
SYNTHESIS OF REACTIVE PROGRAMS

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

Anuchit Anuchitanukul

September 1995

c Copyright 1995 by Anuchit Anuchitanukul

All Rights Reserved

ii

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Zohar Manna
(Principal Adviser)

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

John C. Mitchell

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Richard Waldinger

Approved for the University Committee on Graduate Studies:

iii

Abstract

We study various problems of synthesizing reactive programs. A reactive program is a pro-

gram whose behaviors are not merely functional relationships between inputs and outputs,

but sequences of actions as well as interactions between the program and its environment.

The goal of program synthesis in general is to �nd an implementation of a program such

that the behaviors of the implementation satisfy a given speci�cation.

The reactive behaviors that we study are !-regular in�nite sequences and regular �nite

sequences. The domain of the implementation is (�nite) transition systems for closed system

synthesis, and transition system modules for open system synthesis. We consider various

solutions, e.g. basic, maximal , modular and exact , for any particular subclasses of the

implementation language and investigate how characteristics of the program such as fairness,

number of processes and composition operations, a�ect the synthesis algorithm. In addition

to the automata-theoretic algorithms, we give a synthesis algorithm which synthesizes a

program directly from the linear-time temporal logic ETL.

iv

Acknowledgements

I cannot �nd any word that would be enough to express my gratitude toward my advisor

Zohar Manna. In the past few years, he has always encouraged me and believed in me, even

at times when I felt I did no longer believe in myself. Without his patience, guidance and

support throughout these years, I would not have �nished this thesis.

I would like to thank Richard Waldinger for introducing me to the area of program

synthesis. He initiated my interest in research and inuenced my early research in program

synthesis.

I am particularly grateful to my friends Howard Wong-Toi and Arjun Kapur. In addition

to being a dear and very supportive friend, Howard was also my mentor and an invaluable

source of information and advice. He seems to know everything! For Arjun, even with all

his busy schedules, he is always ready to help. He is always willing to listen to my new

ideas and give me fruitful discussion.

To all my friends and colleagues, Henny Sipma, Liz Wolf, Luca de Alfaro, Nikolaj Bjorner

and Tom�as Uribe, thank you for your help and suggestions.

Above all, I would like to thank my parents who gave me the strength that carried me

through the doctoral program.

Anuchit Anuchitanukul

Stanford, California

September 18, 1995

v

Contents

Abstract iv

Acknowledgements v

1 Synthesis Problems 1

1.1 Basic, Maximal, Exact and Weak Synthesis : : : : : : : : : : : : : : : : : : 1

1.2 Modular Synthesis and Open Systems : 3

1.3 Basic Relations Between Synthesis Problems : : : : : : : : : : : : : : : : : : 6

2 Closed System Synthesis 9

2.1 Fair Transition Systems : 10

2.1.1 De�nitions : 10

2.1.2 Fairness : 11

2.1.3 Degree of Parallelism : 13

2.1.4 In�nite Behaviors : 15

2.2 Closed System Synthesis : 20

2.2.1 Only In�nite Behaviors : 20

2.2.2 Both In�nite and Finite Behaviors : : : : : : : : : : : : : : : : : : : 22

3 Open System Synthesis 24

3.1 Transition system modules : 25

3.1.1 Decomposition : 25

3.1.2 M-equivalence : 28

3.1.3 Modular forms : 32

3.2 Synthesis Algorithm : 34

3.2.1 Overview : 34

vi

3.2.2 Detailed constructions : 41

3.3 Open System Synthesis : 46

3.4 Modeling : 46

3.5 Maximal Open System Synthesis : 49

3.6 ES Synthesis : 53

4 Direct Synthesis From Temporal Logic 58

4.1 De�nitions : 58

4.2 Preliminaries : 60

4.2.1 Speci�cation Language : 60

4.2.2 Elementary Formulas : 61

4.2.3 Decomposition Rules : 61

4.2.4 Tableau Graph : 62

4.2.5 Maximally Consistent Subsets : 63

4.2.6 Maximally Negation-Consistent Subsets : : : : : : : : : : : : : : : : 63

4.2.7 Realizability Graph : 63

4.2.8 Embedding : 64

4.3 Realizability-Checking Algorithm : 64

4.3.1 Main procedure : 65

4.3.2 Subroutine Expand (Realizability Graph Construction) : : : : : : : : 65

4.4 Synthesis Algorithm : 67

4.5 Correctness and Completeness : 68

5 Related Works and Conclusion 72

5.1 Related Works : 72

5.1.1 Program synthesis : 72

5.1.2 Game and control theories : 73

5.1.3 Fairness : 74

5.2 Conclusion : 74

Bibliography 77

vii

List of Figures

1.1 Speci�cation and implementation languages : : : : : : : : : : : : : : : : : : 2

2.1 TS hierarchy : 18

3.1 Synthesizing M under the environment E with a global state (ranging over

Qg) : 34

3.2 scheduling sequence : 36

3.3 execution model example with 1 weakly fair transition : : : : : : : : : : : : 36

3.4 execution model example with h : 37

3.5 Projection : 39

3.6 interpreting a projection sequence as a path in a labeled tree : : : : : : : : 41

3.7 Execution model for synchronous composition : : : : : : : : : : : : : : : : : 48

3.8 the tree T 0i with the projected behavior � embedded as a path in the tree : 52

viii

Chapter 1

Synthesis Problems

In this chapter, we will describe what the synthesis problems are and give the motivation

why we are interested in them. The synthesis problems in this chapter are de�ned abstractly

and the de�nitions are independent of the choices of the speci�cation and implementation

languages.

To study any synthesis problem, we must make three choices: Comp, Lspec and Limp.

1. Comp is the underlying domain of computations. In other words, it is the domain of

the behaviors in which we are interested. Ranging from linear models to branching

models, Comp can be simply the set of traces (�nite and/or in�nite sequences from

some alphabet), the set of timed traces, or the set of computation trees.

2. Lspec is the speci�cation language. We may, for example, study a synthesis problem

from a speci�cation given as a formula in a temporal logic, or from a speci�cation

given as an automaton. Given the semantics, each speci�cation can be mapped into

a subset of Comp which is the set of all computations satisfying the speci�cation. We

denote such mapping by [[�]]spec : Lspec ! 2Comp.

3. Limp is the implementation language with a semantics [[�]]imp : Limp ! 2Comp.

1.1 Basic, Maximal, Exact and Weak Synthesis

The simplest form of synthesis problems is the basic synthesis problem. Given a speci�-

cation, the goal is to synthesize or to constructively �nd an implementation such that all

computations of the implementation satisfy the speci�cation.

1

CHAPTER 1. SYNTHESIS PROBLEMS 2

Lspec Limp

M

Comp

[[]]spec [[M]]imp

Figure 1.1: Speci�cation and implementation languages

De�nition 1.1.1 SYNTH() (Basic Synthesis)

Input: a speci�cation 2 Lspec

Goal: �nd an implementation M 2 Limp such that

[[M]]imp � [[]]spec

When such M exists, we say that M is a (basic) solution of SYNTH() and write

M j= SYNTH().

A solution of the basic synthesis problem may not bemaximal . In other words, there may

be other solutions which have a larger set of behaviors. The best analogy is the problem of

implementing a program that computes square roots of a real number. An implementation

which prints out only the positive square root de�nitely satis�es the speci�cation. However,

it is not the maximal solution because there is another implementation that prints out both

the positive and negative roots.

De�nition 1.1.2 M�SYNTH() (Maximal Synthesis)

Input: 2 Lspec

Goal: �nd M 2 Limp such that

[[M]]imp � [[]]spec and

there is no other M 0 2 Limp such that

[[M]]imp � [[M 0]]imp � [[]]spec

CHAPTER 1. SYNTHESIS PROBLEMS 3

Depending on the choices of Lspec and Limp, there may not be a maximal solution to

some speci�cations, even though those speci�cations have a basic solution. In addition, the

maximal solution may not be unique.

In some cases, we may require that the computations of a solution must not only sat-

isfy the speci�cation but all possible computations that satisfy the speci�cation must be

represented. In other words, they must be exactly the set of all computations of the solution.

De�nition 1.1.3 E�SYNTH() (Exact Synthesis)

Input: 2 Lspec

Goal: �nd M 2 Limp such that

[[M]]imp = [[]]spec

In general, there may not even be a basic solution to a speci�cation. Therefore, the

best we can achieve is to �nd an implementation such that some of its computations satisfy

the speci�cation. Later, we will discuss the synthesis problems of open systems where a

computation can be considered as a game between the environment and the module we

want to synthesize. It may not always be the case that there is an implementation of the

module that always wins, but there may be an implementation of the module that has a

chance of winning a game.

De�nition 1.1.4 W�SYNTH() (Weak Synthesis)

Input: 2 Lspec

Goal: �nd M 2 Limp such that

[[M]]imp \ [[]]spec 6= ;

1.2 Modular Synthesis and Open Systems

Sometimes the objective is not to synthesize the entire program, but a module. In other

words, we expect to compose the result with other modules. To study such synthesis

problems, we have to de�ne what it means to compose two modules together.

Let jj : Limp � Limp ! Limp be a composition operation which takes two programs

(modules) and composes them into another program. We can de�ne jj to be a serial com-

position, or a parallel composition. It could also be asynchronous or synchronous, and may

CHAPTER 1. SYNTHESIS PROBLEMS 4

involve sharing some global variables and hiding some local variables. Since there is no real

di�erence between a program and a module, we will use the word \program" and \module"

interchangeably.

With the composition operation, we can de�ne the modular synthesis problem. This

problem is also known as the control problem. Given a speci�cation and a module(s), we

would like to �nd another module such that when composed with the given module(s), their

combined computations satisfy the speci�cation.

De�nition 1.2.1 Mod�SYNTH(;ME)

Input: 2 Lspec and ME 2 Limp

Goal: �nd MS 2 Limp such that

[[ME jjMS]]imp � [[]]spec

When we say a computation of a program, we usually mean the behavior of the program

alone without any outside interference, i.e., the program is considered as a closed system. On

the contrary, considered as an open system, a program runs in an environment which consists

of many other programs or modules, and a computation of the program in this semantics

must reect the inuence from the environment. To consider the synthesis problems of open

systems uniformly, we de�ne the open system semantics denoted byO[[�]]imp : Limp ! 2Comp,

from the base semantics [[�]]imp.

De�nition 1.2.2 O[[�]]imp

O[[M]]imp =
S

k�0; M1;:::;Mk2Limp

[[M jjM1jj : : : jjMk]]imp

Since we assume that jj is closed and has a jj identity, the de�nition can be simpli�ed

to:

O[[M]]imp =
[

M 02Limp

[[M jjM 0]]imp

Therefore, in addition to the synthesis problems under the original semantics [[�]]imp, we

can also consider the synthesis problems under O[[�]]imp and refer to them simply as open

system synthesis problems.

For example, the basic open system synthesis problem of corresponds to the strong

realizability problem. A solution to the basic open system synthesis problem is an imple-

mentation which when composed with or put in any environment, will guarantee that the

CHAPTER 1. SYNTHESIS PROBLEMS 5

overall computation satis�es the speci�cation . If we unfold the de�nitions, the problem

itself can be expressed as:

(9M 2 Limp) O[[M]]imp � [[]]spec

or equivalently

(9MS 2 Limp)(8ME 2 Limp) [[MS jjME]]imp � [[]]spec

It leads us to an interesting problem which can be expressed as the dual of the above

expression:

(8ME 2 Limp)(9MS 2 Limp) [[MS jjME]]imp � [[]]spec

In other words, it is the problem of checking whether the modular synthesis problem

of and ME always has a solution for any ME . This is clearly weaker than strong realiz-

ability (i.e. the basic open system synthesis). For strong realizability, we need to �nd an

implementation that works universally in any environment, but in this case, we only have

to come up with an implement for every environment, after knowing how the environment

behaves.

De�nition 1.2.3 89�SYNTH()

Input: 2 Lspec

Goal: check whether for any environment ME 2 Limp,

there exists an implementation MS 2 Limp such that

[[MS jjME]]imp � [[]]spec

In the same way, the weak open system synthesis problem of can be expressed as:

(9MS 2 Limp)(8ME 2 Limp) [[MS jjME]]imp \ [[]]spec 6= ;

and its dual

(8ME 2 Limp)(9MS 2 Limp) [[MS jjME]]imp \ [[]]spec 6= ;

is sometimes called the weak realizability problem.

De�nition 1.2.4 89�W�SYNTH()

Input: 2 Lspec

Goal: check whether for any environment ME 2 Limp,

there exists an implementation MS 2 Limp such that

[[MS jjME]]imp \ [[]]spec 6= ;

CHAPTER 1. SYNTHESIS PROBLEMS 6

With the open system semantics, we can now de�ne the synthesis problem of modules

under an assumption of the environment, or ES�SYNTH(�; �). Unlike the modular synthesis

problem, we do not have a concrete implementation of the environment beforehand and

the inputs to this problem are an environment assumption and a speci�cation. The envi-

ronment assumption restricts the environment to those whose behaviors conform with the

assumption. Therefore, the synthesized module is required to satisfy the speci�cation only

when the environment satis�es the assumption.

First, for any E 2 Lspec, de�ne L(E) to be:

L(E) = fME 2 Limp j O[[ME]]imp � [[E]]specg:

i.e., the set of all ME which satis�es E in the open system semantics, or equivalently, the

set of all solutions of the basic open system synthesis problem of E.

De�nition 1.2.5 ES�SYNTH(E; S)

Input: E; S 2 Lspec

Goal: �nd MS 2 Limp such that

for any ME 2 L(E),

[[MS jjME]]imp � [[S]]spec.

The ES�SYNTH(�; �) synthesis problem is, in some sense, more general than the (basic)

open system synthesis problem. It also corresponds more closely to the usual modular

development of software. Each team responsible for developing a module is provided with

both the speci�cation of the module and the speci�cation of the environment or the interface

under which the module is expected to run.

1.3 Basic Relations Between Synthesis Problems

We can see from the de�nition that some synthesis problems are stronger than others.

Proposition 1.3.1 The following sentences are true:

1. If M j= SYNTH() then M j= W�SYNTH().

2. If M j= M�SYNTH() then M j= SYNTH().

3. If M j= E�SYNTH() then M j= M�SYNTH().

CHAPTER 1. SYNTHESIS PROBLEMS 7

The proposition above applies to the synthesis problems under both the original and

the derived open system semantics.

Suppose that for any 2 Lspec, there exists : 2 Lspec such that

[[:]]spec = Comp� [[]]spec:

Proposition 1.3.2 The following sentences are true:

1. 89�SYNTH() (under [[�]]imp) i� W�SYNTH(:) under O[[�]]imp has no solution.

2. 89�W�SYNTH() (under [[�]]imp) i� SYNTH(:) under O[[�]]imp has no solution.

Proposition 1.3.3 If the maximal open system synthesis problem of E has a unique so-

lution ME, then

MS j= ES�SYNTH(E; S) i� MS j= Mod�SYNTH(ME; S):

Suppose there exists a speci�cation E ! S 2 Lspec such that

[[E ! S]]spec = [[: E]]spec [[[S]]spec:

Then, clearly, we can relate SYNTH(�) with ES�SYNTH(�; �).

Proposition 1.3.4 IfM is a solution to the basic open system synthesis of E ! S, then

M is also a solution to the ES�SYNTH(E; S) problem.

Note that the converse is not always true.

An implementation language Limp has a universal module MU i� for any M 2 Limp,

[[M jjMU]]imp = O[[M]]imp.

Proposition 1.3.5 If Limp has a universal module MU , then the following sentences hold:

1. M j= Mod�SYNTH(;MU) (under [[�]]imp) i� M j= SYNTH() under O[[�]]imp.

2. SYNTH() under O[[�]]imp has no solution i� MU j= W�SYNTH(:) under O[[�]]imp.

CHAPTER 1. SYNTHESIS PROBLEMS 8

Chapter 2

Closed System Synthesis

This chapter describes the synthesis methods for closed system synthesis problems.

A closed system is a system whose behaviors are generated purely by the system itself

without any external inuence. The implementation language which we choose to represent

a closed system here is the fair transition system. The behavior of a fair transition system is

a �nite or in�nite sequence of characters generated during a fair execution of the transition

system.

The speci�cation language in this case is a combination of !-regular and regular lan-

guages, for specifying in�nite and �nite behaviors.

In this chapter, we �rst introduce the fair transition systems and the smaller classes

with the restrictions on determinism, � -determinism and the number of processes. We

then show the relations between these classes with di�erent restrictions. At the end, we

conclude that synthesis problems of closed systems do not only coincide but also have a

simple implementation in some special classes.

The di�erent restrictions on these classes mean that an implementation in one class can

be considered \simpler" than another implementation in another class. For example, the

fewer the number of processes an implementation requires, the simpler it is. Therefore,

the goal of the synthesis is not only to �nd a correct implementation, but also to �nd the

simplest one.

9

CHAPTER 2. CLOSED SYSTEM SYNTHESIS 10

2.1 Fair Transition Systems

2.1.1 De�nitions

A fair transition system (TS) over a �nite alphabet �, A = h�; Q;Q0; T ; J; Ci, consists of

a �nite set of states Q, a set of initial states Q0 � Q, a �nite set of transitions T , a set of

weakly fair transitions J � T , and a set of strongly fair transitions C � T .

Any transition � 2 T is a function � : Q! 2��Q. In other word, a transition causes the

transition system to move nondeterministically from one state to another state, and at the

same time, print out a character from the alphabet �. We say that a transition � is enabled

at a state q i� �(q) 6= ;. Let Enabled(q) denote the set of transitions which are enabled at

q.

A weakly fair transition system (WTS) is a fair transition system in which C = ;.

Similarly, a strongly fair transistion system (STS) is a fair transition system in which J = ;.

A fair transition system is called deterministic, i� jQ0j = 1 and for any q 2 Q and

any � 2 �, there is at most one � 2 T and q0 2 Q such that h�; q0i 2 �(q). A fair

transition system is called � -deterministic i� jQ0j = 1 and for any q 2 Q, any � 2 � and

any � 2 T , there is at most one q0 such that h�; q0i 2 �(q). Let DTS (DWTS, DSTS) stand

for deterministic (weakly, strongly, resp.) fair transition system. Similarly, we write �DTS

(�DWTS, �DSTS) for � -deterministic (weakly, strongly, resp.) fair transition system.

