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Abstract

Caching in an inference procedure holds the promise of replacing exponential search with constant-

time lookup, at a cost of slightly-increased overhead for each node expansion. Caching will be useful

if subgoals are repeated often enough during proofs.

In experiments on solving queries using a backward chainer on Horn theories, caching appears

to be very helpful on average. When trying to extend this success to �rst-order theories, however,

intuition suggests that subgoal caches are no longer useful. The cause is that complete �rst-order

backward chaining requires goal-goal resolutions in addition to resolutions with the database, and

this introduces a context-sensitivity into the proofs for a subgoal. A cache is only feasible if the

solutions are independent of context, so that they may be copied from one part of the space to

another.

It is shown here that a full exploration of a subgoal in one context actually provides complete

information about the solutions to the same subgoal in all other contexts of the proof. In a straight-

forward way, individual solutions from one context may be copied over directly. More importantly,

non-Horn failure caching is also feasible, so no additional solutions in the new context (that might

a�ect the query) are possible and therefore there is no need to re-explore the space in the new

context. Thus most Horn clause caching schemes may be used with minimal changes in a non-Horn

setting.

In addition, a new Horn clause caching scheme is proposed: postponement caching. This new

scheme involves exploring the inference space as a graph instead of as a tree, so that a given literal

will only occur once in the proof space. Despite the previous extension of failure caching to non-

Horn theories, postponement caching is incomplete in the non-Horn case. A counterexample is

presented, and possible enhancements to reclaim completeness are investigated.
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Chapter 1

Introduction

A cache is a device for re-using previous work. In the course of solving some problem, subproblems

are solved and the solutions stored in the cache. If those subproblems later recur, the solution can

be retrieved from the cache rather than solved again.

Caches are well known in computer science. In computer hardware architecture, memory caches

store the contents of some general memory address in a small but very high speed piece of RAM.

In computer systems, virtual memory modules in operating systems store a subset of the pages of

memory that are on hard disk. In software systems, world wide web caches store the HTML pages

referred to by particular URLs.

This thesis is about caching in �rst-order inference. An inference engine derives facts which are

logically implied by a knowledge base. In the process of checking whether some particular query

follows from a given database, many intermediate facts are considered. A cache allows the results

of the inference e�ort on such intermediate facts to be remembered and then re-used when the same

facts occur elsewhere during the inference e�ort.

1.1 Subgoal Caching

Caching attempts to replace further search by simple lookup. This has the potential bene�t of

occasionally reducing the exponential cost of search with the constant (or sub-linear) cost of lookup,

in those cases when portions of the search are repeated.

This bene�t is not without some cost. The need to examine the cache at each node expansion

in the inference space adds some (usually small) overhead at every step. Also, the bene�ts are only

realized if the problems being solved have numerous repeated subproblems. Nonetheless it is often

the case that adding a cache to an inference procedure can dramatically improve its performance

on problems of interest.

Repeated subproblems can occur for many reasons. One of the common causes is the use of

database rules that have recursive de�nitions. Recursion does not guarantee that subgoals will be

repeated, but it makes repetition quite likely. For example, Fibonacci numbers are a sequence of

integers, where each subsequent number is the sum of the previous two:
1

1Capitalized words and letters are constant terms, and lowercase words and letters are variables.
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2 CHAPTER 1. INTRODUCTION

Fib(0) = 1

Fib(1) = 1

Fib(n) = Fib(n� 1) + Fib(n� 2)

The search space for solving such a problem grows exponentially with the Fibonacci number be-

ing computed. A backward chaining proof that the �fth Fibonacci number equals 8 is shown in

�gure 1.1. Note the subgoal repetition: besides all the instances of subgoals which can be proved

in one step, there are three instances of the subgoal Fib(2) = 2, and two instances of the subgoal

Fib(3) = 3. A caching proof of the same query is shown in �gure 1.2. In this case, caching simulates

the well-known method of dynamic programming [AHU87], which can turn an exponential space

into a linear one. This complexity advantage is occurring without the need for bottom-up inference;

all of these searches remain top-down, focused on the goal.

Fib(5)=8

Fib(4)=5 Fib(3)=3 5+3=8

Fib(3)=3 Fib(2)=2 3+2=5 Fib(2)=2 Fib(1)=1 2+1=3

Fib(2)=2 Fib(1)=1 2+1=3 Fib(1)=1 Fib(0)=1 1+1=2

Fib(1)=1 Fib(0)=1 1+1=2

Fib(1)=1 Fib(0)=1 1+1=2

Figure 1.1: Proof showing Fib(5) = 8, with repetition

Even if the recursive subgoal does not repeat exactly, the context in which it appears often

forces repetition. Consider the factorial function,
2
which de�nes a sequence of integers such that

the nth number is n times the previous one:

0! = 1

n! = n � (n� 1)!

A backward chaining proof that 4! = 24 is shown in �gure 1.3. Proofs like this can be arbitrarily

deep, simply by requesting the factorial of ever larger values.

The direct proof of 4! does not exhibit any subgoal repetition. Imagine, though, that the context

was a conjunctive subgoal of the form

Find an integer n such that n! = 6

This proof (shown in �gure 1.4) proceeds by selecting an integer and then checking whether n! = 6.

Each subsequent e�ort to solve the second conjunct results in a repetition of a previous factorial

subgoal.

If instead solved subgoals are cached, then a repeated subgoal need not be solved again. The

proof space for the same problem with caching enabled is shown in �gure 1.5. Aside from the �rst

computation of 0! which is looked up from the database, all the other instances of the n! subgoal

are solved in one step by looking up the (n � 1)! solution in the success cache.

2The nth factorial number is typically written as n!.
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Fib(5,8)

Fib(4)=5 Fib(3)=3 5+3=8

Fib(3)=3 Fib(2)=2 3+2=5

C: Fib(3)=3

Fib(2)=2 Fib(1)=1 2+1=3

C: Fib(2)=2

Fib(1)=1 Fib(0)=1 1+1=2

C: Fib(1)=1

Figure 1.2: Proof showing Fib(5) = 8, with caching

4!

4 3!

3 2!

2 1!

1 0!

1

Figure 1.3: Proof of 4! = 24
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I(n) n!=6

Lookup

n->0

I(n)

n->n+1

0! 1! 2! 3!

Lookup

n->0

I(n)

n->n+1

Lookup

n->0

I(n)

n->n+1

Lookup

n->0

1 1 0! 2 1! 3 2!

1 1 0!

1

2 1!

1 0!

1

Figure 1.4: Proof of n! = 6 with repetition

I(n) n!=6

Lookup

n->0

I(n)

n->n+1

0! 1! 2! 3!

Lookup

n->0

I(n)

n->n+1

Lookup

n->0

I(n)

n->n+1

Lookup

n->0

1 1 0! 2 1! 3 2!

C: 0!=1 C: 1!=1 C: 2!=2

Figure 1.5: Proof of n! = 6 using caching
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In addition to the structure of the problem, the search strategy used in inference also can cause

repetition. For example, iterative deepening [Kor85] is a commonly used search strategy. Iterative

schemes guarantee that subgoals will be repeated during a proof e�ort, as a subgoal that is solved

during one level of the iteration will need be solved again when the next iteration occurs. (The

addition of depth cuto�s makes caching more complicated, but repetition is still quite common in

these cases.)

Not only can successful proofs be cached, but the fact that a given subgoal failed to be proved

can also be cached. Such failures are generally even more expensive than successful subgoals, and

thus the potential savings is greater. This is because any single proof is su�cient to establish a

true subgoal, but in order to know that a subgoal is false (or, rather, that it doesn't follow from

the theory), it is necessary to completely explore the space below it. Repeating such failures for

the same subgoal during the course of a proof is often a source of much ine�ciency.

The notion of failure caching has one last impact, which is on more generalized subgoal caches.

Assume that, during the course of some proof, we had come across some subgoal P(x). Rather

than �nding a full proof of the subgoal (that P(x) is true for all objects x), the more usual case

is that the subgoal is proved for some instances, say for x!1 and x!2. If this same subgoal is

encountered later in the proof, we would like to use the results of the �rst e�ort in lieu of rederiving

those solutions. The ability to cache failures allows us to conclude that not only are the instances

1 and 2 valid in this new location, but also that there are no other possible solutions. There is thus

no need to explore the space below the second P(x), as all information about what might be found

there is already known by the subgoal cache.

1.2 Thesis Contributions

In this thesis, we explore the topic of caching in non-Horn theorem proving (in particular, by

augmenting the model elimination inference algorithm [Lov78, section 3.6]). The previous two

examples (of Fibonacci numbers and the factorial function) can both be de�ned using only prolog-

like Horn sentences. In such a sentence, the database rule is composed of a head which is a single

positive literal, and a body which is a conjunctive set of positive literals. Full �rst-order logic,

however, is more expressive than this. Non-Horn theories allow one to write disjunctions (e.g. that

either A or B is true, without saying exactly which one is true) and negations (e.g. that C is false if

some conditions are true), neither of which is expressible in the more limited Horn rules.

The extensions of the basic inference algorithms, from algorithms that are complete on Horn

subsets of logic to those which work on full �rst-order logic, are well known and have been exten-

sively studied. Extending the caching schemes to the non-Horn case, however, has appeared to be

infeasible. It seems unfortunate to lose the bene�ts of caching shown in the previous examples, just

because a more expressive language is required for some application.

What prevents the standard Horn clause caching schemes from functioning in �rst-order infer-

ence? A caching scheme is built on the notion that solutions to a subgoal in one part of the inference

space can be used when that subgoal appears in another part of the space. Non-Horn inference,

however, requires the addition of a reduction operation, which means that a subgoal can succeed if

it uni�es with (a negated version of) an ancestor goal. This introduces a context-sensitivity into the

solutions for a subgoal. A given subgoal might have a proof in one location because of a fortuitous

set of ancestor goals; when the subgoal appears again in some di�erent part of the space, most likely
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the set of ancestor goals will be di�erent, and thus the previously-discovered proof will no longer

apply.

The primary contribution of this thesis is the surprising discovery that, despite the apparent

context-sensitivity of non-Horn inference, the standard Horn clause caching schemes can be added to

a non-Horn inference engine basically unchanged, and the resulting algorithm will still be complete.

More speci�cally, we present a proof that, if a subgoal has a solution in any location (which can

a�ect the query), then it will have some solution in every location in which it occurs.

This is surprising because it would seem that a subgoal proof in one location might depend

on some particular ancestors of that subgoal. How does a di�erent instance of the subgoal, which

occurs with a di�erent set of ancestors, also have a solution? The unexpected proof in the new

location is essentially a copy of the original proof, except that each reduction in the original proof

(which used one of the missing ancestors) is replaced with a new subproof. By using contrapositives

of database rules, new subproofs are constructed which essentially duplicate the reasoning from the

goal to the original ancestor, but in reverse. This establishes a subproof of the child subgoal which

was originally solved by reduction; since the child must be a negation of the ancestor, this reverse

reasoning is su�cient to prove the child in the new location.

Thus we know that if a subgoal can ever be used to prove the query, it will have a solution

everywhere in the inference space. This means that if we encounter a subgoal and it fails to have

a solution where we �rst encounter it, then no occurrence of that subgoal can ever help prove the

query, and hence we can prune all future such occurrences. But this is just the standard Horn

clause failure caching scheme!

Failure caching is the key; it essentially establishes that exploring the space for a subgoal in

one location reveals all the information derivable from exploring all the occurrences of the same

subgoal everywhere in the inference space. If there would have been a particular solution at one

of subgoals, then there would also be some related proof at the �rst subgoal encountered. This

justi�es all the typical caching schemes: if a subgoal is completely explored at some location, it

need never be solved again.

A secondary contribution is the development of a new caching scheme, postponement caching.

This scheme basically searches the inference space as a graph rather than a tree. A given subgoal

only occurs once in the space; any further instances are slaved to the original occurrence, so that

the e�ort of proving a subgoal need only happen once. In contrast to the typical caching schemes,

postponement caching allows the re-use of partial proving e�orts. The cached information for a

subgoal includes the solutions discovered so far, as well as a continuation in the event that more

solutions are needed from any one of the slaved instances of the subgoal.

In the case of Horn inference, postponement caching is an algorithm that echos previous devel-

opments: speci�cally, magic templates in deductive databases, and memoing in logic programming.

Non-Horn postponement caching, unfortunately, is not complete, but the cause of incompleteness

is explored and suggestions for possibly repairing the algorithm are considered.

An outline of the thesis is as follows: Chapter 2 gives a brief overview of formal logic and the

model elimination algorithm. This di�ers from the standard presentation only in the formatting

of chains for model elimination, as described in section 2.4. Chapter 3 describes typical subgoal

caching schemes that have been used in Horn clause theorem provers. Chapter 4 describes the

apparent di�culty of failure caching in the non-Horn case, and presents the solution that non-Horn

failure caching is still complete. Chapter 5 presents the postponement caching algorithm; �nally,

chapter 6 explains how postponement caching fails in the non-Horn case, and suggests future work
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to improve it in that situation.

This thesis is also available online as a technical report [Ged95].



Chapter 2

Inference

2.1 Introduction

Automated reasoning for �rst-order logic is somewhat of an odd �eld. Because of the well-known

semi-decidable nature of logical inference, any system which attempts to determine whether a query

follows from a set of sentences is in trouble from the outset. Such a system may be sound, in that

any answer it gives (either that the query is implied by the database, or that it is not) is correct.

The system may be complete, in that if either the query or its negation follows from the database,

then the system can eventually determine that. But for any sound and complete inference system,

there will always exist some query and some database for which the system never returns an answer

at all.

Given this fundamental limitation, research in automated reasoning has progressed by expanding

the number of queries and databases for which correct answers may be returned. The �rst systems

proceeded by model checking: for every object mentioned by the theory, they would try to plug

all combinations of such objects into every database sentence, using a propositional satis�ability

engine to determine if the system had found a counterexample to the theory. In many problems

of interest, however, the number of entities in the universe of discourse grows so quickly that a

generate-and-test checker of this kind is quickly overwhelmed.

A huge leap was made by Robinson [Rob65], who realized that by propagating constraints in

the form of variable binding lists, in�nite sets of domain objects could be checked in a single step.

His uni�cation concept, the key to this summarizing computation, has formed the basis for further

automated provers.

Robinson's resolution, while astonishingly more e�cient than previous techniques, still had

poor complexity for some small interesting problems. The number of resolvants grew very quickly,

and so work proceeded on restrictions of resolution (i.e. removing certain resolvants which were

possible in the original formulation) which were still complete. One of these was re�ned by Loveland

[Lov78] into a very streamlined backward-chaining algorithm called model elimination. The model

elimination procedure focussed on individual literals rather than the clauses of resolution. A very

e�cient prolog-like implementation by Stickel [Sti89] led to the current enormous popularity of

this form of automated inference.

All of these formulations are still bound by the theoretical restriction: there are some queries

for which they will run forever. Nonetheless, the class of questions that are answerable has been

growing steadily.

8
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2.2 First Order Predicate Calculus

This section contains a brief background of mathematical logic. For more details see any introduc-

tory text on logic or arti�cial intelligence (for example, Nilsson's [Nil80, chapter 4]).

2.2.1 Syntax

A symbol is a sequence of alphabetic characters. Each symbol is assigned to exactly one of the

following classes: predicate, variable, function, object. Lowercase symbols are used for variables,

and capitalized symbols for predicate, function, and constant symbols.
1

A simple term is either a constant symbol or a variable symbol. A term is either a simple term,

or else a constant function of some arity applied to the appropriate number of terms.

An atomic formula is a predicate of some arity applied to the appropriate number of terms. A

literal is either an atomic formula, or the negation of an atomic formula (indicated by a pre�xed

\Not").

A formula is either a literal, or a negated formula, or else two formulas joined by one of the

connectives And, Or, or Is Implied By. (Occasionally Implies is used as the dual of Is Implied

By.) Sometimes the symbols in table 2.1 are used instead of the English variants.

Not :

And ^

Or _

Is Implied By (

Implies )

For All 8

There Exists 9

Table 2.1: Logical symbols

Propositional calculus is a subset of predicate calculus with no variables, functions, or objects,

and all relations have an arity of exactly zero.

A sentence is a formula where every variable is enclosed in the scope of either a universal

quanti�er (\For All") or an existential quanti�er (\There Exists"). These also have symbolic

variants, as shown in table 2.1.

(This predicate calculus is called �rst order because variables are quanti�ed only over terms,

not over predicate or function symbols. More general quanti�cation leads to higher order logics.

We will be concerned only with �rst-order logic in this thesis.)

In this thesis, logical expressions are written in typewriter font. Terms, atomic formulas, and

quanti�ers are written in pre�x form with optional parentheses indicating the scope of application

for ambiguous constructs.

1This is the opposite of the standard prolog notation, which uses uppercase for variables and lowercase for the

others.
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2.2.2 Semantics

An interpretation assigns a correspondence between the elements of the language and the relations,

entities, and functions in the domain of discourse. Each constant symbol refers to an object in the

domain. Each function symbol refers to a many-to-one mapping from objects in the domain to

other objects in the domain. Each predicate symbol refers to a set of tuples of objects from the

domain.

Once an interpretation has been de�ned, we can say that an atomic formula is true if the

interpretation of the terms is a tuple in the interpretation of the predicate. A formula connected

by And is a conjunction, and is true if both subformulas are true, otherwise it is false. A formula

connected by Or is a disjunction, and is true if either (or both) subformulas are true, and false

otherwise. A formula pre�xed by Not is true if and only if the subformula is false. A formula

connected by Is Implied By is true if the �rst subformula is true, or if the second subformula is

false, and is false otherwise.

A formula under the scope of a universal quanti�er is true if the subformula is true for all

assignments of the variable to entities in the domain. A formula under the scope of an existential

quanti�er is true if the subformula is true for at least one assignment of the variable to an entity in

the domain.

A set of premise sentences logically implies a goal sentence if, in every interpretation which

assigns each of the premise sentences true, then the goal sentence is also assigned true. Logical

implication is semidecidable. This means that, if a goal sentence follows from a set of premise

sentences, there is an automated procedure which can determine that fact. In addition, any such

procedure will not terminate for some combination of goal and premise sentences.

A given �rst order proof procedure is complete if, when given a set of premise axioms and a

goal sentence, will eventually return true whenever the axioms logically imply the goal. A proof

procedure is sound if it never returns true for goals which are not logical implications of the premise

axioms.

2.3 Clausal Form

A clause is a disjunction of literals, where all variables are implicitly universally quanti�ed. Any

sentence in �rst order predicate calculus can be converted to a logically equivalent sentence in clausal

form
2
. The conversion procedure is described in most automated reasoning texts; see, for example,

the descriptions by Loveland [Lov78, section 1.5], Nilsson [Nil80, section 4.2.1], or Genesereth and

Nilsson [GN87, section 4.1]. The steps involved are:

1. Eliminate implication symbols

2. Reduce the scope of negation symbols

3. Standardize variables apart

4. Eliminate existential quanti�ers (by Skolemization)

5. Convert to prenex form

2This is sometimes referred to as Skolem conjunctive form.
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6. Put in conjunctive normal form

7. Eliminate universal quanti�ers

8. Eliminate And

9. Rename variables (standardize apart again)

An example from Nilsson [Nil80] is

8x ( P(x) ) ( 8y ( P(y) ) P(F(x,y)) ) ^

:8y ( Q(x,y) ) P(y) )))

After each of the procedure's steps, the corresponding result is

1. 8x ( :P(x) _ ( 8y ( :P(y) _ P(F(x,y)) ) ^

:8y ( :Q(x,y) _ P(y) )))

2. 8x ( :P(x) _ ( 8y ( :P(y) _ P(F(x,y)) ) ^

9y ( Q(x,y) ^ :P(y) )))

3. 8x ( :P(x) _ ( 8y ( :P(y) _ P(F(x,y)) ) ^

9w ( Q(x,w) ^ :P(w) )))

4. 8x ( :P(x) _ ( 8y ( :P(y) _ P(F(x,y)) ) ^

( Q(x,G(x)) ^ :P(G(x)) )))

5. 8x 8y ( :P(x) _ (( :P(y) _ P(F(x,y)) ) ^

( Q(x,G(x)) ^ :P(G(x)) )))

6. 8x 8y (( :P(x) _ :P(y) _ P(F(x,y)) ) ^

( :P(x) _ Q(x,G(x)) ) ^ ( :P(x) _ :P(G(x)) ))

7. ( :P(x) _ :P(y) _ P(F(x,y)) ) ^ ( :P(x) _ Q(x,G(x)) ) ^

( :P(x) _ :P(G(x)) )

8. :P(x) _ :P(y) _ P(F(x,y))

:P(x) _ Q(x,G(x))

:P(x) _ :P(G(x))

9. :P(x1) _ :P(y) _ P(F(x1,y))

:P(x2) _ Q(x2,G(x2))

:P(x3) _ :P(G(x3))
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2.4 Model Elimination

The ideas and examples in this thesis are presented as augmentations to a complete form of the

problem reduction framework [Lov78, chapter 6] that Loveland calls the meson procedure. A

theorem prover using the framework searches an and/or tree of literals, where each subsequent level

is created by backward chaining on some parent literal, or else by a resolution between a literal and

one of its ancestor literals.

