (radius 50 meters) With Zero Network Latency : : : : : : : : : : : : : : : 56

4.3 Entity (a) Position, (b) Velocity, (c) Acceleration, and (d) Jerk During a Collision : : 57

4.4 Average PHBDR Protocol (a) Error and (b) Packet Rate for Bounce Motion of Height

25 : 59

xiv

4.5 PHBDR Protocol Rendering of Bounce Motion (height 25 meters; timeout 5 sec-

onds; threshold (a) 1, (b) 10, and (c) 25 meters) : : : : : : : : : : : : : : : : : : 60

4.6 Average PHBDR Protocol (a) Error and (b) Packet Rate for Sample Motion Exhibit-

ing High Jerk with Frequent Spikes : 62

4.7 DIS Rendering of Bounce Motion (height 25 meters; timeout 5 seconds; threshold

(a) 1, (b) 10, and (c) 25 meters) : 63

4.8 Remote Rendering Error on Two Traces of F-16 Turning Maneuvers With Network

Latency (protocol error threshold 20 feet) : 66

4.9 Bandwidth–Error Comparison Between PHBDR and DIS Protocols on F-16 Traces

Shown in Figure 4.8 : 67

4.10 Expected Number of Supported Entities Using PHBDR in a Multicast Environment

with 200 Hosts : 68

5.1 The Axis Point Protocol Tracks Rotation of X(1; 0; 0), Y (0; 1; 0), and Z(0; 0; 1) Along

the Unit Sphere Surface : 77

5.2 Entity Rotation and Translation in World Coordinate System : : : : : : : : : : : 79

5.3 Relationship Between Rotation and Position Threshold on X Axis Point: (a) As

coordinate system rotates, axis point moves along circle on surface of unit sphere;

(b) Position error is the length of a chord through this circle. The behavior of the Y

axis point is similar. : 80

5.4 Relation Between Orientation Threshold and Rotation Angle : : : : : : : : : : : 81

5.5 Packet Rate to Maintain Desired Average Rotation Error Under Steady Rotation : 82

5.6 Extending Axis Point Dead Reckoning for (a) Dominant Rotation Axis, (b) Non-

Aligned Rotation Axis, and (c) Multiple Rotation Axes. : : : : : : : : : : : : : : : 85

6.1 Multiple-Detail Channels Provide Independent Streams of Entity Update Information 90

6.2 Sample Entity for Modeling Multiple-Detail Channels: Jello Icosahedron With Ver-

tices Connected by Springs : 91

6.3 Position-Only Model for the Jello Application: (a) Modeling Error and (b) Vertex

Update Rate : 93

6.4 Estimating Orientation of Non-Rigid Entities: (a) Rigid structure of entity; (b) Dy-

namic structure of entity; (c) Optimally orienting the rigid model to minimize error

between rotated rigid vertices and actual entity vertices; (d) Approximation using

one axis point vector directly and orthogonalizing other axis point vector. : : : : : 94

xv

6.5 Position-and-Orientation Model for the Jello Application: (a) Modeling Error and (b)

Vertex Update Rate : 95

6.6 Computing Average Radius for a Dynamic Entity Structure: The solid line represents

the entity’s dynamic structure, and the dashed line represents the entity’s rigid

structure model. : 97

6.7 Radial-Length Model for the Jello Application: (a) Modeling Error and (b) Vertex

Update Rate : 98

6.8 Computing Local Coordinate System Position of Entity Vertices: (a) Computed

entity position and orientation; (b) Applying translation and rotation in reverse to

center at origin; (c) Sampling vertex positions within local coordinate system. : : : 99

6.9 Local-Coordinate-Vertex Model for the Jello Application: (a) Modeling Error and (b)

Vertex Update Rate : 100

6.10 Number of Marker Vertices Determines Structural Fidelity Supported by Full-Body

Channel: (a) Source model of a string; (b) Remote model with few marker vertices;

(c) Remote model with more marker vertices : : : : : : : : : : : : : : : : : : : 102

6.11 Remote Modeling of a Rubber Band: (a) Before being stretched; (b) After being

stretched; (c) With an added ephemeral marker vertex : : : : : : : : : : : : : : : 103

6.12 Modeling the Jello Using Data From a Full-Body Channel: (a) Modeling Error and

(b) Vertex Update Rate : 104

6.13 Comparison of Vertex Error and Packet Rate Ranges in Jello Application for

Multiple-Detail Channels : 105

7.1 Projection Aggregation Entities Represent the Intersection of an Entity Organization

and a Virtual World Grid Region : 109

7.2 Projection Aggregation Entities Collect and Bundle Updates From Member Entities 110

7.3 Average Packet Rate and Update Delay Produced by Timeout-Based and Quorum-

Based Transmission for Aggregations : 112

7.4 PAEs as Logical Entities Created and Managed by OAEs : : : : : : : : : : : : : 114

7.5 Tail Circuit Bandwidth Requirements of Multiple-Detail Architecture Relative to

Single-Channel Architecture as a Function of Host Count Behind Tail Circuit : : : 118

7.6 A PAE Hierarchy Describes Entities with Increasing Organization and Location

Granularity: (a) Location of entities in the virtual world, (b) Organizational structure

of entities, and (c) Corresponding PAE hierarchy. : : : : : : : : : : : : : : : : : 120

xvi

7.7 PAE Hierarchy is Integrated With OAE and GAE Hierarchies : : : : : : : : : : : 121

7.8 Number of PAE Remappings Performed by OAEs as a Function of Remapping Delay124

7.9 PAE Summary Updates: (a) Original entity locations; (b) Summary information

transmitted in PAE summary update : 125

7.10 Rendering of an Entity Group Based on PAE Summary Information : : : : : : : : 127

7.11 Collision Detection Algorithm With PAEs : 129

7.12 Scene Rendering Algorithm With PAEs : 130

7.13 Viewing PAEs Bound the Viewing Frustrum and Filter the Types of Entities Displayed

in Each Region : 131

7.14 Performance of Deep Iterator Versus Recursive Function Over (a) Fixed-height PAE

hierarchies (height 5) and (b) Fixed-degree PAE hierarchies (degree 2) : : : : : : 133

8.1 Divergence of Expected and Deployed Simulation Complexity in the STOW Program144

xvii

Chapter 1

Introduction

A Distributed Interactive Simulation application, as illustrated in Figure 1.1, provides a group of

users with the illusion of a single, coherent virtual world, even though the computations run on

heterogeneous systems that may be dispersed over a physically large geographic area (e.g. around

the real world). The virtual world consists of a set of entities, objects that participate in some way

in the simulation. Simulation entities may include, for example, human-controlled and computer-

controlled vehicles; a terrain (and associated features such as rocks, trees, and buildings), and even

logical objects such as the current weather state or an object group. In this interactive environment,

each host presents its local user with a realistic viewport onto the virtual world. For example, the

rendered scene depicts all of the virtual world entities that would normally be visible to that user.

As a result, the user is unaware of which users are controlling the various entities, which computers

are performing detailed computational modeling of the various entities, and where those humans

and computers are physically located. Besides supporting geographic separation of the users, the

distributed nature of these applications supports fault-tolerant simulation environments and allows

the creation of large systems at relatively low cost compared to large, centralized architectures.

Faster processors, more powerful graphics hardware, and higher-capacity networks are support-

ing the development of distributed simulation applications containing more simulation entities and

more detailed models of entity appearance and behavior. Consequently, these networked virtual

environments are seeing increased use for multiplayer video games, military and industrial training,

and collaborative engineering (e.g. collaborative design and distributed simulation of complex en-

gineering models). These applications demand that each user sees a consistent virtual world view,

that users are able to interact closely with one another and with other entities in the virtual world,

and maximum realism is provided by hiding the distributed nature of the application from users.

1

2 CHAPTER 1. INTRODUCTION

Remote host modeling
helicopter

Remote host modeling
windsurfer

Remote host modeling
helicopter

Remote host modeling
helicopter

N E T W O R K

User’s host displays visible scene and
hides network location of actual entity

models

User’s host displays visible scene and
hides network location of actual entity

models

Figure 1.1: Distributed Interactive Simulation Application Presents a User with a Coherent Virtual
World

To allow a local user to move about the virtual world and interact with remote participants,

the host must accurately display the position, orientation, and structure of all virtual world entities

visible to that user. For each entity, each host maintains an entity model—some state information

along with a function that takes the state information as input and can generate the entity’s current

position, orientation, and structure on each frame. We designate one host’s model as the “source”

(also known as the “local” or “true”) model representing the most accurate current state of the entity.

Because the state of an entity model is updated in response to user input, the source model typically

resides at the host whose local user is directly controlling the entity1 to minimize the delay between

1Non-interactive models do exist; such models are either autonomous—in which case the source model may reside on

1.1. REMOTE MODELING AND REMOTE RENDERING 3

Source (Local) Entity Model

Shadow (Remote) Entity Model

Host 1

Data Transmission Path

Host 3

Host 2

Figure 1.2: Simulation Nodes Exchange Information About Locally Modeled Entities

user actions and source model updates. All other simulation hosts maintain “remote” (also known

as “shadow” or “ghost”) models providing less accurate versions of the entity’s current state. The

source host must transmit information across the network to update the remote entity models at other

hosts, as shown in Figure 1.2. The transmitted state information may take many forms, depending

on the type of models maintained at the remote hosts. Every host periodically receives information

from source models at other hosts and updates the corresponding entity model maintained locally.

On each frame, each host queries its entity models (both source models and shadow models) for

current entity position, orientation, and structure information. It then displays all visible entities

on the screen, according to the local viewer’s position in the virtual world. To provide smooth,

seamless animation, the host should update all entities—both local and remote—at the local frame

rate. The user thus notices no differences between local and remote entities on the display.

1.1 Remote Modeling and Remote Rendering

Remote modeling is the task of maintaining a shadow representation of the position, orientation,

and other attributes of an entity modeled at another host. Remote rendering is the task of smoothly

any host—or derived from information received from an actual physical object—in which case the source model would
typically reside on a host located near the physical object.

4 CHAPTER 1. INTRODUCTION

integrating remote entity models with local entity models on a single display. Effective remote

modeling and rendering should provide the local user with positional, behavioral, and structural

fidelity about the entity.

Interactive users expect a positionally accurate view of remote entities. Positional fidelity means

that the average position and orientation error of each remote model should be small. For example,

in an auto-racing simulation, the user expects an accurate visual positioning of nearby competitors’

cars in order to steer his own car and avoid collisions. Any significant perceived inaccuracy leads

to confusion, incorrect actions, and inconsistent responses.

Animation of remote participants should also exhibit behavioral fidelity, meaning that the

velocity and acceleration of each remote model should reflect the true entity’s behavior. Even when

positional fidelity is impossible, the scene should still aim to provide some level of behavioral

fidelity. For example, the user wants to see that a distant car is swerving, even if the actual rate of

motion is incorrect.

As distributed simulations become more sophisticated, remote rendering also needs to provide

structural fidelity. Structural fidelity means that the remote model reflects real-time changes to the

shape of non-rigid entities. For example, a swimming octopus does not retain a static form, and

a piece of jello dynamically changes shape as it wiggles. Without providing structural fidelity,

a distributed simulation cannot aim to provide a good sense of reality, because real entities are

usually not rigid. Even an otherwise rigid entity might undergo a structural change after a sudden

collision. An entity may also have articulated parts—attachments exhibiting relatively independent

motion—such as a retractable radio antenna on an automobile or a rotating satellite receiver on a

surveillance vehicle. Future simulations must transmit and process information regarding structural

changes to the entity, although these changes may occur at a frame-rate granularity.

Existing distributed simulations have used a broad range of techniques for providing positional

and behavioral fidelity in remote models, but these systems have only made limited efforts at

supporting structural fidelity; most approaches in this arena have only handled statically-configured

articulated parts [37].

Distributed simulation systems are evolving along several dimensions. First, they are growing in

size to include dozens of sites and well over 100,000 entities [1]. Second, each simulation is expected

to include a growing variety of entity types. Newer simulations also include entities that support

dynamic terrain, weather, and electromagnetic transmissions. Third, the entity models themselves

are becoming more detailed and dynamic. Entity models describe fine-grain motion, structural

change, and values of numerous state attributes besides position and orientation. As a result of these

1.2. BARRIERS TO REMOTE MODELING/RENDERING IN LARGE-SCALE DISTRIBUTED SIMULATION5

trends, the remote modeling and remote rendering problems are growing in importance, size, and

complexity. However, in meeting these demands, simulation designers must contend with several

resource constraints.

1.2 Barriers to Remote Modeling/Rendering in Large-Scale Distributed

Simulation

Within a year, we expect a top-of-the-line general-purpose workstation to contain a 500 MHz

processor [19], contain 500 MB of memory, and be connected to a 100 Mbps Ethernet. We can

reasonably expect that future machines will provide an order of magnitude more computational

power and memory. Furthermore, gigabit-per-second Ethernet is already seeing experimental

deployment.

Despite these developments, today’s commercially available hardware cannot support the remote

modeling and rendering requirements of a high-detail, 100,000 entity simulation. Moreover, the

next generation of hardware is unlikely to keep up with the growing requirements on distributed

simulation. These simulations face—and will continue to face—three resource limitations: network

bandwidth, network latency, and host processing power.

1.2.1 Network Bandwidth

Distributed simulation design is constrained by the network bandwidth that is available for exchang-

ing information among simulation nodes. This information includes updates about entity position

and orientation, updates about other attributes of entity state such as color and infrared emissions,

and data supporting simulation tasks such as entity collision detection and agreement, audio/video

communications among participants, and clock synchronization.

For example, each entity must provide frequent updates (i.e. between two and 5 per second)

to minimally support display and collision detection computation for close-range entities. In a

large simulation containing 100,000 entities, the resulting wide-area bit rate would range between

96 Mbps (assuming a tiny 480-bit update packet and two updates per second per entity) and 375 Mbps

(assuming a more likely 750-bit update packet and five updates per second per entity). Indeed, a

traffic model [92] for a 100,000-entity military exercise predicts a sustained wide-area load of

230 Mbps with peak load of up to 700 Mbps. Even using multicast to prune the distribution of data,

the data requirements still exceed the capacity of 100 Mbps Ethernet LANs [39]. Even worse, these

bandwidth models assume controlled interactions between entities, update rates averaging only one

6 CHAPTER 1. INTRODUCTION

per second, and the absence of video data. Notably, network tail circuits, which typically range in

bandwidth between 1 Mbps and 45 Mbps, represent the most severe bandwidth bottleneck.

Network bandwidth will continue to be a limited resource for large-scale simulation. As

we increase the number of entities and the level-of-detail of the individual entity models, more

information must be exchanged among simulation nodes, so the simulation’s network bandwidth

requirements increase. For example, tight interactions between entities may require up to ten

updates per second from each entity, particularly for distributed engineering models. Each entity

can be reasonably expected to dynamically update at least four vertices (which is a conservative

estimate and does not consider updates of non-position attributes). Even using multicast, a LAN

bandwidth requirement of over 2 Gbps is not at all far-fetched, and again, we have not made any

allowance for video data.

Finally, even if network technology could meet the bandwidth demands of a large distributed

simulation, the bandwidth problem would remain. We have completely ignored the bandwidth

demands of other applications, including other distributed simulations, sharing the same network.

If network bandwidth were to become freely available, we can reasonably expect that most networked

applications will have correspondingly high bandwidth requirements of their own. Therefore, it

will always be advantageous to minimize the bandwidth demands of a particular simulation.

1.2.2 Network Latency

Distributing entity models onto multiple machines allows for greater scalability, but it also forces

simulation hosts to contend with network latency, or delay. This delay includes several components,

including transmission delay across the physical network medium, queueing delay in intermediate

switches and routers, and processing delays at the endpoint hosts in preparing the packet for

transmission and processing the incoming packet. Average one-way packet latencies between well-

connected hosts (with at least T-3 connectivity) range from 45 ms (across the United States) to 85 ms

(between the western United States and Europe or Asia); hosts with worse connectivity, including

low-bandwidth SL/IP connections, can see latencies in the hundreds of milliseconds. Even worse,

the jitter or variation in latency is considerable: latencies five times worse than the average case are

common [78].

This latency means that simulation hosts cannot ever expect to maintain a perfectly consistent

view of the virtual world. Any transmitted entity state update will be delayed by the network,

and each remote site will see a different latency. Consequently, simulations must be explicitly

designed to handle inconsistencies. For example, when two entities modeled at different hosts

1.2. BARRIERS TO REMOTE MODELING/RENDERING IN LARGE-SCALE DISTRIBUTED SIMULATION7

collide, no single host generally has enough information to immediately determine whether the

collision actually happened and be sure that its decision is consistent with the perception at other

hosts. Making such a consistent decision would require zero-latency data transmission.

Network latency simply cannot be eliminated. For example, speed-of-light propagation delays

alone demand that the latency be at least 13 ms across the United States or 45 ms between the western

United States and Europe or Asia. Though work is being done to improve packet processing latency

at endpoint hosts [62, 63], these optimizations are addressing a relatively minor component of the

end-to-end latency, which is dominated by router queueing and physical medium delays. Moreover,

latency is a growing concern because large distributed simulations are incorporating sites separated

by longer distances. At the same time, the interactions between simulation hosts are becoming more

complex and, therefore, time-sensitive.

1.2.3 Computational Power

Simulation hosts incur computational overhead to receive and process incoming network packets

about remote entities as well as to prepare and transmit updates about local entities. Current

platforms cannot meet the networking demands of large-scale distributed simulations.

Even after using extrapolation techniques at remote hosts to reduce the required packet rate

generated by a single entity, 100,000-entity simulations can still deliver a sustained 72,000 packets

per second to each host [103] with burst rates of 480,000 packets per second [92]; again, these

numbers are extremely conservative and assume controlled interactions between entities, update

rates averaging only one per second, and the absence of video data. We assume that the packet

reception interrupt and link-layer processing costs roughly 1 �s 2 or 500 cycles. UDP/IP processing

accounts for approximately 4,125 cycles (roughly 1,500 instructions at a tightly optimized CPI

of nearly 2.75)3 Finally, running applications require roughly 1,000 cycles to recover from the

cache pollution introduced during the interrupt handler.4 Packet reception and UDP/IP processing

2Mogul and Ramakrishnan [62] report 142�s for these operations. We conservatively use a considerably lower estimate
to account for their previous-generation Alpha workstation and the delays introduced by their system instrumentation.

3Mosberger, et al [63] report 510 instructions for IP processing of a 160-bit payload (equivalent to application
data payload of 128 bits after accounting for UDP header) on an Alpha workstation; the true instruction count should
be considerably higher for any non-trivial payload. They report 1,594 instructions for TCP processing, and Kay and
Pasquale [45] report only a 10% performance difference between TCP and UDP for small packets. We conservatively
allocate 1,000 cycles for UDP processing. The 2.75 CPI estimate is probably low for our top-of-the-line workstation,
because the processor speed has increased considerably relative to the memory speed.

4The results reported in [61] for a 500 Mhz processor are still valid because reading data from the second-level cache
still costs on the order of 15 cycles. The reported cost ranges from 142 cycles to 15,000 cycles, depending on the workload.
Again, we choose a conservative value.

8 CHAPTER 1. INTRODUCTION

therefore requires at least 5,625 cycles per packet, for a total CPU load of 80% to process the

sustained 72,000 packets per second. This load processes almost no payload data, includes no

application-level processing, excludes required machine tasks such as clock interrupts, and does not

account for the burst packet rates. Moreover, we have intentionally underestimated our parameters

by at least a factor of two. Clearly, today’s general-purpose workstations are not equipped to handle

the packet delivery demands of large simulations.

The packet delivery demands of distributed simulations are unlikely to be satisfied by future

generations of workstations. First, the packet processing requirements increase with the number

of participating entities, complexity of their models, and interactions between users. Second,

packet processing—and particularly interrupt handling—is memory-bound. Memory speeds are

not increasing at a rapid rate.

Even if the endpoint host could sustain the simulation’s packet load, minimizing the number

of cycles that are diverted toward packet reception and processing would remain as a fundamental

goal. Packet reception and generation are not the only computational demands on simulation

hosts: simulation hosts are required to render a high-resolution scene on a graphical display at an

interactive frame rate, detect and resolve entity collisions, monitor user input devices and process

their inputs, and model both local and remote entity state. The complexity of these other tasks is also

increasing rapidly as simulations become more complex. For example, high-resolution graphical

rendering by itself already demands the full resources of today’s workstations, and collision detection

complexity can increase roughly quadratically with the number of entities. Moreover, these non-

packet-processing tasks have far greater impact on the user’s perception of the simulation’s quality.

Therefore, we ultimately wish to devote as many CPU resources as possible toward these interaction

tasks.

1.3 The Need for Fidelity Control and Aggregation

Given that workstations and networks cannot satisfy the requirements of current and future large-

scale simulation, we must seek to reduce the bandwidth and computational demands of distributed

simulation without introducing additional latency for information dissemination. Three basic ap-

proaches are available:

� Transmit less information about each entity and/or transmit entity updates less frequently.

� Limit the number of entities that are of interest to each host.

1.3. THE NEED FOR FIDELITY CONTROL AND AGGREGATION 9

Figure 1.3: Reducing the Modeling Detail and Fidelity of Distant Entities To Reduce Local Packet
Rate and Computational Requirements

� Have each packet provide information about multiple entities.

Our first option is to transmit less information about each entity or transmit that information

less frequently. However, completely dispensing with transmitting certain types of information

could have a detrimental effect upon the quality of the simulation, particularly for users who are

interacting closely with the source entity. Consequently, to support tight interactions, the source

must still supply all of the available data. We observe, however, that some receivers may be able to

selectively ignore some of this information. For example, if an entity is far from the local viewer

in the virtual world, then that host may not require updates to that entity’s color or structure, and it

might be able to accept less frequent position updates. Figure 1.3 illustrates a scene in which distant

cars receive lower positional and structural fidelity and are therefore rendered as simple “blobs.”

The graphical detail and modeling fidelity requirements on each entity are likely to change during

the simulation. As the viewer accelerates, the distant cars should receive increased graphical detail

and modeling fidelity, and the host must receive more frequent and more descriptive updates for

those cars. Similarly, as the viewer moves away from the cars, the host can receive less frequent

and less descriptive packet updates. We conclude, therefore, that reducing the amount of received

data is possible, but we cannot reduce the amount of transmitted data: Only the receiver is capable

of determining how to reduce modeling detail without sacrificing the realism of the local display.

Our second option for reducing packet and computational load is to limit the number of entities

from which each host receives update information. For example, a host might only subscribe to

information from the N closest entities, where N is some constant. However, this approach has the

greatest potential for distorting the simulated world presented to the user because it effectively alters

the user’s natural visibility range. We conclude that because of the loss in realism, this approach is

inappropriate for simulations involving humans.

10 CHAPTER 1. INTRODUCTION

Our third option is to aggregate, or group, information from multiple updates into a single

packet. For example, updates about all of an octopus’ legs might be combined into a single packet.

Similarly, a single packet might update the location of an entire school of fish, or it might summarize

information about all entities located in a particular region of the virtual world. Remote hosts can

then use this aggregated information to update their models of each entity. However, aggregation

poses three challenges. First, the simulation designer must decide what information to aggregate

within each packet. If a receiver is only interested in a fraction of the information within a particular

aggregation, then the bandwidth and computation required for a large aggregation packet may

exceed the bandwidth and computation required for the one or two small update packets that the

receiver actually required. Because each receiver is potentially interested in a completely different

set of entities, designing optimal aggregations is a daunting task. Second, different components of

the aggregation update are likely to be generated at different times. Collecting these components

and packaging them into an aggregation packet necessarily introduces an additional delay on the

transmission of each data component; aggregated information is less timely than direct information

transmission. Consequently, aggregation is not an appropriate technique for close-range interactions

requiring high detail and low latency. Third, the simulation designer must designate which host is

responsible for collecting and packaging the data components of the aggregation update. This host

must be located near the information sources to minimize the latency introduced by aggregation.

This task is made difficult because aggregation membership may change during the course of the

simulation. We conclude, therefore, that aggregation is a viable approach to reducing bandwidth

and computational load, yet it cannot replace direct per-entity transmission and must be designed

with care.

To implement large-scale simulations, each host needs the ability to receive lower-detail and

lower-frequency updates for a selected set of entities while retaining the ability to receive full-detail

and high-frequency updates for the remaining entities. Furthermore, hosts should have the ability

to receive packets containing aggregated updates for those entities where information latency is not

the primary constraint; again, the host must retain the ability to receive low-latency updates directly

from the entity. This thesis addresses these needs for large-scale distributed simulations.

1.4. ORIGINAL CONTRIBUTION OF THIS THESIS 11

1.4 Original Contribution of This Thesis

This thesis shows that a simple, efficient protocol can provide smooth, accurate remote position

modeling and that it can be applied recursively5 to support entity orientation, structure, and aggrega-

tion at multiple levels of detail; these protocols offer performance and costs that are competitive with

more complex and application-specific approaches, while providing simpler analyses of behavior

by exploiting this recursive structure.

In support of this thesis, I showed that:

1. The Position History-Based Dead Reckoning (PHBDR) protocol is a simple, efficient

protocol that provides smooth and accurate remote modeling for a broad range of entities

and explicitly recognizes network latency. I demonstrate a method for systematically

analyzing remote modeling protocol performance over a broad range of expected entity

behaviors by means of mathematical analysis, controlled simulation on a representative set of

entity paths, and deployment experience. Analysis of PHBDR shows that within the expected

available bandwidth, it can support the remote modeling requirements of the next generation

of large-scale simulation.

2. PHBDR is still smooth and accurate when used to model entity orientation, entity

structure at multiple levels of detail, and entity aggregations. I define the Axis Point

protocol for modeling entity orientation, Multiple-Model Channels for representing dynamic

entity structure, and Projection Aggregation Entities for representing groups of entities. I

use results from the basic PHBDR protocol analysis to analyze the performance of these

recursively-defined protocols. This approach reduces the amount of analysis that would

otherwise be necessary had each protocol been developed independently.

3. The recursive protocol structuring provides better network performance and reduced

software complexity when compared with the application-specific approaches deployed

in recent systems. The recursive protocol design promotes code re-use at the source and

remote hosts. The recursive structuring permits each source host to efficiently support

multiple remote modeling protocols, each providing a different representation of the entity’s

behavior. The availability of multiple protocols yields a net reduction in the simulation’s

5By “recursively” here, I mean that it may be used as a component within a more complex protocol. Although the
term “component architecture” might be more appropriate, we use the term “recursive structuring” as it is consistent with
existing work in the area [16, 106].

12 CHAPTER 1. INTRODUCTION

aggregate bandwidth requirements because each remote host locally determines its own data

requirements and only subscribes to high-bandwidth information when justified by bandwidth

availability, computational resources, and user interests.

The next chapter surveys how existing distributed simulation systems have solved the remote

modeling problem, how they have used aggregation to support scalability, and the limitations

of those approaches. Chapter 3 introduces Position History-Based Dead Reckoning (PHBDR),

our basic protocol and algorithms to model the position of rigid entities. The protocol makes

minimal assumptions about the simulation environment and is computationally simple. Chapter 4

presents a systematic approach to analyzing dead reckoning protocol behavior and applies that

approach to evaluating PHBDR’s network bandwidth requirements and remote modeling error. The

evaluation shows that PHBDR provides smooth, accurate modeling of a broad range of entity curves.

The next three chapters discuss how the simple PHBDR protocol may be applied recursively to

address move complex remote modeling requirements: Chapter 5 discusses the Axis Point protocol

that recursively employs the PHBDR protocol to remotely model the orientation of rigid entities.

Chapter 6 describes how PHBDR is used to model the structure of complex entities at different

levels of fidelity, depending on local computational and network availability. Chapter 7 employs

PHBDR to support low-fidelity remote modeling of entity groups based on the entity type and

location. Chapter 8 concludes this thesis with a discussion of the successes and limitations of this

work, as well as an indication of what work remains in this area.

Chapter 2

Related Work

Distributed simulation applications have adopted widely disparate approaches for disseminating

information about entity motion and modeling those entities at remote hosts. To some extent, this

broad range of techniques reflects the relative lack of experience in developing this class of applica-

tions. The heterogeneity also arises because simulation systems are designed to operate in network

environments providing different latency and bandwidth characteristics. For example, local-area

networks offer low-latency communication best suited for small simulations requiring tight coher-

ence among the participating hosts, but a wide-area network offers high-latency communication

best suited for larger simulations able to tolerate larger discrepancies between hosts. Furthermore,

a system designed for a telephone dialup network has traditionally been incompatible with a system

designed for a private leased-line network or the Internet.

This chapter describes how existing distributed simulation systems transmit updates about

entity state over the network. We begin by discussing the variety of deployed approaches to

remote modeling and rendering, allowing each host to maintain a real-time representation (position,

orientation, and other state information) for each entity and present a smooth, accurate graphical

view to the user. We then discuss techniques used to reduce the bandwidth and computational

demands of large-scale simulations. We conclude by summarizing the limitations of the prior work

and discussing how the techniques described in this thesis provide a scalable solution to remote

modeling and rendering in a variety of network environments.

13

14 CHAPTER 2. RELATED WORK

2.1 Tradeoffs in Real-Time Remote Modeling

As illustrated in Figure 2.1, the design of the data dissemination system introduces a fundamental

tradeoff between remote modeling accuracy and the flexibility of the simulation system. At one

Shared

Consistency
Multicast
Updates

Frame-Rate
Reckoning
Protocols

Dead
Database

High Modeling Accuracy

Tight Coupling Loose Coupling

High System Performance

Figure 2.1: Tradeoffs in Remote Rendering for Distributed Simulation Applications

extreme, distributed simulation systems are tightly coupled and therefore guarantee perfect accuracy

in the remote modeling. To achieve this accuracy, such systems demand high network bandwidth

to support frequent updates, low latency and limited jitter, and a limited number of participants;

consequently, tight coupling is impractical for large-scale interactive systems. At the other extreme,

systems are loosely coupled and therefore tolerate some inaccuracy in the remote modeling. Such

systems, though typically adding computational complexity, require less network bandwidth and

less frequent updates, are more resilient to network latency and jitter, and support better real-time

performance across a larger number of heterogeneous platforms.

Three remote modeling techniques are in use by most current systems: shared database consis-

tency, frame-rate updates, and dead reckoning protocols. Shared database consistency represents

one extreme of the design tradeoff by potentially providing the greatest accuracy but the least scala-

bility. Dead reckoning protocols fall into the other extreme by accepting imperfect remote modeling

to support larger simulations. Frame-rate updates represent an intermediate solution. In the follow-

ing sections, we describe each of these approaches, highlight how they have been implemented in

existing distributed simulation systems, and discuss their advantages and disadvantages.

2.1.1 Shared Database Consistency

Shared database consistency provides absolute consistency between the different hosts participating

in a distributed simulation application. The consistency approach guarantees that hosts share the

same information about each entity’s position, orientation, structure, and other state. As a result,

2.1. TRADEOFFS IN REAL-TIME REMOTE MODELING 15

all hosts display identical views of each entity, thereby eliminating any possibility of inconsistency

or confusion between interacting players.

Architecturally, this technique strives to hide the network environment from the application.

From an application developer’s perspective, all simulation entities appear to be maintained locally.

The resulting simplicity of the application programming model contributes to the popularity of

this technique, particularly for developers who are modifying existing uniprocessor simulations for

networked operation.

A central server provides the simplest implementation of shared consistency. In the Shastra

system [2] from Purdue University, for example, a central server provides the infrastructure for

collaborative design applications. The first node to start a collaborative application is designated

as the application’s group leader. This group leader communicates with a Shastra session manager

process to control the admission of additional clients into the distributed application environment.

All communication between application nodes flows through the session manager, which provides

reliable and ordered delivery of update messages to all clients. Because any user may modify the

state of any simulation entity, the session manager prevents multiple clients from simultaneously

modifying the same data. Hosts communicate with the session manager to obtain access, modify,

and copy permissions to the shared entities; the session manager uses a token-passing mechanism

to provide fair access to the shared entities.

Instead of using a centralized server to provide shared database consistency, the DIVE virtual

reality system [14] utilizes a distributed data management model. The system is built above the

ISIS communications library [7] that provides reliable, in-order delivery of network data. Using

this network software base, DIVE creates the abstraction of a shared database, replicated at each

participating host, that stores all entity information. DIVE allows a user to see, move, and interact

with any entity inside the virtual world. When a user wishes to update the position of an entity, his

local host obtains a distributed shared lock on that entity in the database, updates the local copy,

reliably broadcasts the change throughout the shared database, and finally releases the lock.

Some recent systems have attempted to maintain the illusion of a shared database while allowing

receiving hosts to independently determine the desired data consistency level for remote entity state

information. With the BrickNet toolkit [82], for example, hosts transmit updates to the central server

asynchronously. Data subscribers can then select from a broad range of approaches, ranging between

absolute and loose consistency, for receiving updates. The Networked VR virtual reality project [66]

from NEC Research Laboratories carries this idea one step further by allowing each remote host

to independently choose when to actually receive updates. The server (referred to as a “Dialogue

16 CHAPTER 2. RELATED WORK

Manager”) maintains two outgoing buffers for each client. A FIFO buffer stores sequential data

and holds incremental update information. This buffer is used when transmitting a complete entity

description would be prohibitively expensive. For example, the FIFO buffer is typically used to

transmit incremental changes to the entity’s shape model. The second buffer, an overwrite buffer,

is used for most other types of data, such as position, orientation, color, etc. Because data in the

overwrite buffer is self-contained and completely describes the associated attributes, data in this

buffer is overwritten whenever more up-to-date information becomes available. Clients explicitly

request buffer information from the server, thereby applying a “pull” rather than a “push” model for

communications [65].

Although the easy programming model and guaranteed consistency are desirable features, the

shared database consistency approach does not easily scale to large-scale simulations containing

thousands of entities over a wide-area network. Absolute consistency imposes significant commu-

nication overhead. In a DIVE application, for instance, each host much perform several message

exchanges on each frame to obtain the lock on the entity state, reliably transmit the update, and

release the lock. Moreover, because the host must wait until the transaction is complete before ren-

dering the new frame, the local frame rate is limited by network latency and remote host response

time. The network also cannot exhibit high jitter; hosts display updates to an entity’s position only

after they become available through the shared database, variable network latencies for updating the

database destroy the illusion of smooth motion at remote hosts. These bandwidth, latency, and jitter

issues make absolute consistency only practical over local-area networks. Finally, all participating

hosts must possess comparable computational power, because the local frame rate is determined by

the response time of the slowest host.

2.1.2 Frame-Rate Updates

By transmitting frame-rate updates, simulation designers relax the state consistency between hosts

in order to achieve greater scalability than that provided by shared database consistency techniques.

Under the frame-rate update approach, entity state updates are transmitted (typically in broadcast

mode) unreliably at the source host’s frame rate. Although updates may be lost (or delayed

long enough to be subsumed by another update), the simulation designer assumes that the high

update frequency will make such inconsistencies unnoticeable. Because the application maintains

no shared locks over simulation entities, multiple hosts could attempt to modify the same entity

simultaneously. Systems eliminate this conflict by explicitly associating each entity with a particular

host from which update packets must originate; update packets for that entity originating from any

2.1. TRADEOFFS IN REAL-TIME REMOTE MODELING 17

other host are ignored.

By relaxing the absolute consistency requirement, frame-rate updates permit permits greater

decoupling between participating hosts. Each host simulates local entities and transmits updates

without regard to how or where those updates are being delivered. The local simulation is less

directly affected by network latency or remote host performance. In particular, sending hosts do

not need to wait for lock acquisition/release or update acknowledgements on each frame. At the

receiving host, the application simply waits for update packets to arrive and modifies the local

representation of the entity accordingly. The frame-rate update approach keeps the underlying

communication library quite simple.

The SGI Flight Simulator represents the most significant use of the frame-rate update technique.

In this multi-player “dogfight” application, each player attempts to shoot down opponents’ planes.

On each frame, each host simply broadcasts the complete 140-byte data structure describing the

local airplane. New players are recognized at remote hosts when an update packet arrives with a

previously unseen player name. Hosts eliminate players if no update packet with that player’s name

arrives within a suitable timeout period.

Another implementation of the frame-rate update technique was demonstrated at the IMAG-

INA’93 conference [72]. In this two-player system, participants could see and talk to one another

while interacting with a virtual environment. In this system, two machines—one in Paris and the

other in Monte Carlo—were connected by a 64 Kbps data link over which the hosts exchanged an

inventory listing the position of 100 entities (400 bytes in all). Each host transmitted 10 updates per

second, resulting in an approximate 100 ms response time that the participants felt to be inobtrusive

and, therefore, acceptable. A similar system to support intravascular tele-surgery has also been

demonstrated [3]. In this system, the source host transmitted an appropriate viewpoint position,

along with the position of the surgical catheter device. At the remote host, the appropriate image was

re-constructed on each frame. The source and destination hosts were separated by nearly 220 miles

and were connected by a 156 Mbps ATM link. In this case, frame-rate updates were appropriate

given the availability of a dedicated point-to-point link and the need for high data consistency within

a medical application.

While the SGI Flight Simulator, the IMAGINA’93 demonstration, and the intravascular tele-

surgery demonstration limited themselves to modeling rigid entities, ATR Communication Systems

Research Laboratories has developed a virtual space teleconferencing system for the remote mod-

eling of human faces [105, 64]. This task poses additional complexity because of the dynamic

structure of the entities being modeled. Each host stores a prototype wire-mesh model of a Japanese

18 CHAPTER 2. RELATED WORK

face. Before the teleconference starts, multiple photographs of each speaker are taken, and those

images are processed to customize the prototype for that person’s particular facial features. These

revised prototypes are exchanged. To generate update packets during the teleconference, the system

captures multiple images of the speaker and processes the images to determine the current physical

location of facial features such as the tip of the chin, corner of the eyes, nose position, etc. The

system transmits the position of these facial features over the network. The remote host uses the

update packet data to anchor corresponding points on the wireframe model and then apply a texture

mapping before displaying the image. A newer version of the system [67] uses a 3D digitizer to

generate a wireframe model for each speaker without the need for a prototype model. The tele-

conferencing system tracks the position of blue tape marks on the speaker’s face, thereby reducing

the image processing complexity and achieving higher frame rates with the same computational

resources. Update packets in the current system describe 11 facial points, 4 body points, and 10

points on a hand-held dataglove for a total of 528 bits. Using a 1,000 node wireframe model, the

teleconference is rendered at 10 frames per second [47].