A fair transition system can generate both �nite and in�nite words. A �nite run of a

TS A, which produces a �nite word w = �0�1 : : : �n 2 ��, consists of a sequence of states,

q0q1 : : : qn+1 2 Q� and a sequence of transitions, �0�1 : : : �n 2 T �, such that, q0 2 Q0, for

every 0 � i � n, h�i; qi+1i 2 �i(qi), and Enabled(qn+1) = ;. The last condition requires that

the last state must be the terminal state, i.e., no transition remains enabled at the end of

the computation.

Similarly, an in�nite run of A produces an in�nite word w = �0�1 : : : 2 �! and consists

of a sequence of states q0q1 : : : 2 Q
! and a sequence of transitions �0�1 : : : 2 T

!. In addition

to the requirements that q0 2 Q0 and for every 0 � i, h�i; qi+1i 2 �i(qi), we also require

that an in�nite run satis�es fairness conditions, that is,

� for all � 2 J , if there is some j such that � is enabled at qi for all i > j, then �k = �

for some k > j.

� for all � 2 C, if � is enabled in�nitely often, � is taken in�nitely often.

CHAPTER 2. CLOSED SYSTEM SYNTHESIS 11

For convenience, we will say that a run is fair i� either it is �nite, or, it is in�nite and

satis�es the fairness conditions above.

A language LA generated by a TS A, consists of all the �nite and in�nite words produced

by some fair run of A. Two fair transition systems are equivalent i� they generate the same

language. For any TS A, we will write L�A [L!A] to denote the set of �nite [resp. in�nite]

words produced by some fair run of A.

2.1.2 Fairness

The following construction transforms a TS into an equivalent WTS, and as a special case, a

DTS (which includes DSTS) into a �DWTS.We will show later that DWTS is less expressive

than DTS and that is why we can only �nd an equivalent �DWTS for any DTS.

Theorem 2.1.1 For any TS A = h�; Q;Q0; T ; J; C [f�̂gi, there is an equivalent TS A0 =

h�; Q[(Q� 2J[C); Q0; T
0; J 0 [f�̂ 0g; C0i such that jT j = jT 0j, jJ j = jJ 0j and jCj = jC0j.

Construction: For every transition � 2 T , there is a corresponding transition � 0 2 T 0.

The sets J 0 and C0 are the corresponding copy of J and C, respectively. Each � 0 is de�ned

as follows:

� For any q 2 Q,

{ for the transition �̂ 0, if �̂ 2 Enabled(q), then �̂ 0(q) = �̂(q); otherwise,

�̂ 0(q) = fh�; hq0; ;ii j � 2 T ; h�; q0i 2 �(q)g:

{ for other transitions � 0, � 0(q) = �(q).

� For any hq; Si 2 Q� 2J[C and for any � 2 T ,

{ if �̂ ; � 2 Enabled(q) and � 2 J [C and � 62 S,

� 0(hq; Si) = fh�; hq0; S [f�gii j h�; q0i 2 �̂(q)g:

{ otherwise,

� 0(hq; Si) = fh�; hq0; S�f�gii j h�; q0i 2 �(q)g:

CHAPTER 2. CLOSED SYSTEM SYNTHESIS 12

Correctness: The case of �nite words is straightforward. It is easy to see that the con-

struction does not lose or introduce any �nite words.

For the case of in�nite words, we �rst show that any word generated by a fair run r of

A is generated by a fair run of A0. If �̂ is taken in�nitely often in r then, the same r would

be a fair run of A0. On the other hand, if �̂ is enabled only �nitely many times, then map

the portion of r after the last time �̂ is enabled, to the states in Q� ;. The mapped image

of r is a fair run of A0.

For the other direction, consider an in�nite fair run r0 of A0. If r0 remains forever in Q,

then �̂ is taken in�nitely often and it is clear that r0 is also a fair run of A. Now, consider

the states hq; Si 2 Q� 2J[C . It is clear that Enabled(hq; Si) = Enabled(q). Therefore, the

only two cases when the image of r0 in A could be a non-fair run of A are:

� �̂ is taken under the name of � in�nitely often and � is only taken �nitely many times,

or

� �̂ is enabled in�nitely often but only taken �nitely many times.

However, the use of the set S excludes both cases.

The above theorem implies that any fair transition system can be transformed into a

weakly fair transition system. It is easy to extend this construction to eliminate all strongly

fair transitions in a single transformation with jJ [Cj � 2jJ[Cj increase in the number of

nodes.

The following is the reverse of the previous construction, from a TS into an equivalent

STS, and as a special case, a DTS into a DSTS.

Theorem 2.1.2 For any TS A = h�; Q;Q0; T ; J [f�̂g; Ci, there is an equivalent TS A0 =

h�; (Q� 2J[C); hQ0; ;i; T
0; J 0; C0 [f�̂ 0gi such that jT j = jT 0j, jJ j = jJ 0j and jCj = jC0j.

Construction: Let Qe be the subset of Q where �̂ is enabled.

� For the transition �̂ 0,

�̂ 0(hq; Si) = fh�; hq0; Sii j h�; q0i 2 �̂(q)g [

fh�; hq0; S[f�gii j for any � 2 (J [C)�S;

q 2 Qe ^ q0 62 Qe ^ h�; q0i 2 �(q)g:

CHAPTER 2. CLOSED SYSTEM SYNTHESIS 13

� For other transition � 0,

{ if � 2 S,

� 0(hq; Si) = fh�; hq0; S�f�gii j h�; q0i 2 �(q)g:

{ otherwise,

� 0(hq; Si) = fh�; hq0; Sii j h�; q0i 2 �(q) and if q 2 Qe then q
0
2 Qeg:

Correctness: If a word is generated by a fair run r of A, then the word must be generated

by the image of r on A0. The only cases when the image of r on A0 could be unfair are

when:

� � is taken in�nitely often in r, but in the image of r, �̂ 0 replaces � in�nitely often and

� 0 is taken only �nitely often,

� �̂ 0 is enabled in�nitely often without being taken.

The �rst case is ruled out because the use of the set S guarantees that if �̂ 0 replaces �

in�nitely often then � 0 must be taken in�nitely often. For the second case, consider the

path through the states hq; Si where S 6= ; without taking �̂ 0. Such path must eventually

empty the set S and move to some states hq0; ;i. The only way the path could visit hq; Si,

S 6= ; again, is by taking �̂ 0. On the other hand, if the image of r visits only the states

hq; ;i in�nitely often without taking �̂ 0, then �̂ is enabled continuously in r without being

taken. This contradicts the assumption that r is fair.

For the other direction, suppose r0 is a fair run of A0. We show that if the image of r0 in

A is not fair, then r0 is not fair. The only case we have to consider is when �̂ is continuously

enabled in the image of r0 but is not taken. It is clear that �̂ 0 must be enabled in�nitely

often and is not taken also.

2.1.3 Degree of Parallelism

De�nition 2.1.1 Degree of Parallelism

For any TS A = h�; Q;Q0; T ; J; Ci, the degree of parallelism of A, denoted by Par(A),

is the number of transitions in A, i.e. Par(A) = jT j:

CHAPTER 2. CLOSED SYSTEM SYNTHESIS 14

We denote the class of TS with the degree of parallelism of n by nTS. This notation

applies to other subclass as well. For example, 2�DWTS and 2�DSTS denote such class of

�WTS and �STS with the degree of parallelism of 2, respectively.

De�nition 2.1.2 Minimal Degree of Parallelism

A TS A has the minimal degree of parallelism of n i� for any equivalent TS system B,

Par(B) � n.

It is easy to see that the following property holds.

Theorem 2.1.3 If a TS A = h�; Q;Q0; T ; J; Ci, has a minimal degree of parallelism of n,

then jJ [Cj � n�1.

Proof: Suppose jJ [Cj < jT j � 1 in a TS A. It means there are at least two transitions

�1; �2 2 T � (J [C). If that is the case, then we can construct another TS which has the

exact same structure as A except that the two transitions �1 and �2 are combined into one

transition. The new TS is equivalent to the original TS A.

Let
!
L be the limit of the pre�x of L, lim(Pref(L)) (or the safety closure of L). For any

word w, let Inf(w) be the set of states which are visited in�nitely often by w.

De�nition 2.1.3 Dynamic Degree of Parallelism

The dynamic degree of parallelism of a TS A with respect to a word w 2
!
LA is the

number of transitions that are enabled at some states visited in�nitely often by w, i.e.

Pardyn (A; w) = j
[

q2Inf(w)

Enabled(q)j:

The intended meaning of dynamic degree of parallelism is that it is a measure of how

many serial processes are needed to carry out a computation of a transition system in

certain \points" in the computation of the system. A word w 2
!
LA corresponds to a loop

in a TS. The dynamic degree of parallelism is thus the number of transitions enabled in

the loop in a TS. It is more meaningful to use the number of transitions enabled in a loop

than the number of transitions enabled at a state because we may arti�cially reduce the

number of enabled transitions at one state by shifting and probably increasing the number

of transitions at some subsequent states.

CHAPTER 2. CLOSED SYSTEM SYNTHESIS 15

De�nition 2.1.4 Minimal Dynamic Degree of Parallelism

A TS A has the minimal dynamic degree of parallelism i� for any word w 2
!
LA and

for any equivalent TS, Pardyn (B; w) � Pardyn(A; w).

2.1.4 In�nite Behaviors

At this point, we will turn our attention to in�nite behaviors of fair transition systems. We

will show that any !-regular language is represented by a 2�DWTS or a 2�DSTS. In other

words, it means that we only need 2 deterministic programs running in parallel in order to

generate any !-regular language.

Theorem 2.1.4 For any !-regular language L, there exists a 2�DWTS [or 2�DSTS] A

such that LA = L!A = L.

Construction: First, consider a simpler polynomial translation from a nondeterministic

B�uchi automaton (NBA) into a 2WTS/2STS. Given a NBA A = hQ;Q0; �; F i, construct a

2STS B = hQ� f0; 1g; Q0� f0g; f�0; �1g; ;; f�1gi as follows:

1. First, we may assume that for any state q 2 Q, there is a non-� path from q to some

state in F (otherwise, we can easily come up with an algorithm to eliminate all states

q which violate the assumption).

2. Consider A as a labeled graph. Search the graph in the reverse direction from the

�nal states F and generate a labeled DAG G � A such that a state q is in G i� there

is a path from q to some �nal states in F , and the path itself must be in G.

3. For any q 2 Q,

�0(hq; 0i) = fh�; hq0; 0ii j q0 2 �(q; �) ^ q0 62 Fg:

�0(hq; 1i) = fh�; hq0; 1ii j q
�
!q0 2 G ^ q0 62 Fg [fh�; hq0; 0ii j q

�
!q0 2 G ^ q0 2 Fg:

�1(hq; 0i) = fh�; hq0; 0ii j q0 2 �(q; �) ^ q0 2 Fg [fh�; hq0; 1ii j q
�
!q0 2 G ^ q0 62 Fg:

Using the same construction, we can construct a 2WTS B = hQ� f0; 1g; Q0� f0g; f�0; �1g;

f�1g; ;i.

The transformation from a NBA A = hQ;Q0; �; F i, to a 2�DSTS B0 = h2Q [(2Q�2Q);

fQ0g; f�0; �1g; ;; f�1gi is similar to the above transformation and is based on the subset

construction.

CHAPTER 2. CLOSED SYSTEM SYNTHESIS 16

� For any state S 2 2Q,

�0(S) = fh�; S0i j S0 = fq0 j q 2 S ^ q0 2 �(q; �)g ^ S0 6= ;g:

�1(S) = fh�; hS0; S0ii j S0 = fq0 j q 2 S ^ q0 2 �(q; �)g ^ S0 6= ;g:

� For any state hS1; S2i 2 2Q � 2Q, �1(hS1; S2i) = ;, and

{ if S1 \ F 6= ;, then

�0(hS1; S2i) = fh�; S0i j S0 = fq0 j q 2 (S1 \ F) ^ q0 2 �(q; �)g ^ S0 6= ;g:

{ else,

�0(hS1; S2i) = fh�; hS0; S1 [S2ii j S
0 = fq0 j q 2 S1^ q

0
2 �(q; �)g�S2 ^ S

0
6= ;g:

Note also that B and B0 generate only in�nite words.

Correctness: First, we can show that any word accepted by a run r of A is generated by

a fair run of B. All the states in r can be mapped directly into states in Q� f0g. Since all

egdes going into a �nal state in F �f0g belong to �1, �1 is taken in�nitely often. Therefore,

the image of the run r is a fair run of B.

For the other direction, consider a fair run r0 of B. Suppose r0 visits Q�f1g only �nitely

many times. Then, �1 must be taken in�nitely often into F � f0g; otherwise, r0 will not be

fair. If r0 visits Q� f1g in�nitely often, then every time it visits a state in Q� f1g, it will

eventually visit F � f0g because G is acyclic and every path in G leads to a state in F .

For B0, the proof is very similar. Every state in a fair run of A is mapped to a state in

2Q except the �nal states which are mapped to a state in 2Q � 2Q. The subset subtraction

of S2 in the last part of the de�nition of �0 guarantees that the paths are acyclic.

While every !-regular language can be generated by such simple classes as 2�DSTS and

2�DWTS, we also know that in�nite languages generated by any fair transition system are

!-regular.

Theorem 2.1.5 For any TS A, L!A is !-regular.

Proof: When we ignore the �nite words generated by a TS, the translation of a TS into a

Streett automaton is straightforward. Given a TS A = h�; Q;Q0; T ; J; Ci, construct a SA

h�; Q� T ; Q0� T ; �; Fi. The transition relation is simply:

CHAPTER 2. CLOSED SYSTEM SYNTHESIS 17

�(hq; �̂i; c) = fhq0; �i j hc; q0i 2 �(q)g:

For the acceptance condition F = f(L� ; U�g�2J[C, we have two cases. For each � 2 J ,

L� = ; and U� = Q � f�g [fqj� 62 Enabled(q)g � T . For each � 2 C, L� = fqj� 2

Enabled(q)g� T and U� = Q� f�g.

Theorem 2.1.6 The class of !-languages generated by WTS, STS, �DTS, �DSTS, or

�DWTS is exactly the class of !-regular languages.

Proof: This follows from the two theorems that TS, 2�DSTS and 2�DWTS generate !-

regular languages. Therefore, any class of fair transition systems TS0, such that 2�DSTS �

TS0 � TS, must also generate !-regular languages.

Theorem 2.1.7 The class of !-languages generated by DWTS is strictly smaller than the

class of languages recognized by deterministic B�uchi automaton (DBA).

Proof: The translation from a DWTS into a deterministic B�uchi automaton (DBA) is

obvious but there is a language, namely (aa)�b!, which is recognized by a DBA but not by

any DWTS.

Given a DWTSA = h�; Q;Q0; T ; J; ;i, we construct a DBA for each � in J and then con-

struct the product automaton from those jJ j DBAs. Each DBA h�; Q� T ; Q0 � T ; �; F�i,

constructed for each � 2 J , has the same set of states and transition function. The accep-

tance condition F� is simply Q� f�g [fqj� 62 Enabled(q)g� T .

If the language (aa)�b! were generated by a DWTS, then there must be an unfair run

which generates the word a!. Since the run is unfair, it means that there is a transition

which is continuously enabled from some point onward but has never been taken. We know

that the automaton is a DWTS and thus it is deterministic. Therefore, if the transition were

taken, it must print out the character b. Since the transition is enabled from some point

onward, we know that it could have printed out b at any time, i.e. after printing out any

number of a's. This, however, contradicts the assumption that the automaton generates b!

only after an even number of a's.

CHAPTER 2. CLOSED SYSTEM SYNTHESIS 18

TS

STSWTS �DTS

�DWTS �DSTS

2�DWTS 2�DSTS

DTS

DWTS

DSTS

DBA

(n+1)DSTS

nDTS

nDSTS

nDWTS

Safety
1TS

! regular

Figure 2.1: TS hierarchy

Theorem 2.1.8 The class of !-languages generated by DTS is the same as the class of

!-languages generated by DSTS and properly contains the languages recognized by DBA.

However, there are some !-regular languages which can not be generated by any DTS.

Proof: Suppose � = fa; b; cg. A language in which if a word contains in�nitely many b's

then it must also contains a c, is generated by a DTS, but not recognized by any DBA. If

there were a DBA which accepts the language, then the words of the form (a+ b)�a! which

have only �nitely many b's, must also be accepted. Therefore, for every word of that form,

there must be an accepting state which is visited after the automaton reads some pre�x

ai1 . For the same reason, there exists another pre�x ai1bai2 which leads the automaton into

another accepting state as well. If we continue extending the pre�x in this manner, we can

show that the DBA accepts a word ai1bai2bai3b : : : which has in�nitely many b's but no c's

at all. However, the language is generated by a DTS h�; fq0; q1; q2g; fq0g; f�0; �1g; ;; f�1gi

CHAPTER 2. CLOSED SYSTEM SYNTHESIS 19

where

�0(q0) = fha; q0i; hb; q1i; hc; q2ig

�0(q1) = fha; q0i; hb; q1ig

�0(q2) = fha; q2i; hb; q2i; hc; q2ig

�1(q1) = fhc; q2ig

�1(q0) = �1(q2) = ;:

On the other hand, a language (a + b)�a! can not be generated by any DTS. Suppose

there were such DTS. Since any �nite word (a + b)�b is a pre�x of some (in�nite) words

generated by the DTS, we know that there is a transition which prints out b and is enabled

at any state of the DTS. View the DTS as a graph. There must be a strongly connected

component in the graph. The path that passes through every edge (transition) including

those with b as the output label is a fair run and contains in�nitely many b's, contradicting

the assumption that the DTS generates (a+ b)�a! .

The construction in theorem 2.1.2 shows that the class of languages generated by DTS

and DSTS is the same. The fact that the class of languages recognized by DBA is contained

in the class of languages generated by DTS is implied by theorem 2.2.1 in the following

section.

Theorem 2.1.9 For any n > 0, the class of !-languages generated by nDTS is the same

as the class of !-languages generated by nDSTS and is strictly smaller than the class of

!-languages generated by (n+1)DTS. The class of !-languages generated by nDWTS is

properly contained in the class of !-languages generated by nDTS.

Proof: First, the construction in theorem 2.1.2 shows that nDTS and nDWTS can be

translated into an nDSTS. Second, the language (aa)�b! is generated by a 2DSTS but not

by any nDWTS, as shown in theorem 2.1.7. Finally, it is easy to show that there are some

!-languages that are generated by (n+ 1)DTS but not by any nDTS. This fact is actually

implied by theorem 2.2.1 in the next section.

In other words, there are some languages that cannot be generated by any DTS with a

degree of parallelism smaller than n. For example, a language (a�b)�c! is generated by a

DTS with degree of pallelism of at least 3.

