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Abstract

We study various problems of synthesizing reactive programs. A reactive program is a pro-
gram whose behaviors are not merely functional relationships between inputs and outputs,
but sequences of actions as well as interactions between the program and its environment.
The goal of program synthesis in general is to find an implementation of a program such
that the behaviors of the implementation satisfy a given specification.

The reactive behaviors that we study are w-regular infinite sequences and regular finite
sequences. The domain of the implementation is (finite) transition systems for closed system
synthesis, and transition system modules for open system synthesis. We consider various
solutions, e.g. basic, mazximal, modular and exact, for any particular subclasses of the
implementation language and investigate how characteristics of the program such as fairness,
number of processes and composition operations, affect the synthesis algorithm. In addition
to the automata-theoretic algorithms, we give a synthesis algorithm which synthesizes a

program directly from the linear-time temporal logic E'TL.
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Chapter 1

Synthesis Problems

In this chapter, we will describe what the synthesis problems are and give the motivation
why we are interested in them. The synthesis problems in this chapter are defined abstractly
and the definitions are independent of the choices of the specification and implementation
languages.

To study any synthesis problem, we must make three choices: C'omp, Lgpe. and Ljy,,.

1. Comp is the underlying domain of computations. In other words, it is the domain of
the behaviors in which we are interested. Ranging from linear models to branching
models, C'omp can be simply the set of traces (finite and/or infinite sequences from

some alphabet), the set of timed traces, or the set of computation trees.

2. Lgpec is the specification language. We may, for example, study a synthesis problem
from a specification given as a formula in a temporal logic, or from a specification
given as an automaton. Given the semantics, each specification can be mapped into
a subset of C'omp which is the set of all computations satisfying the specification. We

denote such mapping by [-] : Lspee — 2697P.

spec

3. Limyp is the implementation language with a semantics [[-]]mp C Limp — oComp,

1.1 Basic, Maximal, Exact and Weak Synthesis

The simplest form of synthesis problems is the basic synthesis problem. Given a specifi-
cation, the goal is to synthesize or to constructively find an implementation such that all

computations of the implementation satisfy the specification.
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Lspec Limp
lb\ M
Comyp

Figure 1.1: Specification and implementation languages

Definition 1.1.1 SYNTH (%) (Basic Synthesis)

Input: a specification ) € Ly,
Goal:  find an implementation M € L, such that
I]:M:I]zmp g I]:Qb]]spec

When such M exists, we say that M is a (basic) solution of SYNTH(%) and write
M = SYNTH(v).

A solution of the basic synthesis problem may not be mazimal. In other words, there may
be other solutions which have a larger set of behaviors. The best analogy is the problem of
implementing a program that computes square roots of a real number. An implementation
which prints out only the positive square root definitely satisfies the specification. However,
it is not the maximal solution because there is another implementation that prints out both

the positive and negative roots.

Definition 1.1.2 M—SYNTH(¢) (Maximal Synthesis)
Input: 9 € Lgpec
Goal:  find M € L;y,, such that

[I:M]]yrnp g |]:¢j[|,ggyeo a‘nd
there is no other M’ € L;,,,, such that

[MTinp © IM Ty € 18] pec
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Depending on the choices of L,,.. and L;;,,, there may not be a maximal solution to
some specifications, even though those specifications have a basic solution. In addition, the

maximal solution may not be unique.

In some cases, we may require that the computations of a solution must not only sat-
isfy the specification but all possible computations that satisfy the specification must be

represented. In other words, they must be exactly the set of all computations of the solution.

Definition 1.1.3 E-SYNTH(%) (Exact Synthesis)

Input: 9 € Lgpec
Goal:  find M € L;y,, such that

[M]ip = [P]5pee

In general, there may not even be a basic solution to a specification. Therefore, the
best we can achieve is to find an implementation such that some of its computations satisfy
the specification. Later, we will discuss the synthesis problems of open systems where a
computation can be considered as a game between the environment and the module we
want to synthesize. It may not always be the case that there is an implementation of the
module that always wins, but there may be an implementation of the module that has a

chance of winning a game.

Definition 1.1.4 W—-SYNTH(?) (Weak Synthesis)

Input: 9 € Lgpec
Goal:  find M € L;y,, such that

[[M]]zmp N [[Qb]]spec 7£ @
1.2 Modular Synthesis and Open Systems

Sometimes the objective is not to synthesize the entire program, but a module. In other
words, we expect to compose the result with other modules. To study such synthesis
problems, we have to define what it means to compose two modules together.

Let || : Limp X Limp — Limp be a composition operation which takes two programs
(modules) and composes them into another program. We can define || to be a serial com-

position, or a parallel composition. It could also be asynchronous or synchronous, and may
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involve sharing some global variables and hiding some local variables. Since there is no real
difference between a program and a module, we will use the word “program” and “module”
interchangeably.

With the composition operation, we can define the modular synthesis problem. This
problem is also known as the control problem. Given a specification and a module(s), we
would like to find another module such that when composed with the given module(s), their

combined computations satisfy the specification.

Definition 1.2.1 Mod—SYNTH (v, ME)

Input: ) € Lspee and Mg € Lip,,
Goal:  find Ms € Ly, such that
[[MEHMS]]Wnp < [[¢]]spec

When we say a computation of a program, we usually mean the behavior of the program
alone without any outside interference, i.e., the program is considered as a closed system. On
the contrary, considered as an open system, a program runs in an environment which consists
of many other programs or modules, and a computation of the program in this semantics
must reflect the influence from the environment. To consider the synthesis problems of open

systems uniformly, we define the open system semantics denoted by O[[-]]mp C Limp — 2Comp,

from the base semantics [-],, .

Definition 1.2.2 O[]

imp

O[M];,,, = U [MI[My] .. [|ME]

k>0, M, ,...,MkEL,‘mp

imp
Since we assume that || is closed and has a || identity, the definition can be simplified
to:

OlM];,, = |J [M]IM]

imp

MleLimp

imp

Therefore, in addition to the synthesis problems under the original semantics [-] we

imp)?

can also consider the synthesis problems under O[] and refer to them simply as open

imp
system synthesis problems.

For example, the basic open system synthesis problem of i corresponds to the strong
realizability problem. A solution to the basic open system synthesis problem is an imple-

mentation which when composed with or put in any environment, will guarantee that the
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overall computation satisfies the specification . If we unfold the definitions, the problem

itself can be expressed as:

(HM € Lzmp) O[[M]]zmp < [[QM]SPSC

or equivalently

(IMs € Limp)(YME € Limyp) [Ms|IME];,., € [¥]spec

It leads us to an interesting problem which can be expressed as the dual of the above

expression:

In other words, it is the problem of checking whether the modular synthesis problem
of ¥ and Mg always has a solution for any Mp. This is clearly weaker than strong realiz-
ability (i.e. the basic open system synthesis). For strong realizability, we need to find an
implementation that works universally in any environment, but in this case, we only have
to come up with an implement for every environment, after knowing how the environment

behaves.

Definition 1.2.3 V3—-SYNTH(%)

Input: 9 € Lgpec
Goal:  check whether for any environment Mg € Ly,

there exists an implementation Mg € L;,,, such that

I]:MS| |ME:|]2mp g I]:Qb]]spec
In the same way, the weak open system synthesis problem of ¥ can be expressed as:

and its dual

is sometimes called the weak realizability problem.

Definition 1.2.4 V3—-W-SYNTH (%)

Input: 9 € Lgpec
Goal:  check whether for any environment Mg € Ly,

there exists an implementation Mg € L;,,, such that

[[MSHME]]wnp N [[Qb]]spec 7£ @
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With the open system semantics, we can now define the synthesis problem of modules
under an assumption of the environment, or ES—SYNTH(-, -). Unlike the modular synthesis
problem, we do not have a concrete implementation of the environment beforehand and
the inputs to this problem are an environment assumption and a specification. The envi-
ronment assumption restricts the environment to those whose behaviors conform with the
assumption. Therefore, the synthesized module is required to satisfy the specification only
when the environment satisfies the assumption.

First, for any ¥ € Lgpec, define L(¢g) to be:

L(Yp) = {Mg € Linp | O[ME];,,, € [¥E]spec

i.e., the set of all Mg which satisfies 5 in the open system semantics, or equivalently, the

set of all solutions of the basic open system synthesis problem of .

Definition 1.2.5 ES—SYNTH(vg, ¢s)

Input: ¢E7 ¢S € Lspec
Goal:  find Ms € Ly, such that

for any Mg € L(v¥g),
[[MSHME]]zmp < [¢Sﬂspec'

The ES—SYNTH(-, -) synthesis problem is, in some sense, more general than the (basic)
open system synthesis problem. It also corresponds more closely to the usual modular
development of software. Fach team responsible for developing a module is provided with
both the specification of the module and the specification of the environment or the interface

under which the module is expected to run.
1.3 Basic Relations Between Synthesis Problems

We can see from the definition that some synthesis problems are stronger than others.

Proposition 1.3.1 The following sentences are true:
1. If M =SYNTH(%) then M = W—-SYNTH(v).
2. If M = M=SYNTH (%) then M = SYNTH(%).

3. If M | E=SYNTH(¢) then M | M—SYNTH ().
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The proposition above applies to the synthesis problems under both the original and

the derived open system semantics.

Suppose that for any ¥ € L., there exists =) € L. such that

[I:_‘Qb:l]spec = COmp - [I:¢j[|,ggyea'
Proposition 1.3.2 The following sentences are true:

1. V3=SYNTH(%) (under [-] iff W=SYNTH(—%) under O[]

imp/ imp tas mo solution.

2. Y3-W-=SYNTH(v) (under [-] iff SYNTH(—=v) under O[]

imp) imp tas mo solution.

Proposition 1.3.3 If the mazimal open system synthesis problem of g has a unique so-

lution Mg, then

Mg | ES=SYNTH (¢, vos) iff Ms = Mod—SYNTH (Mg, is).

Suppose there exists a specification g — g € Lspe. such that

[[¢E - Qbs]]spec = [[_'QbE]]spec U [[Qbs]]spec‘

Then, clearly, we can relate SYNTH(-) with ES—=SYNTH(.,-).

Proposition 1.3.4 If M is a solution to the basic open system synthesis of g — g, then
M is also a solution to the ES—=SYNTH (v g, 1) problem.

Note that the converse is not always true.

An implementation language L;,,, has a universal module My iff for any M € Ly,

[M[Mu];,,, = OIM];, -

Proposition 1.3.5 If L;,, has a universal module My;, then the following sentences hold:

1. M = Mod—SYNTH (v, M) (under [[-]]mp) iff M ESYNTH(v) under O[[-]]Z»mp.

2. SYNTH(%) under O[], has no solution iff My = W—-SYNTH (=) under O[]

imp imp”®
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Chapter 2

Closed System Synthesis

This chapter describes the synthesis methods for closed system synthesis problems.

A closed system is a system whose behaviors are generated purely by the system itself
without any external influence. The implementation language which we choose to represent
a closed system here is the fair transition system. The behavior of a fair transition system is
a finite or infinite sequence of characters generated during a fair execution of the transition
system.

The specification language in this case is a combination of w-regular and regular lan-
guages, for specifying infinite and finite behaviors.

In this chapter, we first introduce the fair transition systems and the smaller classes
with the restrictions on determinism, 7-determinism and the number of processes. We
then show the relations between these classes with different restrictions. At the end, we
conclude that synthesis problems of closed systems do not only coincide but also have a
simple implementation in some special classes.

The different restrictions on these classes mean that an implementation in one class can
be considered “simpler” than another implementation in another class. For example, the
fewer the number of processes an implementation requires, the simpler it is. Therefore,
the goal of the synthesis is not only to find a correct implementation, but also to find the

simplest one.
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2.1 Fair Transition Systems

2.1.1 Definitions

A fair transition system (TS) over a finite alphabet 3, A = (¥,Q,Qo, T, J,C), consists of
a finite set of states (), a set of initial states Qo C @, a finite set of transitions 7, a set of
weakly fair transitions J C T, and a set of strongly fair transitions C' C T.

Any transition 7 € T is a function 7 : Q — 2%%?. In other word, a transition causes the
transition system to move nondeterministically from one state to another state, and at the
same time, print out a character from the alphabet 3. We say that a transition 7 is enabled
at a state ¢ iff 7(q) # 0. Let Enabled(q) denote the set of transitions which are enabled at
q.

A weakly fair transition system (WTS) is a fair transition system in which C' = 0.
Similarly, a strongly fair transistion system (STS) is a fair transition system in which .J = 0.

A fair transition system is called deterministic, iff |QQo| = 1 and for any ¢ € @ and
any o € X, there is at most one 7 € T and ¢ € @ such that {0,¢') € 7(¢q). A fair
transition system is called 7-deterministic iff |Qo| = 1 and for any ¢ € @, any ¢ € ¥ and
any 7 € T, there is at most one ¢’ such that (o, ¢') € 7(¢). Let DTS (DWTS, DSTS) stand
for deterministic (weakly, strongly, resp.) fair transition system. Similarly, we write DTS
(tDWTS, 7DSTS) for r-deterministic (weakly, strongly, resp.) fair transition system.

A fair transition system can generate both finite and infinite words. A finite run of a
TS A, which produces a finite word w = ggoy ...0, € 3%, consists of a sequence of states,
G041 - - -Gn+1 € QF and a sequence of transitions, 797y ...7, € T%, such that, ¢o € Qq, for
every 0 < i < mn, (0;,¢i+1) € Ti(¢q;), and Fnabled(q,11) = 0. The last condition requires that
the last state must be the terminal state, i.e., no transition remains enabled at the end of
the computation.

Similarly, an infinite run of A produces an infinite word w = ogoy ... € X% and consists
of a sequence of states goq ... € Q¥ and a sequence of transitions o7y ... € T%. In addition
to the requirements that ¢o € Qo and for every 0 < ¢, (04, qi+1) € Ti(¢;), we also require

that an infinite run satisfies fairness conditions, that is,

e for all 7 € J, if there is some j such that 7 is enabled at ¢; for all ¢ > j, then 7, = 7

for some k > j.

e for all 7 € C, if 7 is enabled infinitely often, 7 is taken infinitely often.
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For convenience, we will say that a run is fair iff either it is finite, or, it is infinite and
satisfies the fairness conditions above.

A language £ 4 generated by a TS A, consists of all the finite and infinite words produced
by some fair run of A. Two fair transition systems are equivalent iff they generate the same
language. For any TS A, we will write £% [£%] to denote the set of finite [resp. infinite]
words produced by some fair run of A.

2.1.2 Fairness

The following construction transforms a TS into an equivalent WTS, and as a special case, a
DTS (which includes DSTS) into a TDWTS. We will show later that DWTS is less expressive
than DTS and that is why we can only find an equivalent TDWTS for any DTS.

Theorem 2.1.1 For any TS A= (3,Q,Q0,T,J,CU{7}), there is an equivalent TS A’ =
(2,QU(Q x 27V, Qo, T, J' U{#'},C") such that |T| = |T"|, |J| = |J'| and |C| = |C"|.

Construction: For every transition 7 € 7, there is a corresponding transition 7/ € 7.
The sets J' and C” are the corresponding copy of J and C| respectively. Each 7/ is defined

as follows:
e For any ¢ € Q,

— for the transition 7/, if 7 € Fnabled(q), then 7/(q) = 7(q); otherwise,
() ={{o, (¢, 0) | 7 € T, (0.¢) € 7(a)}.
— for other transitions 7/, 7'(¢) = 7(q).
e For any (q,S) € Q x 2/°“ and for any 7 € T,
— if 7,7 € Enabled(q) and T € JUC and 7 € S,

(g, ) = {0 (¢, SU{T})) | (0.¢) € 7(a)}.