In contrast to broadcast-based systems, the VEOS System [9] from the University of Wash-

ington uses a so-called “epidemic” approach to distributing frame-rate updates. VEOS entities are

organized hierarchically. During each iteration of the entity’s event loop (or “frame”), the entity

stores updated state information into a local buffer known as the “boundary view.” At the end of

each iteration, a communications daemon pushes information from this buffer into an output FIFO

for each sibling and parent entity that has expressed interest in that data. Those recipient entities, in

turn, export that information to other entities during their next frame. If a FIFO already contains an

old version of this information—for example, if the information has not yet been absorbed into the

destination entity’s “external view”—then the stale version in the buffer is simply overwritten. As

a result, all entities receive updates in-order and always receive the most recent update available.

To reduce network traffic in frame-rate update systems, a relevance filtering mechanism elimi-

nates traffic from entities that are irrelevent to the local user. The RING system [29], for example,

implements relevence filtering by sending all entity updates to servers that maintain a record of

the current location of each viewer and forward updates only to viewers that can see that entity.

Alternatively, one can implement relevence filtering by transmitting updates to a different multicast

address for each entity, with remote hosts only subscribing to updates from entities of local interest.

Techniques similar to frame-rate update approaches are also used in virtual reality systems

which must use information obtained from a Head-Mounted Display (HMD) to remotely model the

user’s position and orientation and render an appropriate image. The position tracker device samples

2.1. TRADEOFFS IN REAL-TIME REMOTE MODELING 19

a set of sensors and computes the position and orientation from these sensor measurements; it then

transmits the position values (usually over a dedicated line) to the rendering computer, typically at

a rate of 20–60 Hz. The position determination technique employed by the tracker may be divided

into several categories [57]:

� Mechanical: The user is physically connected to a point of reference by a series of jointed

linkages. The sensor triangulates the user’s exact location based on the joint angles.

� Optical: The sensors detect the direction and intensity of a set of fixed-position LED trans-

mitters, the appearance of a pattern placed in a fixed location, or the distortions of reflected

laser light.

� Magnetic: The system uses electric current to create a low-frequency magnetic field which

the sensors detect and measure.

� Acoustic: Sensors detect the direction and intensity of high-frequency sound waves trans-

mitted from a fixed source.

� Inertial: Accelerometers and gyrometers respectively measure changes to the entity’s velocity

and orientation; the sensors use these changes to maintain a model of the entity’s current

velocity (and, therefore, position) and orientation. Often, information from these two devices

are combined to produce a more robust estimate of orientation [97, 26].

The frame-rate update technique has several limitations. First, the assumption of low-latency

data dissemination is often unachievable. Latencies of 250 ms are not uncommon over wide-area

networks. HMD position tracking typically requires maximum latencies of 50–170 ms, and studies

of multimedia applications [4, 21] indicate that humans become uncomfortable with inconsistencies

on the order of 100 ms; the inconsistencies become intolerable at 200 ms. Indeed, the IEEE

communications standard for distributed simulation [38] demands maximum end-to-end latency of

under 100 ms. (Notably, the IMAGINA’93 demonstration, linking Paris to Monte Carlo—roughly

600 miles—represents the point at which the latency problems start exceeding these limits.) Second,

the delay jitter over wide-area networks means that packets do not arrive at a fixed rate, and they

may not even arrive in order. If a packet is delayed, the remote host must redisplay the entity at its

previous position because it cannot wait for the data to arrive. Third, most existing networks cannot

support the necessary bandwidth for frame-rate updates. Transmitting 128-byte update packets at

60 frames per second, only 520 entities are needed to impose a 40% load on a 100 Mbps Ethernet.

20 CHAPTER 2. RELATED WORK

Finally, the sender’s frame rate may be slower than that of a receiver, in which case the remote

entity on that receiver’s display does not exhibit the same smoothness as local entities. For example,

ModSAF and other computer-generated forces in military simulations often only run at 2–4 Hz [92],

hardly enough to effectively feed a remote manned simulation which typically runs at over 15 Hz.

Faced with these problems of latency, jitter, bandwidth, and frame-rate correspondence, large-

scale simulations need to transmit information at a lower frequency [70], to relax the sensitivity to

network delay, and to permit receivers to update the remote model at their own frame rate.

2.1.3 Dead Reckoning Protocols

Dead reckoning protocols represent the other extreme of the remote rendering technique design

space, for they sacrifice coherence to maximize system scalability. In a dead reckoning system, hosts

model the state (position, velocity, and acceleration) of each remote entity by applying predictive

extrapolation based on update information sent from each entity’s local host. Dead reckoning at

remote hosts typically reduces bandwidth requirements because update packets can be transmitted

at lower-than-frame-rate frequencies. Because remote entities are updated at a slower rate than

local entities (whose models are driven by user input, rather than incoming packets), receivers must

use extrapolation to provide seamlessly integrate remote and local entities on the display. Each

receiver performs this extrapolation independently, so it can provide a smooth rendering despite a

slow source host.

On the other hand, dead reckoning does introduce several limitations. First, dead reckoning

does not guarantee that all hosts share identical state about each entity. Instead, dead reckoning

protocols require hosts to tolerate and adapt to potential discrepancies. Second, simulations that

rely on dead reckoning protocols are usually more complex to develop, maintain, and evaluate. The

application developer must be aware of the network’s behavior and typically tailors the simulation

software and algorithms to operate within a wide-area network environment. For example, because

the extrapolation of entity position and orientation is imperfect, collision detection requires a

distributed agreement protocol. To avoid presenting a jerky view of the entity’s position on the

display, the host must also apply apply some smoothing or convergence algorithm to correct the

extrapolated model after a new update arrives.

Dead reckoning protocols have evolved over the past several years, both in terms of their

sophistication and in terms of how well their modeling behavior is understood.

2.1. TRADEOFFS IN REAL-TIME REMOTE MODELING 21

2.1.3.1 Early Dead Reckoning Systems: Amaze

The Amaze multiplayer game [5] represents one of the earliest implementations of a dead reckoning

protocol in distributed simulation. Hosts transmit position and velocity updates about local player(s)

roughly once per second. Remote hosts use the velocity information to predict the entity’s future

position, though they ignore network latency effects because of the low latencies of the LAN

environment on which the system is deployed. Given a packet specifying position point x0 and

velocity vector x00, the dead reckoned position at time t after packet arrival is:

x(t) = x0 + x00t (2:1)

In this game, the slow speed of entities relative to update rate simplifies the remote modeling

problem considerably because the potential error in the remote model is always small. Therefore,

the Amaze system did not integrate a convergence algorithm, so the rendered position of the remote

entity “jumps” immediately to the new position when an update arrives.

2.1.3.2 Commercial Systems: SIMNET, DIS, and STOW

The U.S. Army’s Simulation Networking (SIMNET) system [69] first introduced dead reckoning

protocols on a large scale. SIMNET implements a networked battle simulation system in which up

to fifteen participants manipulate tanks and planes within a virtual battlefield. As in the SGI Flight

Simulator, update packets contain a complete description of the entity, including its position and

velocity (but not acceleration). However, SIMNET moves away from the fixed-rate update approach

used by earlier systems. The transmitting host maintains two models of each entity: the true model

representing the entity’s actual position (updated by user input, autonomous control, and external

forces) and the remote model (that applies dead reckoning to the entity’s transmitted update packets

using the same algorithm used in Amaze). The host transmits an update packet either when the true

and dead reckoned models differ by some error threshold or when no update has been otherwise

sent within a five second timeout period. This timeout allows remote hosts to recognize when an

entity is no longer on-line, and it allows a new entity to enter the simulation simply by sending an

update packet.

The Distributed Interactive Simulation (DIS) protocol [37], IEEE standard 1278, targets larger

virtual environments populated by hundreds, if not thousands, of participants. The DIS dead

reckoning protocol [36] is similar to the SIMNET protocol in most respects, though its update

packets also include acceleration, orientation (specified in Euler angles [76]), and angular velocity

22 CHAPTER 2. RELATED WORK

information. Therefore, with an update packet specifying position point x0, velocity vector x00, and

acceleration vector x000 , the dead reckoned position at time t after packet arrival is:

x(t) = x0 + x00t +
1
2
x000t

2 (2:2)

Entities may adopt different timeouts for update transmissions, although five seconds remains

the default; moreover, particular entities may be configured to use the first-order dead reckoning

employed by SIMNET and Amaze. The DIS dead reckoning algorithms have been adopted by

successor programs such as STOW (Strategic Theater of War) [1].

The relatively wide deployment of the DIS protocol has encouraged some initial efforts to

analyze its performance in terms of both remote modeling accuracy [79, 101] and network bandwidth

requirements [51]. This work has used flight simulator traces to compare the performance of various

dead reckoning protocols with the goal of validating the second-order positional and first-order

orientation dead reckoning algorithms used by the DIS protocol. A more control-theoretic analysis

was undertaken by Foster and Massel [25] using regression analysis to produce a formula predicting

the average dead reckoning error as a function of dead reckoning threshold. This work also

analyzed the effects of numerical precision on dead reckoning error. Other work has concentrated

on improving the effectiveness of modeling entity orientation, either by using better implementation

techniques [91] or by using quaternions to represent orientation [11].

2.1.3.3 Recent Research: Moving Toward Specialized Dead Reckoning Algorithms

Recognizing the difficulty of the remote modeling problem, most recent research systems have

strived to develop specialized algorithms for a particular class of entity or motion. For example,

the NPSNET system [70], developed at the Naval Postgraduate School, provides an experimental

land-based virtual battlefield environment over LAN network environments (with recent support

added for Wide-Area Networks [53]). NPSNET optimizes the DIS dead reckoning protocol for tank

motion by transmitting only the entity position, a two-dimensional velocity vector, and an “align to

ground” flag that causes remote hosts to adjust the entity’s pitch and roll to ensure that it is drawn

on the ground. This latter feature eliminates the need to explicitly transmit orientation information

in most cases.

Amnon Katz and Kenneth Graham at the University of Alabama have optimized a dead reckoning

algorithm for aircraft that move with a constant “angle of attack” [43]. This condition arises when

the aircraft moves with a constant acceleration vector when described in its body coordinate system;

2.1. TRADEOFFS IN REAL-TIME REMOTE MODELING 23

the resulting path is a spiral (with circular paths representing a special case). The remote host

receives the initial acceleration vector x000 , which may be decomposed into a constant component

magnitude A0t representing acceleration in the direction of the entity’s motion and a constant

component magnitude A0n representing acceleration normal to the entity’s motion. Furthermore,

the entity’s initial velocity vector x00 may be decomposed into unit vectors tangential to the body

(e00t) and normal to the body (e00n). With the entity’s initial speed s0 = jx00j, the forward speed over

time is therefore

s(�) = s0 + A0t� (2:3)

They define the following constants:

� =
A0t

A0n
(2.4)

c =
A0ns

2
0

4A2
0t + A2

0n
(2.5)

and the following expressions:

� =
A0n

A0t
ln
����s(�)s0

���� (2.6)

xp = ce2��(2� cos � + sin �) (2.7)

yp = ce2��(2� cos � � sin �) (2.8)

and hence the dead reckoned entity position is:

x(�) = x0 + (xp � 2�c)e00t + (yp � c)e00n (2:9)

Furthermore, their “phugoid scheme” recognizes that for these curves, an aircraft’s orientation

is determined solely by the spiral’s radius and the aircraft’s speed. Consequently, accurate dead

reckoning can be performed using only position, velocity, and acceleration updates; the airplane’s

position and velocity determine its orientation.

Dead reckoning is commonly used for tracking an entity’s position and orientation based on

inputs from remote sensors while accommodating for noise in the sensor readings, low frequency in

the sensor updates, or high latency in sensor information. The common approach to these problems,

particularly that of inaccurate sensor readings, is to employ a form of Kalman filtering [42, 87, 41].

A state matrix encodes the current position and velocity estimate and is used to derive position

24 CHAPTER 2. RELATED WORK

estimates at any given (present or future) time. When a new sensor reading arrives, the Kalman filter

updates the current position estimate by convolving the position sample derived from sensor/radar

with the current estimate provided by the state matrix; the relative weights given to these two values

is determined from an estimate of the error variances in the sensor or radar readings. A similar

weighting is used to update the velocity estimate. Though the Kalman filter provides a general-

purpose framework for predicting and smoothing updates, researchers have continued to customize

the Kalman filter algorithm based on the application.

Early specialization was done at the Naval Research Laboratories where dead reckoning algo-

rithms were optimized to model ship motion along the earth’s spherical surface based on inaccurate

position estimates transmitted from a remote sensor. With regard to specializing the Kalman filter,

Willman [104] wrote:

The tracking algorithms are based on the Kalman filter and Bayesian smoother for a

specific motion model in which a ship’s motion is approximated as the vector sum

of a constant (average) velocity and a two-dimensional (random) Brownian motion.

The intensity of the Brownian motion : : : is selected to correspond to the extent

of maneuvering performed by the ship with respect to a constant-speed, great-circle

course.

Trunk and Wilson [93] specialized the Kalman filter to track ship motion based on signals received

from multiple radars; each radar signal provided both range and direction information, though only

one component of each measurement was accurate. Moreover, because the basic Kalman smoother

would not quickly detect when a ship changes direction, Trunk modified his Kalman smoother

to lend more weight to recent radar measurements when the filter’s current position estimate and

the radar’s current position estimate diverge significantly. These Kalman filter approaches share

the disadvantage of being computationally complex (requiring on the order of 110 addition and

multiplication operations on each time step), and their state matrix update cannot accommodate

out-of-order updates.

The MIT Media Lab used a specialized Kalman filter to predict the position of drumsticks as

they were played above a sensor pad [27]. Whenever the sensor was hit by a drumstick, a computer

attached to this sensor was responsible for generating the sound of a drum shot. However the latency

between the sensor impact and the sound generation was noticeable, so the researchers attempted to

synchronize the drum sound with the sensor impact by predicting the position of the drumsticks. The

computer received position updates from the drumsticks 30 times per second and used the Kalman

filter to generate a second-order approximation of the drumstick position for 33 ms in the future. The

2.1. TRADEOFFS IN REAL-TIME REMOTE MODELING 25

approach was effective for most cases; however, the researchers discovered that the predictor would

often “overshoot” and predict a drum shot because drummers regularly move the sticks downward

toward the drum without actually touching it. To counter this effect, the researchers introduced an

“emergency” signal that allowed the sound generator to disregard the previous prediction when a

sudden change in the drumstick behavior is detected; the emergency signal was effective because

of the relatively low latency between the physical sensors generating updates and the computer

system processing that information. The dead reckoning approach was finely tuned to the particular

application and required the generation of a specific noise model for user motions. Moreover, the

approach did not provide general applicability because the predictive time interval was short (33 ms)

compared to that needed over wide-area networks, the relative drumstick motion distances were

short (250 mm), and updates occurred regularly and at high frequency.

Most recently, position tracking has become increasingly common with Head-Mounted Displays

(HMD) which, as discussed above, can exhibit position generation latencies of up to 170 ms—

enough to cause “simulator sickness” among users of virtual reality systems. To compensate for

this latency, the graphics system applies a customized dead reckoning algorithm to predict the

participant’s current location based on the delayed position and orientation information provided

by the sensor system. An early helmet-mounted display system developed for the Air Force [74]

used a simple dead reckoning algorithm that treated acceleration as a random number between -1.0

and 1.0. To achieve better performance, Liang, Shaw, and Green [49] employed an algorithm more

specifically tuned to head motion:

x00 = ��x0 +
q

2�2�w(t) (2:10)

where x0 and x00 are the angular velocity and acceleration, w(t) is a noise function, � is a time

factor representing the smoothness of the prediction, and � is a variance factor that controls how

aggressively the orientation is changed. This dead reckoning algorithm assumes that the user’s

viewing direction is generally fixed and changes infrequently. Though it provides good results in

this application, this dead reckoning algorithm is not generally applicable. The experimental Virtual

Laboratory system at IBM [102] provides another example of this move toward specialized dead

reckoning protocols for sensor tracking. The Virtual Laboratory employs a custom dead reckoning

algorithm to predict the position of the participants’ hands in a bouncing ball simulation.

To support this trend toward specialized dead reckoning algorithms, the VERN system [8]

aims to provide an entity-oriented development framework into which specialized dead reckoning

26 CHAPTER 2. RELATED WORK

algorithms can be integrated. The system defines an AbstractVERNObject class, subclassed

by AbstractPlayer and AbstractGhost classes. To create an entity, a developer subclasses

from AbstractPlayer and implements a computeNextState member function that returns

the current state of the entity. At the remote host, the developer subclasses from AbstractGhost

and implements the processMsg (process an incoming message) and computeNextState

(compute the current state for the entity) member functions. The VERN system also allows the user

to change the dead reckoning protocol error threshold in real-time.

The current state-of-the-art in dead reckoning algorithms raises several limitations. First, all

existing protocols are tightly coupled to their underlying network environment. Most systems

have been designed for use over a local-area network providing high reliability and predictable

latency characteristics. Even the DIS protocol design, targeted for use over wide-area networks,

does not directly address the variable performance of long-haul communication networks. Second,

existing simulation protocols do not accommodate the variable modeling fidelity needs at each

remote simulation host but instead associate a single dead reckoning error threshold with the source

transmissions. As simulations contain increasing numbers of entities, hosts cannot afford to model

all entities in full detail. Instead, the simulation needs to support a continuum from low-fidelity

modeling to high-fidelity modeling so that individual hosts can select the appropriate level-of-

detail based on local requirements. Finally, analyses of dead reckoning protocol behavior have

concentrated almost exclusively on single entity types (tanks, fighter aircraft, drumsticks, etc.)

These analyses do not offer a general-purpose technique for assessing the protocol’s behavior over

more general entity motion.

2.1.3.4 Related Techniques From Signal Processing

Dead reckoning in distributed simulation essentially represents a generalized signal prediction

problem. Signal prediction is commonly used in speech processing (to extrapolate a speech pattern

between discrete samples or to accommodate sample loss), economic prediction and forecasting,

and medicine. We have already seen special-purpose uses of signal processing in sensor prediction

for HMD position tracking.

The basic signal prediction problem can be formulated as follows [12]: A signal f is band-

limited to the range [�W�;W�] for some W > 0 (that is, f can be decomposed into the sum of

sine waves with frequencies ranging up to W�). The signal f is sampled at regular intervals 1
W

.

Based on n samples taken within the time interval [t0 � n
W
; t0], we wish to extrapolate the signal’s

2.1. TRADEOFFS IN REAL-TIME REMOTE MODELING 27

behavior for time t > t0. To address this problem, we construct a convolution series estimate for f :

(S'
W f)(t) �

1X
k=�1

f

�
k

W

�
'(Wt� k) (2:11)

In this expression, '(x) is a kernel function such that '(Wt�k) 6= 0 only for k 2 [t0W �n; t0W],

namely the interval for which samples of f(k
W
) are available.

The simplest set of kernel functions can be derived [68] by applying the Fourier transform of

the signal. In this case,

'(Wt� k) =
sin((Wt� k)�)

(Wt � k)� (2:12)

Observe that '(Wt � k) is 1 for t = k
W

and is 0 at all other sample points t = j
W

(j 6= k). For

example, with n = 3 samples, we estimate the curve as:

(S'
W f)(t) =

sin((Wt� 1)�)
(Wt � 1)�

f

�
1
W

�
+

sin((Wt � 2)�)
(Wt� 2)�

f

�
2
W

�
+

sin((Wt� 3)�)
(Wt� 3)�

f

�
3
W

�
(2:13)

However, the extrapolation error increases rapidly as t increases from 3
W

toward 4
W

because all

terms approach zero expecting to rely on a f
�

4
W

�
term to provide support.

A better set of functions ' can be derived by convolving a set of central B spline curves, with

convolution coefficients computed by solving a linear system of equations (see [12] for a more

complete description of the rather complex procedure). For example, to extrapolate a signal over a

period of 1
W

given n = 3 samples,

'(Wt� k) =

8>>>>>>>><
>>>>>>>>:

0; t � k+1
W

3(Wt� k)� 3; k+1
W

< t � k+2
W

13� 5(Wt� k); k+2
W

< t � k+3
W

2(Wt� k)� 8; k+3
W

< t � k+4
W

0; k+4
W

< t

(2:14)

If f 00 is continuous and bounded, then we can derive a maximum error bound on the estimator:

kS'
Wf � fk � 15kf 00kW�2 (2:15)

In general, an estimator that relies on n samples has an error bound that isO(W�n).

28 CHAPTER 2. RELATED WORK

These approaches to signal estimation pose a number of limitations when applied to the sim-

ulation domain. First, the estimators rely on a uniform sampling frequency from the source and

assume that we can derive some estimate for W (representing the maximum underlying frequency

of the entity’s motion, which is correlated to the motion’s overall complexity). With dynamic entity

motion, any fixed sampling frequency is liable to either oversample the entity position—and hence

generate high network traffic—or undersample the entity position—and hence sacrifice accuracy in

the remote model. In reality, the true value of W changes over time and cannot easily be estimated.

Second, when compared to competing dead reckoning algorithms, evaluating the estimator function

S
'
W f requires roughly twice the computation at each timestep t because all of the coefficient terms

'(x) must be recomputed. Finally, the signal estimator assumes that the signal’s second derivative

is bounded and continuous. In many simulation domains, this assumption is not valid because the

acceleration of physical objects may change almost arbitrarily.

One other approach to signal prediction employs a gradient descent method for finding the locally

optimal coefficients in the prediction equation [56]. With this technique, however, computation time

can vary dramatically on each time step. Consequently, this approach has limited utility in real-time

systems, such as distributed simulation, which must process many entity updates within each frame

interval.

2.2 Approaches to Supporting Large Distributed Simulations

Over the past decade, distributed simulations have grown in size, starting with the Amaze system

(which included roughly four hosts connected over an Ethernet) to the STOW 97 system (originally

envisioned to include 100,000 entities connected over a wide-area network). Larger simulations

require more network bandwidth because each entity independently transmits state updates. In

addition, each host requires more computational resources to receive the entity state update packets,

model those simulation entities, and perform tasks such as scene rendering and collision detection.

As discussed in Chapter 1, multicasting update packets to allow receiving hosts to filter data streams

from entities that are not of local interest only partially addresses the bandwidth and computation

problems. Each unfiltered entity must still provide updates at the rate needed by the host requiring

the maximum remote modeling fidelity.

Simulation designers have attempted to reduce network bandwidth requirements and received

packet rates in two ways: protocol-specific optimizations and entity aggregation.

2.2. APPROACHES TO SUPPORTING LARGE DISTRIBUTED SIMULATIONS 29

2.2.1 Protocol Optimizations

Simulation protocols can often be optimized or specialized to reduce the bandwidth or packet rate.

These optimizations are typically derived by analyzing the traffic generated in prior simulations to

detect data duplication and other inefficiencies.

For example, the DIS protocol requires each simulation entity to periodically broadcast its

complete state; this periodic broadcast makes DIS simulation resilient to packet loss or intermittent

connectivity. However, analyses of DIS and STOW exercises have shown that up to 50% of the

wide-area network traffic is generated by dead or otherwise inactive entities transmitting periodic

state updates [98, 99]. Moreover, even for active entities, only a portion of the state (position,

orientation, etc.) changes frequently, so the traffic contains considerable information that was

previously transmitted.

To address these issues, newer simulations such as the STOW program, optimize the basic DIS

protocol by placing an Application Gateway (AG) [13] on each LAN. The AG is responsible for

managing the flow of information between the LAN and the tail circuit/backbone. For example,

because must of the traffic in DIS simulations consisted of redundant updates from inactive entities,

the AG provides a Quiescent Entity Service (QES). The AG detects when a local entity has become

inactive and reliably informs the other AGs. Until the entity becomes active again, the local AG

blocks its update packets from the WAN, and each AG is responsible for locally generating state

updates on the entity’s behalf.

Most aspects of an entity’s state do not change frequently, so successive entity update packets

contain redundant information. Early versions of STOW AGs implemented the Protocol Independent

Compression Algorithm (PICA) [100] to eliminate this redundant state information from the DIS

packets. Each receiver maintains a numbered “reference” state for each entity. The AG receives

the state updates generated by each entity and only transmits the bitwise difference between the

entity’s current state and its reference state over WAN. When the length of these difference packets

exceeds a threshold, the AG transmits a new reference state with a new sequence number. Because

each difference packet includes the sequence number of its corresponding entity reference state,

receivers can detect lost reference state packets and request retransmission from the AG.

The Log-Based Receiver-Reliable Multicast (LBRM) [33] protocol is optimized to support in-

active entities that generate occasional updates. While inactive, each entity generates low-frequency

heartbeat packets, but after transmitting an update packet, it transmits heartbeat packets at a high

rate to ensure rapid packet loss detection. Other optimizations, such as statistical acknowledge-

ment and distributed logging, allow LBRM to quickly detect large-scale loss and provide faster

30 CHAPTER 2. RELATED WORK

packet loss recovery. Based on its update frequency, an entity would therefore either use periodic

unreliable multicast or an occasional reliable multicast. Zelesko and Cheriton [106] present a frame-

work for optimizing protocols to enable such optimizations based on functionality and performance

requirements.

2.2.2 Entity Aggregation

Entity aggregation attempts to merge a group of entity updates into a single update packet, thereby

reducing packet header overhead in the network and reducing packet-processing overhead at re-

ceivers. An aggregation is a logical simulation entity representing a group of other entities. For

example, an aggregation may be used to represent a battalion of tanks. Alternatively, an aggrega-

tion entity might represent all simulation entities located within a particular region of the virtual

world. The merged update packet transmitted by an aggregation entity may either simply bundle

the component entity updates [13] or summarize the component entities using an entirely new

representation.

A key challenge in entity aggregation is determining which entities to group together. Three

approaches have been used in previous distributed simulation systems: network-based, organization-

based, and grid-based.

2.2.2.1 Network-Based Aggregations

Network-Based Aggregations group simulation entities by their physical location in the network [13].

For example, all entities located at a single site or on a single LAN may form the basis for an

aggregation. This aggregation approach is best suited for environments in which the wide-area

network or network tail-circuits represent the primary bandwidth bottleneck. However, entities on a

LAN need not share any relationship to one another, either in terms of entity type or entity location

within the virtual world. A receiver who subscribes to the aggregation would typically receive

a considerable volume of information from entities that are of no local interest. Consequently,

network-based aggregations are most beneficial only when there is some correspondence between

the entity locations in the virtual world and their physical locations.

2.2.2.2 Organization-Based Aggregations

Organization-Based Aggregationsgroup simulation entities by their organizational hierarchy (armies,

brigades, battalions, platoons, etc.) [23]. Though easy to construct and maintain, this aggregation

2.2. APPROACHES TO SUPPORTING LARGE DISTRIBUTED SIMULATIONS 31

structure offers limited value because each organization’s member entities may travel within differ-

ent regions of the virtual world. For example, a battalion might divide into two sub-units. Even if

undivided, large aggregations might be spread over a broad region. Also, destroyed tanks become

separated from the live platoon members as the battle advances: In military simulations, for example,

up to half of the simulation entities are destroyed. However, for common operations such as collision

detection and scene rendering, each host wants data about all entities located within a nearby region

of the virtual world. If only organization-based aggregations are available, the host must subscribe

to information from all organizations represented within that region, even though most of the orga-

nizations’ member entities may actually be far from the viewer. Consequently, organization-based

aggregations are most beneficial only when there is some correspondence between the static entity

organization and the dynamic entity location within the virtual world.

2.2.2.3 Grid-Based Aggregations

Grid-Based Aggregations group simulation entities by their location within the virtual world. The

virtual world is divided into rectilinear or hexagonal grids1 whose associated aggregation transmits

packets bundling information about entities in that region. Most existing implementations of grid

aggregations [54, 52, 86, 60] dispense with a designated aggregation entity and instead simply

associate a multicast address to each grid. Each entity transmits updates to the multicast group

associated with its current virtual world location, so although the data is not bundled into the same

packet, the multicast group allows remote hosts to select the virtual world region(s) of interest.

Grid-based aggregations pose several disadvantages. They mask the organizational relationships

between the various entities. For example, if a host only provides summary views of a tank battalion

to a commander, then it must subscribe to information from all regions that potentially contain

one of those tanks, even though each grid contains numerous entities that are not of local interest.

Grid-based aggregations and similar Area of Interest (AOI) techniques do not allow remote hosts to

receive information at different levels-of-detail depending on the entity type—a capability that can

be desirable for rendering regions containing many heterogeneous entities. Moreover, establishing

an optimal grid size for use by all simulation hosts is difficult because the ideal grid size depends on

the amount of inter-host interaction in the simulation scenario and on the number of entities running

on each host [73]; a poor grid size selection can affect network bandwidth requirements by up to

150%, and even the alignment of grids with respect to the coordinate system origin can affect data

1Ideally, these regions would be determined dynamically based on a “clustering analysis,”but this approach is infeasible
in real-time simulations because of the NP-hard nature of the dynamic clustering problem with constantly moving entities.

32 CHAPTER 2. RELATED WORK

traffic by 15% or more. Because grid-based aggregations do not allow hosts to access entities by

their organization or type and because of the configuration complexities, they have limited value for

reducing network traffic or computational load.

A simple dynamic grid-based aggregation scheme was deployed by Schilit and Theimer [80]

to address data distribution requirements in mobile computing environments. In this environment,

servers are responsible for providing continuous information to clients who have subscribed to

various types of data. The server dynamically monitors the destination for each piece of data,

detects when multiple data streams are sending information to the same client set, and creates a

multicast group to aggregate those transmissions. Ideally, a distributed simulation might apply

a similar technique to aggregate information from multiple entities when the receiver sets are

substantially similar. However, their implementation has limited value in our domain because it

only detects exact matches among the data distribution groups and because the linear searching

required for each data transmission does not not scale effectively.

2.2.2.4 Multidimensional Data Cubes

Database vendors are starting to offer tools to support On-Line Analytical Processing (OLAP),

a method for navigating and analyzing complex data [88, 46]. OLAP systems present the user

with the illusion of a multi-dimensional spreadsheet, with each dimension representing a different

category for grouping information. However, unlike traditional spreadsheets whose axes are linear in

nature, OLAP dimensions are hierarchical. For example, in an inventory database, one dimension

may represent stores which are organized into a hierarchy of territories, regions, etc., while a

second dimension would represent product type organized into another hierarchy. Users access

a particular “cube” in the database by selecting a node along each dimension. For each cell, the

OLAP tool provides summary information for the underlying data. For example, a user might select

“Western Region” and “Casual Shoes” to receive a summary of the casual shoe inventory in the

western region. Finally, the OLAP tool provides “drill down” and “roll up” capabilities along each

dimension. Hence, the user can expand the current cube to study the casual shoe inventory within

each sales region of the western territory, or he may expand the cube to explore the inventory of

different types of casual shoes.

Implementations of OLAP systems are quite disparate [20]. Some systems compute the aggre-

gate information for all cubes at an OLAP server, so that client requests can be serviced immediately.

However, this approach is not scalable because of the exponential number of possible cubes in a

complex data set. Consequently, such cube generation is typically done nightly on a batch basis, so

2.3. CONCLUSION 33

the aggregation does not necessarily accommodate real-time information sources. Newer systems

slated for release throughout 1996 are attempting to generate cubes dynamically, either by collating

information from a data cache at the client host or by transmitting the cube request to an OLAP server

host that generates an SQL query to the database server and then collates the resulting records. The

performance of these dynamic approaches is generally poor (response time is measured in minutes).

Moreover, they do not support dynamic updating of the aggregated information as data values in

the underlying database change.

Despite the relative infancy of the deployed implementations, the “multi-dimensional cube”

model is a powerful model for aggregating complex information, and in many ways, it addresses

many of the limitations imposed by network-based, organization-based, and grid-based aggrega-

tions. In particular, it offers clients the ability to select the dimension(s) of interest, rather than

demanding a single criterion for grouping data.

2.3 Conclusion

We have described a representative sample of approaches to remote modeling and rendering,

revealing the considerable variety of techniques used by existing distributed simulation systems, We

have also described how recent systems attempt to support high entity counts within the bandwidth,

latency, and computational constraints imposed by a wide-area network environment.

Our survey of existing simulation systems reveals the following general characteristics:

� Most simulation systems are designed for networks providing high bandwidth and low latency

and jitter, and they usually operate among a small number of homogeneous hosts. Such

systems, which rely on shared database consistency or frame-rate updates, are not suitable

for large simulations on wide-area networks.

� Support for high entity counts is typically added only after a system has been built and

deployed on a LAN environment. This support has often involved ad hoc techniques, such

as application gateways and network-based aggregation, to reduce the bandwidth demands

imposed by the original system design.

� The current trend is toward remote modeling protocols that are tailored for the particular

entity types being modeled. These algorithms are rarely usable in other systems.

� No common methodology has emerged for evaluating the performance of remote modeling

34 CHAPTER 2. RELATED WORK

protocols. Instead, previous analyses have only concentrated on a small class of entity

behaviors

� Existing aggregation techniques often group unrelated entities together, thereby limiting the

bandwidth reduction gained by combining entity updates.

The techniques described in this thesis take a different approach from most existing work:

Develop a general-purpose remote modeling protocol for large-scale simulations over wide-area

networks, and provide support for entity-specific customization within this basic framework. The

Position History-Based Dead Reckoning (PHBDR) protocol provides fast, accurate remote modeling

of a scalar value based only on a history of previous updates to that value. It makes no assumptions

about the value being modeled other than that it is continuous,2 though entity-specific constraints

can always be introduced to optimize the remote modeling accuracy. By modeling three scalars,

hosts can represent the remote entity’s position in the virtual world. To provide scalability, PHBDR

packets are small, and its computational requirements are minimal. Finally, its remote modeling

tolerates network latency and jitter.

The PHBDR protocol provides a base for developing more sophisticated remote modeling

protocols. The Axis Point protocol uses PHBDR to model remote entity orientation. Multiple-Detail

Channels (rigid-body, approximate-body, and full-body) use PHBDR to model non-rigid entity

structure at different levels-of-detail. Projection Aggregation Entities use PHBDR to model entity

groups. As demonstrated in [16] and [106] with transport-level protocols, this recursive protocol

structuring keeps the design simple, eases testing of protocol implementation, and simplifies the

analysis of protocol effectiveness.

Table 2.1 shows how the techniques in this thesis are used to support different entity types at

different fidelities. In summary, Position History-Based Dead Reckoning and its derivative protocols

provide an integrated architecture for remote rendering in large distributed simulation environments.

Moreover, we demonstrate the effectiveness of these protocols in arbitrary simulation environments

by analyzing their network behavior and modeling accuracy. This domain-independent analysis

represents a significant departure from previous work, which has either neglected analysis altogether

or chosen to focus on particular entity behaviors.

2That is, the scalar’s value, when graphed as a function of time, is C0.

2.3. CONCLUSION 35

Remote Modeling Fidelity
Entity Type Low Medium High

Rigid PHBDR PHBDR
Axis Point

PHBDR
Axis Point

Semi-Rigid PHBDR
Axis Point
Rigid-Body Channel

PHBDR
Axis Point
Approximate-Body Chan-
nel

PHBDR
Axis Point
Full-Body Channel

Non-Rigid/
Entity Group

Projection Aggregation
Entities

Projection Aggregation
Entities

PHBDR
Axis Point
Full-Body Channel

Table 2.1: Use of the Techniques Presented in this Thesis

Chapter 3

Position History-Based Dead Reckoning

(PHBDR)

In this chapter, we describe a protocol for accurately modeling the real-time position of remote

entities and for generating smooth graphical representations of those entities on the user’s display.

The Position History-Based Dead Reckoning (PHBDR) protocol [83, 84] provides remote modeling

of a scalar value (and by extension, the position of a single vertex). The protocol implementation

only assumes that the value being modeled is continuous, hosts have near-synchronous clocks, and

the network offers a unidirectional datagram service. To derive the greatest benefit from the protocol

in a large system, the network should provide some sort of multicast service, but this feature is not

absolutely essential. The protocol makes no other assumptions about the simulation domain, the

type of entity being represented, or the network performance.

Furthermore, the PHBDR protocol reduces the real-time dependencies between hosts as much

as possible by transmitting less time-sensitive information over the network than existing tech-

niques. Receivers process the received information independently based on the locally perceived

latency. This decoupling is essential for supporting large-scale simulations operating over wide-area

networks.

We begin by providing an overview of the PHBDR protocol. We describe how source hosts

generate update packets from the true entity model. We then describe how remote hosts use

those update packets to produce a dead reckoned representation of entity position. We conclude

the chapter with a discussion of how a simulation designer selects appropriate values for various

PHBDR protocol parameters

36

3.1. OVERVIEW OF THE PHBDR PROTOCOL AND ALGORITHM 37

N E T W O R K

Source Host

Multicast Transmission
to Remote Sites

Generation
Packet
Update

Sampling
Frame Rate

Entity

Model

True

Position Update Packet

Remote Host

Processing

Update
Packet

Sampling
Frame Rate

Entity

Model

Remote

Figure 3.1: Hosts Multicast Position Update Packets for Local Entities

3.1 Overview of the PHBDR Protocol and Algorithm

The position history-based protocol transmits timestamped packets containing three scalar coordi-

nates describing the entity position along the x, y, and z axes. The protocol is supported by an

algorithm at the source host for generating update packets and a dead reckoning algorithm at the

remote host for processing update packets, as illustrated in Figure 3.1. The source host maintains

an entity model which is sampled to generate its local frame-rate display. The host also periodically

transmits the entity’s current position over an associated multicast address to remote sites across the

network. Based on information in these update packets, the remote host maintains a remote entity

position model which is sampled at the local frame rate. This dead reckoning algorithm allows

remote hosts to generate a visually accurate animation of remote entities in spite of typical network

delays.