CHAPTER 2. CLOSED SYSTEM SYNTHESIS 20

2.2 Closed System Synthesis

In this section, we combine what we has developed in this chapter into the solutions to the

synthesis problems. We consider two cases depending on whether the speci�cation speci�es:

� only the in�nite behaviors, or,

� both in�nite and �nite behaviors.

2.2.1 Only In�nite Behaviors

The solution to weak and simple synthesis problems in the closed system case can be as

simple as a TS with a single sequence as its only behavior. In other words, we only need to

check for satis�ability or non-emptyness of the speci�cation. Therefore, the more interesting

question is whether the maximal or exact solution exists.

When the speci�cation is simply !-regular, the weak, simple, maximal and exact syn-

thesis problems coincide. That is, by theorem 2.1.4, there is an exact solution to every

speci�cation. Moreover, the solution is as simple as a 2�DTS. The construction in theorem

gives such implementation which is a 2�DTS with an exponential increase in the number

of nodes. Without the � deterministic restriction, the construction yields a 2TS which has

only twice as many nodes as that of the given (B�uchi) speci�cation.

For the less expressive class DTS, there may not be an exact solution but we can �nd

a maximal solution. Even though it is not unique, the maximal solution has the minimal

degree and dynamic degree of parallelism.

Theorem 2.2.1 For any !-regular language L, there is a DTS A such that:

1. A is the maximal solution, i.e. LA = L�A � L and there is no other DTS A0 such that

LA � LA0 � L.

2. A has the minimal degree of parallelism and minimal dynamic degree of parallelism.

3. If L is recognized by a DTS or DBA, then LA = L.

Construction: For any !-regular language L, we can �nd a DSA A = h�; Q; fq0g; �; F i

that recognizes L. Suppose F = f(L1; U1); : : : ; (Ln; Un)g. For each (Li; Ui), we con-

sider A as a graph and assign colors, fc0; c1; : : :g, to the edges with a subroutine call to

coloring(A,(Li; Ui),F ,c0).

CHAPTER 2. CLOSED SYSTEM SYNTHESIS 21

Subroutine coloring(G,(Li; Ui),F
0,cj):

1. Set the states in Ui apart from the graph G and break G�Ui into strongly connected

components, C0; C1; : : : ; Cm.

2. Consider the graph as a pre-order of C0; : : : ; Cm and traverse the pre-order in the

reverse direction. For each Ck, let fr(Ck) be the states q 2 Ck such that there is an

edge going from q to some unmarked states outside Ck, and assign the color cj to all

such edges. Then, do the following:

Case 1 Ck\Li = ;: If F 0 is not empty, then pick a (Lk; Uk) from F 0, and call coloring(Ck;

(Lk; Uk); F
0 � f(Li; Ui)g; cj).

Case 2 Ck \ Li 6= ; and fr(Ck) 6= ;: break Ck�fr(Ck) into strongly connected compo-

nents C00; : : : ; C
0
m0

and recursively follow the same coloring subroutine for each

C0k0 , but use the next color cj+1.

Case 3 fr(Ck) = ; and Ck\Li = Ck or jCkj = 1: Mark all states in Ck and all incoming

edges as \deleted".

Case 4 Otherwise (fr(Ck) = ; and ; 6= Ck \ Li 6= Ck): break Ck into strongly con-

nected components C00; : : : ; C
0
m0

such that either Ck � Li or Ck \ Li = ;. Make

C00; : : : ; C
0
m0

into a pre-order by marking cyclic edges as \deleted" and recursively

apply the algorithm to each C0k0 .

For each color cj used, we associate a transition �j to the edges with the color and

construct a DTS A0 = h�; Q�f1; : : : ; ng; fhq0; 1ig; T ; ;; T i such that for each layer Q�fig:

� we use the coloring from the call to coloring(A,(Li; Ui),F ,c0) to de�ne the transitions

in T on this layer, and,

� the transitions going out from the states Ui � fig lead to the next layer Q� fi+1g.

Correctness: The key idea is based on the fact that the edges going out from a strongly con-

nected component must have a di�erent color from all transitions in the strongly connected

component. Otherwise, a computation can remain in the strongly connected component

forever and will be an unfair computation of A. Use this argument and induction on the

number of levels of strongly connected components within strongly connected components

to prove the minimality of degree and dynamic degree of parallelism.

CHAPTER 2. CLOSED SYSTEM SYNTHESIS 22

Unlike in the case of DTS, there is no maximal DWTS solution for !-regular speci�-

cations in general. Consider, for example, the case of the !-language (aa)�b!. Suppose a

DWTS A is a solution. We know that the word a! is not generated by any fair or unfair

run of A. If a! is generated by an unfair run, then it must be the case that there is a

transition which generates b and is enabled from a certain point on. But this cannot be the

case because A can generate b only after an even number of b's. Since A cannot generate

a!, then there must be a word (aa)nb! generated by A such that n is maximal. We can

easily construct another DWTS which generates not only every word A generates but also

(aa)n+1b!.

2.2.2 Both In�nite and Finite Behaviors

Now, we consider synthesis problems where a speci�cation speci�es both in�nite !-regular

words and �nite regular words. Finite words may represent either terminating behaviors

or deadlocks. Therefore, to satisfy the speci�cation, an implementation must generate only

good in�nite behaviors and must not generate any new deadlocks. In this case, there is still

an exact solution for such speci�cation. However, the \minimal" exact solution is no longer

in 2�DTS, but in 2TS or 3�DTS.

We can modify the construction in theorem 2.1.4 to give an exact solution in 2TS or

3�DTS by simply adding a transition into a terminating state whenever the �nite word the

transition system has already printed out satis�es the speci�cation. To show that there is

no exact 2�DTS solution, consider the exact synthesis problem of (a + b)�a! + (a + b)�.

Since every �nite word is in the language, any state in a solution of this problem must have

an outgoing transition(s) which generates a and b and moves the system into a terminating

state. If we remove such transitions and if the solution were 2�DTS, what remains is a

deterministic transition system. However, we have shown that (a+ b)�a! is not generated

by any DTS. Therefore, we can conclude that there is no exact solution that is a 2�DTS.

CHAPTER 2. CLOSED SYSTEM SYNTHESIS 23

Chapter 3

Open System Synthesis

This chapter focuses on open systems. An open system is a system whose behaviors can

be a�ected by outside inuence. The model of open systems that we consider as the im-

plementation language is the transition system module. Transition system modules can be

composed together into one transition system. The main goal of synthesis problems, in

short, is to synthesize one of the modules so that the overall behaviors of the composed

transition system satis�es certain properties speci�ed by the speci�cation. In detail, the

synthesis problems in this chapter vary according to whether some information is given as a

part of the inputs to the problems, how the outside inuence, which we call the environment,

behaves, and how the environment's behaviors are characterized.

Transition system modules are very similar to the transition systems de�ned in the

previous chapter. The only di�erence is that, unlike the transition systems which have

a single set of states, a transition system module has two sets of states, global and local

states. The global states are shared among the modules which are composed into a transition

system. Therefore, the computation of each module (including the one being synthesized),

can be a�ected by other modules (which become the environment to the module being

synthesized).

In this chapter, we �rst de�ne transition system modules and study their properties.

Next, a generic basic synthesis algorithm is described. We then show how this synthesis

algorithm can be applied to solve various synthesis problems (e.g modular, basic, etc.) with

di�erent settings (e.g. synchronous, unobservable variables, etc). At the end, we present

some results on the more complicated maximal and ES�SYNTH(�; �) synthesis problems.

24

CHAPTER 3. OPEN SYSTEM SYNTHESIS 25

3.1 Transition system modules

A transition system module (TSM)M is a tuple h�; Qg; Ql; Q0; T ; J; Ci. Qg is a set of global

states, representing shared variables and Ql is a set of local states, visible and accessible

only to M. Q0 � Qg � Ql is the set of initial states. Each transition � is now a function

� : Qg �Ql ! 2��Qg�Ql . If jT j = 1, then we say that M is serial. If jQlj = 1, then we say

that M is simple.

Transition system modules M1; : : : ;Mn, where each Mi = h�i; Qg; Qli; Q0i; Ti; Ji; Cii,

can be composed into a transition system M1jj : : : jjMn = h�; Q;Q0; T ; J; Ci such that,

� � is �1 [: : : [�n.

� Q is Qg �Ql1 � � � � � Qln.

� Q0 is the set of all states hqg; q1; : : : ; qni 2 Q such that hqg; qii 2 Q0i.

� T is T1 [: : :[Tn and each transition � 2 Ti is extended over Q and �, i.e. ,

h�; hq0g; q1; : : : ; q
0
i; : : : ; qnii 2 �(hqg; q1; : : : ; qi; : : : ; qni) i� h�; q0g; q

0
ii 2 �(qg; qi):

� J = J1 [: : :[Jn and C = C1 [: : :[Cn.

Consequently, the behaviors of a transition system module depend on its environment

which may consist of any number of other transition system modules. Moreover, since we

always compose TSMs into a TS or simply consider a single TSM as a TS, we use the

de�nitions of runs, fair runs, word generations, etc. which were developed in the previous

chapter.

3.1.1 Decomposition

Since TSMs can be composed into a TS, it is only logical to consider the decomposition of

a TS into TSMs. Decomposition can be a research topic in itself and we do not attempt to

fully study decomposition in detail here. The decomposition considered here is just a simple

decomposition of a TS into serial TSMs with the requirements that the decomposition

preserves equivalence and respects some form of homomorphism.

CHAPTER 3. OPEN SYSTEM SYNTHESIS 26

De�nition 3.1.1 Decomposition

A decomposition of a TS A = h�; Q;Q0; f�1; : : : ; �ng; J; Ci into an equivalent TS M1jj

: : : jjMn of serial TSMsMi = h�; Qg; Qli; Q0i; f�
0
ig; Ji; Cii, is a one-to-one function d : Q!

Qg � Ql1 � : : :�Qln such that:

� Ji = f� 0ig if �i 2 J , and Ci = f� 0ig if �i 2 C.

� For any h�; q0i 2 �i(q), if d(q) = hqg; q1; : : : ; qni and d(q0) = hq0g; q
0
1; : : : ; q

0
ni, then

h�; q0g; q
0
ii 2 �

0
i(qg; qi) and for all j 6= i, qj = q0j .

� For any h�; q0g; q
0
ii 2 � 0i(qg; qi) and any q 2 Q, if d(q) = hqg; q1; : : : ; qni, then there

exists q0 2 Q such that h�; q0i 2 �i(q), and d(q0) = hq0g; q1; : : : ; q
0
i; : : : ; qni.

� q 2 Q0 and d(q) = hqg; q1; : : : ; qni i� for all 0 < i � n, hqg; qii 2 Q0i.

When we decompose a TS into TSMs, one important property we may want to see in

TSMs is modular independence. In other words, those TSMs should be loosely coupled and

should not have too many shared variables. The size of the set of global states, jQgj, can be

considered as a measure of how many shared variables are used to control the computation

of the system and how one module may a�ect the execution of other modules. Or, from

another point of view, log2(Qg) is the number of bits needed to represent all possible global

states. Therefore, in the process of decomposition, we may want to minimize the size of

jQgj as much as possible.

Any decomposition mapping d induces an equivalence relation rd between the states Q

of the original TS that map to the same global state:

rd(q; q
0) i� for some qg; q1; q

0
1; : : : ; qn; q

0
n;

d(q) = hqg; q1; : : : ; qni and

d(q0) = hqg; q
0
1; : : : ; q

0
ni:

If we want to minimize jQgj, we have to minimize the number of equivalence classes (of the

relation rd) induced by d.

Finding the best d with the minimal number of equivalence classes of rd is a di�cult

task and the complexity is inherently exponential in the size of the input TS. On the other

hand, if we only look for a suboptimal d with the largest induced relation rd, we can �nd

such d within polynomial time.

CHAPTER 3. OPEN SYSTEM SYNTHESIS 27

A binary relation r1 is larger than another relation r2 i� r2(q1; q2) implies r1(q1; q2),

for any q1; q2. A decomposition d has the largest induced relation rd i� there is no other

decomposition with the induced relation larger than rd.

Theorem 3.1.1 From a fair transition system A = h�; Q;Q0; T ; J; Ci, we can �nd a de-

composition d of A into an equivalent transition system M1jj : : : jjMn with the largest in-

duced relation rd.

Construction: For each transition � , consider A as a graph and remove all edges which

belong to � . Each cluster of connected nodes represents a local state of � . Global states

are constructed by grouping compatible states in each cluster into groups.

Formally, for any q1; q2 2 Q, construct an equivalence relation Loc�(q1; q2) such that

Loc�(q1; q2) i� there is a path from q1 to q2, or from q2 to q1, without passing through � .

Each equivalence class of Loc� is a local state in Q� . Compute the relation Glb which is

the largest �xed-point of the following relation g:

g(q1; q2) =

g(q2; q1) ^ (8q3 2 Q) if g(q2; q3) then g(q1; q3)

^ (8� 2 T) if Loc�(q1; q2)

then (8h�; q3i 2 �(q1))(9h�; q4i 2 �(q2)) Loc�(q3; q4) ^ g(q3; q4)

^ if (q1 2 Q0) ^ (8� 2 T) Loc� (q1; q2)

then q2 2 Q0:

Note that the largest �xed-point of this relation may not be unique.

Each equivalence class of Glb is a global state in Qg whereas each equivalence class of

Loc� is a local state in Q� . That means that the decomposition maps all states q (of Q)

in an equivalent class of Glb are mapped to single (new) global state qg representing the

equivalence class of Glb where q belongs. Similarly, for any � , each q is also mapped to a

local state q� which represents the equivalence class of Loc� which q is in.

Correctness: We can easily show that any equivalence relation rd induced by any decom-

position d must be a �xed point of g.

The above decomposition algorithm can be easily extended to decompose a TSM to

another m-equivalent TSM which is a composition of serial TSMs, by considering � � Qg

as the output alphabet.

CHAPTER 3. OPEN SYSTEM SYNTHESIS 28

3.1.2 M-equivalence

Similar to the equivalence between transition systems, we have the notion of m-equivalence

between transition system modules.

De�nition 3.1.2 M-equivalence

A TSM M1 is m-equivalent to another TSM M2 i� for any TSM M0, LM1jjM0 =

LM2jjM0.

Theorem 3.1.2 M-equivalence is decidable.

Proof: Given a TSM h�; Qg; Ql; Q0; T ; J; Ci, we can construct a SA h�0; Q0; Q00; �; F i as

follows:

� �0 = Qg � (� [feg) [fhg,

� Q0 = Qg �Ql � (T [feg) [fqhg,

� Q00 = Q0 � feg,

� F = f(L� ; U�)g�2J[C [f(;; fqhg)g, and

{ for each � 2 J , L� = Q0 and U� = fhqg; ql; ti 2 Q
0 j �(qg; ql) = ;g[Qg�Ql�f�g,

{ for each � 2 C, L� = fhqg; ql; ti 2 Q
0 j �(qg; ql) 6= ;g and U� = Qg � Ql � f�g:

� For any hqg; ql; ti 2 Q
0, and any h�qg; ci 2 �0,

{ if qg 6= �qg , then �(hqg; ql; ti; h�qg; ci) = ;.

{ if c 2 � (i.e. c 6= e), then �(hqg; ql; ti; hqg; ci) = fhq0g; q
0
l; �i j hc; q

0
g; q

0
li 2 �(qg; ql)g:

{ otherwise, �(hqg; ql; ti; hqg; ei) = Qg � fqlg � feg:

� For the new symbol h (halt) and the special state qh,

{ if �(qg:ql) = ; for all � 2 T , then �(hqg; ql; ti; h) = fqfg;

otherwise, �(hqg; ql; ti; h) = ;.

{ �(qh; h) = fqhg.

CHAPTER 3. OPEN SYSTEM SYNTHESIS 29

We can transform any TSM M1 and M2 (with the same alphabet and global states), into

SA A1 and A2, and then, check if A1 and A2 are equivalent.

The underlying structure of a TSM M = h�; Qg; Ql; Q0; T ; J; Ci, is a graph/automaton

U(M) = h�; Qg; �i such that

�(qg; �) = fq0g j h�; q
0
g; q

0
li 2 �(qg; ql); for some � 2 T ; and some accessible ql 2 Qlg:

A local state qln 2 Ql is accessible if there exists a sequence,

hql0; qg0i�0hq
0
g0; ql1; qg1i�1hq

0
g1; ql2; qg2i�2 : : : �nhq

0
g(n�1); qlni;

such that for any i � 0, there is some �, h�; q0gi; ql(i+1)i 2 �i(qgi; qli).

Theorem 3.1.3 If TSMs M1 and M2 are m-equivalent, then U(M1) and U(M2) are

isomorphic.

Proof: Suppose U(M1) = h�; Qg; �1i and U(M2) = h�; Qg; �2i. We only need to show that

for arbitrary qg; q
0
g 2 Qg, if q

0
g 2 �1(qg) then q

0
g 2 �2(qg). Since q0g 2 �1(qg), by de�nition,

there exists a sequence

hql0; qg0i�0hq
0
g0; ql1; qg1i�1 : : : hqln; qgni�nhql; qgi�hq

0
l; q

0
gi

where ql0; : : : ; qln; ql; q
0
l are local states of M1. The sequence represents (the projection of)

a pre�x of a possible run of M1. Since M1 and M2 are equivalent, there must be another

sequence

hpl0; qg0i�0hq
0
g0; pl1; qg1i�1 : : : hpln; qgni�nhpl; qgi�hp

0
l; q

0
gi

where pl0; : : : ; pln; pl; p
0
l are local states ofM2; otherwise, we can construct a TSMM3 which

di�erentiates between the runs ofM1jjM3 andM2jjM3. Therefore, we know that q0g 2 �2(qg).

Theorem 3.1.4 For any n > 0, there exists a TSM with the degree of parallelism of n such

that there is no other m-equivalent TSM with the degree of parallelism smaller than n.

Proof: Consider, for example, a TSM M = hfcg; fqg1; : : : ; qgng; fqlg; fhqg1; qlig; f�1; : : : ;

�ng; ;; f�1; : : : ; �ngi. For each �i, �i(qgi; ql) = fhc; qgi; qlig and �i(qgj ; ql) = ;, for any j 6= i.

Use the previous theorem on the underlying structure and induction on i to show that a fair

CHAPTER 3. OPEN SYSTEM SYNTHESIS 30

computation that passes through qg1; : : : ; qgi must contain an in�nite number of occurrences

of all transitions enabled at qg1; : : : ; qgi and there must exist at least one transition enabled

at qg(i+1) that is di�erent from any transition enabled at qg1; : : : ; qgi. Therefore, any TSM

which is m-equivalent to M must have at least n transitions.