Loveland has shown [Lov78, section 6.2] that such a framework is equivalent to weak model

elimination [Lov78, section 3.6]. As weak me is often more convenient to prove properties about,

some of the formal results in this thesis will be about augmentations of the weak me procedure.

Weak model elimination behaves very much like a version of prolog with a few modi�cations.

pttp [Sti89], is an implementation of this complete version of prolog where

� The occurs check is added to the uni�cation routine, so that the uni�cations are sound.

� Successfully resolved ancestors remain on the chain (albeit specially marked), so that they

may participate in future reduction operations.

A complete description of model elimination, proofs of completeness, and several variants are

given by Loveland [Lov78]. The presentation here di�ers from the standard one in two ways:

1. Chains are written with the most recent literals on the left and the oldest to the right, and

right justi�ed in the text. This reinforces the correspondence with the stack data structure

that they represent.

2. Literals in the chains are written as the complement of the usual notation. This allows an

easier mapping between the chains and the meson-style proof graphs.

(The formal description below is adapted from Astrachan's description [Ast92].)

2.4.1 Inference Rules

The ME procedure is a set of three inference rules that operate on a structure called a chain. A

chain is an ordered list of literals, representing a set of goals to be proved. Each literal may be

positive or negative, and each may be either an A-literal or a B-literal. A-literals represent ancestor

goals of all the literals that are more recent. They are shown as bracketed when listing a particular

chain. B-literals are subgoals that have yet to be proven.

Chains are stack-like structures, and thus are manipulated by transforming the literal at the top

of the stack. In this document will shall write a chain as

R(A), Q(y), P(x)

where R(A) is the most recent literal, and P(x) is the oldest. Thus R(A) will be the literal most

a�ected by any transformation of the chain, and the literal in this position will be referred to as

the top literal in the chain.

A chain may be transformed by one the following three inference rules:

1. Extension. A backward-chaining step using the top literal and some clause from the database.
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2. Reduction. A reductio ad absurdum conclusion, found by resolving the top literal with some

earlier A-literal.

3. Contraction. The removal of top A-literals.

The extension operation is the same as the Prolog inference operation (using sound uni�cation),

except that it retains the uni�ed literal as an A-literal. (As is the usual case, we assume that all

chains and clauses are renamed apart so that they are variable disjoint as necessary.)

As an example, given the chain

Q(F(x),y), [R(y,z)], P(x,z)

and the database clause

Q(F(A),C) _ R(C,B)

which is equivalent to the backward chaining rule

Q(F(A),C) ( :R(C,B)

the extension of the chain using the clause (which involves unifying the �rst literal in the clause

with the top literal in the chain) is the chain

:R(C,B), [Q(F(A),C)], [R(C,z)], P(A,z)

The unifying binding list of the two literals is f x!A, y!C g, and this binding is applied to the

entire chain.

In general we have

De�nition 1 (Extension) Given chain C1 of the form l1C0 with top B-literal l1, and input clause

C2 with literal l2 such that l1 and l2 are uni�able with most general uni�er (mgu) �, the ME extension

operation of C1 with C2 on l2 yields the chain f:(C2 � l2)[l1]C0g� where [l1] is an A-literal and the

literals in (C2 � l2) may be reordered.

The reduction operation implements a form of reasoning by contradiction: if :P and Q imply

P , then we can reason by cases (of whether P holds or not) to conclude that Q by itself implies P .

Either (1) P is true (and thus Q) P is true), or (2) :P is true, in which case since :P ^Q) P ,

we can conclude that just Q) P . In either case we have established that Q) P .

Reductions allow a top B-literal to be removed if it uni�es with the complement of an A-literal.

Using the resulting chain from the previous example,

:R(C,B), [Q(F(A),C)], [R(C,z)], P(A,z)

the (only possible) reduction operation yields the chain

[Q(F(A),C)], [R(C,B)], P(A,B)

via the binding list f z!B g .

In general,
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De�nition 2 (Reduction) Given chain C1 of the form l1C0 with top B-literal l1 and A-literal l2
of opposite sign to l1 such that the atoms of l1 and l2 are uni�able with mgu �, the ME reduction

operation yields chain C0�.

The contraction operation removes trailing A-literals, and is typically performed after every

extension or reduction operation. In the example above, the chain

[Q(F(A),C)], [R(C,B)], P(A,B)

is contracted to

P(A,B)

When an A-literal is removed by contraction it has been proved by the me procedure.
3

In general

De�nition 3 (Contraction) Given chain C1 of the form l1C0 with top A-literal l1, the me

contraction operation yields chain C0.

2.4.2 Deduction in Horn and non-Horn theories

Model elimination is a refutation procedure. A deduction is a sequence of chains, beginning with

the goal, where each chain except the �rst is the result of applying one of the inference operations

to the preceding chain.

De�nition 4 (Deduction) A weak model elimination (weak me) deduction of chain K from a set

S of clauses is a sequence K1; . . . ;Kn of chains such that

1. Kn is K

2. for all i > 1, Ki is a chain derived from its parent chain Ki�1 by either extension (using a

clause from Sc, the set of all contrapositives of each clause in S) or reduction, followed by as

many applications of contraction as possible.

De�nition 5 (Refutation) A weak me refutation is a weak me deduction of the empty chain from

S.

De�nition 6 (Proof) A weak me proof of a conjunctive goal G is a weak me refutation where K1

is a chain composed of the literals in G.

De�nition 7 (Horn clause) A Horn clause is a clause with at most one positive literal.

3Actually, the conclusions one can make by the contraction of an A-literal are somewhat more subtle. A removed

literal is \proven" only for the context of the current chain. This thesis in fact is about exactly what can be inferred

about a literal when it is removed in such an operation, under a variety of conditions.
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If � is a set of Horn clauses and � implies �, then there is exists a weak me proof of � from the

set �, so any complete search of the space of possible deductions will discover the proof. (In the

presence of recursive predicates or functional expressions the inference space may be in�nite. This

just illustrates the semidecidable nature of inference.) Hence weak me is complete for Horn clause

theories. In fact, the reduction operation is not necessary for completeness in Horn theories. Weak

me is also sound.

For completeness when using me with non-Horn theories (or queries) the algorithm must be

altered as follows:

1. The negated goal must be available for extension operations just like the rest of the database.

It is typically inserted into the database for the duration of the proof. This allows one to

conclude P or :P from the empty theory, for example.
4

2. All database clauses (and the aforementioned negated goal) must be available for extension

in the form of each possible contrapositive rule, which is not necessary in the Horn case.

This version of model elimination, using a minimal set of inference rules and without special

reasoning for equality, is sound and complete for full �rst-order inference.

2.5 Re�nements

In this section we brie
y mention some common enhancements to the model elimination inference

procedure, and how those enhancements interact with caching strategies.

2.5.1 Iterative Deepening

Iterative deepening [Kor85] is a common search strategy, where a space is searched with a maximum

bound (say, the length of the path from the root to the subgoal). If no answer is found, the depth

bound is increased and the search is restarted. Such a strategy combines the best of breadth-�rst

and depth-�rst search: It will �nd the shortest proof �rst (like BFS), but only using space linear in

the depth of the search (like DFS). In addition, since the fringe of such a space is generally larger

than all the space above, repeatedly searching the top parts of the space tends not to be signi�cant

and thus the time complexity is essentially the same as BFS.

It is valuable to note that careful choice must be made of what to bound. In pttp [Sti88],

Stickel iterates on the number of subgoals used during the proof, with a few minor modi�cations.

This kind of a bound interacts with many other aspects of the theorem proving search, such as

intelligent backtracking.
5
Stickel himself notes

6
that

In prolog, when solving the goals

P(x) and Q(y) and R(x)

4Actually, if the goal is purely conjunctive, and if it is propositional, then model elimination is complete even if

the negated goal is not added to the theory.
5See section 2.5.4 for more details about backjumping, a speci�c type of intelligent backtracking.
6The quoted text has been edited slightly.
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if the goal R fails, P can be directly backtracked to because the computation of Q and

the bindings for y it creates are irrelevant to the failure of R. However, in pttp, the

computation of Q can a�ect the success or failure of R, by using subgoals that reduce

the \depth" bound available for solving R. The goal R might be made to succeed with

alternative solutions of Q that require fewer subgoals in their solution.

Rather than attempt to deal with the complexities arising from a bound with such a character, the

more common de�nition of a subgoal's depth will be used. It will be assumed that the iterated

bound is on the length of the path between the root node and the current subgoal.

For simple success caching, no cache adornment is required. It is possible that such an addition

to an inference algorithm will result in somewhat di�erent search spaces for a given depth cuto�,

although no incompleteness will result. For example, imagine that a subgoal P was initially proven

with some remaining depth bound, and then later on, somewhere deeper in the proof space, another

subgoal P occurred. Without caching, this second, deeper instance might fail (given the remaining

depth bound). On the other hand, it is certainly the case that P follows from the database (since

we have a proof of it), so it is valid to replace the search of the subspace below P with the cached

success. It is possible that for a given problem this will result in a larger explored space for a given

depth bound. For example, this deeper P might be part of a large and di�cult conjunction that

eventually fails; in the original case, the �rst conjunct P would fail given the depth bound, so the

rest of the conjunction wouldn't even be explored. With caching, we may allow P to succeed, only

to have the conjunction fail after a perhaps large amount of searching. With the same depth limit,

the failure of P will be cheaper than the failure of a sibling of P, if the sibling is bushy.

The search space may shrink substantially too: perhaps this newly succeeding P results in a

simple proof of the query at the given depth bound. In that case, the non-caching algorithm may

be forced to explore a vast amount of the remaining space for a proof, whereas the caching version

succeeds quickly. In any case, if for some reason it is crucial that the depth-limited search spaces

of the caching and non-caching provers remain identical, then the cache can always be extended to

also store the depth limit used for a given proof.

Cache entries for simple failure caching (e.g. \P(B) has no solution") need to be adorned with

the depth cuto� in e�ect at the time. A failure cache entry is only successfully retrieved if the

future subgoal has a cuto� less than or equal to the cuto� stored in the cache. Otherwise the search

space must be re-explored (this time to a deeper depth).

2.5.2 Identical Ancestor Pruning

Identical ancestor pruning (IAP) is a powerful pruning heuristic in a model elimination search.

Imagine, in the course of expanding an me proof space for a particular goal P, that one were to

encounter that same goal P again. One of two situations must hold:

1. There are no proofs of P from this database (because it doesn't logically follow).

2. Whether or not there is a proof using this second occurrence of P, there must be another proof

of the original P not using it. Also, the di�erent proof occurs at a shallower depth.

This is true because the second occurrence must eventually be proven somehow, so this recursion

must bottom out. And then, by whatever proof this second occurrence succeeds, an analogous proof



2.5. REFINEMENTS 17

path must exist below the �rst occurrence of P. In either case, it is justi�able to prune the space

below the second occurrence of P.

As an example, consider the database in table 2.2. A successful proof of the goal G is shown in

�gure 2.1. The goal G resolves with the �rst database rule to produce the conjunctive subgoals P

and C. Working on the P subgoal �rst, it resolves with the second rule to produce A. There are two

ways of expanding A; using the �rst of them results in the subgoal C. This resolves with the �fth

rule to produce subgoal P.

1. G ( P and C

2. P ( A

3. A ( C

4. A ( L

5. C ( P

6. L

Table 2.2: Identical Ancestor Pruning database

G

P C

A P

C L

P Lookup

A

C L

Lookup

Figure 2.1: Successful use of IAP

Since this subgoal P has an identical P as an ancestor, IAP forces pruning of this branch of the

search. There actually is a proof of the lower P subgoal (namely, the very proof we will soon discover

for the �rst P subgoal), but we know by IAP that there will be a shorter proof of the ancestor P

somewhere else. Backtracking to C, we also fail here. Backtracking again to A, there is another

child. Resolving with rule 4 produces the subgoal L. This succeeds by lookup of sentence 6.

Now we return to the P and C conjunction, and begin working on the second conjunct, C. This

resolves with rule 5 to produce P, then rule 3 (like before) to produce C. This branch also stops due
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to IAP. Backtracking to A and then resolving with rule 4 produces L, that again succeeds by lookup

with rule 6. And thus the overall goal G is proven.

Unfortunately, IAP interacts poorly with failure caching. Just as me reductions terminate a

path successfully, but only in a limited context, so too does IAP terminate unsuccessfully, but

again only in a limited context. Caching, on the other hand, attempts to reuse the results of a

search in one part of the space by copying the results from a subgoal that appears in a di�erent

part of the space. Context-dependencies confuse such attempts.

Consider this same example, but with caching at the same time. This time, the second attempt

to prove C uses the cached (failed) result from the �rst attempt, resulting in a failure to prove this

overall goal. The complete (failed) search space is shown in �gure 2.2, and the corresponding search

of chains is in table 2.3.

G

P C

A FC: C

C L

P Lookup

Figure 2.2: Incompleteness of failure caching with IAP

No. Chain Failure cache

1. G fg

2. P C [G] fg

3. A [P] C [G] fg

4. C [A] [P] C [G] fg

5. P [C] [A] [P] C [G] fg

6. L [A] [P] C [G] fP, Cg

7. C [G] fP, Cg

Table 2.3: Incompleteness of failure caching with IAP

Another view is shown in table 2.3. The middle column is the sequence of chains searched, and

the right column is the state of the failure cache. The search starts with the goal G as chain 1. A
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sequence of extension operations results in chain 5, which then fails due to IAP. The search then

backs up to chain 3 (thus adding P and C to the failure cache), and so chain 6 is an extension of

chain 3. The last chain also fails, because the top literal is in the current failure cache. When

backtracking from this last failure, no further alternatives are found and so the search for a proof

terminates (incorrectly) with failure.

This obvious problem can be �xed by propagating results with more information. With just

failure caching, a subgoal could return to its parent the knowledge of whether or not it is still valid

to put the parent in the failure cache. In a more complex inference system which might also include

success caches, a three-valued result is necessary: success, failure, and IAP-pruned. This would

allow IAP-caused unsuccessful terminations of a subgoal to avoid being placed in the failure cache,

while at the same time permitting proved subgoals to be put in the success cache and completely

explored failing subgoals to be added to the failure cache.

2.5.3 Pure Literal Elimination

A pure literal is one which has no complement anywhere in the database.
7
Such literals can never

be removed by refutation resolution, and thus clauses with pure literals can never participate in the

proof of any query.

Consider the database in table 2.4 with the goal G. Imagine that the subgoal H were very hard

to prove; for example that it was equivalent to solving Fermat's Last Theorem. Notice that the

subgoal I is impossible to prove, as it is not mentioned in the database anywhere except the �rst

rule. After receiving the query, it is possible to recognize that the �rst rule is irrelevant, and thus

avoid the computationally expensive attempt to prove the subgoal H. The proof space shown in

�gure 2.3 does not include any use of the �rst rule in the database.

G ( H and I

H ( Fermat

Fermat ( . . .

G ( P

P

Table 2.4: Pure Literal Elimination database

2.5.4 Backjumping

When solving a conjunctive subgoal, simple theorem provers search depth-�rst through the space of

solutions. The �rst conjunct is solved, the resultant bindings plugged in to the remaining conjuncts,

and then the process iterates. When some intermediate instantiated subgoal has no solutions at

all, then some form of backtracking must take place, to return to some previous choice point and

7Since complete inference for non-Horn database requires adding the negated query to the database, in order for

a literal to be pure there must be no matching literal in the query either.
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G

P

Lookup

Figure 2.3: Proof with pure literals removed

attempt a di�erent choice. In the typical search algorithms this is implemented with chronological

backtracking, returning to the most recently made choice in the event of a failure.

This search can be unnecessarily expensive, however, if the root cause of a failure at some

conjunct is a poor choice at a very early conjunct. The same failure at the downstream conjunct

will be discovered over and over again.

Problems very similar to this have been addressed in the constraint satisfaction literature. Their

problems are di�erent in at least two important ways:

1. The domains of the variables are �nite, and known explicitly in advance.

2. In addition to the query, there is a set of constraints with nice properties, e.g. variable con-

sistency can be checked against them with a very low complexity algorithm.

Solving a conjunction in inference doesn't share these properties. Nonetheless, it is often the case

that the insights behind various constraint satisfaction algorithms can yield analogous algorithms

in theorem proving. Some of the examples in this thesis utilize a form of backjumping,
8
where the

search backtracks past all (easily-computed) irrelevant conjuncts until locating one that actually

impacts the detected failure. In essence, it is possible to discover short proofs that large portions

of the search space will not have solutions either, given one particular failed solution.

The computation for determining \relevant" upstream conjuncts can be open-ended. In the

simple form of backjumping used in this thesis, the explanations for a conjunct's failure don't

include the value of the bindings themselves, but instead are merely the list of conjuncts which

established some binding a�ecting the failed conjunct. (The binding values could be useful to avoid

generating a new answer with the same failing bindings.)

Example

An example can help illustrate backjumping.
9
Consider the query G(w) for the database in table 2.5.

The proof space is shown in �gure 2.4.

8Other candidate algorithms include GSAT, min-con
icts, dependency-directed backtracking, and dynamic back-

tracking [Gin93a].
9The example presented only requires database lookup to solve. Note that this is only for clarity of explanation;

the extension to inference merely requires solving the individual conjuncts as subgoals rather than looking up their

solutions in a database.
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G(w) ( A(w) and B(j) and C(k) and D(x) and

E(j,k) and F(w,x)

A(1)

A(6)

B(2)

C(3)

C(5)

D(4)

E(2,5)

F(6,4)

Table 2.5: Illustration of backjumping

G(w)

A(w) B(j) C(k) D(x) E(j,k) F(w,x)

Lookup

w->1

Lookup

w->6

Lookup

j->2

Lookup

k->3

Lookup

k->5

Lookup

x->4

E(2,3) E(2,5) F(1,4) F(6,4)

Lookup Lookup

Figure 2.4: Illustration of backjumping
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We begin by solving the A(w) conjunct, binding w to 1. Then B(j), with j!2, then C(k), with

k!3, and then D(x) with x!4. At this point we attempt to solve E(2,3), and fail, necessitating

a backtrack. The explanations for the failure are B and C, the two previous conjuncts which bound

variables appearing in E. We select the most recent one, C, and backjump to there, recording the

remaining part of the explanation (conjunct B), in the set of explanations for C.

Continuing in the search, we call the C(k) inferential generator again, yielding the new binding

k!5. Then D (having restarted, since we backed up over it) binds x to 4 again, and this time

E(2,5) succeeds with no additional bindings.

Now F(1,4) fails. Computing the explanations (i.e. the conjuncts which caused w to be bound

to 1 and x to 4), we get the set of conjuncts fA,Dg. We back up to the most recent, namely D, and

add conjunct A to D's explanation set. Calling the generator on D yields no new answers, so we must

back up again. No previous conjunct bound a variable in D(x), but from the failure at F we had

already put conjunct A on D's explanation set, so we backjump to A and search for a new answer.

The generator for A(w) returns w!6 this time. The search from then proceeds much as before,

including the rediscovery
10

of the failure to �nd a solution for E(2,3) and the backjump to C at

that point. When we arrive at conjunct F the second time, we attempt to solve F(6,4), and this

succeeds. Thus the query is proved, with the bindings w!6, j!2, k!5, and x!4.

2.5.5 Goal Displacement

Loveland [Lov78, section 6.1] describes a problem reduction format which is similar to weak ME,

and a \device of convenience" that can be added called displacement. If a goal G is identical to a

sibling of an ancestor
11
of G, then the goal under consideration may be said to succeed in the given

context. This is valid because, in order for the overall proof to succeed through this line, the goal

G must be established from the ancestor sibling position, and any such con�rmation would be valid

in both places.

Such a displacement results in a completion at the original location, which must be treated as

carefully as completions by means of reduction. Nothing has been established about the immediate

parents of the original G. They are not actually successful; they are mere allowed to proceed as

though they were. Hence care must be taken in any caching scheme.

Displacement is permitted only if the ancestor sibling has not yet been expanded. This is

necessary for the soundness of the procedure, for otherwise two branches might be accepted by each

displacing a goal over to the other branch.

A use of displacement to correctly prove a top goal is shown in �gure 2.5. This is a proof of

A from the database in table 2.6. The subgoal B is completes successfully in the left branch by

displacement, because it has a sibling ancestor in the conjunction C and B.