3.2 Source Generation of Updates

Figure 3.2 depicts the processing performed at the source host. The host concurrently maintains

two models of each entity: 1) the true position, which is determined by user input, autonomous

control, and external forces; and 2) the remote tracking position (described in the next section)

38 CHAPTER 3. POSITION HISTORY-BASED DEAD RECKONING (PHBDR)

Timeout

Test
Threshold
Position

Error Approximation
Dead Reckoning

Entity

Model

True

Test

Position

To Frame Rate Sampling Process

True Entity Remote Tracking of
Entity Position

Multicast Transmission
to Remote Sites

Position Update Packet
N E T W O R K

Figure 3.2: Update Packet Generation at the Source Host

which estimates the position based on previous network updates. By calculating the difference

between these two positions, the source host therefore approximates the dead reckoning error at

remote hosts. A maximum error threshold is associated with each entity, and the host transmits an

update packet for the entity whenever the estimated dead reckoning error exceeds this threshold.

The source transmits an update for the entity if none is otherwise generated within a timeout period

to limit the time a remote host relies on old information when a packet is lost. This use of an error

threshold is similar to that used by SIMNET [69], DIS [36], and NPSNET [70].

An update packet only reports the entity’s current position along each axis. Remote sites use

this absolute state information to estimate the entity’s position, velocity, and acceleration. Each

packet includes a timestamp which is used by receivers to account for transmission latency. The

algorithm assumes accurate clock synchronization between all participating hosts. Implementations

of distributed clock synchronization algorithms, such as NTP [58], are widely available and provide

accuracy to less than one millisecond [59]—enough for most real-time simulations.

3.3. RECEIVER PROCESSING OF UPDATES 39

Entity

Model

Remote

Position to Predicted Position)
(Smoothly Move Displayed

Convergence Step

(Remote Prediction
Tracking Step

of Entity Position)

N E T W O R K

To Frame Rate Sampling Process

Figure 3.3: Dead Reckoning of Entity Models at the Remote Host

Time

Location of Position Updates

Convergence Point

Remote Tracking Based on Update History

Displayed Position (Prior)

Current

Convergence Path (Future)

Remote Tracking (Predictive)

Figure 3.4: Tracking and Convergence Steps at Remote Sites

3.3 Receiver Processing of Updates

Upon receiving an update packet, a remote host performs the steps pictured in Figure 3.3 to update

its model of the entity. The first phase, the remote tracking step, uses a short history of updates

to predict the entity’s position, velocity, and acceleration until the next update arrives. This step

compensates for network latency, network jitter (variation in latency), and the inability to transmit

update packets at high frequencies. The dotted line in Figure 3.4 indicates the predicted entity path

generated by the tracking step. The second phase, the convergence step adjusts the local estimate

of velocity and acceleration so that the entity’s current displayed position smoothly converges to

the predicted path at the convergence point, as shown by the dashed line in Figure 3.4. Because

40 CHAPTER 3. POSITION HISTORY-BASED DEAD RECKONING (PHBDR)

Tracking Path

Update Position Vectors

Update Position

0
t t

1
t

2 0
t t

1

Time

t
2

(a) (b)

Time

Figure 3.5: Angle of Embrace Determines Adaptive Tracking

the host predicts the entity’s future location, the current displayed position usually differs from the

true position provided in the update packet. Rather than directly “jumping” to the correct position,

smooth convergence provides the viewer with a more natural animation of remote entities.

Instead of using fixed tracking and convergence algorithms, the position history-based protocol

adapts the algorithms to the recent behavior of the remote entity.

3.3.1 Adaptive Tracking Algorithm

The tracking algorithm adapts to the entity’s behavior by using either a second-order (parabolic)

estimation between the three most recent updates or a first-order (linear) estimation between the

two most recent position updates, as shown in Figure 3.5. To determine which of the two tracking

techniques to use, the remote host calculates the angle between the three most recent update positions.

This angle, defined in differential geometry as the angle of embrace, estimates the local Gaussian

curvature of the entity’s path [17].1 A large angle of embrace—implying that the entity is not

changing direction significantly—invokes second-order (quadratic) tracking along each dimension,

as shown in Figure 3.5a. On the other hand, a small angle—implying that the entity has recently

made a significant change in direction—invokes first-order (linear) tracking along each dimension,

1For three updates x0, x1, and x2, the angle of embrace is computed by computing the vectors ~x1x0 and ~x1x2,
normalizing them, taking their dot product, and applying the arc-cosine:

cos�1
�
j ~x1x0j � j ~x1x2j

�

3.3. RECEIVER PROCESSING OF UPDATES 41

as shown in Figure 3.5b.

The second-order tracking technique is used when the entity is not changing direction rapidly. If

the three most recent positions along a particular dimension are x0 at time t0, x1 at time t1 = t0+d01,

and (the most recent update)x2 at time t2 = t1+d12, then the remote entity tracking traces a parabola

joining those three position points. Using Aitken’s algorithm [22]2 to interpolate these points, we

derive an initial position at time t2 of x(t)
���
t=t2

= x2, initial velocity

x0(t)
���
t=t2

=
d12

(d01 + d12)d01
x0 �

�
12
d01

+
1
d12

�
x1 +

�
1
d12

+
1

d01 + d12

�
x2 (3:1)

and acceleration of

x00(t) =
2

d01(d01 + d12)
x0 �

2
d01d12

x1 +
2

(d01 + d12)d12
x2 (3:2)

By common subexpression elimination, these parameters are computed in eight multiplications and

four additions. This formulation has the advantage of being invariant to affine transformations (in

particular, coordinate system translation and rotation).

We assume that the host processes the most recent update at time t2 + ddelay, where ddelay

represents the latency introduced by the network. To achieve a smooth visual effect, we set

the displayed position to converge with the tracked position after a convergence period dcp =

d12 seconds. We therefore treat the interval between the two most recent update packets as a

crude estimate of packet rate with the intention that path correction will be complete when the next

update packet arrives (assuming a roughly constant update rate).3 The convergence point (at time

2The Aitken algorithm operates by recursively generating lower-order polynomials for subsets of the given points and
then convolving those interpolating polynomials together to construct an interpolation for the entire point set. In the case
of three points x0, x1, and x2 at respective times t0, t1, and t2, we produce two functions:

f01(t) =
t1 � t

t1 � t0
x0 +

t� t0

t1 � t0
x1

and
f12(t) =

t2 � t

t2 � t1
x1 +

t� t1

t2 � t1
x2

and then convolves them to get the interpolating polynomial:

f012(t) =
t2 � t

t2 � t0
f12(t) +

t� t0

t2 � t0
f01(t)

The independence to affine coordinate transforms results from the fact that all curves are rooted (at the base case) on
linear interpolation, which is invariant to coordinate system rotation.

3One can envision using a more complex packet rate estimation technique, possibly based on a smoothed average of
the inter-arrival times between the last few packets. However, because of the dynamic nature of the entity motion, it is not

42 CHAPTER 3. POSITION HISTORY-BASED DEAD RECKONING (PHBDR)

� True Motion, Packet Loc.
 Remote Displayed Position
 Remote Tracking at t=30

|
10

|
20

|
30

|
40

|
50

|0

|250

|500

|750

|1000

|1250

|1500

|1750

 (a)

 Time

 P
os

iti
on

�

�

�

�

�

�

�

�

�

� True Motion, Packet Loc.
 Remote Displayed Position

|
10

|
20

|
30

|
40

|
50

|0
|250

|500

|750

|1000

|1250

|1500

|1750

 (b)

 Time

 P
os

iti
on

�

�

�

�

�

�

�

�

�

Figure 3.6: Using Adaptive Tracking to Model Sudden Path Changes Using (a) Three and (b) Two
Previous Position Updates

tcp = t2 + ddelay + dcp) for second-order tracking is therefore

x(t)

������� = tcp

=
�
ddelay + d12

�� ddelay + 2d12

d01(d01 + d12)
x0

� d01 + 2d12 + ddelay

d01d12
x1 +

d01 + 3d12 + ddelay

(d01 + d12)d12
x0

�
+ x0 (3.3)

The first-order tracking technique is used after the entity makes a sudden turn, as might happen

after a collision. In this situation, second-order tracking as described above is inaccurate, because

the older update position provides little information for predicting the future position of the entity.

The dotted line in Figure 3.6a shows that a second-order curve over-compensates for the turn and

introduces new error in the remote tracking; the resulting displayed path, represented by the dashed

line, does not reflect the entity’s true behavior. A first-order approach, on the other hand, is more

accurate because it ignores information from before the turn, as shown in Figure 3.6b. The resulting

displayed path converges to the true position more rapidly, as reflected in the dashed line. To

generate a first-order tracking equation, we apply straightforward linear interpolation between the

clear whether such effort would yield a packet arrival estimate that is better enough to justify the additional computational
costs. The use of the most recent packet arrival distance seems to provide a reasonable engineering tradeoff between
estimation and computation.

3.3. RECEIVER PROCESSING OF UPDATES 43

two most recent position updates; the tracking curve therefore has initial position at time t2 of

x(t)
���
t=t2

= x2 (3:4)

and velocity

x0(t) =
1
d12

x2 �
1
d12

x1 (3:5)

These parameters are computed in one multiplication and one addition. Once again, the tracking

path is invariant to affine transformations in to coordinate system.

We set the displayed position to converge with the tracked position after a convergence period

of dcp = min
�
d12;∆max�cp

�
seconds after the latest update is processed at the host, where ∆max�cp

represents an upper bound on the convergence period. This upper bound is necessary because the

most recent update packet may have resulted from an unusual event (such as a collision), so the

inter-packet arrival time does not necessarily provide any information about when another update

is likely to arrive. Moreover, in the case of a collision, the correction should occur reasonably

quickly because discrepancies in the visual effect are more important to the viewer. The resulting

convergence point (at time tcp = t2 + ddelay + dcp is therefore either

x(t)

�������t = t2 + ddelay + d12

= �
�
ddelay

d12
+ 1

�
x1 +

�
ddelay

d12
+ 2

�
x2 (3:6)

or

x(t)

�������t = t2 + ddelay + ∆max�cp

= �ddelay + ∆max�cp

d12
x1+

�
ddelay + ∆max�cp

d12
+ 1

�
x2 (3:7)

The adaptive tracking algorithm accounts for network latency by processing position updates

as if they had arrived at the time they were actually sent. In effect, the receiving host rolls

back the tracking step to the packet transmission time. This use of timestamps reduces the real-

time dependencies between remote host dead reckoning and network performance by effectively

providing loose “eventual consistency” semantics on the entity state information at remote hosts.

For example, although different hosts might encounter different latencies on each update packet or

some hosts might receive update packets out-of-order, all hosts eventually track the entity in the

same manner (modulo packet loss) because the tracking algorithm processing is determined by the

packet’s absolute timestamp. Furthermore, the effects of packet loss are eliminated over time as that

44 CHAPTER 3. POSITION HISTORY-BASED DEAD RECKONING (PHBDR)

information is outdated by new updates. Because of this common tracking at all remote sites, the

source host can reasonably approximate error in the remote tracking position and therefore generate

appropriately timed update packets. Convergence, on the other hand, begins from the packet arrival

time; hence, although all of the remote tracking models are identical, each host applies a different

convergence model based on the packet delays observed locally.

3.3.2 Adaptive Convergence Algorithm

While the tracking algorithm described in the previous section allows remote hosts to model the

entity’s actual position, the convergence algorithm ensures that the locally displayed entity position

is smooth. The convergence algorithm also adapts to the entity’s recent behavior. Based on the

angle of embrace calculated during the tracking step, the convergence algorithm selects between a

first-order and second-order path. A smaller angle indicates that the entity motion is curved, and

a second-order (constant acceleration) path is therefore generated. A large angle indicates that the

entity motion is nearly linear, so a first-order (constant velocity) path is used.

Second-order convergence uses the Aitken algorithm described earlier to generate a smooth

parabolic curve between the entity’s previous absolute position, the current displayed position, and

the convergence point on the tracked path,4 as shown in Figure 3.7a. If the previous absolute

position is x1 at time t1 = t0 + d01, the current displayed position is x2+delay at time t2 + ddelay ,

and the convergence point (determined in the previous section) is xcp at time tcp, then convergence

has initial position x(t)
����
t=t2+ddelay

= x2+delay , initial velocity

x0(t)

�������t = t2 + ddelay

=
�dcpx1�

d12 + ddelay
� �
d12 + ddelay + dcp

�

+

1

d12 + ddelay
� 1
dcp

!
x2+delay

+

�
d12 + ddelay

�
xcp�

d12 + ddelay + dcp
�
dcp

(3.8)

4We could have used the Aitken algorithm to generate a smooth convergence path between the currently displayed
path and the tracking path; this would result in a third-order path preserving a smooth velocity. However, should an
update packet arrive before convergence completes, we would need to generate a fourth-order curve to continue providing
a smooth convergence (i.e. between the current convergence path and the new tracking path). Ultimately, either the degree
of the convergence path must remain unbounded, or the user must still accept an occasional discontinuity in the velocity.
Credit goes to Hugh Holbrook for this observation.

3.3. RECEIVER PROCESSING OF UPDATES 45

Absolute Position Update

Tracking Path After Convergence Point

Current Displayed Position

Convergence Point

Tracking Path

Convergence Path

t
1

t
2

t
1

t
2

t + d
2 delay

Time

t + d + d
2 delay cp

2 delay
t + d

2 delay cp
t + d + d

(a) (b)

Time

Figure 3.7: Convergence Smoothly Corrects the Current Displayed Position

and acceleration

x00(t) =
2x1�

d12 + ddelay
� �
d12 + ddelay + dcp

� � 2x2+delay�
d12 + ddelay

�
dcp

+
2xcp�

d12 + ddelay + dcp
�
dcp
(3:9)

By common subexpression elimination, the parameters are computed in nine multiplications and

six additions.

When the motion is almost linear, first-order convergence joins the current displayed position

to the convergence point as shown in Figure 3.7b. Using first-order convergence, the initial position

is x(t)
����
t=t2+ddelay

= x2+delay and the velocity is

x0(t) =
xcp � x2+delay

dcp
(3:10)

These parameters are calculated in one multiplication and one addition.

The convergence process terminates once the entity’s displayed position reaches the conver-

gence point. Until the next update arrives, the displayed entity follows the position, velocity, and

acceleration predicted by the remote tracking algorithm.

Table 3.1 summarizes how angle of embrace determines the adaptive tracking and convergence

algorithms.

46 CHAPTER 3. POSITION HISTORY-BASED DEAD RECKONING (PHBDR)

Angle Between Curve Tracking Convergence
Three Recent Updates Characterization Model Model
Small Rapid Turn First-Order Second-Order
Medium Smooth Curve Second-Order Second-Order
Large Straight Line Second-Order First-Order

Table 3.1: Adaptive Algorithms for Extrapolation and Convergence

Source/Remote
Parameter Agreement Needed Characteristic Setting

Small–Medium
Yes

Entity changes behavior frequently High
Angle Threshold Entity behavior stable Low
Medium–Large

No
Ample CPU, entity of local interest High

Angle Threshold Limited CPU, entity not of local interest Low

∆max�cp No
Entity cannot make sharp turns High
Entity motion may be arbitrary High

Table 3.2: Criteria for Setting PHBDR Tracking and Convergence Parameters

3.4 Setting Dead Reckoning Parameters

The PHBDR protocol requires that four parameters be set for each entity: an error threshold (used

by the source to decide when to transmit an update), small–medium and medium–large angle

thresholds (used by the receiver to select between first- and second-order tracking and convergence,

and ∆max�cp (used by the receiver to bound the convergence time during linear extrapolation).

The appropriate values for these parameters depend on the physical dynamics of the particular

entity being modeled. In this section, we provide some guidance on setting the small–medium

and medium–large angle thresholds and ∆max�cp. These parameters are summarized in Table 3.2.

The remaining protocol parameter, the error threshold, is discussed in depth in the next chapter in

conjunction with discussions of the network load and remote modeling error produced by PHBDR.

3.4.1 Setting the Small–Medium Angle Threshold

The “small” angle category signals to the remote host’s tracking algorithm that the entity’s motion

represents a collision rather than smooth motion. Consequently, entities capable of experiencing

frequent changes in behavior (as a result of rapidly changing acceleration, for instance) require a

high small–medium angle threshold, thereby forcing most of the motion to fall within the first-order

3.4. SETTING DEAD RECKONING PARAMETERS 47

collision tracking category. For example, a bee, which changes direction frequently, should have

a high small–medium angle threshold to ensure that first-order dead reckoning is used on almost

all packets; a passenger aircraft, which changes direction rarely, should have a low small–medium

angle threshold to ensure that second-order (smooth) dead reckoning is used on almost all packets.

The particular entity type determines the appropriate threshold value, and because its value

affects the tracking path, the source and remote hosts must agree upon its value. Typically,

therefore, remote hosts would obtain its value from a simulation database which also provides,

for example, graphical descriptions of the entities. Empirically, we have found that setting the

small–medium angle threshold at 90 degrees provides a conservative parameter that minimizes the

number of collisions assumed by the tracking algorithm.

3.4.2 Setting the Medium–Large Angle Threshold

The “large” angle category signals that the convergence algorithm at the remote host may conserve

computational processing by replacing a smooth curve path with a straight line path without dis-

torting the visual effect. The value of this threshold therefore depends on the entity’s distance from

the viewer and the entity type (together representing its importance to the viewer), as well as the

locally available computational resources.

Because this value is only used in convergence, each remote site may independently adjust

the threshold for each entity based on local requirements. When computational resources are not

an issue, setting the medium–large angle threshold at 175 degrees eliminates almost all visual

distortion.

3.4.3 Setting ∆max�cp

The parameter ∆max�cp bounds the convergence period after the dead reckoning algorithm detects

a sudden change in the entity motion; this parameter is necessary because sharp turns and collisions

often occur without warning, so the normal packet inter-arrival time potentially yields a long

convergence period and an unrealistic path. Consequently, smaller values for ∆max�cp allow

the convergence algorithm to generate sharper turns on the display, while larger values force the

convergence algorithm to generate smoother convergence paths.

The appropriate value for ∆max�cp therefore depends on how sharp are the turns that the entity

is capable of making. A ball, for instance, can move almost arbitrarily, so a small value of ∆max�cp

is appropriate. On the other hand, a human typically does not make sharp turns (like a complete

48 CHAPTER 3. POSITION HISTORY-BASED DEAD RECKONING (PHBDR)

reversal of direction), so a larger value of ∆max�cp is desirable. Empirically, we have found that

setting ∆max�cp to 0:25 seconds produces a reasonable visual effect in most cases, though this value

depends on the particular entity type.

3.5 Conclusion

We have presented the Position History-Based Dead Reckoning (PHBDR) protocol which provides

a simple, efficient protocol for remote modeling of entity position. The PHBDR protocol exhibits

several novel characteristics:

� Source hosts only transmit position information, and remote sites use position history from

multiple updates to accurately track entity position.

� A timestamp indicating time of generation is included in the protocol packet, allowing the

receiver’s dead reckoning process to compensate for variable delay in packet delivery.

� The adaptive tracking and convergence characterize the entity’s overall behavior to determine

how many updates to include in the curve-fitting process.

The protocol makes minimal assumptions about the simulation environment. It only assumes

that the entity’s position is continuous, simulation hosts have synchronized clocks, and the network

provides a unidirectional datagram service. It only relies on entity position information which,

unlike velocity and acceleration, is universally available from entity models, including models

derived from sensors attached to physical entities. These assumptions allow the PHBDR protocol

to be used in a broad range of simulation environments.

Having provided a simple, efficient dead reckoning protocol, we now proceed to evaluate its

network bandwidth utilization and positional fidelity. The next chapter demonstrates that PHBDR

provides smooth and accurate remote modeling for a broad range of entities while using minimal

network bandwidth.

Chapter 4

Analyzing PHBDR Network and Error

Performance

We have presented the Position History-Based Dead Reckoning (PHBDR) protocol, a simple,

efficient protocol to support remote modeling in distributed simulations. However, the protocol is

only useful if it requires minimal network bandwidth utilization and offers smooth, accurate remote

modeling.

Assessing the behavior of a dead reckoning algorithm is difficult because it depends heavily

on the type of entity motion, the network latency between the source and remote hosts (which is

affected by the distance between hosts), and network jitter—the variation in network latency (which

is affected by the variability in network congestion).

To evaluate a dead reckoning protocol systematically, we use a three-step process:

1. Classification of curves into groups representing the different types of entity behavior of

interest.

2. Mathematical analysis of the protocol to understand its worst-case modeling behavior on each

curve type, followed by controlled simulation of the protocol over selected entity paths from

each curve category to evaluate its performance over the expected set of entity behaviors.

3. Deployment of the protocol in a distributed simulation application to validate the evaluation

and confirm the visual quality of the remote modeling from a user’s perspective.

This chapter applies this procedure to analyze and evaluate the PHBDR protocol. We begin by

describing the curve classification used in the evaluation and argue that this classification is broad

49

50 CHAPTER 4. ANALYZING PHBDR NETWORK AND ERROR PERFORMANCE

Jerk Jerk Sample Algorithm(s) Responsible For Providing
Magnitude Smoothness Motion Most Accurate Remote Display

None N/A Line, Parabola Tracking
Low No Spikes Near Parabola Tracking, Convergence
High No Spikes Oscillation Tracking
Low Spikes Bouncing Convergence
High Spikes Random Neither

Table 4.1: Summary of Five Curve Classes

enough to describe most behaviors likely to arise in a simulation. After analyzing the PHBDR

performance on each curve type, we incorporate experience in a deployed simulation environment

to summarize the key advantages and limitations of the PHBDR protocol.

4.1 Entity Path Classification

To systematically evaluate the PHBDR protocol, we divide entity behavior into five categories,

as listed in Table 4.1, This classification is based on the third derivative, or jerk—the change in

acceleration exhibited by the entity. The third derivative most significantly affects the protocol’s

positional fidelity because PHBDR generates first-order and second-order curves for both tracking

and convergence. Our classification covers all combinations of jerk magnitude and smoothness and

is therefore all-inclusive. Although an entity’s motion is generally complex, its behavior can at

least locally be described by one of these cases. For each curve category, we explore how the dead

reckoning protocol works under different network conditions.

At the remote host, the PHBDR protocol accurately tracks any entity exhibiting constant accel-

eration (zero jerk) because it uses second-order curves to locally model smooth motion. In this case,

the remote tracking model matches the true position exactly. For these curves, network latency is

irrelevant because updates only serve to signal that the entity’s behavior has not changed.

PHBDR is also highly accurate for smooth curves whose acceleration changes slowly (small

magnitude jerk) because those paths locally exhibit near-parabolic behavior. In these cases, the

parabolic remote tracking model closely approximates the true motion. Consequently, the dead

reckoning error at each position update is relatively small (linearly proportional to jerk), so the

convergence algorithm quickly corrects the error by slightly exaggerating the acceleration applied

between position updates. As perceived by remote hosts, network latency increases the effective

4.2. EVALUATING PHBDR ON COMPLEX CURVE TYPES 51

error threshold proportionally to the cube of network latency; this behavior is identical to that

experienced with high magnitude jerk and is discussed further in Section 4.2.1.

The next section discusses the three remaining entity curve types, whose behavior is more

complex and less intuitive:

� High magnitude jerk with no spikes: For example, a bus traveling along a winding road

exhibits smooth jerk.

� Low magnitude jerk with occasional spikes: Jerk may spike when an external force is

temporarily applied to the entity. For example, a bouncing entity or an entity moving along

rough ground exhibits near-zero jerk except that when it hits the ground, the jerk spikes and

changes the velocity. In this case, the convergence algorithm must quickly recover from

errors resulting from the unpredicted collision with the ground [97].1

� High magnitude jerk with frequent spikes: This case includes all remaining types of

motion, including random motion. For example, a person in a crowd moves around smoothly

at varying velocity but is occasionally pushed by someone else. Tracking and convergence

algorithms are of little benefit in predicting or correcting the remote entity display.

4.2 Evaluating PHBDR On Complex Curve Types

In this section, we evaluate the PHBDR performance over the three remaining curve categories:

high magnitude jerk with no spikes, low magnitude jerk with occasional spikes, and high magnitude

jerk with frequent spikes. Based on measurements of the average packet rate and remote tracking

error generated by the PHBDR protocol on these three types of curves, we make the following

observations:

Curve Type Tradeoff: Although a higher packet rate generally produces higher positional fidelity

in remote models, the proportion of smooth versus sudden changes in jerk exhibited by the

entity motion determines the precise relation between these two variables. Moreover, different

curve types exhibit different sensitivity to network latency.

Threshold Estimation: The curve type also determines the appropriate protocol error threshold

required to achieve a reasonable balance of positional fidelity and network bandwidth: the

1We assume here that the entity is tracked in isolation, without advance knowledge of the impending collision.
Section 4.4 discusses extending the protocol to leverage such information.

52 CHAPTER 4. ANALYZING PHBDR NETWORK AND ERROR PERFORMANCE

appropriate protocol error threshold lies between one and two times the average tolerable

visualization error.

Balanced Degradation: A higher protocol threshold degrades positional and behavioral fidelity

equally, while retaining a faithful representation of the true motion.

4.2.1 High Magnitude Jerk With No Spikes

If the jerk is continuous, then we may bound the error of the interpolating curve generated by the

second-order tracking model. In particular, the tracking error at time t = t0 + d equals [40]:2

Error[x(t)] =
x(3)(�)

3!
(d)(d� d01)(d� d01 � d12) (4:1)

where � is some time between time t0 and time t2. We replace x(3)(�) with jmax, signifying the

maximum jerk. Also, because we are interested in the future error, let d = d01 + d12 + dfuture. We

get:

Error[x(�)] � jmax

6
(d01 + d12 + dfuture)(d12 + dfuture)dfuture

=
jmax

6

�
d3
future + 2d12d

2
future + (d01dfuture + d01d12 + d2

12)dfuture
�

(4.2)

With a target steady-state packet rate D between packets, we can make a substitution for d01, d12,

and dfuture:

Error[x(t)] � jmax

6
6D3

= jmaxD
3 (4.3)

From this equation, we can draw a number of conclusions. First, each incremental reduction in

the error threshold causes a larger increase in the packet rate (reduction in D); conversely, each

increase of the error threshold has incrementally smaller effects on the packet rate (increase in D).

This result signals in modeling this class of curves, packet rate, rather than average error, is likely

to be the limiting constraint. This behavior represents one endpoint in the Curve Type Tradeoff.

Second, we observe that the remote tracking error increases only linearly with jerk. The PHBDR

2We retain the same variables used in defining the protocol in Chapter 3. the three most recent updates x0, x1, and x2

were transmitted at times t0, t1 = t0 + d01, and t2 = t1 + d12, respectively. The remote host receives the last update at
time t2 + ddelay where ddelay denotes the network latency.

4.2. EVALUATING PHBDR ON COMPLEX CURVE TYPES 53

protocol therefore has limited sensitivity to the dynamics of the entity motion. For example, to be

competitive with traffic [103] exhibited by many entities under the existing Distributed Interactive

Simulation (DIS) protocol (IEEE Standard 1278) [37], PHBDR must achieve a target packet rate

of one per second (D = 1). Under these conditions, the maximum tracking error (modulo network

latency) equals the jerk, and the average tracking error equals only j
4 . Third, because network

latency delays the arrival of update packets, effectively increasing the error threshold seen at remote

hosts, it can have a significant impact on the remote tracking error. By the point that a remote host

processes the update, the network latency ddelay has increased the tracking error by an additional

jmax(3D
2ddelay + 3Dd2

delay + d3
delay) (4:4)

which is dominated by the 3D2ddelay term because we assume that ddelay � D; We expect ddelay

to equal 0:1 seconds, reflecting typical latencies across the Internet in the United States, and as we

have seen, D should equal roughly 1 second. Substituting these values, the network latency raises

the maximum error by 0:3jmax (or 30%) and the average error by 0:11jmax (or 46%).

To validate the conclusions derived from this analysis, we run simulations on selected curves

from this curve category

4.2.1.1 Oscillatory Motion

Oscillation can be regarded as one of the worst case situations for dead reckoning among curves

having smooth jerk. In this case, the jerk smoothly changes within the range [�(2�f)2A; (2�f)2A],

where A represents the amplitude of the oscillatory motion and f represents its frequency. Non-

oscillatory motion whose jerk increases or decreases monotonically also exhibits similar remote

modeling characteristics.

At tight protocol thresholds, the PHBDR algorithm yields tight positional fidelity for high-speed

oscillatory motion by transmitting update packets soon after the entity’s behavior changes, as shown

in Figure 4.1a. Table 4.2 lists the average remote modeling error and packet rates corresponding to

each curve in the figure. We observe that tight error thresholds produce high positional fidelity at

the expense of a higher update rate. When the protocol error threshold is increased, remote sites

model the oscillation amplitude with less positional fidelity because they receive fewer updates for

each oscillation period. Despite the lower positional fidelity, we observe that the remote model still

exhibits oscillatory motion, thus maintaining reasonable behavioral fidelity. This behavioral fidelity

arises because at higher error thresholds, PHBDR is simply sampling the motion at a rate lower

54 CHAPTER 4. ANALYZING PHBDR NETWORK AND ERROR PERFORMANCE

 Dead Reckoned Motion
 True Motion

|-100

|-70

|-40

|-10

|20

|50

|80

 (a)

 P
os

iti
on

|-100

|-70

|-40

|-10

|20

|50

|80

 (b)

|-100

|-70

|-40

|-10
|20

|50

|80

 (c)

|
0

|
5

|
10

|
15

|
20

|
25

|
30

|
35

|
40

|
45

|
50

|-100

|-70

|-40

|-10

|20

|50

|80

 (d)

 Time

Figure 4.1: PHBDR Rendering of Sinusoidal Oscillation (amplitude 50 meters, period 9 seconds,
timeout 5 seconds, zero latency, threshold (a) 1, (b) 10, (c) 25, and (d) 50 meters)

4.2. EVALUATING PHBDR ON COMPLEX CURVE TYPES 55

Error Average Error Between True Model and Packet Rate Per
Threshold Remote Modeling Remote Rendering Oscillation Second

1 (2%) 0.38 (0%) 0.84 (2%) 19.44 2.16
10 (20%) 3.85 (8%) 7.58 (15%) 9.36 1.04
25 (50%) 11.56 (23%) 16.11 (32%) 5.40 0.60
50 (100%) 19.59 (39%) 28.63 (57%) 3.60 0.40

Table 4.2: Summary of Average Error (Absolute and As Percentage of Amplitude) and Packet
Rate for Oscillatory Motion

than its natural Nyquist frequency. Although sub-sampling an oscillatory motion yields an incorrect

oscillation frequency (and, therefore, incorrect position), it is still guaranteed to demonstrate some

sort of oscillatory behavior.

We also observe from Table 4.2 that the rendered position (incorporating both tracking and

convergence) exhibits a higher error than the remote position model (incorporating only entity

tracking). This discrepancy arises because the convergence algorithm artificially sustains an error

in order to retain the illusion of smooth entity motion on the display, while the tracking algorithm

maintains an up-to-date view of the entity’s real position based on provided update packets. Because

we are most interested in the visual effect produced by the simulation, we only consider the remote

rendering error throughout the rest of this chapter.

4.2.1.2 Circular Motion

Circular or spherical motion results when jerk smoothly changes in direction but retains a constant

magnitude. Analysis of circular motion has broader applicability, however, for a large family of

curves can be locally approximated as circles [101]. Figure 4.2a shows the average remote rendering

error as a function of the protocol error threshold, and Figure 4.2b shows the corresponding packet

rate as a function of the protocol error threshold. Although the data is based on circles of radius 50,

the results generalize for circles of any radius: a smaller radius simply means that the entity must

move with a higher jerk in order to maintain the same speed.

The graph reveals that the average displayed error increases linearly with increasing protocol

threshold. On the other hand, the packet rate rises rapidly with tighter threshold. These results

confirm our mathematical analysis that remote rendering on these curves is more sensitive to

bandwidth usage than to remote modeling error. If all other factors are equal, the protocol error

56 CHAPTER 4. ANALYZING PHBDR NETWORK AND ERROR PERFORMANCE

� Jerk 1396 (Accel 493)

 Jerk 89.33 (Accel 80)
� Jerk 32.55 (Accel 40)
� Jerk 11.17 (Accel 20)
� Jerk 1.39 (Accel 5)
� Jerk 0.17 (Accel 1.25)

|
0

|
10

|
20

|
30

|
40

|0

|10

|20

|30

|40

|50

 (a)

 Threshold

 A
ve

ra
ge

 E
rr

or

��
�

�

�

�

�

��

�

�

�

�

�

��

�

�

�

�

�

��

�

�

�

�

�

��
�

�

�

�

�

� Jerk 1396 (Accel 493)

 Jerk 89.33 (Accel 80)
� Jerk 32.55 (Accel 40)
� Jerk 11.17 (Accel 20)
� Jerk 1.39 (Accel 5)
� Jerk 0.17 (Accel 1.25)

|
0

|
10

|
20

|
30

|
40

|0
|2

|4

|6

|8

|10

 (b)

 Threshold
 P

ac
ke

ts
 P

er
 S

ec
on

d

�

�

�

�
�

�

�

�

�
�

� � �

�
�
�

� � � �
�
�
� � � � �

�� � � � � �

Figure 4.2: Average PHBDR Protocol (a) Rendering Error and (b) Packet Rate for Circular Motion
(radius 50 meters) With Zero Network Latency

threshold value for this class of curves must be determined primarily by bandwidth limitations,

rather than visual error requirements. This characteristic represents one endpoint of the Curve Type

Tradeoff.

The dotted line of Figure 4.2a supports the Threshold Estimation observation, which sets the

protocol error to between one and two times the average visual error tolerance (or between j
2 and

j, based on the prior analysis). For this endpoint in the Curve Type Tradeoff, the protocol error

threshold should be set equal to the average tolerable error. As shown by the dotted line, this

threshold provides a remote model that provides the minimum acceptable positional fidelity and

therefore optimizes the network bandwidth, which is the sensitive resource for this curve class.

4.2.2 Low Magnitude Jerk With Occasional Spikes

In the second class of entity motion, the acceleration remains nearly constant most of the time

but occasionally changes suddenly. For example, when two entities collide, they instantaneously

exhibit high acceleration as momentum is reversed. The velocity consequently undergoes an almost

instantaneous change. After changing direction, each entity’s acceleration returns to a stable state.

A bouncing entity offers one example of this class of behavior, as illustrated in Figure 4.3. The

jerk is zero as the entity is moving, but it exhibits a positive spike as the entity changes direction

and a negative spike as the entity returns to a stable acceleration. The corresponding acceleration

4.2. EVALUATING PHBDR ON COMPLEX CURVE TYPES 57

0 (a)

0

(b)

0

Time

(c)

0

(d)

Figure 4.3: Entity (a) Position, (b) Velocity, (c) Acceleration, and (d) Jerk During a Collision

remains constant as the entity is moving, but it spikes as the entity bounces and velocity reverses

direction.

Prior position information provides insufficient information for predicting a collision and the

subsequent spike in jerk. We must therefore rely on the convergence algorithm to quickly recover

from the error after the behavior change is reported. Because the acceleration changes instanta-

neously at the collision point, the remote modeling error increases quadratically after the collision

until it exceeds the protocol error threshold. Therefore, the protocol error threshold does not have

a significant effect on packet rate. Instead, a larger protocol error threshold only serves to delay the

update packet transmission by allowing the source to tolerate a larger divergence between the true

and remote models.

Moreover, suppose that the entity acceleration and velocity respectively change in magnitude by

a∆ and v∆ during the collision, where a∆ and v∆ are calculated from the instantaneous acceleration

and velocity before and after the collision. We ignore the effect of jerk, because by assumption,

its magnitude is near-zero before and after the collision. Therefore, we can apply the basic physics

58 CHAPTER 4. ANALYZING PHBDR NETWORK AND ERROR PERFORMANCE

equations of motion to derive the remote tracking error at time t = t2 + dfuture:

Error[x(t)] =
����12a∆d

2
future + v∆dfuture

���� (4:5)

In the case of an “elastic bounce,” where the entity’s acceleration does not change, this expression

reduces to:

Error[x(t)] = jv∆dfuturej (4:6)

This linear relationship between error and packet rate is fundamentally different from that exhibited

with paths exhibiting high jerk. To achieve better remote modeling of bouncing motion, we should

transmit packets more aggressively but not necessarily more often. We conclude, therefore, that

the error threshold value for this class of curves should be determined primarily by the visual error

tolerances, rather than network bandwidth limitations. This behavior represents the second extreme

in the Curve Type Tradeoff.

As we have seen with other types of curves, network latency increases the protocol error threshold

perceived at remote hosts. However, Equation 4.6 indicates that latency has a less dramatic effect on

the average error for bouncing motion than it does for oscillatory or circular motion. The network

delay ddelay introduces an average additional error of jv∆ddelay j, or j0:1v∆j based on our Internet

latency estimates. Assuming a maximum one second delay on the packet transmission after the

bounce motion (corresponding to the target one packet per second update rate), we see that the

network latency increases the maximum remote tracking error by only 10% and the average remote

tracking error by only 21%, considerably less than the respective 30% (maximum error) and 46%

(average error) effects seen with oscillatory and circular motion.

We use simulations on bouncing motion to confirm these analyses.