— otherwise,

(g, ) = {{o. (¢, S={}) [ {o,¢) € T()}.
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Correctness: The case of finite words is straightforward. It is easy to see that the con-
struction does not lose or introduce any finite words.

For the case of infinite words, we first show that any word generated by a fair run r of
A is generated by a fair run of A’. If 7 is taken infinitely often in r then, the same r would
be a fair run of .A’. On the other hand, if 7 is enabled only finitely many times, then map
the portion of r after the last time 7 is enabled, to the states in @ x ). The mapped image
of r is a fair run of A’.

For the other direction, consider an infinite fair run v’ of A’. If v’ remains forever in Q,
then 7 is taken infinitely often and it is clear that r’ is also a fair run of A. Now, consider
the states (¢,5) € Q x 2797, It is clear that Enabled({q,S)) = Enabled(q). Therefore, the

only two cases when the image of r’ in A could be a non-fair run of A are:

e 7 is taken under the name of 7 infinitely often and 7 is only taken finitely many times,

or
e 7 is enabled infinitely often but only taken finitely many times.

However, the use of the set S excludes both cases. Wl

The above theorem implies that any fair transition system can be transformed into a
weakly fair transition system. It is easy to extend this construction to eliminate all strongly
fair transitions in a single transformation with |J U C| x 21/YCl increase in the number of
nodes.

The following is the reverse of the previous construction, from a TS into an equivalent

STS, and as a special case, a DTS into a DSTS.

Theorem 2.1.2 For any TS A= (X,Q,Qo,T,JU{7},C), there is an equivalent TS A’ =
(3,(Q x 279N (Qo, 0y, T', J', C" U {#'}) such that |T| = |T'|, |J| = |J| and |C| = |C].

Construction: Let ). be the subset of () where 7 is enabled.

e For the transition 7/,
7({q,5) = {{o:.(d",9)) | (0.¢) € 7(q)} U
{{o, (¢, SU{T})) | for any 7 € (JU )-S5,
GE€EQe N ¢ Qe N (0,4)€T(q)}.
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e Tor other transition 7/,

—if 7 €5,
7'((¢,9)) = {{o. (¢, S—{T}H) | (0,¢) € 7(9)}.

— otherwise,
(. 9)) = {{0,{¢',9)) | {0.¢') € T(¢q) and if ¢ € Qc then ¢" € Qc}.

Correctness: If a word is generated by a fair run r of A, then the word must be generated
by the image of r on A’. The only cases when the image of r on A’ could be unfair are

when:

e 7 is taken infinitely often in r, but in the image of r, 7/ replaces 7 infinitely often and

7' is taken only finitely often,
e 7' is enabled infinitely often without being taken.

The first case is ruled out because the use of the set S guarantees that if 7/ replaces 7
infinitely often then 7' must be taken infinitely often. For the second case, consider the
path through the states (¢,.5) where S # @) without taking #’. Such path must eventually
empty the set S and move to some states (¢/,0). The only way the path could visit (g, S},
S # 0 again, is by taking 7. On the other hand, if the image of r visits only the states
{q,0) infinitely often without taking 7/, then 7 is enabled continuously in r without being
taken. This contradicts the assumption that r is fair.

For the other direction, suppose r’ is a fair run of A’. We show that if the image of r’ in
A is not fair, then ' is not fair. The only case we have to consider is when 7 is continuously
enabled in the image of ' but is not taken. It is clear that 7 must be enabled infinitely

often and is not taken also. W

2.1.3 Degree of Parallelism
Definition 2.1.1 Degree of Parallelism

For any TS A = (£,Q,Q0, T, J,C), the degree of parallelism of A, denoted by Par(A),
is the number of transitions in A, i.e. Par(A) =|T]|.
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We denote the class of TS with the degree of parallelism of n by »TS. This notation
applies to other subclass as well. For example, 2rDWTS and 27DSTS denote such class of
TWTS and 7STS with the degree of parallelism of 2, respectively.

Definition 2.1.2 Minimal Degree of Parallelism

A TS A has the minimal degree of parallelism of n iff for any equivalent TS system B,
Par(B) > n.

It is easy to see that the following property holds.

Theorem 2.1.3 Ifa TS A= (2,Q,Q0,T,J,C), has a minimal degree of parallelism of n,
then |JUC| > n—1.

Proof: Suppose |JUC| < |T| —11in a TS A. It means there are at least two transitions
T,72 € T — (JUC). If that is the case, then we can construct another T'S which has the
exact same structure as A except that the two transitions 7 and 75 are combined into one

transition. The new TS is equivalent to the original TS A. l

—
Let L be the limit of the prefix of L, lim(Pref(L)) (or the safety closure of L). For any
word w, let Inf(w) be the set of states which are visited infinitely often by w.

Definition 2.1.3 Dynamic Degree of Parallelism

%
The dynamic degree of parallelism of a TS A with respect to a word w € L 4 is the

number of transitions that are enabled at some states visited infinitely often by w, i.e.

Par gy, (A, w) = | U FEnabled(q)|.
g€Inf(w)

The intended meaning of dynamic degree of parallelism is that it is a measure of how
many serial processes are needed to carry out a computation of a transition system in
certain “points” in the computation of the system. A word w € ZA corresponds to a loop
in a TS. The dynamic degree of parallelism is thus the number of transitions enabled in
the loop in a TS. It is more meaningful to use the number of transitions enabled in a loop
than the number of transitions enabled at a state because we may artificially reduce the
number of enabled transitions at one state by shifting and probably increasing the number

of transitions at some subsequent states.
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Definition 2.1.4 Minimal Dynamic Degree of Parallelism

%
A TS A has the minimal dynamic degree of parallelism iff for any word w € I 4 and
for any equivalent TS, Par g, (B, w) > Par g, (A, w).

2.1.4 Infinite Behaviors

At this point, we will turn our attention to infinite behaviors of fair transition systems. We
will show that any w-regular language is represented by a 2rDWTS or a 2rDSTS. In other
words, it means that we only need 2 deterministic programs running in parallel in order to

generate any w-regular language.

Theorem 2.1.4 For any w-regular language L, there exists a 2r DWTS [or 2r DSTS] A
such that L4 = LY = L.

Construction: First, consider a simpler polynomial translation from a nondeterministic
Biichi automaton (NBA) into a 2WTS/2STS. Given a NBA A = (Q, Qo, §, F'), construct a
2STS B ={(Q x {0,1},Qo x {0}, {70, 71},0, {r1}) as follows:

1. First, we may assume that for any state ¢ € (), there is a non-¢ path from ¢ to some
state in I (otherwise, we can easily come up with an algorithm to eliminate all states

q which violate the assumption).

2. Consider A as a labeled graph. Search the graph in the reverse direction from the
final states F' and generate a labeled DAG G C A such that a state ¢ is in G iff there
is a path from ¢ to some final states in F’, and the path itself must be in G.

3. For any ¢ € Q,
70((¢,0)) = {{0, (¢, 0)) | ¢ € (¢, 0) A ¢' & F}.

ro((q, 1)) = (o, {d" 1)) | ¢4 € G A ¢ € F} U {{0,(d,0)) | ¢>¢' €G A ¢ € F}.

11({¢,0)) = {{o. (¢, 0)) | ¢ € 8(g,0) A ¢’ € F} U {{0.(¢", 1)) | ¢™d' €G A ¢ ¢ T}

Using the same construction, we can construct a 2WTS B = (@ x {0,1}, Qo x {0}, {70, 71},

{Tl}7 ®>
The transformation from a NBA A = (Q, Qo,d, I), to a 27DSTS B’ = (29 U (29 x29),
{Qo}, {70, 71}, 0, {m1}) is similar to the above transformation and is based on the subset

construction.
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e For any state S € 29,
0(S) ={(0,8) 15" ={d' lqa€S A ¢ €d(g,0)} N S #0}.
71 () ={{o (SN 15 ={d1qgeS A ¢ €dlgo)} N S"#0}.

e For any state (Sy,S2) € 29 x 29, 71((S1, S2)) = 0, and

—if S, N F # 0, then

70((S1,92)) = {{0,9) | 8" ={d' g€ (SN F) A ¢ €d(q.0)} N S"#0}.
— else,
T0((S1,92)) = {{0, (", S1U82)) | S ={d' | ¢ € Sin ¢ € (g, )} =S A 5" # D}

Note also that B and B’ generate only infinite words.

Correctness: First, we can show that any word accepted by a run r of A is generated by
a fair run of B. All the states in r can be mapped directly into states in @ x {0}. Since all
egdes going into a final state in ' x {0} belong to 7y, 71 is taken infinitely often. Therefore,
the image of the run r is a fair run of B.

For the other direction, consider a fair run r’ of B. Suppose r’ visits @) x {1} only finitely
many times. Then, 71 must be taken infinitely often into F' x {0}; otherwise, r’ will not be
fair. If v/ visits ) x {1} infinitely often, then every time it visits a state in @ x {1}, it will
eventually visit F' x {0} because G is acyclic and every path in G leads to a state in F'.

For B’, the proof is very similar. Every state in a fair run of A is mapped to a state in
2@ except the final states which are mapped to a state in 29 x 29, The subset subtraction
of Sy in the last part of the definition of 7y guarantees that the paths are acyclic. Wl

While every w-regular language can be generated by such simple classes as 2rDSTS and
2rDWTS, we also know that infinite languages generated by any fair transition system are

w-regular.
Theorem 2.1.5 For any TS A, LY is w-regular.

Proof: When we ignore the finite words generated by a TS, the translation of a TS into a
Streett automaton is straightforward. Given a TS A = (¥,Q,Qo, T, J,C), construct a SA
(3X,Q X T,Qo X T,0,F). The transition relation is simply:
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o({¢,7),c) ={(d',7) | {e, ) € T(0)}-

For the acceptance condition F' = {(L.,U;}-cjuc, we have two cases. For each 7 € J,
L =0and U, = Q x {7} U {q|7 € Enabled(q)} x T. For each 7 € C, L, = {q|7 €
Enabled(¢)} x T and U, =Q x {r}.

Theorem 2.1.6 The class of w-languages generated by WTS, STS, TDTS, tDSTS, or
TDWTS is exactly the class of w-regular languages.

Proof: This follows from the two theorems that TS, 27DSTS and 2rDWTS generate w-
regular languages. Therefore, any class of fair transition systems T'S’, such that 2rDSTS C

TS' C TS, must also generate w-regular languages. W

Theorem 2.1.7 The class of w-languages generated by DW'TS is strictly smaller than the

class of languages recognized by deterministic Biichi automaton (DBA).

Proof: The translation from a DWTS into a deterministic Biichi automaton (DBA) is
obvious but there is a language, namely (aa)*b*, which is recognized by a DBA but not by
any DWTS.

Given aDWTS A = (3, Q, Qo, T, J, D), we construct a DBA for each 7 in .J and then con-
struct the product automaton from those |J| DBAs. Each DBA (3,Q x T,Q0 X T, 0, F;),
constructed for each 7 € J, has the same set of states and transition function. The accep-
tance condition F; is simply @ X {7} U {¢|r € Enabled(q)} x T.

If the language (aa)*b” were generated by a DWTS, then there must be an unfair run
which generates the word a*. Since the run is unfair, it means that there is a transition
which is continuously enabled from some point onward but has never been taken. We know
that the automaton is a DWTS and thus it is deterministic. Therefore, if the transition were
taken, it must print out the character b. Since the transition is enabled from some point
onward, we know that it could have printed out b at any time, i.e. after printing out any
number of a’s. This, however, contradicts the assumption that the automaton generates b*

only after an even number of a’s. ll
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TS
W regular

A
WTS §TS TDTS

TDWTS 7TDSTS

DWTS

(n—l—i)DSTS/,’//

Figure 2.1: TS hierarchy

Theorem 2.1.8 The class of w-languages generated by DTS is the same as the class of
w-languages generated by DSTS and properly contains the languages recognized by DBA.

However, there are some w-reqular languages which can not be generated by any DTS.

Proof: Suppose ¥ = {a,b,c}. A language in which if a word contains infinitely many b’s
then it must also contains a ¢, is generated by a DTS, but not recognized by any DBA. If
there were a DBA which accepts the language, then the words of the form (a+ b)*a* which
have only finitely many b’s, must also be accepted. Therefore, for every word of that form,
there must be an accepting state which is visited after the automaton reads some prefix
a''. For the same reason, there exists another prefix a*ba'> which leads the automaton into
another accepting state as well. If we continue extending the prefix in this manner, we can
show that the DBA accepts a word a''ba*2ba*®b . .. which has infinitely many b’s but no ¢’s
at all. However, the language is generated by a DTS (3, {qo, ¢1, 42}, {90}, {70, 71}, 0, {m1})
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where
70(q0) = {{a; 90), (b, 1) (¢, 2) }
7o(q1) = {{a, q), (b, 1)}
70(q2) = {{a, 42), (b, 42), (¢, 42) }
Ti(q1) = {{c, 92)}
7'1((]0) = 7'1((]2) =10

On the other hand, a language (a 4 b)*a“ can not be generated by any DTS. Suppose
there were such DTS. Since any finite word (a + b)*b is a prefix of some (infinite) words
generated by the DTS, we know that there is a transition which prints out b and is enabled
at any state of the DTS. View the DTS as a graph. There must be a strongly connected
component in the graph. The path that passes through every edge (transition) including
those with b as the output label is a fair run and contains infinitely many b’s, contradicting
the assumption that the DTS generates (¢ + b)*a®.

The construction in theorem 2.1.2 shows that the class of languages generated by DTS
and DSTS is the same. The fact that the class of languages recognized by DBA is contained
in the class of languages generated by DTS is implied by theorem 2.2.1 in the following

section.

Theorem 2.1.9 For any n > 0, the class of w-languages generated by n DTS is the same
as the class of w-languages generated by nDSTS and is strictly smaller than the class of
w-languages generated by (n+1)DTS. The class of w-languages generated by nDWTS is
properly contained in the class of w-languages generated by nDTS.

Proof: First, the construction in theorem 2.1.2 shows that nDTS and nDWTS can be
translated into an nDSTS. Second, the language (aa)*b“ is generated by a 2DSTS but not
by any nDWTS, as shown in theorem 2.1.7. Finally, it is easy to show that there are some
w-languages that are generated by (n + 1)DTS but not by any nDTS. This fact is actually
implied by theorem 2.2.1 in the next section.ll

In other words, there are some languages that cannot be generated by any DTS with a
degree of parallelism smaller than n. For example, a language (a*b)*c* is generated by a

DTS with degree of pallelism of at least 3.
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2.2 Closed System Synthesis

In this section, we combine what we has developed in this chapter into the solutions to the

synthesis problems. We consider two cases depending on whether the specification specifies:
e only the infinite behaviors, or,

e both infinite and finite behaviors.

2.2.1 Only Infinite Behaviors

The solution to weak and simple synthesis problems in the closed system case can be as
simple as a TS with a single sequence as its only behavior. In other words, we only need to
check for satisfiability or non-emptyness of the specification. Therefore, the more interesting
question is whether the maximal or exact solution exists.