Displacement can be e�ective in the propositional case. For �rst-order inference, Loveland

[Lov78, section 6.2] writes

[Goal displacement] demands even more care in [�rst-order] use than for the proposi-

tional case. As before, its usefulness is simply in delaying pursuit of a goal. It does

10The attempt to avoid re-doing such work is the inspiration behind the dynamic backtracking algorithm [Gin93a].
11Displacement can be generalized to search for an identical subgoal which is the descendent of a sibling of an

ancestor, instead of only the sibling itself (as long as the ancestor has only a single possible expansion on the path

to the descendent).
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A ( C and B

B ( D

C ( B

D

Table 2.6: Goal displacement

A

C B

B D

Lookup

Figure 2.5: Goal displacement

collect identical goals together to expend only one e�ort in the attempt to establish the

goal statement; otherwise a lemma mechanism is needed to accomplish essentially the

same thing. However, with free variables present an instantiation may occur, which risks

incorrectly restricting variables common to other goals so the other goals no longer can

be established. We recommend avoiding any application of [goal displacement] where

instantiation is involved.



Chapter 3

Horn-Clause Caching

Even in the limited context of theorem proving, the word \caching" often has wildly di�ering

meanings, not all of which are clearly identi�ed. In this chapter we describe some techniques (of

increasing complexity), and assign names to them for the purpose of further discussion.

Caching is the basic idea of remembering the results of previous work, so as to decrease the cost

of answering future queries. The computational advantage comes because a possibly exponential

search is replaced by some simple lookup. This only results in an advantage if subgoals are repeated

often enough, if the searches are hard enough, and if the overhead of checking the cache at every

node expansion is small enough, that there is some actual gain in CPU time.

A cache entry may be either partial or complete. Partial entries provide true information about

a node, but perhaps not all the information deducible from the knowledge base. This means that

if the cached information is not su�cient to solve the problem, normal theorem proving must be

started to try to solve the new subgoal. Such cache entries are often referred to as lemmas. They

are similar to macro-operators in planning systems. Since they simply increase the breadth of the

inference space, it is possible to observe adverse search e�ects where more nodes need to be explored

to solve a problem with lemmas than without them.

Just the possible presence of adverse search e�ects, of course, doesn't mean such algorithms have

negative utility. Storing only carefully chosen lemmas (e.g. unit clauses) can often substantially

speed up problem solving. Nonetheless, much work in caching focusses on complete caching, where

all necessary information about a node is stored in the cache. This simpli�es the utility calculation

as the caching scheme can only make the search space smaller, by pruning various subtrees that are

summarized in the cache. The next sections describe a variety of complete caching schemes, which

are the only type we will consider in this thesis.

3.1 Simple Success Caching

This is the most basic form of caching. If a literal is proven, then it is recorded in a table. If ever

encountered as a subgoal again, the search e�ort that went into proving it originally can be replaced

by simple lookup.

For example, if in one part of the space an attempt is made to prove P(x), and after some

inference the result \true for x bound to A" is discovered, then the literal P(A) will be entered into

the cache. A subsequent need to prove a similar subgoal (say, P(z)) will result in the same inference

24
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process being repeated, as the needed subgoal is not in the cache. However, if sometime later a new

P(A) subgoal is encountered, then a cache lookup can yield the answer \true" without the need for

further search.

3.2 Simple Failure Caching

If a subgoal is completely explored, and no proofs are found, then the subgoal may be entered into

a table recording failures. If the same subgoal is encountered later, then the failure can be noticed

immediately via lookup rather than necessitating searching that complete subspace again.

Note, however, that special attention must be paid if some pruning techniques are used in

conjunction with failure caching. For example, if identical ancestor pruning is enabled, then often

subspaces will not be completely explored. It is not correct to place a subgoal in a failure cache if

the search of the subspace below was pruned with IAP, as shown by the example in section 2.5.2.

3.3 Answer Caching

Answer caching is simply combining both simple success and simple failure caching.

3.4 Generalized Answer Caching

The matching function, for determining whether a new subgoal is already present in the cache, can

be generalized to one-way uni�cation without permitting adverse search e�ects. If P(x) is stored

in the cache as successfully proven, and a new subgoal P(A) appears, then we can immediately

conclude that this new P(A) also follows from the database. This is because some instance of the

proof for P(x) will be a valid proof for P(A).

The failure cache may be similarly generalized: if Q(y) has been cached such that the subspace

below has been completely explored and no solutions were discovered, then we can conclude the

failure of a new Q(B) subgoal without further search.

Consider the database in table 3.1. The proof space is shown in �gure 3.1. The space was

explored using a depth-�rst search strategy.

G(x) ( S(x) and T

S(x) ( F(y)

F(y) ( H

S(x) ( P

P

T ( F(1)

T ( S(2)

Table 3.1: Generalized answer caching
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G(x)

S(x) T

F(y) P F(1) S(2)

H Lookup FC: F(y) SC: S(x)

Figure 3.1: Answer Caching

After the left side of the tree (underneath the subgoal S(x)) had been explored, F(y) was in

the failure cache and S(x) was in the success cache. (Also, of course, the failure cache contained H

and the success cache contained P.)

When now exploring the space below the T conjunct, the �rst subgoal is F(1). This fails

immediately, because it is an instance of a literal in the failure cache (F(y)). The next subgoal is

S(2). This succeeds immediately, because it is an instance of a literal in the success cache (S(x)).

And thus the overall goal has been proven.

Segre has used generalized answer caching in some reported experiments [SS93].

3.5 Subgoal Caching

A somewhat more sophisticated scheme is to record the actual generalized subgoals along with the

set of known instances. When attempting to prove a subgoal, say P(x), a cache entry is made.

During the course of the proof, some set of answers will be returned, asserting that the subgoal is

true for various bindings of the variable x, say x!1 and x!2. If later some similar subgoal P(y) is

encountered, then the cached answers can be transformed to yield the solutions y!1 and y!2 in

the new context. Assuming that the original P(x) had been completely explored, it is also possible

to conclude that there are no additional bindings for y that are solutions to P(y).

Stickel [AS91] has used subgoal caching.

3.6 Generalized Subgoal Caching

Just like answer caching, it is possible to generalize the matching criteria for subgoal caching.

Assume P(x,y) is a cached subgoal, and the solutions P(1,10), P(1,11), P(2,20), and P(2,21)

are found. Later, a di�erent subgoal P(1,z) is encountered. Even though P(1,z) is not found in

the subgoal cache, a more general version (P(x,y)) can be found. Thus the space below P(1,z)

need not be explored, and the transformed answers z!10 and z!11 can be copied from the cache.

Similarly, if a subgoal P(3,w) is encountered, that subgoal can be concluded to fail without the

need to search the space below.
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3.7 Lemmas

A lemma is a derived sentence (either a model elimination chain or a resolution resolvent) which is

stored, and then used during a proof as though it were one of the given clauses. This is obviously

related to caching, as it involves saving and then reusing previous work. By the stated form, in fact,

it is more general, as lemmas may be whole clauses (disjunctions of literals), whereas the caches

described in this chapter all store single literals.

The primary di�erence, however, is that lemmas are by nature a partial form of caching. (In

fact, sometimes the term \lemma" is used to refer to any form of partial caching.) They increase

the branching factor, by providing an additional database sentence to resolve on, but without

eliminating the need to consider all the original sentences.

Thus it is possible to observe adverse search e�ects, where more nodes need to be explored to

solve a problem with lemmas than without them. This is, of course, only loosely related to the

utility of using lemmas, which is really the question of interest. There are two main di�erences:

1. The analysis of interest is really the average case performance, not the worst case performance.

2. The size of the search space is only an approximation to the time cost of the algorithm: the

per-node expansion overhead is also an important factor.

As it turns out, storing only carefully chosen lemmas (e.g. unit clauses) can often substantially

speed up problem solving. We do not consider partial caching in this thesis; more information on

the impact of lemmaizing, and a collection of references, is available in Astrachan's thesis [Ast92,

chapter 7].

3.8 Utility Analysis

Caching seems like an intuitively appealing augmentation of an inference system. It has the potential

for recognizing redundancy in problem solving, and saving arbitrary amounts of time and space

thereby. The types of caching we consider in this thesis all are purely pruning mechanisms: if a

literal is found in the cache, then the search that would have taken place below it is aborted in

favor of using the results from the cache.

This bene�t is not without some cost. There is the space cost of storing the cache. There is also

the overhead cost in time per node expansion, as a new subgoal is checked to see if it is already

present in the cache. The real question of interest is whether the addition of a cache mechanism

improves the utility of the inference system. Do the bene�ts outweigh the costs?

Unfortunately, it is di�cult to say much in general about the utility of caching. For one thing,

it is the average case which matters, but (like elsewhere in computer science) often only worst case

analysis (or none at all) is available. In inference, coming up with useful problem distributions is

problematic, making empirical data suspect. There exists a large collection [SSY94] of theorem

proving problems, but to a large extent these are problems that have been generated to illustrate

particular inference systems. It is di�cult to say in what sense they represent objectively important

problems.

There is a good amount of work in the operating systems literature on cache algorithms, for

example page replacement policies in memory systems. One signi�cant di�erence is the amount

of items that can be stored: Memory systems have a polynomial number of pages, but inference
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explores an exponentially sized space. Gathering statistical information about an item in the case of

inference is essentially as expensive as just storing the literal in the cache!
1
Of course, an algorithm

won't really have time to explore an exponential amount of the inference space, but that doesn't

mean it is acceptable to use space linear in the amount of time spent. As Richard Korf writes

[Kor92] on the subject of blind search techniques,

Since best-�rst search stores all generated nodes in the Open or Closed lists, its space

complexity is the same as its time complexity, which is typically exponential. Given the

ratio of memory to processing speed on current computers, in practice best-�rst search

exhausts the available memory on most machines in a matter of minutes, halting the

algorithm.

It is thus far more e�ective to use algorithms whose space needs grow slowly with time spent. This

is born out in practice, where inference algorithms with unbounded caches typically show negative

utility over the same algorithms with no caching at all.

As a �rst step, the space needs of the underlying blind search mechanism need to be accounted

for. Iterative deepening [Kor85] is a good solution to this problem: Its space requirements are only

linear in the depth of the tree searched (the same as depth-�rst search), its time is only slightly

worse than breadth-�rst search, and (like breadth-�rst search) it �nds the shallowest solution in the

space.

It would be nice if the caching module of an inference algorithm had similar characteristics.

With good indexing, the per node overhead time costs can be made logarithmic in the size of the

cache, although even this isn't good enough if the cache grows without bound. Fortunately, there

is a simple alternative: the size cache can be limited to an arbitrary �xed size. Segre [SS93] has

reported experimental evidence (on a large number of problems from the TPTP library [SSY94])

that bounded-sized caches show almost the same e�ectiveness (in terms of ability to prune the space

searched) as in�nite-sized caches, but with a well-bounded overhead on both total space used and

per node time cost.

With a cache of bounded size, the question naturally arises of what to do when that bound

is reached. The replacement policies from operating systems are applicable here, such as �rst-in-

�rst-out (FIFO), least-recently used (LRU), and least-frequently used (LFU), or even just random

replacement. Segre tested these strategies (and others) using cache bounds ranging from 10 to

1000 elements. (Each element could store either a success or a failure entry.) Interestingly enough,

the cache replacement strategy appeared to have a fairly minor e�ect on the overall utility of the

algorithm. LRU had a slight performance edge, but that e�ect was swamped by the in
uence of

the cache size, which had a maximal utility at around 100 elements. Segre writes

A very small cache bears much of the overhead costs yet yields little of the bene�cial

search e�ects. As the size grows larger, the bene�cial e�ects of caching become evident

but are eventually overwhelmed by increasing cache overhead.

It is dangerous to generalize experimental evidence from one domain to others, as the results may

depend on the domain in some critical and as yet not understood way. Nonetheless, the approach

of a bounded size cache seems promising.

1It may be possible to abstract literals in order to gather statistics about a much smaller abstract set. Arthur

Keller [personal communication] has suggested recording data about literals of the form P(x) when the actual literals

that are seen are P(A), P(B), etc. It is not clear how this could be turned into a useful cache system, however.
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Plaisted [Pla94] also ran extensive experiments with various kinds of theorem provers and caching

strategies. Some general observations were:

The backward chaining strategies are goal-sensitive, but are mostly ine�cient. Forward

chaining strategies, though e�cient for Horn clauses, are not goal-sensitive. All of the

strategies that are goal sensitive have exponential duplication, except for the simpli�ed

problem reduction format with caching, the modi�ed problem reduction format with

caching, and clause linking with backward support. MESON and model elimination

with caching and unit lemmas have this property, but the versions that are e�cient on

Horn clauses are not complete for general �rst-order clauses.

Backward-chaining provers with subgoal caching were clearly superior to either forward-chaining

provers, or to backward-chaining provers without caching.



Chapter 4

Non-Horn Failure Caching

In the course of attempting a proof, imagine that we completely explore the space below some

subgoal, and fail to �nd a proof of that subgoal. We thus place the subgoal in our growing cache of

failed subgoals. Later, in the same proof e�ort, we encounter the subgoal again.

Ideally, we would like our inference algorithm to skip exploring the space below this second

occurrence of the subgoal, using the intuitive justi�cation that a previous attempt to solve the

subgoal failed.

As it turns out, few researchers have considered using caching strategies in full �rst-order theorem

proving. Most work on adding caching to inference procedures involve augmenting a Horn clause

theorem prover.

What goes wrong in the non-Horn case? It appears to be a fundamental con
ict between the

caching ideal of context independence, and the inference reality that the complete version of model

elimination for non-Horn theories requires the reduction operation, which is a context-sensitive

operation as it involves resolving a goal with an ancestor goal.

For example, Astrachan and Stickel [AS91, Section 4.4] write

In non-Horn problems A-literals can contribute to the solution of a goal via the reduc-

tion operation. Thus for non-Horn problems a goal cannot be considered in isolation,

but must be considered in the context of the A-literals in the chain. These A-literals

constitute an environment in which attempts to solve a goal are made. Since a goal

template is intended to provide information about possible solutions for a given goal,

and solutions are based on this environment, a template must somehow convey informa-

tion regarding the A-literals that constitute the particular environment of a potentially

cached goal.

Such an observation leads to the obvious idea that the cache itself be a more complex structure,

containing not only the literal subgoal and its solutions (if any), but also the set of ancestor sub-

goals (i.e. A-literals) up the chain at this particular location in the proof space. This additional

information would allow sound conclusions to be drawn about the presence of a literal in the cache,

when encountering that same literal elsewhere in the proof space.

Indeed, this modi�cation to caching is sound, but now the question of utility become paramount.

Astrachan and Stickel continue:

Examination of \chain dumps" for several non-Horn problems indicates that cache hits

would be very rare and this method does not appear viable for non-Horn problems

30
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(Plaisted [Pla90] noted this as a potential problem with caching using model elimi-

nation). Consider a snapshot of the search tree for a particular theorem. For Horn

problems, nodes in the search tree (unexpanded and-nodes that correspond to subgoals)

can be considered for caching independently of the position at which they occur. In the

na��ve approach we have outlined for non-Horn problems, it is the root-to-node path that

is considered for caching (where each node other than the last constitutes an A-literal).

It is, perhaps, not surprising that such paths are not often candidates for cache retrieval.

. . .

Our intuition leads us to believe that caching may still not be viable for any large class

of non-Horn problems.

Stickel repeats this assessment in a later publication [Sti94]:

Caching will surely be more complicated and less e�ective for the full model elimination

procedure than for the Prolog subset on which it has been successfully tested. In the

full procedure, solutions to a goal no longer depend on the goal formula alone, but also

on its ancestor goals. Even if goals recur frequently, they may rarely recur with a set of

ancestor goals that can be found in the cache.

4.1 An Example of The Problem

Before delving into the formal results, let's explore the intuition behind the reasoning. Imagine

a situation where using a cache that ignores ancestors causes you to miss a reduction proof, for

example in the database in table 4.1.
1

G ( C or R

C ( :R

R ( C

Table 4.1: Intuition: Missing proof

When trying to prove (without caching) the goal G using a Model Elimination backward-chaining

theorem prover, the proof process might go as follows (the �nal space is in �gure 4.1):

1. Resolve the goal with rule 1 to yield the disjunctive subgoals C and R.

2. Resolve the subgoal C with rule 2 to get :R.

3. Presumably failing to �nd any way to continue on this branch, back up to the second child of

G, and resolve the subgoal R with rule 3 to get C.

1This database is propositional purely for purposes of clarity. The results in this thesis apply to general �rst-order

logic, with full quanti�cation.
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4. This subgoal C (the second instance in the space) resolves with rule 2 exactly as it did before,

yielding :R.

5. Using the reduction operation, the subgoal :R resolves successfully with its ancestor R, and

the proof is complete.

G

C R

~R C

~R

Reduction

Figure 4.1: Without caching

The concern, naturally enough, is that with caching enabled, the �rst (failed) attempt to prove

C will be saved. Then, when C is examined again as a child of R, the cached failure will be copied

to the new instance of the subgoal, and the reduction proof of �gure 4.1 will be missed. This failed

proof space is shown in �gure 4.2, where the dashed arrow from R to C indicates that some search

has been replaced with lookup, and the solutions to this child of R are copied from the �rst time

subgoal C was attempted.

G

C

R

~R

Figure 4.2: Failure with caching
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4.2 The Intuitive Solution

It appears that we must take sets of ancestors into account when making a cache hit, in order to

avoid this problem. Upon closer examination, though, this proposed counterexample fails, because

in fact a proof of the goal is found.

For completeness of inference, we need to use all of the contrapositives
2
of each database rule.

In particular, the �rst rule in the database can also be expressed as

:C and :R ( :G

We actually only need the second half of this contrapositive rule

:R ( :G

which makes the real proof space have a branch like �gure 4.3, with or without caching. We

�nd a proof using the original C branch, without ever needing to explore the R child of the top-level

goal.

G

C

~R

~G

Reduction

Figure 4.3: With contrapositives

As it turns out, such alternate proofs will always exist. A sketch of the proof construction is:

Take the reduction proof which should have succeeded, and transform it into a new proof that will

be found in any other context. The transformation takes the path from the root to the highest

subgoal involved in the reduction, negates every subgoal on that path, turns the path upside-down,

and reattaches it to the space below the original exploration of the cached subgoal. Conjunctive

siblings are carried along in the same place as they were in the original proof, and they are proven

the same way.

4.3 Failure Cache Semantics

The situation becomes a little more tricky when one tries to formalize it. The simple caching

algorithm is clear:

2If P implies Q, then it also must be the case that :Q implies :P .
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1. Search with normal model elimination

2. If you completely explore the space below some goal (in any context at all), and fail to �nd a

proof, then add the goal to the failure cache.

3. If you later encounter a goal, and it is already in the failure cache, then prune the search

below that goal (treat it as unsuccessful).

The point of this chapter is that this na��ve algorithm is complete. The question, though, is what

justi�es the pruning of the search space at the second encounter of the goal?

Rather than talking about \proofs" of subgoals, we need to consider success, that can be achieved

either through a deductive proof, or via a context-dependent reduction operation. We will call such

a successful discarding of a subgoal a \completion."

What would justify our pruning strategy? We know how subgoals enter the failure cache: in

some context, they are completely explored, and no completion is found. It would be nice if we

could have semantics about what it means for a subgoal to be in the cache. When we come across

a subgoal, and it is found in the failure cache, we then prune (with failure) the space below the

new subgoal. This algorithm would be (logically) complete if we knew that no completion for

the subgoal could be found in the pruned subspace. So a proposed theorem is: if there are no

completions of a subgoal in one context, then there are no completions in any other context. The

logical contrapositive of this claim is the following proposed theorem:

Failed Theorem 8 Whenever there is a completion of some subgoal in one context, there also

exists a completion of the same subgoal in any other context of a given proof e�ort.

Unfortunately, this proposed theorem is false as is shown by the counterexample in �gure 4.4,

which is the full proof space
3
for the goal G from the database in table 4.2.

G ( R and C

R ( C

C ( :R

Table 4.2: Wrong: Completions here imply completions there

Note that, while there is a completion of C in the context on the left (using a reduction between

R and :R), there is no completion of the second occurrence of C in the context on the right. Of

course, C would not have been put in the failure cache in this example, but we can easily �x that.

Simply exploring the R and C conjunction in the reverse order allows the failed search space for C

to come �rst, as shown in �gure 4.5. Of course, since the �rst conjunct now fails, we never explore

the second conjunct,
4
and thus never notice the second subgoal C that would be in the failure cache

3The search strategy used was depth-�rst exploration with identical ancestor pruning.
4It is conceivable, however, that some best-�rst search strategy or else a multi-threaded prover might explore both

conjuncts simultaneously, and therefore might actually encounter this phenomenon.
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G

R C

C ~R

~R

Reduction

~G C

Reduction

Figure 4.4: Wrong: Completions here imply completions there

by then, but actually has a completion in the second context. In any case, though, the query G

does not follow from this database, and so we haven't lost any overall solutions even though the

theorem 8 is not correct.

G

C R

~R

~G C

Reduction

Figure 4.5: Wrong: Failure cache implies no completion (1)

Perhaps if we restrict our algorithm to searching only in a depth-�rst order, we can assign

semantics to the failure cache by limiting the applicability to those subgoals we actually encounter.