Figure 4.4a shows the PHBDR rendering error performance for bouncing motion as a function

of the protocol error threshold. The figure confirms that the average rendering error rises nearly

linearly with increased protocol threshold. Figure 4.4b shows the relationship between packet rate

and protocol error threshold. The figure confirms that the number of transmitted packets is almost

independent of the protocol threshold. The large drop in packet rate after the threshold equals

20 meters occurs as transmission of update packets from one bounce begin to overlap with the

occurrence of the next bounce. Figure 4.4 therefore confirms our mathematical analysis indicating

that changes to the protocol error threshold affects average error more significantly than network

bandwidth utilization. If all other factors are equal, the protocol error threshold should be determined

primarily by the visual error tolerances.

4.2. EVALUATING PHBDR ON COMPLEX CURVE TYPES 59

|
0

|
5

|
10

|
15

|
20

|
25

|
30

|
35

|0

|2

|4

|6

|8

|10

|12

|14

|16

|18

|20

 (a)

 Threshold

 A
ve

ra
ge

 E
rr

or

����
��
�

�

�

�

�

�

�

|
0

|
5

|
10

|
15

|
20

|
25

|
30

|
35

|0.00

|0.25

|0.50

|0.75

 (b)

 Threshold

 P
ac

ke
ts

 P
er

 S
ec

on
d

������� � � �

�

�

Figure 4.4: Average PHBDR Protocol (a) Error and (b) Packet Rate for Bounce Motion of Height
25

The dotted line of Figure 4.4a shows that this curve class represents the other extreme for the

Threshold Estimation observation. For bounce motion, the protocol error threshold should be set

to twice the average visual error tolerance to achieve the desired positional fidelity. However, the

average modeling error does depend on how frequently the entity jerk exhibits sharp spikes. More

frequent acceleration changes demand lower thresholds to achieve the same average positional

fidelity.

Figure 4.5 shows the protocol’s visual behavior on bouncing motion. Figure 4.5a shows that

for tight thresholds, the remote modeling supports the desired positional fidelity. With an increased

protocol error threshold, the remote model loses positional fidelity but still retains considerable

behavioral fidelity, as shown by Figure 4.5b. In particular, the remote model still exhibits the same

bounce-like motion and frequency as the true path. In this case, however, the remote model has

switched to a first-order approximation of the entity’s motion because the algorithm detects a sudden

change in direction (small angle of embrace) between successive updates.

The degradation of positional and behavioral fidelity becomes more pronounced when the

threshold is increased further, as in Figure 4.5c. Although positional fidelity is degraded, the

remote model retains significant similarities to the true motion. The remote entity model exhibits

the bounce-like behavior present in the true motion, though it has been degraded by presenting a

lower-frequency bounce with varying height. Moreover, although the positional fidelity is degraded,

the remote entity position generally remains within its true positional range. This remote model is

therefore still usable by users who are far from the entity in the virtual world.

60 CHAPTER 4. ANALYZING PHBDR NETWORK AND ERROR PERFORMANCE

 Dead Reckoned Motion
 True Motion

|-20

|-10

|0

|10

|20

|30

 (a)

 P
os

iti
on

|-20

|-10

|0

|10

|20

|30

 (b)

|
0

|
5

|
10

|
15

|
20

|
25

|
30

|
35

|
40

|
45

|
50

|-20
|-10

|0

|10

|20

|30

 (c)

 Time

Figure 4.5: PHBDR Protocol Rendering of Bounce Motion (height 25 meters; timeout 5 seconds;
threshold (a) 1, (b) 10, and (c) 25 meters)

4.2.3 High Magnitude Jerk With Frequent Spikes

If jerk has high magnitude and exhibits frequent changes, the resulting entity motion is characterized

by both smooth, rapid acceleration changes and sharp, unpredictable changes. Such behavior

includes most random motion, such as a person weaving through a crowd or a particle traveling

through a wind tunnel. Accurate remote modeling of these curves relies on a high update rate from

the source host. The tracking step cannot accurately predict the future position because the behavior

is likely to change at any moment, and the convergence step us unlikely to recover from a display

error before the entity’s behavior changes again.

Despite the complexity of this class of curves, the PHBDR protocol provides reasonable support

4.3. ADVANTAGES OF THE PHBDR PROTOCOL 61

for such erratic behavior. Figure 4.6 demonstrates the algorithm’s behavior on a sample path from

this curve class. The curve trace was generated by randomly perturbing the entity’s acceleration

on each frame by a small amount (up to one percent) and introducing large acceleration jumps

(by reversing the direction of acceleration) after 0.5% of the frames (on average, once every 3.33

seconds). In this example, we observe that the error and packet rate behavior represent a hybrid

of that seen for circular and bounce motion in Figures 4.2 and 4.4. In fact, all curves that we

have studied from this class generate an intermediate behavior between the other two curve classes,

depending on the proportion of smooth and sudden changes in jerk. If the curve is dominated

by smooth jerk changes, then it exhibits oscillation-like behavior, while a dominance of sudden

jerk changes results in more bounce-like behavior. Based on our analyses of the oscillation and

bouncing motion, we conclude that the Threshold Estimation observation similarly allows us to

trade off positional fidelity and network utilization across the spectrum represented by this class of

curves.

In summary, no remote modeling algorithm can accurately support random motion without

introducing a packet rate approaching the frame rate. However, by sampling only position and

smoothing between these periodic samples, the PHBDR protocol provides good behavioral fidelity

with an acceptable positional fidelity.

4.3 Advantages of the PHBDR Protocol

Having systematically studied the behavior of PHBDR, we now extract the key advantages offered

by the protocol. To place these advantages in context, we consider them in relation to the current

Distributed Interactive Simulation (DIS) protocol (IEEE Standard 1278) [37] that sees wide use in

deployed distributed simulation systems. The DIS dead reckoning protocol [36] transmits position,

velocity, and acceleration information whenever the remote entity model exceeds a threshold or a

five second timeout elapses. Using data from the most recent packet, DIS dead reckoning algorithms

generate a second-order model to predict the future entity location.

In comparing the PHBDR and DIS protocols, we consider three criteria: remote model stability,

dependencies between hosts, and network and computational load.

4.3.1 Remote Model Stability

The stability of a remote model refers to how it is affected by short-term changes to the entity’s

behavior. For example, we re-consider the rapid bouncing motion illustrated in Figure 4.5. Figure 4.7

62 CHAPTER 4. ANALYZING PHBDR NETWORK AND ERROR PERFORMANCE

0
500

1000
1500

2000
2500

3000
-1000

-500

0

500

1000

-500

0

500

1000

1500

2000

|
0

|
10

|
20

|
30

|
40

|
50

|0

|5

|10
|15

|20

|25

 (a)

 Threshold

 A
ve

ra
ge

 E
rr

or
 (

km
)

�
�
�

�

�

�

� �

|
0

|
10

|
20

|
30

|
40

|
50

|0.00

|0.25

|0.50

|0.75

|1.00

|1.25

|1.50

 (b)

 Threshold

 P
ac

ke
ts

 P
er

 S
ec

on
d �

�

�
�

�

� �

Figure 4.6: Average PHBDR Protocol (a) Error and (b) Packet Rate for Sample Motion Exhibiting
High Jerk with Frequent Spikes

4.3. ADVANTAGES OF THE PHBDR PROTOCOL 63

 Dead Reckoned Motion
 True Motion

|-20

|-10

|0

|10

|20

|30

 (a)

 P
os

iti
on

|-20

|-10

|0

|10

|20

|30

 (b)

|
0

|
5

|
10

|
15

|
20

|
25

|
30

|
35

|
40

|
45

|
50

|-20

|-10

|0
|10

|20

|30

 (c)

 Time

Figure 4.7: DIS Rendering of Bounce Motion (height 25 meters; timeout 5 seconds; threshold (a)
1, (b) 10, and (c) 25 meters)

illustrates how the DIS protocol performs on the same entity motion. Figures 4.5a and 4.7a reveal

that at tight protocol error thresholds, both protocols perform comparably. At wider thresholds, as

illustrated in Figures 4.5b–c and 4.7b–c, the algorithms behave quite differently. We observe that at

a high error threshold, the DIS remote model faithfully preserves the bounce frequency. However,

it regularly positions the entity outside the range of its true motion, so the user sees the entity in

locations that it never exists. Although hosts would typically employ these high error thresholds

when the entity is far from the local viewer in the virtual world, this unbalanced degradation of

behavioral and positional fidelity is potentially confusing to users.

On the other hand, the PHBDR protocol, by using several position updates instead of extra

64 CHAPTER 4. ANALYZING PHBDR NETWORK AND ERROR PERFORMANCE

derivatives, generally degrades positional and behavioral fidelity more evenly. Behaviorally, the

protocol smoothes the entity motion and hence presents a lower-frequency bounce. More im-

portantly, the remote entity model generally stays within the positional range of the actual entity

motion, so although the displayed position is inaccurate, it almost always places the entity in a

realistic position. Users effectively see less fidelity in both position and behavior, but the presented

model is still constrained by the true motion. This balanced fidelity reduction is more meaningful

for users.

The smoothing characteristics of the PHBDR protocol arises because it relies on information—

namely entity position—that changes least rapidly and least randomly. For example, a physical

entity’s position must be continuous, and the position is generally an indirect and, therefore,

delayed response to velocity and acceleration changes. By relying on position information alone,

PHBDR is consequently less sensitive to short-term changes in an entity’s velocity and acceleration.

Furthermore, the adaptive tracking and convergence techniques allow the PHBDR protocol to simply

ignore acceleration altogether when its value seems to be changing rapidly. As a result, the protocol

accurately models a variety of entity behaviors, including straight lines, sharp turns, and smooth

curves.

The stability of the PHBDR protocol contrasts with the DIS protocol which relies on more

transient entity attributes. Velocity and acceleration can change rapidly and even instantaneously,

and errors in their representation have second- and third-order effects on position. If a source

host happens to send an update during a velocity or acceleration spike, receivers extrapolate the

entity using inaccurate information that exaggerates the entity’s motion. These factors potentially

affect the remote modeling of a broad set of entities. Most entities, though they appear to be

moving smoothly, are constantly subjected to external forces which rapidly change the velocity and

acceleration. For instance, as a car drives along a road, the vertical motion changes rapidly because

road surfaces are not perfectly smooth.

We observe that our techniques for achieving remote model stability in the PHBDR protocol have

broader applicability. For example, DIS-style protocols could be re-engineered to detect and ignore

instantaneous velocity and acceleration values that appear to represent short-term fluctuations. The

details of implementing this hybrid approach represent an area for future research. However, even

with this optimization, DIS protocols still face a significant disadvantage, namely that not all entities

can provide accurate velocity and acceleration information. For example, entity models derived

from sensors attached to physical entities can usually generate position samples but cannot always

generate velocity and acceleration. PHBDR, which relies only on position information, therefore

4.3. ADVANTAGES OF THE PHBDR PROTOCOL 65

still supports a more general class of entities.

4.3.2 Decoupling Receivers from Network and Source Host Performance

By using timestamps to synchronize the remote tracking at receiving hosts, the PHBDR protocol is

effective at addressing network latency and jitter issues in real-time visualization systems. Although

each host receives the packet with a different latency, it assures “eventual consistency” semantics

whereby all remote hosts eventually share the same tracking model for the entity. Furthermore, the

protocol supports out-of-order packet arrival, because the receiver simply inserts the update in the

correct order in the dead reckoning state for the entity and discards the update if it predates all of

the updates currently held in the entity’s position history. This approach departs from the published

DIS dead reckoning protocol, under which remote hosts process update packets when they arrive,

without regard for intervening network latency. Under the DIS protocol, therefore, each remote

host may have a significantly different model of the entity’s current position.

However, the eventual consistency provided by timestamps represents a general-purpose tech-

nique that has greater applicability than the PHBDR protocol. Figure 4.8 shows the DIS protocol

performance when it is modified to use timestamps in a manner similar to that of PHBDR. The

figure shows two traces of F-16 aircraft performing “Air Combat Maneuvering” (ACM) turns, rep-

resenting typical motion in one-on-one aircraft combat.3 For a given packet rate, an increase in

network latency produces a near-linear reduction in the average positional fidelity of the PHBDR

remote model. The graph reveals that the modified DIS protocol exhibits nearly identical behavior

when faced under network latency. Without timestamp information, DIS dead reckoning error is

higher by an order of magnitude. From these graphs, we see that using timestamps to provide

eventual consistency semantics in DIS is warranted.

Moreover, timestamps eliminate almost all real-time dependencies between the source and

destination host frame rates. Each remote host generates positional information for each frame by

sampling its entity model at the local frame rate. Consequently, the remote host can generate a

smooth visual representation even though its frame rate may be faster than the source frame rate.

Timestamps therefore provide an element of decoupling between simulation hosts. As we shall see

in later chapters, decoupling represents a significant architectural direction for developing scalable

simulation systems.

Using timestamps does not eliminate all real-time dependencies, however. To be effective,

3These traces are provided courtesy of Dan Schab at the Naval Air Warfare Center–Training Systems Division (NTSC).

66 CHAPTER 4. ANALYZING PHBDR NETWORK AND ERROR PERFORMANCE

48000
49000

50000
51000

52000
53000 -35600

-35500
-35400

-35300
-35200

-35100
-35000

-34900
-34800

-4500

-4000

-3500

-3000

-2500

-2000

� PHBDR Protocol
� DIS Protocol (Modified)

|
0.00

|
0.25

|
0.50

|
0.75

|0
|5

|10

|15

|20

|25

|30

 Packet Latency (seconds)

 A
ve

ra
ge

 E
rr

or

� � �
�
� �

�
�
�
� �

�

�

�
�

�
�

� �
�

�
�

�
�

�

�

47000
48000

49000
50000

51000
-36500

-36000

-35500

-6500

-6000

-5500

-5000

-4500

-4000

-3500

-3000

� PHBDR Protocol
� DIS Protocol (Modified)

|
0.00

|
0.25

|
0.50

|
0.75

|0

|5

|10

|15

|20

|25

|30

 Packet Latency (seconds)

 A
ve

ra
ge

 E
rr

or

� �
� �

� �
�
�
�
� �

�

�

�
�

�
�

� �
�

�
�

�
�

�

�

Figure 4.8: Remote Rendering Error on Two Traces of F-16 Turning Maneuvers With Network
Latency (protocol error threshold 20 feet)

PHBDR requires synchronized clocks at all simulation hosts, and it assumes that the source host is

executing the position error threshold check at a reasonably high frequency to assure that update

packets are quickly transmitted when remote tracking error arises.

4.3.3 Bandwidth and Computational Load

By transmitting only position information, the PHBDR protocol transmits smaller packets than

competing algorithms such as DIS. The protocol transmits three 64-bit position parameters, a

32-bit timestamp, a 32-bit entity identifier, and a 224-bit UDP/IP header for a total of 480 bits.4

4In this discussion, we ignore the size of any other entity state information contained in update packets.

4.3. ADVANTAGES OF THE PHBDR PROTOCOL 67

� PHBDR Protocol
� DIS Protocol

|
0

|
500

|
1000

|
1500

|0

|5

|10

|15

|20

|25

|30

|35

 Bandwidth (bps)

 A
ve

ra
ge

 e
rr

or �

�

�

�

�

�

�

�
� �

�
�

�

�

�

�

�
� �

�

� PHBDR Protocol
� DIS Protocol

|
0

|
500

|
1000

|
1500

|0

|5

|10

|15
|20

|25

|30

|35

 Bandwidth (bps)
 A

ve
ra

ge
 E

rr
or

��
�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

Figure 4.9: Bandwidth–Error Comparison Between PHBDR and DIS Protocols on F-16 Traces
Shown in Figure 4.8

For comparison, the DIS protocol transmits three 64-bit position parameters, three 32-bit velocity

parameters, three 32-bit acceleration parameters, a 32-bit timestamp, a 32-bit entity identifier,5 and

a 224-bit UDP/IP header for a total of 672 bits. We see, therefore, that the PHBDR protocol can

transmit 1.4 times as often as DIS and maintain the same bandwidth. If a single update packet

aggregates information from multiple entities or vertices, the packet size difference approaches a

factor of 2.

DIS performs best when generating remote models for entities moving along smooth curves with

monotonically changing acceleration because the most recent instantaneous acceleration information

received by DIS is more accurate than the smoothed acceleration computed by PHBDR. Figure 4.8

demonstrate the superior modeling behavior of DIS on two examples of such curves. However, if we

account for the smaller packets generated by the PHBDR protocol, the comparison is quite different.

Figure 4.9 plots the bandwidth requirements of each protocol against the resulting positional fidelity

(assuming no network latency). We see that for these curves which represent the best case for

DIS, the PHBDR protocol performs comparably in the worst case and outperforms DIS in many

5The DIS protocol actually uses a 48-bit entity identifier that includes a 16-bit site identifier, 16-bit exercise identifier,
and 16-bit entity identifier. Because the site information is already encoded by the source host address contained in the
IP header, we presume that a 32-bit exercise/entity identifier will be sufficient for future versions of the DIS protocol.

68 CHAPTER 4. ANALYZING PHBDR NETWORK AND ERROR PERFORMANCE

 20 tail circuits
� 10 tail circuits

 5 tail circuits

|
0.01

| | | | | | | | |
0.10

| | | | | | | | |
1.00

|0

|50

|100

|150

|200

|250

|300

|350

|400

 Entity Subscription Probability

 S
up

po
rt

ed
 E

nt
iti

es
 (

th
ou

sa
nd

s)

�

�

�

�
� � �

Figure 4.10: Expected Number of Supported Entities Using PHBDR in a Multicast Environment
with 200 Hosts

situtations.

The bandwidth reduction provided by PHBDR has a significant effect on the scalability of a

distributed simulation. In a broadcast-based simulation, for example, PHBDR protocol updates

would saturate the 45 Mbps tail circuits (which, given the emergence of gigabit-per-second LAN

capacity and the rapid investment in high-bandwidth WANs, we expect will continue to be the

primary bandwidth bottleneck in future networks) at 80% utilization with 75,000 entities, each

transmitting one update per second. An equivalent DIS simulation, including a 10% lower update

rate per entity to assure equivalent remote modeling error, would saturate the tail circuits with

fewer than 59,000 entities. In a large simulation, the use of multicast for information dissemination

potentially prunes some of the entity updates from various tail circuits, thereby increasing the number

of potential entities that the system can support. For example, assuming a network configuration

with 200 hosts, Figure 4.10 shows the expected number of entities that the simulation can support

as a function of the probability that a given host is interested in a given entity. These numbers are

quite conservative, because they fail to consider any locality exhibited by the entity subscription

patterns among hosts at the same site. As one would expect, having fewer hosts behind each tail

circuit allows multicast to have a greater effect on reducing bandwidth. Additionally, reducing the

probability that a host subscribes to a given entity’s data allows the simulation to support more

entities overall. We see that to support the STOW 97 program target of 100,000 entities [1], each

host should only see between 5% and 15% of the available entities, or 5,000–15,000 entities. Given

our target of one update per second per entity, these entity counts translate into 5,000–15,000 packets

4.3. ADVANTAGES OF THE PHBDR PROTOCOL 69

PHBDR DIS
Parameter Values Values

Current displayed position, velocity, and acceleration 9 9
Most recent position, velocity, and acceleration update and its timestamp 10
Two previous position updates and their timestamps 8
Convergence time 1 1
Velocity and acceleration at convergence point 6a

Small–medium and medium–large angle thresholds 2
∆max�cp 1

Total 27 20

aAlternatively, this information can be recomputed from the position history information at the end of the convergence
period, thereby saving these six floats of storage per entity.

Table 4.3: State Values Stored Per Entity Under the PHBDR and DIS Protocols

per second, which is achievable on modern high-end workstations. Chapter 7 describes the effects

of additional bandwidth reduction techniques to improve the scalablity of distributed simulations.

The scalability of the PHBDR protocol is also enhanced because it introduces minimal compu-

tational load on sending or receiving hosts when compared with protocols that only use the most

recent packet for modeling remote entities, and the PHBDR can actually reduce computational

load. For smooth curvature motion (which requires the most computation), the protocol requires 51

multiplication and 30 addition operations to update the entity’s tracking and convergence models in

response to an incoming update. By using local curve fitting to characterize the entity’s path, the

algorithm automatically shifts computation away from entities exhibiting “uninteresting” behavior

(such as linear motion) or about which it has the least information (such as those that have just

exhibited a sharp turn or change in behavior). In the case of almost linear motion, the PHBDR

requires only 27 multiplication and 15 addition operations to process an update; after the entity un-

dergoes a sudden change in direction, PHBDR requires 30 multiplication and 21 addition operations

to process the update.

The PHBDR protocol also has the desirable property of storing per-entity state information that

is comparable in size to that required by the existing DIS protocol. Maintaining too much state can

adversely affect computation speed because entity state must typically reside in the host’s cache to

achieve maximal real-time performance. The PHBDR protocol stores 27 values for each entity, as

listed in Table 4.3; at the expense of some additional computation, this information can be reduced

to 21 values. As a comparison, the DIS protocol stores 20 values for each entity.

70 CHAPTER 4. ANALYZING PHBDR NETWORK AND ERROR PERFORMANCE

4.4 Addressing Limitations in the PHBDR Protocol

The PHBDR protocol uses position information from multiple update packets to provide stability in

the remote model, but providing this stability also introduces some disadvantages, some of which we

observed while deploying the algorithm in the PARADISE distributed simulation system developed

in the Distributed Systems Group at Stanford University. We propose potential protocol extensions

to address these limitations, though studying their effectiveness is an area for future research.

4.4.1 Delayed Reaction to Sudden Behavior Changes

The PHBDR protocol maintains a history of three updates; after a sudden change to the entity’s

behavior—such as after a collision—three new updates are required before all information about the

previous path is discarded from remote hosts. This problem is most visible, for example, when an

entity stops moving. Until three update packets indicate that the entity has kept the same position,

the remote model oscillates around the entity’s true location. Similar problems have been faced by

previous prediction algorithms [74]. On the other hand, using the DIS protocol, remote hosts use

only information from the most recent update packet, so when an entity stops moving, the remote

host reacts immediately because the update packet shows a zero velocity and acceleration.

To address this issue, a host can transmit state-replace packets based on domain knowledge

about a local entity’s behavior. The state-replace packet includes three new position updates with

corresponding timestamps. In response to a state-replace packet, remote hosts replace any position

information previously stored about the entity with the new position updates from the packet. For

example, after an entity stops moving, the entity would transmit a state-replace packet containing

three updates showing the entity in its fixed position. Similarly, when an entity changes direction

after a collision, a state-replace packet would include three position samples taken soon afterward.

In order to transmit state-replace packets, however, the source must be able to recognize sudden

behavior changes and determine that the new behavior will persist. Detecting such behavioral change

requires entity-specific information that is not always available from an entity model at the source

host. We therefore do not include state-replace packets as part of the basic PHBDR protocol because

doing so would contradict our goal of constructing a general-purpose dead reckoning algorithm that

can be used on all source entity models. Instead, extensions to support particular entity behaviors

can be built on top of the general-purpose PHBDR base when better remote modeling is required.

4.4. ADDRESSING LIMITATIONS IN THE PHBDR PROTOCOL 71

4.4.2 Reaction to Packet Loss

Because remote hosts store information from multiple update packets, the PHBDR protocol can also

be more sensitive than competing algorithms to packet loss. If a remote host does not receive an

update packet, then its model will not be completely recovered until up to three new updates arrive.

In the DIS protocol, however, each packet encapsulates all of the desired entity dead reckoning

state, so a host can completely recover from a packet loss when the next update packet arrives.

To a large extent, the protocol’s transmission timeout and use of position history limit the effect

of packet loss on the PHBDR protocol. The timeout guarantees that a single lost packet can only

disrupt the remote entity model for a bounded period of time. Furthermore, the path stability

provided by the position history, as discussed in Section 4.3.1, additionally mitigates the effects

of packet loss: After missing a packet, the host continues to generate its entity model based on a

long-term history of information. DIS-style protocols that only store one packet must continue to

provide an entity model based only on instantaneous information.

Simulations that use PHBDR can take additional steps to further mitigate the effect of packet

loss. The position history protocol can be modified so that besides including the current position,

each update packet includes the previous one or two transmitted position samples. In effect, each

position sample is transmitted multiple times over the network, thus increasing the chance that

it eventually arrives at each receiver. Under this approach, all update packets effectively behave

like state-replace packets. However, this optimization does impose a bandwidth cost and more

computation at the receivers. Alternatively, the simulation designer can employ a scalable reliable

multicast protocol, such as Log-Based Reliable Multicast [33], that allows remote hosts to locally

detect and recover missing position updates. This approach is best suited for entities that produce

more occasional updates.

When the remote modeling error is large, particularly when there is a high loss rate for position

updates, the convergence algorithm can generate entity motion that might appear “unnatural” to

viewers [48]. For example, when rendering an F-16 aircraft, the convergence algorithm might

cause the aircraft to move faster than physically possible, or it might cause the aircraft to take an

unexpected path.

These convergence problems can be solved in two ways. First, when the remote host finds that

its model of the entity and the displayed position differ too much, then it can choose to simply

avoid convergence altogether and “jump” the entity to the correct location. In many situations,

the viewer would prefer to see this jump—which would be ascribed to network problems—rather

than see a smooth, but inappropriate maneuver. Determining whether jumping or convergence is an

72 CHAPTER 4. ANALYZING PHBDR NETWORK AND ERROR PERFORMANCE

appropriate display technique is a decision that must be made based on the particular entity type, the

type of viewer, and the type of simulation application. To further assure that the convergence does

not produce an unrealistic display, the remote host may apply some entity-specific information to

constrain the path generated by the basic convergence algorithm. For example, the remote host can

ensure that the generated F-16 path never exceeds the aircraft’s maximum physical speed. One might

also employ constraints based on terrain topography, similar to those used by Talluri and Aggarwal

for remote robot navigation [90], or based on the location of terrain features, similar to those used

by Tsutsui for car navigation [94]. In a production simulation, entity-specific information may be

available, though requiring such information is inconsistent with the goals of the basic PHBDR

protocol.

4.4.3 Quiescent Entity Traffic

To provide resilience against packet loss, the transmission timeout requires all entities to generate at

least one update packet within any given timeout period. Consequently, most of the traffic generated

by inactive entities is timeout updates. In extreme cases, a stationary entity must transmit updates

after every transmission timeout even though no state has changed. Even though no single entity

generates timeout-based updates at a significant rate, the aggregate number of these updates might

represent a significant overhead for large simulations in which most entities are idle at any given

time. Indeed, this problem arises with all protocols having transmission timeouts, including DIS.

To reduce the amount of extra traffic generated by stationary entities, we can extend the PHBDR

protocol to support variable transmission timeouts. Variable timeouts introduce some overhead

at remote hosts to maintain dynamic timeout information for each known entity, but this minor

computational overhead is dwarfed by the potential reduction in packet rates. We consider two

variable timeout schemes: a tiered-timeout approach and a exponential-backoff approach.

The tiered-timeout approach defines a small number of specific timeout levels that are selected

explicitly by the entity based on its behavior. For example, when the entity becomes idle, it

transmits an timeout-length-announce message, announcing that it will use a longer transmission

timeout with its (less frequent) update packets. When the entity’s behavior becomes more dynamic,

a corresponding timeout-length-announce message restores the transmission timeout to the original

(short) duration. To further extend this technique, an entity may transmit a timeout-length-announce

packet with a flag representing an infinite timeout value, effectively signalling that it will no longer

need to transmit any updates. To begin transmitting updates again, the entity must reliably multicast

a new timeout-length-announce packet, possibly along with a state-replace packet to provide an

4.4. ADDRESSING LIMITATIONS IN THE PHBDR PROTOCOL 73

initial dead reckoning state for remote hosts.

Using the exponential-backoff approach, the entity’s timeout value is determined implicitly based

on its recent update behavior. Under this approach, the entity applies exponential backoff to increase

the transmission timeout if it has not transmitted any update packets within the previous timeout

period. The timeout is bounded by some maximum value, and any position update transmission

immediately restores the timeout to the original (short duration) value. This approach can be further

optimized with an explicit packet to set the timeout to infinity when the maximum timeout value

has been in place for some period of time.

4.4.4 Dependence on Time Synchronization

One disadvantage of the PHBDR protocol is a reliance on time synchronization among the simulation

hosts. Though time synchronization is typically not a serious concern on Unix hosts connected to

the Internet, it does pose a challenge for distributed simulation applications on non-Unix operating

systems. In these environments, network time synchronization protocols are not ubiquitous.

Where clock synchronization is not possible, hosts can implement a simplified version of the

NTP [58] protocol by adding additional information to position update packets. In each outgoing

packet, host h includes a tuple (hi; ti; di) for each host hi from which an update packet has arrived

since host h last transmitted an update. In this tuple, ti is the timestamp contained in the update

received from hi, and di is the elapsed time since that packet arrived. If host hi receives the update

from h at time t0i, it can estimate the one-way delay between h and hi as t0
i
�ti�di

2 . Using this delay

information, the host can estimate the current time at each of the other hosts and set the local clock

to an average value. Though this technique does not allow hosts to account for network jitter effects,

it does allow them to account for network latency. This latency estimation technique is a multicast

adaptation of the technique proposed by Floyd, et al [24].

4.4.5 Uniformly High Network Latency

Because the source host does not model the effects of network latency on its transmitted update

packets, it does not have an accurate real-time representation of the entity model stored at remote

hosts. Although the protocol’s timestamp does provide eventual consistency semantics, the network

does introduce a minimum transmission latency, thereby assuring that the shadow model at the

source is temporarily more accurate than the model actually maintained by remote hosts. This

problem becomes most significant when all receivers perceive a high latency, such as when the

74 CHAPTER 4. ANALYZING PHBDR NETWORK AND ERROR PERFORMANCE

source’s outbound tail circuit is slow.

To address this issue, the source can maintain an estimate of the minimum latency between it

and the receiving hosts and uses this estimate to dynamically reduce the protocol error threshold that

it uses. This approach effectively allows the source to generate update packets before the receiving

hosts actually encounter the error threshold. One potential method for maintaining this latency

estimate would involve having the source include the current estimate inside transmitted update

packets. If a receiver perceives a significantly lower latency, then it sends the current perceived

latency to the source, and the source applies an exponential smoothing algorithm

ddelay:new = �ddelay:old + (1� �)ddelay:sample (4:7)

on any latency updates that it receives. Moreover, to ensure that the latency estimate adapts to

increases in network latency, the source automatically increases the current latency estimate by a

fixed factor � on each update transmission. Intuitively, the source continually tests higher latency

estimates, and receivers provide feedback when the estimate grows too large. To achieve stability,

the relationship between � and � is important. To maintain the latency estimate within a factor of �

of the true minimum latency,

� =
�+ �

�(1 + �)
(4:8)

4.5 Conclusion

In this chapter, we have presented a systematic approach for evaluating dead reckoning protocols.

To perform this evaluation, we classify curves that represent different types of entity behavior

of interest in the simulation. We then apply a combination of mathematical analysis, controlled

simulation, and deployment experience to measure the protocol’s performance in the worst case

and common case. By applying this evaluation approach across different protocols, simulation

developers can gain valuable insight into a protocol’s overall behavior over a broad variety of entity

paths, and they have a better framework for comparing different protocols.

We have demonstrated this evaluation approach by applying it to the PHBDR protocol. In

performing this analysis, we have observed that PHBDR provides accurate entity modeling over a

broad range of entity behaviors. Our analysis has demonstrated that PHBDR offers the following

additional benefits:

� Stable curve modeling despite transient changes in entity velocity and acceleration.

4.5. CONCLUSION 75

� Smaller packet size and lower bandwidth requirements than protocols that rely on velocity

and acceleration information, as well as memory and computation requirements that are

comparable to these existing protocols.

� An effective mechanism using timestamps to provide “eventual consistency” semantics on

remote modeling state across all remote hosts.

We have also shown that the proportion of smooth and sudden jerk changes in the entity motion

determines the relationship between bandwidth requirements and remote modeling fidelity, as well

as the effects of network latency on fidelity. Information about the entity behavior, desired packet

rate, and desired positional fidelity can therefore be used to determine an appropriate protocol error

threshold.

Moreover, our evaluation has demonstrated that many of the techniques used by PHBDR are

generally applicable and could be incorporated in existing protocols such as DIS. For example,

DIS can easily be enhanced to make effective use of timestamps to account for network latency.

Furthermore, DIS could be engineered to ignore suspicious instantaneous velocity and acceleration

values, thereby achieving many of the desirable path stability properties exhibited by the PHBDR

protocol.

Our evaluation has revealed some limitations of the PHBDR protocol arising mostly from its

caching of multipleupdates. In particular, the protocol exhibits longer-term sensitivity to packet loss

and is slow to react to changing entity behavior. However, we have shown that such limitations can be

removed by requiring the source to transmit redundant information and to explicitly signal significant

changes in entity behavior, when such changes can be determined accurately. Implementation of

these and other extensions is an area for future research.

As discussed in the previous chapter, a significant strength of PHBDR is its simplicity. By

modeling the location of a vector using only a short history of that vector, the PHBDR algorithm

provides a building block to address more complex remote modeling problems. In the next three

chapters, we show how the PHBDR protocol can be used recursively to remotely model the ori-

entation of a rigid-body entity, the structure of semi-rigid and non-rigid entities, and the behavior

of entity groups. In presenting these recursive protocols, we demonstrate how their analysis is

simplified by applying results from the analysis in this chapter.

Chapter 5

Using the PHBDR Recursively to Model

Entity Orientation

The PHBDR protocol provides remote modeling of the position of a single vertex and is therefore

sufficient for modeling the position of a rigid entity having fixed orientation. In this chapter, we

describe how PHBDR can be applied recursively to support remote modeling of entity orientation.

5.1 The Axis Point Protocol

The Axis Point protocol, illustrated in Figure 5.1, uses position history to dead reckon the orientation

of the entity’s local coordinate system. As the entity rotates about any axis passing through its origin,

the pointsX(1; 0; 0),Y (0; 1; 0), andZ(0; 0; 1) in the local coordinate system move along the surface

of the unit sphere centered at (0; 0; 0). To model the entity’s orientation, the Axis Point protocol

simply applies PHBDR to local coordinates X(1; 0; 0) and Y (0; 1; 0) as they move over the unit

sphere. Together, these two points completely determine the entity’s rotated coordinate system,

because their cross product defines the position of Z(0; 0; 1).

5.1.1 Source Packet Generation

On each frame, the entity’s source host determines the entity’s originO(0; 0; 0), X-axis X(1; 0; 0),

and Y-axis Y (0; 1; 0) in world coordinates. The vectors ~OX and ~OY then represent the axis point

positions, which are passed to instances of the PHBDR protocol. (Alternatively, if the source is

maintaining a rotation matrix for rendering the entity model, then the vectors ~OX and ~OY can

76

5.1. THE AXIS POINT PROTOCOL 77

Z Y

X

X(1,0,0)

Y(0,1,0)Z(0,0,1)

Local Coordinate System

O(0,0,0)

X

Z

Y

World Coordinate System

Figure 5.1: The Axis Point Protocol Tracks Rotation of X(1; 0; 0), Y (0; 1; 0), and Z(0; 0; 1) Along
the Unit Sphere Surface

be extracted directly without any additional computation.) When either of the PHBDR protocol

instances desires to transmit an update packet (either because the remote modeling error of the axis

point has exceeded a protocol error threshold or because a transmission timeout has arrived), the

source host transmits an orientation update packet.

Orientation update packets contain a timestamp and entity identifier along with a six-tuple

containing the ~OX and ~OY vector coordinates. As discussed in the next section, remote hosts

dead reckon the position of these two vectors to model the entity’s orientation. To improve network

efficiency, the orientation and position updates for a single entity may be merged, so that all entity

updates include nine coordinates (three position coordinates and six axis point coordinates).

By transmitting the axis point vectors directly, the protocol imposes minimal computational

overhead on the source and destination hosts. However, the entity’s orientation could be described

using other formats to optimize bandwidth or provide compatibility with existing code.

� Euler/Tait-Bryan angles [76]: This representation involves transmitting a three-tuple of rota-

tion angles (�; �;). To determine the local coordinate system orientation from these angles,

one first rotates it about the Z-axis by angle �, then rotates it about the new Y-axis by angle

�, then finally rotates it about the new X-axis by angle . The vectors ~OX and ~OY can be

computed from this information by multiplying the three rotation matrices described by the

78 CHAPTER 5. USING THE PHBDR RECURSIVELY TO MODEL ENTITY ORIENTATION

Euler angles and extracting the first and second columns of the resulting matrix:

2
64 1 0 0

0 cos() � sin()

0 sin() cos()

3
75
2
64 cos(�) 0 sin(�)

0 1 0

� sin(�) 0 cos(�)

3
75
2
64 cos(�) � sin(�) 0

sin(�) cos(�) 0

0 0 1

3
75

=

2
64 cos(�) cos(�) � cos(�) sin(�) sin(�)

sin() sin(�) cos(�) + cos()sin(�) � sin() sin(�) sin(�) + cos()cos(�) � sin() cos(�)

� cos() sin(�) cos(�) + sin()sin(�) cos() sin(�) sin(�) + sin()cos(�) cos() cos(�)

3
75

(5.1)

� A quaternion [81]: This representation involves transmittinga four-tuple (w; x; y; z)encoding

a rotation vector ~R(rx; ry; rz) and angle �, such that w = cos
�
�
2

�
and (x; y; z) represents ~R

normalized to length sin
�
�
2

�
. To determine the local coordinate system orientation from this

information, one would rotate the coordinate system by angle � about vector ~R. The vectors
~OX and ~OY are extracted from the first and second columns of the resulting matrix:

2
6664

1� 2y2 � 2z2 2xy + 2wz 2xz � 2wy

2xy � 2wz 1� 2x2 � 2z2 2yz + 2wx

2xz + 2wy 2yz � 2wx 1� 2x2 � 2y2

3
7775 (5:2)

These formats require the remote host to extract axis point coordinates from the information

provided in the update packet, thereby effectively trading off bandwidth for additional computational

complexity.

5.1.2 Receiver Packet Processing

As shown in Figure 5.2, each remote host first recovers the vectors ~OX and ~OY from the information

contained in the orientation update packet, and each of these vectors is dead reckoned using

PHBDR’s adaptive tracking and convergence algorithms as described in Chapter 3.