More speci�cally, for each i, consider a TSM ME = hfa; b; dg; fqg1; : : : ; qgng; fqleg;

fhqg1; qleig; f�g; ;; f�gi de�ned as follows:

� For 0 � j < i, �(qgj ; qle) = fhd; qg(j+1); qleig.

� �(qgi; qle) = fha; qg(i+1); qleig.

� �(qg(i+1); qle) = fhb; qgi; qleig.

Any fair computation of MjjME must include an in�nite number of occurrences of the

character c between a and b because �i+1 must be taken in�nitely often. Now, if TSM

M0 is m-equivalent to M, then M0 must have the same underlying structure. Consider a

computation of M0jjME in which all transitions of M0 enabled at qgj , for all 0 � j < i,

are taken in�nitely often but the transition(s) enabled at qg(i+1) is taken only �nitely many

times. It is easy to show that it exists. Since it does not contain an in�nite number of

occurrences of c between a and b, the computation must be an unfair computation. With

the induction hypothesis, we can conclude that there must exist at least one transition that

is enabled at qg(i+1) and is di�erent from any transition enabled at qg1; : : : ; qgi.

The above theorem establishes the m-equivalence hierachy of TSMs with di�erent de-

grees of parallelism. Therefore, we say that a TSMM has the minimal degree of parallelism

if there is no other m-equivalent TSM with the degree of parallelism smaller than Par(M).

Theorem 3.1.5 For any TSM M1, there exists a TSM M2 with Par(M2) = 1 such that

for any TSM M0, LM2jjM0 � LM1jjM0.

Proof: Given M1 = h�; Qg; Ql; Q0; T ; J; Ci, construct M2 = h�; Qg; Q
0
l; Q

0
0; f�

0g; ;; f� 0gi

as follows:

� Each q0l 2 Q
0
l consists of two components hql; ti, where ql is fromQl and t is a transition

queue (�1; �2; : : : ; �n), of transitions �i 2 T .

� Q00 includes all hqg; hql; tii 2 Qg �Q
0
l such that hqg; qli 2 Q0.

CHAPTER 3. OPEN SYSTEM SYNTHESIS 31

� For any qg 2 Qg, ql 2 Ql and any transition queue t = (�1; �2; : : : ; �n), let 1 � i � n

be the smallest index such that �i 2 Enabled(qg; ql). Then, we de�ne �
0 to be:

� 0(qg; hql; ti) = fhc; q0g; hq
0
l; (�1; : : : ; �i�1; �i+1; : : : ; �n; �i)ii j hc; qg; q

0
li 2 �i(qg; ql)g:

If Enabled(qg; ql) = ;, then � 0(qg; hql; ti) = ;.

The fair runs of the transition system M2jjM
0 always correspond to some fair runs of the

transition system M1jjM
0. In short, M2 simulates the computation of M1. The fact that

� 0 is strongly fair ensures that if some transition of M1 remains enabled in�nitely often,

then M2 will eventually simulate a transition ofM1. The transition queue guarantees that

every transition enabled (in�nitely often) is eventually taken.

Theorem 3.1.6 Fairness and determinism:

1. There are some STSMs with no m-equivalent WTSMs.

2. There are some WTSMs with no m-equivalent STSMs.

3. There are some TSMs with no m-equivalent DTSMs.

4. There are some TSMs with no m-equivalent �DTSMs.

Proof: Consider the following TSMs:

1. a STSM M1 = hfa; bg; fqg1; qg2g; fqlg; fhqg1; qlig; f�1; �2g; ;; f�1; �2gi with

� �1(qg1; ql) = fha; qg1; qlig,

� �1(qg2; ql) = ;,

� �2(qg2; ql) = fhb; qg2; qlig, and,

� �2(qg1; ql) = ;.

2. a WTSM M2 which is exactly the same as the STSM above except that both �1 and

�2 are weakly fair instead.

3. a TSM M3 = hfa; bg; fqg1; qg2g; fql1; ql2; ql3g; fhqg1; ql1ig; f�g; ;; f�gi with

� �(qg1; ql1) = fha; qg1; ql2i; hb; qg2; ql3ig,

CHAPTER 3. OPEN SYSTEM SYNTHESIS 32

� �(qg1; ql2) = �(qg2; ql3) = fhb; qg1; ql1ig, and,

� �(qg2; ql1) = �(qg2; ql2) = �(qg1; ql3) = ;.

We can show that there is no WTSM [STSM] which is m-equivalent to M1 [resp. M2].

There is also no DTSM and no �DTSM which is m-equivalent to M3. The detail of the

proof is left as an exercise to the reader.

3.1.3 Modular forms

We can de�ne a similar modular form h�; Qg; Ql; �; Q0; F i, for !-automata with other ac-

ceptance conditions. The transition function � is now � : Qg �Ql ��! 2Qg�Ql , and Q0 is

a subset of Qg �Ql. However, there are two possiblilities for F : F may involve local states

Ql (LOC) or the product states Qg � Ql (GLB). For example, using a B�uchi acceptance

condition, F could be either a subset of Ql or a subset of Qg�Ql. Since this is an excursion

from our main interest, we will only briey discuss about this topic.

A word w is accepted by a compositionMjjE of a !-automatonM and some composition

E of other !-automata and/or TSMs, i� w is an interleaved execution of all the components

and satis�es the acceptance conditions of all the components including M's. We may require

thatM is executed in�nitely often (INF). This requirement is sometimes called impartiality.

Theorem 3.1.7 With (LOC) and (INF) conditions, any !-automaton module with one

of the acceptance conditions (B�uchi, Rabin, Streett and Muller) is m-equivalent to some

!-automaton module with another kind of acceptance condition.

Proof: From any !-automaton module M = h�; Qg; Ql; �; Q0; F i with an acceptance

condition of type X 2 fB�uchi, Rabin, Streett, Mullerg, construct an !-automaton A =

h(Qg���Qg) [(Qg�Qg���Qg); Ql [Q0A; �A; Q0A; F i where F is the same acceptance

condition of the same type X , and,

� Q0A = fhql; 0i j hqg; qli 2 Q0; for some qgg,

� for any ql 2 Ql, �A(ql; hqg; �; q
0
gi) = fq0l j hq

0
g; q

0
li 2 �(qg; ql; �)g,

� for any hql; 0i 2 Q0A, �A(hql; 0i; hqi; qg; �; q
0
gi) = fq0l j hq

0
g; q

0
li 2 �(qg; ql; �) ^ hqi; qli 2

Q0g.

CHAPTER 3. OPEN SYSTEM SYNTHESIS 33

Next, transform A into another !-automaton B = h(Qg���Qg)[(Qg�Qg���Qg); Q
0
l; �B;

Q0B; F
0i where F 0 is an acceptance condition of another type Y 2 fB�uchi, Rabin, Streett,

Mullerg. Then, construct an !-automaton module M0 = h�; Qg; Q
0
l [Q

0
l0; �

0; Q00; F
0i where

F 0 is again an acceptance condition of the type Y , and,

� Q0l0 = Qg �Q0B,

� Q00 = fhqi; hqi; qlii j hqi; qli 2 Ql0g,

� for any ql 2 Q
0
l, �

0(qg; ql; �) = fhq0g; q
0
li j q

0
l 2 �B(ql; hqg; �; q

0
gi)g, and,

� for any hqi; qli 2 Q
0
l0, �

0(qg; hqi; qli; �) = fhq0g; q
0
li j q

0
l 2 �B(ql; hqi; qg; �; q

0
gi)g.

It is not hard to see that M and M0 are m-equivalent.

Proposition 3.1.1 With (LOC) condition, B�uchi = Rabin � Streett = Muller, that is:

1. any !-automaton module with acceptance condition of type X 2 fB�uchi, Rabing is m-

equivalent to some !-automaton module with acceptance condition of type Y 2 fB�uchi,

Rabin, Streett, Mullerg.

2. any !-automaton module with acceptance condition of type X 2 fStreett, Mullerg

is m-equivalent to some !-automaton module with acceptance condition of type Y 2

fStreett, Mullerg.

However, if we consider a composition of two B�uchi !-automaton submodules M1jjM2

where each of Mi = h�; Qg; Qlg; Qlli; �i; Fii. Qlg is the set of states shared by both sub-

modules and observable only to (local to) both submodules, while Qlli is local to only Mi.

This composition can also be considered as an !-automaton module with a variant of B�uchi

condition, denoted by 2-B�uchi, where F is a pair of two subsets of local states.

Proposition 3.1.2 With (LOC) condition, any Street or Muller !-automaton module is

m-equivalent to a composition of two B�uchi !-automaton submodules.

Proposition 3.1.3 With (GLB) condition, B�uchi � Rabin � Streett = Muller:

1. any B�uchi !-automaton module is m-equivalent to some !-automaton module with

another kind of acceptance condition.

CHAPTER 3. OPEN SYSTEM SYNTHESIS 34

2. any Rabin !-automaton module is m-equivalent to some Streett/Muller !-automaton

module.

3. any Streett !-automaton module is m-equivalent to some Muller !-automaton module,

and vice versa.

3.2 Synthesis Algorithm

In this section, the generic synthesis algorithm is presented in two steps: �rst, a descriptive

overview of the algorithm, and then the actual details of the algorithm. Later, we will show

the application of this algorithm to synthesis problems within various frameworks.

TSM

E

�e �s

Qg TSM

M

Figure 3.1: Synthesizing M under the environment E with a global state (ranging over Qg)

3.2.1 Overview

The inputs to the algorithm consist of three parts: a speci�cation , an environment model

E , and an execution model X . The speci�cation de�nes the good or desired behaviors of the

entire system (the composition of the environment and the module being synthesized) while

the environment model and the execution model restricts the set of all possible interleaving

behaviors down to a set of behaviors we are interested in. We can also think of the execution

model as representing the scheduler.

The goal of the synthesis algorithm is to synthesize a module M such that whenever

the behavior of MjjE satis�es the execution model, it must also satisfy the speci�cation.

One of the components of the environment model E is a set of global states Qg. This

represents a shared variable, between the environment and the module we are going to

synthesize, whose range is Qg. This is the only means of communication and \control"

between the environment and the module.

CHAPTER 3. OPEN SYSTEM SYNTHESIS 35

Speci�cation

The behaviors that we want to specify are �nite and in�nite sequences of the global states

(Qg), the outputs of the environment (�e), and the outputs of the module (�s).

qg0
�e0
�!qg1

�s1
�!qg2

�s2
�!qg3

�e4
�! : : : [

�sk
�!qg(k+1)]

We can assume without losing generality that �e \ �s = ;.

The �nite behaviors can represent either a dead-lock or a termination. In order to handle

�nite and in�nite sequences uniformly, we extend a �nite sequence into an in�nite sequence

by concatenating the �nite sequence with a new special character h 62 �e [�s (halt) and

an (arbitrary) in�nite sequence.

Therefore, given a speci�cation which de�nes L � (Qg � (�e [�s [fhg))
!, we can

consider as the speci�cation of in�nite behaviors L
inf
 and �nite behaviors L

fin
 where

L
inf
 = L \ (Qg � (�e [�s))

! and,

L
fin
 = fw 2 (Qg � (�e [�s))

�
j for some � 2 (Qg � (�e [�s [fhg))

!; wh� 2 L g:

An in�nite (�nite) behavior � (w) of MjjE satis�es a speci�cation i� � 2 L
inf
 (resp.

w 2 L
fin
). For �nite behaviors, this means that the implementation does not introduce

new dead-locks (or terminating behaviors).

Execution model

The execution model X characterizes a language LX � f0; 1gn((f0; : : : ; ng�f0; 1gn)[fhg)!.

Each word in LX is a representation of a \good" or \possible" scheduling sequence. In other

words, we may assume a scheduling sequence that is not in LX may not or cannot happen.

If X encodes fair computations, then each word in LX describes a fair scheduling sequence.

The special character h is used here to represent, again, the �nite scheduling sequences.

In each (non-h) character hi; a1; : : : ; ani, the �rst component i, which ranges from 0 to

n, describes who is scheduled to run and which transition is taken. If i = 0, it is the

environment's turn. If i 6= 0, then it is the module's turn and the i-th transition of the

module is taken. For the other components, aj = 1 indicates that the j-th transition is

enabled in the state after the transition has been completed. The �rst character of every

word has the form ha1; : : : ; ani, and similar to the previous case, each aj in this case indicates

whether the j-th transition is enabled at the initial state. Figure 3.2 summarizes the relation

between scheduling sequences and behaviors.

CHAPTER 3. OPEN SYSTEM SYNTHESIS 36

Global state

Local state of E

Local state ofM

ha01; : : : ; a0nih0; a11; : : : ; a1ni

qe0
qm0

qg0 �e h
qg1
qe1
qm1

�s
qg2
qe2
qm2

hj; a21; : : : ; a2ni

qgk
qek
qmk

... h

.

.

. . . .

.

Figure 3.2: scheduling sequence

Figure 3.3 gives an example of an execution model. Using this model, the output of the

synthesis algorithm is a module with one weakly fair transition (n = 1). The model itself

is a B�uchi automaton where qx0 is the initial state and qx2 is the �nal state. It is easy to

see that this model excludes all scheduling sequences that remain in�nitely at qx1. Those

are exactly the unfair scheduling sequences xh0; 1i! where the module (the single transition

in the module) is enabled continuously from a certain point on but is not taken. For each

pair h0; 1i, the character 0 in the �rst position means that the module is not scheduled to

run and 1 indicates that the module is enabled. For some reasons that will be explained

later, the synthesis algorithm will ensure that any behavior of MjjE that corresponds to an

unfair scheduling sequence is not constrained to satisfy the speci�cation.

h1; 1i
h1; 0i
h0; 0i

qx1

qx0

h0; 1i

h0; 1iqx2

h1i
h0i

h1; 1i h1; 0i h0; 0i

Figure 3.3: execution model example with 1 weakly fair transition

Note also that in this particular model, all scheduling sequences that contain h are

rejected by the automaton. This means that any �nite behavior of MjjE does not have to

satisfy the speci�cation. If we consider the execution model as representing an assumption

of what we consider \good" or \possible" scheduling, we may say that any �nite behavior

CHAPTER 3. OPEN SYSTEM SYNTHESIS 37

satis�es the speci�cation vacuously.

Figure 3.4 is a modi�ed version of the previous execution model. Unlike the previous

model, in this new model, scheduling sequences that result in a �nite behavior are accepted.

It is worth pointing out that, for a scheduling sequence with h to be accepted, the �rst hmust

occur immediately after some character of the form hi; 0i. This means that an execution

can stop only when the module is not enabled. Later, we will see how we can encode the

other half of the requirement, that is, an execution can stop only when the environment is

not enabled. Later, we will see that this technique also applies to other frameworks (e.g.

synchronous composition).

h0; 0i
h1; 0i

qx0 h1; 1i

h1; 1i

h0; 0i h1; 0i

h0; 1i

h0; 1i

h1; 1i

h

h
h1; 0i h1; 1i

h0; 1i
h0; 0i

h1i

h0i

qx1 qx2

qx3 qx4

h0; 0i
h1; 0i

Figure 3.4: execution model example with h

Environment model

The environment model E is a TSM. In order to combine E later with the speci�cation and

the execution model, we construct an automaton that recognizes a behavior

qg0
�e0
�!qg1

�s1
�!qg2

�s2
�!qg3

�e4
�! : : : [

�sk
�!qg(k+1)] 2 Qg((�e [�s)� Qg)

(!;�)

i� it is a behavior of MjjE , for some M.

Like what we have done for the speci�cation, we augment �nite behaviors with the

special character h and an in�nite sequence. This can be done simply by adding a transition

hqg; qlei
h
! whenever the environment is not enabled at hqg; qlei, where qle is a local state of

the environment model. The result is an automaton that recognizes in�nite words of the

form Qg((�e [�s [fhg)�Qg)
!.

CHAPTER 3. OPEN SYSTEM SYNTHESIS 38

Combined speci�cation, environment model and execution model

One of the key steps in the algorithm is to complement the speci�cation and construct

a product of the environment model, the execution model and the complement of the

speci�cation. The result is an automaton A that accepts a behavior and a scheduling

sequence

qg0
�0
�!qg1

�1
�!qg2 : : :

h
�! : : : : : :

ha00; : : : ; a0ni hi0; a10; : : : ; a1ni hi1; a20; : : : ; a2ni : : : h : : :

i� the behavior is a behavior of the environment model E but does not satisfy the speci�-

cation and the scheduling sequence is accepted by X .

Projecting and Checking Enabling Condition Consistency

At this point, we consider the projection of behaviors of the entire system into behaviors of

the module being synthesized while retaining the essential information of the corresponding

scheduling sequence.

For convenience, let fajg denote aj1; : : : ; ajn in Figure 3.5. The main idea of the pro-

jection is demonstrated in Figure 3.5 (a). A section of the behavior of the entire system

(
�sk
!qgk : : :

�em
! ggm) and the scheduling sequence (hik; ak1; : : : ; akni; : : : ; h0; am1; : : : ; amni) is

projected into a tuple h�sk; qgk; ik; Q1; : : : ; Qn; qgmi. In short, the tuple encodes a move

(�sk, qgk , ik) by the module being synthesized, the enabling condition (Q1; : : : ; Qn � Qg),

and the global state the module observed (qgm) before it makes the next move. For the

enabling condition, we require that Q1; : : : ; Qn are consistent with fakg : : :famg. In other

words, for any j, 1 � j � n and any i, k � i � m, aij = 1 i� qgi 2 Qj . In the special case,

when k = 0, the initial section is projected into a tuple hqg0; Q1; : : : ; Qn; qgmi.

If the module is scheduled to run only �nitely many times, then it must be the case that

the scheduling sequence either has the form : : : hik; : : :ih0; : : :i : : : h0; : : :i : : :, or contains h.

Figure 3.5 (b) and (c) show the projection of such cases. Therefore, the projection of a

behavior of the entire system and a scheduling sequence is a �nite or in�nite sequence of

the tuples described above.