This would eliminate examples such as the previous one.

Failed Theorem 9 If there is no completion of a given subgoal in one context encountered during

a proof e�ort, then there will be no completion of any other occurrence of the same subgoal in any

other context encountered during the same proof e�ort.

It sounds plausible, but now consider the database in table 4.3 with the same goal G, as shown

in �gure 4.6. Here the subgoal F is intended to indicate a subgoal which always fails.
5

5The subgoal F is indeed not implied by this database in table 4.3, but in this case a simple check like pure literal

elimination (see section 2.5.3) would prevent the second rule from being used, and thus would prune a large part
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1. G ( C

2. G ( R and F

3. R ( C

4. C ( :R

Table 4.3: Wrong: Failure cache implies no completion (2)

G

C R F

~R

~G F

Reduction Lookup

C ~C

~R

Reduction ~G F

Reduction Lookup

~G ~R

Reduction Lookup Reduction ~G F

Reduction Lookup

Figure 4.6: Wrong: Failure cache implies no completion (2)
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Starting from the goal G, we can use the �rst rule to backchain to C. The contrapositive of the

third rule gives :R. One of the contrapositives of the second rule, R( :G^F, gives the conjunction

:G and F. There are two backward inference steps possible from the :G subgoal at this point: a

reduction with the root literal, and a simple lookup of the literal itself which has been temporarily

stored in the database for the duration of the proof. (Recall that, for non-Horn problems, the

negated goal must be added to the database in order to ensure completeness.) Using the successful

reduction of :G with the root node G, we can continue with the :G and F conjunction. Unfortu-

nately there is no inference possible from the F subgoal, and so this path terminates unsuccessfully.

Backtracking through the conjunction,
6
the second solution to :G (namely, the database lookup)

is tried, and then the second conjunct F is attempted again. As before, it fails. This whole subtree

below C is unsuccessful, and thus C has no completion in this context.

Returning to the top goal G, we can also backchain on the second rule, resulting in the conjunctive

subgoal R and F. From R there are two possibilities (using rule 3 and the contrapositive of rule 4).

Exploring the C branch �rst, we backchain to :R using the fourth rule. The subgoal :R has two

inference possibilities: a reduction with its grandparent R, and a resolution with the second rule.

The reduction succeeds immediately (and thus there is a completion for C in this context) and that

success propagates up to the R and F conjunction. Working on the second conjunct F results in

immediate failure, and so another proof is attempted for the R conjunct. The search then continues

with the second inference below :R, namely the resolution with the second rule to result in :G and

F. As in the previous exploration of the similar conjunction, :G has two solutions (by reduction and

by lookup), and the second conjunct F fails both times.

We then backtrack up the tree to the R ancestor which is part of the R^F conjunction, and next

explore the result of resolving with the contrapositive of rule 4, namely :C. This subgoal has two

disjunctive children (:G and :R), which after searching the subtree below result in three solutions:

A reduction between the :G child and the root G literal, a successful lookup of the :G child in the

database, and a reduction between the :R child and and the R parent. None of these completions

of :C result in a proof for the overall query, as the R^F conjunction continues to fail on F.

The point to note is that while the �rst occurrence of the subgoal C in the space has no comple-

tion, the second occurrence (below the parent R) does have a completion, and so our new proposed

theorem is also not correct. As before, though, the caching algorithm is still logically complete: G

does not follow from this database, and so no proof should be found.

4.4 Formal Results

For the initial presentation, the main results will shown in a framework where

1. the query and database are propositional

2. the goal is a single literal

of the space in this example. This is not a solution to our overall problem, however, because more complicated

examples (involving failed spaces beneath the subgoal F) can easily be constructed that exhibit the same behavior

as this example even with a check for pure literals.
6A more clever backtracking algorithm such as backjumping (see section 2.5.4) could avoid failing on F a second

time. For illustration purposes, the entire inference space is shown in �gure 4.6.
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3. the caching strategy is simple failure caching

The extensions to conjunctive goals, �rst-order theories, and generalized failure caching come later.

4.4.1 De�nitions

Failure caching will work if none of the literals in the cache appear in any proof of the goal. Hence

a set of interest is all the literals that do appear in some proof.

De�nition 10 (Proof literals) Given a set of clauses � and some goal G, the set of proof literals

P(G;�) is the set of all literals l such that l appears in some weak me proof of G from �.

In non-Horn inference, literals and their negations are tightly coupled. Thus we will generally

be concerned about about the augmented set of literals which is closed under negation.

De�nition 11 (Augmented proof literals) Given a set of clauses � and some goal G, the aug-

mented set of proof literals P+
(G;�) is the set of all literals l such that either l or its negation

appears in some weak me proof of G from �.

The important property about a literal that will concern us is that of success during a proof,

which we will call a completion. In the Horn case there is a correspondence between logical inference

(� j= l, i.e. that l follows from �) and proofs (� ` l, i.e. l can be derived during a proof attempt).

This notion must be generalized in the non-Horn case. There a literal can be successful during a

proof attempt if either there is a direct proof of the literal (because it logically follows from the

database), or else if it is provable in the context by use of some reduction operations. It is this

successful discarding of a literal which is of interest during a proof attempt.

De�nition 12 (Completion) A literal l has a completion in a context of attempting to prove G

from the set of sentences �, if there is some sequence of chains C1; . . . ; Cn such that

1. There is some valid deduction from the goal chain consisting of just the goal G, to the chain

C1, using the inference operations of weak me (reduction, contraction, or extension from �).

2. The top literal of chain C1 is l.

3. For 1 � i < n, chain Ci+1 is the result of applying one of the valid inference operations from

chain Ci.

4. Chain Cn is identical to chain C1 with the top literal l removed.

We will refer to the concept of a literal being encountered somewhere in the search space when

attempting to prove some goal, by saying that it \occurs below" the goal. The results in this section

are about concluding properties of a literal encountered in one context, based on the observed

properties of the same literal encountered in some other context.

De�nition 13 (Literal occurs below) Literal l is said to occur below G (when attempting to

prove G from some set of sentences �) if there is some chain C such that
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1. There is some valid deduction from the goal chain consisting of just the goal G, to the chain

C, using the inference operations of weak me (reduction, contraction, or extension from �).

2. The top literal of chain C is l.

Finally, many of the proofs proceed by induction on the depth of a literal. This concept (like

the phrase \occurs below") comes from the representation of the complete search space as a tree

(or graph), with the root node being the goal.

De�nition 14 (Literal depth) A literal in some context is said to be at depth d if the length of

the path from the literal to the goal is d. (The goal itself is at depth 0.) Equivalently, in the notation

of chains, a literal l in some chain C is at depth d if

1. Literal l is the top literal of chain C.

2. Literal l is a B-literal.

3. The number of A-literals in chain C is d.

4.4.2 Propositional theories

We �rst establish two lemmas before proceeding to the main result: First, that all literals which

appear in some proof of G have completions everywhere below G, and second, that the negations

of all such literals also have completions everywhere below G.

Lemma 15 (L has completions) Let � be a set of propositional sentences and let G be a single

propositional literal such that � j= G. Let l be a literal in P(G;�), i.e. a literal that appears in

some weak me proof of G. Then everywhere l occurs below G, it will have a completion involving

only proof literals from the set P+
(G;�).

Proof. We will establish this by induction on the depth of the literal l in the weak me proof of G.

Base case. (d = 0) The only literal at depth 0 is G itself. Since G follows from �, there is a

weak me proof of G in isolation. As this proof can't possibly rely on any context above G (since

the goal literal has no context above it), this same completion is still valid anywhere else that G is

encountered. By the same token, every literal used in the completion occurs in a proof of G (and

thus is in P+
(G;�)), namely the very proof that the whole completion was taken from.

Inductive case. Given that we know, for all literals ai at depths less than d, that ai has a

completion anywhere below G, we must show that some new literal l (which appears at depth d in

some proof of G) also has a completion anywhere below G. In both cases, the completions must

only involve literals from the set P+
(G;�).

If l appears in some di�erent context below G, then there is some chain of the form

l . . . [G]

derivable from the goal chain G. Since we know that l also appears in a proof of G, it must have

some completion at the point it appears in the proof of G. This completion is of the form
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l [an] Sn;1 . . . [ai] . . . [G]

. . .

[an] Sn;1 . . . [ai] . . . [G]

This last sequence of chains is a completion of l in the context of the known proof of G. For

each operation in the sequence, we can map it to one or more valid operations in the new, non-proof

context. By virtue of the mapping, for every chain in the completion of l occurring in the proof

of G, there exists a chain in the new context which has an identical sequence of literals from the

occurrence of l to the top of the chain.

1. If the proof operation is an extension operation, then that same extension operation is still

valid in the new context. In addition, all literals appearing in the extension also appear in

the analogous place in the weak me proof of G, and hence each such literal is in P+
(G;�).

2. If the operation is a contraction, then the same contraction applies. Since no new literals are

added to the chain, the condition on P+
(G;�) is not violated.

3. If the operation is a reduction, where the ancestor literal occurs at a depth d or more in the

proof of G, then that same reduction operation is still valid. This is because, by the mapping

we are constructing, every literal more recent than l occurs identically in the chains of both

the completion in the proof context as well as this new completion in the new context.

4. The only remaining possibility is a reduction operation to an ancestor which occurs at a depth

d � 1 or less. In the proof of G there must be some ancestor ai occurring between l and G,

which resolves with the top literal :ai by reduction during the proof of G. We need to show

that this same :ai has a completion in the new context, and a completion which only relies

on literals from P+
(G;�).

(A graphical representation of this situation is shown in �gure 4.7. The left branch shows the

occurrence of l in a proof of G. The completion of l in that context uses a reduction between

:ai and the ancestor ai. On the right branch, l is encountered in some di�erent context. The

dotted arrows on the �gures in this section are meant to indicate that there is an arbitrary

tree between the two nodes. The shaded triangles represent the and-tree completion of l in

the proof context, which is duplicated in the new context.)

We show that :ai has a completion by a second induction, on the depth d0 of the ancestor

literal ai. For each possible ancestor literal, we show that the negation of the ancestor literal

has a completion in the new context.

Base case 2. (d0 = 0) In this case, the ancestor literal ai is just the goal G itself. :G has a

completion everywhere (including the new context), via a simple reduction with the top goal

G.

Inductive case 2. Given that, for every literal in the proof at a depth less than d0, the

negation of the literal has a completion in the new context, we need to show that some new

literal ai at depth d
0

also has a completion in the new context.

In order for ai to have appeared in the proof of G, there must be some database rule

ai�1 ( ai and Si;1 and . . . and Si;m
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G

A_i-1

lA_i S_i,1 ... S_i,m

l

   

-A_i

   

-A_i

Figure 4.7: Does l have a completion everywhere?
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which was used via an extension operation. Since all contrapositives of every rule must be

accessible in non-Horn model elimination, another valid rule is

:ai ( :ai�1 and Si;1 and . . . and Si;m

We can apply this contrapositive rule to the occurrence of :ai in the new context. Note that

each of these literals is a member of P+
(G;�): :ai�1 because ai�1 is in the proof of G, and

the sibling S subgoals because they occurred directly in the proof of G.

In the new context, then, we must show that each of the literals :ai�1, Si;1, . . ., Si;m has a

completion using only literals from P+
(G;�). The sibling S literals do because of the main

induction hypothesis: they occur at a depth less than d in the proof of G, and thus have

completions everywhere. (The S literals occur at the same depth as the ai ancestor. The

lowest that ancestor could be is if it were an, the immediate parent literal of l itself. Given

that l is at depth d, this makes an and thus all of the S sibling literals occur at a depth which

is at most d � 1.)

For the :ai�1 literal, we can apply the secondary induction hypothesis. ai appears in the

original proof at depth d0, and so ai�1 appears in the original proof at depth d0 � 1. The

secondary induction hypothesis tells us that, for every literal appearing at a depth less than

d0, the negation of that literal has a completion in the new context (using only literals from

P+
(G;�)).

(The completion constructed in this new context is shown in �gure 4.8.)

G

l

   

-A_i

-A_i-1 S_i,1 ... S_i,m

-G

Figure 4.8: l has a completion everywhere
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We have demonstrated a sequence of operations resulting in the completion of a :ai subgoal

in the new context, which duplicate the e�ect of the reduction operation to an ai ancestor

that occurred in the proof of G.

We have now shown that every operation in the completion of l during the proof of G can be

mimicked by one of more operations in any di�erent context where l occurs below G. For these

derived completions, only literals in P+
(G;�) are necessary.

Lemma 16 (:L has completions) Let � be a set of propositional sentences and let G be a single

propositional literal such that � j= G. Let l be a literal in P(G;�), i.e. a literal that appears in

some weak me proof of G. Then everywhere :l occurs below G, it will have a completion involving

only proof literals from the set P+
(G;�).

Proof. By induction on the depth of l in the proof of G.

Base case. (d = 0) The only literal at depth 0 is G itself. The literal :G has an immediate

completion anywhere below G, via a reduction with the initial goal literal G itself.

Inductive case. Given that for every literal a of depth less than d, :a has a completion

everywhere, we must show that for literal l at depth d, :l also has a completion everywhere, using

only literals from P+
(G;�).

Since l occurs in a proof of G, there must be some database rule of the form

an ( l and S1 and . . . and Sm

We can thus use the contrapositive rule

:l ( :an and S1 and . . . and Sm

to construct a completion for :l in the new context. A single extension operation on :l in the new

context will result in the conjunctive subgoals :an ^ S1 ^ . . . ^ Sm. We need to show that each of

these has a completion using only literals from P+
(G;�).

The literal :an has a completion in the new context (using only literals from P+
(G;�)) by

the induction hypothesis. Each of the S sibling literals also has a completion in the new context,

because of Lemma 15. Thus :l has a completion in every context below G, using only literals from

P+
(G;�).

Given these two lemmas, it is now straightforward to establish the main result, that failure

caching will not prune any proofs of G.

De�nition 17 (sfc me) Simple failure caching (SFC) model elimination (ME) is a version of

weak me augmented with a failure cache.

1. If a chain C with top literal l has no child (because no extension, contraction, or reduction

operation is valid for C), then l is added to the failure cache and C is said to fail.

2. If all child chains of some chain C with top literal l are explored and fail, then l is added to

the failure cache and C is said to fail.
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3. If a chain C with top literal l is encountered, and l is present in the failure cache, then chain

C fails with no further search.

Theorem 18 (Completeness of failure caching) Let � be a set of propositional sentences. Let

G be a single propositional literal, such that � j= G. Then every complete search of the sfc me

space will discover some sfc me proof of G from �.

Proof. Since weak me is complete, we know that there exists a weak me proof of G from �. Since

sfc me is a pruning strategy, we need only show that the known weak me proof of G can not

possibly be pruned.

This is true because no literal which is added to the sfc me failure cache can be part of any

proof of G (and neither can its negation). We will show this by induction on the number of items,

n, in the failure cache.

Base Case. (n = 0) With no items in the failure cache, it follows immediately that none of

them are in any proof of G.

Inductive case. Let there be n� 1 literals in the failure cache, such that for each such literal

f , neither f nor :f occurs in any proof of G. We need to show that this is also true for literal l, the

nth literal added to the failure cache. Since l is being added to the failure cache, we know by the

de�nition of sfc me that it must have been encountered in the attempt to prove G, and it must

have failed to have a completion in the context in which it was encountered.

Part 1. (l not in proof) By Lemma 15, we know that if l were in some proof of G, then it would

have a weak me completion in any context (including this one, where l failed) which only involves

literals from the set P+
(G;�). However, by the inductive hypothesis, none of the literals in the

set P+
(G;�) are in the failure cache, so this weak me completion would not be pruned during an

sfc me search. Thus the completion is still valid, and l would not have failed in this context. Since

it did fail, l cannot occur in any proof of G.

Part 2. (:l not in proof) Analogously, by Lemma 16 we can deduce that :l cannot occur in

any proof of G.

This establishes the inductive case, and thus the induction. Thus we have shown that no literal

in the sfc me failure cache can be part of any proof of G (and neither can the negation of any such

literal).

Hence if there is some weak me proof of G, it will never be pruned by an sfc me search. Since

weak me is complete for propositional inference, so is sfc me.

It is useful to note the connection between completions of l and :l, when l occurs in some proof

of the goal. If a literal fails to have a completion at some point, then neither it nor its negation

can appear in any proof of the goal. This is somewhat counterintuitive, since in the Horn case if a

literal cannot be proven then it is typical that its negation is true. In the non-Horn case, though,

you can also assume that its negation cannot be proven!

Corollary 19 (Negated Failure Cache) In the course of an sfc me search, if a literal f appears

in the failure cache and :f is encountered, the space below :f may be pruned without sacri�cing

completeness.

Proof. Completeness is not sacri�ced, because :f does not appear in any proof of the goal. If

it did, then by Lemma 16 its negation (namely, f itself) would have completions everywhere, and

thus f could not have been added to the failure cache.
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Corollary 20 (Ground Atomic Completeness) sfc me is complete when all literals in the

proof space are ground atomic.

Proof. By inspection of the proofs for Theorem 18 and Lemmas 15 and 16, we can see that those

proofs apply unchanged to the ground atomic case.

Theorem 21 (Soundness of failure caching) If there is an sfc me proof of � from �, then

� j= �.

Proof. Since sfc me is just a pruning strategy on weak me proofs, every sfc me proof is also a

weak me proof. Since weak me is sound, so is sfc me.

Now that completeness
7
has been proven for the special case of propositional theories with

single literal goals, we proceed to generalize the result. These proofs are essentially identical to the

previous results, with the additional complexity appearing at just a few points. The proofs will

thus be presented as modi�cations to the previous proofs. (The results were originally presented in

the simpli�ed framework for ease of presentation.)

4.4.3 Conjunctive goals

The �rst generalization will be for when the top goal is conjunctive. Since one could always add a

rule resulting in a virtual top goal of a single literal, it is not surprising that theorem 18 generalizes.

For example, if the desired query were

G1 and . . . and Gn

it is a simple matter to add the rule

V ( G1 and . . . and Gn

to the database (where V is some relation not appearing in the database) and then instead ask the

query \V".

Even this is not necessary, however. Lemmas 15 and 16, and Theorem 18, can all be extended

to the case of conjunctive queries. Since these proofs are similar to the proofs already given, only

the additional line of reasoning will be presented.

Lemma 22 (L has completions) Lemma 15 is still valid if the goal G is conjunctive, i.e. G =

G1 ^ . . . ^Gn.

Proof. We use the same induction as before, on the depth of l.

Base case. This case is essentially identical to the previous situation. Rather than having only

a single literal at depth 0, we have a the n literals G1; . . . ; Gn. If some Gi is encountered elsewhere

in the space, does it have a completion using only literals from P+
(G;�)? If the overall conjunctive

goal G follows from �, then there must be some proof of Gi, and that same proof can serve as a

7The soundness result of Theorem 21 already applies to the full �rst-order case.
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completion for Gi in this new context. (And, since it comes from a proof of G, all literals in the

completion must be in P+
(G;�).)

Inductive case. We need to show the new literal l, which appears at depth d in some proof of

the conjunctive goal G (say, below Gj), has a completion everywhere below G (say, below Gi). The

new context for l in which we must demonstrate a completion is a chain of the form

l . . . [Gi] Gi+1 . . . Gj . . . Gn

where all the conjuncts in the goal before Gi have already been solved, Gi is currently being proved

(and hence is an A-literal), and the remaining conjuncts in the goal have yet to be solved (and thus

remain in the chain as B-literals). This chain is derivable from the goal chain.

The literal l also appears (at depth d) in a di�erent chain, one part of a proof of G. That chain

is of the form

l [ad�2] Sd�2;1 . . . [ai] . . . [Gj] Gj+1 . . . Gn

where there are d� 2 ancestor literals between l and the current goal conjunct, Gj . (This situation

is also shown in �gure 4.9.) Since this is a proof of G, there is a completion of l in this context. As

before, we map this known completion to one that must then exist in the new context.

G_1 ... G_i ... G_j ... G_n

l A_i

   

-G_j

l

   

-G_j

Figure 4.9: Does l have a completion with a conjunctive goal?

Each portion of the mapping proceeds as before until we get to the last one, where a reduction

operation occurs between some literal :ai below l, and an ancestor ai of l. A second induction, on

the depth d0 of the ancestor ai, is used (as before) to show that the :ai subgoal has a completion.

Base case 2. In this case, the ancestor literal ai is the parent goal conjunct of l, namely Gj.

We need to show that :Gj has a completion (using only literals from P+
(G;�)) everywhere below

any of the conjuncts of G.
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If this new :Gj occurs below the Gj goal literal, then it has a completion via an immediate

reduction with the top parent. Otherwise, it occurs below some other goal conjunct, Gk. Recall

from non-Horn model elimination that the negated goal must be available for extension operations.