On each frame, the host queries the appropriate PHBDR modules for the current extrapolated

position of the axis points X(1; 0; 0) and Y (0; 1; 0) which are being modeled in the entity’s local

coordinate system. It computes the cross-productX�Y to produce the current position ofZ(0; 0; 1).

These three vectors directly provide the three columns for the 3 � 3 rotation matrix, which after

being orthogonalized, is used to orient the entity’s local coordinate system. The host applies this

rotation matrix to each entity polygon and then applies a translation within the world coordinate

system using the dead reckoned position of the entity’s origin. Finally, the host renders the polygon

5.2. ANALYZING AXIS POINT PROTOCOL BEHAVIOR 79

Y

Z

X

Translation Vector

Cross-Product

World Coordinate System
Entity Rendered in

X

YZ

Y

Z

X

Position History-Based
Dead Reckoning

Position History-Based

F r a m e R a t e S a m p l i n g

Dead Reckoning
Position History-Based

Dead Reckoning

Local Coordinate System
Entity Defined in

Axis Point
Protocol

TranslationRotation

F r a m e R a t e S a m p l i n g

Z-Axis Position

Rotation Matrix

Entity Origin PositionX-Axis Position

F r o m U p d a t e P a c k e t

Y-Axis Position

F r o m U p d a t e P a c k e t

Figure 5.2: Entity Rotation and Translation in World Coordinate System

onto the screen.

5.2 Analyzing Axis Point Protocol Behavior

Suppose the true coordinate system A and the dead reckoned coordinate system A0 differ by a

rotation of angle � about unit vector ~R(rx; ry; rz). The Axis Point protocol transmits an orientation

update when the remote tracking error forX(1; 0; 0)or Y (0; 1; 0)exceeds a protocol error threshold

�, reflecting how much the true and dead reckoned coordinate systems differ. Therefore, when an

80 CHAPTER 5. USING THE PHBDR RECURSIVELY TO MODEL ENTITY ORIENTATION

x x
21 - r x

21 - rr

Rotated X Axis Point

R

X1

(a) (b)

Dead Reckoned
X Axis Point

True
X Axis Point

θ

δ

Figure 5.3: Relationship Between Rotation and Position Threshold on X Axis Point: (a) As
coordinate system rotates, axis point moves along circle on surface of unit sphere; (b) Position error
is the length of a chord through this circle. The behavior of the Y axis point is similar.

update is transmitted,1

� = 2 sin�1

0
@ �

2
q

1� min(r2
x; r

2
y)

1
A (5:4)

Figure 5.3 illustrates the derivation of this expression. As the coordinate system rotates about ~R,

the X axis point maps out a circle of radius
q

1� r2
x along the surface of the unit sphere. The true

and dead reckoned coordinate systems therefore place the X axis point at different locations along

this circle, so the position error measured by the PHBDR protocol is actually the length of a chord

through that circle. Similarly, the Y axis point moves along a circle of radius
q

1� r2
y.

By expanding the above equation, we see that � 2
h
2 sin�1

�
�
2

�
; 2 sin�1

�
�p
2

�i
with the exact

value determined by the direction of axis ~R. If ~R is perpendicular to one of the axis point vectors

X(1; 0; 0) or Y (0; 1; 0), then � is at the bottom of its range, and � is maximized when ~R is parallel

to (1p
2
; 1p

2
; 0). Assuming no axis bias in the entity’s rotation, � averages

2
Z 1p

2

0

p
1� r2 cos�1

�
rp

1� r2

�
sin�1

�
�

2
p

1� r2

�
dr

Z 1p
2

0

p
1� r2 cos�1

�
rp

1� r2

�
dr

(5:5)

1More generally, if the axis points are ~P0; ~P1; : : : ; ~Pk, then when an update is transmitted,

� = 2 sin�1

�

2
p

1 � min((~R � ~P0)2; (~R � ~P1)2; : : : (~R � ~Pk)2)

!
(5:3)

5.2. ANALYZING AXIS POINT PROTOCOL BEHAVIOR 81

0

20

40

60

80

100

120

140

160

180

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
ot

at
io

n
E

rr
or

 (
de

gr
ee

s)

Axis Point Position Threshold

Maximum

Average
Minimum

Figure 5.4: Relation Between Orientation Threshold and Rotation Angle

We computed values of this average by approximating the integrals as a sum with dr intervals of

10�6. Figure 5.4 plots the minimum, average, and maximum values of � when an orientation update

is transmitted. Although the axis point error thresholds do not provide for a fixed coordinate system

error, the graph shows that the error range of � is relatively small for expected orientation thresholds

under 45 degrees.

As we have seen, steady-rate motion about a fixed rotation axis causes each axis point to

follow a circular path along the surface of the unit sphere. Moreover, for a given rotation axis ~R,

only one of the axis points will cause update packet generation, namely the axis point ~Pi yielding

the smallest value of (~R � ~Pi)2. Consequently, analysis of the Axis Point protocol is reduced to

understanding PHBDR performance on simple circular motion, an entity behavior that we studied

in Section 4.2.1.2. Figure 5.5 simply uses the data from Figure 4.2, combined with the position

threshold information from Figure 5.4, to describe the packet rate behavior of the Axis Point

protocol. For various rotation rates, the figure shows the axis point update rate required to produce

a given average rotation error in the remote model. We can make several important observations

from this data. First, we observe that the update rate rises linearly with the rotation rate; this linear

relationship is expected, based on the data in Figure 4.2b, because acceleration increases with the

82 CHAPTER 5. USING THE PHBDR RECURSIVELY TO MODEL ENTITY ORIENTATION

� Average Error = 5 deg.

 Average Error = 10 deg.
� Average Error = 30 deg.

|
0

|
10

|
20

|
30

|
40

|
50

|
60

|
70

|0

|1

|2

|3

|4

|5

 Rotation Rate (degrees/second)

 U
pd

at
es

 P
er

 S
ec

on
d

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
�

Figure 5.5: Packet Rate to Maintain Desired Average Rotation Error Under Steady Rotation

square of the rotation rate. Second, as the error tolerance is reduced, the packet rate increases more

rapidly. This result is simply a reflection of the Curve Type Tradeoff observation seen for circular

motion. Finally, the variable rotation angle tolerance represented by axis point positional error (as

depicted in Figure 5.4) only translates into a 10–15% variability in update rate.

5.3 Evaluating the Axis Point Protocol

The Axis Point protocol provides several advantages over competing orientation dead reckoning

protocols, such as Euler (Tait-Bryan) angles [76] used by the Distributed Interactive Simulation (DIS)

dead reckoning protocol [36] and quaternions [81] used in newer distributed simulation systems

such as NPSNET [18]. These advantages fall into three categories: minimal assumptions about

the source entity model, reduced code complexity and size, and improved numerical performance.

After discussing these advantages in turn, we describe some open issues with the effective use of

the Axis Point protocol.

5.3.1 Decoupling From Source Entity Model

The biggest advantage of the Axis Point protocol lies in its minimal assumptions about the entity

model being used by the source host. In particular, the protocol only requires the source to

provide the position of certain vertices in the entity’s local coordinate system. The Axis Point

protocol effectively decouples the orientation dead reckoning protocol from the actual orientation

5.3. EVALUATING THE AXIS POINT PROTOCOL 83

Representation of
Entity Orientation Computation To Obtain Axis Points
Rotation Matrix None
Euler Angles 6 sin/cos, 6 multiplications, 2 additions
Quaternion 14 multiplications, 7 additions

Table 5.1: Computation Required to Obtain Axis Point Data

representation in the entity model.

In fact, as shown in Table 5.1, axis point information is readily available no matter how the

entity’s orientation is actually represented at the source host. Notably, most common graphic systems

already use rotation matrices for rendering. Axis point coordinates can be extracted directly from

the source host’s rotation matrix, and at the remote host, they directly produce a rotation matrix for

rendering. On the other hand, quaternions do not provide an efficient representation of orientation

if the entity model uses rotation matrices or Euler angles to model the entity. A numerically

stable conversion from a rotation matrix to a quaternion requires eight multiplications, 17 additions,

and two square roots [28], and converting Euler angles to a quaternion requires six trigonometric

functions, four additions, and 15 multiplications. Corresponding inverse conversions are equally

expensive at the remote host. This computation is significant because it must be incurred on each

frame at the source in order to test whether an orientation update is required.

The minimal assumptions made by the Axis Point protocol on the source entity model differ

significantly from the high data requirements of Euler angles used by the DIS protocol. The DIS

protocol requires the source host to explicitly model the entity’s angular velocity and acceleration

and transmit those values in update packets. However, accurate angular velocity and acceleration

information is not readily available for all entities—particularly for live entities connected to the

simulation via motion sensors. Consequently, the Axis Point protocol is easier to implement over a

broader variety of entity models.

As we have seen, the Axis Point protocol does not require the source host to explicitly model the

entity’s angular velocity and acceleration. The source host is also not required to explicitly model

the axis point velocity and acceleration within the entity’s local coordinate system. The Axis Point

protocol is recursively structured above the PHBDR protocol that only requires the vertex position

to perform extrapolation and convergence. Notably, the Axis Point protocol would be less effective

if it relied on the DIS protocol to track the axis points, because axis point velocity and acceleration

information is certainly not ordinarily available from an entity model.

84 CHAPTER 5. USING THE PHBDR RECURSIVELY TO MODEL ENTITY ORIENTATION

5.3.2 Code Complexity and Size

By employing recursive protocol structuring on top of the PHBDR protocol, the Axis Point protocol

implementation does not need to provide significant new functionality and is, therefore, relatively

easy to implement. At the source host, the Axis Point module simply samples the entity model

to obtain the axis point representation and pass those coordinates to two instances of the PHBDR

modules. When one of the PHBDR modules desires to transmit an update packet, the Axis Point

module constructs a packet containing information about both axis points. At the remote host, the

Axis Point module simply needs to unbundle the orientation update packet and pass the contained

axis points to two instances of the PHBDR modules. It must also sample the dead reckoned axis

point positions on each frame and construct a rotation matrix. In summary, the Axis Point software

is only responsible for sampling entity orientation at the source host, packaging and unpackaging

orientation update packets, and providing the entity orientation upon request at the remote host. By

reusing the already tested algorithms provided by the PHBDR modules, we significantly reduce the

development time and ease the software debugging when compared to a orientation dead reckoning

protocol that requires an entirely new set of supporting algorithms for extrapolation and convergence.

Notably, quaternion protocols are privy to subtle programming errors.

Because of its limited additional functionality, the Axis Point protocol requires almost no new

code at either the source or destination hosts. In our implementation, the Axis Point protocol

introduces approximately 100 new lines of C ++ code on top of the PHBDR implementation (not

counting general-purpose support routines for manipulating matrices). As a point of comparison,

the basic PHBDR protocol requires about ten times as much code to implement packet generation,

tracking, and convergence. If we were to implement the Axis Point protocol without the benefit

of the PHBDR protocol base, we would have needed to re-implement most of this functionality.

Indeed, as we will see in the next section, dead reckoning protocols that use Euler angles and

quaternions end up requiring far more complex tracking and convergence algorithms than those

used by the PHBDR protocol.

The recursive protocol structuring greatly simplified the complexity of the protocol analysis.

We were able to analyze the Axis Point protocol by simply expanding on our analysis of the PHBDR

protocol performance on circular vertex motion. Without the benefits of a base protocol, the protocol

analysis would have required an evaluation of all rotation behaviors.

Finally, the simplicity of the Axis Point protocol gives it the same advantage offered by the

PHBDR protocol, namely the flexibility to be customized to support specialized entity requirements.

First, different thresholds may be introduced for each axis point to reflect the remote model fidelity

5.3. EVALUATING THE AXIS POINT PROTOCOL 85

R

(Perpendicular to Dominant Axis)

Dead Reckoning Axis

Dominant Axis of Rotation

(b)

X

(c)

Z

Y

Pitch: Tight tolerance on Y-axis motion

Roll: Loose tolerance on X-axis motion

(a)

Current Dead Reckoning Axes

Transient Rotation Axis

Transient Dead Reckoning Axis

Figure 5.6: Extending Axis Point Dead Reckoning for (a) Dominant Rotation Axis, (b) Non-Aligned
Rotation Axis, and (c) Multiple Rotation Axes.

required for different types of rotations. For example, when modeling an airplane in flight, remote

viewers may be more sensitive to inaccuracies in the plane’s pitch than to inaccuracies in the plane’s

roll. As shown in Figure 5.6a, a tighter threshold would be introduced about the Y axis point (whose

motion represents rotation about the X axis point). Second, axes other than ~X and ~Y may be used,

depending on the entity’s dominant rotation behavior. In changing the axis point vectors, we exploit

our earlier observation that the Axis Point protocol generates update packets more aggressively

for rotations that are perpendicular to the axes being dead reckoned. For example, if the entity

usually rotates about axis ~R, then modeling an axis perpendicular to ~R allows more accurate remote

orientation modeling by causing update packet generation to occur consistently at the minimum

end of the allowable rotation range, as illustrated in Figure 5.6b. Third, the Axis Point protocol can

support more than two axes for complex entities, and axes may be added or removed dynamically

from the remote model. Figure 5.6c shows an entity which is about to undergo a transient rotation

about a fixed axis. By introducing an additional axis point for dead reckoning, the simulation can

guarantee precise modeling of that rotation. This real-time flexibility allows the simulation to adapt

86 CHAPTER 5. USING THE PHBDR RECURSIVELY TO MODEL ENTITY ORIENTATION

Axis Point Cost Quaternion Cost
Operation Add Mult Add Mult Cos/Acos

Packet Arrival: Tracking
Second-Order 32 24 49 109 12
First-Order 6 6 11 23 2

Packet Arrival: Convergence
Second-Order 54 36 48 102 10
First-Order 6 6 11 23 2

Per Frame:
Generate Rotation Matrix 6 3 15 9

Table 5.2: Comparison of Packet Processing Computation in Axis Point and a Quaternion-Based
Protocols

to changing entity behavior.

5.3.3 Numerical Performance

The Axis Point protocol provides a computationally efficient technique for providing second-order

dead reckoning of entity orientation. Based on our analysis in Chapter 4, the protocol only requires

between 84 and 162 arithmetic operations to process an orientation update, and it requires almost

no computation between updates. The Euler angle approach, however, is far more complex because

the rotation angles are not independent of one another. As a result, first-order orientation dead

reckoning requires roughly 180 operations to process a packet and an additional 100 operations on

each frame [91]. Second-order orientation dead reckoning with Euler angles is rarely done because

of its computational complexity. Moreover, although first-order dead reckoning using quaternions

is not computationally expensive, a second-order protocol using quaternions requires roughly twice

the computation as the Axis Point protocol. Table 5.2 compares the computational requirements of

the two protocols. Quaternions are considerably more costly than axis point vectors to manipulate.

Quaternion addition involves a 4-dimensional vector cross product, while multiplying a scalar with

a quaternion requires a renormalization of the result.

The Axis Point protocol also does not rely on trigonometric operations whose operations are

notoriously inaccurate and vary considerably across platforms. By using only arithmetic operations,

the Axis Point protocol minimizes the propagation of floating point errors. This characteristic is

critical to systems that send packet updates infrequently. On the other hand, the first-order Euler

angle protocol effectively solves a differential equation on each frame—an operation that relies on

numerically unstable trigonometricand inverse-trigonometric functions [11]. As shown in Table 5.2,

5.3. EVALUATING THE AXIS POINT PROTOCOL 87

second-order dead reckoning with quaternions also requires trigonometric operations to renormalize

the quaternions.

Finally, the Axis Point protocol has the advantage that as the entity rotates, the orientation

parameters that it produces are continuous. That is, the axis points physically move along the

surface of the unit sphere, so they do not exhibit any “jumps” or other anomalies. Furthermore, if

the rotation is constant, then the axis points move in a uniform (circular) manner. However, as an

entity rotates, the Euler angles are discontinuous or ill-defined. For example, as an entity rotates

about the Z-axis, the Euler rotation angle increases from 0 degrees to 359 degrees and then returns

to 0 degrees. There is also a singularity point at which the entity’s orientation may be defined by an

infinite number of Euler angle tuples. Remote hosts must compensate for these discontinuities, but

the problem is typically underconstrained because of insufficient information between updates.

5.3.4 Limitations of the Axis Point Protocol

The biggest drawback of the Axis Point protocol is the independence of the six vector coordinate

models. The basic PHBDR protocol imposes no constraints on the vector coordinates, so the dead

reckoned axis points are not guaranteed to lie on the unit sphere. Consequently, each axis point

vector must be renormalized during each frame. Similarly, because PHBDR does not ensure that

the dead reckoned axis point vectors will always be orthogonal, the X-axis and Y-axis vectors

may need to be made orthogonal by projecting one vector onto a plane perpendicular to the other.

The normalization and orthogonalization operations are straightforward and do not introduce much

computational overhead, but they may cause occasional anomalies in the orientation modeling,

particularly when an entity is rotating rapidly. These anomalies are short-lived, however, and rare

enough to be shadowed by the other advantages of the Axis Point protocol.

The other significant drawback of the protocol lies in the ambiguity of the axis point error

thresholds in determining the tolerable rotation error. As shown in Figures 5.4 and 5.5, a given axis

point error represents a range of rotation errors which may translate into a 10%–15% variability in

the orientation update rate. We do not deem this variation to be significant, however, and expect

simulation designers to set axis point error thresholds based on the associated maximum rotation

error.

88 CHAPTER 5. USING THE PHBDR RECURSIVELY TO MODEL ENTITY ORIENTATION

5.4 Conclusion

In this chapter, we have presented the Axis Point protocol which supports the remote modeling

of entity orientation. The protocol shares many of the advantages of the PHBDR protocol, most

notably its minimal dependencies on the entity model itself. The Axis Point protocol only relies on

the entity model to provide the local coordinate position of particular vertices and, unlike alternative

protocols, does not require the model to provide the angular velocity or acceleration. The dead

reckoning of orientation is also decoupled from the actual representation of orientation used by the

model itself. Finally, because it recursively uses the PHBDR protocol, the Axis Point protocol does

not require velocity or acceleration information about the axis point vectors, so it does not impose

new modeling requirements on the source host.

By recursively using the PHBDR protocol’s tracking and convergence algorithms, the Axis

Point protocol also provides the following benefits:

� Reduced implementation complexity and size, resulting in faster development time and easier

debugging.

� Greatly simplified analysis by reusing results from the PHBDR protocol analysis to understand

the Axis Point protocol.

� Minimal computational complexity and numerical stability while providing a second-order

dead reckoning model.

We have also seen that a recursive protocol structure for entity orientation does come with

some costs. For example, because PHBDR does not constrain the axis point vectors, the remote

host is responsible for normalizing and orthogonalizing the dead reckoned vertex positions on each

frame. Moreover, the protocol’s precise behavior depends on the particular axis around which the

entity is rotating; positional error on one of the axis points therefore represents a range of possible

rotation angle error values, rather than a single rotation angle error. Clearly, a dead reckoning

protocol designed specifically to handle entity orientation could eliminate such inefficiencies, but

by providing such optimizations, we would lose the simplicity provided by the recursive protocol

structure.

Together, the Position History-Based protocol and the Axis Point protocol provide a mechanism

for remote modeling a rigid entity’s position and orientation. In the next chapter, we continue our

exploration of recursive protocol structure on the PHBDR protocol by considering protocols that

support remote modeling of non-rigid and semi-rigid entity structures at variable fidelities.

Chapter 6

Multiple-Detail Channels for Modeling

Non-Rigid Entities

Up to this point, we have associated each entity with a single multicast address over which it transmits

position and orientation updates, and we have targeted an average of one update packet per second.

However, position updates with a single error threshold cannot satisfy the data requirements of all

hosts in a large-scale simulation. On one hand, nearby viewers expect to see the entity rendered

with full graphical detail and with maximum structural and positional fidelity. These users require

update rates approaching the frame rate, and they expect the update packets to provide information

about the entity’s dynamic structure and articulated parts that move independently from the entity’s

body motion. On the other hand, distant viewers can tolerate rendering the entity with less graphical

detail and with less structural and positional fidelity. Each viewer may see hundreds of entities,

and receiving high-frequency updates and detailed structural information from each one imposes an

excessive bandwidth and computational demand, thereby limiting the scalability of the simulation.

In this chapter, we address this need for entities to provide high-frequency updates with structural

detail for nearby viewers without burdening all other hosts that only require low-frequency updates

with minimal structural detail. In the next section, we describe our solution, multiple-detail channels,

which recursively uses the PHBDR and Axis Point protocols described in Chapters 3 and 5. We then

present an extended example of one implementation of this multiple-detail channel architecture.

89

90CHAPTER 6. MULTIPLE-DETAIL CHANNELS FOR MODELING NON-RIGID ENTITIES

True Entity Model

Multicast
Subscriptions

High-Detail
(Full-Body)
Channel

Medium-Detail
(Approximate-Body)
Channel

Low-Detail
(Rigid-Body)
Channel

Transmit Multiple
Detail Channels

N E T W O R K

Figure 6.1: Multiple-Detail Channels Provide Independent Streams of Entity Update Information

6.1 The Multiple-Detail Channel Architecture

Each entity provides multiple-detail channels, separate data streams, each providing data to support

remote modeling at a different level-of-detail, as shown in Figure 6.1. The source host associates

each channel with its own multicast address, a different model of the entity’s structure, and different

PHBDR error thresholds. For example, a high-detail channel satisfies nearby viewers by describing

the motion of all vertices in the entity’s structure and by using small error thresholds on each of

those vertices. A low-detail channel, on the other hand, satisfies distant viewers by describing very

little about the entity’s dynamic structure and by using high error thresholds for the entity’s motion.

The source host transmits an update packet to a channel’s multicast group whenever the remote

modeling error for a vertex exceeds its error threshold for that channel.

Each remote host independently subscribes to the channel(s) whose updates support the graphical

detail and modeling fidelity required by the local viewer without exceeding the locally available

bandwidth and computational resources. To allow remote hosts to locate and select the channels that

are available for an entity, the distributed simulation must provide a directory service. In response

to a query identifying an entity, the directory should provide the address of the source host for that

entity, the multicast address for each channel, a description of the structural model associated with

each channel, a list of PHBDR error thresholds associated with each vertex in the structural model,

and an estimate of the target update rate for the channel.

Source hosts face a tradeoff in deciding how many channels to provide for an entity. By offering

more channels, the source increases the chances that each remote host can select a channel that

6.1. THE MULTIPLE-DETAIL CHANNEL ARCHITECTURE 91

Figure 6.2: Sample Entity for Modeling Multiple-Detail Channels: Jello Icosahedron With Vertices
Connected by Springs

closely matches the local modeling fidelity, bandwidth, and computation requirements. However,

each supported channel also imposes a cost, both in terms of computation at the source host (it must

model vertices for each channel independently) and in terms of bandwidth in the network links near

the source (because the first hops must carry traffic for most of the channels).

To satisfy this tradeoff between supporting a large variety of remote modeling needs while

controlling computation and bandwidth near the source, the source only provides three channels for

each entity. The channels provide order-of-magnitude differences in structural and positional fidelity

and also provide order-of-magnitude differences in packet rate. The three channels—which we

refer to as the rigid-body channel, approximate-body channel, and full-body channel—respectively

support far-range, mid-range, and near-range viewers.

In the next three sections, we define each of these channel types and describe an example

implementation based on the SGI “jello” application. As illustrated in Figure 6.2, the jello is

modeled as an icosahedron whose vertices are connected by elastic springs. The application places

the jello entity inside a rotating cube. As the jello bounces onto the sides of the cube, the collisions

deform the springs between the jello’s vertices and cause changes to the jello’s physical structure.

The viewer consequently sees a “wiggling” jello entity.

92CHAPTER 6. MULTIPLE-DETAIL CHANNELS FOR MODELING NON-RIGID ENTITIES

6.2 Rigid-Body Channel for Far-Range Viewers

Over a rigid-body channel, the source host transmits information that allows remote hosts to model

the entity as a rigid body, hence ignoring all changes to the entity’s structure. Because it does not

provide dynamic structural information, rigid-body channels require the least network bandwidth.

In addition, because remote hosts do not need to model the entity’s dynamic structure, the models

supported by this channel impose the least computational demands on remote hosts.

Remote hosts subscribe to the rigid-body channel when the limited computational and network

resources are better allocated toward modeling other entities at higher structural and positional

fidelity. Consequently, this channel is used when the entity is distant from the local viewer, so

structural changes would be imperceptible or uninteresting. In a large simulation in which hundreds

or thousands of entities are visible to each host, hosts must subscribe to rigid-body channels for

most visible entities to avoid consuming excessive bandwidth and computational resources.

The channel is also appropriate for entities whose structure changes rarely. For example, if an

entity’s structure only changes after it is involved with a significant collision, then the rigid-body

channel does not burden hosts with real-time structural information that is usually unchanging.

Instead, over a rigid body channel, the source host can simply disseminate a completely new

structural representation after a rare significant structural change occurs.

Rigid-body channels can support two types of rigid body entity models: Position-Only and

Position-and-Orientation.

6.2.1 Position-Only Model

To support a position-only model, the source applies the basic PHBDR protocol to the entity and

only transmits the entity’s position. For rigid entities, the entity position is simply the location of

the entity’s local coordinate system origin within the virtual world’s global coordinate system. For

non-rigid entities whose local coordinate system is ill-defined, the entity’s position either be the

location of a designated entity vertex or the entity’s center-of-mass. After the entity undergoes a

significant structural change, the source host transmits a new structural model along the channel.

For a position-only model of the jello entity, for example, the source transmits the location of

the jello’s center vertex. The remote model ignore the motion of the other vertices and instead

represents the entity with its default structure and default orientation. Simulating the behavior of

the position-only model of the jello application, we derive the data in Figure 6.3a which shows

the average remote modeling error for the 12 surface vertices in the jello model, as a function

6.2. RIGID-BODY CHANNEL FOR FAR-RANGE VIEWERS 93

� Observed Modeling Error
 "Perfect" Modeling Error

|
0.0

|
0.2

|
0.4

|
0.6

|
0.8

|
1.0

|0.00

|0.25

|0.50

|0.75

|1.00

|1.25

|1.50

 (a)

 Center Vertex Error Threshold A
ve

ra
ge

 R
em

ot
e

M
od

el
in

g
E

rr
or

���� �
�

�

|
0.0

|
0.2

|
0.4

|
0.6

|
0.8

|
1.0

|0

|5
|10

|15

|20

 (b)

 Center Vertex Error Threshold

 V
er

te
x

U
pd

at
es

 P
er

 S
ec

on
d

��

�

�

�

�
�

Figure 6.3: Position-Only Model for the Jello Application: (a) Modeling Error and (b) Vertex Update
Rate

of the error tolerance on the jello’s center point position. Most of this error arises because the

remote host does not model the orientation of the entity. Because the jello has a diameter of two,

a “perfect” position-only model of the jello would produce an average error of 4
�
� 1:27 on the

surface vertices.1 Any error above this minimum arises from inaccuracies in modeling the jello’s

center point. Figure 6.3b shows the relationship between the error threshold and the resulting update

rate produced by the channel. The graph reveals that accepting a 20% increase in modeling error

reduces the packet rate by over 90%. For the jello, we see that the observed error and packet rate

behavior are similar to that observed for PHBDR with “bouncing” motion in Figure 4.4.

6.2.2 Position-and-Orientation Model

To support a position-and-orientation model, the source host uses the PHBDR protocol to transmit

entity position information and uses the Axis Point protocol to transmit entity orientation informa-

tion. For rigid entities, the source can directly extract axis point vectors from the entity model.

However, as illustrated in Figure 6.4, estimating the orientation of non-rigid entities is harder be-

cause the individual vertices do not have a fixed location with respect to each another. To compute

the entity’s orientation in this case, the source must approximate its dynamic structure in terms

of the entity’s rigid structure model. As shown in Figure 6.4c, the source ideally would calculate

1In reality, the observed “perfect” error is closer to 1.23 because the jello’s rotation is not perfectly uniform and is
instead slightly biased toward its initial orientation.

94CHAPTER 6. MULTIPLE-DETAIL CHANNELS FOR MODELING NON-RIGID ENTITIES

1 2

4 3

3

2
4

1

3

2
4

1

(d)

3

4 2

1

1

3

2
4

3

4

1

2

(a) (b)

(c)

Figure 6.4: Estimating Orientation of Non-Rigid Entities: (a) Rigid structure of entity; (b) Dynamic
structure of entity; (c) Optimally orienting the rigid model to minimize error between rotated rigid
vertices and actual entity vertices; (d) Approximation using one axis point vector directly and
orthogonalizing other axis point vector.

the orientation of the rigid entity model that minimizes the total (or maximum) error between the

rotated rigid body vertices and the entity’s dynamic vertices. This computation would be performed

on each frame to determine the appropriate axis point vectors that the Axis Point protocol module

would process and later transmit in update packets. However, this orientation computation is effec-

tively a non-linear optimization problem and is therefore infeasible for real-time use. To achieve

real-time performance, we instead rely on an approximation to the true axis point vectors, as shown

in Figure 6.4d. The source host first computes the vectors joining the entity’s center point to the axis

points. One of the axis points (point 3 in the figure) is selected as a reference point, and the other

axis point vector (corresponding to point 4 in the figure) is adjusted to form the appropriate angle

with the reference vector, as required by the rigid model of the entity. Using this approximation,

the reference axis point vector is more accurate and the second axis point vector is less accurate

than the vectors produced using the ideal optimization approach. However, we deem that the loss

of positional fidelity is well justified by the savings in computational complexity.

6.2. RIGID-BODY CHANNEL FOR FAR-RANGE VIEWERS 95

|
0.0

|
0.2

|
0.4

|
0.6

|
0.8

|
1.0

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

 (a)

 Axis Point Error Threshold A
ve

ra
ge

 R
em

ot
e

M
od

el
in

g
E

rr
or

 Center=0.01
 Center=0.025
 Center=0.05
 Center=0.1
 Center=0.25
 Center=0.5
 Center=1

|
0.0

|
0.2

|
0.4

|
0.6

|
0.8

|
1.0

|0

|10
|20

|30

|40

|50

 (b)

 Axis Point Error Threshold

 V
er

te
x

U
pd

at
es

 P
er

 S
ec

on
d

Figure 6.5: Position-and-Orientation Model for the Jello Application: (a) Modeling Error and (b)
Vertex Update Rate

For example, our implementation of the jello application uses the rigid-body vertices V1(0; 0; 1)

and V2(0:900665; 0; 0:434515) as axis points. The source first computes the vectors ~OV1 and ~OV2

formed by joining the entity’s center O(0; 0; 0) to V1 and V2 respectively. The first axis point vector

is formed by simply normalizing ~OV1. The second axis point vector is computed by normalizing
~OV2 and rotating it about the vector (~OV1 � ~OV2) until it forms an angle cos�1(0:434515) from
~OV1. The resulting axis point vectors are then provided to the Axis Point protocol module to

determine whether an orientation update packet should be transmitted.

Simulating the behavior of the position-and-orientation model of the jello application, we obtain

the data in Figure 6.5 which shows the average remote modeling error of the 12 surface vertices in

the jello model and the vertex update rate, as a function of the error tolerance for the axis points.

Curves are shown for different error tolerances on the center vertex position, corresponding to the

values shown in Figure 6.3. Whenever either axis point requires an update, we transmit both axis

points, so each axis point update is treated as two vertex updates for the purposes of measuring

the packet rate. Figure 6.5a reveals that a position-and-orientation model yields an average surface

vertex error that is 35%–80% lower than that produced by a position-only model. Figure 6.5b

reveals that the resulting packet rate is 12%–272% higher than that of a position-only model. We

see that simply providing orientation information provides a significant reduction in modeling error,

but as the error threshold is tightened, the significant bandwidth requirements are not balanced by

correspondingly large improvements in modeling fidelity.

96CHAPTER 6. MULTIPLE-DETAIL CHANNELS FOR MODELING NON-RIGID ENTITIES

6.3 Approximate-Body Channel for Mid-Range Viewers

Over an approximate-body channel, the source host transmits information that allows remote hosts

to model an approximation of the entity’s dynamic structure. Remote hosts still model the entity

using a rigid structure, but they dynamically adjust that rigid structure in a controlled manner

according to some transmitted parameter(s). Such models attempt to isolate the entity’s overall

motion within the global coordinate system from the structural motion made by individual vertices

in the local coordinate system.

Remote hosts subscribe to the approximate-body channel for non-rigid entities that are close

enough so that the local viewer can notice structural changes but far enough for the viewer to tolerate

some inaccuracy in the structural representation. Because it provides some information about the

entity’s structure, this channel consumes more bandwidth than a rigid-body channel, and receivers

must dedicate more computational resources to handle the higher update rate and dead reckon the

additional entity attributes.

The channel may also be appropriate for entities whose structural change is small compared to its

overall translational and rotational motion. For example, approximate-body channels are appropriate

for modeling a human because the attached arms and legs have limited range of movement [71] or

for modeling a tank whose turret only rotates about a fixed attachment point. In these cases, the

source host only needs to transmit the articulated part’s angle of rotation about its attachment point.

To develop a good entity model for an approximate-body channel, the simulation developer must

consider entity-specific information—particularly regarding what types of structural changes are

commonly experienced by the entity—to determine how the rigid-body model may be dynamically

adjusted. However, the radial-length model and local-coordinate-vertex model are two example

models that do not require significant a priori information about the entity. We now consider them

in turn.

6.3.1 Radial-Length Model

The radial-length model is best suited for entities whose vertices primarily move radially toward

and away from the entity’s center point. To support a radial-length model, the source transmits

the position of the entity’s center point and axis points, much like the rigid-body position-and-

orientation model. In addition, the source transmits the entity’s current average radius, as shown in

Figure 6.6a. The source computes the average radius by measuring the distance between the center

point and each of the entity’s exterior vertices.

6.3. APPROXIMATE-BODY CHANNEL FOR MID-RANGE VIEWERS 97

Figure 6.6: Computing Average Radius for a Dynamic Entity Structure: The solid line represents
the entity’s dynamic structure, and the dashed line represents the entity’s rigid structure model.

The remote host maintains a rigid-body representation of the entity structure. It uses the

PHBDR and Axis Point protocols to respectively model the entity’s position and orientation based

on information provided in the update packets. It also uses the PHBDR protocol to dead reckon

the entity’s average radius. This value is used to dynamically scale the entity’s rigid-body structure

before rendering.

To apply the radial-length model to the jello entity, the remote host maintains PHBDR proxies

for the jello’s center point in global coordinates, two axis points on the surface of the unit sphere, and

the average radius of the jello’s 12 exterior vertices. Simulating the behavior of the Radial-Length

Channel on the jello application, we obtain the data in Figure 6.7, which shows the resulting average

remote modeling error for the 12 surface vertices in the jello model and the vertex update rate, as

a function of the PHBDR protocol error threshold for the average radius. The curves demonstrate

behavior with twelve different error tolerance configurations for the center vertex and axis points. As

in Figure 6.5, each axis point update is treated as two vertex updates for the purposes of measuring

the packet rate.

The graphs reveal that radial information only offers a modest reduction in the average error

provided by the position-and-orientationmodel: on average, the radial length information introduces

an 11% increase in packet rate to obtain a 3% improvement in structural fidelity. For the jello, the

radial-length model’s effectiveness is limited for several reasons. First, each collision between

the jello and the rotating cube only displaces a subset of the jello’s exterior vertices. Therefore,

by computing the average radius and treating all surface vertices as equidistant from the jello’s

center, the model only loosely approximates the actual behavior of the jello’s structure. Second,

the individual vertex displacements are relatively small, not exceeding 10% of the jello’s radius, so

displacements to a single vertex affect the average radius by less than 1%. Such a small change

to the parameter does not affect the entity’s structural model significantly. Third, because the

jello’s vertices are connected by springs, vertex displacements exhibit oscillatory motion with high

98CHAPTER 6. MULTIPLE-DETAIL CHANNELS FOR MODELING NON-RIGID ENTITIES

 Center=0.01, Axis=0.01
 Center=0.01, Axis=0.1
 Center=0.01, Axis=0.5
 Center=0.01, Axis=1

|
0.00

|
0.05

|
0.10

|
0.15

|
0.20

|
0.25

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 (a)

 Radius Error Threshold

 A
ve

ra
ge

 R
em

ot
e

M
od

el
in

g
E

rr
or

�� � � � �
�� � � � �

�� � � � �

�� � �
� �

�� � � � �
�� � � � �

�� � � � �

�
� �

�
�

�

�� �
� �

��� � � �
�

�� �
� �

�

��
�

� � �

 Center=0.1, Axis=0.01
 Center=0.1, Axis=0.1
 Center=0.1, Axis=0.5
 Center=0.1, Axis=1
 Center=1, Axis=0.01
 Center=1, Axis=0.1
 Center=1, Axis=0.5
 Center=1, Axis=1

|
0.00

|
0.05

|
0.10

|
0.15

|
0.20

|
0.25

|0

|10

|20

|30

|40

|50

|60

 (b)

 Radius Error Threshold

 V
er

te
x

U
pd

at
es

 P
er

 S
ec

on
d

�
�
�

� � �

�
�
�

�
� �

�
�
�

� � �

�
�
�

�
� �

�
�
�

�
� �

��

�
�

� �

�
�

�
� � �

�
�
�

� � �

�
�
�

� � �

�
�
�

�
� �

�
�
�

� � �

�
�
�

�
� �

Figure 6.7: Radial-Length Model for the Jello Application: (a) Modeling Error and (b) Vertex
Update Rate

frequency which, as discussed in Section 4.2.1, requires high packet rates to model in detail.

We conclude that radial-length models are most appropriate when the entity’s exterior vertex

motion is closely correlated (e.g. the entity’s structure expands and contracts radially as a single

unit) and when the entity’s structural change is significant when compared to its rigid-body radius.

Approximate structural modeling is also easier when the entity’s structure does not change too

rapidly.