When the specification is simply w-regular, the weak, simple, maximal and exact syn-
thesis problems coincide. That is, by theorem 2.1.4, there is an exact solution to every
specification. Moreover, the solution is as simple as a 2rDTS. The construction in theorem
gives such implementation which is a 2rDTS with an exponential increase in the number
of nodes. Without the 7 deterministic restriction, the construction yields a 2TS which has
only twice as many nodes as that of the given (Biichi) specification.

For the less expressive class DTS, there may not be an exact solution but we can find
a maximal solution. Even though it is not unique, the maximal solution has the minimal

degree and dynamic degree of parallelism.

Theorem 2.2.1 For any w-regular language L, there is a DTS A such that:

1. A is the mazimal solution, i.e. Lo = L% C L and there is no other DTS A" such that
LiaC Ly CL.

2. A has the minimal degree of parallelism and minimal dynamic degree of parallelism.

3. If L is recognized by a DTS or DBA, then L4 = L.

Construction: For any w-regular language £, we can find a DSA A = (3,0, {q},d, F)
that recognizes L. Suppose F' = {(L1,U1),...,(L,,U,)}. For each (L;U;), we con-
sider A as a graph and assign colors, {cop, ¢y, ...}, to the edges with a subroutine call to

coloring(A,(L;, U;),F,co).
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Subroutine coloring(G',(L;, Us),F' ,¢;):

1. Set the states in U; apart from the graph G and break G—U; into strongly connected

components, Co, C1, ..., Chp,.

2. Consider the graph as a pre-order of Cy,...,(C,, and traverse the pre-order in the
reverse direction. For each Cy, let fr(Cy) be the states ¢ € C} such that there is an
edge going from ¢ to some unmarked states outside (', and assign the color ¢; to all

such edges. Then, do the following:

Case 1 CyNL; = 0: If F'is not empty, then pick a (Lg, Ug) from F’, and call coloring(CY,
(L U), B = {(Li, Ui)}, ¢5).

Case 2 Cpy N L; # 0 and fr(Cy) # 0: break Ci— fr(Cy) into strongly connected compo-
nents Cf,...,C! , and recursively follow the same coloring subroutine for each

C'., but use the next color ¢;41.

Case 3 fr(Cy) =0 and CyNL; = Cy or |Ck| = 1: Mark all states in C, and all incoming
edges as “deleted”.

Case 4 Otherwise (fr(Cy) = 0 and 0 # Cr N L; # C ): break C} into strongly con-
nected components C{,...,C" , such that either C}y C L; or C;y N L; = (. Make
CY,...,C! ,into a pre-order by marking cyclic edges as “deleted” and recursively

apply the algorithm to each C},.

For each color ¢; used, we associate a transition 7; to the edges with the color and

construct a DTS A" = (X, Q x{1,...,n}, {{q0, 1)}, 7,0, T) such that for each layer @) x {i}:

e we use the coloring from the call to coloring(A,(L;, U;),F,co) to define the transitions

in 7 on this layer, and,
e the transitions going out from the states U; x {i} lead to the next layer ) x {i+1}.

Correctness: The key idea is based on the fact that the edges going out from a strongly con-
nected component must have a different color from all transitions in the strongly connected
component. Otherwise, a computation can remain in the strongly connected component
forever and will be an unfair computation of A. Use this argument and induction on the
number of levels of strongly connected components within strongly connected components

to prove the minimality of degree and dynamic degree of parallelism. Wl
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Unlike in the case of DTS, there is no maximal DWTS solution for w-regular specifi-
cations in general. Consider, for example, the case of the w-language (aa)*b™. Suppose a
DWTS A is a solution. We know that the word a“ is not generated by any fair or unfair
run of A. If a“ is generated by an unfair run, then it must be the case that there is a
transition which generates b and is enabled from a certain point on. But this cannot be the
case because A can generate b only after an even number of b’s. Since A cannot generate
npw

a”, then there must be a word (aa) generated by A such that n is maximal. We can

easily construct another DWTS which generates not only every word A generates but also

(aa)"T1pv.

2.2.2 Both Infinite and Finite Behaviors

Now, we consider synthesis problems where a specification specifies both infinite w-regular
words and finite regular words. Finite words may represent either terminating behaviors
or deadlocks. Therefore, to satisfy the specification, an implementation must generate only
good infinite behaviors and must not generate any new deadlocks. In this case, there is still
an exact solution for such specification. However, the “minimal” exact solution is no longer
in 27DTS, but in 2TS or 37DTS.

We can modify the construction in theorem 2.1.4 to give an exact solution in 2TS or
37DTS by simply adding a transition into a terminating state whenever the finite word the
transition system has already printed out satisfies the specification. To show that there is
no exact 2rDTS solution, consider the exact synthesis problem of (¢ 4 b)*a” + (a + b)*.
Since every finite word is in the language, any state in a solution of this problem must have
an outgoing transition(s) which generates ¢ and b and moves the system into a terminating
state. If we remove such transitions and if the solution were 2rDTS, what remains is a
deterministic transition system. However, we have shown that (a + b)*a“ is not generated

by any DTS. Therefore, we can conclude that there is no exact solution that is a 2rDTS.
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Chapter 3

Open System Synthesis

This chapter focuses on open systems. An open system is a system whose behaviors can
be affected by outside influence. The model of open systems that we consider as the im-
plementation language is the transition system module. Transition system modules can be
composed together into one transition system. The main goal of synthesis problems, in
short, is to synthesize one of the modules so that the overall behaviors of the composed
transition system satisfies certain properties specified by the specification. In detail, the
synthesis problems in this chapter vary according to whether some information is given as a
part of the inputs to the problems, how the outside influence, which we call the environment,
behaves, and how the environment’s behaviors are characterized.

Transition system modules are very similar to the transition systems defined in the
previous chapter. The only difference is that, unlike the transition systems which have
a single set of states, a transition system module has two sets of states, global and local
states. The global states are shared among the modules which are composed into a transition
system. Therefore, the computation of each module (including the one being synthesized),
can be affected by other modules (which become the environment to the module being
synthesized).

In this chapter, we first define transition system modules and study their properties.
Next, a generic basic synthesis algorithm is described. We then show how this synthesis
algorithm can be applied to solve various synthesis problems (e.g modular, basic, etc.) with
different settings (e.g. synchronous, unobservable variables, etc). At the end, we present

some results on the more complicated maximal and ES—SYNTH(-, -) synthesis problems.

24
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3.1 Transition system modules

A transition system module (TSM) M is a tuple (X, Q4, Q1, Qo, T, J, C). Qg is a set of global
states, representing shared variables and @) is a set of local states, visible and accessible
only to M. Qo C @, X @ is the set of initial states. Each transition 7 is now a function
T:1Q, X Qp — 25XQaXQ_If |T| = 1, then we say that M is serial. If || = 1, then we say
that M is simple.

Transition system modules My, ..., M, where each M; = (£;,Q,, Qu, Qoi, Ts, Ji, Ci),
can be composed into a transition system M||...[|M, =(X,Q,Qo, T, J,C) such that,

o MYisXyU...UX,.

Qs Qg X Qu X -+ - X Q.

(o is the set of all states (q,,¢1,...,¢,) € @ such that (¢;, ¢;) € Qo;.

T is T1U...UT, and each transition 7 € 7; is extended over ) and X, i.e. ,

<Uv <q£/77q17 B '7(]2/'7 o 7qn>> € T(<f]g7f]17 cees iy e 7qn>) iff <Uv q;7Q;> € T(ngqi)-

J=J1U...UJ,and C=C1U...UCY.

Consequently, the behaviors of a transition system module depend on its environment
which may consist of any number of other transition system modules. Moreover, since we
always compose TSMs into a TS or simply consider a single TSM as a TS, we use the
definitions of runs, fair runs, word generations, etc. which were developed in the previous

chapter.

3.1.1 Decomposition

Since TSMs can be composed into a TS, it is only logical to consider the decomposition of
a TS into TSMs. Decomposition can be a research topic in itself and we do not attempt to
fully study decomposition in detail here. The decomposition considered here is just a simple
decomposition of a TS into serial TSMs with the requirements that the decomposition

preserves equivalence and respects some form of homomorphism.
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Definition 3.1.1 Decomposition

A decomposition of a TS A = (X,Q,Qo,{71,...,7a}, J,C) into an equivalent TS M|
. |IM, of serial TSMs M; = (X, Qy, Qui, Qois {7/}, Ji, Ci), is a one-to-one function d : ) —
Qg X Qun X ... X Qy, such that:

Ji=A{rl}itreJ,and C; = {7/} if , € C.

e For any (o,q') € 7(q), if d(¢) = (45,01,---,¢n) and d(¢') = {(q.4q1,...,4q,), then
(0,45, 4ty € T1(qy, ;) and for all j # i, ¢; = ¢’

For any (o,q,,q¢/) € 7/(q5,¢) and any ¢ € Q, if d(q) = (qy,91,---,¢x), then there
exists ¢’ € @ such that (o,¢') € ;(q), and d(¢') = {(q;,q1,- -, ¢+, Gn)-

q € QO and d(q) = <f]g7f]17 .. 7qn> iff for all 0< { S n, <qg7q2> € QOi-

When we decompose a TS into TSMs, one important property we may want to see in
TSMs is modular independence. In other words, those TSMs should be loosely coupled and
should not have too many shared variables. The size of the set of global states, ||, can be
considered as a measure of how many shared variables are used to control the computation
of the system and how one module may affect the execution of other modules. Or, from
another point of view, log,(Q,) is the number of bits needed to represent all possible global
states. Therefore, in the process of decomposition, we may want to minimize the size of
|QQ4| as much as possible.

Any decomposition mapping d induces an equivalence relation ry between the states @

of the original TS that map to the same global state:

rd((]7(]/) iff for some qquhqiw'w%wq;m
d(q) = <qg7 q1y - - 7qn> and
d(q/) = <qg7 qiv .- 7(]7/1>

If we want to minimize |@),|, we have to minimize the number of equivalence classes (of the
relation r4) induced by d.

Finding the best d with the minimal number of equivalence classes of ry is a difficult
task and the complexity is inherently exponential in the size of the input TS. On the other
hand, if we only look for a suboptimal d with the largest induced relation rg, we can find

such d within polynomial time.
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A binary relation ry is larger than another relation ry iff r3(q1,¢2) implies r1(q1, ¢2),
for any g1,q2. A decomposition d has the largest induced relation ry iff there is no other

decomposition with the induced relation larger than ry.

Theorem 3.1.1 From a fair transition system A = (X,Q,Qo, T,J,C), we can find a de-
composition d of A into an equivalent transition system My||...||M,, with the largest in-

duced relation ry.

Construction: For each transition 7, consider A as a graph and remove all edges which
belong to 7. Each cluster of connected nodes represents a local state of 7. Global states
are constructed by grouping compatible states in each cluster into groups.

Formally, for any ¢1,¢2 € @, construct an equivalence relation Loc;(¢1,¢z2) such that
Loc;(qq, qz) iff there is a path from ¢; to ¢z, or from ¢ to ¢;, without passing through 7.
Each equivalence class of Loc, is a local state in ¢),. Compute the relation GIb which is

the largest fixed-point of the following relation g¢:

9(q1,q2) =
9(q2,q1) N (Vg3 € Q) if (g2, g3) then g(q1, g3)
AN (VT eT) if Locr(q1,q2)
then (V(o,q3) € 7(q1))(3(0, qa) € T(q2)) Loc;(q3,q4) A g(q3, Ga)
A if (1 € Qo) A (V7 €T) Locr(q1, q2)
then ¢ € Qo.

Note that the largest fixed-point of this relation may not be unique.

Each equivalence class of Glb is a global state in (), whereas each equivalence class of
Loc; is a local state in ;. That means that the decomposition maps all states ¢ (of Q)
in an equivalent class of Glb are mapped to single (new) global state ¢, representing the
equivalence class of GIlb where ¢ belongs. Similarly, for any 7, each ¢ is also mapped to a
local state ¢, which represents the equivalence class of Loc, which ¢ is in.

Correctness: We can easily show that any equivalence relation r4 induced by any decom-

position d must be a fixed point of ¢. l

The above decomposition algorithm can be easily extended to decompose a TSM to
another m-equivalent TSM which is a composition of serial TSMs, by considering 3 x @),

as the output alphabet.
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3.1.2 M-equivalence

Similar to the equivalence between transition systems, we have the notion of m-equivalence

between transition system modules.

Definition 3.1.2 M-equivalence

A TSM M, is m-equivalent to another TSM M, iff for any TSM M', Ly mr =

£M2||M/.

Theorem 3.1.2 M-equivalence is decidable.

Proof: Given a TSM (X, Q,, Q1, Qo, T,J,C), we can construct a SA (X', Q’,Qy, 6, F) as

follows:
o ¥'=0Q,x (Zu{e}) U{n},
° Q'=0Qy xQrx (T U{e})U{gn},
o Qp = Qo x {e},
o I'={(L;,U:)}requc U{(0,{g1})}, and

— foreach 7 € J7 LT = Ql and UT = {<qg7ql7t> € Ql | T(qg7ql) = Q}UQg XQI X {T}7
— for each 7 € 07 L; = {<qg7ql7t> € Ql | T(qg7ql) 7£ ®} and U, = Qg X Ql X {T}

e For any (q,,q,t) € Q', and any (g,,c) € ¥/,

— if Gy 7£ (jgv then 5(<Qg7(ﬂ7t>7 <(jg,C>) = @
—if c € ¥ (i.e. ¢ # €), then §((qy, @1, 1), (45, ) = {{a}, a1 ) | (e, ¢}y q7) € T(qg, @)}

— otherwise, 5((qy, q1,1), {4y, €)) = @y X {@} x {e}.

e Lor the new symbol h (halt) and the special state g,

— if 7(gy.q1) = 0 for all 7 € T, then §({q,, @i, ), h) ={qs };
otherwise, 6((g,, ¢i,t),h) = 0.

= &(qn, h) = {qn}-
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We can transform any TSM M; and My (with the same alphabet and global states), into
SA A; and Aj,, and then, check if A; and A, are equivalent. W

The underlying structure of a TSM M = (3,Q,4, Q1, Qo, T,J,C), is a graph/automaton
U(M) = (2,Qy, ) such that

3(gy,0) = {qé | (o, qé, q) € 7(q4, @), for some 7 € T, and some accessible ¢ € Q;}.

A local state q;, € Q; is accessible if there exists a sequence,

(a0, f]go>7'o<f];07 qn; f]g1>7'1<f];17 iz, 492)72 - - -Tn<f];(n_1)7 Gin)

such that for any i > 0, there is some @, (7, ¢;;, Gi(i11)) € Ti(qqi, q:)-

Theorem 3.1.3 If TSMs My and Mgy are m-equivalent, then U(M;y) and U(My;) are

isomorphic.

Proof: Suppose U(M;) = (3,Qy,61) and U(M;3) = (X,Qy, §2). We only need to show that
for arbitrary q,,q, € Qy, if q;, € d1(q,) then ¢, € d2(qy). Since ¢ € d1(qy), by definition,

there exists a sequence

(105 450)T0{ G g0+ 11> 4g1)T1 - - - (i Ggr)Tn {1 4g)T (4] 4)

where o, .. ., qin, q1, ¢ are local states of M. The sequence represents (the projection of)
a prefix of a possible run of M;. Since M; and M, are equivalent, there must be another
sequence

(P10s 490)T0( Qo0 Pi1s Gg1)T1 - - - {Plns Ggn) T D1 4g )T (D1 €)

where pio, . .., pin, p1, pp are local states of My; otherwise, we can construct a TSM Ms which
differentiates between the runs of My||Ms and Ms||Ms. Therefore, we know that q; € 92(qy).
|

Theorem 3.1.4 For any n > 0, there exists a TSM with the degree of parallelism of n such

that there is no other m-equivalent TSM with the degree of parallelism smaller than n.