The goal is

G1 and . . . and Gj and . . . and Gn

so that the database clause becomes

:G1 or . . . or :Gj or . . . or :Gn

One of the contrapositives of this clause is

:Gj ( G1 and . . . and Gn

(where Gj is missing from the body of the rule). We can apply this extension operation to the :Gj

subgoal, resulting in the new subgoal conjunction

G1 and . . . and Gn

i.e. all the goal conjuncts except Gj . (This situation is shown in �gure 4.10.) By the main induction

hypothesis, each of these satis�es our criteria of having completions everywhere using only literals

from P+
(G;�).

G_1 ... G_i ... G_j ... G_n

l

   

-G_j

G_1 ... G_j-1 G_j+1 ... G_n

Figure 4.10: l has a completion with a conjunctive goal

Inductive case 2. The proof of the secondary inductive case doesn't rely on G being a single

literal, and so it may be used unchanged in the case of a conjunctive goal. Hence we have shown

that Lemma 15 is still valid if the goal is a conjunctive set of literals.
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Lemma 23 (:L has completions) Lemma 16 is still valid if the goal G is conjunctive, i.e. G =

G1 ^ . . . ^Gn.

Proof. The inductive case of the proof of Lemma 16 only relied on G being a single literal in its

use of Lemma 15. Substituting Lemma 22 for Lemma 15, we have a proof of the inductive case

which is valid for conjunctive goals as well.

For the base case (that the negation of any literal at depth 0 has a completion everywhere), we

can use the negated goal in much the same way as the proof for Lemma 22.

The only literals at depth 0 are the goal literals G1; . . . ; Gn. We need to show that a negated

version of any of them, say :Gi, has a completion everywhere in this space, using only literals from

P+
(G;�). Since the negated goal is available as a database sentence, we can apply an extension

operation using the rule

:Gi ( G1 and . . . and Gi�1 and Gi+1 and . . . and Gn

to give us the conjunctive subgoals G1 ^ . . . ^Gn excluding Gi. Each of these has a completion in

this context, using only literals from P+
(G;�), by virtue of Lemma 22.

Theorem 24 (Completeness of failure caching) Theorem 18 is still valid if the goal G is con-

junctive, i.e. G = G1 ^ . . . ^Gn.

Proof. The proof of theorem 18 didn't rely on the single-literal nature of the goal G, except via

the use of Lemmas 15 and 16. The same proof, using Lemmas 22 and 23 instead, will su�ce to

establish the completeness of failure caching in the case of a conjunctive goal.

Similarly, Corollaries 19 and 20 can be extended to the case of conjunctive goals.

4.4.4 First-order theories

As promised at the beginning of this section, we now generalize the completeness result to the

case of �rst-order predicates. The technique is similar to the use of a lifting lemma introduced by

Robinson [Rob65], and used, for example, by Lloyd [Llo87].

The proofs in the section essentially duplicate those of section 4.4.2, with the additional notion

of a binding list to map completions from one part of the space to completions in another part. The

proofs here are expressed more concisely than previously, under the assumption that the reader is

already familiar with the propositional versions. In addition, the proofs here are spread out into a

greater number of lemmas.

De�nition 25 (Instance) A literal P is said to be an instance of a more general literal P 0 if there

exists some (possibly empty) binding list � such that P = P 0�.

The �rst lemma corresponds to the inside induction of Lemma 15. In order to separate it from

the main proof, the conclusion must be a conditional. This is precisely the condition, however, that

the outside induction of the main proof will establish.
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Lemma 26 (:L has completions if L has completions) Let � be a set of clauses and G be a

conjunction of literals such that � j= G. Let l0 be a literal in P(G;�), so that l0 appears in some

proof of G, and let l be some instance of l0.

Let I(�), the instance property, be the property that, for a literal �, a completion of � exists

anywhere � appears below G, using only instances of literals from P+
(G;�).

Consider a proof of G in which l0 appears. If the property I is true for all instances of all literals

which appear in the proof at the depth of l0 or less, then I(:l) is also true.

Proof. By induction on the depth d of literal l0 in the proof of G.

(Base case.) (d = 0) In this case, l0 is just one of the goal literals Gi(x). We need to show that

:l, the negation of an instance of Gi, has a completion everywhere below G using only (instances

of) literals from proofs of G.

We know that there exists some binding list � such that l = Gi�. Also, :l occurs below some

goal literal, say Gj. If i = j, then :l has a completion by a simple reduction with the goal literal

ancestor using the binding list �.

Otherwise, we can use one of the contrapositives of the negated goal, which is

:Gi ( G1 ^ . . .

The subgoal :l then uni�es (via the binding list �) with the head of this rule, resulting in the

conjunctive subgoal (G1 ^ . . .)� (which is missing Gi). Each of these literals is an instance of some

goal literal, and hence in P+
(G;�). Since the original goal follows from �, there is a proof of

each of the original goal literals. Each such proof, when specialized by �, serves as a proof of the

corresponding literal in the new conjunctive subgoal. Trivially, all literals in this new completion

are instances of literals in some proof of G, and hence are in P+
(G;�).

(Inductive case.) We know that for all literals at depth d � 1 or less in some proof of G,

negations of instances of those literals have completions everywhere. We need to show the same for

negations of instances of l0, which appears at depth d.

Since l0 appears in a proof of G, there must be some database rule which, by extension from a

previous ancestor subgoal a results in l0 (and possibly some siblings S). A contrapositive of the rule

is

:l0 ( :a ^ S1 ^ . . .

Since l is an instance of l0, there is some binding � such that l = l0�. Hence the subgoal :l uni�es

with the contrapositive rule via the binding �, resulting in the conjunction (:a ^ S1 ^ . . .)�. The

subgoal :a� has a completion using only (instances of) literals from P+
(G;�) by the induction

hypothesis, since the subgoal a appears at depth d � 1 and :a� is the negation of an instance of

a. If each sibling Si� literal had a completion, then the original subgoal of interest :l would as

well. But (because the Si literals all appear at depth d in the proof, the depth of l0) this is just the

conditional statement of the theorem, and so the proof is done.

This next lemma is the �rst-order generalization of Lemma 15.

Lemma 27 (L has completions) Let � be a set of clauses and G be a conjunction of literals such

that � j= G. Let l0 be a literal in P(G;�). Then for any l which is an instance of l0, everywhere l

occurs below G it will have a completion involving only instances of proof literals from P+
(G;�).
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Proof. By induction on the depth d of literal l0 in the weak me proof of G.

Since l is an instance of l0, call the binding list which uni�es them �, such that l = l0�.

Base case. (d = 0) The literals at depth 0 are just those of the goal itself, G = G1(x1) ^ . . ..

So l0 = Gi(xi). Since G follows from �, there is a weak me proof of each of the literals of G from

�, and hence a proof of Gi. Thus wherever l is encountered below G, it will have a completion:

namely, that same proof of Gi but specialized by �. This completion uses only instances of literals

from P(G;�), and thus trivially only instances of literals from P+
(G;�).

Inductive case. Since l0 appears (at depth d) in a proof of G, it has a completion in that proof.

We map each operation in that completion to one or more operations in whatever new location l is

encountered. Assume that the completion of l0 in the proof is some sequence of chains C1; . . . ; Ck.

The completion of l will be a possibly longer sequence of chains D1; . . . ;Dl such that

1. For every chain Ci, there is some related chain Dj such that if one removes all literals in the

chain older than l from Ci (call this R(Ci)), and similarly removes all literals in Dj older than

l0 (i.e. R(Dj)), then the remaining chains will unify with a binding of �, i.e. R(Ci)� = R(Dj).

2. The ordering on the chains is preserved, so that if Ci is related (in the sense above) to Dm

and Cj is related to Dn and i < j, then m < n.

The sequence D1; . . . we construct will also be a valid weak me deduction. Since the sequence of C

chains is a completion of l0, the last chain Ck must only contain literals older than l0. This means

that R(Ck) is the empty chain, and thus so also must be R(Dl). This means that the sequence of

chains D is a completion for literal l in the new context.

Contraction operations are immediately valid. If the operation between Ci and Ci+1 is an

extension operation, then there must have been some database rule allowing the extension, and

that same rule specialized by � is valid in the context for l. Similarly, if there is a reduction

operation between some ancestor a0 which is more recent than l0, and a top literal :a0, then a

specialized reduction between a (= a0�) and :a (= :a0�) is similarly valid.

The remaining operation to map is a reduction operation in the original proof, which is to an

ancestor at depth d � 1 or less. The original proof includes a chain

:a(y) . . .[l0] . . . [a(x)] . . . [G]

In the new context, the top literal is :a(y)�, i.e. :a specialized by �. This literal has a completion,

using only literals from P+
(G;�), because

1. :a� is a negated instance of a literal (namely, a(x)) which appears in a proof of G

2. By the induction hypothesis, the ancestor a(x) itself (and all other literals at that depth or

less) has completions using only literals from P+
(G;�)

3. By Lemma 26, the top literal in the new context, :a�, does as well

Hence we have constructed a completion for literal l, given that l0 appears in some proof of G

at depth d, and the inductive case is complete. This �nishes the proof.
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Lemma 28 (:L has completions) Let � be a set of clauses and G be a conjunction of literals

such that � j= G. Let l0 be a literal in P(G;�). Then for any l which is an instance of l0, everywhere

:l occurs below G it will have a completion involving only instances of proof literals from P+
(G;�).

Proof. By induction on the depth d of l0 in the proof of G. Since l is an instance of l0, l = l0� for

some binding list �.

Base case. (d = 0) l0 must be one of the goal literals Gi. Thus :l = :Gi�. Since :l occurs

below G, it must occur below some particular goal literal Gj . If i = j, then :l has a completion via

a simple reduction with that goal literal, since Gi� and Gi always unify. Otherwise, a contrapositive

of the negated goal

:Gi ( G1 . . .^

permits an extension operation from the :l subgoal via the binding �. This results in the conjunctive

subgoal (G1^. . .)�, whereGi is missing. Since the goal G is provable, each literalGj has a completion

(using only literals from P+
(G;�)). Since each literal in our new conjunctive subgoal is an instance

of some goal literal, each of these conjuncts will also have a completion (using only instances of

literals from P+
(G;�)).

Inductive case. For every literal a0 at depth less than d, each negated instance :a has a

completion everywhere below G. We need to show this is also true for literal :l.

Since l0 appears in some proof of G, there must be a database rule

an ( l0 ^ s1 ^ . . .

A contrapositive of this rule is

:l0 ( :an ^ s1 ^ . . .

An extension operation on the :l subgoal, using that rule and the binding �, results in the

conjunction (:an ^ s1 ^ . . .)�. The literal :an� has a completion here by the induction hypothesis,

as it is an instance of a literal (namely, an) which appears at a depth less than d is the proof of G.

Each of the sibling si� literals has a completion by Lemma 27, as they are instances of si literals

which appear in a proof of G.

Thus :l has a completion in every context below G, using only literals from P+
(G;�).

Before moving on to the main result, we need to introduce one more concept. The notion of

a \completion" needs to be generalized somewhat. When attempting to prove a subgoal such as

P(x), it's often the case that the search instead discovers proofs of instances of P(x), say that the

subgoal is true for x bound to A. If the subspace below P(x) is fully explored, this tells us that P(A)

has a completion, and that no other instance of P(x) does.

If later the subgoal P(y) is encountered, we would like to be able to conclude that y bound to

A is the only solution. The next results justify this conclusion.

De�nition 29 (Solution) Let P be a subgoal encountered during a proof e�ort. A binding list �

is a solution of P if there is a completion of P� from the same context.

To add simple failure caching to model elimination in a �rst-order situation, De�nition 17 must

be interpreted in a more generalized context. A literal fails (and is thus added to the failure cache)

if it has no solutions, not merely if it has no completions.
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Lemma 30 Let � be a set of clauses and G be a conjunction of literals such that � j= G. Let f 0

be a literal appearing in the failure cache during an sfc me search for a proof of G from �. Then

for any f which is an instance of f 0, it is the case that f 62 P+
(G;�), i.e. neither f nor :f appears

in any weak me proof of G from �.

Proof. By induction on the number of literals, n, in the failure cache of the sfc me algorithm.

Since f is an instance of f 0, there is some binding list � such that f = f 0�.

Base case. (n = 0) With an empty failure cache, it is trivially the case that none of them

appear in any proof of G.

Inductive case. None of the n � 1 literals (nor any instance) in the failure cache appears in

any proof of G. Then literal f 0 is encountered, and fails to have a completion. We need to show

that neither f 0 nor :f appears in any proof of G.

Part 1. (f not in proof) If f appeared in some proof of G, then by Lemma 27 it would have

a weak me completion anywhere below G using only (instances of) literals from P+
(G;�). By the

induction hypothesis, no instance of a literal from P+
(G;�) appears in the failure cache. Thus

there is a completion of f in the place where f 0 failed. But since f = f 0� has a completion, this

means that f 0 must have a solution (namely, the solution � or perhaps one more general) in this

same context. Since f 0 did not have a solution at this point, f cannot appear in any proof of G.

Part 2. (:f not in proof) The same argument as for Part 1, but using Lemma 28 instead of

Lemma 27, shows that :f cannot occur in any proof of G.

Thus no instance of any literal in a proof of G (or the negation of such an instance) can occur

in the failure cache of the sfc me algorithm.

Theorem 31 (Completeness of failure caching) Let � be a set of clauses and G be a conjunc-

tion of literals such that � j= G. Then every complete search of the sfc me space will discover

some sfc me proof of G from �.

Proof. Since weak me is complete for �rst-order inference, we know that there exists a weak me

proof of G from �. Since sfc me is a pruning strategy, we need only show that the known weak me

proof of G cannot possibly be pruned. This is the case because a subspace of the proof is pruned

only if the top literal is found in the failure cache, and by Lemma 30 none of the literals in the

failure cache appear in any weak me proof of G. Thus every proof of G will still be in the sfc me

space.

4.5 Flushing Between Queries

As a practical matter, theorem prover caching for Horn clause databases typically is implemented

taking advantage of a variety of other properties of the caching, not all of which hold in the �rst-

order case. For example, it is often the situation that a large number of queries are asked of a static

database. In that case, a bounded-sized cache could remember the last n \interesting" solutions to

various subgoals, and keep this information across queries.

In the non-Horn case, conclusions about intermediate subgoals are unfortunately dependent

upon the speci�c query, and thus you must 
ush caches between proof attempts, preventing the
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reuse of cached results from one proof e�ort in a subsequent problem. The following is an illustration

of the incompleteness that would otherwise arise without 
ushing the failure cache:

From the database in table 4.4 the sequence of goals G, :G, and C, would be solved incorrectly

by a caching prover that does not 
ush the failure cache, as it would not �nd a proof for any of the

three goals, despite the fact that the third follows from the database.

C ( G

C ( :G

Table 4.4: Must 
ush the failure cache

The goal G resolves with (the contrapositive of) the second rule, but no further resolutions are

possible, as shown in �gure 4.11. Thus G and :C would be put in the failure cache. For the second

query, the goal :G resolves with the �rst rule, resulting in the space shown in �gure 4.12. :G and

:C (which is already present) would be added to the failure cache.

G

~C

Figure 4.11: Not 
ushing: G

~G

~C

Figure 4.12: Not 
ushing: :G

When �nally attempting to prove C, resolution with the �rst rule results in the subgoal G, and

with the second in the subgoal :G, as shown in �gure 4.13. Unfortunately, both are already in

the failure cache, so all remaining subtrees are pruned, and the prover returns unsuccessfully. This

is despite the fact that there is a reduction proof of the goal C from the database, as shown in

�gure 4.14.

The success cache also must be 
ushed between queries. Since non-Horn inference requires

adding the negated goal to the database, all proofs become context sensitive. Consider attempting

to prove a tautology, e.g. P or :P from the empty database. The proof succeeds (as it should) as

follows:
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C

G ~G

Figure 4.13: Not 
ushing error: C

C

G

~C

Reduction

Figure 4.14: Reduction proof of C

1. The negated goal, namely :P and P is added to the database, which results in a temporarily-

augmented database with two sentences: P and :P.

2. The disjunctive goal is split, and each disjunct is attempted separately. If any disjunct suc-

ceeds, the overall goal also succeeds.

3. The �rst disjunct, P, succeeds immediately, by looking up the database sentence P.

Obviously, the sentence P is not, in general a consequence of an arbitrary database. During the

course of the proof of the tautology, P can indeed be added to the success cache. If the cache is

not 
ushed between queries, however, then P might erroneously be concluded during the course of

some other proof.

With some extra e�ort, it is possible to retain only those conclusions that actually follow from

the database. Much like the suggestion in section 2.5.2 for dealing with identifying failure cache

entries in the presence of identical ancestor pruning, propagating three-valued answers throughout

the tree would allow an algorithm to distinguish whether a conclusion followed from the database

or was valid only in the context of a particular query. In this case, the third value would indicate

whether specially marked sentences (those derived from the negated goal) were used to produce

a particular answer. Note that complex answers must be propagated in any case, as solutions

using reductions occur throughout �rst-order model elimination proofs, and such solutions indicate

nothing about the truth of intermediate subgoals.
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4.6 Depth Bounds

Depth-bounded search is a common way to control inference, especially via a complete mechanism

like depth-�rst iterative deepening [Kor85]. Using a depth bound complicates the process of adding

a cache to an inference algorithm. With bounded search, a subgoal may fail (or may have fewer

answers than it otherwise would) because part of the space below exceeded the bound, rather than

because there was no possible proof of the subgoal from the database.

Thus subgoal caches typically must be augmented with a �eld indicating the depth to which

the subgoal had been searched. If Fruit(x) is explored with a depth limit of 5, and the answers

x!Apple and x!Banana are found, this can be stored in a cache with the notation that it is

valid information for searches up to a limit of 5. If later the subgoal Fruit(y) is encountered, but

this time with a remaining depth limit of 3, the answers from the cache can replace what would

otherwise be further search.
8
If instead, however, the new Fruit(y) subgoal has a remaining depth

of 9, then the cache entry is not valid and normal inference must continue. (This is assuming, as is

usually the case, that we wish to prevent possible adverse search e�ects. The alternative is to start

with the answers from the cache, and then proceed to searching the space below up to the needed

depth limit if the cached answers aren't su�cient in this context.)

How does this relate to caching in non-Horn theorem proving? Since we now have access to

the reduction operation, solutions to a subgoal can be context-dependent. This means that just

because no solution is found to Fruit(x) up to depth 3 in one context, does not mean that there will

similarly be no solutions to depth 3 in some other context. The results of section 4.4 seem to indicate

that solutions will be independent of context. A careful reading of those results, however, shows

the claim is only that the complete space below a subgoal in one context yields total information

about the complete space below the same subgoal in any other context. It is speci�cally not the

case that depth-bounded explorations will yield the same set of answers.

A simple example is shown in table 4.5. A search for a proof of the goal G with a limit of 3 and

with failure caching enabled is shown in �gure 4.15. Notice that the �rst occurrence of the subgoal

C fails with a remaining depth of 1; the second occurrence is pruned erroneously in this case, using

the incorrect justi�cation that C is in the failure cache with a depth of 1. This is an error because,

as shown in �gure 4.16, there actually is a proof of G down this second branch, and the proof is

even within the depth limit.

If the second C succeeded, then why did the �rst fail? What happened to the alternate proof

predicted by the results of section 4.4? It exists, as shown in �gure 4.17, but at a depth deeper

than the cuto� currently in place.

This particular example shows only that the alternate proof guaranteed by section 4.4 is below

the depth cuto�. In this case, however, there actually is another proof of the goal even within the

original depth cuto�, and even using this form of failure caching. The complete space to depth 3 is

shown in �gure 4.18; even with the unjusti�ed pruning of the second C subgoal, a proof of the goal

is found.

There is not always a di�erent proof within the current depth bound. By examining the con-

struction of section 4.4, it appears that if a subgoal fails with a particular depth bound, then other

8Allowing cache hits to be successful when the remaining depth is less than that in the cache can result in more

solutions than would otherwise have been found. This generally is not considered to be a problem, and is in fact a

potential advantage of using caching.
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G ( A

A ( C

:R ( C

C ( R

G ( :R

Table 4.5: Depth limits and non-Horn inference

G

A ~R

C

R

C

FC: C

Figure 4.15: Incorrect depth-limited failure caching

G

A ~R

C

R

C

R

Reduction

Figure 4.16: Context-dependent depth-limited inference
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G

A

C

R

~G

Reduction

Figure 4.17: An alternate proof below the depth cuto�

G

A ~R

C

R

C ~C

FC: C ~A R

Reduction

Figure 4.18: A di�erent proof within the depth cuto�



58 CHAPTER 4. NON-HORN FAILURE CACHING

occurrences of that subgoal with a bound around half the original bound should also fail. At this

time, however, tight limits on transferring bounded failures are not known.

Without care in using bounded failures, incompleteness can result. Consider the example in

table 4.6 for the goal

:P(x) and D(x)

which was discovered by David Sturgill. If it is explored with this same algorithm (model elimina-

tion, iterative deepening starting at a depth of 1 and incrementing by 1 on each step, and failure

caching), no solution will ever be found despite the fact that there is a proof at depth 6.