6.3.2 Local-Coordinate-Vertex Model

To support a local-coordinate-vertex model, the source transmits the entity’s center point and axis

points, much like the rigid-body position-and-orientation model. In addition, the source transmits

the position of each of the entity’s structural vertices within their local coordinate system. The

procedure for generating this information is illustrated in Figure 6.8. The source first computes

6.3. APPROXIMATE-BODY CHANNEL FOR MID-RANGE VIEWERS 99

3

2
4

1

3

4 2

1

(c)(a) (b)

Figure 6.8: Computing Local Coordinate System Position of Entity Vertices: (a) Computed entity
position and orientation; (b) Applying translation and rotation in reverse to center at origin; (c)
Sampling vertex positions within local coordinate system.

the entity’s position and orientation as if it were a rigid body, using the procedure illustrated in

Figure 6.4d. Having computed the position and orientation, the source reverses the translation and

rotation to center the entity at the origin of its local coordinate system. The resulting vertex positions

describe the entity’s new structure and are transmitted in the update packet.

The remote host uses the PHBDR and Axis Point protocols to respectively model the entity’s

position and orientation based on information provided in the update packets. It also dead reckons

the position of each structural vertex within the entity’s local coordinate system. By tracking the

motion of these vertices, the host maintains an approximation of the entity’s dynamic structure.

To render the entity, the host effectively reverses the steps of Figure 6.8. It constructs an entity

geometry by retrieving the current dead reckoned position of the structural vertices. It then applies

the rotation indicated by the dead reckoned axis points and finally translates the entity based on the

dead reckoned center vertex position.

For example, to apply a local-coordinate-vertex model to the jello entity, the remote host

maintains PHBDR proxies for the jello’s center point in global coordinates, two axis points on the

surface of the unit sphere, and the 12 surface vertices in the jello’s local coordinate system. Within

the local coordinate system, each of these surface vertices moves within a small tolerance governed

by the elasticity of the springs attaching it to adjacent vertices. Because each collision between the

jello and the rotating cube introduces a force onto those springs, the motion of each vertex initially

resembles a series of collision (as discussed in Section 4.2.2) and then exhibits oscillatory motion

(as discussed in Section 4.2.1.1).

Simulating the behavior of the local-coordinate-vertex model on the jello application, we derive

100CHAPTER 6. MULTIPLE-DETAIL CHANNELS FOR MODELING NON-RIGID ENTITIES

 Center=0.01, Axis=0.01
 Center=0.01, Axis=0.1
 Center=0.01, Axis=0.5
 Center=0.01, Axis=1

|
0.00

|
0.05

|
0.10

|
0.15

|
0.20

|
0.25

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

 (a)

 Local Vertex Error Threshold

 A
ve

ra
ge

 R
em

ot
e

M
od

el
in

g
E

rr
or

�� � �

�

�

�� � �
�

�

�� � � �
�

�� �
�

�
�

�� � �
�

�

�� � � �

�

�� � � �
�

�� � � �
�

�� �
� �

�

�� � �
�

�
��

� � � �

�� � � � �

 Center=0.1, Axis=0.01
 Center=0.1, Axis=0.1
 Center=0.1, Axis=0.5
 Center=0.1, Axis=1
 Center=1, Axis=0.01
 Center=1, Axis=0.1
 Center=1, Axis=0.5
 Center=1, Axis=1

|
0.00

|
0.05

|
0.10

|
0.15

|
0.20

|
0.25

|0

|50

|100

|150
|200

|250

 (b)

 Local Vertex Error Threshold

 V
er

te
x

U
pd

at
es

 P
er

 S
ec

on
d ��

�

�

�

�

��
�

�

�

�

��
�

�

�

�

��
�

�

�

�

��
�

�

�

�

��
�

�

�

�

��
�

�

�

�

��
�

�

�

�

��
�

�

�

�

��

� �

�

�

��
�

�

�

�

��
�

�

�

�

Figure 6.9: Local-Coordinate-Vertex Model for the Jello Application: (a) Modeling Error and (b)
Vertex Update Rate

the data in Figure 6.9 which shows the resulting average remote modeling error of the 12 surface

vertices in the jello model and the vertex update rate, as a function of the error tolerance for the

component vertices in their local coordinate systems. The curves demonstrate behavior with twelve

different error tolerance configurations for the center vertex and axis points. As in Figure 6.5, each

axis point update is treated as two vertex updates for the purposes of measuring the packet rate. The

figure reveals that the local-coordinate information is most valuable in remote models whose position

and orientation are already being modeled accurately. For example, local vertex information has

the greatest effect when the center vertex and axis point error thresholds are small (around 0.01,

in the case of the jello). For these parameters, the local coordinate system information introduces

a 300%–400% increase in packet update rate to obtain an error reduction of 28%–50% below that

of a position-and-orientation model. Furthermore, the packet rate numbers are overstated because

each packet only carries on vertex update (except for axis point updates). In reality, the source

6.4. FULL-BODY CHANNEL FOR CLOSE-RANGE VIEWERS 101

could bundle multiple vertex updates into a single update packet to reduce the overhead introduced

by packet headers. For the jello entity, the local-coordinate-vertex model is more effective than the

radial-length model because it models the independent motion of each surface vertex.

Overall, the local-coordinate-vertex model’s structural fidelity is determined by the nature of the

structural vertex motion in the entity’s local coordinate system. Though it can handle independent

behavior by each structural vertex, the model still requires the motion to be relatively simple. For

example, like the radial-length model, it cannot model high-frequency oscillatory motion without

imposing a high update rate.

6.4 Full-Body Channel for Close-Range Viewers

Over a full-body channel, the source host transmits the highest level of detail about the entity’s

dynamic position, orientation and structure. To provide this level of information, these channels

impose higher bandwidth requirements than either the rigid-body or approximate-body channels.

Furthermore, because the remote host must receive each of the updates and must model the detailed

structure of the entity, full-body channels require the greatest amount of computational resources.

Consequently, at any given time, only a small fraction of the remote entities visible to a host can

receive this level of modeling.

Remote hosts subscribe to the full-body channel for non-rigid entities that are located near the

viewer within the virtual world. These entities require the highest positional and structural fidelity

because their accurate visualization most directly affects user actions. By allocating network

bandwidth and computational resources toward these close-range entities, hosts force more distant

entities to use fewer resources by using a lower-detail channel. Full-body models are also most

appropriate for modeling entities that exhibit no structural constraints. Such entities include entity

groups, like a flock of birds, where each member moves independently of the others.

6.4.1 Selecting Marker Vertices

In providing the full-body channel, the source uses the PHBDR protocol to transmit the position

of the entity’s marker vertices in the global coordinate system. The marker vertices are selected

by the source to describe the entity’s structure, and they may simply correspond to the vertices in

a triangular mesh representation of the entity’s geometry. For each marker, the source computes

the set of adjacent marker vertices within the entity’s structure and distributes this information to

remote hosts via the simulation directory service.

102CHAPTER 6. MULTIPLE-DETAIL CHANNELS FOR MODELING NON-RIGID ENTITIES

(c)(a) (b)

Figure 6.10: Number of Marker Vertices Determines Structural Fidelity Supported by Full-Body
Channel: (a) Source model of a string; (b) Remote model with few marker vertices; (c) Remote
model with more marker vertices

The receiver uses the PHBDR protocol to independently dead reckon each marker vertex. Upon

receiving an update packet for the entity, it applies the marker position information to the appropriate

PHBDR proxy(ies). To display the entity, the host determines the current dead reckoned position

for the marker vertices and then uses the marker adjacency information to construct and render the

entity’s current geometry.

As shown in Figure 6.10, the number of marker vertices associated with the entity determines

the structural fidelity supported by the full-body channel. By selecting more marker vertices, the

source provides more information about the entity’s structure, thereby improving the achievable

structural fidelity. On the other hand, each marker vertex imposes a bandwidth and computation

cost, and beyond a certain point, the additional information offers diminishing returns for conveying

structural information.

To dynamically add or remove a marker vertex during the simulation, the source host reliably

multicasts an announcement over the entity’s full-body channel. This announcement specifies

which marker point is being added or deleted, as well as any changes in marker adjacency. The

source also updates the simulation directory service so that new subscribers can obtain the updated

entity structure. By changing the set of marker vertices, the source can adopt to lasting changes

to the entity’s underlying structure. For example, to support remote modeling of a growing plant,

the source must periodically add additional marker vertices to account for the increasing distance

between the existing markers.

The source may also provide “ephemeral” marker vertices in its update packets. When trans-

mitting an ephemeral marker vertex, the source provides three position values with corresponding

timestamps; the remote host uses these three updates to dead reckon the ephemeral marker vertex,

but that proxy is only kept until the next update packet arrives for the entity. (Each ephemeral

marker update is effectively a type of state-replace packet, as discussed in Section 4.4.) Ephemeral

markers are appropriate for entities undergoing transient structural changes that do not justify the

6.4. FULL-BODY CHANNEL FOR CLOSE-RANGE VIEWERS 103

(a) (b)

Ephemeral

Marker Vertex

Marker Vertex

(c)

Actual Rubber Band

Remote Rubber Band Model

Figure 6.11: Remote Modeling of a Rubber Band: (a) Before being stretched; (b) After being
stretched; (c) With an added ephemeral marker vertex

overhead of creating a new permanent marker vertex. For example, when a rubber band stretches,

it creates an area containing no marker vertices, as shown in Figure 6.11. Changing the marker

set each time the rubber band is stretched or released is generally impractical because the structure

potentially changes too rapidly. However, if the ephemeral marker persists for some period of time

(e.g. if the rubber band is stretched around an object), then the source may choose to add it to the

permanent marker set for the entity, thereby eliminating the need to transmit multiple updates for

the marker inside each update packet.

To provide a full-body channel for the jello entity, the source host designates the twelve vertices

forming the icosahedron as the marker vertices. It uses the PHBDR protocol to update these vertices

in the global coordinate system.2 Modeling the jello based on information provided by the full-

body channel, we derive the data in Figure 6.12 which shows the resulting average remote modeling

error for the 12 surface vertices in the jello model and the vertex update rate, as a function of the

PHBDR error tolerance on each marker. Because the motion of each vertex is dominated by the

jello’s rotation rather than its translation, the error and packet rate numbers closely resemble those

observed for circular motion, for example, as shown in Figure 4.2.

2To facilitate re-use of much of the jello’s original rendering code, we also transmit the the position of the jello’s center
point, but this information could be eliminated by re-writing the rendering code.

104CHAPTER 6. MULTIPLE-DETAIL CHANNELS FOR MODELING NON-RIGID ENTITIES

|
0.0

|
0.2

|
0.4

|
0.6

|
0.8

|
1.0

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

 (a)

 Vertex Error Threshold A
ve

ra
ge

 R
em

ot
e

M
od

el
in

g
E

rr
or

��
�
�

�

�

�

|
0.0

|
0.2

|
0.4

|
0.6

|
0.8

|
1.0

|0
|40

|80

|120

|160

|200

 (b)

 Vertex Error Threshold

 V
er

te
x

U
pd

at
es

 P
er

 S
ec

on
d �

�

�

�

�

�
�

Figure 6.12: Modeling the Jello Using Data From a Full-Body Channel: (a) Modeling Error and
(b) Vertex Update Rate

6.5 Relationship Between the Different Channels

Figure 6.13 illustrates the relationship between the three channels for the jello application. The

figure shows where each channel falls within the space of the fidelity–bandwidth tradeoff. The

curves reveal that the models exhibit order-of-magnitude differences in bandwidth and structural

fidelity, thereby satisfying a broad range of possible requirements at remote hosts.

Although we have only demonstrated these order-of-magnitude distinctions for the jello appli-

cation, we fully expect similar results for other complex entities. For example, we expect that a

full-body channel will describe on the order of ten marker vertices for a complex entity, while a

rigid-body channel only transmits information about one or three vertices. Moreover, the full-body

channel employs tighter PHBDR error thresholds than the rigid-body channel. These factors to-

gether assure order-of-magnitude differences in update rate. Similarly, as we have seen, ignoring

orientation and structure information significantly reduces the modeling fidelity for entities that

rotate freely or undergo dynamic structural change.

We have not addressed how the source host selects appropriate protocol as the PHBDR protocol

parameters are determined by the entity’s Typically, the source host determines these error thresholds

statically based on the expected modeling fidelity requirements of remote hosts. When those

requirements cannot be determined in advance, the source host may apply two approaches: provide

multiple channels within each category or dynamic rethresholding.

If sufficient computational and network resources are available, a source may provide multiple

6.5. RELATIONSHIP BETWEEN THE DIFFERENT CHANNELS 105

� Full-Body Channel
� Approximate-Body Channel (Radial-Length Model)

 Rigid-Body Channel (Position-and-Orientation Model)
� Rigid-Body Channel (Position-Only Model)

|
0.01

| | | | | | | | |
0.10

| | | | | | | | |
1.00

|1

|
|

|
|

|
|

|
||10

|
|

|
|

|
|

|
||100

|

 Average Remote Modeling Error

 V
er

te
x

U
pd

at
es

 P
er

 S
ec

on
d

��

�

�

�

�

�

�������
�
��
��
��
�
�
�
�
��
����

�

�
�

�
�

�
��

�
�
��

�

�

�

�

�
�

�
�

�

�

�

�

�

�
�
��

�
�
�

�

��

�
�

�

�

�

�
�

�

�

�

��

�

��
�

�

�

�

�

Figure 6.13: Comparison of Vertex Error and Packet Rate Ranges in Jello Application for Multiple-
Detail Channels

channels for each category, with each channel offering a different protocol error threshold. This

multiple approach alleviates the pressure of selecting an appropriate error threshold for each vertex,

and it provides greater flexibility to remote hosts desiring to customize their entity models.

Alternatively, source hosts can support dynamic rethresholding based upon feedback provided

by active subscribers to each channel. Each remote host subscribes to the channel providing

the closest match to the locally desired bandwidth and structural fidelity. The remote host then

periodically (e.g. once per minute) unicasts its ideal bandwidth utilization and modeling error to

the source. Based on the set of recently-received requests, the source then chooses an appropriate

error threshold, either by satisfying the median or average of the requests, by satisfying the highest

fidelity requirement, or by satisfying the lowest bandwidth requirement. In environments that

include dynamic rethresholding, source hosts must ensure that the channel information provided by

the simulation directory service is kept up-to-date.

106CHAPTER 6. MULTIPLE-DETAIL CHANNELS FOR MODELING NON-RIGID ENTITIES

6.6 Conclusion

Multiple-detail channels demonstrate how the basic PHBDR and Axis Point protocols can be used

to support the low-fidelity, medium-fidelity, and high-fidelity requirements simultaneously present

within a simulation, as well as supporting a broad range of entity types from stationary and rigid

to moving and non-rigid. Multiple channels improves scalability by decoupling the hosts in a

distributed simulation, allowing each host to independently determine the level-of-detail at which to

model remote entities. Each host is therefore free to allocate its own computational and bandwidth

resources among entities to best meet the visualization needs of the local user. The dynamic

rethresholding feature would further permits remote hosts to influence the remote modeling fidelity

supported by the source.

In the worst case, multiple-detail channels introduce minimal additional overhead above the

traditional single-detail approach, and in the common case, they reduces the aggregate traffic and

computation throughout the simulation. Multiple-detail channels require more computation at the

source host to maintain the additional representations and transmit updates. The network links near

the source also see the additional traffic from the lower-detail channels. Finally, remote LANs may

see extra traffic if local hosts subscribe to different channels for the same entity. However, if the

source only provides one channel, it must provide high-detail information to support near-range

viewers. Therefore, the additional resources to support lower-detail channels are proportionally

minimal. Furthermore, because we expect that most remote hosts do not require high-detail

channels for a given entity, they subscribe to channels containing less traffic. As a result, most

network links (particularly the bottleneck tail circuits) no longer fall on the high-detail channel’s

multicast distribution tree.

One might argue that in outlining a multiple-detail channel architecture, we are permitting

the development of specialized dead reckoning protocols, the very thing we were trying to avoid.

However, the architecture tightly bounds the range of permitted entity models. For instance, model

developers must build on top of the PHBDR module and the model must conform to the rigid-body,

approximate-body, or full-body channel structure. Even the approximate-body channel, which

offers the most design flexibility, only permits the developer to make controlled changes to a rigid

entity structure. The local-coordinate-vertex model therefore be regarded as the most extreme

implementation of this channel type.

Up to this point, each channel has supported the remote modeling of a single entity. Although

a low-detail channel allows hosts to reduce the update rate and detail for a distant entity, it is often

6.6. CONCLUSION 107

desirable to reduce the bandwidth and computation for a group of entities, particularly when their

positions are either unimportant or imperceptible to the local viewer. The next chapter discusses

how multiple-detail channels and PHBDR are further extended to support the remote modeling of

entity groups.

Chapter 7

Entity Aggregation

When bandwidth and computational resources are limited, hosts must prioritize resource utilization

toward those simulationentities that have the greatest importance to the local viewer. Multiple-detail

channels allow hosts to selectively model entities with a lower level-of-detail, thereby reducing the

local resources allocated toward those entities, while nearby entities continue to receive full-detail

remote modeling of position, orientation, and structure. However, even over low-detail channels,

each entity transmits update packets independently, so the receiving host must contend with per-

entity network bandwidth and packet processing overheads. These costs can be prohibitive in large

simulations in which each host may potentially be aware of thousands of entities.

In this chapter, we discuss aggregation, a technique that allows a single message to describe

multiple entities. We begin by discussing the implementation of Projection Aggregation Entities

(PAEs), which dynamically group entities by both their type and their location. After discussing the

performance of PAEs when integrated with multiple-detail channels, we describe the implementation

of PAE hierarchies. We conclude the chapter by describing potential uses for PAEs for optimizing

simulation operations such as scene rendering and collision detection, as well as supporting evolution

of simulation systems.

7.1 Projection Aggregation Entities and Their Implementation

A Projection Aggregation Entity (PAE) is a simulation entity that combines the organization-based

and grid-based aggregation approaches [85] discussed in Chapter 2 to bundle update information

from a group of entities. Each PAE includes entities from a single organization located within a

single octtree grid of the virtual world. The organization therefore is effectively “projected” onto

108

7.1. PROJECTION AGGREGATION ENTITIES AND THEIR IMPLEMENTATION 109

Platoon P1

Platoon P2

Projection Aggregation Entities

Grid G2

Grid G1

Figure 7.1: Projection Aggregation Entities Represent the Intersection of an Entity Organization
and a Virtual World Grid Region

the virtual world grid, as shown in Figure 7.1. The figure represents a virtual world divided into two

grids (G1 and G2) and contains two platoon organizations (P1 and P2). The entities are divided

into four PAEs, namely (P1; G1), (P1; G2), (P2; G1), and (P2; G2). For example, PAE (P2; G1)

bundles updates from all members of platoon P2 that are currently located inside gridG1. A PAE’s

membership changes dynamically as entities move about the simulation virtual world.

By integrating organizational and location information, PAEs describe entity groups that are

meaningful to remote hosts. For example, if the PAE were to group entities only by organization,

it would bundle information about entities that may be scattered throughout the virtual world.

Similarly, if the PAE grouped entities only based on virtual world grid location, it would bundle

information from unrelated entity types. Fine-grain entity groups, as provided by PAEs, give

receiving hosts better control over selecting the particular entity types and virtual world locations

about which to receive aggregated information.

As shown in Figure 7.2, the PAE subscribes to the multicast groups carrying updates for its

current member entities. The PAE simply collects those individual entity updates and bundles them

into a single update packet. This update packet is transmitted along a multicast address assigned

to the PAE. The PAE is associated with a transmission policy which determines how long to wait

before transmitting the bundled data.

The PAE update packet consists of a UDP/IP header followed by a sequence of (entity/vertex

identifier, timestamp, position) tuples extracted from the bundled entity update packets. Data

bundling reduces the packet rate and associated computational overhead seen by remote hosts

who subscribe to the PAE’s multicast address. Bundled data also consumes less bandwidth than

individual vertex updates because packet headers are eliminated.

110 CHAPTER 7. ENTITY AGGREGATION

Entity EntityEntity

Entity Update
Packets

Aggregation
Update Packet

Transmission
Strategy

Projection Aggregation Entity

Update Bufer

Figure 7.2: Projection Aggregation Entities Collect and Bundle Updates From Member Entities

On the other hand, bundled information is not appropriate for high-fidelity remote modeling

because bundled updates are not as timely as the individual updates received directly from the

individual entities. The PAE imposes an intermediate delay in order to collect multiple update

packets. The length of this delay is determined by the transmission policy used by the PAE.

7.1.1 Transmission Policies for Projection Aggregation Entities

PAEs use a transmission policy to determine how long to wait before transmitting a bundled update

packet. In choosing a transmission policy, the PAE trades off the amount of bandwidth reduction

provided by the bundled packets against the amount of delay introduced on the bundled data. For

transmission policy may minimize latency by transmitting frequent packets, each bundling fewer

updates. On the other hand, the transmission policy may introduce more latency in order to transmit

fewer packets, each bundling more updates.

We consider two transmission policies, timeout-based transmission and quorum-based trans-

mission, each providing a different bandwidth and latency tradeoff.

7.1.1.1 Timeout-Based Aggregation Transmission

With a timeout-based transmission policy, the PAE collects individual entity updates and transmits

them after waiting for some timeout period � . Assuming that the member entities transmit updates

independently of one another, the aggregation entity artificially delays each update on average

7.1. PROJECTION AGGREGATION ENTITIES AND THEIR IMPLEMENTATION 111

by an extra �
2 plus the additional network transmission latency introduced because the update is

transmitted twice—once to the aggregation entity and once to the final destination.

The timeout-based technique guarantees a bound on the delay seen by an individual update

packet and, therefore, the error seen by remote hosts. On the other hand, the bandwidth and packet

rate reduction provided by the timeout-based technique varies depending on the dynamic ratio

between the timeout value and the member entity transmission rates. Suppose, for example, that

the PAE represents n member vertices (i.e. entities), each generating updates (either by exceeding

its respective threshold or by timing out) every t seconds, on average. Without aggregation, the

entities transmit a total of n
t

packets per second. However, aggregation reduces the packet rate

to a maximum of 1
�

packets per second, with each packet bundling an average of n�
t

updates.

Assuming that t and � share the same order-of-magnitude, aggregation reduces the packet rate by

at least a factor of n. Assuming further that each entity position update requires d bits of data and

each packet header requires h bits. The total bandwidth requirement without aggregation is n(h+d)

t

bits per second. The PAE reduces this bandwidth to
h+n

t
�d

�
bits per second, a reduction factor

of
�

th+n�d
n�h+n�d

�
. Assuming that a 224-bit UDP/IP packet header, 32-bit timestamps, 32-bit entity

identifiers, and 192-bit position updates (three 64-bit values), the timeout-based transmission policy

reduces bandwidth by a factor of
�

7
15 � 7

15n
t
�

�
ranging up to 53%.

7.1.1.2 Quorum-Based Aggregation Transmission

Under a quorum-based transmission technique, the PAE transmits an aggregate update packet

when some minimum proportion p of the member vertices (the quorum) have provided an update.

Intuitively, the value of p determines the overall level of consistency provided for the aggregate: p

close to 1
n

provides high consistency because the aggregation transmits an update when only a small

number of member vertices are updated, while p close to one yields weak consistency because the

aggregation entity must wait for most member vertices to change before transmitting an update.

Quorum-based aggregation transmissions reduce packet rate and bandwidth when the group

contains heterogeneous entities because, unlike timeout-based transmission in which the packet rate

is fixed, the quorum-based update rate adapts to reflect the packet rates of the component entities.

Because each quorum-based update packet contains a pre-specified number of component updates,

remote hosts are guaranteed to see a particular bandwidth and packet rate reduction; the value

of p determines the level of network resource reduction. However, to achieve these guaranteed

network savings, the quorum-based approach sacrifices the predictable positional fidelity offered

by the timeout-based approach because the quorum-based transmission does not bound how long

112 CHAPTER 7. ENTITY AGGREGATION

 Quorum-Based (10 Entities)
 Timeout-Based (10 Entities)
 Quorum-Based (50 Entities)
 Timeout-Based (50 Entities)
 Quorum-Based (250 Entities)
 Timeout-Based (250 Entities)

|
0.10

| | | | | | | | |
1.00

| | | | | | | | |
10.00

| | | | ||0.01

|
|

||
||

||
|0.10

|
|

||
||

||
|1.00

|
|

||

 Average Aggregation Packets Per Second A
ve

ra
ge

 D
el

ay
 o

f E
ac

h
U

pd
at

e
(S

ec
)

Figure 7.3: Average Packet Rate and Update Delay Produced by Timeout-Based and Quorum-
Based Transmission for Aggregations

an individual update may wait before being transmitted in an aggregation packet.

Suppose that the aggregation contains n vertices which individually generate updates (either

by exceeding their respective thresholds or by timing out) on average every t1 < t2 < � � � < tn

seconds. Without aggregation, the PHBDR protocol generates
�

1
t1
+ 1

t2
+ � � �+ 1

tn

�
packets per

second. Using quorum-based transmission, tpn represents the time in which pn vertices have

transmitted updates.1 Because a packet is transmitted whenever pn points exceed their thresholds,

quorum-based transmission generates 1
tpn

packets per second. If each position update requires

d bits of data and each packet header requires h bits, then the bandwidth requirement without

aggregation is (h + d)
�

1
t1
+ 1

t2
+ � � �+ 1

tn

�
bits per second. Quorum-based transmission reduces

this requirement to h+pnd
tpn

bits per second.

7.1.1.3 Comparing the Transmission Approaches

Figure 7.3 compares the packet rates and delays produced by timeout-based transmission and

quorum-based transmission for a mix of heterogeneous entities. The simulated aggregation contains

a set of entities that one might expect to see within a single virtual world region in a ground-based

military simulation [103]: 15% fixed-wing aircraft, 10% rotary-wing aircraft, 15% tanks, 10%

trucks, and 50% dismounted infantry. The timeout-based curves were generated by changing

1Statisticians refer to tpn as the (pn) order statistic of ti.

7.1. PROJECTION AGGREGATION ENTITIES AND THEIR IMPLEMENTATION 113

the timeout period � , while the quorum-based curves reflect the effect of changing the quorum

proportion p.

The figure reveals the tradeoffs reflected by the two transmission policies. Timeout-based

transmission bounds the delay placed on updates at the expense of a higher update rate. Moreover,

the transmission behavior is independent of the aggregation size, which is a desirable property

because the membership of an aggregation changes dynamically as entities move about the virtual

world. On the other hand, the quorum-based approach transmits up to one-third fewer packets

than timeout-based transmission, but its delay characteristics are less predictable. In particular,

any individual update may be delayed indefinitely, and the delay characteristics depend on the

aggregation size.

Based on these results, therefore, we conclude that timeout-based transmission is generally

preferable for PAEs in highly dynamic simulation environments having ample wide-area network

bandwidth. Quorum-based aggregations are more appropriate when the entity motion is more

localized or when wide-area network bandwidth is a limited resource.

7.1.2 Optimizing PAEs for Scalability

We optimize the PAE implementation to minimize the computational and bandwidth overhead for

managing large numbers of PAEs, for changing PAE membership, and for creating and destroying

PAEs. These optimizations are needed to support fine-grain entity groups, such as those provided

by PAEs, in large-scale simulations for several reasons:

� PAE membership changes frequently. In particular, an entity leaves one PAE and joins another

PAE whenever it moves to a new grid region in the virtual world.

� The number of potential PAEs is large, bounded by the product of the number of grids and

the number of entity organizations. This bound grows rapidly as simulations involve larger

virtual worlds and involve more participants. Even if only non-empty PAEs exist in the

simulation, the number of active PAEs can still be quite large.

� PAEs may be created and destroyed rapidly as a result of entity motion about the virtual

world. For example, when members of platoon P1 first enter a grid area G3, a new PAE

(P1; G3) must be provided to bundle those entity updates. Similarly, when G3 no longer

contains entities from P1, PAE (P1; G3) should be destroyed.

114 CHAPTER 7. ENTITY AGGREGATION

Receiver

Multicast
High-Fidelity

Updates

PAE PAE

Multicast
Bundled
Updates

Multicast
New PAE

Announcements

Simulation
Directory
Service

High-Fidelity

Simulation

(OAE)

Host

Query for
OAE Contact
InformationQuery for List

Entities, Number
of Entities, etc.

of Bundled

Query for List
of PAEs in Virtual

World Region

Entity Entity Entity

Organization-Based Aggregation Entity

Figure 7.4: PAEs as Logical Entities Created and Managed by OAEs

These scalability barriers arise because PAEs mirror the dynamic nature of the entity motion. As

entities move more rapidly, PAEs must also rapidly change to reflect new opportunities for bundling

updates.

7.1.2.1 Creating and Locating PAEs

To support dynamic PAEs, we create a set of Organization-Based Aggregation Entities (OAEs)—

simulation entities representing an entity organization such as a platoon of tanks—as shown in

Figure 7.4. Because entity organizations are rarely created or destroyed, OAEs are long-lived

entities that can be statically configured at the start of the simulation. Each OAE is associated with

a multicast address and a port address which are registered in a simulation directory service.

PAEs are then implemented as logical entities created by the OAEs. The OAE subscribes to

high-fidelity data from each of its members and organizes the entities into PAEs based on their

locations within the virtual world. Each PAE is dynamically assigned a multicast address for

transmitting bundled updates and a port address for receiving remote requests. The OAE announces

the creation of the new PAE by transmitting a message to its own multicast address describing the

7.1. PROJECTION AGGREGATION ENTITIES AND THEIR IMPLEMENTATION 115

PAE’s grid region, multicast address, and port address.

To start receiving bundled updates for a set of entities within a virtual world region, a remote host

must first determine which PAE multicast group(s) provides the appropriate bundled data packets.

It does this by querying the simulation directory service for the multicast and port addresses of the

OAE. It then transmits a query to the OAE’s port address asking for a list of PAEs covering the

virtual world region of interest. In response to this query, the OAE returns a list of PAEs, their grids,

multicast addresses, and port addresses. Finally, the host subscribes to the PAE multicast groups to

receive bundled updates, and it subscribes to the OAE’s multicast group to learn about new PAEs in

the region of interest.

Our use of OAEs to create and manage logical PAEs has several advantages. First, OAEs can

treat PAEs as lightweight entities that can be created quickly. The creation of PAEs is distributed

and does not require a centralized process to determine the need for a new PAE, assign a host to

execute the PAE software, and start the PAE at that host. Instead, each OAE is responsible for

selecting, creating, and managing its own PAEs. Second, having OAEs disseminate information

about PAEs reduces the latency for providing that information to potential subscribers. In particular,

by not requiring information about the new PAE to be entered into the simulation directory service,

we eliminate at least one network round-trip time. Third, the multi-level directory provided by the

simulation directory and the OAEs provides better load balancing than could be provided by a single

large directory service. Our implementation partitions static information (about OAEs) from the

more dynamic information (about PAEs), thereby allowing each directory service to be optimized

for its particular access patterns.

The OAE query mechanism might also be used to create a PAE only when a remote host

actually expresses interest in the corresponding grid region. This “create-on-demand,” or delayed

binding, approach would have the advantage of eliminating unnecessary PAEs from the simulation

and, consequently, reducing overhead at the OAE host. With the create-on-demand approach,

however, remote hosts would need to periodically refresh their PAE queries, because a PAE would

be destroyed if no matching query is received within some timeout period. The scalability of this

approach is an area for future research.

7.1.2.2 Reducing the Number of PAEs Created and Destroyed

Although OAEs implement PAEs as logical entities, creating or destroying PAEs still represents a

significant computational overhead throughout the distributed simulation for initiating or terminating

a multicast summary data stream, announcing the group, and changing multicast subscription

116 CHAPTER 7. ENTITY AGGREGATION

patterns at remote hosts. In particular, we want to minimize situations where a single PAE is

repeatedly created and destroyed as entities enter and leave a particular grid region. To accomplish

this goal, we employ two techniques: deferred PAE destruction and low-frequency entity sampling.

When a PAE’s grid no longer contains entities from that organization, the managing OAE defers

the destruction of that PAE (i.e. the release of the multicast address) for a timeout period. If an

entity from the organization re-enters the grid before the timeout expires, then the PAE is not

destroyed. This deferred destruction should be particularly effective in large-scale simulations such

as the STOW 97 training system in which entity motion exhibits considerable locality within the

virtual world [96]. In cases where entity motion does not exhibit locality, deferred destruction risks

leaving a large number of multicast addresses assigned to empty PAEs that will not become active.

To mitigate this problem, OAEs employ low-frequency entity sampling.

OAEs assess the location of member entities and re-organize PAEs at a low frequency (e.g.

once every few seconds), rather than continuously. The lower frequency both reduces the number

of PAEs created or destroyed as a result of short-term entity motion and significantly reduces the

overhead required to manage the PAEs. However, the low-frequency sampling may cause an entity

to be associated with the wrong PAE for some period of time. For example, suppose that the OAE

provides PAEs for grids G1 and G2. If an entity moves from grid G1 to grid G2, it will still be

bundled by theG1 PAE until the OAE next samples the member entity positions and re-organizes the

PAE membership. Subscribers to theG2 PAE will therefore experience some delay before learning

about the new PAE member. However, we deem short-term inaccuracies in the PAE membership

to be acceptable because the duration of these inaccuracies is bounded by the latency introduced

by the PAE bundling and because bundled updates are only used for low-fidelity entity modeling at

remote hosts.

By grouping entities based on multiple criteria, PAEs give remote hosts fine-grain control in

replacing low-latency, per-entity updates with higher-latency bundled updates. In the next section,

we discuss how this flexibility enhances the effectiveness of multiple-detail channels discussed in

the previous chapter.

7.2 Integrating PAEs With Multiple-Detail Channels

PAEs and the multiple-detail channel architecture described in Chapter 6 both aim to reduce band-

width and computational load by providing lower-bandwidth alternatives to full-detail information.

We now consider how effectively the two techniques integrate to reduce tail circuit bandwidth and

7.2. INTEGRATING PAES WITH MULTIPLE-DETAIL CHANNELS 117

Updates Bandwidth Subscription
Channel Name Per Sec. Packet Contents (bps) Percentage

Full-Body 8
UDP/IP packet header

46080 5(entity ID, time, vertex position)
[12 independent vertices]

Approximate-Body
5

UDP/IP packet header

7520 15(Radial-Length)
(entity ID, time, center position)
(entity ID, time, axis point positions)
(entity ID, time, radius length)

Rigid-Body
1

UDP/IP packet header
480 30(Position-Only) (entity ID, time, center position)

Projection
0.2

UDP/IP packet header
265a 50Aggregation (entity ID, time, center position)

Entities (PAEs) [25 tuples per packet]

Total WAN 112.2 54345 100

aWe assume that each PAE packet bundles five updates from each of five entities.

Table 7.1: Channel Options for Subscribing to Jello Entity Updates

to reduce packet rate and computation at remote hosts.

We consider a simulation consisting of complex entities such as the jello model described in

the previous chapter. A subscriber may therefore subscribe to one of four channels, as shown in

Table 7.1. The subscription percentages estimate the proportion of “visible” entities at each host

likely to be serviced by that channel. For example, we expect that 50% of the entities visible to

each host can be replaced by bundled PAE updates, while only 5% will require full-body modeling.

As a conservative estimate, we assume that each PAE bundles only five vertex updates.

7.2.1 Tail Circuit Bandwidth Reduction

In current network environments, affordable off-the-shelf LAN technology is rapidly approaching

gigabit-per-second capacity, while investment in high-bandwidth WANs is easily justified because

those costs can be amortized over a large number of users. Consequently, we expect that tail circuit

links will remain the bandwidth bottleneck over the next several years. With this in mind, we

consider how PAEs, when combined with the multiple-detail channel architecture, affect tail circuit

bandwidth requirements.

For the purposes of these experiments, we assume that all traffic must flow across the WAN

backbone (i.e. each data channel has at least one subscriber somewhere in the simulation). Intro-

ducing lower-detail channels (including PAEs) increases the WAN bandwidth requirements by 11%

over a system providing only a full-body channel.

118 CHAPTER 7. ENTITY AGGREGATION

 Four Channels
 No PAEs

|
1

| | | | | | | | |
10

| | | | | | | | |
100

| | | | | | | | |
1000

|0

|20

|40

|60

|80

|100

 Number of Hosts Behind Tail Circuit

 P
ct

. o
f H

ig
h-

F
id

el
ity

 C
ha

nn
el

 B
W

Figure 7.5: Tail Circuit Bandwidth Requirements of Multiple-Detail Architecture Relative to Single-
Channel Architecture as a Function of Host Count Behind Tail Circuit

Figure 7.5 shows the tail circuit bandwidth requirements as a function of the number of simulation

hosts located behind that tail circuit and interested in a given entity. These numbers represent worst-

case results, because we assume that each host behind the tail circuit behaves independently; in

reality, in most simulations, users on the same LAN tend to exhibit considerable locality in the

virtual world too, so their entity subscription patterns exhibit some correlation.

This graph compares the bandwidth requirements from providing four channels (three of the

multiple-detail channels plus a PAE) against the requirements from providing only a high-detail

channel. When the number of interested hosts behind the tail circuit exceeds 125, the four-channel

bandwidth reaches its maximum at 125% of the high-detail channel bandwidth. At this point, data

from all of the channels is reaching the tail circuit. We expect to see a 50% reduction in tail circuit

bandwidth when approximately fifteen hosts behind the tail circuit are independently subscribing

to the entity. The multiple-detail channels clearly provide a desirable bandwidth reduction through

the tail circuits.

The graph also depicts a curve “without PAEs” that considers the three multiple-detail channels

alone, where all PAE subscriptions are replaced by subscriptions to the rigid-body channel. In

comparing the “four channel” and “without PAEs” curves, we observe that adding PAEs does not

significantly affect the tail circuit bandwidth when compared to the basic multiple-detail architecture

without PAEs. This observation reveals that the tail circuit bandwidth is heavily dominated by the

high-detail channel data, so incremental reductions from lower-bandwidth alternatives do not have

a significant effect.