Proof: Consider, for example, a TSM M = ({c},{¢1:- - q9n}, {a}, {{go, )}, {1, - .,
TN}7 ®7 {7—17 .. '7Tn}>' For each Ty Ti(qgi7 (]l) = {<Cv Gyis f]l>} and Ti(qgj7 f]l) = ®7 for any ] 7£ i

Use the previous theorem on the underlying structure and induction on 2 to show that a fair
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computation that passes through ¢41,.. ., ¢ must contain an infinite number of occurrences
of all transitions enabled at g,1, ..., gy and there must exist at least one transition enabled
at gy(;41) that is different from any transition enabled at g1, ..., q4. Therefore, any TSM
which is m-equivalent to M must have at least n transitions.

More specifically, for each ¢, consider a TSM Mg = ({a,b,d}, {gs,-. - q4n}, {@e}s
{{gg1:q1e)}, {7}, 0, {7}) defined as follows:

e For 0 < ] < i7 T(qgj7 (]le) = {<d7 qg(j—|—1)7 qle>}-
4 T(Qgiv QIe) = {<a7 Qg(i-l—l)v f]le>}-

L4 T(qg(i+1)7 (]le) = {<b7 Gyis qle>}-

Any fair computation of M||Mpg must include an infinite number of occurrences of the
character ¢ between a and b because 7,41 must be taken infinitely often. Now, if TSM
M’ is m-equivalent to M, then M’ must have the same underlying structure. Consider a
computation of M'|| Mg in which all transitions of M’ enabled at ¢4, for all 0 < j < 4,
are taken infinitely often but the transition(s) enabled at qg(i+1) is taken only finitely many
times. It is easy to show that it exists. Since it does not contain an infinite number of
occurrences of ¢ between a and b, the computation must be an unfair computation. With
the induction hypothesis, we can conclude that there must exist at least one transition that

is enabled at ¢,(;41) and is different from any transition enabled at qg1, ..., qg. [ |

The above theorem establishes the m-equivalence hierachy of TSMs with different de-
grees of parallelism. Therefore, we say that a TSM M has the minimal degree of parallelism

if there is no other m-equivalent TSM with the degree of parallelism smaller than Par(M).

Theorem 3.1.5 For any TSM My, there exists a TSM My with Par(Mz) = 1 such that
for any TSM M, L s, 1:m0 € Lty -

Proof: Given Ml = <27Qg7leQ07T7 J7 C>7 construct M? = <27Qg7Q;7Q67 {T/}7®7 {T/}>

as follows:

e Bach g; € ()] consists of two components (g;, £), where ¢; is from @ and ¢ is a transition

queue (1, T2,...,T,), of transitions 7, € 7.

e Qg includes all (qg, (g, 1)) € Q4 x Q] such that (g,, q1) € Qo.
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e For any ¢, € Q,, ¢ € Q; and any transition queue t = (74, 72,...,7,), let 1 < i < n
be the smallest index such that 7; € Enabled(qy, ¢;). Then, we define 7/ to be:

0> (a1 2Y) = {4 G s (o or Tty s s T D) | () € 730 a0
If Enabled(qy, qi) = 0, then 7/(qq, (g, 1)) = 0.

The fair runs of the transition system Ms|| M’ always correspond to some fair runs of the
transition system My||M’. In short, M, simulates the computation of Mj. The fact that
7/ is strongly fair ensures that if some transition of M; remains enabled infinitely often,
then My will eventually simulate a transition of M;. The transition queue guarantees that

every transition enabled (infinitely often) is eventually taken. [ |

Theorem 3.1.6 Fuirness and determinism:
1. There are some STSMs with no m-equivalent WIT'SMs.
2. There are some WTSMs with no m-equivalent STSMs.
3. There are some TSMs with no m-equivalent DTSMs.

4. There are some TSMs with no m-equivalent T D'T'SMs.
Proof: Consider the following TSMs:

1. a STSM Ml = <{a7 b}7 {Qle Qg2}7 {QI}v {<q917 (]l>}7 {7—17 7—2}7 Q)v {7—17 7—2}> with

o (g1, q) = {{(a, g1, 01) }

o Ti(qp2,q) =0,

o 72(qg2, q1) = {(b, 4g2. @) }, and,
o n(qp, @) = 0.

2. a WTSM M, which is exactly the same as the STSM above except that both 7 and

79 are weakly fair instead.

3. a TSM M3 = <{a7 b}7 {q917 q92}7 {(ﬂlv qi12, (]13}7 {<q917 (]ll>}7 {T}7 ®7 {T}> with

4 T(qgh q11) = {<a7 g1, q12>7 <b7 942, (]l3>}7
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4 T(qgh f]lz) = T(qg27 f]l3) = {<b7 g1, qll>}7 andv

o 7(qg2, 1) = 7(qg2, q12) = 7(qg1, 13) = 0.

We can show that there is no WTSM [STSM] which is m-equivalent to My [resp. My].
There is also no DTSM and no 7DTSM which is m-equivalent to M3. The detail of the

proof is left as an exercise to the reader. ll

3.1.3 Modular forms

We can define a similar modular form (X, Q,, Q1, 6, Qo, F), for w-automata with other ac-
ceptance conditions. The transition function ¢ is now ¢ : Q, X @) X X — 209%Q1 and Qg is
a subset of ), X ();. However, there are two possiblilities for /': F' may involve local states
Q1 (LOC) or the product states @, x @; (GLB). For example, using a Biichi acceptance
condition, F' could be either a subset of J; or a subset of (), X ();. Since this is an excursion
from our main interest, we will only briefly discuss about this topic.

A word w is accepted by a composition M||€ of a w-automaton M and some composition
& of other w-automata and /or TSMs, iff w is an interleaved execution of all the components
and satisfies the acceptance conditions of all the components including M’s. We may require

that M is executed infinitely often (INF'). This requirement is sometimes called impartiality.

Theorem 3.1.7 With (LOC) and (INF) conditions, any w-automaton module with one
of the acceptance conditions (Biichi, Rabin, Streett and Muller) is m-equivalent to some

w-automaton module with another kind of acceptance condition.

Proof: From any w-automaton module M = (¥,Q,,Qy, 0, Qo, ) with an acceptance
condition of type X € {Biichi, Rabin, Streett, Muller}, construct an w-automaton A =

(QyxExQy) U (QyxQyXExQy), QiU Qoa,04,Qo04, F) where I is the same acceptance

condition of the same type X, and,
4 QOA = {<f]h 0> | <qg7 f]l> € Q07 for some qg}7
o for any g € Qh 5A(ql7 <qg7 g, q£/]>) = {q; | <q£/77 q;> € 5(qg7 q1, U)}7

o for any <f]170> € Q0A7 5A(<9170>7 <qi7qg7g7 q£/]>) = {q; | <q£/77q;> € 5(f]g7f]170) A <f12791> €
Qo}-
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Next, transform A into another w-automaton B = ((Q,XXxQ,)U(QyxQyxXxQy,), Q1 0B,
Qop, F') where F’ is an acceptance condition of another type Y € {Biichi, Rabin, Streett,
Muller}. Then, construct an w-automaton module M" = (X, Q,, Q71U Q}y, 8", Qf, F') where

F’ is again an acceptance condition of the type Y, and,
* Qo =Qy X Qop,
o Q= {{a (g a)) | (¢ a) € Quo},
o forany ¢ € Q, (45, 1, 0) = {{d. 1) | 4] € (a1 {4y, 0,45))}, and,

o for any <QZ7QI> € Q;m 5/((]5]7 <f]i7f]l>70) = {<(]£/77(];> | q; € 53((]17 <Qi7qg7g7 q;>)}

It is not hard to see that M and M’ are m-equivalent. Wl

Proposition 3.1.1 With (LOC) condition, Biichi = Rabin C Streett = Muller, that is:

1. any w-automaton module with acceptance condition of type X € { Biichi, Rabin} is m-
equivalent to some w-automaton module with acceptance condition of type Y € { Biichi,

Rabin, Streett, Muller}.

2. any w-automaton module with acceptance condition of type X € {Streett, Muller}
is m-equivalent to some w-automaton module with acceptance condition of type Y €

{Streett, Muller}.

However, if we consider a composition of two Biichi w-automaton submodules M|| My
where each of M; = (X,Qy, Qiy, Qui, 6, F). Qiy is the set of states shared by both sub-
modules and observable only to (local to) both submodules, while Qy; is local to only M.
This composition can also be considered as an w-automaton module with a variant of Biichi

condition, denoted by 2-Biichi, where I is a pair of two subsets of local states.

Proposition 3.1.2 With (LOC) condition, any Street or Muller w-automaton module is

m-equivalent to a composition of two Biichi w-automaton submodules.

Proposition 3.1.3 With (GLB) condition, Biichi C Rabin C Streett = Muller:

1. any Biichi w-automaton module is m-equivalent to some w-automaton module with

another kind of acceptance condition.
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2. any Rabin w-automaton module is m-equivalent to some Streett/Muller w-automaton

module.

3. any Streett w-automaton module is m-equivalent to some Muller w-automaton module,

and vice versa.

3.2 Synthesis Algorithm

In this section, the generic synthesis algorithm is presented in two steps: first, a descriptive
overview of the algorithm, and then the actual details of the algorithm. Later, we will show

the application of this algorithm to synthesis problems within various frameworks.

r.- -1
TSM 1
M

P e
4 i)

Figure 3.1: Synthesizing M under the environment £ with a global state (ranging over @)

3.2.1 Overview

The inputs to the algorithm consist of three parts: a specification 1, an environment model
£, and an execution model X'. The specification defines the good or desired behaviors of the
entire system (the composition of the environment and the module being synthesized) while
the environment model and the execution model restricts the set of all possible interleaving
behaviors down to a set of behaviors we are interested in. We can also think of the execution
model as representing the scheduler.

The goal of the synthesis algorithm is to synthesize a module M such that whenever
the behavior of M||E satisfies the execution model, it must also satisfy the specification.

One of the components of the environment model & is a set of global states ),. This
represents a shared variable, between the environment and the module we are going to
synthesize, whose range is ;. This is the only means of communication and “control”

between the environment and the module.
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Specification

The behaviors that we want to specify are finite and infinite sequences of the global states

(Qg), the outputs of the environment (X.), and the outputs of the module (3;).
ngEHZgl Eﬂ]gﬂg}qbqi%ﬂ cee [ Crﬁqg(k-l—l) ]

We can assume without losing generality that X, N3, = .

The finite behaviors can represent either a dead-lock or a termination. In order to handle
finite and infinite sequences uniformly, we extend a finite sequence into an infinite sequence
by concatenating the finite sequence with a new special character h ¢ 3, U X, (halt) and
an (arbitrary) infinite sequence.

Therefore, given a specification ¢ which defines £, C (@, x (X. U X, U{h}))¥, we can
consider 1 as the specification of infinite behaviors ,Cfff and finite behaviors ,Cf;m where

L8 =Ly N(Qy x (S UL,))® and,
LI ={w € (Qy x (B UN,))" | for some a € (Q x (N US, U{h}))¥, wha € Ly},

An infinite (finite) behavior a (w) of M||E satisfies a specification ¢ iff o € ,Cfff (resp.
w e ,Cf;m) For finite behaviors, this means that the implementation does not introduce

new dead-locks (or terminating behaviors).

Execution model

The execution model X' characterizes a language Ly C {0, 1}"(({0,...,n}x{0,1}")U{h})“.
Each word in Ly is a representation of a “good” or “possible” scheduling sequence. In other
words, we may assume a scheduling sequence that is not in £y may not or cannot happen.
If & encodes fair computations, then each word in Ly describes a fair scheduling sequence.

The special character h is used here to represent, again, the finite scheduling sequences.
In each (non-h) character (i,ay,...,a,), the first component 7, which ranges from 0 to
n, describes who is scheduled to run and which transition is taken. If ¢ = 0, it is the
environment’s turn. If 7 # 0, then it is the module’s turn and the :-th transition of the
module is taken. For the other components, a; = 1 indicates that the j-th transition is
enabled in the state after the transition has been completed. The first character of every
word has the form (a4, ..., a,), and similar to the previous case, each a; in this case indicates
whether the j-th transition is enabled at the initial state. Figure 3.2 summarizes the relation

between scheduling sequences and behaviors.
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Global state dg0 e dg1 O g2 gk

Local state of £ qe0 Ge1 Ge2 ce e e Gek h o
Local state of M | 9m Gm1 Gm?2 Gmk
<LZ()17 . a0n><0 a1y . a1n> <]7 az1y .. a2n> ..........

Figure 3.2: scheduling sequence

Figure 3.3 gives an example of an execution model. Using this model, the output of the
synthesis algorithm is a module with one weakly fair transition (n = 1). The model itself
is a Biichi automaton where ¢,q is the initial state and ¢,9 is the final state. It is easy to
see that this model excludes all scheduling sequences that remain infinitely at ¢,;. Those
are exactly the unfair scheduling sequences (0, 1)* where the module (the single transition
in the module) is enabled continuously from a certain point on but is not taken. For each
pair (0, 1), the character 0 in the first position means that the module is not scheduled to
run and 1 indicates that the module is enabled. For some reasons that will be explained
later, the synthesis algorithm will ensure that any behavior of M||€ that corresponds to an

unfair scheduling sequence is not constrained to satisfy the specification.

Figure 3.3: execution model example with 1 weakly fair transition

Note also that in this particular model, all scheduling sequences that contain h are
rejected by the automaton. This means that any finite behavior of M||€ does not have to
satisfy the specification. If we consider the execution model as representing an assumption

of what we consider “good” or “possible” scheduling, we may say that any finite behavior
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satisfies the specification vacuously.

Figure 3.4 is a modified version of the previous execution model. Unlike the previous
model, in this new model, scheduling sequences that result in a finite behavior are accepted.
It is worth pointing out that, for a scheduling sequence with h to be accepted, the first h must
occur immediately after some character of the form (7,0). This means that an execution
can stop only when the module is not enabled. Later, we will see how we can encode the
other half of the requirement, that is, an execution can stop only when the environment is
not enabled. Later, we will see that this technique also applies to other frameworks (e.g.

synchronous composition).

Figure 3.4: execution model example with A

Environment model

The environment model £ is a TSM. In order to combine £ later with the specification and

the execution model, we construct an automaton that recognizes a behavior
ngEHZgl E>qg?gﬂ]g?)E> ce [ Crﬂqg(k-l—l) ] € Qg((ze U Es) X Qg)(W7*)

iff it is a behavior of M||&, for some M.

Like what we have done for the specification, we augment finite behaviors with the
special character h and an infinite sequence. This can be done simply by adding a transition
{4y, f]le>i> whenever the environment is not enabled at (g, ¢ie), where g is a local state of

the environment model. The result is an automaton that recognizes infinite words of the

form @, (X U X, U{h}) X Qq)~.
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Combined specification, environment model and execution model

One of the key steps in the algorithm is to complement the specification and construct
a product of the environment model, the execution model and the complement of the
specification. The result is an automaton A4 that accepts a behavior and a scheduling

sequence

a0 o1 h
4940 >qg1 —>Qg2 e /.

<a007 RN a0n> <7:07 10y - - -y a1n> <7:17 20 - - -y a2n> G h

iff the behavior is a behavior of the environment model £ but does not satisfy the specifi-

cation 1 and the scheduling sequence is accepted by X.