(Recall that the negated goal must also be added to the database, so the rule

P(x) ( D(x)

is also present in the database.)

:P(x) ( :Q(x)

:P(x) ( P(S(x))

Q(x) ( :Q(S(x))

:Q(x) ( Q(S(x))

D(x) ( Q(S(x))

Table 4.6: Sturgill anomaly

Sturgill explains:
9

Let's assume that we fail to prove the �rst conjunct in our goal, :P(x), on some iteration,

D. As a result of this failure and its failed subgoals, we will insert (among other things),

the following into the failure cache:

:P(x) failed with depth cuto� D

:Q(x) failed with depth cuto� D � 1

P(x) failed with depth cuto� D � 1

Q(x) failed with depth cuto� D � 2

When we then proceed to try to �nd a proof at depth D+ 1, every proof of :P(x) fails

because the cached failures from the previous iteration block every solution; every proof

of :P(x) depends on a proof of of an instance of :P(x), :Q(x), P(x) or Q(x) with less

marginal search depth remaining than the previously cached failures.

The expanded proof space to depth 3 is shown in �gure 4.19. A proof of the query without

failure caching is shown in �gure 4.20.

9Private communication.
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~P(x) D(x)

~Q(x) P(S(x)) P(x)

x->S(x)

Q(S(x)) Q(x)

x->S(x)

~D(x)

x->S(x)

P(S(x)) ~Q(S(S(x))) ~Q(x) Reduction

x->x

P(x) ~Q(S(x)) ~Q(x)

x->S(x)

~P(x)

Or x->x

D(S(x))

Or x->S(x)

Q(S(S(x)))

Reduction

x->x

D(x)

Or x->x

Q(S(x))

Figure 4.19: Sturgill's iterative-deepening anomaly

~P(S(x)) D(S(x))

~Q(S(x)) or ~Q(x) Q(S(S(x)))

Q(x)

P(x)

D(x)

Q(S(x))

Reduction

P(S(S(x)))

D(S(S(x)))

Q(S(S(S(x))))

~Q(S(S(x)))

Reduction

Figure 4.20: The correct proof in Sturgill's anomaly
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4.7 Related Work

4.7.1 Positive Re�nement

Plaisted's positive re�nement [Pla90] of model elimination established that only positive subgoals

need to be checked for reductions with their ancestors, and the algorithm would remain complete.

This re�nement is especially attractive for near-Horn problems, because ancestor lists then contain

few negative subgoals, and the reduction check is computationally cheap. In fact, for Horn theories,

no reductions take place at all.

While the positive re�nement makes cache hits more likely, it appears that in many cases they

are still not likely enough, and the net result is that the bene�t from caching is never realized.

Stickel [Sti94] writes:

A re�nement [Pla90] of the model elimination procedure that uses negative but not pos-

itive ancestor goals may make looking up solutions in the cache succeed more frequently,

but probably still not often enough.

4.7.2 Problem Reduction Format

Plaisted [Pla88] also suggested an approach completely di�erent from model elimination, the mod-

i�ed problem reduction format. This algorithm is complete for non-Horn theories, without using

contrapositives or reductions.

Since there are no context-sensitive reduction operations, caching is easy and much like the Horn

case. In his experimental analysis, Plaisted reported the utility of caching in this non-Horn setting

to be much like caching in any other context:

Caching seems to help, on the average, although some problems are much faster without

caching.

But he notes

Another disadvantage of caching is that the storage required can be prohibitive on large

problems, although this is not often the case.

Experiments were run on a Sun 3, and compared a caching theorem prover to the same prover

with caching turned o�. On the average, the caching prover performed 2.2 inferences per second,

took 346.31 cpu seconds per problem, and required 760.5 inferences per problem. The non-caching

version performed 15.0 inferences per second, took 1125.01 cpu seconds per problem, and required

16840.5 inferences per problem.

Non-Horn sentences are dealt with by explicit case analysis. Unfortunately, this means that it

is most e�cient for Horn theories, and the e�ciency degrades as the set of clauses becomes more

and more non-Horn.

In the simple problem reduction format, the required splitting rule for case analysis forces the

search to be essentially forward from the premises to all conclusions, rather than backward from

the goal in the way that model elimination or the set of support restriction for resolution allow. For

arbitrary propositions � and  , the splitting rule essentially says

[ ( � )  ) and ( :� )  ) ] implies  



4.7. RELATED WORK 61

In the backward direction, this axiom schema applies to every subgoal  encountered, and suggests

trying case analysis on every unrelated subgoal � in the database.

For example, in the database of table 4.7
10

with goal P, the natural backward chaining is from

P to Q to R and then to :N. This proof cannot be completed, however, since the subgoal :N does

not follow from the database and thus cannot be solved.

P ( Q

Q ( R

R ( :N

P ( N

Table 4.7: Must split early

Instead, the splitting axiom must be applied as the �rst rule to backchain on from the goal

P, resulting in the two subgoals :N ) P and N ) P. In the problem reduction format, the �rst

subgoal eventually reduces to the tautology :N ) :N, and the second to the tautology N ) N.

Unfortunately, there is no simple way to know that the subgoal :N will be generated later on,

making it necessary to do case analysis on N directly from the goal P.

In the modi�ed problem reduction format, whenever a negative subgoal is encountered it is

assumed to succeed and is added to the list of assumptions in the problem format. Thus the solution

to a goal may have additional assumptions attached. At that point, either the case analysis split is

performed (and a new attempt to prove the positive version of the encountered negative subgoal),

or else the assumption of the negative subgoal's truth is simply passed up to the parent subgoal.

As before, though, the opportunities for case analysis explode as the theory becomes more and

more non-Horn. While this modi�ed format may be useful for near-Horn theories, it is not feasible

for strongly non-Horn theories. Ideally we would like to implement e�ective caching in a non-Horn

goal-directed theorem prover like weak me, without sacri�cing completeness.

Baumgartner and Furbach [BF94] propose a similar scheme called restart model elimination.

Restart model elimination is even more restricted than the simple problem reduction format, while

still remaining complete. The modi�ed problem reduction format essentially allows restarts with

any goal along the current path, whereas restart model elimination only allows restarts with the

original goal literal. In addition, restart model elimination includes the negative literals along paths,

which Baumgartner and Furbach have found to be valuable information during experiments.

4.7.3 Foothold Format

Backward-chaining proof spaces have a large amount of duplication in them: proofs of a given solu-

tion occur multiple times in the space. Spencer [Spe90] suggests an inference procedure which avoids

duplicate proofs during its search. (The following description has been adapted from Spencer's de-

scription.)

10This example is from Plaisted [Pla88].
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The basic idea behind the foothold format is to avoid redundant proofs that arise when reasoning

by cases by breaking up the symmetry of the cases. If the database contains a disjunction A or B,

then implicitly there are two contrapositive rules: A( :B and B( :A. In a foothold proof, labels

from the set �1; 0;+1 are assigned to the literals on the right hand side of the contrapositive rules.

In this example the symmetry is broken by assigning di�erent labels to :B and :A.

All positive literals (and separately, all negative literals) are placed in an ordered sequence, e.g.

alphabetical. If a rule has a positive head literal, then a positive body literal is assigned the label

+1 if it appears before the head literal in the ordered sequence, and �1 if it appears after. Negative

literals are assigned the label 0. (The complementary labelling holds for rules with a negative literal

head.) For example, the database in table 4.8 is rewritten into the labelled rules in table 4.9.

P _ :A

P _ :B

A _ B

Table 4.8: A clausal database

P ( A0

:A ( :P0

P ( B0

:B ( :P0

A ( :B+1

B ( :A�1

Table 4.9: Labelled rules

Proof spaces are built using the labelled contrapositive rules. During the search for a negated

ancestor (in order to perform a reduction inference operation), the labels of all the literals encoun-

tered are summed up. If the sum is positive when the negated ancestor is reached, then the proof

is accepted. Otherwise it is rejected.

In a model elimination prover, there are two reduction proofs for the goal P from the database

in table 4.9, namely

P  A0  :B+1  :P0

and

P  B0  :A�1  :P0

Using the restriction of the foothold format, only the �rst of these is acceptable; the second can be

pruned.
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Horn-Clause Postponement Caching

Postponement caching is the idea of exploring the inference space as a graph rather than as a tree.

Thus subgoals that are repeated in the space (and the whole subtrees below them) are only explored

in a single place during a proof e�ort.

When a subgoal is encountered for the �rst time, a new literal appears in the inference space.

As much of that subspace below the subgoal as needed to �nd the �rst solution is explored, as

usual. In addition, however, a continuation is kept in case more answers are ever required, whether

from the original parent or from some other parent (in what has now become a search graph). The

technique stores an intermediate amount of information, compared to the complete or partial table

caches. Each cache entry contains the set of answers found so far, along with the continuation in

case more answers are needed. Identical proof spaces are never repeated. Instead, if a subsequent

slaved subgoal needs an additional answer and the existing cache only has fewer stored, then the

original subproof is resumed by restarting the continuation attached to the cached subgoal. All

subsequent answers discovered are copied to each existing slave subgoal.

Postponement of subgoals along the ancestor path (a subset of full proof space caching) controls

recursion by e�ectively forcing exploration of base cases before chasing down recursive branches of

the space. It can serve much of the purpose of iterative deepening search, which is typically the

response to potential recursion in the domain theory. It is a superior method for controlling the

most common kind of recursion, that involving syntactically similar subgoals. (Dealing with other

kinds of in�nite recursion, such as that arising from repeated function application to terms, requires

other techniques.)

5.1 Example

Consider the database in table 5.1.
1
The goal is to �nd all (three) things that lions can outrun.

The hard part for automated inference is the �rst rule, which states that the outrun relation

is transitive. For a traditional depth-�rst search algorithm, such a rule results in an in�nite search

space, so a query asking for all answers will not terminate. Postponement caching does recursion

control by slaving new subgoals to identical parents.

The initial goal

1This example is from Ginsberg [Gin93b, exercise 8.14].

63
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Outrun(fast,slow) (

Outrun(fast,medium) and Outrun(medium,slow)

Outrun(predator,prey) ( Eat(predator,prey)

Eat(carnivore,Food(carnivore)) ( Carnivore(carnivore)

Eat(Lion,Zebra)

Outrun(Zebra,Dog)

Carnivore(Dog)

Table 5.1: Carnivore database

Outrun(Lion,food)

resolves with the �rst two rules in the database. Assuming we explore the transitive rule �rst, we

now have a conjunctive subgoal:

Outrun(Lion,medium) and Outrun(medium,food)

To solve the conjunction, work begins with the �rst conjunct. At this point a standard backward

chainer would resolve the subgoal Outrun(Lion,medium) with the same two database sentences

above, and the process would loop inde�nitely. Postponement caching, on the other hand, notices

that this new subgoal is the same (up to variable renaming) as the original goal. Instead of con-

tinuing inference with the subgoal, it attaches the subgoal to the top level goal, such that any

subsequent answers to the top level goal will be propagated to this subgoal.

The search then continues on the fringe of the proof space, that now contains only the resolution

of the original goal with the second rule. This leads to the subgoal Eat(Lion,food), that in turn

resolves with the �rst ground fact to yield the answer food!Zebra. This answer propagates to the

root of the proof space, yielding the �rst answer to the original query

Outrun(Lion,Zebra)

as shown in �gure 5.1.

Outrun(Lion,food)

Outrun(Lion,medium) Outrun(medium,food) Eat(Lion,food)

Outrun(Zebra,food) Lookup

food->Zebra

Figure 5.1: Lions outrun Zebras
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Since the top goal discovered a new answer, and it is master to a slave, the new answer must

be propagated to the slave. The answer is �rst transformed by the same uni�er that makes the

top goal and the subgoal identical, so the new answer medium!Zebra is added to the subgoal

Outrun(Lion,medium). With this binding, we can return to the second conjunct of the conjunc-

tion, that (after plugging in the bindings so far) becomes Outrun(Zebra,food). This has three

resolutions with the database, and the resolution with the second ground fact results in an imme-

diate answer: food!Dog. This second answer propagates up to the top of the tree, yielding the

second answer to the original query

Outrun(Lion,Dog)

as shown in �gure 5.2.

Outrun(Lion,food)

Outrun(Lion,medium) Outrun(medium,food) Eat(Lion,food)

Outrun(Zebra,food)

Lookup

food->Dog

Lookup

food->Zebra

Figure 5.2: Lions outrun Dogs

The proof space showing the third answer

Outrun(Lion,Food(Dog))

is shown in �gure 5.3. If the search for more answers is continued, the algorithm soon stops, reporting

no more answers are available. (The �nal space is shown in �gure 5.4.) For typical inference

engines, this problem has an in�nite search space. Postponement caching, however, modi�es the

space su�ciently that it becomes �nite (and small!), and so it can be searched completely in a short

amount of time. This ability, to report that there are no more possible answers when exploring a

recursive space, is a hallmark of postponement caching.

5.2 Cycles

It is possible for a dependency cycle to arise, where two goals are mutually dependent. This is

similar to the potential problem mentioned for goal displacement in section 2.5.5. There, in order

to preserve soundness, the solution was to only allow displacement if the ancestor sibling had not

yet been expanded.

Such a constraint is not necessary for postponement caching. In goal displacement, the halted

subgoal is treated as having a successful completion. In postponement caching, no label is placed on
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Outrun(Lion,food)

Outrun(Lion,medium) Outrun(medium,food) Eat(Lion,food)

Outrun(Zebra,food)

Lookup

food->Dog

Outrun(Zebra,medium) Outrun(medium,food)

Outrun(Dog,food)

Outrun(Dog,medium) Outrun(medium,food) Eat(Dog,food)

Outrun(Food(Dog),food) Carnivore(Dog)

food->Food(Dog)

Lookup

Lookup

food->Zebra

Figure 5.3: Lions outrun Dog Food
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Outrun(Lion,food)

Outrun(Lion,medium) Outrun(medium,food) Eat(Lion,food)

Outrun(Zebra,food)

Outrun(Dog,food)

Outrun(Food(Dog),food)

Lookup

food->Dog

Outrun(Zebra,medium) Outrun(medium,food) Eat(Zebra,food)

Outrun(Dog,medium) Outrun(medium,food) Eat(Dog,food)

Outrun(Food(Dog),medium) Outrun(medium,food) Eat(Food(Dog),food)

Carnivore(Food(Dog))

food->Food(Food(Dog))

Carnivore(Dog)

food->Food(Dog)

Lookup

Carnivore(Zebra)

food->Food(Zebra)

Lookup

food->Zebra

Carnivore(Lion)

food->Food(Lion)

Figure 5.4: Lions only outrun three things



68 CHAPTER 5. HORN-CLAUSE POSTPONEMENT CACHING

the slaved subgoal until the master subgoal is conclusively labelled. Thus in a mutually dependent

goal cycle, both slaved subgoals are waiting for the ancestors to complete, which (if the subgoals

actually don't follow from the theory) will never occur. The search will halt, with a �nite graph

and no proof discovered, exactly as it should.

There remains, however, a more complex situation that must be dealt with specially. Postpone-

ment caching interacts with conjunction solving. In most theorem proving systems, conjunctions

are typically explored with a depth-�rst search.
2
A portion of the conjunction space may halt with

a goal cycle, but there still may be a solution to the conjunction elsewhere in the conjunction space.

This means that the mechanismwhich searches the conjunction space must be capable of forking,

allowing a subtree of the space to continue (in case a distant master subgoal �nally �nds a further

answer), and also being able to continue the search of the conjunction space under the assumption

that an answer will never return.

Consider the database in table 5.2. The space in �gure 5.5 shows the error that can result with

no special mechanism. The correct space (with a proof) is shown in �gure 5.6.

G ( P(x) and Q(x)

P(1)

P(2)

Q(2)

Q(1) ( R and S

R ( T and S

T ( Q(1)

S

Table 5.2: Postponement blocks

5.3 Formal Results

Postponement caching for Horn theories is an augmentation of the Horn clause version of Loveland's

meson procedure
3
[Lov78]. (The Horn version ofmesonmerely eliminates the reduction operation.)

De�nition 32 (Postponement caching) Begin with the standard meson procedure. In addition,

maintain a separate cache table. Each entry in the cache has four elements:

1. the cached literal

2. a set of answers (i.e. bindings) found so far

3. a continuation data structure in case more answers are required

2See section 2.5.4 for an alternative search strategy.
3The meson procedure is isomorphic to weak model elimination.
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G

P(x) Q(x)

Lookup

x->1

Q(1)

R S

T S

Figure 5.5: An apparently complete space

G

P(x) Q(x)

Lookup

x->1

Lookup

x->2

Q(1) Q(2)

R S

T S

Lookup

Figure 5.6: The actual complete space
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4. a set of slaved subgoals to which answers should be propagated

When expanding a subgoal for the �rst time:

1. If the subgoal literal is not found in the cache, then add a new entry to the cache with this

literal, with an empty set of answers, with the children of the subgoal being the continuation,

and with an empty set of slaved subgoals

2. Whenever a new solution is found to this subgoal, that answer is propagated to the parent, and

also added to the set of answers in the cache entry.

When searching for a subsequent answer for a slaved subgoal, select the next unused answer in the

cache entry. If there are no more unused answers in the entry, and the continuation is non-empty,

then reactivate the master subgoal for it to search for a subsequent answer. If the continuation is

empty, then fail.

To search for a subsequent answer from a master subgoal, retrieve the next item from the contin-

uation and expand it. If it returns an answer, then propagate that solution to this subgoal's parent,

as well as to every slave subgoal in the cache entry. If this child has no more answers, then remove

it from the continuation list and proceed to the next item in the continuation. If there are no more

items in the continuation, then propagate a \termination" noti�cation to the parent and to each

slaved subgoal.

Theorem 33 Postponement caching is sound.

Theorem 34 Postponement caching is complete for Horn theories.

Proof. Although it was developed independently, postponement caching turns out to perform

essentially the same computations as the OLDT augmentation of logic programming described in

section 5.4.2. In the case of Horn clause inference, then, we can simply defer to the work referenced

there in order to establish the soundness and completeness properties.

5.4 Related Work

5.4.1 Recursion Control

In this section we describe an algorithm that was formally proposed by Smith [SGG86], having

earlier been discovered independently by both Black [Bla68] and McKay and Shapiro [MS81].

Consider the database in table 5.3 that has two ground facts about paths between three cities,

and one rule stating that the Path relation is transitive. The goal is to �nd all paths from city A.

For a traditional depth-�rst search algorithm, the rule results in an in�nite search space, as illus-

trated in �gure 5.7. Even for a slightly more sophisticated search strategy like iterative-deepening,

a query asking for all answers will not terminate. (Note also that the need to look for multiple

answers arises naturally in the course of solving subgoals to a top-level query, so even if only a

single answer is asked for, controlling recursion is still a crucial problem.) Recursion control deals

with the situation by slaving new subgoals to identical ancestors.

The proof space for �nding the �rst answer is shown in �gure 5.8. The initial goal
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Path(start-city,end-city) (

Path(start-city,city) and Path(city,end-city)

Path(A,B)

Path(B,C)

Table 5.3: Paths between cities

Path(A,end)

Path(A,city) Path(city,end)

Path(A,c2) Path(c2,city)

Path(A,c3) Path(c3,c2)

Figure 5.7: An in�nite search space: Path(A,end)
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Path(A,end)

resolves with both the rule and the �rst ground fact in the database. Assuming we explore the

transitive rule �rst, we now have a conjunctive subgoal:

Path(A,city) and Path(city,end)

To solve the conjunction, we work on the �rst conjunct, namely Path(A,city). At this point a

na��ve backward chainer would resolve the subgoal with the transitive rule again, and the process

would loop inde�nitely.

Path(A,end)

Path(A,city) Path(city,end) Lookup

end->B

Figure 5.8: Proof of the �rst Path solution

Recursion control notices that this new subgoal is the same (up to variable renaming) as the

original goal. Thus instead of continuing inference with the subgoal, it attaches the subgoal to the

top level goal, such that any subsequent answers to the top level goal will be propagated to this

subgoal.

The search then continues on the fringe of the proof space, that now contains only the resolution

of the original goal with the �rst ground fact. This resolves successfully yielding the answer end!B.

If we were searching for more than one (or all) answers, the space would expand immediately.

Since the top goal discovered a new answer, and it is master to a slave, the new answer must be

propagated to the slave. The answer is �rst transformed by the same binding list that makes the top

goal and the subgoal identical, so the new answer city!B is added to the subgoal Path(A,city).

With this binding, we can return to the second conjunct of the conjunction, that (after plugging

in the bindings so far) becomes Path(B,end). This similarly has two possible resolutions with the

database. The child from the transitive rule is again postponed, and then the second ground fact is

used to derive the answer end!C to this new subgoal Path(B,end). This second answer propagates

up to the top of the tree, yielding the second answer to the original query: Path(A,C). This space

is shown in �gure 5.9.

