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Assembling Polyhedra with Single Trandations

Randall H. Wilson, Achim Schweikard
Robotics Laboratory, Department of Computer Science
Stanford University
Stanford, CA 94305-4110
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Abstract

The problem of partitioning an assembly of polyhedral objects into
two subassemblies that can be separated arises in assembly planning. We
describe an algorithm to compute the set of all translations separating two
polyhedra with n vertices in O(n") steps and show that this is optimal.
Given an assembly of Kk polyhedra with a total of n vertices, an extension
of this algorithm identifies a valid translation and removable subassembly
in O(k2n4) steps if one exists. Based on the second algorithm a polynomial
time method for finding a complete assembly sequence consisting of single
translations is derived. An implementation incorporates several changes
to achieve better average-case performance; experimental results obtained
for composite objects consisting of isothetic polyhedra are described.

Introduction

The problem of finding sequences of motions for the assembly of a given object
consisting of polyhedral parts arises in assembly planning. This problem can be
regarded as a motion planning problem with multiple moving objects. In this
generd form, the problem involves many degrees of freedom. Since known meth-
ods for motion planning alowing general motions are exponentia in the number
of degrees of freedom, it is useful to restrict the type of motion considered. Here
we will impose the following restrictions:

e Each step in an assembly sequence concerns two subassemblies. Two sub-
assemblies which have been joined in a previous step are not moved relative
to each other in subsequent steps.

o At each step in an assembly sequence, a single trandation moves the first
subassembly to its final position relative to the second subassembly.
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Figure 1: An assembly in which no single part can be removed

These restrictions embody practical constraints often imposed on assembly se-
guences by manufacturing processes; complicated assembly motions and oper-
aions joining more than two subassemblies make assembly more difficult and
raise manufacturing costs.

For assemblies of rigid parts, an assembly plan can be obtained by reversing
a valid disassembly plan. In this context, we will address the following two
subproblems:

1. Given two polyhedra, compute the set of all single translations separating
these polyhedra.

2. Given an assembly A of several polyhedra, decide whether there is a direc-
tion d and a subassembly S C A such that a trandation along d separates
S from the remaining parts A \ S.

Given a solution to the second problem, we will show that complete assembly
sequences for polyhedral parts can easily be computed.

Two examples for the second problem are shown in figures 1 and 2. None
of the polyhedra in figure 1 can be separated from the remaining parts by a
trandation involving a single object, but there are subassemblies which can be
moved simultaneoudly. In figure 2 any subset of the cubes P;,. . ., P4y can be
removed by a single simultaneous trandation from the remaining objects. This
second example shows that the number of removable subassemblies is exponen-
tial in general. Hence, it is not practical to compute al removable subassemblies
explicitly.

However, we show that it can be determined in polynomia time whether a
removable subassembly exists. Specifically, we describe an optimal algorithm
for solving the first problem above. The method is then extended to derive a
polynomia time algorithm to solve the second problem. Using this procedure,
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Figure 2: An assembly of cubes

we derive a polynomia time method for finding complete assembly sequences.
Finaly, an implementation of the above algorithms and the results of various
assembly planning experiments are described.

1 Related Work

A survey of earlier methods for separating sets in two and three dimensions is
given in [14]. In [11] 1ower bounds on the number of simultaneous translations
necessary for separating objects are derived. Dawson [3] shows that two or
more star-shaped objects can aways be separated by trandating the objects in
different directions simultaneoudy. In addition, it is shown in [3] that for some
assemblies of convex polyhedra, no individual parts are removable by a single
translation.

Homem de Mello and Sanderson [6] give a method to calculate the polyhedral
convex cone containing the infinitesmal trandations allowed by a set of planar
contacts in space. A polynomial-time algorithm to identify subassemblies that
are connected and can be trandated a small distance relative to the rest of the
assembly is described in [16]. Both of these methods consider only contacts,
and thus cannot find collision-free extended trandations.

Krishnan and Sanderson [7] address problem 1 by mapping the set of all
unit tranglations onto a two-dimensional grid, and marking grid elements that
correspond to collisions between two polyhedra. Any unmarked elements then
represent valid removal translations. However, this method is only accurate to
the size of the grid, and cannot be used to find trandations involving contacts
between the two parts.

Pollack, Sharir and Sifrony [12] consider sequences of trandations to separate



polygons. The algorithm [12] is limited to planar assemblies of two parts, but
is able to find separating motions consisting of several distinct trandations.

Toussaint [15] describes an algorithm for separating two simple polygons by
a single trandation; this is the planar case of problem 1 above. Similarly, Arkin,
Connelly and Mitchell [1] address the planar version of problem 2. They use the
concept of monotone paths among polygona obstacles to identify a removable
subassembly of smple polygons in the plane. The methods in [1] do not extend
directly to the three-dimensional case. However, Mitchell has independently
shown that directions for partitioning an assembly can be found in polynomial
time [10]. In this paper we give an agorithm to find the set of trandations sep-
arating two polyhedra in O(n*) time and show that this is optimal. A method
for finding complete assembly sequences based on this algorithm is analyzed
theoretically as well as empiricaly and improvements for applications are de-
scribed. The analytic bounds derived consider the number of parts, the number
of vertices in the representation of the parts, and the size of the coordinates in
the input description.