To handle �nite and in�nite projections uniformly, we simply augment any �nite pro-

jection u,

u 2 ((Qg�(2Qg)n�Qg)(�s�Qg�f1; : : : ; ng�(2Qg)n�Qg)
�(�s�Qg�f1; : : : ; ng�(2Qg)n)

CHAPTER 3. OPEN SYSTEM SYNTHESIS 39

: : :
�e(k�1)
�! qg(k�1)

: : : h0; fak�1gi| {z }
h:::;qg(k�1)i

�sk
�!qgk

�e(k+1)
�! qg(k+1) : : :

�em
�!qgm

hik; fakgi h0; fak+1gi : : : h0; famgi| {z }
h�sk;qgk;ik;Q1;:::;Qn;qgmi

�s(m+1)
�! qg(m+1) : : :

him+1; fam+1gi : : :| {z }
h�s(m+1);qg(m+1);im+1;:::i

(a)

: : :
�e(k�1)
�! qg(k�1)

: : : h0; fak�1gi| {z }
h:::;qg(k�1)i

�sk
�!qgk

�e(k+1)
�! qg(k+1) : : : : : : : : :

hik; fakgi h0; fak+1gi : : : h0; : : :i : : :| {z }
h�sk;qgk;ik;Q1;:::;Qni

(b)

: : :
�e(k�1)
�! qg(k�1)

: : : h0; fak�1gi| {z }
h:::;qg(k�1)i

�sk
�!qgk

�e(k+1)
�! qg(k+1) : : :

�em
�!qgm

h
�! : : : : : :

hik; fakgi h0; fak+1gi : : : h0; famgi h : : :| {z }
h�sk;qgk;ik;Q1;:::;Qn;i

(c)

Figure 3.5: Projection

into an (in�nite) extended projection u�,

u� 2 ((Qg � (2Qg)n �Qg)(�s �Qg � f1; : : : ; ng � (2Qg)n � Qg)
!

with an arbitrary in�nite sequence � 2 Qg(�s � Qg � f1; : : : ; ng � (2Qg)n �Qg)
!.

From the product automaton A we constructed earlier, we construct another automaton

B that accepts a projection sequence ,

 2 (Qg � (2Qg)n �Qg)(�s �Qg � f1; : : : ; ng � (2Qg)n � Qg)
!

i� it is a projection of some behaviors and scheduling sequences that are accepted by A.

Therefore, if B accepts , then there is a behavior � and a scheduling sequence � such that:

� � is a behavior of the environment E but does not satisfy ,

� � is accepted by X (i.e. it is a good or possible scheduling sequence), and,

� is a projection or extended projection of � and �.

CHAPTER 3. OPEN SYSTEM SYNTHESIS 40

Co-determinization and Checking Execution Consistency

The next step is to co-determinize the automaton B. The result is an automaton C that

accepts a projection sequence i� for any behavior � and scheduling �, if

� � is a behavior of the environment E ,

� � is accepted by X , and,

� is a projection or extended projection of � and �,

then � satis�es .

Consider any two consecutive tuples

: : : h�s1; qg1; i1; Q11; : : : ; Q1n; q
obs
g1 ih�s2; qg2; i2; Q21; : : : ; Q2n; q

obs
g2 i : : :

in a projection sequence. From the de�nitions, Q1i2 are the global states in which the i2-th

transition are enabled, and qobsg1 is the global state observed by the module before it takes the

i2-th transition. Therefore, for a projection sequence to be consistent with some execution

of the entire system, it must be the case that for any such two tuples, qobsg1 2 Q1i2 .

From the automaton C, we construct an automatonD that accepts a projection sequence

 i� for any behavior � and scheduling �, if

� � is a behavior of the environment E ,

� � is accepted by X , and,

� is a consistent projection or extended projection of � and �,

then � satis�es .

Synthesis

We can interpret the automaton D as an automaton on labeled trees where the observed

global states and the index of the transitions (taken after having observed the global states)

give the branch directions in the trees and the rest of the projection tuples are the labels

on the trees. Figure 3.5 illustrates how a projection sequence is interpreted as a path in a

tree.

Finally, we check the emptiness of the tree automaton D. If it is not empty, then it

must accept a regular tree which is generated by a transducer T . A TSM M can then

CHAPTER 3. OPEN SYSTEM SYNTHESIS 41

h�s1; qg1; Q11; :::; Q1ni

h�s2; qg2; Q21; : : : ; Q2ni

: : : h�s1; qg1; i1; Q11; : : : ; Q1n; q
obs
g1 i

hqobsg1 ; i2i

h�s2; qg2; i2; Q21; : : : ; Q2n; q
obs
g2 i : : :

Figure 3.6: interpreting a projection sequence as a path in a labeled tree

be constructed from T . Being constructed from a tree accepted by D, T and M has the

property that, regardless of how the directions are chosen in the tree, all the paths satisfy

the acceptance condition of D. Each path is a projection sequence and we can consider M

as projection sequence generator. Therefore, M generates a projection sequence i� for

any behavior � and scheduling �, if

� � is a behavior of the environment E ,

� � is accepted by X , and,

� is a consistent projection or extended projection of � and �,

then � satis�es . In other words, any behavior ofMjjE with a scheduling sequence accepted

by X satis�es .

3.2.2 Detailed constructions

Input/Output

The inputs to the algorithm are:

1. a speci�cation de�ning L � (Qg � (�e [�s [fhg))
!, assuming without losing

generality that h 62 �e [�s and �e \ �s = ;.

2. an environment model TSM E = h�e; Qg; Qle; Q0e; Te; Je; Cei:

CHAPTER 3. OPEN SYSTEM SYNTHESIS 42

3. an execution model, represented by an !-automaton X , which recognizes a language

LX , LX � f0; 1gn((f0; : : : ; ng � f0; 1gn) [fhg)!:

The output is a transition system module with n transitions.

Speci�cation

From , we construct a B�uchi automaton S, which recognizes the complement language

�L :

�L = ft� j for any t 2 �e [�s [fhg and any � 62 L g:

Note that an arbitrary character t is added to shift the language from (Qg�(�e[�s[fhg))
!

to ((�e[�s[fhg)�Qg)
!. The only purpose of this shifting is to make the later formulation

of a product automaton more convenient.

Environment model

From E , construct a Streett automaton E 0 = h�0; Q0; fq0g; �; F
0i where �0 = (�e[�s[fhg)�

Qg, and Q
0 = fq0 [qhg [(Qg�Qle � (Te [fsg)). The transition function � : Q0��0 ! 2Q

0

is de�ned as follows:

� for q0 and any h�; qgi 2 �0,

�(q0; h�; qgi) = fhqg; ql; si j hqg ; qli 2 Q0eg:

� for qh and any h�; qgi 2 �0,

�(qh; h�; qgi) = fqhg:

� for any hqg; ql; xi 2 Q
0 and any h�; q0gi 2 �e �Qg,

�(hqg; ql; xi; h�; q
0
gi) = fhq0g; q

0
l; �i j any � 2 T ; h�; q0g; q

0
li 2 �(qg; ql)g:

� for any hqg; ql; xi 2 Q
0 and any h�; q0gi 2 �s �Qg,

�(hqg; ql; xi; h�; q
0
gi) = Qg � fqlg � fsg:

� for any hqg; ql; xi 2 Q
0 and any q0g 2 Qg,

�(hqg; ql; xi; hh; q
0
gi) =

8<
:
fqhg if Enabled(qg; ql) = ;

; otherwise:

CHAPTER 3. OPEN SYSTEM SYNTHESIS 43

For the acceptance condition, F 0 = f(L� ; U�)g�2Je[Ce and

� for each � 2 Je, L� = Q0 and U� = fqhg[fhqg; ql; ti 2 Q
0 j �(qg; ql) = ;g[Qg�Ql�f�g,

� for each � 2 Ce, L� = fhqg; ql; ti 2 Q
0 j �(qg; ql) 6= ;g and U� = fqhg[(Qg�Ql�f�g):

Then, transform E 0 into a B�uchi automaton Ê .

Execution model

From X , construct a B�uchi automaton X̂ such that LX̂ = fi� j � 2 LX ^ i 2 f0; : : : ; ngg.

The language LX̂ is basically equivalent to LX except for an extra �rst character that is

added to every word in LX .

Combine Speci�cation, Environment Model and Execution Model

From the complement of the speci�cation S = h(�e [�s [fhg)� Qg; Qs; Qs0; �s; Fsi, the

environment model Ê = h(�e [�s [fhg) � Qg; Qe; Qe0; �e; Fei, and the execution model

X̂ = h(f0; : : : ; ng � f0; 1gn) [fhg; Qx; Qx0; �x; Fxi, we construct the product automaton of

S, Ê and X̂ . Each h�e; qgi 2 �e � Qg of S and Ê is matched with some characters from

f0g�f0; 1gn of X̂ and each h�s; qgi 2 �s�Qg with some characters from f1; : : : ; ng�f0; 1gn.

The special case hh; qgi of S and Ê is matched with h of X̂ .

Formally, we construct a B�uchi automaton A = h�A; QA; QA0; �A; FAi where the alpha-

bet is

�A = (�e �Qg � f0; 1gn) [

(�s �Qg � f1; : : : ; ng � f0; 1gn) [

(fhg �Qg):

The state QA is Qs�Qe�Qx�f0; : : : ; 3g, the initial state QA0 = Qs0�Qe0�Qx0�f0g and

the �nal state FA = Qs0�Qe0�Qx0�f3g. The matching described above is reected in the

transition function �A. For example, in the case of the environment's move (when � 2 �e),

hq0s; q
0
e; q

0
x; ji 2 �A(hqs; qe; qx; ii; h�; qg; a1; : : : ; ani) i� q0s 2 �s(qs; h�; qgi), q

0
e 2 �e(qe; h�; qgi),

q0x 2 �x(qx; h0; a1; : : : ; ani), and,

j =

8>>><
>>>:

(i+ 1) mod 4 if i = 0 and q0s 2 Fs or i = 1 and q0e 2 Fe or

i = 2 and q0x 2 Fx or i = 3

i otherwise:

In the other cases, all the conditions are similar except q0x 2 �x(qx; hk; a1; : : : ; ani) when

� 2 �s, and q
0
x 2 �x(qx; h) when � = h.

CHAPTER 3. OPEN SYSTEM SYNTHESIS 44

Projecting and Checking Enabling Condition Consistency

Next, we construct, from A, another B�uchi automaton B = h�B; QB; QB0; �B; FBi. Now,

�B = �s � Qg � f1; : : : ; ng � (2Qg)n � Qg reects only the action of the module being

synthesized (�s � Qg � f1; : : : ; ng), the enabling condition of the module (2Qg)n, and the

global states observed by the module Qg, respectively. The set of states QB is simply

(QA � f0; 1g) [fqfg, the initial state QB = Q0A � f0g, and the accepting state FB is

(FA � f0; 1g)[(QA � f1g)[fqfg.

We say that a path in A,

q1
h�s;qg1;i;a11;:::;a1ni

�! q2
�A2
�!q3

�A3
�! : : : qk

�Ak
�!qk+1

where �Aj = h�e; qgj ; aj1; : : : ; ajni, is consistent with h�s; qg1; i; Q1; : : : ; Qn; qgki, if for any

1 � j � k and any 1 � l � n, ajl = 1 i� qgj 2 Ql.

We also say that an in�nite path in A,

q1
h�s;qg1;i;a11;:::;a1ni

�! q2
�A2
�!q3

�A3
�! : : :

where �Aj 2 �A, halts the (synthesized) module with h�s; qg1; i; Q1; : : : ; Qn; q
0
gi, i� it passes

through some states of FA in�nitely often and either:

� for all 2 � l, �Aj is of the form h�e; qgj ; aj1; : : : ; ajni, and for any j � 1, any 1 � l � n,

ajl = 1 i� qgj 2 Ql.

� there is some k such that �Ak 2 fhg �Qg, and for any 2 � j < k, �Aj is of the form

h�e; qgj; aj1; : : : ; ajni, and for any 1 � j < k, any 1 � l � n, ajl = 1 i� qgj 2 Ql.

For �B , we have three cases

� hq0A; 0i 2 �B(hqA; ii; �B) i� there is a path from qA to q0A that is consistent with �B.

� hq0A; 1i 2 �B(hqA; ii; �B) i� there is a path from qA to q0A that is consistent with �B

and passes through some state in FA.

� qf 2 �B(hqA; ii; �B) i� there is an in�nite path that starts from qA and halts the

module with �B.

For the special case qf , �(qf ; �B) = fqfg.

CHAPTER 3. OPEN SYSTEM SYNTHESIS 45

Co-determinization and Checking Execution Consistency

We can co-determinize [Saf88,EJ89] the B�uchi automaton B into a deterministic Rabin

automaton C, which rejects all the �!B words accepted by B.

From C = h�B; QC ; QC0; �C ; FCi, we can construct a Rabin tree automaton D = h�D;

QD; Q0D; �D; FDi. The alphabet �D is the product Qg � f1; : : : ; ng of the (observed)

global states and the index of the (taken) transitions. The set of states QD and initial

states QD0 are (QC � (�s �Qg � (2Qg)n))[fqimpg and QC0 � (�s �Qg � (2Qg)n), respec-

tively. Suppose FC = f(LC1; UC1); : : : ; (LCk; UCk)g. Then, the acceptance condition FD is

f(;; fqimpg); (LD1; UD1); : : : ; (LDk; UDk)g where each LDi (UDi) is the product of LCi (resp.

UCi) and �s � Qg � (2Qg)n.

For the transition funtion �D , if q
obs
g 2 Qi then,

�D(hqc; �s; qg; Q1; : : : ; Qni; hq
obs
g ; ii) =

ffq0cg � �s �Qg � (2Qg)n j for some j; q0c 2 �C(qc; h�s; qg; j; Q1; : : : ; Qn; q
obs
g i)g

Otherwise (when qobsg 62 Qi), �D(hqc; �s; qg; Q1; : : : ; Qni; hq
obs
g ; ii) = fqimpg. For the special

case qimp, �D(qimp; �D) = fqimpg.

Synthesis

As in [PR89a,PR89b], we check for the emptiness of the tree automaton D and construct

a (deterministic) !-transducer T = h�D; QT ; qT0; �T ; lT i, which is a folded representation

of a regular tree accepted by D. The labeling function lT is a function lT : QT ! �s �

Qg � (2Qg)n. For any qt 2 QT , if lT (qt) = h�s; qg; Q1; : : : ; Qni, then let act(qt), gbl(qt) and

enbi(qt) denote �s, qg and Qi, respectively.

We can then transform T into a TSM M = h�s; Qg; QT ; fhglb(qT0); qT0ig; f�1; : : : ; �ng;

J; Ci. For each �i, if qg 2 enbi(qt) then

�i(qg; qt) = fhact(q0t); glb(q
0
t); q

0
ti j q

0
t = �T (qt; hqg; ii))g:

Otherwise, �i(qg; qt) = ;. The set J and C are known beforehand and depend only on the

execution model X .

CHAPTER 3. OPEN SYSTEM SYNTHESIS 46

3.3 Open System Synthesis

It is clear that the algorithm can be used to solve the modular synthesis problem in which

the speci�cation speci�es acceptable sequences, both �nite and in�nite. The choice of the

domain of the synthesized output (such as nSmWTSM for some integer n and m) can be

encoded in the execution model X .

For the basic open system synthesis, we recall proposition 1.3.5 and show only that there

is a universal element for the domain of the environment model. We can construct, for any

alphabet �e and any set of global states Qg, a TSMMU = h�e; Qg; fql0; ql1g; Qg�fql0; ql1g;

f�g; ;; ;i where �(qg; ql0) = �e � Qg � fql0; ql1g and �(qg; ql1) = ;, for any qg 2 Qg. It is

easy to show thatMU is the universal element of any nSmWTSM subclasses. For the weak

open system synthesis, it is obvious that if has a weak open system solution, then MU is

a solution. By proposition 1.3.5, we apply the algorithm to check whether the basic open

system synthesis of has a solution. The 89�SYNTH() and 89�W�SYNTH() problems

can be solved by transforming them into a weak or basic open system problem, according to

proposition 1.3.2 for closed systems and 1.3.6 for open systems. For the modular synthesis

problem under the open system semantics, we simply construct a TSM EjjMU and use it in

the place of E in the algorithm.

The problems that have not been addressed are the maximal open system synthesis and

the ES�SYNTH(�; �) problem. We will consider each of them separately later.

3.4 Modeling

Various kinds of computational properties besides fairness can be modeled and solved within

the framework. For example, the behaviors of the scheduler can be modeled into the ex-

ecution model X . If we consider each � 2 �s [�e to be a variable assignment function

� : V ar ! V al, for some variable set V ar and a variable domain V al, then the charac-

teristics of variables, such as being input, output or shared, can be encoded in either the

environment model or the speci�cation, with a careful choice of global states (Qg). The

separation of the global states (Qg) from the local states (Qle) and from the output alphabet

(�e) allows us to model unobservable variables and uncertainty.

CHAPTER 3. OPEN SYSTEM SYNTHESIS 47

Synchronous and asynchronous composition

Although the algorithm explicitly handles asynchronous compostion, it is easy to encode

synchronous composition, or theoretically any kind of composition, in the execution and

environment model.

Formally, given two TSMs Ma = h�a; Qg; Qla; Q0a; Ta; Ja; Cai: and Mb = h�b; Qg;

Qlb; Q0b; Tb; Jb; Cbi, the synchronous composition of Ma and Mb, under a synchronization

function s : Qg � Qg ! 2Qg is a TS Majj
sMb = h�; Q;Q0; T ; J; Ci where

� � is �a � �b.

� Q is Qg �Qa �Qb.

� Q0 is the set of all states hqg; qa; qbi 2 Q such that hqg; qai 2 Q0a and hqg; qbi 2 Q0b.

� T is f� 0j� 2 Ta [Tbg and for each transition �a 2 Ta, �
0
a is de�ned as follows:

hh�a; �bi; hq
0
g; q

0
a; q

0
bii 2 �

0
a(hqg; qa; qbi)

i�

(9�b 2 Ta)h�a; qga; q
0
ai 2 �a(qg; qa) and h�b; qgb; q

0
bi 2 �a(qg; qa) and q

0
g 2 s(qga; qgb);

� J = f� 0j� 2 Ja [Jbg and C = f� 0j� 2 Ca [Cbg.

The role of the synchronization function is to allow us to represent the behaviors of the

combined TS when both modules try to write to the same shared variables at the same

time.

We can model synchronous composition and solve the synthesis problems under syn-

chronous compostion with the same algorithm. The key idea is to consider an execution

sequence of Majj
sMb as an alternating sequence of outputs of Ma and Mb, and solve

the synthesis problems as if asynchronous composition were used. First, such alternating

execution has to be modeled with the execution model X . Second, we have to modify the

given environment module to reect the fact that the global state that should be observed

by the environment at each step is the previous global state, instead of the current global

state printed out by the system.