The complete proof space for �nding all answers is shown in �gure 5.10. Note that there is no

longer any active fringe to explore; not only have all the answers been found, but it is also known

that there are no more answers derivable from the theory.

The postponement caching scheme from chapter 5 is a direct extension of Smith's Algorithm 3.8.

The di�erence is that, in addition to slaving subgoals to (similar) parents, postponement caching

also allows slaving to similar subgoals anywhere in the space. Contrast, for example, the space in

�gure 5.10, which is the full search space using recursion control, with �gure 5.11, which is the

smaller full space using postponement caching.
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Path(A,end)

Path(A,city) Path(city,end) Lookup

end->B

Path(B,end)

Path(B,city) Path(city,end) Lookup

end->C

Figure 5.9: Second solution of Path query

Path(A,end)

Path(A,city) Path(city,end) Lookup

end->B

Path(B,end) Path(C,end)

Path(B,city) Path(city,end) Lookup

end->C

Path(C,end)

Path(C,city) Path(city,end)

Path(C,city) Path(city,end)

Figure 5.10: Proof space for all Path solutions
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Path(A,end)

Path(A,city) Path(city,end) Lookup

end->B

Path(B,end)

Path(C,end)

Path(B,city) Path(city,end) Lookup

end->C

Path(C,city) Path(city,end)

Figure 5.11: All Path solutions using postponement caching

5.4.2 Logic Programming

In logic programming, Warren [War92] gives an inference algorithm called OLDT. Warren describes

prolog as being a non-deterministic language, where the interpreter carries out a depth-�rst search

through the tree of possible alternative executions. In this scheme, OLDT is simply adding memoing

to this procedural interpreter.

As Warren writes in [War92, pg. 97]:

Intuitively, we think of a machine that is carrying out a nondeterministic procedure as

duplicating itself at a point of choice, and as disappearing when it encounters failure.

Thus at any time, we have a set of deterministic machines computing away. The set

gets larger when any one has to make a nondeterministic choice, and it gets smaller

when any one fails. To add memoing, we imagine a single global table containing every

procedure call that has been made by any machine, and for each such call, the answers

that have been returned for it. Since the situation is nondeterministic, there may be

none, one, or many answers for any single call. Now each machine, before it makes a

procedure call, looks in the global table to see if the call has already been made. If

not, it adds the call to the table and continues computing. During its computation,

whenever a machine returns from a procedure, it �nds the associated call in the global

table, adds the answer it has just computed, and continues computing. (If the answer

is already in the table, then this answer is a duplicate, and the machine fails.) When a

procedure is about to be called, if the call is found to be already in the table, then for

each associated answer in the table, the machine must fork o� a new copy of itself to

continue the computation with that answer. It is possible that not all the answers are

in the table at this time; some may still be in the process of being computed by other

machines and will show up later. Thus when a machine encounters a call already in
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the table, it forks o� copies of itself to continue with the answers that are there, and it

remains suspended on that table entry. Then whenever a new answer gets added to the

table, the suspended machine makes a duplicate of itself to continue computing with

that new answer. When a machine �nishes its computation successfully, it disappears.

The entire computation is complete when (and if) no machines are computing.

In the case of Horn databases, postponement caching is essentially equivalent to OLDT applied

to a version of prolog that has sound uni�cation and no cut operation.

5.4.3 Magic Sets

This description of magic sets is adapted from a description by Warren [War92, pp. 99-101].

The magic set algorithm [Ull89] in deductive databases provides much the same kind of control

of in�nite recursive spaces, by means of an automatic reformulation. (A similar rewriting of the

given rules is the basis for the Alexander method [RLK86].)

The standard way to evaluate database queries is to evaluate them as expressions, using the

relational operations to combine component relations. This is a bottom-up strategy that calculates

new relations by combining old ones. The obvious way to evaluate recursive de�nitions is to begin

with all the de�ned relations empty, and then iteratively compute new values for the relations, using

the old relation values as input, until the relations produced as output are the same as the ones

that are input, which indicates that a �xed point has been reached.

Consider the database in table 5.4. We start with inferred relations, like Path, being empty,

while the extensional relation Direct contains the tuples

<A,B> <C,B> <B,D>

On the �rst iteration we can use the second rule to add those same tuples to the Path relation.

(The �rst rule doesn't add any tuples because the Path relation is currently empty.)

Path(x,z) ( Direct(x,y) and Path(y,z)

Path(x,y) ( Direct(x,y)

Direct(A,B)

Direct(C,B)

Direct(B,D)

Table 5.4: Magic Set database before

The second iteration now uses the new value of Path that was computed on the �rst iteration.

The second rule once again computes

<A,B> <C,B> <B,D>

for Path. The �rst rule now computes the join of the Direct and Path relations of the previous

iteration and adds
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<A,D> <C,D>

Thus the relation for Path at the end of the second iteration is

<A,B> <C,B> <B,D> <A,D> <C,D>

On the third iteration, the same value of Path is computed again, indicated that the least �xed

point of the relational operator has been reached.

This bottom-up evaluation procedure terminates for any Datalog program over a �nite domain.

Duplicates can be eliminated at each step since the tuples are accumulated together. One source

of ine�ciency, however, is the redundant computation at each level that completely recomputes

the previous level, as shown in the example. This is easy to avoid: New tuples generated on the

current iteration can be distinguished from the old tuples. When generating the tuples for the next

iteration, no new tuples are generated by using only old tuples computed on previous iterations.
4

Another source of ine�ciency is that this strategy may compute many tuples that are completely

irrelevant to the query, which is only used at the �nal step to determine which of the computed

tuples provide an answer via a selection. Computation of irrelevant tuples can be avoided in the

nonrecursive relational algebra by a compile-time optimization known as \pushing selects in". If

a query is expressed as �rst joining two large relations and then selecting a few tuples from that

relation, the optimizer can determine that it is equivalent, but more e�cient, to �rst select a few

tuples from one of the relations and then join that much smaller relation with the other larger one

to obtain the answer. In e�ect, the select operation has been pushed inside the join operation.

Unfortunately, this optimization does not apply in the presence of recursion.

The solution to this problem, magic sets, can loosely be described as pushing selects in at run-

time. A new literal is added to the body of the rule. This �ltering relation is de�ned to be true

of the \selecting values" that would occur in some call executed in a top-down evaluation of the

query.

For example, adding the �ltering relation to the rules of table 5.4 transforms the �rst two rules

into the �rst pair shown in table 5.5. In general, every rule for some predicate P gets a new literal in

its body consisting of the Calls-To-P applied to the arguments of the head. (Ground facts remain

unaltered.)

The new relations, selecting for the calls that are possible when answering a query, also must

be de�ned. If there is a rule like

P ( Q and R and S

then we know that there will be a call to S whenever there is a call to P and the computation

succeeds through Q and R. This knowledge can be captured using a rule like

Calls-To-S ( Calls-To-P and Q and R

One additional fact must be added when the query arrives. Since the query itself de�nes the

�rst call, a ground fact for Calls-To-G must be inserted for the query G.

For the query Path(C,end), the transformed database of table 5.5 results. The base case

Path-Call literal comes from the query. The last rule is generated from the �rst rule for Path: a

4This approach is called semi-na��ve bottom-up evaluation [Ull88].
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Path(x,z) ( Path-Call(x,z) and Direct(x,y) and Path(y,z)

Pathx,y ( Path-Call(x,y) and Direct(x,y)

Direct(A,B)

Direct(C,B)

Direct(B,D)

Path-Call(C,end)

Path-Call(y,z) ( Path-Call(x,z) and Direct(x,y)

Table 5.5: Magic Set database after

call to Path that succeeds through the Direct conjunct will cause another call to Path. To �nally

evaluate the query, the semina��vebottom-up procedure is run on the new database.

On the �rst iteration, neither of the rules for Path applies, since the relation Path-Call (and

Path) is empty. But we can add the ground facts to their respective relations, so Direct becomes

<A,B> <C,B> <B,D>

and Path-Call becomes

<C,end>

In the second iteration, the second rule for Path applies, so a new tuple is added to the previously-

empty Path relation, resulting in

<C,B>

The Path-Call rule also applies, adding the tuple <B,end> and resulting in the expanded relation

<C,end> <B,end>

On the third iteration <B,D> is added to the Path relation, and <D,end> to the Path-Calls

relation. On the fourth iteration, <C,D> joins Path. The �fth iteration produces nothing new,

indicating that the �xed point has been reached. The �nal relations are

Direct <A,B> <C,B> <B,D>

Path-Call <C,end> <B,end> <D,end>

Path <C,B> <B,D> <C,D>

Finally, a select can be done on the Path relation to return the results for our original query

Path(C,end), yielding the solutions

Path(C,B) and Path (C,D)

The algorithm presented here is essentially the Magic Template algorithm [Ram91], which is a

generalization of the Magic Sets algorithm to handle tuples containing variables. Handling vari-

ables requires a more complex (and perhaps less e�cient) mechanism than relational-algebra pro-

cessors normally contain. By allowing the transformation to apply only to range-restricted Datalog
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programs,
5
it can be modi�ed to generate programs that are guaranteed not to generate tuples

with variables during bottom-up evaluation. In this situation the magic relations turn out to be

projections of the Calls-To-P relations (i.e., to contain only some of their columns). For example,

in the table 5.5 database, Path-Calls would be a unary predicate and the fact de�ning it would

be Path-Calls(C), which is range-restricted, instead of the Path-Calls(C,end) in table 5.5, which

is not range-restricted.

In postponement caching (and the OLDT logic programming algorithm), a data structure in-

dicating dependencies is maintained, so that answers are returned directly to those computations

desiring them. In the magic algorithm, no such pointers are maintained, and so answers are dis-

tributed to those needing them by (re-)performing a join.

Magic strategies are typically thought of as being bottom-up strategies, and backward chainers

like postponement caching are thought of as top-down. As described here, the algorithms and com-

putations are very similar. Adding memoing or postponement introduces a bottom-up component

to a top-down strategy, and making the magic transformation introduces a top-down component to

a bottom-up strategy. The resulting algorithm is essentially the same in either case.

Bry has given a common framework, the Backward Fixing Procedure [Bry90], which uni�es the

top-down and bottom-up approaches for Horn clause inference. The framework shows the equiva-

lence of particular bottom-up magic set methods
6
and particular top-down memoing approaches

7
.

Magic sets arose in the deductive database community. The technique is clearly superior to

simple bottom-up approaches, as it avoids computing tuples which do not relate to the query. It is

also superior to simple top-down approaches, which recompute the solutions to subgoals whenever

the recur in the search space.

The question remains, though, how magic sets compare to more sophisticated top-down inference

engines with caching, such as logic programming memoing or postponement caching. Ullman writes

[Ull89]:

There are a number of reasons why bottom-up calculation is preferable to top-down.

1. . . . Top-down calculation . . . can get trapped in in�nite loops and never �nd the

answer. . . .

2. . . . Detecting termination, even for datalog rules, is not easy.

3. . . .We can be led to expand the same subgoal many times in the tree, thus repeating

signi�cant amounts of work.

4. The bottom-up algorithms can make use of e�cient techniques for taking joins of

massive relations. . . . In comparison, the top-down approach tends to deal with

many small relations, each associated with one of the nodes of the rule/goal tree.

. . .

5. Top-down algorithms require uni�cation, but bottom-up algorithms only need

term-matching, a simpler operation.

5These are programs where each variable in the head of a rule appears in the body.
6Magic sets and the Alexander method were shown to be specializations of the Backward Fixing Procedure.
7Bry considered the following memoing extensions to SLD-resolution: ET*, ETinterp, OLDT-resolution, SLDAL-

resolution, and the RQA/FQI procedure
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Ullman was comparing simple magic sets on datalog theories with a simple backward-chainer.

We're actually more interested in comparing a generalized magic sets algorithm (which is com-

plete for Horn theories), which a sophisticated top-down algorithm like memoing or postponement

caching. In such a case, we can observe the following:

1. In the presence of functions there may be an in�nite number of solutions to a query, in

which case any complete algorithm can get trapped in an in�nite loop. Simple recursive loops

without functions, however, can be detected by the top-down strategies which notice that a

new subgoal is an instance of some ancestor.

2. The computations between the two are essentially isomorphic, and so termination can be

detected in much the same way.

3. Caching allows the algorithm to expand a given subgoal only once, and to look up that value

whenever the subgoal recurs.

4. As mentioned previously, magic sets performs the same search of the space as these top-down

approaches, but it does not keep the data structure representing the top-down space itself.

This means that many more joins are actually required by the bottom-up approach, where as

the top-down methods can e�ciently propagate answers to those subgoals waiting for them.

5. When the language is more general than subgoal-recti�ed datalog (e.g. Horn clauses), bottom-

up approaches are forced to use uni�cation as well.

That was a defense of top-down approaches, given the challenge of the e�ective magic sets

approach. We can also consider whether top-down approaches might have some advantages over a

magic set-style bottom-up approach. First we dispense with two potential points that aren't real

advantages:

1. Database problems are generally looking to �nd every solution to a query, whereas top-down

approaches are often addressing a problem of �nding a single solution. One might imagine

that this could lead to an e�ciency gain for the top-down approach.

This potential gain is fairly minimal, though, since it is easy to imagine a version of magic sets

which can return a single answer (or a �nite number of answers). The bottom-up approach

iteratively computes tuples. As soon as the required number of tuples have been produced,

the process can be halted. The computations will have been essentially the same as the top-

down approach. The normal �xed point version of magic sets is only needed if all answers are

sought. Thus a single-answer scenario is not generally an advantage of the top-down approach.

2. Database scenarios generally involve relatively small rule sets and very large sets of ground

facts (the EDB relations). AI scenarios often involve large sets of rules with only a few ground

facts, such as the CYC commonsense knowledge base [LG88]. In the latter case, answering a

query may only involve a small fraction of the database rules. Bottom-up approaches require

rewriting each rule in the database, whether relevant to the query or not.

As it turns out, actual magic set implementations typically explore enough of the top-down

goal space to determine exactly which rules need to be rewritten. In any case, almost all of
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the rewriting is independent of the query, so the database can be rewritten once and then

used to answer multiple queries.

The magic set rules are, however, generally larger (or more numerous) and less clear than the

original rules, so this is a minor disadvantage for the rewriting approach.

The two approaches are not identical, however. The search tree maintained by top-down ap-

proaches provides additional information, and clever algorithms can take advantage of this extra

knowledge.

1. Conjunct ordering can be delayed much longer in top-down approaches, resulting in more

e�cient orderings since more information is available. Bottom up approaches much decide

what order to expand subgoals based only on the expected binding pattern of the variables.

While this is a reasonable amount of information, it is less than that available to top-down

approaches.

Say that the database contained a rule P(x) ( Q(x,y) and R(x,y). A magic set rewrite

might know that the goal P(x) will only be called with a bound argument, and might rewrite

the rule to take advantage of that. But it will have to choose between solving Q(x,y) �rst

and solving R(x,y) �rst, knowing only that the variable x is bound.

Imagine a situation where the top-down prover knew that Q(1,y) had only a few solutions,

R(1,y) had many solutions, Q(2,y) had many solutions, and R(2,y) had only a few. (Also

assume that looking up Q or R when both arguments are bound is a constant-time operation.)

And say that, in the actual top-down search, only P(1) and P(2) ever appeared as subgoals.

When attempting to solve P(1) using this rule, it is faster to compute the few Q tuples �rst,

and then �lter them through the R relation. But when solving P(2), the opposite order is

superior.

Few top-down theorem provers actually exploit this 
exibility
8
or consider such meta infor-

mation when solving conjunctions, but the potential still exists with such an approach.

2. It is true that the magic set reformulation explores the same space as that implied by the

query expanded with a backward-chaining inference rule. A top-down algorithm, however,

can sometimes prune a portion of this space. This advantage is separate from the pruning

resulting from caching subgoals, which is part of the sophisticated top-down approaches we

are considering, and which arises naturally from the bottom-up approaches.

For example, imagine a ground subgoal which has multiple possible proof paths. Each of these

subspaces is part of the implicit top-down search space, and hence each will be explored by

the bottom-up algorithms. If one branch has a very short proof, it is possible that a top-down

algorithm can �nd the simple proof quickly. The other spaces can be pruned, even though

they may actually correspond to valid proofs as well. It is the search space data structure

which allows top-down algorithms to realize that the result of any computation on the other

branches can at best yield a solution which is a duplicate of the one already known. Since

8The MRS system of Genesereth [Gen83] allowed the de�nition of an entire logical metatheory to describe how

to solve particular baselevel subgoals.
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bottom-up approaches don't have access to this data structure, they are forced to explore all

possible subspaces.

A similar example can be constructed for non-ground goals, if the number of solutions is

known. For example, there are only two solutions to Parent(x,y) if the �rst argument is

bound, since a given person only has two parents. If two di�erent parents have already been

found, then all further subgoals in the service of a goal Parent(A,y) may be pruned.

3. Lastly, bottom-up approaches are basically stuck with a breadth-�rst search of the top-down

space. Top-down approaches have the 
exibility to trade o� time for space, searching using

depth-�rst search, iterative deepening, best-�rst search, or even the same breadth-�rst search.

This choice of control may allow for much better performance on some problems.

Further analysis on the relationship of magic sets and postponement caching in the case of

non-Horn theories can be found in section 6.3.

5.4.4 Other techniques

The material in this section is adapted from Smith's description [SGG86, section 1.2].

The primary bene�t of the schemes discussed in this chapter is the transformation of some

in�nite search spaces (typically resulting from recursive rules) into �nite spaces. There are other

techniques to address the problem of in�nite recursion, but all have characteristics that limit their

applicability.

Breadth-�rst search

Breadth-�rst search is guaranteed eventually to �nd any answer present in the search space. If we

are looking for all answers to a query, however, then breadth-�rst search will never halt. Barring

other information about when to stop expanding the search space, the entire in�nite space must be

explored in order to guarantee that all answers have been found.

Even if only a speci�c number of answers are requested, breadth-�rst search will halt only if the

space contains at least that many answers. As perhaps the most common case, only a single answer

might be requested for a query that has no solution in the search space. Again, breadth-�rst search

will not halt.

Selective Forward Inference

One approach to controlling recursion is to only allow recursive rules to be used for forward inference,

in carefully selected cases. Unfortunately, a number of problems prevent this from being a feasible

solution for many situations.

1. Since forward inference is not goal-directed, such a scheme results in the computation and

storage of many irrelevant facts. This is typically a large source of ine�ciency in the algorithm.

2. In the selection phase, one cannot limit forward inference to just the recursion rules. For

example, consider the database in table 5.6. Here only the �rst rule is recursive, but if the

second is not involved in the forward inference then the inference will be incomplete.
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So unfortunately it is the case that if any axiom is restricted to forward inference, then all

axioms that can be used in the proof of any of its premise clauses must also be subject

to forward inference. This of course increases the number of irrelevant facts that must be

computed and stored.

Path(x,y) and Path(y,z) ) Path(x,z)

Bridge(x,y) ) Path(x,y)

Path(A,B)

Bridge(B,C)

Table 5.6: Forward inference: Many rules

3. Even forward inference can result in in�nite deduction. The database in table 5.7 for comput-

ing Fibonacci numbers can cause an in�nite loop in either the forward or backward directions.

Fib(i)=z ( Fib(i-2)=x and Fib(i-1)=y and z=x+y

Fib(0) = 1

Fib(1) = 1

Table 5.7: Fibonacci numbers

Reformulation

prolog programmers often use the technique of reformulation to facts such that the search space

is no longer in�nite. In the Path example, for instance, one can introduce a new predicate Direct

meaning that the two cities are directly connected. Thus the old database of table 5.8 becomes the

one in table 5.9.

Path(x,z) ( Path(x,y) and Path(y,z)

Path(A,B)

Path(B,C)

Table 5.8: prolog reformulation before

The recursion on all left-hand branches of the tree has been eliminated. The search space is thus

no longer in�nite, as long as the Direct conjunct is solved before the Path conjunct when using

the �rst rule.

What goes wrong with this?
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Path(x,z) ( Direct(x,y) and Path(y,z)

Path(x,y) ( Direct(x,y)

Direct(A,B)

Direct(B,C)

Table 5.9: prolog reformulation after

1. Reformulations work well for only a few of the possible forms of the query. For example,

the above reformulation works well for the query Path(A,end), but for the di�erent query

Path(start,C) the search explodes. Using the �rst rule, we get the intermediate subgoals

Direct(start,y) and Path(y,C)

If we solve the Direct conjunct �rst, we must explore every direct connection in the knowledge

base. If we explore the Path conjunct �rst, the in�nite search space returns.

A di�erent reformulation can work well for queries like Path(start,C), but it in turn performs

poorly for the original query Path(A,end).

2. Reformulations are fragile. Adding the symmetric fact Direct(B,A) again leads to an in�nite

search space.