7.3. THE PAE HIERARCHY 119

7.2.2 Host Packet Rate and Computation Reduction

Based on the numbers in Table 7.1, a host expressing interest in jello entities would see, on average,

7.37 packets per second for each entity of interest if PAEs bundles are available. On the other

hand, without PAE bundles, the same host would see an average of 7.55 packets per second for

each entity of interest, so PAEs reduce the packet rate by roughly 2.4%. However, the packet rate

difference is more significant for hosts that do not require high-fidelity remote entity modeling. For

example, if a wide-area viewer only employs rigid-body entity models, the packet rate without PAEs

is approximately 1 per second, while the packet rate with PAEs is approximately 0.52 per second,

representing a reduction of 48%.

We conclude that PAEs do not noticeably increasee the bandwidth requirements over bottleneck

tail circuits. However, for hosts that can afford to further reduce the remote modeling fidelity for

particular entities, PAE updates can significantly reduce the packet rate and consequent computation.

Because this packet rate benefit imposes little cost to the simulation system, we observe that PAEs

are a valuable tool for supporting scalability.

We have established the effectiveness of PAEs for reducing the packet rate seen by receiving

hosts, and we have discussed optimizations to reduce the number of PAEs that are unnecessarily

created and destroyed. However, the number of PAEs in a large simulation can still be substantial.

In the worst case, a PAE would be created for each entity. In addition, remote hosts must subscribe

to all PAEs of local interest. If the PAEs contain too few entities or cover too small a grid region,

then the overhead for managing PAE subscriptions overwhelms the performance benefits of PAEs.

To address these problems, we arrange PAEs into a hierarchy.

7.3 The PAE Hierarchy

PAEs are arranged in a hierarchy, much like the natural arrangement for entity organizations and

an octtree of virtual world grid regions. To support this hierarchy, we provide OAEs representing

organizations at each level of the organizational hierarchy. When a PAE is created by an OAE, it

first registers itself with a parent PAE, and it unregisters itself before being deleted. The parent

aggregation represents a broader organization and a grid of equal or larger size, as illustrated in

Figure 7.6. For example, if a platoon is part of a company, then each of the platoon’s PAEs associates

itself as a descendant of the company PAE covering the same virtual world region. Consequently,

each OAE provides PAEs for any virtual world regions containing any direct or indirect descendant

entity. For example, if a tank is a member of a platoon organization, then the platoon’s OAE

120 CHAPTER 7. ENTITY AGGREGATION

Platoon

Company

Platoon

Organization: Company
Grid: G

Organization: Platoon
Grid: G1

Organization: Platoon
Grid: G2

Organization: Platoon
Grid: G3

(c)

Organization: Platoon
Grid: G3

Organization: Platoon
Grid: G4

Organization: Platoon
Grid: G4

G3

G1

G4

G2

G
(a)

(b)

Figure 7.6: A PAE Hierarchy Describes Entities with Increasing Organization and Location
Granularity: (a) Location of entities in the virtual world, (b) Organizational structure of entities, and
(c) Corresponding PAE hierarchy.

provides a PAE whose associated grid covers the tank’s location. Similarly, if that platoon is part

of a company organization, then that company’s OAE also provides a PAE whose associated grid

covers the tank’s location.

Figure 7.7 illustrates how the PAE hierarchy is integrated with the OAE hierarchy and a similar

Grid-Based Aggregation Entity (GAE) hierarchy in a simulation. As we have seen, each OAE

can be queried for the PAEs representing the locations of all descendant entities, and each PAE

can be queried for the current set of member entities. With a PAE hierarchy, the list of a PAE’s

member entities may include both regular entities and sub-PAEs representing aggregations for sub-

organizations in sub-grids. For example, the members of a tank company’s PAE would include the

PAEs for the platoons with members in the same grid as well as any tanks in the company that are

not assigned to a platoon.

7.3. THE PAE HIERARCHY 121

Entity

PAE

PAE PAE

PAE

.. .

...
. . .

Octtree Grid

Octtree Grid

OAE

OAE

OAE

OAE

Note that this link is not bi-directional
because the PAE’s parent is already
associated with this grid

Figure 7.7: PAE Hierarchy is Integrated With OAE and GAE Hierarchies

The behavior of a PAE whose members include other PAEs is almost identical to that of a

PAE whose members only include regular entities. A parent PAE simply subscribes to the bundled

updates from its sub-PAEs, as well as the updates directly provided by its regular member entities.

The parent PAE bundles all of the updates into a larger update packet. We observe that PAEs

associated with high-level organizations provide the greatest level of bandwidth reduction because

they potentially bundle the largest number of entities. At the same time, these PAEs also introduce

the highest latency into their updates, partially because they incorporate the delay already introduced

by the sub-PAEs.

Hierarchical PAEs maximize the ability of remote hosts to customize their incoming data

flows. For example, the PAE hierarchy allows a host to easily query for and subscribe to bundled

information about all tanks in the simulation or bundled information about all entities within a large

region of the virtual world.

To improve the scalability of the PAE hierarchy, we introduce optimizations that restrict the

grid size associated with the PAEs for each OAE and that reduce the number of changes to the PAE

hierarchy. The next two sections discuss each of these optimizations in turn.

122 CHAPTER 7. ENTITY AGGREGATION

7.3.1 Restricting the Grid Size Associated With PAEs

Each OAE dynamically determines the appropriate grid size(s) associated with its PAEs based on

the locations of its member entities. During the simulation, as an OAE’s entities spread apart,

the associated PAE grid size should increase, and as those entities move closer together, the PAE

grid size should decrease. Dynamic PAE grid sizes are appropriate because they ensure that those

streams provide meaningful data reduction. For example, if all PAEs in the simulation used the

same fixed grid size, the simulation would either create many small PAEs (with high overhead to

maintain) or just a few large ones (which do not offer the desired fine-grain filtering at remote hosts).

However, if OAEs independently determine their PAE grid sizes, then the PAE hierarchy can

become inefficient. For example, if a company’s PAEs use a smaller grid size than that used by a

descendant platoon’s PAEs, then a platoon PAE pplatoon may need to have multiple parent PAEs.

Therefore, each parent PAE would either transmit bundled updates including entities that do not fall

within the associated grid or filter the bundled updates to discard information about entities outside

the region.

Consequently, we require that PAEs must be associated with grids that are at least as large as

the grids associated with the member PAEs. To implement this restriction, each PAE tracks the grid

size associated with each of its member PAEs. The PAE registration packet includes the associated

grid size. If this grid size exceeds the parent PAE’s grid size, then the parent PAE signals to the

OAE to perform a PAE remapping to increase the PAE’s grid size, possibly merging it with other

PAEs. When a descendant PAE unregisters itself, the parent PAE determines whether it can safely

reduce its associated grid size, and if it can, it similarly signals the OAE for a PAE remapping which

would potentially divide the PAE into smaller units.

A PAE remapping can be relatively expensive because it involves the creation and destruction

of PAEs. However, it is an infrequent occurrence. In typical simulations, an organization’s member

entities tend to exhibit a relatively constant level of dispersion. To reduce the number of remappings

further, we defer the PAE remapping operation.

7.3.2 Reducing Changes to the PAE Hierarchy

OAEs defer changes to their associated PAE grid sizes in case the change should be reversed

shortly thereafter. This delay resembles the deferred destruction of individual PAEs, discussed in

Section 7.1.2. Deferring a PAE remapping helps to reduce the number of PAEs created and quickly

destroyed because of short-term entity motion. For example, before signalling to an OAE to change

7.3. THE PAE HIERARCHY 123

the PAE grid size, the PAE establishes a timeout. When the timeout arrives, the PAE signals the

OAE to perform the PAE remapping. However, if conditions change before the timeout arrives so

that the PAE’s grid size change is no longer necessary, then the timeout is canceled.

Our use of timeouts attempts to localize changes to the lower levels of the PAE hierarchy. For

example, when a PAE has no members, it defers its destruction. If that PAE turns out to be the last

member of its parent PAE, then the parent PAE similarly defers its own destruction, and this deferred

destruction proceeds recursively up the PAE hierarchy. The higher-level PAEs effectively employ

longer timeouts than their descendant PAEs. A similar delay pattern arises when OAEs perform

PAE remappings to change the associated grid sizes. Despite the potential brief inconsistencies in

the PAE hierarchy, this delay has the desirable effect of isolating larger PAEs as much as possible

from oscillatory behavior near the leaves of the hierarchy. Consequently, larger PAEs (associated

with large organizations and grid areas and providing the lowest fidelity information) are more

created and deleted less frequently. This design means that remote hosts more actively manage

subscriptions for smaller PAEs, corresponding to entities of greatest local interest, and spend less

time managing subscriptions to the larger PAEs of secondary local interest.

We evaluate the effectiveness of this deferred PAE remapping by using a 4096x4096x4096

virtual world with 10 top-level organizations, each containing five sub-organizations with 20 member

entities (for a total of 1000 entities). Our simulations run for 5,000 time steps, divided into ten

“epochs” of 500 steps. At the beginning of an epoch, each entity is associated with a unit direction

vector that it follows during the epoch’s time steps. During each time step, we apply a random scaling

factor (ranging between 0 and 3) to the direction vector. In this simulation, each OAE associates the

same grid size to each of its member PAEs and selects the grid size to limit the number of active PAEs

to eight. We consider two extremes of entity behavior. In the first scenario, the “cohesive case,”

all entities in an sub-organization share the same direction vector (but independent vector scaling

factors) during each epoch. Hence, members of each sub-organization tend to remain relatively

clustered in the virtual world. In the second scenario, the “fragmented case,” each entity receives

its own direction vector. Hence, members of each sub-organization exhibit no clustering behavior

as they move about the virtual world. Most real scenarios would fall somewhere between these two

extremes.

Figure 7.8 shows how delaying PAE remappings by OAEs reduces how many remappings are

actually performed. The data demonstrates that even a small quarter-second remapping delay can

eliminate as much as 60% of the PAE remappings. This effect is more pronounced with “cohesive”

entity motion because each organization’s entities exhibit more constant dispersion during the

124 CHAPTER 7. ENTITY AGGREGATION

� Fragmented
� Cohesive

|
0.0

|
0.2

|
0.4

|
0.6

|
0.8

|
1.0

|0

|500

|1000

|1500

|2000

|2500

|3000

|3500

 Remap Delay (sec)

 N
um

be
r

of
 R

em
ap

pi
ng

s

� �

�

�

�

�

� �
� � �

�

Figure 7.8: Number of PAE Remappings Performed by OAEs as a Function of Remapping Delay

simulation, so any changes are usually short-lived events. In the “fragmented” case, however, each

organization’s entities exhibit more variable dispersion, so a higher percentage of remappings are

actually executed.

7.4 Potential Integration of PAEs With Other Simulation Tasks

Besides providing fine-grain entity groups that allow remote hosts to reduce their bandwidth and

computational requirements, the PAEs can potentially be integrated with other simulation tasks,

such as scene rendering and collision detection. Each of these operations can benefit from the

ability to process multiple entities as a single unit. Group processing is used to merge information

about the member entities, to prioritize or filter the handling of individual entities, or to summarize

entity information that is not otherwise available.

In this section, we consider three potential uses for the PAE structure:

� Entity Rendering: Using PAE information to render an entity group directly rather than

modeling the individual entities.

� Collision Detection and Scene Rendering: Using information from the PAE hierarchy to

prioritize entities for processing and filtering entities that should not be processed at all

� Simulation Evolution: Using PAEs as proxies for more detailed representations of the simu-

lation entities.

7.4. POTENTIAL INTEGRATION OF PAES WITH OTHER SIMULATION TASKS 125

standard dev = 2

entity count = 10
mean distance = 3

loc-x

(a)

(b)

Redius

loc-y

Figure 7.9: PAE Summary Updates: (a) Original entity locations; (b) Summary information
transmitted in PAE summary update

7.4.1 PAE Summary Protocol for Rendering Entity Groups

Instead of simply bundling updates from individual entities, PAEs can multicast summary update

packets about its members. The summary updates contain enough information for remote hosts

to model those entities with extremely low positional fidelity. Remote hosts therefore use the

PAE summary updates to represent groups of remote entities that do not locally merit high-fidelity

modeling because they are far from the viewer or because the entity type is not of primary interest

to that viewer.

7.4.1.1 PAE Summary Update Generation

PAE summary updates describe the location of the PAE’s members, as shown in Figure 7.9.

The summary packet contains a count of the number of entities represented by the PAE (including

descendant PAEs), a single position point summarizing the location of those entities, and information

regarding the distribution of those entities around that point.

The summary position point is calculated by averaging the positions of the PAE’s member

126 CHAPTER 7. ENTITY AGGREGATION

entities; each member PAE is treated as a regular entity except that its summary position is weighted

by the number of entities that it represents. Rather than recomputing the summary position point

whenever an entity moves, the PAE can incrementally update its summary position by weighting

the change in each entity’s position based on the overall number of member entities. The summary

position must be periodically recomputed to bound the accumulation of round-off error.

The member entity distribution is encoded using the radius of a bounding sphere centered at the

PAE’s summary position and containing all of the PAE’s member entities. The PAE describes the

entity density by transmitting the mean and standard deviation of entity distance from the summary

position. As with the summary position, member PAEs are treated like regular entities except for a

weighting factor, and these density values can be updated incrementally as entities move.

As discussed in the next section, remote hosts use the PHBDR protocol to dead reckon the

parameters included in the PAE summary update. The PAE transmits a summary update whenever

it detects a discrepancy between the local values of these parameters and the values currently

extrapolated by remote hosts. The actual error tolerances depend on the overall fidelity requirements

of the simulation, but we set the tolerances to keep the update rate lower than that generated by

individual entities and thus minimize the bandwidth overhead introduced by the PAE summaries.

Remote sites needing more detailed or frequent information can subscribe to one of the multiple-

detail channels provided by the entities themselves.

PAE summary updates containing entity count, summary position, and entity distribution in-

formation are sufficient for most simulations. Where additional information is needed, remote

hosts can often rely on domain-specific information to generate approximate position models. For

example, if a host models a radar, it might use a table of reflection characteristics based on entity

type and distance to approximate the radar signature of a PAE’s member entities.

7.4.1.2 PAE Summary Update Processing

Figure 7.10 illustrates how remote hosts might render the entity group from the PAE summary

information in Figure 7.9b. The summary position determines the location of a local coordinate

system used for the PAE group rendering, and the bounding sphere defines the range of locations for

members of the entity group. Low-resolution renderings of the entities are then placed within the

bounding sphere using the distribution mean and standard deviation values provided in the summary

packet. To place each entity, the simulation generates a random direction vector (i.e. from 0o to

360o) and a random distance from the summary position, applying a normal distribution with the

provided mean and standard deviation.

7.4. POTENTIAL INTEGRATION OF PAES WITH OTHER SIMULATION TASKS 127

Y

X

Figure 7.10: Rendering of an Entity Group Based on PAE Summary Information

Because the PAE’s summary position, radius, and mean distance from the center point change

over time, remote hosts dead reckon these parameters using the PHBDR algorithms. As these

parameters are extrapolated, hosts update their models of the position of the PAE members. On

each frame, the PAE’s local coordinate system is translated to the extrapolated center point. Each

entity is then translated along its associated direction vector according to the extrapolated change

to the bounding sphere radius and mean distance. Consequently, dead reckoning allows remote

hosts to present a dynamic view of the PAE’s members despite receiving only occasional summary

updates. Dead reckoning also lowers the PAE summary update rate by reducing the error between

the true summary parameters and the parameters used at remote hosts. Like any other simulation

entity, a PAE is represented as a set of attributes to dead reckon, along with a rendering routine.

The PAE summary protocol reduces the bandwidth and computation required at remote hosts.

PAE summary packets, by only transmitting a fixed number of parameters about the entity group,

are typically smaller than the bundled updates from the individual entities. Because summary

packets are being used to generate low-fidelity positional models, they also can be transmitted less

frequently than bundled updates. Moreover, receiving hosts no longer need to employ individual

PHBDR protocol modules to extrapolate the position of each entity in the group. Instead, six

PHBDR modules (three for the summary position and one each for radius, mean distance, and

standard deviation) are shared among all of the group’s member entities. For non-trivial groups,

therefore, remote hosts need to perform less computation to process each update packet. This

computational savings can be quite significant. In a large simulation, a host may be aware of

hundreds, if not thousands, of entities, most of which are not of any significant interest to the local

viewer. PAE summaries allow the host to maintain some basic information about the entity’s general

location, so that it can track when the entity later becomes more important to the viewer and merits

a model with higher positional and structural fidelity.

128 CHAPTER 7. ENTITY AGGREGATION

Grid Overlap
Entity Type Collisions None Partial or Full

Not of Interest No further evaluation No further evaluation
Potentially of Interest No further evaluation Compute potential collisions between PAE members

Table 7.2: Pairwise PAE Analysis to Discard Impossible or Uninteresting Collisions

We have already seen how PAE summary updates might replace a group of entity models that

are not of local interest. Because PAEs simultaneously group entities by both organization and

location, remote hosts can also apply fine-grain criteria when selecting which entities to model in

detail. Remote hosts can also use these fine-grain criteria to filter entities from other expensive

simulation operations such as collision detection and scene rendering.

7.4.2 Using the PAE Hierarchy to Filter Entities

Arranging PAEs into a hierarchy enhances the entity filtering capability because top-level PAEs

represent larger entity groups and larger grid regions. This top-level filtering is particularly useful

in operations that otherwise require processing all entities in the simulation, regardless of their local

model fidelities. Using the PAE hierarchy, a host can quickly filter those entities that do not need to

be manipulated during the operation and thereby reduce its processing.

We assume that remote hosts cache information about the current PAE hierarchy, particularly

the entity organizations and grid locations represented by each active PAE and the membership

relationships among PAEs. We outline how hosts can use this cached hierarchy information to

optimize two common simulation operations: collision detection and scene rendering, and we then

describe a data structure that supports fast traversal of cached PAE hierarchy information.

7.4.2.1 Collision Detection

A collision detection algorithm can use PAEs to quickly filter both unlikely and uninteresting

collisions involving local entities, as shown by Table 7.2. We assume that each host maintains

a prioritized list of which types of collisions are important to detect accurately based on local

user requirements. The PAE collision detection filtering discards entity pairs that either are not

co-located within the same grid region in the virtual world or do not lie within the interest list for

the local user. After filtering impossible or irrelevant collisions, the collision detection algorithm

then attempts to order the processing of the remaining potential collisions based on the prioritized

interest list for the local user.

7.4. POTENTIAL INTEGRATION OF PAES WITH OTHER SIMULATION TASKS 129

Algorithm collDetect (PAEset1: PAEs including local entities
PAEset2: PAE list);

for all p1 2 PAEset1 do begin
for all p2 2 PAEset2 do begin

if grid(p1) intersects grid(p2) and
(p1; p2) type collisions may have local interest
then begin

if loadFunction(p1,p2)
then collDetect(children(p1),children(p2))
else collHandle(p1; p2)

end;
end;

end;
end.

Figure 7.11: Collision Detection Algorithm With PAEs

The collision detection algorithm, which is fully specified in 7.11, begins by comparing PAEs

that include local entities against each of the top-level PAEs in the hierarchy. For each pair, if the grids

do not intersect or collisions between the corresponding entity types are not interesting, then further

collision detection is not performed on that pair of PAEs. For example, although automobiles might

be located in the same region as caterpillars, the interest comparison might prevent the host from

testing collisions between local automobiles and PAEs only containing remote caterpillars. If the

collision is possible and has potential interest, then a load function evaluates whether more detailed

collision detection is desired, based on available computational resources. When computational

resources are limited, the load function prioritizes collisions based on the entity types involved and

an assessment of the possible effects of each collision. For example, the load function would select

collisions among automobiles for more detailed processing than collisions between automobiles and

grass. If the entity pair is accepted by the load function, then the PAEs’ children (which partition

entities by finer-grain type and smaller grid) are considered pairwise for further filtering; on the

other hand, if the load function rejects the entity pair, then we simply assume that all entities within

the two PAEs are colliding.

Collision detection using the PAE hierarchy turns out to be a natural extension to time-critical

collision detection [35] that checks for collisions between successively tighter approximations to

entities’ surfaces. Unlike time-critical collision detection, whose iterations only consider entity

location information, the PAE hierarchy successively provides both entity location (through smaller

130 CHAPTER 7. ENTITY AGGREGATION

Algorithm renderScene;
viewingPAEs list of viewing PAEs
PAEset list of PAE hierarchy root(s)
collDetect(viewingPAEs; PAEset)

end.

Algorithm collHandle (p1: viewing PAE,
p2: colliding PAE);

iterator newIterator(p2,
grid and organization rendering

priorities for p1,
node prioritization function for p1)

while node nextItem(iterator) do begin
render(node)

end;
end.

Figure 7.12: Scene Rendering Algorithm With PAEs

grids) and entity type (through smaller organizations) approximations. Consequently, both impos-

sible and uninteresting collisions can be discarded.

7.4.2.2 Rendering

To improve rendering, hosts can again use the PAE hierarchy to prioritize entities based on both

their location and their type.

The rendering algorithm, fully specified in 7.12, constructs one or more temporary viewing

PAEs representing a viewing frustrum entity (which might be treated as a top-level organization),

as shown in Figure 7.13. To render the scene, we select a set of PAEs to display by using the

collision detection algorithm of the previous section between the viewing PAEs and the simulation

PAEs. A PAE is selected for display if it intersects (collides) with a viewing PAE and the entity type

is of interest to that viewing PAE. When rendering the view from a car, the viewing PAEs would

only collide with PAEs whose grids are also located in front of the car. Furthermore each viewing

PAE might express a different entity interest set, depending on how far it is from the viewpoint. For

example, viewing PAEs located more than ten feet from the viewer might have no interest in insects.

As a further example, this rendering algorithm can generate a map of the tanks led by a commander

simply by making the viewing PAEs only interested in the organizations that he commands.

Having filtered invisible or unimportant PAEs, the rendering algorithm then traverses each

7.4. POTENTIAL INTEGRATION OF PAES WITH OTHER SIMULATION TASKS 131

Fewest Most
Number of entity types of interest

Viewer Projections

Viewing Frustrum

Viewpoint

Figure 7.13: Viewing PAEs Bound the Viewing Frustrum and Filter the Types of Entities Displayed
in Each Region

selected PAE to an appropriate level of detail. Computational resources can therefore be allocated

to the more critical (closer and more interesting) PAEs. A potential implementation might assign a

rendering priority to each organization and grid. Grids closer to the viewer receive a higher rendering

priority, as do organizations that are of greatest interest to the viewer. For each selected PAE, a

node prioritization function is applied to the rendering priorities for the associated organization and

grid. If the prioritization function value exceeds a threshold, then the PAE’s members are processed

recursively; otherwise, the PAE summary is rendered. Some hysteresis is desirable to ensure that

the positional fidelity employed for a particular entity does not change constantly and to ensure

smooth transitions between different graphical representations for the entity.2

Scene rendering using the PAE hierarchy potentially provides greater flexibility than existing

rendering algorithms. First, they extend the semantics of scene rendering to consider entity type as

well as entity location. Traditional graphics applications represent the virtual world hierarchically

using an octtree or other spatial data structure. The rendering routine then simply traverses the

hierarchy and renders each node. Newer toolkits, such as SGI’s IRIS Performer [75], only traverse

the hierarchy to a level-of-detail based on the entity’s distance from the viewer. However, existing

rendering techniques do not directly consider entity type information. PAEs, on the other hand,

allow early filtering of uninteresting entity types, and the node prioritization function uses both

the entity type and entity location information to determine the rendering detail. For example,

PAEs allow a renderer to prioritize the cars in a scene and only render caterpillars if sufficient

computational resources remain. Second, by providing a low-fidelity model for entity groups,

2How to smoothly transition between different graphical models is a standard problem in computer graphics [44, 95,
77, 30, 34] and is therefore beyond the scope of this thesis.

132 CHAPTER 7. ENTITY AGGREGATION

PAEs may be used within a cost–benefit scheme for rendering multi-resolution data in interactive

environments [30]. This algorithm selects entities that provide the lowest cost–benefit ratio, where

“cost” is defined by the rendering complexity and “benefit” is some heuristic measure of the value of

rendering to the user’s perception. Once an entity has been selected for rendering (regardless of the

chosen resolution), all other resolution models of the entity are removed from consideration. PAEs

can be introduced into this algorithm by simply associating a cost corresponding to the number

of polygons rendered in the group summary; the benefit measures the value of displaying those

entities, reduced by some measure of the diminished resolution. Third, PAE summaries allow

the generation of low-resolution graphical representations of entity groups. They contrast with

traditional approaches to automated generation of low-resolution models [31] which only provide

models on an entity-by-entity basis.

Despite these benefits, however, the effectiveness of using PAE summaries and the PAE hier-

archy for scene rendering depends on whether the rendering algorithm adversely affects the user’s

perception of the scene. The algorithm’s success depends on the ability to dynamically determine

and adjust the various organization and grid node rendering priorities, as well as on the selection of

an appropriate node prioritization function. These issues are all areas for future research.

7.4.2.3 Traversing the PAE Hierarchy Using Deep Iterators

Simulation operations, such as scene rendering, may need to traverse the cached PAE hierarchy

information to a depth that depends on computational load and entity type. To implement this

variable-depth traversal of the PAE hierarchy, the simulation implementor can use deep iterators

that are parameterized with the node detail criteria (in our case, the selected PAE, the rendering

priorities, and the node prioritization function). In response to anextItem() call, the deep iterator

returns the next PAE that should be rendered according to the prioritization criteria. Consequently,

the traversal depth is transparent to the drawing routine, which simply needs to render the PAEs

returned by the iterator.

Figure 7.14 compares the computational cost of deep iterators against a recursive function

traversing the PAE hierarchy. The measurements were taken on an RS/6000 model 370, rated at

70 integer SPEC marks, running AIX 3.2.5 and using the native C ++ compiler on full optimiza-

tion. Deep iterators introduce some overhead because they must explicitly store intermediate state

information during the traversal and cannot rely on the program stack for this task. By allocating

a state-history buffer whose length is doubled whenever the traversal depth requires more storage,

we reduced the deep iterator overhead to within 5%. Although this overhead is dwarfed by the

7.4. POTENTIAL INTEGRATION OF PAES WITH OTHER SIMULATION TASKS 133

� Optimized Deep Iterator

 Recursive Function

|
0

|
2

|
4

|
6

|
8

|0

|5000

|10000

|15000

|20000

 (a)

 Degree

 C
P

U
 T

im
e

(m
s)

� � �
�

�

�

�

�

� Optimized Deep Iterator

 Recursive Function

|
0

|
2

|
4

|
6

|
8

|0

|500

|1000

|1500

|2000

 (b)

 Height

 C
P

U
 T

im
e

(m
s)

� � �
�

�

�

�

Figure 7.14: Performance of Deep Iterator Versus Recursive Function Over (a) Fixed-height PAE
hierarchies (height 5) and (b) Fixed-degree PAE hierarchies (degree 2)

computational cycles for processing each node, we are confident that further tuning of the deep

iterator implementation can eliminate most of the remaining overhead.

7.4.3 Supporting Simulation Evolution: Treating All Entities As PAEs

We can generalize the definition of PAEs to include all simulation entities, so that remote hosts

process all entity updates as PAE summaries that differ only in their dead reckoning and rendering

algorithms. Under this generalized definition, each PAE is parameterized with a list of attributes to

dead reckon (the default being the summary position, radius, and distribution) and an appropriate

rendering routine (the default being the randomized aggregation renderer described in Section 7.4.1).

For regular entities, the associated dead reckoning attributes would include position, axis points,

and structural vertices, while the associated rendering routine would be the one typically used for

that entity.

For example, under this implementation, remote hosts treat an individual tank model as a low-

detail replacement for full models of the tank’s components, much like a PAE summary update

replaces detailed models of each of its members. The tank is therefore a PAE corresponding to

the organization “tank parts” and the grid region containing the tank. For example, a tank update

(containing position and orientation information) is effectively just summarizing information about

its wheels, turret, etc. Detailed models of the individual tank parts may not even be available

anywhere in the distributed simulation, but remote hosts need not be aware of this fact.

This ability to unify all simulation entities as PAEs is important for supporting the evolution of

distributed simulations. For example, after a simulation is deployed, the developer may choose to

introduce models for the tank’s components. We assume that the original tank continues to provide

summary information about its position and orientation. However, because the tank is treated as a

134 CHAPTER 7. ENTITY AGGREGATION

PAE, the new component models can simply be inserted as its descendants in the PAE hierarchy.

Each of these components, in turn, is also a PAe that can be expanded as the simulation becomes

more sophisticated. Remote hosts can continue to rely on the tank PAE summaries and do not need

to be aware of the new components. However, hosts that are capable of modeling the individual

components can easily access that data by continuing to traverse the PAE hierarchy to the new depth.

7.5 Conclusion

In this chapter, we have considered the remote modeling problem for groups of entities. Like

multiple-detail channels, which allow remote hosts to selectively change the model’s structural

and positional fidelity for a particular entity, aggregation allows remote hosts to selectively change

the positional fidelity for a group of entities. Projection Aggregation Entities permit reductions in

network and computational load in large distributed simulations. A host can dynamically locate

and subscribe to a PAE instead of receiving individual updates from each group member. The PAE

hierarchy extends the implementation by allowing hosts to fully customize the incoming data flows

based on the desired modeling fidelity and tolerable data latency.

We have described a variety of implementation optimizations to support the use of PAEs in

dynamic, large-scale simulation environments. We used Organization Aggregation Entities (OAEs)

to provide a distributed management and directory service for PAEs and used aggressive deferred

timeouts to limit the number of PAEs that must be created or destroyed. Our implementation of

PAEs, OAEs, and GAEs is contained in a 4000-line C ++ class library which has been deployed

within the PARADISE distributed simulation environment developed at Stanford University.

We have described several potential uses for PAEs to support various simulation operations.

Using PAE summary updates, remote hosts can selectively replace a set of entity models with a

PAE summary model that provides low-fidelity remote modeling for the group. By using PAEs

to filter entities based on both their type and their location, hosts can improve the speed and

effectiveness of collision detection and scene rendering, particularly when computational resources

are limited. Finally, by providing a single abstraction for all simulation entities, PAEs can explicitly

support the evolution of more detailed entity models within a deployed simulation. Ultimately, the

effectiveness of these techniques depends on whether the resulting scene is credible to users, and

therefore, evaluating these techniques is an area for future research.

Projection Aggregation Entities therefore can represent a foundation for remote modeling in

distributed simulations. At the lowest level, a PAE might represent a single entity which, in turn,

7.5. CONCLUSION 135

provides multiple-detail channels of its own. The PHBDR protocol ties everything together by

supporting remote modeling of vertices at all levels-of-detail.

Chapter 8

Conclusion

The advent of fast processors and high-capacity networks has made large-scale distributed simulation

applications feasible. However, most existing systems have been designed to operate in LAN

environments characterized by high bandwidth, low latency and jitter, and a small number of

participants running on homogenous hardware; this fact is demonstrated by the dominance of

broadcast-based protocols and frame-rate transmission to support information dissemination in

these applications. Traditionally, the migration to WAN networks—with the associated lower

bandwidth, higher latency and jitter, and larger numbers of participants—has been an afterthought.

The STOW program is a classic example of this migration, where ad hoc protocol optimizations are

introduced on top of a LAN-based protocol (DIS).

The research presented in this thesis has taken a completely different approach to distributed

simulation protocol design. We have attempted to design protocols and algorithms intended specif-

ically for applications running in large-scale WAN environments. Large-scale WAN simulations

represent a problem in their own right and are clearly more demanding than smaller LAN-based

applications. The large-scale simulation must carefully trade off the timeliness and detail of state

information at remote hosts against the network bandwidth, packet rate, and computational load

imposed on the network and hosts.

8.1 PHBDR: An Accurate, Efficient Remote Modeling Protocol

This thesis first defined the Position History-Based Dead Reckoning (PHBDR) protocol, which

is designed to provide accurate remote modeling of a vertex position. PHBDR employs several

techniques to achieves good positional fidelity in the remote model:

136

8.1. PHBDR: AN ACCURATE, EFFICIENT REMOTE MODELING PROTOCOL 137

� Using adaptive tracking and convergence to dynamically select an appropriate path approxi-

mation. This adaptive technique also permits the algorithm to rapidly react to sudden changes

of direction in the entity motion.

� Relying only on position information rather than higher derivatives (velocity and acceleration)

whose instantaneous values can be more volatile. Relying on position information permits the

PHBDR to better model the long-term behavior of the entity and make it relatively independent

of short-term oscillations. PHBDR effectively smoothes entity motion by applying a low-pass

filter over the position samples.

� Accounting for network latency and jitter by rolling back the dead reckoning model to the

update packet’s transmission time. The timestamp in the update packet ensures that all remote

hosts maintain the same tracking model despite variable network delays. The source host

can therefore maintain an accurate representation of how the entity is being modeled (but not

how it is being displayed) at remote hosts, and, using this information, it can transmit update

packets at appropriate intervals. Moreover, the use of timestamps makes PHBDR more robust

because the effects of failures (e.g. network congestion and host failure) are localized.

In demonstrating the positional fidelity of PHBDR, this thesis also represents the first attempt

that we know of to systematically analyze the behavior of protocols used in distributed simulation

applications. Previous analyses (such as those presented in [51, 101, 79]) have focused on a

particular type of entity, typically high-speed military aircraft, and therefore do not assess how well

a protocol performs when confronted with new types of entity behavior. Even more recent attempts

to test a broader variety of entity behaviors [50] have provided results with limited applicability.

In contrast to these previous approaches, we have employed a combination of mathematical

analysis, controlled simulation, and run-time experience to evaluate the PHBDR behavior. We

selected and evaluated a small number of representative entity behaviors based on how quickly and

smoothly their acceleration changes. We used experiments and analysis to validate the protocol’s

performance on the selected entity scenarios; because the behavior of any given entity demonstrates

characteristics from each of the analyzed behaviors, we can feel reasonably confident in the proto-

col’s overall success over a broader set of entities. Finally, actual deployment experience provided

validation of our analytical and scenario-based results and exposed additional issues to consider.

PHBDR also offers reduced computational complexity and lower bandwidth requirements when

compared with existing dead reckoning algorithms. These desirable characteristics result from the

following design techniques:

138 CHAPTER 8. CONCLUSION

� Transmitting only position information. Eliminating velocity and acceleration information

represents a significant reduction in the size of update packets. For instance, the PHBDR

protocol requires approximately 30% less bandwidth than existing DIS protocols.

� Relying on adaptive algorithms to shift computation away from “uninteresting” entity motion.

Processing an update packet for simple entity motion (such as linear motion or a sharp turn)

requires half the computation required for curved motion. Even in the worst case, the

computational requirements are only 80 addition and multiplication operations. Furthermore,

these operations are numerically stable.

� Maintenance of minimal state information per entity. A table maintains 27 state values per

entity (or as few as 21, at the expense of some additional computation) which are passed

to the PHBDR software module along with the incoming update packet. Consequently, the

overall memory requirements are kept small, and the core PHBDR implementation is kept

independent of the particular entity type.

Finally, the PHBDR protocol is general-purpose in that it makes minimal assumptions about

the vertex behavior (other than that its motion is continuous) or about the simulation environment

(other than the availability of synchronized clocks and a unidirectional datagram service). These

assumptions indeed have little consequence, because entity motion is almost certainly continuous,

fine-grain distributed clock synchronization is a well-understood problem with numerous deployed

solutions, and most available networks provide datagram services. Moreover, hosts are relatively

decoupled from the network behavior or the behavior of other hosts. These minimal assumptions

permit PHBDR to be used in a wide variety of situations and, more importantly, to form the basis

for constructing more complex protocols.

8.2 Effective Orientation, Structure, and Aggregation Modeling

Using the PHBDR protocol as a base, this thesis then presented a variety of other protocols: the

Axis Point protocol for modeling entity orientation, multiple-detail channels for modeling entity

structure, and Projection Aggregation Entities (PAEs) for modeling entity aggregations.

The Axis Point protocol is superior to both Euler angles and quaternions for modeling entity

orientation. It offers computational simplicity and numerical stability, continuous parameters as

the entity rotates, and easy translation to and from rotation matrices common in graphical systems.

8.2. EFFECTIVE ORIENTATION, STRUCTURE, AND AGGREGATION MODELING 139

Furthermore, axis point information is readily derived from Euler angles and quaternions, so the

technique integrates easily into existing systems that employ other representations.

Multiple-detail channels allow source hosts to simultaneously support a variety of remote models

for non-rigid entities. We have demonstrated experimentally in a case study that low-detail structural

models can generate packet rates that are two orders of magnitude lower than those produced by

high-detail structural models.

PAEs provide an effective way to group entities by simultaneouslyapplying multipleaggregation

criteria, particularly entity type and entity location. By supporting these multiple aggregation

criteria, PAEs allow hosts to select entity groups based on the criteria that are most important

locally, rather than based on some single criterion which might not offer the desired data reduction

characteristics. Moreover, our design and implementation demonstrates that the potentially large

number of PAEs can be effectively managed in a distributed environment. PAEs also potentially

integrate effectively with other simulation operations such as collision detection and scene rendering.

Finally, the PAE hierarchy potentially allows simulation developers to introduce more detail into

entity models without disturbing existing simulation code. To support the additional detail, hosts

simply need to know how to render the new entity components; the data management is otherwise

unchanged.