Given the environment model E = h�; Qg; Ql; Q0; T ; J; Ci, we can construct E 0 =

h�; Qg; Q
0
l; Q

0
0; T

0; J 0; C0i as follows:

� Q0l = Ql � Qg,

CHAPTER 3. OPEN SYSTEM SYNTHESIS 48

qx0

<2,1,0>
<2,1,1>

<2,0,1>
<2,0,0>

<0,0>
<0,1>
<1,0>
<1,1>

<0,0,1>
<0,1,0>
<0,1,1>

qx4

qx1

qx5

<1,0,0>
<1,0,1>
<1,1,0>
<1,1,1>

qx3qx2

<0,0,1>
<0,1,0>
<0,1,1>

h

<0,0,0><0,0,0>

h h

h
any <*,*,*>

Figure 3.7: Execution model for synchronous composition

� Q00 = fhqg; hql; qgiijhqg; qli 2 Q0g,

� T 0 = f� 0j� 2 T g where each � 0 is de�ned by:

h�; q0g; hq
0
l; q

0
gii 2 �

0(qga; hql; qgi) i� h�; qgb; q
0
li 2 �(qg; ql) and q

0
g 2 s(qga; qgb);

� J = f� 0j� 2 Ja [Jbg and C = f� 0j� 2 Ca [Cbg.

The new environment model E 0 now becomes the input to the algorithm. It is easy to see

that its alternating behaviors when combined with any module (the synthesized module)

simulate the synchronous behaviors of E when combined with the same module.

Figure 3.7 shows an execution model with 2 transitions in the synthesized module.

The �rst transition is a weakly fair transition. The good execution sequences are those

alternating sequences that satisfy the weakly fair condition (when the modules are composed

synchronously). As previously de�ned in the section 3.2.1, the �rst position of each tuple

indicates whether it is the system module's turn (1) or the environment's turn (0), and the

CHAPTER 3. OPEN SYSTEM SYNTHESIS 49

second and third position indicate whether the �rst and, respectively, the second transition

are enabled (after the transition has been carried out). Note that since we map a single

synchronous step into two steps in the execution model, the weakly fair condition now

becomes: if the module (or the only transition in the module) is enabled in every even step

from a certain point on, then it has to be taken in�nitely often.

3.5 Maximal Open System Synthesis

Although �nding the maximal solution for the modular synthesis and basic open system

synthesis is still an open question, we can �nd a partial or an approximate solution, which

maximizes the set of good projected behaviors.

Intuitively, a projected behavior is a projection of a behavior that the module being

synthesized can observe and a good projected behavior is a projected behavior that is not

a projection of an undesirable behavior.

Formally, we �rst de�ne a projection relation pr � Bhv � ProjBhv where Bhv is

the set Qg((�e [�s) � Qg)
(!;�) of �nite and in�nite behaviors, and ProjBhv is the set

(Qg�s �Qg)
(!;�) of �nite and in�nite projected behaviors. A behavior � 2 Bhv

� = q0
�0
�!q1

�1
�!q2 : : : [

�n�1
�!qn]

and a projected behavior � 2 ProjBhv

� = p0
�s0
�!p00 p1

�s1
�!p01 p2

�s2
�!p02 : : : [pk

�sk
�!p0k]

satisfy the projection relation, i.e. pr(�; �) i� there is an increasing sequence of integers,

x0x1 : : : [xk] such that

� pi = qxi , p
0
i = qxi+1 and �si = �xi 2 �s,

� for any �j 2 (�s � �e), (9i) j = xi.

For any � 2 ProjBhv, let Pr�1(�) denote the set f� 2 Bhv j pr(�; �)g.

Given an environment E and a speci�cation , a projected behavior � is a good projected

behavior w.r.t. E and i� Pr�1(�)\ O[[E]]imp � [[]]spec.

For a module M, an environment E and a speci�cation , let PB(M) be the set of

projected behaviors of MjjE :

PB(M) = f� 2 ProjBhv j (9� 2 [[MjjE]]imp)pr(�; �)g;

CHAPTER 3. OPEN SYSTEM SYNTHESIS 50

and let GPB(M) be the set of good projected behaviors of MjjE (w.r.t. E and):

GPB(M) = f� 2 PB(M) j Pr�1(�)\ O[[E]]imp � [[]]specg:

Given an environment E and a speci�cation , our goal is to �nd a module M that is

not only a solution to the modular synthesis problem of E and but also maximizes the

set GPB(M).

Consider a Rabin tree automaton D = h�D; QD; Q0D; �D; FDi. Let Dq denote a variant

of D in which the only initial state is q, i.e., Dq = h�D; QD; fqg; �D; FDi. Let Qne � QD

be the set of states from which there is an in�nite tree satisfying the Rabin acceptance

condition FD. The set Qne can be computed in deterministic time O(n(nm)cm) for some

constant c, where n = jQDj and m = jFDj by using the algorithm from [VS85,Em85,PR89a]

to check the non-emptiness of each Dq, q 2 QD.

Theorem 3.5.1 If r = q0q1 : : : is a path in a QD-tree TQD
of the automaton D that accepts

a �D tree, then qi 2 Qne, for all i � 0.

Proof: Suppose r passes a state q and q 62 Qne. Then, Dq does not accept any tree. This

implies that the subtree of TQD
which has q as its root does not satisfy the acceptance

condition, contradicting the assumption that TQD
is accepted by D.

From the Rabin tree automaton D, we can construct Red(D) = h�D; Qne; Q0D \ Qne;

�0D; F
0
Di where �

0
D is simply the restriction of �D to the set Qne and F

0
D = f(U \ Qne; L \

Qne)j(U; L) 2 FDg. It is obvious that D and Red(D) accept the same tree language.

Now, we can proceed to the following theorem on �nding the solution with maximal

good projected behaviors.

Theorem 3.5.2 For any given environment E and speci�cation , there is a module Mx

such that Mx j= Mod�SYNTH(; E) and for any M0, if M0 j= Mod�SYNTH(; E), then

GPB(M0) � GPB(Mx). Moreover, Mx is in 2STSM.

Proof: We apply the synthesis algorithm (in section 3.2). Here, the execution model X , as

shown in Figure 3.4, encodes only a fairness constraint when there is only one strongly fair

transition in the synthesized module. At one point in the algorithm, after co-determinizing

and checking execution consistency, we have a tree automaton D on labeled trees. The trees

CHAPTER 3. OPEN SYSTEM SYNTHESIS 51

branch on the alphabet Qg, the global states observed by the module being synthesized. The

labels on the nodes of a tree belong to the alphabet �s � Qg � 2Qg . Each label represents

the output of the synthesized module, the new global state set by the module, and the

set of global states which enable the module to make the next transition. We compute

Red(D) that preserves the tree language accepted by D. Now, reconsider Red(D) as a

Rabin automaton on the alphabet Qg � �s � Qg � 2Qg . The Rabin automaton Red(D)

accepts a sequence i� it is a path in a tree accepted by the tree automaton D. Use the

algorithm in chapter 2 (for closed systems) to construct a 2STS M that generates the

sequences from the alphabet Qg � �s � Qg � 2Qg . Remove any inconsistency between the

set of enabling global states (2Qg) and the following observed global state (Qg). We can

interpret M as a 2STSM on the alphabet �s.

Suppose a behavior �,

� = p0
�s0
�!p00 p1

�s1
�!p01 p2

�s2
�!p02 : : : [pk

�sk
�!p0k]

is a good projected behavior of some module M0 and M0 is a solution to the modular

synthesis of E and . We can show that � corresponds to a path in a tree accepted by the

tree automaton D. Consider a behavior � ofM0 such that pr(�; �). Suppose qli is the local

state of M0 before the transition pi
�si
�!p0i is taken. Let Qi � Qg be the set of global states

that enable M0 at qli, that is,

Qi = fqg 2 Qg j for some � 2 T ; �(qg; qli) 6= ;g;

where T is the set of transitions of M0. If � is �nite, then Qk+1 = ;. Let M0
i be a TSM

that is exactly the same as M0 except that the set Qg � fqlig is the set of initial states.

From theorem 3.1.5, there exists a 1STSM Ni such that for any E 0, LNijjE 0 � LMijjE 0 . Let

Ti be the labeled subtree (whose paths are projected behaviors) induced by Ni.

Now, we recursively de�ne T 0i , as illustrated in Figure 3.8 to be the same as Ti except

for the branch on pi leading to a node labeled by h�si; p
0
i; Qii, which becomes the root of

a subtree T 0i+1. It is clear that � corresponds to a path in T 00. The path that does not

correspond to � satis�es the acceptance condition of D because it will eventually follow a

path in some Ti and we know that Ni is in 1STSM and M is a solution to the synthesis

problem of E and . For the path that corresponds to �, we consider two cases. First,

if � is in�nite, then we know that for any � such that pr(�; �), � corresponds to a fair

computation. We know that � corresponds to a fair computation because the execution

CHAPTER 3. OPEN SYSTEM SYNTHESIS 52

pi

pi+1

.

.

.

h�si; p
0
i; Qii

T 0i

T 0i+1

same as Ti

Figure 3.8: the tree T 0i with the projected behavior � embedded as a path in the tree

modelX encodes the case when there is only one transition in the synthesized module, and

since � is in�nite, the transition must be scheduled in�nitely often. Second, if � is �nite,

we can pick the enabling condition Qk+1 to be the empty set. Thus, for any � such that

pr(�; �), � also corresponds to a fair computation in this case. Therefore, for both cases,

to satisfy the acceptance condition of D, we have to show that for any � 2 O[[E]]imp, if

pr(�; �), then � satis�es . We know that this is true because we assume that � is a good

projected behavior.

CHAPTER 3. OPEN SYSTEM SYNTHESIS 53

3.6 ES Synthesis

For the ES synthesis problem, our goal is to �nd an implementation such that when com-

posed with any environment that satis�es the environment assumption, the overall behaviors

of the whole system satis�es the speci�cation. It is clear that this problem is closedly re-

lated to the problem of �nding the maximal solution for open system synthesis. If we have

a method of solving the maximal open system synthesis and the solution is unique, then

the ES synthesis problem will be reduced to simply a modular synthesis problem. Unfor-

tunately, we still do not have such method. However, there are certain cases where we can

solve the ES synthesis problem.

Environment assumption = safety

An environment assumption E de�nes a language L E � (Qg � (�e [�s [fhg))
!. An

environment assumption E is a safety property i� for any in�nite word q0
�0
!q1

�1
!q2

�2
! : : : 62

L E , there exists a �nite pre�x q0
�0
!q1

�1
! : : : qi

�i
! such that for any w 2 (Qg � (�e [�s))

!.

q0
�0
! : : : qi

�i
!w 62 L E . Note that the condition restricts in�nite behaviors (or words without

any occurrence of h) only. Finite behaviors do not a�ect whether the language is safety

property.

The following theorem states that any safety property has a unique maximal open system

implementation.

Theorem 3.6.1 If E is a safety property, then there exists a module E such that O[[E]]imp �

L E and for any E 0, if O[[E 0]]imp � L E , then O[[E
0]]imp � O[[E]]imp.

Proof: First, suppose L E is represented as a deterministic Rabin automatonA = h�; Q; q0;

�; F h where the alphabet � is Qg � (�e [�s [fhg). There is no special reason why we

assume that L E is represented as an DRA. We can start with other representations, and

follow the general ideas demonstrated in the constructions below. Not surprisingly, the

complexity of the constructions depends on the representation we choose.

A path q0
�0
!q1

�1
! : : : [qk], where qi 2 Q and �i 2 � for all i, is called a h-free path if

it does not pass through any hqg; hi 2 �, i.e., �i 62 Qg � fhg for all i. Let QF � Q be

the subset of all states s such that there is an in�nite h-free path from s that satis�es the

acceptance condition F . Suppose q0
�0
!q1

�1
! : : : is a run of A, i.e., for any i, qi 2 Q, �i 2 �,

q0 2 Q0 and qi+1 2 �(qi; �i). If qi 2 QF for all i and �i 62 Qg � fhg, we can show that

CHAPTER 3. OPEN SYSTEM SYNTHESIS 54

�0�1 : : : 2 L E . Suppose �0�1 : : : 62 L E . Since E is a safety property, then there must

exist an integer i such that �0�1 : : :�iw 62 L E for all w 2 Qg � (�e [�s). That means,

qi 62 QF , leading to a contradiction to an earlier assumption. A state q 2 Q is s-reachable

from another state q0 2 Q i� there is a path q
�1
!q1 : : :

�i
!q0 for some i � 0, and �j 2 Qg ��s

for all 0 � j � i.

Next, construct a graph G = h�0; Q0; q00; �
0i where

� �0 = �g � (�e [fhg),

� Q0 = 2Q,

� q00 = fq0g,

� for any P 2 Q0 and any � 2 �0,

�0(P; �) = fq0 2 Q j (9 q 2 P)q0 is s�reachable from �(q; �)g:

A node P 2 Q0 of the graph G is called a bad node i� either P 6� QF or there exists some

qg 2 Qg such that for all �0 2 (�e [fhg), �
0(P; hqg; �

0i) is a bad node.

Finally, construct a 1TSM E = h�e; Qg; Ql; Q0e; f�g; J; f�gi where

� Ql = Q0 � f0; 1g,

� Q0e = fhqg; hfq0g; 0ii j (9� 2 (�e [�s [fhg))�(q
0
0; hqg; �i) 2 QF g,

� For any P 2 Q0, qg 2 Qg and �e 2 �e,

�(qg; hP; 0i) =

8<
:
; if �0(P; hqg; �ei) is a bad node

f�0(P; hqg; �ei)g � f0; 1g otherwise

�(qg; hP; 1i) =

8<
:
; if �0(P; hqg; hi) is not a bad node

�(qg; hP; 0i) otherwise:

It is easy to show that E is a basic open system solution of . Any computation of E

corresponds to a run r of A. We know from the construction that r passes through the

states in QF only and from what we have proved earlier, we can conclude that r must be

accepted by A.

Now, suppose E 0 is also a basic open system solution of . We can show that any open

system behavior r of E must pass though the states in QF only. If E 0 is scheduled to run

CHAPTER 3. OPEN SYSTEM SYNTHESIS 55

in�nitely often on r, then it is clear from the de�nition that r never visits any state outside

QF .

For the other case, when E 0 halts at some point on r, we only have to consider the case

when E 0 stops after r passes through some state outside QF . However, we can show that such

behavior is not possible. Consider any behavior � 2 L E of the form q0
�0
!q1

�1
! : : : qi

h
! : : :.

We can show that if � passes through some state outside QF , i.e. q0
�0
! : : : qi

�
!w 62 L E for

all
�
!w 2 ((�e[�s)�Qg)

!, then � 62 O[[E 0]]imp. The reason is that the environment of E 0 can

always keep extending from qi onward and making it into an in�nite sequence, regardless of

what E 0 does. From the assumption, any in�nite sequence of the form q0
�0
! : : : qi

�
!w does

not satisfy E . Therefore, if � were in O[[E 0]]imp, it would lead to a contradiction with our

assumption that E 0 satis�es E .

Therefore, we can conclude that any open system behavior r of E 0 must pass though

the states in QF only. Next, we can show that the projection of r must never pass a bad

state of G; otherwise, there exists another behavior of E with the same projection that does

not satisfy . Finally, we can prove that r is also an open system behavior of E . If E is

scheduled in�nitely often on r, we can select a computation of E which passes through the

local states in Ql = Q0 � f0g. If E is scheduled on �nitely many times, then at the last

point on r where E is schedule, we follow the transition of E to a local state in Q0 � f1g.

The de�nition of � on local states Q0 � f1g guarantees that E can halt at that point.

The above theorem implies that, when the environment assumption is a safety property,

we can �nd such module E and apply the algorithm in section 3.2. to solve the ES synthesis

problem.

Limiting the domain of the environment

If we limit the domain of the environment to some particular set of transition system

modules that can be represented by the execution model X , then we can apply the synthesis

algorithm to solve the ES synthesis problem. In other words, the goal of the ES synthesis

problem here is to �nd an implementation such that when composed with any environment

that belongs to some limited set of TSMs and satis�es the environment assumption E, the

overall behaviors of the compostion of the environment and the synthesized module satis�es

the speci�cation S . One of such sets of TSMs that can be represented by some execution

model XE is the class of TSMs that have n transitions among which there are k strongly

CHAPTER 3. OPEN SYSTEM SYNTHESIS 56

fair and l weakly fair transitions, for some particular integers n, k and l.

We start by applying the algorithm in section 3.2. to solve the basic open system

synthesis of the environment assumption E with the execution model XE . In the middle

of the algorithm, we construct a tree automaton D recognizing all labeled trees of projected

behaviors that can guarantee that E is satis�ed in the corresponding complete behaviors.

Even though we do not have a method to construct the unique maximal solution from D,

we can compute Red(D) and interpret it as a usual Rabin automaton, instead of a Rabin

tree automaton. Red(D) can be used as the environment model input to the algorithm in

section 3.2., but now, with S as the speci�cation and a di�erent execution model X . The

execution model X encodes not only the fairness constraint of the module being synthesized

but also the fairness constraint of the environment. The output (the module synthesized

by the algorithm) of is a solution of the ES synthesis problem.

CHAPTER 3. OPEN SYSTEM SYNTHESIS 57

Chapter 4

Direct Synthesis From Temporal

Logic

In this chapter, we study the direct synthesis of open systems from a temporal logic speci�-

cation. We present two algorithms, one for realizability checking and the other for synthesis.

The speci�cation language we study is the Extended Temporal Logic (ETL) described in

[Wo83]. We also introduce a scheduling variable � following the approach in [BKP84].

Although useful for expressing speci�cations and for extending the algorithm to handle se-

quential composition, � is not essential to the algorithms. The realizability-checking algo-

rithm is based on the tableau decision procedure described in [Wo85]. Given a speci�cation,

the �rst algorithm checks for strong realizability under fairness and random environment

assumptions and generates a structure called a realizability graph. If it is realizable, the

synthesis algorithm takes the generated realizability graph and produces a program which

satis�es the speci�cation. The transitions in the generated program may be labeled weakly

or strongly fair as necessary. Since the realizability-checking algorithm is a tableau-based

algorithm, it manipulates only formulas of linear temporal logic, which are subformulas of

the original speci�cation.

4.1 De�nitions

A [in�nite] behavior � over a state space � is a pair h�v; �si of two equal-length [in�nite]

sequences: a sequence of states �v = s0s1s2 : : : where si 2 � and a scheduling sequence

�s = a0a1a2 : : : where ai 2 f0; 1g. We denote the set of all in�nite behaviors over �

58

CHAPTER 4. DIRECT SYNTHESIS FROM TEMPORAL LOGIC 59

by Bhv(�), or Bhv if � is clear from the context, and the set of all �nite behaviors by

Bhvfin(�).