Projecting and Checking Enabling Condition Consistency

At this point, we consider the projection of behaviors of the entire system into behaviors of
the module being synthesized while retaining the essential information of the corresponding
scheduling sequence.

For convenience, let {a;} denote ajy,...,a;, in Figure 3.5. The main idea of the pro-
jection is demonstrated in Figure 3.5 (a). A section of the behavior of the entire system
(U—qugk o2 g.m) and the scheduling sequence ((ig, a1,y @)y -y (0y @ty vy @) is
projected into a tuple (ogk, qgk, th, Q1. -, @n,¢gm). In short, the tuple encodes a move
(Osk, Ggk tx) by the module being synthesized, the enabling condition (Q1,...,Q, C @),
and the global state the module observed (g,,,) before it makes the next move. For the
enabling condition, we require that Qy,...,Q, are consistent with {az}...{a,,}. In other
words, for any 7, 1 < j <n and any ¢, k <@ < m, a;; = 1iff ¢;; € Q;. In the special case,
when k = 0, the initial section is projected into a tuple (g0, Q1, ..., Qn;s qym)-

If the module is scheduled to run only finitely many times, then it must be the case that
the scheduling sequence either has the form ... (ig,...)(0,...)...¢0,...) ..., or contains h.
Figure 3.5 (b) and (c) show the projection of such cases. Therefore, the projection of a
behavior of the entire system and a scheduling sequence is a finite or infinite sequence of
the tuples described above.

To handle finite and infinite projections uniformly, we simply augment any finite pro-

Jection wu,

1€ ((Qyx (229)" X Q) (B X Qg % {1, .., 1} X (229)" X Q)" (Ss x @, x {1, ..., n} x (299)")
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Te(k—1) Ok Te(k+1) Te Ts(m+1)
— Qok=1) gk — (k1) --- —rlgm — y(m+1)
0 {ary)  Grdard)  Ofard) oo (0{an})  (imprs {@myr})
("'7qg(k—1)> (Uskvqgk7ik7Q17~~~7Qn7qgm> (Us(m+l)7qg(m+l)7im+17~~~>
(a)
ﬁl)qg(k_l) %(]gk e(ﬁ>1)(]g(k_|_1) SN e
0, {ap})  (r{and) (O fapp}) o (0.0
(+slg(k—1)) (0 sk gk ik Q150 Qn)
(b)
Ue( =1) [ Ue( ) Te h
L; Gg(k-1) Aqgk ﬁ; Qg(k+1) - -- 4qgm — ...
0, {ap1})  Grdar}) (O farp}) oo (Ofan}) A
("'7qg(k—1)> <Usk7qgk7ik7Ql7~~~7Qn7>

(c)
Figure 3.5: Projection

into an (infinite) extended projection un,

un € ((Qg X (QQg)n X Qq)(Xs X Qg x {1,...,n} X (QQg)n X Qg)”

with an arbitrary infinite sequence 7 € Q,(Xs x @, x {1,...,n} x (299)" x Q,)“.
From the product automaton A we constructed earlier, we construct another automaton

B that accepts a projection sequence -,

v E(Qy X (299)" x Q) (s x Qy x {1,...,n} x (299)" x Q,)*

iff it is a projection of some behaviors and scheduling sequences that are accepted by A.

Therefore, if B accepts «, then there is a behavior g and a scheduling sequence « such that:
e (3 is a behavior of the environment £ but does not satisfy 1),
e « is accepted by A (i.e. it is a good or possible scheduling sequence), and,

e 7 is a projection or extended projection of g and «a.
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Co-determinization and Checking Execution Consistency

The next step is to co-determinize the automaton B. The result is an automaton C that

accepts a projection sequence « iff for any behavior 8 and scheduling o, if
e (3 is a behavior of the environment &,
e « is accepted by A, and,

e 7 is a projection or extended projection of g and «a,

then g satisfies .

Consider any two consecutive tuples

. b . b
“e. <Usl7 qgh 11, Q117 .. '7Q1n7 (];15><0'527 qg27 12, Q217 L) Q2n7 (];25> s

in a projection sequence. From the definitions, ()y;, are the global states in which the 7o-th
transition are enabled, and qglfs is the global state observed by the module before it takes the
19-th transition. Therefore, for a projection sequence to be consistent with some execution
of the entire system, it must be the case that for any such two tuples, qglfs € Q-

From the automaton C, we construct an automaton D that accepts a projection sequence

~ iff for any behavior 8 and scheduling o, if
e (3 is a behavior of the environment &,
e « is accepted by A, and,

e 7 is a consistent projection or extended projection of 5 and «,

then g satisfies .

Synthesis

We can interpret the automaton D as an automaton on labeled trees where the observed
global states and the index of the transitions (taken after having observed the global states)
give the branch directions in the trees and the rest of the projection tuples are the labels
on the trees. Figure 3.5 illustrates how a projection sequence is interpreted as a path in a
tree.

Finally, we check the emptiness of the tree automaton D. If it is not empty, then it

must accept a regular tree which is generated by a transducer 7. A TSM M can then
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“e. <Usl7 qgh 7:17 Q117 L) Q1n7 q;l{5> <0527 qg27 7:27 Q217 .. '7@2717 ‘];gs> s

’ /<O-517 qg1, Q117 cey Q1n>

Q <0527 qg27 Q217 L) Q2n>

Figure 3.6: interpreting a projection sequence as a path in a labeled tree

be constructed from 7. Being constructed from a tree accepted by D, T and M has the
property that, regardless of how the directions are chosen in the tree, all the paths satisfy
the acceptance condition of D. Each path is a projection sequence and we can consider M
as projection sequence generator. Therefore, M generates a projection sequence v iff for

any behavior § and scheduling o, if
e (3 is a behavior of the environment &,
e « is accepted by A, and,
e 7 is a consistent projection or extended projection of 5 and «,

then [ satisfies ¢0. In other words, any behavior of M||€ with a scheduling sequence accepted
by A satisfies .

3.2.2 Detailed constructions

Input/Output

The inputs to the algorithm are:

1. a specification ¢ defining Ly C (@, X (e U X; U {h}))¥, assuming without losing
generality that h ¢ ¥, U X, and X, N X, = 0.

2. an environment model TSM & = (X.,Q,, Qie, Qoe, Tey Je, Ce).
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3. an execution model, represented by an w-automaton X', which recognizes a language
Ly, Ly €{0,1}*(({0,...,n} x{0,1}") U {h})~.

The output is a transition system module with n transitions.

Specification

From 1, we construct a Biichi automaton &, which recognizes the complement language
Ly

Ly ={ta|foranyt € X, UX;U{h} and any o & L}
Note that an arbitrary character ¢ is added to shift the language from (¢, x (X, UX;U{h}))¥
to (e UX;U{h})xQ,)¥. The only purpose of this shifting is to make the later formulation

of a product automaton more convenient.

Environment model

From &, construct a Streett automaton & = 3, Q' {qo}, §, ") where ¥/ = (X, UX,U{h}) x
Qg and Q' = {goUqr} U (Q, x Qi x (T.U {s})). The transition function § : Q' x ¥/ — 2%’

is defined as follows:

e for ¢y and any (o, ¢,) € X',

4(qo, {0, qg>) = {<q§7 a,s) | <(]g7 @) € Qoe}-

for ¢, and any (o, ¢,) € ¥,
5(qh7 <U7 qg>) = {f]h}

for any (g, ¢, x) € Q" and any (0, q;) € X X Qy,

5(<Qg7(ﬂ7$>7 <Uv (];>) = {<(];7(];7T> | any 7 € T, <Uv q‘;7q;> S T(qqul)}‘

for any (g, q1,x) € Q" and any (0, q;) € ¥, X Q,

({aq, a1 %), (o, Q;>) =Qy x{q} x {s}.

for any (g, ¢, x) € Q" and any ¢, € Q,,

{gn} if Enabled(qy,q) =10

®  otherwise.

5(ag, qu, x), (h, ql)) = {
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For the acceptance condition, F' = {(L,,U;) }res.uc, and

e foreacht € J67 LT = Ql and UT = {qh}u{<qg7 (]l7t> € Ql | T(qg7 (]l) = Q}UQgXQlX{T}7

o foreach 7 € C¢, Ly = {{qg,q1,t) € Q" | T(qg, @) # 0} and U, = {gn} U (Qy x Qi x {T}).

Then, transform &’ into a Biichi automaton £

Execution model

From X, construct a Biichi automaton X’ such that Lo={iB|B€Ly N1e{0,...,n}}.
The language L is basically equivalent to Ly except for an extra first character that is

added to every word in Ly.

Combine Specification, Environment Model and Execution Model

From the complement of the specification & = (X, U X, U {h}) X Q4,Qs, Qs0, b5, Fs), the
environment model £ = (X UX; U{R}) X Qy, Qe Qeo, 0c, Fe), and the execution model
X = (({0,...,n} x{0,1}") U{h}, Qu, Qro, Sz, Fi), we construct the product automaton of
S, & and X. Each (0c,qy) € Xe X Qg of S and & is matched with some characters from
{0}x{0,1}" of X and each (o, q,) € ¥y xQ, with some characters from {1,...,n}x{0,1}".
The special case (h, ¢,) of S and ¢ is matched with h of Y.
Formally, we construct a Biichi automaton A = (34, Q 4, Q 40,04, '4) where the alpha-
bet is
Sa= (S xQ,x {0,137 U

(X x Qg x{1,...,n} x{0,1}") U

({h} x Q).
The state Q4 is Qs X Qe X Q, X {0, ..., 3}, the initial state Q 40 = @so X Qco X Qzo X {0} and
the final state F'y = Q50 X Qeo X @zo X {3}. The matching described above is reflected in the
transition function é4. For example, in the case of the environment’s move (when o € ¥.),
(0 983 @ 3) € 04({ds Ger Gy 1), (03 Ggs an, - - - an)) TfT g € 05(qs, (0, 44)), 40 € belge, (o, q9)),
q. € 6:(qs,(0,0ay,...,a,)), and,

(i+1)mod4 if i=0andgq,€F, or i=1andq, € F. or

Jj= i=2and ¢, € I, or i=3
? otherwise.
In the other cases, all the conditions are similar except ¢ € 8,(qy, (k,a1,...,a,)) when

o€ X, and ¢, € 8,(qz, h) when o = h.
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Projecting and Checking Enabling Condition Consistency

Next, we construct, from A, another Biichi automaton B = (¥p, @ g, @Bo, 8, FB). Now,
Yp = N x @, x {1,...,n} x (299)" x Q, reflects only the action of the module being
synthesized (¥, x @, x {1,...,n}), the enabling condition of the module (229)" and the
global states observed by the module ), respectively. The set of states (g is simply
(Qa x {0,1}) U{gy}, the initial state Qp = Qo4 X {0}, and the accepting state Fp is

(Fa x{0,13) U (Qa x {1}) U {gs}-
We say that a path in A,

<057qglvi7a117~~~7a1n> T A oA oA
il — e e R e |

where 04; = (0c, ¢y, 51, - . ., jn), Is consistent with (o5, ¢g1,7, @1, ..., Qn, ¢k, if for any
1<j<kandany 1 <!l <mn,a;=1iff ¢; € Q.
We also say that an infinite path in A,

<057qglvi7a117~~~7a1n> T A T A
q1 — (]24%4 e

where 04; € X4, halts the (synthesized) module with (o5, g1, Q1, - . -, @n, q;), iff it passes

through some states of F4 infinitely often and either:

o forall 2 <[, o4, is of the form (o, ¢y;,aj1,...,a;n), and forany j > 1, any 1 <1 < n,
a;; =11iff ¢5; € Q1.

e there is some & such that o4 € {h} X Q,, and for any 2 < j < k, 04, is of the form
(Ceyqgjs @51, ... ajn), and for any 1 < j < k,any 1 <[ <n, a;; =1iff ¢;; € Q.

For 45, we have three cases
e (¢4,0) € 65({qa,t),op) iff there is a path from ¢4 to ¢/; that is consistent with op.

o (¢4,1) € 6B({qa,1),op) iff there is a path from ¢4 to ¢4, that is consistent with op

and passes through some state in Fy.

e q; € 6B({qa,?),op) iff there is an infinite path that starts from ¢4 and halts the

module with op.

For the special case ¢f, §(¢r,0B) = {q¢r}.
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Co-determinization and Checking Execution Consistency

We can co-determinize [Saf88,EJ89] the Biichi automaton B into a deterministic Rabin
automaton C, which rejects all the 3% words accepted by B.

From C = (3p,Qc¢,Qco,dc, Fc), we can construct a Rabin tree automaton D = (3p,
Qp, Qop, 0p,Fp). The alphabet ¥Xp is the product @, x {1,...,n} of the (observed)
global states and the index of the (taken) transitions. The set of states Jp and initial
states Qpo are (Qc X (Zs X Q4 X (299)")) U {qimp} and Qco X (X5 X @, X (299)7), respec-
tively. Suppose Fo = {(Lc1,Uc1),---, (Lek, Uck)}. Then, the acceptance condition Fp is
{0, {¢imp}), (LD1,Up1), - -, (Lpk, Upk) } where each Lp; (Up;) is the product of L¢; (resp.
Ug;) and X, x Q4 X (QQQ)”.

For the transition funtion dp, if ngs € (); then,

5D(<Qc7 05,4y, Q.- Qn>7 <(]§bs, Z>) =
{{gl} x X5 x Q4 X (2Qg)n | for some j, ¢. € dc(qe, (0, Uy J> Q1y -+, Qs ngs»}

Otherwise (when ngs ¢ Q:i): 0p({qe, 05,49, Q15 .., Qn), <q§bs,i>) = {¢imp}. For the special

Case Gimp, 5D (Qimp7 UD) = {qimp}-

Synthesis

As in [PR89a,PR89b], we check for the emptiness of the tree automaton D and construct
a (deterministic) w-transducer 7 = (Xp, Q1, qr0, O, l7), Which is a folded representation
of a regular tree accepted by D. The labeling function lr is a function 7 : Q7 — X X
Q, x (299)". For any ¢; € Qr, if Ir(q:) = (05,45, @1, - - -, Qn), then let act(q;), gbl(g;) and
enb;(¢:) denote o5, q, and @), respectively.

We can then transform 7 into a TSM M = (X5, Q4. Q1, {(9lb(q70), 910) }, {71, - s Tn }s
J,C). For each 7, if ¢, € enb;(¢;) then

7i(qg, 4:) = {(act(q)), 9lb(q1), 41) | 4; = o7 (qs, (qq,8))) }-

Otherwise, 7(qg,q;) = 0. The set J and C' are known beforehand and depend only on the

execution model X.
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3.3 Open System Synthesis

It is clear that the algorithm can be used to solve the modular synthesis problem in which
the specification specifies acceptable sequences, both finite and infinite. The choice of the
domain of the synthesized output (such as nSmWTSM for some integer n and m) can be
encoded in the execution model X.