This set of techniques demonstrate our underlying design philosophy to support the decoupling

of simulation hosts by giving each host maximum autonomy. This autonomy allows each host to

select the set of incoming data streams that most effectively utilize limited local bandwidth and

computational resources to provide an accurate visualization for local users. As an example, for

uninteresting entity types or entities located far from the viewer, the host subscribes to PAEs that

require low bandwidth and minimal computation. For closer entities, the host uses more specific

PAEs and rigid-body entity channels which support better entity models. Finally, for entities that

are directly visible to the local viewer, the host subscribes to approximate-body and full-body

channels that require high bandwidth and considerable computation to provide maximum positional

and structural fidelity modeling. If the simulation does not provide this receiver-side flexibility, it

cannot be scalable; to support close-range viewers, source hosts must always provide the highest

resolution information, so if a host cannot selectively reduce the bandwidth/computation, it will

receive an overwhelming amount of data from all of the visible entities.

Together, therefore, these techniques enable the scalability of distributed simulation. The

adage “more [fine-grain data channels transmitted by the source] is less [data received by the

remote hosts]” should become the guiding design principle for large-scale distributed simulations.

140 CHAPTER 8. CONCLUSION

However, to provide this variety of information for all entities, source hosts must implement the

entire family of dead reckoning protocols described in this thesis. This potential complexity is

alleviated considerably by our recursive design of the underlying protocols.

8.3 The Value of Recursive Protocol Design

To meet the broad range of modeling requirements without introducing a large code complexity,

this thesis has adopted a recursive protocol design approach. The simple PHBDR protocol provides

a base from which other protocols are constructed. The Axis Point protocol, for instance, internally

employs two instances of PHBDR. Each of the multiple-detail channels relies on the PHBDR

protocol and the Axis Point protocol to model the motion of each entity vertex. If PAE summaries

are used to render entity groups, then the PHBDR protocol is used to model the PAE summary

position, bounding sphere radius, and entity distribution information.

The recursive protocol design eased the protocol analyses. Once a basic protocol has been

validated, we used those results as a foundation for validating the more complex protocols. For

example, having demonstrated the effectiveness of PHBDR on circular entity motion, we could

confidently construct the Axis Point protocol, because vertices on the axis vectors trace circular

paths along the unit sphere. Moreover, with the PHBDR and Axis Point protocols analyzed, their

use in multiple-model channels to represent several vertices at once is a natural extension requiring

minimal additional analysis.

The most obvious advantage of a recursive protocol design is in allowing code reuse at both

the source and remote hosts. For example, we implemented the PHBDR protocol as a C ++

class library that is simply linked into each of the more advanced protocols. A single class,

TrueObjectSingle (an implementation of the TrueObject interface), represents any source

vertex that is being dead reckoned, while DeadReckonObjectSingle (an implementation

of the DeadReckonObject interface) represents the remote model for that vertex. Advanced

protocols such as multiple-model channels simply reuse the PHBDR protocol by creating other

implementationsofTrueObject andDeadReckonObject that respectively compose instances

of TrueObjectSingle and DeadReckonObjectSingle. This code reuse also reduces the

complexity of testing the correctness of a protocol implementation. Given the correctness of the

PHBDR protocol library, testing efforts only need to be expended on the “glue” in the higher

protocol that links PHBDR instances together.

Recursive structuring also provides greater flexibility for supporting evolution of the simulation

8.4. FUTURE WORK 141

system. In particular, the structure provides a well-defined framework for adding new protocols into

the simulation or customizing existing protocols for particular entity types. New protocols are intro-

duced by simply adding more implementations of the TrueObject and DeadReckonObject

interfaces, while entity-specific customizations are performed by subclassing from the particular

protocol implementation being customized. The biggest remaining issue is how to determine the

appropriate protocol implementation to instantiate for a given entity. However, this determination is

easily facilitated by providing the needed information in an entity directory service, and if the remote

host does not have the necessary implementation available, it can substitute the corresponding im-

plementation superclass which provides a more generic dead reckoning service. The use of loadable

languages such as Java [89] for dynamically receiving dead reckoning protocol implementations

represents an exciting an area for future research.

8.4 Future Work

Within the simulation domain, the techniques described in this thesis can be improved in several

ways. First, additional work is needed to address the limitations to the PHBDR protocol, as

discussed in Section 4.4. In particular, variable timeouts, state-replace packets, and minimum latency

estimation appear to offer particularly effective protocol extensions. Second, more experience is

needed with multiple-detail channels over a broader variety of entity types to provide better guidance

on constructing approximate structural models. We envision a tool that can analyze an entity’s

geometric description and some specification of the entity’s behavior to automatically construct a

set of remote models for representing the entity’s dynamic structure at different levels of detail.

Third, PAEs currently rely on octtrees for classifying entity location, but octtrees are cumbersome

to manipulate because small changes in an entity’s position can cause rather significant changes to

the entire octtree structure. Ultimately, one would want to replace “grid-based aggregations” with a

hierarchy of bounding spheres, which are better suited for fast collision detection and computation;

circular regions have been demonstrated to be at least 5% more effective than rectilinear regions

in the two-dimensional case [73]. Finally, we have yet to understand how the ability to load

software modules at run-time—a capability provided by languages such as Java [89]—may impact

distributed simulations. At a minimum, such languages have the potential to permit hosts to support

a broader range of remote modeling algorithms by simply downloading dead reckoning, rendering,

and collision detection modules as needed.

However, distributed simulation is just one example of a broader class of applications that

142 CHAPTER 8. CONCLUSION

demand real-time state consistency across multiple hosts while minimizing bandwidth utilization

and computational load. As high-bandwidth networks and cheap, high-performance machines

become commonplace, more people will use applications involving real-time monitoring and control

of remote devices, collaborative document editing, and distributed development and testing of

engineering prototypes.

Although the challenges faced by these applications resemble those faced by distributed simu-

lation, developers currently construct application-specific solutions. To a large extent, this thesis is

guilty of the same error: it has concentrated on protocols to support the remote modeling of physical

entities within a distributed simulation application. For example, the PHBDR protocol assumes that

the values being modeled are continuous; moreover, it is particularly optimized to handle particular

types of entity behavior, such as smooth motion and collisions. Although PHBDR does relax most

of the assumptions made by previous dead reckoning protocols, clearly, one could go further in

that direction. Similarly, the multiple-detail channel design assumes that the modeled entities have

a physical structure, and PAEs assume that level-of-detail selection at hosts is based primarily on

entity type and location.

In the long term, we envision a suite of basic protocols and techniques that can support a

broader variety of dissemination-oriented applications. Besides supporting entity and other remote

modeling, such a library would probably allow applications to query for available bandwidth and

computational resources, select and manage data channel subscriptions based on these resource

constraints, and perform information discovery. Effective subscription-based allocation and sharing

of limited bandwidth resources is an area of active research [55, 32]. A key challenge in deploy-

ing a dissemination support library is determining to what extent it can provide general-purpose

functionality without sacrificing the performance offered by application-specific code.

The decoupling techniques developed by this thesis also should be generally useful in large

distributed applications, such as multimedia dissemination systems, information retrieval systems,

or even the World-Wide Web [6]. In each of these applications, sources might be engineered

to provide information at multiple levels of detail, and clients could be configured to select the

appropriate detail based on user needs and resource availability. We expect that this approach might

be particularly useful in addressing the variable bandwidth connectivity (ranging from kilobit-per-

second mobile links to gigabit-per-second LANs) that data sources must contend with in today’s

network environment. Research remains to understand the appropriate levels of detail that sources

would provide for these applications and to evaluate the effectiveness of the multiple channel

approach when it is used in domains outside simulation. Initial work in this direction has begun in

8.5. PERSPECTIVE 143

support of video dissemination over heterogeneous networks [10, 15].

Finally, prior work has well established the effectiveness of recursive protocol design for

transport-layer protocols. As far as we know, the protocol family presented in this thesis represents

the first example of this design technique for application-level protocols. Based on our positive ex-

periences with its use for addressing the remote modeling problems, we are confident that recursive

structuring will be useful not only in other areas of distributed simulation such as collision detec-

tion but also in other high-performance distributed applications. After the software development

community gains additional experience with the technique, we envision the emergence of libraries

and frameworks specifically aimed at supporting the development of recursive protocols.

8.5 Perspective

With increasing video resolution, network bandwidth, and processor speed, distributed simulation

and visualization systems are becoming increasingly common in the scientific, industrial, and en-

tertainment industries. At the same time, people’s expectations of distributed interactive simulation

have also increased considerably. These expectations—whether they be of entity counts, distance

between participants, detail of entity models, or interaction level between entities—have always

stayed a few years ahead of the available hardware, software, and network technology.

As an example of the expectations growth, the SIMNET system in 1989 supported up to 200

entities. The initial goal for the 1994 STOW system was 10,000 entities, and the initial goal for the

1997 STOW system was 100,000 entities. Moreover, though desired entity counts may not continue

to grow at this pace, the complexity of those entity models is surely going to increase at a similar

rate over the next few years. We therefore estimate that the complexity expectations for distributed

simulations are increasing by a factor of ten every three years, as shown in Figure 8.1.

Until recently, meeting these expectations meant simply waiting for one or two years until the

technology curve advanced. However, this “wait until we can do it” approach is no longer viable

because the growth rate of expectations and the increasing widespread uses of distributed simulations

are outpacing the technology growth rate. For example, processor performance only doubles every

two-to-three years. Moreover, though a system might be developed to support current simulation

demands, it is unlikely to immediately scale and be deployable in a wide-area environment where

it is being used simultaneously by multiple independent user groups. To illustrate these limitations,

the deployed 1994 STOW system supported only 1,500 entities, and the 1997 STOW system is

expected to service 5,000 entities. As revealed by Figure 8.1, we estimate that the complexity of

144 CHAPTER 8. CONCLUSION

� Expected
� Deployed

|
1988

|
1990

|
1992

|
1994

|
1996

|
1998

|
|

||
||

||
|1000

|
|

||
||

||
|10000

|
|

||
||

||
|100000

 Year

 N
um

be
r

of
 E

nt
iti

es

�

�

�

�

�

�

Figure 8.1: Divergence of Expected and Deployed Simulation Complexity in the STOW Program

deployed systems is only increasing by a factor of three every three years.

We conclude therefore that distributed simulation and visualization systems must now be re-

designed to meet future demands; we can no longer afford to simply carry existing systems forward

onto new hardware technology. Moreover, we expect this need for re-design to persist for several

years.

With this perspective in mind, this thesis has attempted to take a fresh look at distributed simula-

tion with the overriding goal of scalability. We believe that this approach is indicative of how future

research into distributed simulations—and into large-scale and real-time distributed applications

generally—will proceed. Considerable work remains to be done in this rapidly emerging area, for

these applications still face numerous fundamental challenges. However, our new techniques do

offer a promising basis for developing more advanced systems.

Bibliography

[1] Advanced Research Projects Agency (ARPA). “STOW 97 Program Plan.” May 1994.

[2] Anupam, Vinod and Chandrajit L. Bajaj. “Distributed and Collaborative Visualization.” IEEE

Multimedia, 1(2):39–49, Summer 1994.

[3] Arai, Fumihito, et al. “Distributed Virtual Environment for Intravascular Tele-Surgery Using

Multimedia Telecommunication.” In Proceedings of the 1996 Virtual Reality Annual Interna-

tional Symposium (VRAIS), Pages 79–85, Santa Clara, California, March 1996. IEEE Neural

Networks Council.

[4] Arthur, Kevin W., Kellogg S. Booth, and Colin Ware. “Evaluating 3D Task Performance for

Fish Tank Virtual Worlds.” ACM Transactions on Information Systems, 11(3):239–265, July

1993.

[5] Berglund, Eric J. and David R. Cheriton. “Amaze: A Multiplayer Computer Game.” IEEE

Software, 2(1):30–39, May 1985.

[6] Berners-Lee, Tim, et al. “World-Wide Web: The Information Universe.” Electronic Network-

ing: Research, Applications, and Policy, 1(2):52–58, Spring 1992.

[7] Birman, Kenneth P. and Keith Marzullo. “The ISIS Distributed Programming Toolkit and the

META Distributed Operating System: A Brief Overview.” In Agrawala, Ashok K., Karen D.

Gordon, and Phillip Hwang, editors, Mission Critical Operating Systems, Pages 32–35. IOS

Press, Amsterdam, 1992.

[8] Blau, Brian, et al. “Networked Virtual Environments.” In Proceedings of the 1992 Symposium

on Interactive 3D Graphics, Pages 157–160, Cambridge, Massachusetts, March 1992. ACM

SIGGRAPH. Published as Computer Graphics 26 Special Issue.

145

146 BIBLIOGRAPHY

[9] Bricken, William and Geoffrey Coco. “The VEOS Project.” Presence: Teleoperators and

Virtual Environments, 3(2):111–129, Spring 1994.

[10] Brown, Tom, et al. “Packet Video for Heterogeneous Networks Using CU-SeeMe.” In Pro-

ceedings of the IEEE International Conference on Image Processing, Lausanne, Switzerland,

September 1996. IEEE Signal Processing Society.

[11] Burchfiel, Jerry. “The Advantages of Using Quarternions Instead of Euler Angles for Repre-

senting Orientation.” In Proceedings of the Third Workshop on Standards for the Interoper-

ability of Defense Simulations, Pages I:66–82, Orlando, Florida, August 1990. Published as

Technical Report IST–CR–90–13, Institute for Simulation and Training, University of Cen-

tral Florida, Orlando, Florida. Paper also published as White Paper ASD 91–001, Advanced

Simulation Group, BBN Systems and Technologies, Cambridge, Massachusetts, July 1990.

[12] Butzer, P. L. and R. L. Stens. “Linear Prediction by Samples From the Past.” In Marks II,

Robert J., editor, Advanced Topics in Shannon Sampling and Interpolation Theory, Pages

157–184. Springer-Verlag, New York, 1993.

[13] Calvin, James O., et al. “Application Control Techniques System Architecture.” Technical

Report RITN–1001–00, MIT Lincoln Laboratories, Lexington, Massachusetts, February

1995.

[14] Carlsson, Christer and Olof Hagsand. “DIVE—A Platform for Multi-User Virtual Environ-

ments.” Computers & Graphics, 17(6):663–669, November–December 1993.

[15] Chaddha, Navin and Anoop Gupta. “A Frame-Work for Live Multicast of Video Streams Over

the Internet.” In Proceedings of the IEEE International Conference on Image Processing,

Lausanne, Switzerland, September 1996. IEEE Signal Processing Society.

[16] Cheriton, David R. “Exploiting Recursion to Simplify RPC Communication Architectures.”

In Proceedings of SIGCOMM 1988, Pages 76–87, Stanford, California, August 1988. ACM

SIGCOMM. Published as Computer Communications Review 18(4), August 1988.

[17] Colladine, C. R. “Gaussian Curvature and Shell Structures.” In Gregory, J. A., editor, The

Mathematics of Surfaces: The Proceedings of a Conference Organized by the Institute of

Mathematics and Its Applications and Held at the University of Manchester, 17–19 September

1984, Pages 179–196. Clarendon Press, Oxford, 1986.

BIBLIOGRAPHY 147

[18] Cooke, Joseph M., et al. “NPSNET: Flight Simulation Dynamic Modeling Using Quater-

nions.” Presence: Teleoperators and Virtual Environments, 1(4):404–420, Fall 1992.

[19] Digital Equipment Corporation. “Newest Alpha Microprocessor Hits 500MHz, Alpha Tops

for Windows NT Visual Computing.” Press Release. July 1996.

[20] Eckerson, Wayne. “Approaches to OLAP: Making Sense of the Religious Wars Surrounding

OLAP Implementations.” Open Information Systems, 11(2):3–36, February 1996. Published

by Patricia Seybold Group.

[21] Escobar, Julio, Craig Partridge, and Debra Deutsch. “Flow Synchronization Protocol.”

ACM/IEEE Transactions on Networking, 2(2):111–121, April 1994.

[22] Farin, Gerald. Curves and Surfaces for Computer Aided Geometric Design: A Practical

Guide, Pages 29–36, 83–86, 121–129. Academic Press, Boston, 1993.

[23] Feineman, Laura, et al. “Aggregate Level Simulation Protocol (ALSP) Project 1994 Annual

Report.” Technical Report MTR 95W0000017, The MITRE Corporation, McLean, Virginia,

March 1995.

[24] Floyd, Sally, et al. “A Reliable Multicast Framework for Light-Weight Sessions and

Application-Level Framing.” In Proceedings of SIGCOMM 1995, Pages 342–356, Cam-

bridge, Massachusetts, August 1995. ACM SIGCOMM. Published as Computer Communi-

cations Review 25(4), October 1995.

[25] Foster, Lester, Paul Maassel, and Dennis McBride. “The Characterization of Entity State Error

and Update Rate for Distributed Interactive Simulation.” In Proceedings of the Eleventh

Workshop on Standards for the Interoperability of Defense Simulations, Pages I:61–73,

Orlando, Florida, September 1994. Published as Technical Report IST–CF–94–02, Institute

for Simulation and Training, University of Central Florida, Orlando, Florida.

[26] Foxlin, Eric. “Inertial Head-Tracker Sensor Fusion by a Complementary Separate-Bias

Kalman Filter.” In Proceedings of the 1996 Virtual Reality Annual International Sympo-

sium (VRAIS), Pages 185–194, Santa Clara, California, March 1996. IEEE Neural Networks

Council.

[27] Friedman, Martin, Thad Starner, and Alex Pentland. “Device Synchronization Using an

Optimal Linear Filter.” In Proceedings of the 1992 Symposium on Interactive 3D Graphics,

148 BIBLIOGRAPHY

Pages 57–62, Cambridge, Massachusetts, March 1992. ACM SIGGRAPH. Published as

Computer Graphics 26 Special Issue.

[28] Funda, Janez, Russell H. Taylor, and Richard P. Paul. “On Homogenous Transforms, Quater-

nions, and Computational Efficiency.” IEEE Transactions on Robotics and Automation,

6(3):382–388, June 1990.

[29] Funkhouser, Thomas A. “RING: A Client-Server System for Multi-User Virtual Environ-

ments.” In Proceedings of the 1995 Symposium on Interactive 3D Graphics, Pages 85–92,

Monterey, California, April 1995. ACM SIGGRAPH.

[30] Funkhouser, Thomas A. and Carlo H. Séquin. “Adaptive Display Algorithm for Interac-

tive Frame Rates During Visualization of Complex Virtual Environments.” In SIGGRAPH

1993 Conference Proceedings, Pages 247–254, Anaheim, California, August 1993. ACM

SIGGRAPH. Published as Computer Graphics 27 Annual Conference Series Special Issue.

[31] Heckbert, Paul S. and Michael Garland. “Multiresolution Modeling for Fast Rendering.” In

Proceedings of Graphics Interface 1994, Pages 43–50, Banff, Alberta, May 1994. Canadian

Information Processing Society.

[32] Hoffman, Don and Michael Speer. “Hierarchical Video Distribution Over Internet-Style

Networks.” In Proceedings of the IEEE International Conference on Image Processing,

Lausanne, Switzerland, September 1996. IEEE Signal Processing Society.

[33] Holbrook, Hugh W., Sandeep K. Singhal, and David R. Cheriton. “Log-Based Receiver-

Reliable Multicast for Distributed Interactive Simulation.” In Proceedings of SIGCOMM

1995, Pages 328–341, Cambridge, Massachusetts, August 1995. ACM SIGCOMM. Pub-

lished as Computer Communications Review 25(4), October 1995.

[34] Hoppe, Hughes. “Progressive Meshes.” In SIGGRAPH 1996 Conference Proceedings, Pages

99–108, New Orleans, Louisiana, August 1996. ACM SIGGRAPH. Published as Computer

Graphics 30 Annual Conference Series Special Issue.

[35] Hubbard, Philip M. “Real-Time Collision Detection and Time-Critical Computing.” In Pro-

ceedings of the First Workshop on Simulation and Interaction in Virtual Environments (SIVE),

Pages 92–96, Iowa City, Iowa, July 1995. ACM SIGGRAPH.

BIBLIOGRAPHY 149

[36] Institute for Electrical and Electronics Engineers. Dead Reckoning Definitions and Algo-

rithms, Annex B. In IEEE Std 1278.1–1995 [37], September 1995.

[37] Institute for Electrical and Electronics Engineers. IEEE Standard for Distributed Interactive

Simulation—Application Protocols. IEEE Std 1278.1–1995. IEEE Standards Press, Piscat-

away, New Jersey, September 1995.

[38] Institute for Electrical and Electronics Engineers. IEEE Standard for Distributed Interactive

Simulation—Communication Services and Profiles. IEEE Std 1278.2–1995. IEEE Standards

Press, Piscataway, New Jersey, September 1995.

[39] Johnson, Marty P. “STOW 97 Bandwidth Estimate (Revision 6).” July 1996. Mr. Johnson is

an enginner with the Simulation Technology Division, Systems Applications International

Corporation (SAIC), Arlington, Virginia.

[40] Kahaner, David, Cleve Moler, and Stephen Nash. Numerical Methods and Software, Pages

87–95. Prentice Hall, Englewood Cliffs, New Jersey, 1989.

[41] Kailath, Thomas. Lectures on Wiener and Kalman Filtering. Springer-Verlag, New York,

1981.

[42] Kalman, Rudolph E. “A New Approach in Linear Filtering and Prediction Problems.” Trans-

actions of the American Society of Mechanical Engineers [ASME], Journal of Basic Engi-

neering, 82D:35–45, March 1960.

[43] Katz, Amnon and Kenneth Graham. “Dead Reckoning for Airplanes in Coordinated Flight.”

In Proceedings of the Tenth Workshop on Standards for the Interoperability of Defense

Simulations, Pages II:5–13, Orlando, Florida, March 1994. Published as Technical Report

IST–CR–94–01, Institute for Simulation and Training,University of Central Florida, Orlando,

Florida.

[44] Kaul, Anil and Jarek Rossignac. “Solid-Interpolating Deformations: Construction and Ani-

mations of PIPs.” In EUROGRAPHICS’91: Proceedings of the European Computer Graphics

Conference and Exhibition, Pages 493–505, Vienna, Austria, September 1991. Eurographics

Association, North-Holland.

[45] Kay, Jonathan and Joseph Pasquale. “The Importnace of Non-Data Touching Processing

Overheads in TCP/IP.” In Proceedings of SIGCOMM 1993, Pages 259–268, San Francisco,

150 BIBLIOGRAPHY

California, September 1993. ACM SIGCOMM. Published as Computer Communications

Review 23(4), October 1993.

[46] Kenan Systems Corporation. “An Introduction to Multidimensional Database Technology.”

White Paper. 1995.

[47] Kitamura, Yoshifumi. Personal communication. July 1994. Dr. Kitamura is a developer

of the Virtual Space Teleconferencing system at ATR Communication Systems Research

Laboratories in Kyoto, Japan.

[48] Levoy, Marc. Personal communication. February 1994. Dr. Levoy is Assistant Professor of

Computer Science at Stanford University.

[49] Liang, Jiandong, Chris Shaw, and Mark Green. “On Temporal-Spatial Realism in the Virtual

Reality Environment.” In Proceedings of the Fourth Annual Symposium on User Interface

Software and Technology (UIST), Pages 19–25, Hilton Head, South Carolina, November

1991. ACM SIGGRAPH and ACM SIGCHI.

[50] Lin, Kuo-Chi and Daniel E. Schab. “The Performance Assessment of the Dead Reckoning

Algorithms in DIS.” Simulation, 63(5):318–325, November 1994.

[51] Lin, Kuo-Chi and Daniel E. Schab. “Study on the Network Load in Distributed Interactive

Simulation.” In Flight Simulation Technologies Conference, Scottsdale, Arizona, August

1994. American Institute of Aeronautics and Astronautics (AIAA).

[52] Macedonia, Michael R. A Network Software Architecture for Large-Scale Virtual Environ-

ments. Ph.D Dissertation, Naval Postgraduate

School, Department of Computer Science, Monterey, California, June 1995. Available as

http://www-npsnet.cs.nps.navy.mil/npsnet/publications/Michael.Macedonia.thesis.ps.Z.

[53] Macedonia, Michael R., et al. “NPSNET: A Network Software Architecture for Large-Scale

Virtual Environments.” Presence: Teleoperators and Virtual Environments, 3(4), Fall 1994.

[54] Macedonia, Michael R., David R. Pratt, and Michael J. Zyda. “Exploiting Reality with Multi-

cast Groups: A Network Architecture for Large Scale Virtual Environments.” In Proceedings

of the 1995 Virtual Reality Annual International Symposium (VRAIS), Pages 2–10, Research

Triangle Park, North Carolina, March 1995. IEEE Neural Networks Council.

BIBLIOGRAPHY 151

[55] McCanne, Steven, Van Jacobson, and Martin Vetterli. “Receiver-driven Layered Multicast.”

In Proceedings of SIGCOMM 1996, Pages 117–130, Stanford, California, August 1996.

ACM SIGCOMM. Published as Computer Communications Review 26(4), August 1996.

[56] Mendel, Jerry M. Discrete Techniques of Parameter Estimation: The Equation Error Formu-

lation, Chapter 4–6. Marcel Dekker, Inc., New York, 1973.

[57] Meyer, Kenneth, Hugh L. Applewhite, and Frank A. Biocca. “A Survey of Position Trackers.”

Presence: Teleoperators and Virtual Environments, 1(2):173–199, Spring 1992.

[58] Mills, David L. “Internet Time Synchronization: The Network Time Protocol.” IEEE Trans-

actions on Communications, 39(10):1482–1493, October 1991.

[59] Mills, David L. “Improved Algorithms for Synchronizing Computer Network Clocks.”

IEEE/ACM Transactions on Networking, 3(3):245–254, June 1995.

[60] Milner, Stuart. “STOW Real-Time Communications Architecture: Requirements, Approach,

and Rationale.” May 1995. Presentation. Dr. Milner is a Program Manager at ARPA.

[61] Mogul, Jeffrey C. and Anita Borg. “The Effect of Context Switches on Cache Performance.”

In Proceedings of the Fourth International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS-IV), Pages 75–84, Santa Clara, California,

April 1991. ACM SIGARCH, SIGOPS, and SIGPLAN. Published as Operating Systems Re-

view 25 Special Issue, April 1991.

[62] Mogul, Jeffrey C. and K. K. Ramakrishnan. “Eliminating Receive Livelock in an Interrupt-

Driven Kernel.” Research Report 95/8, Western Research Laboratory, Digital Equipment

Corporation, Palo Alto, California, December 1995.

[63] Mosberger, David, et al. “Analysis of Techniques to Improve Protocol Processing Latency.”

In Proceedings of SIGCOMM 1996, Pages 73–84, Stanford, California, August 1996. ACM

SIGCOMM. Published as Computer Communications Review 26(4), October 1996.

[64] Nagashima, Yoshio, Hiroshi Agawa, and Fumio Kishino. “3D Face Model Reproduction

Method Using Multi View Images.” In Visual Communications and Image Processing ’91:

Image Processing, Pages I:566–573, Boston, Massachusetts, November 1991. SPIE (Inter-

national Society for Optical Engineering). Published as Proceedings of the SPIE 1606, Part

1.

152 BIBLIOGRAPHY

[65] Nakamura, Nobutatsu. Personal communication. August 1994. Mr. Nakamura heads the

“Networked VR” project at the Applied Information Technology Research Laboratory of

NEC Corporation in Kawasaki, Japan.

[66] Nakamura, Nobutatsu, Keiji Nemoto, and Katsuya Shinohara. “Distributed Virtual Reality

System for Cooperative Work.” NEC Research and Development, 35(4):403–409, October

1994.

[67] Ohya, Jun, et al. “Real-Time Reproduction of 3D Human Images in Virtual Space Tele-

conferencing.” In Proceedings of the 1993 Virtual Reality Annual International Symposium

(VRAIS), Pages 408–414, Seattle, Washington, September 1993. IEEE Neural Networks

Council.

[68] Oppenheimer, Alan V. and Ronald W. Schafer. Discrete-Time Signal Processing, Chapter

2–3, Pages 39–91. Prentice Hall, Englewood Cliffs, New Jersey, 1989.

[69] Pope, Arthur. “The SIMNET Network and Protocols.” Technical Report 7102, BBN Systems

and Technologies, Cambridge, Massachusetts, July 1989.

[70] Pratt, David R. A Software Architecture for the Construction and Management

of Real-Time Virtual Worlds. Ph.D Dissertation, Naval Postgraduate School, De-

partment of Computer Science, Monterey, California, June 1993. Available as

http://www-npsnet.cs.nps.navy.mil/npsnet/publications/David.Pratt.thesis.ps.Z.

[71] Pratt, David R., et al. “Insertion of an Articulated Human Into a Networked Virtual Environ-

ment.” In Proceedings of the Fifth Annual Conference on AI, Simulation, and Planning in

High Autonomy Systems, Pages 84–90, Gainesville, Florida, December 1994. IEEE Computer

Society Press.

[72] Quéau, Philippe. “Televirtuality: The Merging of Telecommunications and Virtual Reality.”

Computers & Graphics, 17(6):691–693, November–December 1993.

[73] Rak, Steven J. and Daniel J. Van Hook. “Evaluation of Grid-Based Relevance Filtering for

Multicast Group Assignment.” In Proceedings of the Fourteenth Workshop on Standards

for the Interoperability of Defense Simulations, Pages II:739–747, Orlando, Florida, March

1996. Published as Technical Report IST–CF–96–03, Institute for Simulation and Training,

University of Central Florida, Orlando, Florida.

BIBLIOGRAPHY 153

[74] Rebo, Robert K. and Phil Amburn. “A Helmet-Mounted Virtual Environment Display Sys-

tem.” In Helmet-Mounted Displays, Pages 80–84, Orlando, Florida, March 1989. SPIE

(International Society for Optical Engineering). Published as Proceedings of the SPIE 1116.

[75] Rohlf, John and James Helman. “IRIS Performer: A High Performance Multiprocessing

Toolkit for Real-Time 3D Graphics.” In SIGGRAPH 1994 Conference Proceedings, Pages

381–394, Orlando, Florida, July 1994. ACM SIGGRAPH. Published as Computer Graphics

28 Annual Conference Series Special Issue.

[76] Rolfe, J. M. and K. J. Staples, editors. Flight Simulation, Pages 45–47. Cambridge University

Press, Cambridge, 1986.

[77] Rossignac, Jarek and Paul Borrel. “Multi-Resolution 3D Approximations for Rendering

Complex Scenes.” In Falcidieno, Bianca and Toshiyasu L. Kunii, editors, Modeling in Com-

puter Graphics: Methods and Applications, Pages 455–465. Springer-Verlag, New York,

1993. Also available as Research Report RC 17697 (77951), IBM, Yorktown Heights, New

York, February 1992.

[78] Sanghi, Dheeraj, et al. “Experimental Assessment of End-to-End Behavior on Internet.”

Technical Report UMCP–CSD:CS–TR–2909, Department of Computer Science, University

of Maryland, College Park, Maryland, June 1992.

[79] Schaffer, Robert. “The Applicability of Distributed Simulation Techniques to High Perfor-

mance Aircraft.” In Flight Simulation Technologies Conference, Hilton Head Island, South

Carolina, August 1992. American Institute of Aeronautics and Astronautics (AIAA).

[80] Schilit, Bill N. and Marvin M. Theimer. “Disseminating Active Map Information to Mobile

Hosts.” IEEE Network, 8(5):22–32, September–October 1994.

[81] Shoemake, Ken. “Animating Rotation with Quaternion Curves.” In SIGGRAPH 1985 Confer-

ence Proceedings, Pages 245–254, San Francisco, California, July 1985. ACM SIGGRAPH.

Published as Computer Graphics 19(3).

[82] Singh, Gurminder, et al. “BrickNet: A Software Toolkit for Network-Based Virtual Worlds.”

Presence: Teleoperators and Virtual Environments, 3(1):19–34, Winter 1994.

154 BIBLIOGRAPHY

[83] Singhal, Sandeep K. and David R. Cheriton. “Using a Position History-Based Protocol

for Distributed Object Visualization.” In Designing Real-Time Graphics for Entertain-

ment, volume 14 of SIGGRAPH 1994 Lecture Notes, Chapter 10. July 1994. Also pub-

lished as Technical Report STAN–CS–TR–94–1505, Computer Science Department, Stan-

ford University, Stanford, California, February 1994. Available by anonymous FTP from

elib.Stanford.EDU in /pub/reports/cs/tr/94/1505/CS-TR-94-1505.ps.

[84] Singhal, Sandeep K. and David R. Cheriton. “Exploiting Position History for Efficient Remote

Rendering in Networked Virtual Reality.” Presence: Teleoperators and Virtual Environments,

4(2):169–193, Spring 1995.

[85] Singhal, Sandeep K. and David R. Cheriton. “Using Projection Aggregations to Support

Scalability in Distributed Simulation.” In Proceedings of the 1996 International Conference

on Distributed Computing Systems (ICDCS), Pages 196–206, Hong Kong, Hong Kong, May

1996. IEEE Computer Society.

[86] Smith, Joshua E., Kevin L. Russo, and Lawrence C. Schuette. “Prototype Multicast IP

Implementation in ModSAF.” In Proceedings of the Twelfth Workshop on Standards for the

Interoperability of Defense Simulations, Pages 175–178, Orlando, Florida, March 1995. Pub-

lished as Technical Report IST–CF–95–01, Institute for Simulation and Training, University

of Central Florida, Orlando, Florida.

[87] Sorenson, Harold W. “Least-Squares Estimation: From Gauss to Kalman.” IEEE Spectrum,

7(7):63–68, July 1970.

[88] Stamen, Jeffrey P. “Structuring Databases for Analysis.” IEEE Spectrum, 30(10):55–58,

October 1993.

[89] Sun Microsystems. The Java Programming Language. Addison-Wesley, Reading, Mas-

sachussets, 1996.

[90] Talluri, Raj and J. K. Aggarwal. “Positional Estimation for an Autonomous Mobile Robot in

an Outdoor Environment.” IEEE Transactions on Robotics and Automation, 8(5):573–584,

October 1992.

[91] Towers, John and Jack Hines. “Highly Dynamic Vehicles in a Real/Simulated Virtual En-

vironment (HyDy) Equations of Motion of the DIS 2.0.3 Dead Reckoning Algorithms.” In

BIBLIOGRAPHY 155

Proceedings of the Tenth Workshop on Standards for the Interoperability of Defense Sim-

ulations, Pages II:431–462, Orlando, Florida, March 1994. Published as Technical Report

IST–CF–94–01, Institute for Simulation and Training, University of Central Florida, Orlando,

Florida.

[92] Troxel, Gregory. “Traffic Model for STOW 97.” December 1994. Distributed by BBN Systems

and Technologies.

[93] Trunk, Gerard V. and J. Donald Wilson. “Tracking Filters for Multiple-Platform Radar In-

tegration.” Technical Report 8087, Naval Research Laboratory, Washington, DC, December

1976. National Technical Information Service Document AD-A 034608; Government Doc-

ument D 210.8:8087.

[94] Tsutsui, Kyoya. “Method of Car Navigation.” Patent (Japan) 250816. 1989. Translated from

original.

[95] Turk, Greg. “Re-Tiling Polygonal Surfaces.” In SIGGRAPH 1992 Conference Proceedings,

Pages 55–64, Chicago, Illinois, July 1992. ACM SIGGRAPH. Published as Computer Graph-

ics 26(2), July 1992.

[96] United States Army, U.S. Atlantic Command (USACOM). “STOW 97 ACTD Playbook.”

May 1996. Version 1.0.

[97] Vagany, J., M. J. Aldon, and A. Fournier. “Mobile Robot Attitude Estimation by Fusion

of Intertial Data.” In Proceedings of the IEEE International Conference on Robotics and

Automation, Pages 277–282, Atlanta, Georgia, May 1993. IEEE Robotics and Automation

Society.

[98] Van Hook, Daniel J. “Simulation Tools for Developing and Evaluating Networks and Algo-

rithms in Support of STOW 94.” Presented at Scaleability Peer Review, San Diego, California,

19–20 August 1993. Dr. Van Hook is a member of the research staff at MIT Lincoln Labora-

tories, Lexington, Massachussets.

[99] Van Hook, Daniel J. Personal communication. September 1994. Dr. Van Hook is a member

of the research staff at MIT Lincoln Laboratories, Lexington, Massachussets.

156 BIBLIOGRAPHY

[100] Van Hook, Daniel J., James O. Calvin, and Duncan C. Miller. “A Protocol Independent

Compression Algorithm (PICA).” Advanced Distributed Simulation Project Memorandum

20PM–ADS–005, MIT Lincoln Laboratories, Lexington, Massachusetts, April 1994.

[101] Van Wechel, R. “Analysis of Dead Reckoning Update Time.” In Proceedings of the Eighth

Workshop on Standards for the Interoperability of Defense Simulations, Pages III:245–255,

Orlando, Florida, March 1993. Published as Technical Report IST–CR–93–10, Institute for

Simulation and Training, University of Central Florida, Orlando, Florida.

[102] Wang, Chu P., Lawrence Koved, and Semyon Dukach. “Design for Interactive Performance

in a Virtual Laboratory.” In Proceedings of the 1990 Symposium on Interactive 3D Graphics,

Pages 39–40, Snowbird, Utah, March 1990. ACM SIGGRAPH. Published as Computer

Graphics 24(2), March 1990.

[103] Whitlock, Adam H. “Draft Estimate of Bandwidth Demand for STOW 97.” May 1995.

Distributed by the Naval Research and Development Center (NRaD), San Diego, California.

[104] Willman, Warren W. “Recursive Filtering Algorithms for Ship Tracking.” Technical Re-

port 7969, Naval Research Laboratory, Washington, DC, April 1976. National Technical

Information Service Document AD-A 024329; Government Document D 210.8:7969.

[105] Xu, Gang, et al. “Three-Dimensional Face Modeling for Virtual Space Teleconferencing

Systems.” Transactions of the Institute of Electronics, Information and Communication En-

gineers (IEICE), E73(10):1753–1761, October 1990.

[106] Zelesko, Matthew J. and David R. Cheriton. “Specializing Object-Oriented RPC for Perfor-

mance and Functionality.” In Proceedings of the 16th International Conference on Distributed

Computing Systems (ICDCS), Pages 175–187, Hong Kong, Hong Kong, May 1996. IEEE

Computer Society.