We can represent a behavior hs0s1s2 : : : ; a0a1a2 : : :i pictorially as

a0
!s0

a1
!s1

a2
!s2 : : :

The intended meaning is that the move from si to si+1 is caused by the environment if

ai+1 = 0, and by the system if ai+1 = 1. Since we always assume that the environment

chooses the initial state, we require that the scheduling sequence always begins with 0, i.e.,

a0 = 0.

Given a behavior � = hs0s1s2 : : : ; a0a1a2 : : :i, we write State(i; �) to denote si and

Sched(i; �) to denote ai. If � = h�v; �si, then �ji denotes a behavior h�vji; �sjii where �vji

[�sji] is the pre�x of �v [�s] of length i.

Let �0 : Bhvfin 7! �� be a function that maps a �nite behavior � to a subsequence of

states which are caused by the system, namely, all State(i; �) where Sched(i; �) = 1. Let

�1 : Bhvfin 7! �� be a function that maps a �nite behavior � to a subsequence of states

which are observed by the system (precede a system state), that is, all State(i; �) where

Sched(i+ 1; �) is de�ned and Sched(i+ 1; �) = 1, or i+ 1 is the length of �.

A computer f : ����� 7! � is a partial function which takes a history of all the states

the system caused and all the states the system observed and selects a state as the next

move of the system. A run of a computer f is an in�nite behavior such that for all i, if

Sched(i; �) = 1 then f(�0(�ji);�
1(�ji)) is de�ned and equal to State(i; �). Therefore, a

behavior is a run of a computer if every system move is the result of f computed with the

information regarding the system's own moves and all the moves the system has observed

in the past.

A run � of f is weakly fair i� for all j, if f(�0(�ji);�
1(�ji)) is de�ned for all i � j, then

Sched(k; �) = 1 for some k � j, i.e., if f is continuously enabled beyond a certain point, it

has to be taken eventually. Similarly, a run � is strongly fair i� for all j, if for all j0 � j

there exists i � j0 such that f(�0(�ji);�
1(�ji)) is de�ned, then Sched(k; �) = 1 for some

k � j.

Let Runsf (f) be all possible strongly fair runs and Runwf (f) all the weakly fair runs of

the computer f . A set B of behaviors is realizable (under fairness and random environment

assumptions) i� there exists a computer f such that Runsf (f) � B. If only weak fairness

is assumed, B is realizable i� there exists a computer f such that Runwf (f) � B.

CHAPTER 4. DIRECT SYNTHESIS FROM TEMPORAL LOGIC 60

4.2 Preliminaries

4.2.1 Speci�cation Language

The speci�cation language studied here is Extended Temporal Logic (ETL) augmented with

a special predicate �. The use of ETL and � is not necessary for the realizability-checking

and synthesis algorithms. Clearly, the algorithms can handle any subset of the language,

including ordinary propositional temporal logic speci�cations without �. Adding � to the

language is necessary, however, to express some common forms of speci�cations such as

mutual exclusion. Without �, we would have to separate the environment assumption and

the system property. With �, the whole speci�cation can be expressed in a single formula.

In ETL, there are in�nitely many temporal operators. Each corresponds to a non-

terminal symbol of a right-linear grammar. A right-linear grammar G is a tuple (VN ; VT ; P)

such that

� VN = fG1; : : : ;Gmg is a �nite set of non-terminal symbols.

� VT = ft1; : : : ; tng is a �nite set of terminal symbols.

� P is a �nite set of production rules of the forms Gi ! tj or Gi ! tjGk where Gi;Gk 2 VN

and tj 2 VT .

For each non-terminal symbol Gi, the corresponding temporal operator Gi(�1; : : : ; �n)

has exactly n arguments (n is the number of terminal symbols).

Given a set P of propositions and a truth-value assignment function � : � 7! 2P , the

semantics of a formula on an in�nite behavior � is de�ned as follows:

� � j= � i� h�; 0i j= �.

� h�; ii j= p i� p 2 �(State(i; �)), for any proposition p 2 P .

� h�; ii j= � i� Sched(i; �) = 1.

� h�; ii j=� i� h�; i+ 1i j= �.

� h�; ii j= G(�1; : : : ; �n) i� there is a word (�nite or in�nite) w = tn0 tn1 tn2 : : : (each

tnj 2 VT), generated by G, and for all j � 0, h�; i+ ji j= �nj .

� Other cases (�1 _ �2, �1 ^ �2, and :�) are standard.

CHAPTER 4. DIRECT SYNTHESIS FROM TEMPORAL LOGIC 61

Clearly, any formula � de�nes a set of in�nite behaviors B which satisfy the formula, i.e.,

� j= � i� � 2 B. Therefore, we de�ne a speci�cation to be realizable if the corresponding

set of behaviors is realizable.

4.2.2 Elementary Formulas

A formula is called elementary if it is either

� an atomic formula, i.e., an atomic proposition (including �) or its negation, or

� a next formula, i.e., a formula that has as its main connective.

4.2.3 Decomposition Rules

The following decomposition rules are used in the tableau graph construction algorithm to

decompose non-elementary formulas. The meaning of a decomposition rule is that in order

to satisfy the formula on the left hand side, one of the sets on the right hand side must be

satis�ed.

� (�1 _ �2) =) ff�1g; f�2gg

� (�1 ^ �2) =) ff�1; �2gg

� :(�1 _ �2) =) ff:�1;:�2gg

� :(�1 ^ �2) =) ff:�1g; f:�2gg

� (::�) =) ff�gg

� (: �) =) ff:�gg

� For an ETL grammar operator G(�1; : : : ; �n) with grammar productions of the form:

G ! tai Gbi where 1 � i � l is the index of the production rules of G, tai 2 VT and

Gbi 2 VN (which may or may not be present), we have the following decomposition

rules:

G(�1; : : : ; �n) =)
[

1�i�l

ff�ai ;Gbi(�1; : : : ; �n)gg

:G(�1; : : : ; �n) =) f
[

1�i�l

f:�ai _:Gbi(�1; : : : ; �n)gg

CHAPTER 4. DIRECT SYNTHESIS FROM TEMPORAL LOGIC 62

4.2.4 Tableau Graph

Before we proceed to describe the realizability-checking algorithm, we will briey explain a

tableau graph construction similar to that in [Wo85]. A tableau graph is a directed graph

in which each node n is labeled with a set of formulas, denoted by �(n).

� A node n in a tableau graph is called a state node i� �(n) contains only elementary

formulas.

� A node n is environment-compatible i� � 62 �(n).

� Similarly, a node n is system-compatible i� :� 62 �(n).

Given a formula ̂ to be checked for satis�ability, the tableau graph for ̂ is created as

follows:

First,

1. create a node (root) and label it with f ̂g.

Repeatedly apply steps 2 and 3.

2. If a node n, with no successor, contains a non-elementary formula � in its label �(n),

and if the decomposition rule for � is � =) fS1; : : : ; Stg, then for each set of formulas

Si, create a successor of n and label it with (�(n)� f�g)[Si. However, if there is a

node with the same label already, then just connect n to the existing node.

3. For a state node n with label �(n), create (if no duplication occurs) a successor of n

and label it with f� j � 2 �(n)g.

Finally,

4. Remove all inconsistent nodes (the nodes containing a proposition p and its negation

:p).

A loop in a tableau graph is called a self-supporting loop if for any state node n in the

loop, there is a �nite path in the loop starting from n such that all formulas of the form

:G(: : :) in �(n) are ful�lled on the path. A formula :G(: : :) with the decomposition

rule,

:G(�1; : : : ; �n) =) f
[

1�i�l

f:�ai _:Gbi (�1; : : : ; �n)gg

CHAPTER 4. DIRECT SYNTHESIS FROM TEMPORAL LOGIC 63

is ful�lled at a state n if the next state n0 on the path contains a term from each of the

disjunctions of the decomposition rule and if the term is :Gbi(: : :) then it is also ful�lled

at n0 (i.e. at the next state down the path).

4.2.5 Maximally Consistent Subsets

Given a set of state nodes N , a subset Nmcs � N is maximally consistent if both of the

following conditions are satis�ed:

� Consistent: It is not the case that for some proposition p other than � and for some

nodes n1; n2 2 Nmcs, both p 2 �(n1) and :p 2 �(n2). In other words, the union of

all the observable atomic formulas (which are all atomic formulas except � and :�)

in the labels of the nodes in Nmcs is consistent.

� Maximal: There is no other subsetN 0 � N such thatN 0 satis�es the above condition

(consistent) and Nmcs � N 0.

4.2.6 Maximally Negation-Consistent Subsets

For a set of state nodes N , a subset Nmncs � N is maximally negation-consistent if both of

the following conditions are satis�ed:

� Negation-consistent: There exists a function f which maps each node n 2 Nmncs

to an atomic formula f(n) 2 �(n) which is not � or :�, and the set P = f:f(n) j

n 2 Nmncsg is consistent. The set P is called the falsifying set for Nmncs.

� Maximal: There is no other subsetN 0 � N such thatN 0 satis�es the above condition

(negation-consistent) and Nmncs � N 0.

4.2.7 Realizability Graph

The structure created by the realizability-checking algorithm is called a realizability graph.

A realizability graph is a directed bipartite graph (Vs; Vn; Esn; Ens) where

� Vs is a set of nodes called R-state nodes and labeled by a node-label which is a set of

tableau graph nodes and a write-label which is a set of atomic formulas.

� Vn is a set of nodes called R-non-state nodes and labeled by a node-label.

CHAPTER 4. DIRECT SYNTHESIS FROM TEMPORAL LOGIC 64

� Vsn is a set of links from R-state nodes to R-non-state nodes.

� Vns is a set of links from R-non-state nodes to R-state nodes.

4.2.8 Embedding

An increasing sequence d0 : : : dl of integers is an embedding of a path [loop] n0 : : :nk in a

tableau graph into a path [loop] v0 : : : vl in a realizability graph if both of the following

conditions hold:

� for all 0 � i � l, ndi is in the node-label of vi.

� for all nj , if j 6= di for all 0 � i � l, then nj is environment-compatible.

It is straightforward to extend the de�nition to allow the embedding of an in�nite path in

a tableau graph into a (�nite or in�nite) path in a realizability graph.

4.3 Realizability-Checking Algorithm

The key idea in the algorithm is that the realizability graph represents a game between

the system and the environment in which the environment can make any �nite number of

moves after a system's move. This is represented by the alternate levels of R-state and

R-non-state nodes. Given a formula to be tested for realizability, the algorithm construct

a tableau graph for the negation of . To \win the game", the environment must try to

force the execution to stay on a path in the tableau graph which falsi�es ; whereas the

system must try to push the execution out of such path.

We start constructing the realizability graph from an R-state node which contains the

root node nroot of the tableau graph. Since the environment can make any number of

moves, it may try to follow any path in the tableau graph from nroot . Without the complete

knowledge of all the moves the environment makes, the system cannot determine which path

the environment has taken. It can only use the information from the state it observes when

it is scheduled to run, to determine a set of all state nodes accessible from nroot the path

might have led into. In the worst case, such s set will be a maximally consistent subset of

all accessible state nodes. Therefore, we construct an R-non-state successor of the R-state

node, for each maximally consistent subset. For its own move, the system must try to push

the execution out of any path which the environment might follow (and win) afterward.

CHAPTER 4. DIRECT SYNTHESIS FROM TEMPORAL LOGIC 65

The best move that the system can possibly make is to falsify as many successor nodes of

the nodes in the node-label of the R-non-state node and in essence, to limit the possible

paths left for the environment to follow. This is the reason why we compute the maximally

negation-consistent subsets and the falsifying set of atomic formulas. The remaining nodes

which are not falsi�ed can be computed by subtracting the maximally negation-consistent

subsets from the set of all successors of the nodes in the R-non-state node. For each

best move possible, we create an R-state successor of the R-non-state successor, put the

remaining nodes in its node-label and continue expanding the realizability graph from the

new R-state node.

In the algorithm, at each R-state node vs, we compute a set Disabled by collecting all

state nodes in the labels of every deleted R-non-state successor of vs. When an R-non-state

successor vns is deleted, it means the system will not be able to satisfy the speci�cation by

making a transition from vs through vns. Therefore, we should consider such a transition

\disabled". As a result, we put every state node in the deleted R-non-state node into the

set Disabled because the environment can choose to move into some states in which the

transition through the deleted R-non-state node is disabled.

Finally, we also have to check at each R-state node that the environment cannot win by

remaining in a loop containing disabled state nodes.

4.3.1 Main procedure

1. First, create a tableau graph Glb for the formula : where is the formula to be

tested for realizability.

2. Create an R-state node (root) and label it with the set fnrootg where nroot is the root

node of Glb.

3. Call the subroutine Expand, passing the root node as its parameter, to expand the

realizability graph in a depth-�rst fashion.

4. Finally, check if the root node of the �nal realizability graph is deleted. If it is not

deleted, then the formula is realizable. Otherwise, it is unrealizable.

4.3.2 Subroutine Expand (Realizability Graph Construction)

Given an R-state node vs with a node-label L(vs), expand the realizability graph as follows:

CHAPTER 4. DIRECT SYNTHESIS FROM TEMPORAL LOGIC 66

1. If L(vs) is empty, then do nothing and return.

2. Let Nacc be the set of all state nodes nk accessible from some n0 2 L(vs) through

some path n0 : : :nk in Glb such that for all 0 < i � k, ni is an environment-compatible

node.

3. If there is a node in Nacc which contains only atomic formulas, then delete vs and

return from Expand.

4. Set Disabled to be the empty set.

5. For each maximally consistent subset Nmcs of Nacc,

(a) Create an R-non-state node vns as a successor of vs and label vns by Nmcs.

(b) Let N 0 be the set of all system-compatible state nodes nk accessible from some

n0 2 Nmcs through a path n0 : : :nk where for all 0 < i < k, ni is not a state

node.

(c) For each maximally negation-consistent subset Nmncs of N
0 and the correspond-

ing falsifying set P of atomic formulas,

i. Create an R-state node as a successor of vns and label it by a node-label

N 0 � Nmncs and a write-label P . Then, recursively call Expand on the new

node.

ii. However, if there is an R-state node v0s with the same node-label and write-

label, and if, in addition, the node v0s itself is marked, \satis�ed", then

connect vns to v
0
s. If v

0
s is not marked \satis�ed", then check whether there

exists a self-supporting loop in Glb that can be embedded into the loop

vs : : :v
0
s. If there is no such loop in Glb, connect vns to v

0
s.

(d) If there is no successor to vns, delete vns and add all the nodes in Nmcs (the

node-label of vns) to the set variable Disabled.

6. Check if there is a self-supporting loop in Glb which is accessible from a node in L(vs)

through a path consisting only of environment-compatible nodes, and all state nodes

in the loop are environment-compatible and in the set Disabled. If there is, then

delete vs. Otherwise, mark vs \satis�ed" and return.

If only weak fairness is allowed in the de�nition of realizability that we are checking,

we only have to look for a self-supporting loop with at least one state node in Disabled.

CHAPTER 4. DIRECT SYNTHESIS FROM TEMPORAL LOGIC 67

4.4 Synthesis Algorithm

To simplify the presentation, we choose to represent the synthesized module by a labeled

�nite automaton. A module automaton is a tuple hS; �; s0; li where S is a �nite set of states,

� : S � 2P 7! 2S the transition relation, s0 2 S the initial state and l : S 7! 2P the labeling

function. A run r is a sequence (�nite or in�nite) of states from S starting with s0. We

will write r[k] to denote the k-th state in the sequence r and jrj to denote the length of r.

A behavior � with a truth-value assignment � : � 7! 2P is accepted by the automaton i�

there is a run r such that for every k, if r[k+ 1] is de�ned then �((�0(�))[k]) = l(r[k+ 1])

and r[k + 1] 2 �(r[k]; �((�1(�))[k])). With weak fairness, a behavior � is accepted i� in

addition to the previous conditions, if r is �nite then for some j, there exist in�nitely many

i � j, such that �(r[jrj]; �(State(i; �))) = ;. A similar acceptance condition can be de�ned

for the case of strong fairness.

Given a realizability graph, we will synthesize a module automaton which implements

the speci�cation. First, for each R-state node v, create a state sv 2 S for the automaton.

The initial state s0 corresponds to the root node of the realizability graph. For the labeling

function l, let l(sv) be the write-label of v.

For each sv and each x 2 2P , recall the set Nacc of all state nodes accessible from the

nodes in the node-label L(v) of the R-state node v. Find the largest subset N � L(v) such

that for every state node n 2 N , all the propositions p 2 �(n) are in x and there is no p 2 x

such that :p 2 �(n). An R-non-state successor vns of v is said to cover x i� N � L(vns)

where L(vns) is the node-label of vns. Let V be the set of all R-state successors of the

R-non-state successor vns of v which covers x. Then �(sv ; x) = fsvs 2 S j vs 2 V g.

CHAPTER 4. DIRECT SYNTHESIS FROM TEMPORAL LOGIC 68

4.5 Correctness and Completeness

Theorem 4.5.1 (Correctness) If A is the module automaton synthesized after checking the

realizability of the speci�cation formula under strong [weak] fairness, then for all behaviors

� accepted by A under strong [weak] fairness, � j= .

Proof: Suppose there were a behavior � accepted by A under strong fairness but � 6j= .

We will prove that this leads to a contradiction. First, from � 6j= , then � j= : and

we can show that � can be embedded into a path in the tableau graph Glb. The path

starts from the root node of Glb and may be either �nite or in�nite. A behavior � can be

embedded into a path n0n1n2 : : : in the tableau graph i� for all state nodes ni, if ni is the

j-th state node in the path, then for all � 2 �(ni), h�; ji j= �. Next, we can show that

the path n0n1n2 : : : can be embedded into a path v0v1v2 : : : in the realizability graph, using

the assumption that � is accepted by A. We use the fact that we compute the maximally

negation-consistent subset in the realizability-checking algorithm to show (by induction)

the existence of the part of the embedding from an R-non-state node to an R-state node

and the fact that we compute the largest subset N � L(v) for each R-state node v in the

synthesis algorithm for the part of the embedding from an R-state node to an R-non-state

node. If the path n0n1 : : : in Glb is �nite, then it must be the case that the last state node

nt in the path must contain only atomic formulas, because � j= : . It implies that nt

is accessible (in Nacc) from some node in the label of the last R-state node vl of the path

v0v1 : : :. If that is the case, vl would have been deleted in step 3 of the realizability-checking

algorithm, a contradiction.

If n0n1 : : : is in�nite but v0v1 : : : vl is �nite, then we can also derive a contradiction by

showing that for the case of strong [weak] fairness, there must be a self-supporting loop

within n0n1 : : : such that all [some] state nodes in the loop are environment-compatible and

in the set Disabled. The essential step is to use the fact that � is accepted under strong

[weak] fairness and to show from the properties of maximally consistent subsets that all

state nodes ni in the loop must be in the set Disabled if �(svl ; �(ni)) = ;. However, if such

a self-supporting loop exists, then vl would have been deleted in step 6.