For the basic open system synthesis, we recall proposition 1.3.5 and show only that there
is a universal element for the domain of the environment model. We can construct, for any
alphabet 3. and any set of global states (),, a TSM My = (X., Q,, {q0, a1 }, @y X {q10, a1 },
{7}, 0,0) where 7(q,, qi0) = e X Q4 X {qi0,qn} and 7(q, qi) = 0, for any ¢, € Q,. It is
easy to show that My is the universal element of any nSmWTSM subclasses. For the weak
open system synthesis, it is obvious that if i) has a weak open system solution, then Mj; is
a solution. By proposition 1.3.5, we apply the algorithm to check whether the basic open
system synthesis of 1 has a solution. The V3—SYNTH(¢) and V3—W—-SYNTH (%) problems
can be solved by transforming them into a weak or basic open system problem, according to
proposition 1.3.2 for closed systems and 1.3.6 for open systems. For the modular synthesis
problem under the open system semantics, we simply construct a TSM £||Mpr and use it in
the place of £ in the algorithm.

The problems that have not been addressed are the maximal open system synthesis and

the ES—=SYNTH(-, -) problem. We will consider each of them separately later.

3.4 Modeling

Various kinds of computational properties besides fairness can be modeled and solved within
the framework. For example, the behaviors of the scheduler can be modeled into the ex-
ecution model X'. If we consider each ¢ € ¥, U 3, to be a variable assignment function
o : Var — Val, for some variable set Var and a variable domain Val, then the charac-
teristics of variables, such as being input, output or shared, can be encoded in either the
environment model or the specification, with a careful choice of global states (Q;). The
separation of the global states (¢),) from the local states (@) and from the output alphabet

(33.) allows us to model unobservable variables and uncertainty.
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Synchronous and asynchronous composition

Although the algorithm explicitly handles asynchronous compostion, it is easy to encode
synchronous composition, or theoretically any kind of composition, in the execution and
environment model.

Formally, given two TSMs M, = (X,,Qy, Qia, Qoas Ta, Ja, Ca). and My = (X, @,
Qu, Qob, Ty Jb, Cp), the synchronous composition of M, and My, under a synchronization
function s: Q,; X Q4 — 2? is a TS My||*M;, = (£,Q,Q0, T, J,C) where

o X is X, X M.

« QisQy % Qu X Q.
e (o is the set of all states (q,, ¢4, g») € @ such that (¢,, ¢.) € Qo and (g, ) € Qop-

o T is {r'|t € T, UTy} and for each transition 7, € T, 7. is defined as follows:

<<Ua7 Ub>7 <q£/77 q(/17 q[/)>> € T(;,(<qg7 Gas qb>)
iff
(ElTb S 7?1)<0-a7 Gga, qz/1> € Ta(ng Qa) and <Ubv Ggb, (Zl/)> € Ta(ng Qa) and f]; € S(ng ng)7

o J={r|reJ,UJp} and C ={7'|7 € C, UC}}.

The role of the synchronization function is to allow us to represent the behaviors of the
combined TS when both modules try to write to the same shared variables at the same
time.

We can model synchronous composition and solve the synthesis problems under syn-
chronous compostion with the same algorithm. The key idea is to consider an execution
sequence of M,||°M; as an alternating sequence of outputs of M, and Mj;, and solve
the synthesis problems as if asynchronous composition were used. First, such alternating
execution has to be modeled with the execution model X. Second, we have to modify the
given environment module to reflect the fact that the global state that should be observed
by the environment at each step is the previous global state, instead of the current global
state printed out by the system.

Given the environment model & = (¥,Q,,Q1,Qo,7,J,C), we can construct & =
(3,Q,,Q7,Q0, T, J',C") as follows:

L4 Q;:leng
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<0,0,1>
<0,1,0> <2,1,0>
<0,1,1> <2,1,1>

any <***>

Figure 3.7: Execution model for synchronous composition

b Q6 = {<q§7 <(]17 qg>>|<‘]g7 (]l> € QO}v

o 7'={r'|r € T} where each 7' is defined by:
<Uv qglyv <Q;7 Q;>> € Tl(anv <(]17 q§>) iff <Uv Qgbs (];> € T(ng (]l) and qgly € S(qgm ng)v

o J={r|reJ,UJp} and C ={7'|7 € C, UC}}.

The new environment model £ now becomes the input to the algorithm. It is easy to see
that its alternating behaviors when combined with any module (the synthesized module)
simulate the synchronous behaviors of £ when combined with the same module.

Figure 3.7 shows an execution model with 2 transitions in the synthesized module.
The first transition is a weakly fair transition. The good execution sequences are those
alternating sequences that satisfy the weakly fair condition (when the modules are composed
synchronously). As previously defined in the section 3.2.1, the first position of each tuple

indicates whether it is the system module’s turn (1) or the environment’s turn (0), and the
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second and third position indicate whether the first and, respectively, the second transition
are enabled (after the transition has been carried out). Note that since we map a single
synchronous step into two steps in the execution model, the weakly fair condition now
becomes: if the module (or the only transition in the module) is enabled in every even step

from a certain point on, then it has to be taken infinitely often.

3.5 Maximal Open System Synthesis

Although finding the maximal solution for the modular synthesis and basic open system
synthesis is still an open question, we can find a partial or an approximate solution, which
maximizes the set of good projected behaviors.

Intuitively, a projected behavior is a projection of a behavior that the module being
synthesized can observe and a good projected behavior is a projected behavior that is not
a projection of an undesirable behavior.

Formally, we first define a projection relation pr C Bhv X ProjBhv where Bhuv is
the set Q,((X. U X,) x Qg) @) of finite and infinite behaviors, and ProjBhuv is the set
(Qy2, X Qg)(‘”’*) of finite and infinite projected behaviors. A behavior o € Bhv

o) g1 On—1
a=qgo—(—q2 ... | —q, ]
and a projected behavior § € ProjBhv
B = po=5pp p=Sph pa TS [ o) ]

satisfy the projection relation, i.e. pr(a, ) iff there is an increasing sequence of integers,
xoxy .. .[xg] such that

® Di= Gz, p;’ = Gz;+1 and o, = Oz; € s,

o forany o; € (X, — X.), (31) j = ;.
For any 8 € ProjBhuv, let Pr=!(j3) denote the set {« € Bhv | pr(«a, 3)}.

Given an environment £ and a specification 1, a projected behavior 3 is a good projected
behavior w.r.t. £ and ¢ iff Pr='(3) N O[£];,,, C [¢],..-

For a module M, an environment &£ and a specification v, let PB(M) be the set of
projected behaviors of M||E:

PB(M) ={p € ProjBhv | B € [M[[];,,,))pr(a; B)},
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and let GPB(M) be the set of good projected behaviors of M||E (w.r.t. £ and ):
GPB(M) ={B € PB(M) | Pr=(8) N O[£],,,, C [¢],ec}-

Given an environment £ and a specification 1, our goal is to find a module M that is
not only a solution to the modular synthesis problem of £ and v but also maximizes the
set GPB(M).

Consider a Rabin tree automaton P = (Xp, Qp, Qop, dp, Fp). Let D, denote a variant
of D in which the only initial state is ¢, i.e., D, = (¥p, @p, {¢}, ép, Fp). Let Q... C @p
be the set of states from which there is an infinite tree satisfying the Rabin acceptance
condition Fp. The set Q. can be computed in deterministic time O(n(nm)“") for some
constant ¢, where n = |Qp| and m = |Fp| by using the algorithm from [VS85,Em85,PR89a]
to check the non-emptiness of each Dy, ¢ € @p.

Theorem 3.5.1 If r = qoq ... is a path in a Qp-tree Tgy , of the automaton D that accepts
a Xp tree, then q; € Que, for all i > 0.

Proof: Suppose r passes a state ¢ and ¢ € (.. Then, D, does not accept any tree. This
implies that the subtree of Ty, which has ¢ as its root does not satisfy the acceptance

condition, contradicting the assumption that Ty, is accepted by D. [ |

From the Rabin tree automaton D, we can construct Red(D) = (Xp, Qne, Qop N Qne,
8, Fpy) where 67, is simply the restriction of dp to the set @, and Fj, = {(UN Qpe, LN
Qne)|(U, L) € Fp}. It is obvious that D and Red(D) accept the same tree language.

Now, we can proceed to the following theorem on finding the solution with maximal

good projected behaviors.

Theorem 3.5.2 For any given environment £ and specification 1, there is a module M,
such that M, = Mod—SYNTH(¢, &) and for any M’, if M’ = Mod—SYNTH (¢, &), then
GPB(M') C GPB(M,). Moreover, M, is in 25TSM.

Proof: We apply the synthesis algorithm (in section 3.2). Here, the execution model X', as
shown in Figure 3.4, encodes only a fairness constraint when there is only one strongly fair
transition in the synthesized module. At one point in the algorithm, after co-determinizing

and checking execution consistency, we have a tree automaton D on labeled trees. The trees
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branch on the alphabet (), the global states observed by the module being synthesized. The
labels on the nodes of a tree belong to the alphabet ¥, x (), X 299, Each label represents
the output of the synthesized module, the new global state set by the module, and the
set of global states which enable the module to make the next transition. We compute
Red(D) that preserves the tree language accepted by D. Now, reconsider Red(D) as a
Rabin automaton on the alphabet @, X 3s X ), X 29, The Rabin automaton Red(D)
accepts a sequence iff it is a path in a tree accepted by the tree automaton D. Use the
algorithm in chapter 2 (for closed systems) to construct a 2STS M that generates the
sequences from the alphabet ), X ¥, X @), % 299, Remove any inconsistency between the
set of enabling global states (2¢¢) and the following observed global state (Q,). We can
interpret M as a 25TSM on the alphabet 3.
Suppose a behavior 3,

B = po%pp p1=5p) peZBph . [ pe—5p) ]

is a good projected behavior of some module M’ and M’ is a solution to the modular
synthesis of £ and 1. We can show that § corresponds to a path in a tree accepted by the
tree automaton D. Consider a behavior a of M’ such that pr(«, 3). Suppose ¢; is the local
state of M’ before the transition ngp; is taken. Let ¢); C (), be the set of global states
that enable M’ at ¢;, that is,

Qi = {gy € Qg |for some 7 € T, 7(qy, qui) # 0},

where 7 is the set of transitions of M’. If 3 is finite, then Qxy1 = 0. Let M’ be a TSM
that is exactly the same as M’ except that the set @, X {g;} is the set of initial states.
From theorem 3.1.5, there exists a 1STSM A such that for any &’, Lujer © Lager- Let
T; be the labeled subtree (whose paths are projected behaviors) induced by N;.

Now, we recursively define 77, as illustrated in Figure 3.8 to be the same as T; except

i
for the branch on p; leading to a node labeled by (o4, p}, @), which becomes the root of
a subtree T7 ;. It is clear that § corresponds to a path in 7j. The path that does not
correspond to [ satisfies the acceptance condition of D because it will eventually follow a
path in some T; and we know that A; is in 1STSM and M is a solution to the synthesis
problem of & and . For the path that corresponds to 3, we consider two cases. First,

if 3 is infinite, then we know that for any a such that pr(a,3), a corresponds to a fair

computation. We know that a corresponds to a fair computation because the execution
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same as T,

/
i+1

Figure 3.8: the tree T/ with the projected behavior § embedded as a path in the tree

modelX” encodes the case when there is only one transition in the synthesized module, and
since (8 is infinite, the transition must be scheduled infinitely often. Second, if 3 is finite,
we can pick the enabling condition (Jx41 to be the empty set. Thus, for any « such that
pr(a, #), a also corresponds to a fair computation in this case. Therefore, for both cases,
to satisfy the acceptance condition of D, we have to show that for any « € O[[E]]Z»mp7 if

pr(a, ), then « satisfies 1». We know that this is true because we assume that g is a good

projected behavior. ll
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3.6 ES Synthesis

For the ES synthesis problem, our goal is to find an implementation such that when com-
posed with any environment that satisfies the environment assumption, the overall behaviors
of the whole system satisfies the specification. It is clear that this problem is closedly re-
lated to the problem of finding the maximal solution for open system synthesis. If we have
a method of solving the maximal open system synthesis and the solution is unique, then
the ES synthesis problem will be reduced to simply a modular synthesis problem. Unfor-
tunately, we still do not have such method. However, there are certain cases where we can

solve the ES synthesis problem.

Environment assumption = safety

An environment assumption g defines a language Ly, C (@, x (X UX; U {h}))¥. An
environment assumption g is a safety property iff for any infinite word go=3¢1 353 ... &
Ly, there exists a finite prefix ¢o7%¢1 7> ... ¢ 2% such that for any w € (Q, x (X, U X;))~.
g3 .. B3w ¢ Ly, . Note that the condition restricts infinite behaviors (or words without
any occurrence of h) only. Finite behaviors do not affect whether the language is safety
property.

The following theorem states that any safety property has a unique maximal open system

implementation.

Theorem 3.6.1 Ifr is a safety property, then there exists a module £ such that O[E]
Ly, and for any &', if O[E'] Ly, , then O[E'],,,, € O[€]

. C
imp —

imp C imp imp”®

Proof: First, suppose L, is represented as a deterministic Rabin automaton A = (3, @, qo,
9, F( where the alphabet ¥ is Q, X (¥, U X, U {h}). There is no special reason why we
assume that £y, is represented as an DRA. We can start with other representations, and
follow the general ideas demonstrated in the constructions below. Not surprisingly, the
complexity of the constructions depends on the representation we choose.

A path ¢3¢ 3 ... [qr], where ¢; € Q and o; € X for all 4, is called a h-free path if
it does not pass through any (g,, h) € X, i.e,, 0; € Q, X {h} for all .. Let Qr C @ be
the subset of all states s such that there is an infinite h-free path from s that satisfies the
acceptance condition F. Suppose ¢p=3¢1>>...is a run of A, i.e., for any i, ¢; € Q, 0; € &,
qo € Qo and ¢i11 € 8(¢i,00). If ¢; € Qp for all i and 0; ¢ @, X {h}, we can show that
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0001 ... € Ly,. Suppose 0goy ... & Ly, . Since g is a safety property, then there must
exist an integer ¢ such that ogoy...0;w € Ly, for all w € @, X (¥, U X;). That means,
q; € QF, leading to a contradiction to an earlier assumption. A state ¢ € () is s-reachable
from another state ¢’ € @ iff there is a path ¢Zq; ... %¢ for some i > 0, and 0, € Q, x X,
forall 0 <j <.

Next, construct a graph G'= (X', Q’, ¢, ¢") where

o X =3, x (S.U{h}),

o Q=29

9% = {90},

for any P € ' and any o € Y/,

§'(P,o)={¢ € Q| (3q € P)¢ is s—reachable from é(q,)}.

A node P € Q' of the graph G is called a bad node iff either P ¢ QF or there exists some
¢y € Qg such that for all 6’ € (X, U{h}), 6'(P, (¢g4,0")) is a bad node.
Finally, construct a 1TSM & = (X, Qy, Q1, Qoe, {7}, J, {7}) where

e Q1 =Q" x{0,1},
L4 QOe = {<q97 <{q0}7 0>> | (E|O' € (25 U 25 U {h}))&((]& <q9’ U>) € QF}’
e Forany P € (@', ¢, € Q, and o, € ¥,

(@ (P =1 if (P, (g, 0.)) i a bad node
7(q,, (P, 0)) =

v {8"(P, {q4,0¢))} x {0,1} otherwise

0 if 8'(P, (g, h)) is not a bad node

7(qq, (P,0)) otherwise.

T(‘]gv <P7 1>) = {

It is easy to show that & is a basic open system solution of ©. Any computation of &
corresponds to a run r of A. We know from the construction that r passes through the
states in (QF only and from what we have proved earlier, we can conclude that r must be
accepted by A.