3. Reformulation can be an arbitrarily di�cult programming task. If the original rule set had a

symmetry rule in addition to the transitivity rule, the reformulation would require four new

rules and another constructed relation. At each step, it becomes more di�cult to understand,

explain, and modify the reformulated rules.

4. Lastly, reformulation results in an implicit embedding of control information into the domain

information. By merging domain and control facts, the resulting complex programs have little

advantage over coding expert systems in more traditional programming languages.

However, it should be noted that the Magic Set algorithm described in the previous section

is indeed a clever form of automatic reformulation, and it solves many (although not all) of the

di�culties listed here.



Chapter 6

Non-Horn Postponement Caching

6.1 Incompleteness

As shown in section 4.4, subgoal solutions can be made independent of context. We can attempt

to use this result to extend postponement caching to the case of non-Horn theories. The result

appears to sanction an algorithm that only copies non-reduction answers across cache links. This is

because if a reduction answer would have occurred in some new place, then a non-reduction answer

will occur in the original place by the construction shown previously.

This algorithm unfortunately turns out to be incomplete, as it is possible for the cache links to

get into a deadlock. Note that this is di�erent from just having a cycle in the inference graph: the

Horn clause recursion control of section 5.4.1 in fact relies on cycles in the graph.

Consider the example in table 6.1.
1
A normal model elimination proof (without caching) of the

goal X and Y is easy. The chain sequence is shown in table 6.2 and the corresponding space is in

�gure 6.1. When using postponement caching, however, the search completes with no proof found

(and thus the algorithm is incomplete). As �gure 6.2 shows, the subgoal X is in e�ect waiting for a

solution to the subgoal Y, which itself is waiting for a solution to the original X. (After this chain

of reasoning fails, various other contrapositives allow other parts of the space to be explored, but

they all eventually slave to something already in the space, and thus they fail too.)

X ( A and B

A ( :X

B ( :X

Y ( C and D

C ( :Y

D ( :Y

Table 6.1: Query: X and Y

1I am indebted to H. Scott Roy for this counterexample.

84
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1. X Y

2. A B [X] Y

3. :X [A] B [X] Y

4. B [X] Y

5. :X [B] [X] Y

6. Y

7. C D [Y]

8. :Y [C] D [Y]

9. D [Y]

10. :Y [D] [Y]

11. 2

Table 6.2: Success of X and Y with no caching

X Y

A B C D

~X ~X

Reduction Reduction

~Y ~Y

Reduction Reduction

Figure 6.1: Success of X and Y with no caching
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X Y

X

A B

~A ~B

~X

Reduction Y

C D

~C ~D

~Y

Reduction

~Y D ~Y C

~X B ~X A

Figure 6.2: Failure with postponement caching
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So what goes wrong in this example? Let's follow the construction of section 4.4.2 on this

example. We prove the subgoal A successfully, using a reduction proof involving the parent X. The

next subgoal, B, slaves to the existing :X subgoal, which has a single answer we can't use, as it's

a reduction answer. The construction suggests that there will be a di�erent, direct, proof, that

we can �nd it by following the missing reduction proof to the goal. And, indeed, the subgoal :X

immediately reduces to Y, the conjunctive sibling of the current goal X.

If the original goal had a proof (from the empty context), then the subgoal Y should have one

also (from a more complex context). So we continue to try to prove Y as we would have without

caching. The subgoal C succeeds easily. The subgoal D slaves to the now existing :Y that needs a

direct answer. And now the loop occurs, as that direct answer depends on proving X, which indeed

follows from the database, but which we are unfortunately currently waiting for.

Theorem 35 (Incompleteness of postponement caching) The postponement caching algo-

rithm is not complete for non-Horn theories.

Proof. The example in table 6.1 is a counterexample.

6.2 Future Work

Is the incomplete postponement caching algorithm patchable? A small patch, such as checking

for reduction solutions before examining the cache, is susceptible to a counterexample which is a

slightly extended version of table 6.1. All that is required is to separate the reduction from the

cached subgoal and the same loop reappears, as shown in �gure 6.3 which uses an intermediate

subgoal I.

More promising is an attempt to reuse those context-sensitive answers that are still valid in

the new context. This is similar to the original ideas for caching in �rst-order inference, but it

is now the solutions that become context-dependent, not the subgoals themselves. Consider then

this augmented postponement caching scheme, where answers to subgoals are annotated with the

required ancestors that enabled the proof to succeed. If those same ancestors are present in the

new context, then the proof (and thus the recorded solution) is valid there as well.

This new algorithm easily solves the previous counterexample, as shown in �gure 6.4. When the

child of B slaves to the existing :X, the stored solution (namely, \true if X is an ancestor") is still

valid in the new context, and is thus copied immediately. The same pattern occurs for subgoals C

and D.

6.2.1 The Pigeonhole Problem

Unfortunately, even augmented postponement caching is not complete for non-Horn theories, as can

be shown by attempting to prove the 4-in-3 pigeonhole problem. The generic pigeonhole problem

of size N is to try to �t N pigeons in N � 1 holes, where every pigeon must be in some hole and no

two pigeons may be assigned to the same hole. This problem is of occasional interest in theorem

proving:
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X Y

X

A B ~I

I

~X

Reduction Y

C D ~J

J

~Y

Reduction

~C ~D

~Y D ~Y C

~A ~B

~X B ~X A

Figure 6.3: Failure with patched postponement caching

X Y

A B C D

~X

Reduction

~Y

Reduction

Figure 6.4: Success with augmented postponement caching
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1. By a simple counting argument, it is easy to see that the query follows from the database.

However this kind of meta-proof is generally outside the scope of theorem provers, allowing

us easily to construct a problem of arbitrary di�culty.

2. Proofs of the query using only resolution, on propositional versions of the database, are known

to be exponential in the size of the query. Hence the proof space grows quite rapidly, providing

a good scaling test for particular provers. (The reasoning must essentially be done by cases,

and the number of cases grows exponentially.)

The problem is of interest to us in this section for a di�erent reason: none of the subgoals (e.g. that

a particular pigeon must be in a particular hole) actually follows from the database, and thus the

only proofs of any subgoal are context-sensitive reduction proofs.

The smallest pigeonhole problem of interest to us has N = 4, with four pigeons and three holes.

We will label the pigeons A, B, C, and D, and the holes 1, 2, and 3. For further simpli�cation,

we'll ground out all the clauses. A proposition like \B3" will indicate the concept of pigeon B being

located in hole 3. The database is shown in table 6.3 with a goal of

:D1 and :D2 and :D3

i.e., that there is no location to place the last pigeon.

A proof of the query from the database (using perfect search control, and without caching) is

shown in �gure 6.5. Basic postponement caching solves the �rst conjunct (�gure 6.6) in isolation,

but fails to solve even the �rst conjunct when the query is :D1 and :D2, as shown in �gure 6.7.

Augmented postponement caching solved our previous counterexample (table 6.1), but unfortu-

nately fails to duplicate that success here. It too solves the �rst conjunct (�gure 6.8) in isolation.

When queried about two conjuncts, it solves the �rst but fails on the second (�gure 6.9). (Note

that, because the negated goal plays a signi�cant role in these inference spaces, these di�erent

queries are only loosely related.) For comparison purposes, the full (failing) space for the original

three-conjunct query is shown in �gure 6.10.

6.3 Related Work: Magic Sets

Traditional top-down inference engines su�er from subgoal repetition, in that the same subprob-

lems are often solved and re-solved many times. Traditional bottom-up inference engines su�er

from irrelevancy, in that many subgoals are derived that are unrelated to the query. Memoing

(section 5.4.2) eliminates the repetition problem in a top-down system, by noticing similar subgoals

and solving each only once. The technique of magic sets (section 5.4.3) adds �ltering subgoals to

each forward-inference rule, such that only relevant subgoals are derived when processing the rule

set bottom-up. As shown by Bry [Bry90], these two approaches result in the same fundamental

computations.

The postponement caching described in this chapter is a (failed) attempt to combine the failure

caching results from chapter 4 with the top-down approach of memoing, so that caching can be

e�ective in non-Horn theorem proving.

To compare this e�ort with the bottom-up approach, the magic set technique must �rst be

extended to non-Horn theories. As Bry described, the magic set technique basically adds a meta-

description of a top-down inference engine to the database rule. This is similar in spirit to the
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:D1 or :A1

:D1 or :B1

:D1 or :C1

:D2 or :A2

:D2 or :B2

:D2 or :C2

:D3 or :A3

:D3 or :B3

:D3 or :C3

:A1 or :B1

:A1 or :C1

:A2 or :B2

:A2 or :C2

:A3 or :B3

:A3 or :C3

:B1 or :C1

:B2 or :C2

:B3 or :C3

A1 or A2 or A3

B1 or B2 or B3

C1 or C2 or C3

Table 6.3: Four-in-three pigeonhole problem
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Figure 6.5: Pigeonhole solution
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~D1

A1 B1 C1

~A2 ~A3

B2 [C2] B3 [C3]

~B1 ~B3

D1 [A1] [C1] A3 C3

Reduction Lookup ~A1 ~A2

Reduction [D1] [B1] [C1] [~A2]

~C1 ~C2

[D1] [A1] [B1] A2 [B2]

Reduction ~A1 ~A3

[~A1] [~A3]

~B1 ~B2

[~B1] [A2] C2

~C1 ~C3

[~C1] [A3] [B3]

~B2 ~B3

[~B2] [~B3]

~C2 ~C3

[~C2] [~C3]

Figure 6.6: Pigeonhole: Basic postponement (1 conjunct)
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~D1 ~D2

A1 [B1] [C1]

~A2 ~A3

D2 B2 [C2]

[~D1] ~B1 ~B3

D1 [A1] [C1] A3 C3

Reduction ~D2

A2 [B2] C2

Reduction ~A1 ~A3

[~A1]

~C1 ~C3

[~C1]

~A1 ~A2

Reduction [D1] B1 C1 [~A2]

~B2 ~B3

Reduction [D2] [A2] [C2] [~B3]

~C2 ~C3

[D2] [A2] [B2]

~C1 ~C2

[D1] [A1] [B1]

Figure 6.7: Pigeonhole: Basic postponement (2 conjuncts)
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~D1

A1

~A2 ~A3

B2 B3

~B1 ~B3

D1 A3 C3

Reduction ~A1 ~A2

Reduction [~A2]

~C1 ~C2

[D1] A2

Reduction ~A1 ~A3

[~A1] [~A3]

~B1 ~B2

[~B1] [A2] C2

~C1 ~C3

[~C1] [A3]

Figure 6.8: Pigeonhole: Augmented postponement (1 conjunct)
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~D1 ~D2

A1 B1 C1 [A2] [B2] [C2]

~A2 ~A3

D2 B2 [C2] B3 [C3]

[~D1] ~B1 ~B3

D1 [A1] [C1] A3 C3

Reduction [~D2] ~A1 ~A2

Reduction [D1] [B1] [C1] [~A2]

~C1 ~C2

[D1] [A1] [B1] [D2] A2 [B2]

Reduction ~A1 ~A3

[~A1] [~A3]

~B1 ~B2

[~B1] [D2] [A2] C2

~C1 ~C3

[~C1] [A3] [B3]

~B2 ~B3

[~B2] [~B3]

~C2 ~C3

[~C2] [~C3]

Figure 6.9: Pigeonhole: Augmented postponement (2 conjuncts)
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de�nition of a Lisp interpreter written in Lisp, or a Prolog interpreter in Prolog. In the �rst case,

the de�nition is easy because of building on Lisp's eval function. In the second case the de�nition

is easy because of the use of Prolog's uni�cation routines. (The caching behavior which must be

explicit in the top-down memoing approaches comes for free in the bottom-up systems, via the

standard semi-na��ve �xed-point evaluations.)

The usual magic set method describes the top-down behavior of a simple Horn clause logic

programming system. To convert this to an e�ective inference engine for non-Horn theories, we

must instead describe the top-down behavior of a non-Horn inference engine. There are many such

algorithms, but one of the most popular (and the one considered in this thesis) is model elimination

[Lov78]. With the addition of a single rule of inference, namely a reduction (goal-goal resolution)

between a subgoal and an ancestor of that subgoal, a Prolog-like inference engine becomes complete

for non-Horn theories.
2

Stickel [Sti94] has given such a bottom-up rewriting for non-Horn inference. The description

here is adapted from his.
3

The metatheoretic predicate Fact has two arguments: a literal and a set of ancestor subgoals

su�cient to prove it. The bottom-up interpretation of the rule

P ( Q1 and . . . and Qm

can be expressed by

Fact(P,(a1[ . . .[am)-fPg) (

Fact(Q1,a1) and . . . and Fact(Qm,am)

This sentence can be interpreted as saying: The subgoal P is true in some particular context (i.e.

with a particular set of ancestors [ai) if each subgoal Qi is true in a subset context (or else using P

itself as an ancestor).

To describe the reduction operation, we must say that a fact follows if the complement of the

single literal subgoal is in the set of ancestors. (In addition, if the subgoal uni�es with a complement

of an ancestor, that is also a valid derivation.) The simple version of this is just that a fact is true

with a negated version of itself as an ancestor:

Fact(x,f:xg)

Single literal facts are translated to

Fact(F,;)

As with Horn magic set rewritings, the top-down progress of goals must be described. For the

same rule

P ( Q1 and . . . and Qm

2Prolog itself must be modi�ed in order to be complete even for Horn theories: uni�cation must be made sound,

via the addition of an occurs check, and the search strategy must be complete, e.g. by using iterative deepening.

Stickel [Sti89] describes a version of Prolog which has been modi�ed in this way.
3Stickel's auxiliary sets were subgoals that could be assumed. Here we use the negated version of this idea, so

that the auxiliary sets are ancestor subgoals.
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we have

Goal(Q1,a[fPg) ( Goal(P,a)

Goal(Q2,a[fPg) ( Goal(P,a) and Fact(Q1,a1) and a1 �a[fPg

. . .

Goal(Qm,a[fPg) ( Goal(P,a)

and Fact(Q1,a1) and a1 �a[fPg and . . .

. . . and Fact(Qm�1,am�1) and am�1 �a[fPg

The single literal goal G is translated to

Goal(G,;)

i.e. a proof a G with no ancestors is sought.

Note the following subsumption conditions:

� Fact(f,a) subsumes Fact(f 0,a0), where f 0 = f� and a0 � a� for some substitution �. Facts

that are less general or require more assumptions can be deleted.

� Fact(f,a) subsumes Goal(g,a0) where g = f� and a0 � a� for some substitution �. such

facts solve the goal without instantiating it.

Various model elimination pruning strategies can be introduced as well. For example, identical

ancestor pruning (section 2.5.2) implies that

� Goal(g,a) can be deleted if g 2 a

Other deletions are possible, such as if :g 2 a or a contains complementary literals.

As an example, consider the proof that P and Q follows from P or Q, :P or Q, and P or :Q.

We need a single literal goal (G), and the contrapositives of all rules. (Since the goal is a single

literal, it is not necessary to add the negated goal to the database.) Hence the initial database is

as shown in table 6.4. The non-Horn magic set rewriting of the facts is shown in table 6.5, and the

description of the goals is shown in table 6.6.

1. P ( :Q

2. Q ( :P

3. :P ( :Q

4. Q ( P

5. P ( Q

6. :Q ( :P

7. G ( P and Q

Table 6.4: P and Q: A non-Horn theory

A bottom-up derivation from these magic rules is shown in table 6.7.
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1. Fact( P,af-f Pg) ( Goal( P,ag)

and Fact(:Q,af) and af �ag[f Pg

2. Fact( Q,af-f Qg) ( Goal( Q,ag)

and Fact(:P,af) and af �ag[f Qg

3. Fact(:P,af-f:Pg) ( Goal(:P,ag)

and Fact(:Q,af) and af �ag[f:Pg

4. Fact( Q,af-f Qg) ( Goal( Q,ag)

and Fact( P,af) and af �ag[f Qg

5. Fact( P,af-f Pg) ( Goal( P,ag)

and Fact( Q,af) and af �ag[f Pg

6. Fact(:Q,af-f:Qg) ( Goal(:Q,ag)

and Fact(:P,af) and af �ag[f:Qg

7. Fact( G,ap[aq-fGg) ( Goal( G,ag)

and Fact( P,ap) and ap �ag[f Gg

and Fact( Q,aq) and aq �ag[fGg

Fact: Fact(x,f:xg)

Table 6.5: P and Q: Non-Horn magic facts

1. Goal(:Q,a[f Pg) ( Goal( P,a)

2. Goal(:P,a[f Qg) ( Goal( Q,a)

3. Goal(:Q,a[f:Pg) ( Goal(:P,a)

4. Goal( P,a[f Qg) ( Goal( Q,a)

5. Goal( Q,a[f Pg) ( Goal( P,a)

6. Goal(:P,a[f:Qg) ( Goal(:Q,a)

7a. Goal( P,a[f Gg) ( Goal( G,a)

7b. Goal( Q,a[f Gg) ( Goal( G,a)

Goal: Goal(G,;)

Table 6.6: P and Q: Non-Horn magic goals
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No. Derived tuple Justi�cation

1. Goal( G,;) Initial goal

2. Goal( P,fGg) Goal rule 7a

3. Goal( Q,fP,Gg) Goal rule 5

4. Fact(:P,fPg) Initial fact

5. Fact( Q,fPg) Fact rule 2

6. Fact( P,;) Fact rule 5

7. Fact( Q,;) Fact rule 4

8. Fact( G,;) Fact rule 7

Table 6.7: P and Q: Bottom-up derivation of the goal G

This now gives us a bottom-up evaluation of non-Horn theories. How do the results of this thesis

relate to such a framework? They essentially correspond to complex subsumption rules. Consider

the simple failure caching of chapter 4. The results in that chapter basically state that if a subgoal

in one context fails to have a completion, then the same subgoal can be pruned in any other context.

Assume some subgoal P occurs below the goal G in two places, once down a path

G!A1!A2!P

and once down a path

G!A3!A4!P

In such a situation, the bottom-up meta-interpretation would derive a tuple

Goal(P,fA2,A1,Gg)

and then later derive a tuple

Goal(P,fA4,A3,Gg)

The two tuples appear to be di�erent, and hence the bottom-up evaluation would continue to

explore the space below the second one. If the �rst tuple led to no additional facts, then the second

would not either.

This kind of pruning is relatively easy to implement in a top-down algorithm, because the search

space data structure is available for inspection, and solutions to subgoals are indexed with the

subgoals themselves. Such connecting data structures are typically lost in the bottom-up rewriting.

It probably is possible to write a more sophisticated meta-description of the top-down algorithms,

such that the bottom-up methods have the ability to perform this same kind of pruning, but such

a re-writing would no doubt be very complex.

To implement failure caching bottom up, the algorithm must know whether a particular Goal

tuple ever led to useful Fact tuples. (It also must know that the Goal tuple had been fully explored,

i.e. a local �xed point was reached.) To implement postponement caching bottom up, even more
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information is required. Rather than just knowing about the existence of derived Fact tuples,

such an algorithm would have to be able to associate particular Fact tuples with the expansion of

particular Goal tuples. This is so that the algorithm can immediately derive similar Fact tuples

when similar Goal tuples are encountered (as well as pruning further forward inference on the

now-redundant Goal tuples).

This kind of pointer structure is exactly the data kept by top-down approaches, and it appears

infeasible to attempt to take advantage of the same results in a bottom-up implementation.



Appendix A

Implementation

The caching strategies mentioned in this thesis have been implemented in a model elimination-style

theorem prover called dtp [Ged]. The source code is written in Common Lisp with some CLtL2

[Ste90] extensions (e.g. the LOOP macro). It was developed under Franz Allegro CL 4.2.beta.0 on

a Sun Sparc, and occasionally tested on MCL 2.0p2 (Apple Macintosh) and Lucid HP Common

Lisp Rev. A.04.01 (HP-9000 Series 300/400). dtp is available on the World Wide Web at

<URL:http://logic.stanford.edu/software/dtp/>

The dtp prover provides a sound and complete inference engine for full �rst-order predicate

calculus. Functions are permitted, but there is no special reasoning for equality. Subgoal caching

options include the ones mentioned in chapter 3 (success, failure, answers, subgoal, and generaliza-

tions of each), as well as recursion control (section 5.4.1) and postponement caching (chapter 5).

The core inference engine also implements the re�nements of iterative deepening, identical ancestor

pruning, pure literal elimination, and backjumping when solving conjunctions. (See section 2.5 for

more details about these re�nements.)

There are two auxiliary systems that make dtp more useful. For displaying postscript graphs

of the proof spaces, AT&T's dot program is required. Contact Stephen North at

<URL:mailto:north@research.att.com>

for more information. (Of course, some mechanism for viewing the output is also needed: either a

postscript previewer like the public domain unix utility ghostview, or else a postscript printer.)

A large collection of theorem proving examples is the TPTP (Thousands of Problems for The-

orem Provers) collection [SSY94]. It is available on the World Wide Web at

<URL:http://wwwjessen.informatik.tu-muenchen.de/~suttner/tptp.html>

102
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