Similarly, we can also derive a contradiction in the case when both n0n1 : : : and v0v1 : : :

are in�nite, by showing that the loops in v0v1 : : : would have been eliminated in step 5.(c).ii.

CHAPTER 4. DIRECT SYNTHESIS FROM TEMPORAL LOGIC 69

Theorem 4.5.2 (Termination) The realizability-checking algorithm always terminates.

Proof: There are only �nitely many possible R-state and R-non-state nodes. Therefore, it

is not possible to keep expanding the realizability graph forever. It is also clear that there

are only �nitely many maximally consistent and maximally negation-consistent subsets at

any time in the algorithm.

Theorem 4.5.3 (Completeness) The formula is realizable i� the root node of the realiz-

ability graph is not deleted.

Proof: One direction of the proof, showing that if the root node of the realizability graph

is not deleted then is realizable, is straightforward from theorem 4.5.1 (correctness).

In the other direction, we assume that is realizable and show that the root node of

the realizability graph is not deleted. Since is realizable, there exists a function f which

realizes it.

We have to de�ne an embedding of a behavior into the realizability graph. A behavior

� can be embedded into a �nite or in�nite path v0v1 : : : starting from the root in the

realizability graph i� there exists an increasing sequence of integers d0d1 : : : such that all of

the following conditions are true:

� for all i � 0 and n 2 L(v2i), there is a formula � 2 �(n) such that h�; dii j= :�,

� for all i > 0, h�; dii j= �,

� for all i > 0 and n 2 L(v2i+1), there is a formula � 2 �(n) such that h�; di� 1i j= :�.

An R-state node is called reachable i� there is a behavior of f which can be embedded

into some path passing through the node. It is easy to see that the root node must be

reachable. We want to show that some of the reachable nodes including the root are not

deleted.

First, we can show that a reachable R-state node must not be deleted in step 3; otherwise,

we can easily construct a behavior of f which falsi�es .

Next, we can show that for every reachable R-state node v and every self-supporting

environment-compatible loops accessible from a node in the node-label L(v) of v, there

exists a node n in the loop such that for every R-non-state successor vns of v which contains

n in the node-label, there is an R-state successor v0 of vns which is also reachable. Again,

CHAPTER 4. DIRECT SYNTHESIS FROM TEMPORAL LOGIC 70

we can prove this by showing that if such n does not exist, we can construct a fair behavior

of f which falsi�es . We also use the fact that the label of vns is a maximally consistent

set to show the existence of the embedding into a path through vns.

Finally, we can show that for any loop of reachable R-state nodes, if there is a self-

supporting loop in Glb which can be embedded into it as in step 5.(c).ii, there is a reachable

R-state node in the loop which is not deleted as the result of breaking the loop of R-state

nodes in step 5.(c).ii. We prove this by considering a behavior of f which can be embedded

into a path passing through this loop of reachable R-state nodes. Clearly, the path cannot

remain within the loop forever or the behavior will not satisfy .

CHAPTER 4. DIRECT SYNTHESIS FROM TEMPORAL LOGIC 71

Chapter 5

Related Works and Conclusion

5.1 Related Works

5.1.1 Program synthesis

The problem of automatic program synthesis has been previously studied in many di�erent

frameworks. For functional programs, the speci�cation is a �rst-order formula expressing

the desired relationship between inputs and outputs, where the synthesized program can

be extracted from a constructive proof of the formula [MW80,Con85]. The approach used

in [MW80] has been successfully applied to synthesize sequential programs.

Later, many e�orts [EC82,MW84] have been made to extend the approach to synthesize

reactive programs. The synthesized program is extracted from a proof of the satis�ability of

the speci�cation given in either linear temporal logic [MW84] or branching time logic [EC82].

However, the reactive programs considered in these works do not have any interaction with

the environment, that is, they are closed systems.

The e�ort to synthesize reactive modules, i.e., open systems, was �rst reported in

[PR89a]. In that paper, the synthesis of reactive synchronous modules from a speci�ca-

tion in linear-time temporal logic is linked to the problem of checking the validity of a

branching-time temporal formula obtained by transforming the original speci�cation.

The restriction to synchronous systems (or the game of perfect information) was removed

in [PR89b] where the problem of synthesizing asynchronous systems is considered. In that

work, a linear-time temporal speci�cation is transformed into a formula in branching-time

temporal logic by introducing read and write variables, and by adding constraints on the

72

CHAPTER 5. RELATED WORKS AND CONCLUSION 73

variables.

At about the same time, several notions of realizability were introduced and studied in

[ALW89]. For the �nite case, the approach taken is similar to the automata approach of

[PR89a,b]. Because of the choice of the speci�cation, the method can check realizability in

a more general sense, that is, when the behavior of the environment is restricted. However,

[ALW89] only considered synchronous systems.

In [WD91], the approach of [PR89b] was extended to handle shared variables and the

restriction on read and write sequences was relaxed. The paper also generalizes [ALW89]

to include the asynchronous and real-time cases.

An important aspect of concurrent and reactive programming is the fairness assumption.

The problem of synthesizing a reactive program under fairness assumption was �rst raised

in [ALW89] but the solution was not provided. The �rst solution was reported in [AM94].

The tableau approach [MW84] was extended in [AM94] not only to handle the synthesis

problem of open systems, but also address how fairness assumptions can be handled. Later,

[Var95] shows that fair realizability checking and synthesis can also be carried out with the

automata-theoretic approach.

5.1.2 Game and control theories

Game theory and control theory are closely related to the problem of program synthesis.

In game theory, many researchers have studied games where two players take actions al-

ternatively and in�nitely. The �rst player wins if the in�nite sequences generated by the

game belong to a certain set and loses otherwise. A certain kind of games are called Borel

games and it was shown to be related to various temporal logics and !-languages. See

[GH82,HR86,Sta87,Tho90]. The existence of a winning startegy for either players, or deter-

minacy, was studied quite thoroughly [BL69,Mar75,Bu83] and it was shown that all Borel

games are determined. Recently, [Tho94] gave a new recursive construction of winning

strategies for �nite-state games and raised new questions on �nding the winning strategies

for more complicated games such as games over pushdown transition graphs and games over

hybrid systems. [Tho94] showed that there is a memoryless strategy for games character-

ized by a Rabin condition and [Les95] showed that there is a polynomial-sized strategy for

games with Muller acceptatnce condition.

For control theory, [RW89] studied the control problem of discrete event systems (DES).

CHAPTER 5. RELATED WORKS AND CONCLUSION 74

In the paper, DES is simply a �nite state machine with certain subsets of the alphabet des-

ignated as control patterns. The sets of desired behaviors studied [RW89] can be character-

ized as safety properties. Later, [Thi92,TW94] extended the approach to study the control

problem of in�nite behaviors with liveness requirements. For timed and hybrid systems,

[MPS94] has made an attempt to synthesize controllers for certain classes of timed and hy-

brid systems, and has shown that there is a memoryless controller for a certain formulation

of the control problem. For automata-theoretic approach, see [ABB95].

5.1.3 Fairness

Various notions of fairness have been introduced and investigated [Fra86]. [Pa80] showed

the connection between fairness and �xpoints in the semantics of data-ow languages. The

notions of strong and weak fairness in transition systems were taken from [MP92]. The

original idea of the notions was �rst proposed in [LPS81]. [QS83] proposed a notion of

(strong) fairness in transition systems and studied a logic for proving properties under fair-

ness assumption. Fairness in CCS was studied by [CS84] and its connection to regularity

was investigated in [GN89,PRW87,Pri88,Pri93]. [AH94] proposed a stronger notion of fair-

ness called �nitary fairness and showed that �nitary fairness is adequately abstract for the

purpose of veri�cation and leads to a simpler veri�cation process.

5.2 Conclusion

We uniformly de�ne and study the synthesis problems of reactive programs. We consider

many synthesis problems, namely, basic, weak, maximal, exact, modular, and ES synthesis,

and classify them into two groups, closed and open system synthesis, depending on whether

the program being synthesized interacts with its environments.

In this work, a speci�cation is a set of !-regular (in�nite) sequences and regular (�nite)

sequences. The output or the implementation is a transition system for closed system

synthesis and a transition system module for open system synthesis. The speci�cation and

implementation languages we study subsume other works mentioned earlier in the previous

section. In our framework, the synthesized program may be disabled, have any number

of transition functions/ processes, or contain some fairness constraints. We also study the

relationship between the number of processes and the solution of synthesis problems. Our

framework is also general enough to handle modeling variations such as how the modules

CHAPTER 5. RELATED WORKS AND CONCLUSION 75

are composed, synchronously or asynchronously, or how the scheduler behaves.

In modular synthesis problem, we have a model of the environment as an input to the

problem. It can be shown easily that games and control problems may be formulated as a

modular synthesis problem and solve uniformly in our framework.

For closed system, we show that there is always an exact solution and the solution exists

in 2�DTS { a very simple class in the hierachy of classes of transition systems { when the

speci�cation speci�es only in�nite behaviors, and 2TS for general speci�cations that specify

both �nite and in�nite behaviors.

For open system, we solve all cases except the maximal synthesis and ES synthesis

problems. Our framework allows us to specify the class of TSMs we want to consider

as the implementation language. Although we still do not have a method to �nd the

maximal solution for open systems, we show that we can �nd a solution which maximizes

the good projected behaviors and the solution lies in 2TSM. We prove that we can solve

ES synthesis, when the environment assumption is a safety property, or when the domain

of the environment we consider is limited to some classes of TSMs.

CHAPTER 5. RELATED WORKS AND CONCLUSION 76

Bibliography

[ALW89] M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable concurrent

program speci�cations. Proc. 16th Int. Colloq. Aut. Lang. and Prog, Springer-

Verlag, Berlin, LNCS 372, 1989, pp. 1{17.

[AH94] R. Alur and T.A. Henzinger, Finitary fairness, Proc. Symp. on Logic in Comp.

Sci. LICS'94, 1994, pp. 52{61.

[AM94] A. Anuchitanukul and Z. Manna, Realizability and synthesis of reactive mod-

ules, Computer Aided Veri�cation, Proc. 6th CAV94 Workshop, LNCS 818,

1994, pp. 156{169.

[ABB95] A. Aziz, F. Balarin, et. al., Supervisory Control of Finite State Machine, Com-

puter Aided Veri�cation, Proc 7th CAV95 Workshop, LNCS 939, 1995, pp.

279{292.

[BKP84] H. Barringer, R. Kuiper, and A. Pnueli, Now you may compose temporal logic

speci�cations, Proc. 16th ACM Symp. Theory of Comp., 1984, pp. 51{63.

[BPS94] D. Bruschi, G. Pighizzini, and N. Sabadini, On the existence of minimum asyn-

chronous automata and on the equivalence problem for unambiguous regular

trace languages, Information and Computation, vol. 108, no. 2, Feb. 1994, pp.

262{85.

[Bu83] J.R. B�uchi, State-strategies for games in F�� \G��, Journal of Symbolic Logic,

vol. 48, no. 4, Dec 1983, pp. 1171{1198.

[BL69] J.R. B�uchi and L.H. Landweber, Solving sequential conditions by �nite-state

strategies, Trans Amer. Math. Soc. vol. 138, 1969, pp. 295{311.

77

BIBLIOGRAPHY 78

[CDK93] E.M. Clarke, I.A. Draghicescu, R.P. Kurshan, A uni�ed approach for show-

ing language inclusion and equivalence between various types of !-automata,

Information Processing Letters, vol. 46, 1993, pp. 301{308.

[Con85] R.L. Constable, Constructive mathematics as a programming logic I: Some

principles of theory, Ann. Discrete Math., vol. 24, 1985, pp. 21{38.

[CS84] G. Costa and C. Stirling, A fair calculus of communicating systems, Acta

informatica, vol. 21, 1984, pp. 417{441.

[Em85] E.A. Emerson, Automata, tableaux, and temporal logics, Proc. Conf. Logic of

Programs, LNCS 193, Springer, 1985, pp. 79{88.

[EC82] E.A. Emerson and E.M. Clarke, Using branching time temporal logic to syn-

thesize synchronization skeletons. Sci. Comp. Prog., vol. 2, no. 3, 1982, pp.

241{266.

[EJ89] E.A. Emerson and C.S. Jutla, On simultaneously determinizing and comple-

menting !-automata, Proc. 4th IEEE Symp. Logic in Comp. Sci., 1989, pp.

333-42.

[Fra86] N. Francez, Fairness, Springer-Verlag, 1986.

[GN89] I. Guessarian and W. Nair-Dinedane, Fairness and regularity for SCCS pro-

cesses, Informatique Theorique et Applications, vol. 23, 1989, pp. 59{86.

[GH82] Y. Gurevich and L.A. Harrington, Automata, trees, and games, Proc. 14th

Ann. ACM Symp. on the Theory of Computing, 1982, pp. 60{65.

[HR86] H.J. Hoogeboom and G. Rozenberg, In�nitary languages: basic theory and

applications to concurrent systems, in J. W. de Bakker et al. eds., Current

Trends in Concurrency, LNCS 224, Springer, Berlin, 1986, pp. 266{342.

[KK91] N. Klarlund and D. Kozen, Rabin measures and their applications to fairness

and automata theory, Proc. of 6th Annual IEEE Symp. on Logic in Computer

Science, 1991, pp. 256{265.

[LPS81] D. Lehmann, A. Pnueli, and J. Stavi, Impartial, justice and fairness: the ethics

of concurrent termination, ICALP, LNCS 115, 1981, pp. 264{277.

BIBLIOGRAPHY 79

[Les95] H. Lescow, On polynomial-size programs winning �nite-stae games, Computer

Aided Veri�cation, Proc 7th CAV95 Workshop, LNCS 939, 1995, pp. 239{252.

[MPS94] O. Maler, A. Pnueli, and J. Sifakis, On the synthesis of Discrete Controllers

for Timed Systems, in E.W. Mayr and C. Pnuech (Eds), Proc. of STACS95,

LNCS 900, Springer, 1995, pp. 229{242.

[MP92] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent

Systems, Springer-Verlag, 1992.

[MW80] Z. Manna and R. Waldinger. A deductive approach to program synthesis. ACM

Trans. Prog. of Lang. and Sys., vol. 2, no. 1, 1980, pp. 90{121.

[MW84] Z. Manna and P. Wolper. Synthesis of communicating processes from temporal-

logic speci�cations. ACM Trans. on Prog. Lang. and Sys., vol. 6, no. 1, 1984,

pp. 68{93.

[Mar75] D.A. Martin, Borel determinacy, Ann. Math., vol. 102, 1975, pp. 363{371.

[Par80] D. Park, On the semantics of fair parallelism, Abstract Software Speci�cation,

LNCS 86, 1980, pp. 504{524.

[PR89a] A. Pnueli and R. Rosner, On the synthesis of a reactive module. Proc. 16th

ACM Symp. Princ. of Prog. Lang., 1989, pp. 179{190.

[PR89b] A. Pnueli and R. Rosner. On the synthesis of an asynchronous reactive module.

Proc. 16th Int. Colloq. Aut. Lang. Prog. Lec. Notes in Comp. Sci. 372, Springer-

Verlag, Berlin, 1989, pp. 652{671.

[Pri88] L. Priese, Fairness, EATCS Bull., vol. 35, 1988, pp. 171{181.

[Pri93] L. Priese, Fairness, Part II. EATCS Bull., vol. 50, 1993, pp. 247{259.

[PN93] L. Priese and D. Nolte, Strong fairness and ultra metrics, Theoretical Computer

Science, vol. 99, 1992, pp. 121{140.

[PRW87] L. Priese, R. Rehrmann, and U. Willecke-klemme, An Introduction to the

regular theory of fairness, Theoretical Computer Science, vol. 54, 1987, pp.

139{163.

BIBLIOGRAPHY 80

[QS83] J.P. Queille and J. Sifakis, Fairness and related properties in transition systems

{ a temporal logic to deal with fairness, ACTA Informatica, vol. 19, 1983, pp.

195-220.

[RW89] P.J.G. Ramdage and W.M. Wonham, The Control of Discrete Event Systems,

Proc. of the IEEE on Control Theory, vol. 77, 1989, pp. 81{98.

[Saf88] S. Safra, On the complexity of !-automata, Proceedings of the 21st ACM

Symposium on Theory of Computing, Seattle, May 1989, pp. 127{137.

[Saf92] S. Safra, Exponential determinization for !-automata with strong-fairness ac-

ceptance condition, ACM Symp. on Theory of Computing, vol. 24, 1992, pp.

275{282.

[Seg93] R. Segala, Quiesence, fairness, testing, and the notion of implementation, CON-

CUR'93 Best, E. (editor), 1993, pp. 324{338.

[Sta87] L. Staiger, Research in the theory of !-languages, J. Inform. Process, Cybernet,

vol. 23, 1987, pp. 415{439.

[TW94] J.G. Thistle and W.M. Wonham, Control of in�nite behavior of �nite au-

tomata, SIAM Journal on Control and Optimization, vol. 32, no. 4, July 1994,

pp. 1075{1097.

[Tho94] W. Thomas, On the synthesis of strategies in in�nite games, in E.W. Mayr

and C. Pnuech, eds., Proc. of STACS95, LNCS 900, Springer, 1995.

[Tho90] W. Thomas, Automata on In�nite Objects, Handbook of Theoretical Computer

Science, J. van Leeuwen, eds., 1990, pp. 133{191.

[Var95] M.Y. Vardi, An automata-theoretic approach to fair realizability and synthesis,

Computer Aided Veri�cation, Proc 7th CAV95Workshop, LNCS 939, 1995, pp.

267{278.

[VS85] M.Y. Vardi and L.J. Stockmeyer, Improved upper and lower bounds for modal

logics of programs, Proc. 17th ACM Symp. Theory of Comp., 1985, pp. 240{

251.

BIBLIOGRAPHY 81

[Wo83] P. Wolper. Temporal logic can be more expressive. Info. and Cont., vol. 56,

1993, pp. 72{99.

[Wo85] P. Wolper. The tableau method for temporal logic: An overview. Logique et

Anal., vol. 28, 1985, 119{136.

[WD91] H. Wong-Toi and D.L. Dill. Synthesizing processes and schedulers from tem-

poral speci�cations, Computer-Aided Veri�cation (Proc. CAV90 Workshop),

DIMACS Series in Discrete Mathematics and Theoretical Computer Science

Vol. 3 (American Mathematical Society, 1991).