Now, suppose £’ is also a basic open system solution of ©». We can show that any open

system behavior r of £ must pass though the states in Qg only. If £’ is scheduled to run
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infinitely often on r, then it is clear from the definition that r never visits any state outside
QF-

For the other case, when &£’ halts at some point on r, we only have to consider the case
when &£’ stops after r passes through some state outside Q. However, we can show that such
behavior is not possible. Consider any behavior a € £, of the form 0 3aS .. .qii> e
We can show that if a passes through some state outside Qp, i.e. ¢=3...¢2w ¢ Ly, for
all Zw € ((Z.USs) xQ,)%, then a ¢ O[E']

always keep extending from ¢; onward and making it into an infinite sequence, regardless of

imp- L'he reason is that the environment of &' can
what & does. From the assumption, any infinite sequence of the form ¢o 23 ...¢ 2w does

not satisfy . Therefore, if @ were in O[£'] it would lead to a contradiction with our

imp)?
assumption that & satisfies .

Therefore, we can conclude that any open system behavior r of £ must pass though
the states in @@ only. Next, we can show that the projection of r must never pass a bad
state of GG; otherwise, there exists another behavior of £ with the same projection that does
not satisfy 1. Finally, we can prove that r is also an open system behavior of £. If £ is
scheduled infinitely often on r, we can select a computation of & which passes through the
local states in @Q; = @' x {0}. If £ is scheduled on finitely many times, then at the last

point on r where £ is schedule, we follow the transition of £ to a local state in Q" x {1}.

The definition of 7 on local states Q' x {1} guarantees that & can halt at that point. H

The above theorem implies that, when the environment assumption is a safety property,
we can find such module £ and apply the algorithm in section 3.2. to solve the ES synthesis

problem.

Limiting the domain of the environment

If we limit the domain of the environment to some particular set of transition system
modules that can be represented by the execution model A, then we can apply the synthesis
algorithm to solve the ES synthesis problem. In other words, the goal of the ES synthesis
problem here is to find an implementation such that when composed with any environment
that belongs to some limited set of TSMs and satisfies the environment assumption ¥, the
overall behaviors of the compostion of the environment and the synthesized module satisfies
the specification 1pg. One of such sets of TSMs that can be represented by some execution

model Ar is the class of TSMs that have n transitions among which there are k strongly
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fair and [ weakly fair transitions, for some particular integers n, k& and [.

We start by applying the algorithm in section 3.2. to solve the basic open system
synthesis of the environment assumption ¥g with the execution model A'z. In the middle
of the algorithm, we construct a tree automaton D recognizing all labeled trees of projected
behaviors that can guarantee that g is satisfied in the corresponding complete behaviors.
Even though we do not have a method to construct the unique maximal solution from D,
we can compute Red(D) and interpret it as a usual Rabin automaton, instead of a Rabin
tree automaton. Red(D) can be used as the environment model input to the algorithm in
section 3.2., but now, with ¢ as the specification and a different execution model X'. The
execution model A" encodes not only the fairness constraint of the module being synthesized
but also the fairness constraint of the environment. The output (the module synthesized

by the algorithm) of is a solution of the ES synthesis problem.
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Chapter 4

Direct Synthesis From Temporal
Logic

In this chapter, we study the direct synthesis of open systems from a temporal logic specifi-
cation. We present two algorithms, one for realizability checking and the other for synthesis.
The specification language we study is the Extended Temporal Logic (ETL) described in
[Wo83]. We also introduce a scheduling variable p following the approach in [BKP84].
Although useful for expressing specifications and for extending the algorithm to handle se-
quential composition, p is not essential to the algorithms. The realizability-checking algo-
rithm is based on the tableau decision procedure described in [Wo85]. Given a specification,
the first algorithm checks for strong realizability under fairness and random environment
assumptions and generates a structure called a realizability graph. 1f it is realizable, the
synthesis algorithm takes the generated realizability graph and produces a program which
satisfies the specification. The transitions in the generated program may be labeled weakly
or strongly fair as necessary. Since the realizability-checking algorithm is a tableau-based
algorithm, it manipulates only formulas of linear temporal logic, which are subformulas of

the original specification.

4.1 Definitions

A [infinite] behavior o over a state space X is a pair (o,,0,) of two equal-length [infinite]
sequences: a sequence of states o, = Sps182... where s; € X and a scheduling sequence

0s = apajay ... where a; € {0,1}. We denote the set of all infinite behaviors over X

58



CHAPTER 4. DIRECT SYNTHESIS FROM TEMPORAL LOGIC 59

by Bhv(X), or Bhv if 3 is clear from the context, and the set of all finite behaviors by
Bhvy, (2).

We can represent a behavior (sgsisz...,apa1az...) pictorially as
a a a
#80481482 SN

The intended meaning is that the move from s; to s;41 is caused by the environment if
a;+1 = 0, and by the system if a;4q1 = 1. Since we always assume that the environment
chooses the initial state, we require that the scheduling sequence always begins with 0, i.e.,
ag = 0.

Given a behavior ¢ = (sgs1s2...,apa1az...), we write State(i,0) to denote s; and
Sched(i, o) to denote a;. If 0 = (0,,05), then ¢|; denotes a behavior (o,];, 05|;) where o,|;
[05];] is the prefix of o, [o5] of length 1.

Let 11° : Bhvy;, + ¥ be a function that maps a finite behavior o to a subsequence of
states which are caused by the system, namely, all State(i, o) where Sched(i,0) = 1. Let
' : Bhvy;, — ¥ be a function that maps a finite behavior o to a subsequence of states
which are observed by the system (precede a system state), that is, all State(i, o) where
Sched(i+1,0) is defined and Sched(i +1,0) =1, or i 4+ 1 is the length of o.

A computer f: X" x X* — 3 is a partial function which takes a history of all the states
the system caused and all the states the system observed and selects a state as the next
move of the system. A run of a computer f is an infinite behavior such that for all ¢, if
Sched(i,0) = 1 then f(I1°(al;), 1T (c];)) is defined and equal to State(i,o). Therefore, a
behavior is a run of a computer if every system move is the result of f computed with the
information regarding the system’s own moves and all the moves the system has observed
in the past.

A run o of f is weakly fair iff for all j,if f(I1°(c|;), 11! (o|;)) is defined for all ¢ > j, then
Sched(k,o) =1 for some k > j, i.e., if f is continuously enabled beyond a certain point, it
has to be taken eventually. Similarly, a run o is strongly fair iff for all j, if for all 5 > j
there exists i > j’ such that f(I1%(c|;),11'(c];)) is defined, then Sched(k,c) = 1 for some
k>j.

Let Rungs (f) be all possible strongly fair runs and Run,y(f) all the weakly fair runs of
the computer f. A set B of behaviors is realizable (under fairness and random environment
assumptions) iff there exists a computer f such that Rung(f) C B. If only weak fairness

is assumed, B is realizable iff there exists a computer f such that Run.s(f) C B.
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4.2 Preliminaries

4.2.1 Specification Language

The specification language studied here is Extended Temporal Logic (ETL) augmented with
a special predicate p. The use of ETL and p is not necessary for the realizability-checking
and synthesis algorithms. Clearly, the algorithms can handle any subset of the language,
including ordinary propositional temporal logic specifications without p. Adding p to the
language is necessary, however, to express some common forms of specifications such as
mutual exclusion. Without p, we would have to separate the environment assumption and
the system property. With p, the whole specification can be expressed in a single formula.

In ETL, there are infinitely many temporal operators. Each corresponds to a non-
terminal symbol of a right-linear grammar. A right-linear grammar G is a tuple (Vy, Vi, P)
such that

e Vi ={G1,...,Gy} is a finite set of non-terminal symbols.
o Vi ={ty,...,t,} is a finite set of terminal symbols.

e Pis a finite set of production rules of the forms G; — t; or G; — ¢;G;, where G;, G, € Vi
and t; € Vir.

For each non-terminal symbol G;, the corresponding temporal operator G;(¢1, ..., ¢y)
has exactly n arguments (n is the number of terminal symbols).
Given a set P of propositions and a truth-value assignment function 7 : ¥ — 27, the

semantics of a formula on an infinite behavior ¢ is defined as follows:

e 0 ¢iff (6,0) E ¢.

(0,1) = piff p € m(State(i,0)), for any proposition p € P.

(0,1) = p iff Sched(i,0) = 1.

(0,i) £ O iff (,i+1) = 6.

(0,1) E G(¢1,...,¢,) iff there is a word (finite or infinite) w = ¢,,t,,t,, ... (each
tn, € Vr), generated by G, and for all j > 0, (0,74 j) |= ¢,

e Other cases (¢1 V ¢2, ¢1 A ¢z, and —¢) are standard.
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Clearly, any formula ¢ defines a set of infinite behaviors B which satisfy the formula, i.e.,
o = ¢ iff 0 € B. Therefore, we define a specification to be realizable if the corresponding

set of behaviors is realizable.

4.2.2 Elementary Formulas

A formula is called elementary if it is either
e an atomic formula, i.e., an atomic proposition (including p) or its negation, or

e a next formula, i.e., a formula that has () as its main connective.

4.2.3 Decomposition Rules

The following decomposition rules are used in the tableau graph construction algorithm to
decompose non-elementary formulas. The meaning of a decomposition rule is that in order
to satisfy the formula on the left hand side, one of the sets on the right hand side must be
satisfied.

o (V) = {1}, {¢2}}

(01 A d2) = {{¢1, b2}

o (1 V) = {{~¢1,~¢2}}

o (o1 Ag2) = {{~¢1},{~d2}}
o (-¢) = {{o}}

e (~0O¢) = {{O~¢}}

e For an ETL grammar operator G(¢1, ..., ¢,) with grammar productions of the form:
G — t4, Gy, where 1 <7 < [is the index of the production rules of G, t,, € Vr and
Gy, € Viy (which may or may not be present), we have the following decomposition

rules:

G(o1,--0n) = | {{bai: OGs, (61, - .-, 60)}}

1<i<l

_‘g((bly---v(bn) :>{ U {_'(bai\/O_‘gbi((blv---v(bn)}}

1<i<l
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4.2.4 Tableau Graph

Before we proceed to describe the realizability-checking algorithm, we will briefly explain a
tableau graph construction similar to that in [Wo85]. A tableau graph is a directed graph

in which each node n is labeled with a set of formulas, denoted by ®(n).

e A node n in a tableau graph is called a state node iff ®(n) contains only elementary

formulas.
e A node n is environment-compatible iff i ¢ ®(n).
e Similarly, a node n is system-compatible iff =y ¢ ®(n).
Given a formula 1@ to be checked for satisfiability, the tableau graph for 1& is created as

follows:

First,
1. create a node (root) and label it with {¢}.
Repeatedly apply steps 2 and 3.

2. If a node n, with no successor, contains a non-elementary formula ¢ in its label ®(n),
and if the decomposition rule for ¢ is = {51, ..., S¢}, then for each set of formulas
S;, create a successor of n and label it with (®(n) — {¢}) U S;. However, if there is a

node with the same label already, then just connect n to the existing node.

3. For a state node n with label ®(n), create (if no duplication occurs) a successor of n

and label it with {¢ | O¢ € ®(n)}.
Finally,

4. Remove all inconsistent nodes (the nodes containing a proposition p and its negation

—p).

A loop in a tableau graph is called a self-supporting loop if for any state node n in the
loop, there is a finite path in the loop starting from n such that all formulas of the form
O~=G(...) in ®(n) are fulfilled on the path. A formula O—G(...) with the decomposition

rule,

=G(p1, . bn) = { |J {=0a; VO=Gy, (¢1,...,0a)}}

1<i<l
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is fulfilled at a state n if the next state n’ on the path contains a term from each of the
disjunctions of the decomposition rule and if the term is (O—Gy, (.. .) then it is also fulfilled
at n' (i.e. at the next state down the path).

4.2.5 Maximally Consistent Subsets

Given a set of state nodes NV, a subset N,,.s C N is mazimally consistent if both of the

following conditions are satisfied:

e Consistent: [t is not the case that for some proposition p other than p and for some
nodes nq,ng € Nyes, both p € ®(ny) and —p € $(ng). In other words, the union of
all the observable atomic formulas (which are all atomic formulas except p and —p)

in the labels of the nodes in N,,., is consistent.

o Maximal: There is no other subset N C N such that N’ satisfies the above condition
(consistent) and N,,.s C N'.

4.2.6 Maximally Negation-Consistent Subsets

For a set of state nodes IV, a subset N,,,.c € N is maximally negation-consistent if both of

the following conditions are satisfied:

e Negation-consistent: There exists a function f which maps each node n € Ny, pes
to an atomic formula f(n) € ®(n) which is not p or =, and the set P = {=f(n) |
1 € Nynes } 18 consistent. The set P is called the falsifying set for Ny, es.

o Maximal: There is no other subset N C N such that N’ satisfies the above condition

(negation-consistent) and N,,.s C N'.

4.2.7 Realizability Graph

The structure created by the realizability-checking algorithm is called a realizability graph.
A realizability graph is a directed bipartite graph (Vi, Vi,, Es,, E,s) where

e V, is a set of nodes called R-state nodes and labeled by a node-label which is a set of

tableau graph nodes and a write-label which is a set of atomic formulas.

e U, is a set of nodes called R-non-state nodes and labeled by a node-label.
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o V, is a set of links from R-state nodes to R-non-state nodes.

o V,, is a set of links from R-non-state nodes to R-state nodes.

4.2.8 Embedding

An increasing sequence dy...d; of integers is an embedding of a path [loop] ng...n; in a
tableau graph into a path [loop] vg...v; in a realizability graph if both of the following

conditions hold:
e forall 0 <7 <[, ng, is in the node-label of v;.
o for all n;, if 7 # d; for all 0 < ¢ <, then n; is environment-compatible.

It is straightforward to extend the definition to allow the embedding of an infinite path in
a tableau graph into a (finite or infinite) path in a realizability graph.

4.3 Realizability-Checking Algorithm

The key idea in the algorithm is that the realizability graph represents a game between
the system and the environment in which the environment can make any finite number of
moves after a system’s move. This is represented by the alternate levels of R-state and
R-non-state nodes. Given a formula 1 to be tested for realizability, the algorithm construct
a tableau graph for the negation of . To “win the game”, the environment must try to
force the execution to stay on a path in the tableau graph which falsifies 1p; whereas the
system must try to push the execution out of such path.

We start constructing the realizability graph from an R-state node which contains the
root node n,,,; of the tableau graph. Since the environment can make any number of
moves, it may try to follow any path in the tableau graph from n,,,;. Without the complete
knowledge of all the moves the environment makes, the system cannot determine which path
the environment has taken. It can only use the information from the state it observes when
it is scheduled to run, to determine a set of all state nodes accessible from n,,,; the path
might have led into. In the worst case, such s set will be a maximally consistent subset of
all accessible state nodes. Therefore, we construct an R-non-state successor of the R-state
node, for each maximally consistent subset. For its own move, the system must try to push

the execution out of any path which the environment might follow (and win) afterward.
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The best move that the system can possibly make is to falsify as many successor nodes of
the nodes in the node-label of the R-non-state node and in essence, to limit the possible
paths left for the environment to follow. This is the reason why we compute the maximally
negation-consistent subsets and the falsifying set of atomic formulas. The remaining nodes
which are not falsified can be computed by subtracting the maximally negation-consistent
subsets from the set of all successors of the nodes in the R-non-state node. For each
best move possible, we create an R-state successor of the R-non-state successor, put the
remaining nodes in its node-label and continue expanding the realizability graph from the
new R-state node.

In the algorithm, at each R-state node v,;, we compute a set Disabled by collecting all
state nodes in the labels of every deleted R-non-state successor of v,. When an R-non-state
successor vy, is deleted, it means the system will not be able to satisfy the specification by
making a transition from v, through v,;. Therefore, we should consider such a transition
“disabled”. As a result, we put every state node in the deleted R-non-state node into the
set Disabled because the environment can choose to move into some states in which the
transition through the deleted R-non-state node is disabled.

Finally, we also have to check at each R-state node that the environment cannot win by

remaining in a loop containing disabled state nodes.

4.3.1 Main procedure

1. First, create a tableau graph GIb for the formula =) where 1 is the formula to be
tested for realizability.

2. Create an R-state node (root) and label it with the set {n,q, } Where n,., is the root

node of Glb.

3. Call the subroutine Fzpand, passing the root node as its parameter, to expand the

realizability graph in a depth-first fashion.

4. Finally, check if the root node of the final realizability graph is deleted. If it is not

deleted, then the formula 1 is realizable. Otherwise, it is unrealizable.

4.3.2 Subroutine Fzpand (Realizability Graph Construction)

Given an R-state node v with a node-label L(v,), expand the realizability graph as follows:
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1. If L(vs) is empty, then do nothing and return.

2. Let N be the set of all state nodes nj accessible from some ng € L(v;) through
some path ng...n; in Glbsuch that for all 0 < ¢ < k, n; is an environment-compatible

node.

3. If there is a node in N,.. which contains only atomic formulas, then delete v, and

return from Fzpand.
4. Set Disabled to be the empty set.
5. For each maximally consistent subset N,,.s of Ngce,

(a) Create an R-non-state node v,s as a successor of vy and label v,5 by Npes.

(b) Let N’ be the set of all system-compatible state nodes nj accessible from some
ng € Npes through a path ng...nx where for all 0 < 7 < k, n; is not a state

node.

(¢) For each maximally negation-consistent subset Ny,,.s of N’ and the correspond-

ing falsifying set P of atomic formulas,

i. Create an R-state node as a successor of v,, and label it by a node-label
N’ — N, nes and a write-label P. Then, recursively call Fzpand on the new
node.

ii. However, if there is an R-state node v) with the same node-label and write-
label, and if, in addition, the node v/ itself is marked, “satisfied”, then
connect v,s to vl. If vl is not marked “satisfied”, then check whether there
exists a self-supporting loop in Glb that can be embedded into the loop

Us ...v%L. If there is no such loop in GIb, connect v, to v..

(d) If there is no successor to v,s, delete v,, and add all the nodes in N,,.s (the

node-label of v,;) to the set variable Disabled.

6. Check if there is a self-supporting loop in G/lb which is accessible from a node in L(v;)
through a path consisting only of environment-compatible nodes, and all state nodes
in the loop are environment-compatible and in the set Disabled. If there is, then

delete vy, Otherwise, mark v, “satisfied” and return.

If only weak fairness is allowed in the definition of realizability that we are checking,

we only have to look for a self-supporting loop with at least one state node in Disabled.
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4.4 Synthesis Algorithm

To simplify the presentation, we choose to represent the synthesized module by a labeled
finite automaton. A module automaton is a tuple (S, 0, so, () where S is a finite set of states,
§: 8 x 27 5 2% the transition relation, so € S the initial state and [ : S — 27 the labeling
function. A run r is a sequence (finite or infinite) of states from S starting with sg. We
will write r[k] to denote the k-th state in the sequence r and |r| to denote the length of r.
A behavior ¢ with a truth-value assignment 7 : ¥ — 2% is accepted by the automaton iff
there is a run r such that for every k, if r[k + 1] is defined then 7 ((TI1°(0))[k]) = I(r[k + 1])
and r[k + 1] € &§(r[k], 7((IT'(0))[k])). With weak fairness, a behavior ¢ is accepted iff in
addition to the previous conditions, if r is finite then for some j, there exist infinitely many
i > j, such that §(r[|r|], 7(State(i,o))) = 0. A similar acceptance condition can be defined
for the case of strong fairness.

Given a realizability graph, we will synthesize a module automaton which implements
the specification. First, for each R-state node v, create a state s, € S for the automaton.
The initial state sy corresponds to the root node of the realizability graph. For the labeling
function [, let [(s,) be the write-label of v.

For each s, and each z € QP, recall the set NV,.. of all state nodes accessible from the
nodes in the node-label L(v) of the R-state node v. Find the largest subset N C L(v) such
that for every state node n € N, all the propositions p € ®(n) are in z and thereis nop €
such that =p € ®(n). An R-non-state successor v, of v is said to cover z iff N C L(v,)
where L(v,s) is the node-label of v,s. Let V' be the set of all R-state successors of the

R-non-state successor v,s of v which covers z. Then §(s,,2) = {s,, € S| vs € V}.
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4.5 Correctness and Completeness

Theorem 4.5.1 (Correctness) If A is the module automaton synthesized after checking the
realizability of the specification formula v under strong [weak] fairness, then for all behaviors

o accepted by A under strong [weak] fairness, o = 1.

Proof: Suppose there were a behavior o accepted by A under strong fairness but o & 9.
We will prove that this leads to a contradiction. First, from o [~ ¢, then o | —¢ and
we can show that o can be embedded into a path in the tableau graph G1b. The path
starts from the root node of Glb and may be either finite or infinite. A behavior ¢ can be
embedded into a path ngnins...in the tableau graph iff for all state nodes n;, if n; is the
Jj-th state node in the path, then for all ¢ € ®(n;), (0,7) E ¢. Next, we can show that
the path ngning...can be embedded into a path vguyvs ... in the realizability graph, using
the assumption that o is accepted by A. We use the fact that we compute the maximally
negation-consistent subset in the realizability-checking algorithm to show (by induction)
the existence of the part of the embedding from an R-non-state node to an R-state node
and the fact that we compute the largest subset N C L(v) for each R-state node v in the
synthesis algorithm for the part of the embedding from an R-state node to an R-non-state
node. If the path ngny ... in GIb is finite, then it must be the case that the last state node
ny in the path must contain only atomic formulas, because ¢ = —t. It implies that n,
is accessible (in Ng..) from some node in the label of the last R-state node v; of the path
VU1 . ... If that is the case, v; would have been deleted in step 3 of the realizability-checking
algorithm, a contradiction.

If ngny ... is infinite but vguvy ...wv; is finite, then we can also derive a contradiction by
showing that for the case of strong [weak] fairness, there must be a self-supporting loop
within ngny ... such that all [some] state nodes in the loop are environment-compatible and
in the set Disabled. The essential step is to use the fact that ¢ is accepted under strong
[weak] fairness and to show from the properties of maximally consistent subsets that all
state nodes n; in the loop must be in the set Disabled if (s,,, 7(n;)) = (. However, if such
a self-supporting loop exists, then v; would have been deleted in step 6.

Similarly, we can also derive a contradiction in the case when both ngny ... and vgvy ...

are infinite, by showing that the loops in vgvy ... would have been eliminated in step 5.(c).ii.
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Theorem 4.5.2 (Termination) The realizability-checking algorithm always terminates.

Proof: There are only finitely many possible R-state and R-non-state nodes. Therefore, it
is not possible to keep expanding the realizability graph forever. It is also clear that there
are only finitely many maximally consistent and maximally negation-consistent subsets at

any time in the algorithm. Wl

Theorem 4.5.3 (Completeness) The formula 1) is realizable iff the root node of the realiz-
ability graph is not deleted.

Proof: One direction of the proof, showing that if the root node of the realizability graph
is not deleted then 1 is realizable, is straightforward from theorem 4.5.1 (correctness).

In the other direction, we assume that 1 is realizable and show that the root node of
the realizability graph is not deleted. Since 1 is realizable, there exists a function f which
realizes it.

We have to define an embedding of a behavior into the realizability graph. A behavior
o can be embedded into a finite or infinite path wgvy ... starting from the root in the
realizability graph iff there exists an increasing sequence of integers dody . .. such that all of

the following conditions are true:
e for all i > 0 and n € L(vy;), there is a formula ¢ € ®(n) such that (o, d;) = —¢,
e forall i >0, (0,d;) = p,
e forall ¢ > 0 and n € L(vgi41), there is a formula ¢ € ®(n) such that (o,d; — 1) E —¢.

An R-state node is called reachable iff there is a behavior of f which can be embedded
into some path passing through the node. It is easy to see that the root node must be
reachable. We want to show that some of the reachable nodes including the root are not
deleted.

First, we can show that a reachable R-state node must not be deleted in step 3; otherwise,
we can easily construct a behavior of f which falsifies .

Next, we can show that for every reachable R-state node v and every self-supporting
environment-compatible loops accessible from a node in the node-label L(v) of v, there
exists a node n in the loop such that for every R-non-state successor v, of v which contains

n in the node-label, there is an R-state successor v’ of v,, which is also reachable. Again,
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we can prove this by showing that if such n» does not exist, we can construct a fair behavior
of f which falsifies 1. We also use the fact that the label of v, is a maximally consistent
set to show the existence of the embedding into a path through v,,.

Finally, we can show that for any loop of reachable R-state nodes, if there is a self-
supporting loop in G'{b which can be embedded into it as in step 5.(c).ii, there is a reachable
R-state node in the loop which is not deleted as the result of breaking the loop of R-state
nodes in step 5.(c).ii. We prove this by considering a behavior of f which can be embedded
into a path passing through this loop of reachable R-state nodes. Clearly, the path cannot

remain within the loop forever or the behavior will not satisfy ¢. il
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Chapter 5

Related Works and Conclusion

5.1 Related Works

5.1.1 Program synthesis

The problem of automatic program synthesis has been previously studied in many different
frameworks. For functional programs, the specification is a first-order formula expressing
the desired relationship between inputs and outputs, where the synthesized program can
be extracted from a constructive proof of the formula [MW80,Con85]. The approach used
in [MWR0] has been successfully applied to synthesize sequential programs.

Later, many efforts [EC82,MW84] have been made to extend the approach to synthesize
reactive programs. The synthesized program is extracted from a proof of the satisfiability of
the specification given in either linear temporal logic [MW84] or branching time logic [EC82].
However, the reactive programs considered in these works do not have any interaction with
the environment, that is, they are closed systems.

The effort to synthesize reactive modules, i.e., open systems, was first reported in
[PR89a]. In that paper, the synthesis of reactive synchronous modules from a specifica-
tion in linear-time temporal logic is linked to the problem of checking the validity of a
branching-time temporal formula obtained by transforming the original specification.

The restriction to synchronous systems (or the game of perfect information) was removed
in [PR89b] where the problem of synthesizing asynchronous systems is considered. In that
work, a linear-time temporal specification is transformed into a formula in branching-time

temporal logic by introducing read and write variables, and by adding constraints on the
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variables.

At about the same time, several notions of realizability were introduced and studied in
[ALWR9]. For the finite case, the approach taken is similar to the automata approach of
[PR89a,b]. Because of the choice of the specification, the method can check realizability in
a more general sense, that is, when the behavior of the environment is restricted. However,
[ALWR89] only considered synchronous systems.

In [WD91], the approach of [PR89b] was extended to handle shared variables and the
restriction on read and write sequences was relaxed. The paper also generalizes [ALWR&9]
to include the asynchronous and real-time cases.

An important aspect of concurrent and reactive programming is the fairness assumption.
The problem of synthesizing a reactive program under fairness assumption was first raised
in [ALW89] but the solution was not provided. The first solution was reported in [AM94].
The tableau approach [MW84] was extended in [AM94] not only to handle the synthesis
problem of open systems, but also address how fairness assumptions can be handled. Later,
[Var95] shows that fair realizability checking and synthesis can also be carried out with the

automata-theoretic approach.

5.1.2 Game and control theories

Game theory and control theory are closely related to the problem of program synthesis.
In game theory, many researchers have studied games where two players take actions al-
ternatively and infinitely. The first player wins if the infinite sequences generated by the
game belong to a certain set and loses otherwise. A certain kind of games are called Borel
games and it was shown to be related to various temporal logics and w-languages. See
[GHR2,HR86,5ta87,Tho90]. The existence of a winning startegy for either players, or deter-
minacy, was studied quite thoroughly [BL69,Mar75,Bu83] and it was shown that all Borel
games are determined. Recently, [Tho94] gave a new recursive construction of winning
strategies for finite-state games and raised new questions on finding the winning strategies
for more complicated games such as games over pushdown transition graphs and games over
hybrid systems. [Tho94] showed that there is a memoryless strategy for games character-
ized by a Rabin condition and [Les95] showed that there is a polynomial-sized strategy for
games with Muller acceptatnce condition.

For control theory, [RW89] studied the control problem of discrete event systems (DES).
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In the paper, DES is simply a finite state machine with certain subsets of the alphabet des-
ignated as control patterns. The sets of desired behaviors studied [RW89] can be character-
ized as safety properties. Later, [Thi92,TW94] extended the approach to study the control
problem of infinite behaviors with liveness requirements. For timed and hybrid systems,
[MPS94] has made an attempt to synthesize controllers for certain classes of timed and hy-
brid systems, and has shown that there is a memoryless controller for a certain formulation

of the control problem. For automata-theoretic approach, see [ABB95].

5.1.3 Fairness

Various notions of fairness have been introduced and investigated [Fra86]. [Pa80] showed
the connection between fairness and fixpoints in the semantics of data-flow languages. The
notions of strong and weak fairness in transition systems were taken from [MP92]. The
original idea of the notions was first proposed in [LPS81]. [QS83] proposed a notion of
(strong) fairness in transition systems and studied a logic for proving properties under fair-
ness assumption. Fairness in CCS was studied by [CS84] and its connection to regularity
was investigated in [GN89,PRWS87,Pri88,Pri93]. [AH94] proposed a stronger notion of fair-
ness called finitary fairness and showed that finitary fairness is adequately abstract for the

purpose of verification and leads to a simpler verification process.

5.2 Conclusion

We uniformly define and study the synthesis problems of reactive programs. We consider
many synthesis problems, namely, basic, weak, maximal, exact, modular, and ES synthesis,
and classify them into two groups, closed and open system synthesis, depending on whether
the program being synthesized interacts with its environments.

In this work, a specification is a set of w-regular (infinite) sequences and regular (finite)
sequences. The output or the implementation is a transition system for closed system
synthesis and a transition system module for open system synthesis. The specification and
implementation languages we study subsume other works mentioned earlier in the previous
section. In our framework, the synthesized program may be disabled, have any number
of transition functions/ processes, or contain some fairness constraints. We also study the
relationship between the number of processes and the solution of synthesis problems. Our

framework is also general enough to handle modeling variations such as how the modules
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are composed, synchronously or asynchronously, or how the scheduler behaves.

In modular synthesis problem, we have a model of the environment as an input to the
problem. It can be shown easily that games and control problems may be formulated as a
modular synthesis problem and solve uniformly in our framework.

For closed system, we show that there is always an exact solution and the solution exists
in 27rDTS — a very simple class in the hierachy of classes of transition systems — when the
specification specifies only infinite behaviors, and 27TS for general specifications that specify
both finite and infinite behaviors.

For open system, we solve all cases except the maximal synthesis and ES synthesis
problems. Our framework allows us to specify the class of TSMs we want to consider
as the implementation language. Although we still do not have a method to find the
maximal solution for open systems, we show that we can find a solution which maximizes
the good projected behaviors and the solution lies in 2TSM. We prove that we can solve
ES synthesis, when the environment assumption is a safety property, or when the domain

of the environment we consider is limited to some classes of TSMs.
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