2 Separating Two Polyhedra

In this section a method for finding the set of trandations separating two poly-
hedra will be derived. Let P and Q be closed and digoint polyhedra in given
spatial placement, and let P and Q be represented as unions of at most n
tetrahedra, i.e. P = |Ji_; T; and Q = U;=1 U; where r, s < n. A trandation
separating P from Q is a vector d such that P can be trandated to infinity in
direction d without intersecting @, i.e. p + td is not in Q for each point p in P
and each t in [0, 00).

The set of all translations of P can be represented by the points on the
unit sphere S? in three-dimensional space. For each pair of tetrahedra T, Uj ,
the configuration obstacle C(T;, U;) is the set of placements of T; such that T;
intersects U; [9]. The set of trandations aong which T; collides with U; is the
projection of C(T;, U;) on the unit sphere; let R;; denote this region.

The regions R;;j are bounded by segments of great circles on S%. The set of
great circles for al R;; determines open regions on S% caled faces. Each face is
a maxima connected component on the sphere not intersecting any great circle
in this set. The faces are regular in the following sense: the pairs of tetrahedra
Ti, U; from P and Q that collide in direction d are constant for all trandations
d in a face f. Let p(f) be the number of pairs of tetrahedra that collide along
trandations in face f. If the segment e of a great circle lies between two faces
f and f', we have the following crossing rules for p(f) and p(f’):

o If e belongs to the boundary of a region R;; and f' is on the interior side
of e then p(f') = p(f) + 1.



e If f' is on the exterior side of region boundary e, then p( f') = p(f) — 1.
e If m isnot on the boundary of any region Ri; , then p(f') = p(f).

In some cases, severa edges may coincide. If two faces f and f' are separated
by an edge e bounding severa regions, then p(f’) = p(f) — g + h, where g is
the number of regions on the same side of e as f and h is the number of regions
on the same side of e as f'. The set of trandations separating P from Q is the
union of al faces f for which p(f) = 0.

In the agorithm below, trandations are represented as points on two parallel
planes instead of points on the unit sphere. Configuration obstacles C(T;, Uj)
are projected to the planes z = 1 and z = -1 using a central projection from the
origin. The regions R;; are planar regions bounded by line segments and rays.
The supporting lines of these segments and rays define an arrangement in each
plane, represented by a graph. The nodes in the graph represent faces, edges,
and vertices of the arrangement, and links connect adjacent elements. Edges on
region boundaries are oriented with respect to the interior of the corresponding
region, while edges obtained by extended supporting lines are marked as such.

The algorithm to find all faces representing valid translations proceeds as
follows. For each plane z = 1 and z = -1,

1. For each pair of tetrahedra T; , U; , compute the projection R;; of C(T:, U;)
on the plane.

2. Calculate the arrangement of lines determined by the boundaries of the
regions R;; , orienting the edges as described above.

3. For an arbitrarily sedlected face fo, compute the number p( fo) of regions
R;; containing fo.

4. Perform a depth-first traversal of al the faces in the arrangement by step-
ping from fp to neighboring faces. To step from a face f to a neighboring
face f’, cdculate p(f') from p(f) using the crossing rules above. After
visiting a face, it is marked and not visited again. For each face f where
p(f) = 0, output the face f and continue.

Since P and Q consist of at most n tetrahedra each, there are at most n?
regions R;;, each with a constant number of edges. Therefore step 1 requires
O(n?) operations. An arrangement of m lines in the plane can be computed in
O(m?) time (2, 4] and has O(m?) cells. Here m = n?, so the number of cells
and the computing time for step 2 are O(n*). Each region R;; has a constant
number of edges, so testing the initial face fo for inclusion in al regions requires
O(n?) operations. Finally, the depth-first search steps over each edge at most
twice, each step taking constant time. Since the number of arrangement edges
is O(n*), the computing time for step 4 is O(n*).



Figure 3: Polygons from Pollack et. al. [12]

The optimdity of this agorithm directly follows from an example given by
Pollack, Sharir and Sifrony [12]. The example in [12] concerns two polygons P
and Q with r and s edges respectively; the number of connected components
in the complement of the configuration obstacle corresponding to P and Q is
proportional to r2s? (figure 3). In our case the polygons P and Q are regarded
as polyhedra of zero volume, and r, s = n; the following holds equaly if P and
Q are polyhedra with sufficiently small thickness. We place P in a plane p
and Q in a plane paralel to p, but digtinct from p. Then the plane containing
the configuration obstacle of P with respect to Q does not contain the origin,
so the projection of the configuration obstacle of P with respect to Q on the
sphere S§? partitions S? into Q(n*) connected components. Therefore the set of
trandations separating P from Q consists of (n*) connected components.

Instead of decomposing polyhedra into tetrahedra in the above method, we
can decompose the faces of the polyhedra into triangles, and find the config-
uration obstacles for pairs of triangles. In fact, such triangulations are often
computed in geometric modeling systems. The faces of a part with n vertices
can be triangulated in O(n logn) steps into O(n) triangles [5], so that the to-
tal number of steps in the above agorithm remains O(n*). We now have the
following lemma:

Lemma 1 The set of all translations separating P from Q, where P and Q are
polyhedra each with n vertices can be found in O(n") steps and this is optimal.

To find separating trandations in which parts touch each other, open poly-
hedra can be considered in the above algorithm. In this case the edge and
vertex cells of an arrangement may correspond to valid directions. A count p(c)



of calliding tetrahedra is associated with every face, edge, or vertex cell ¢ in
the arrangement. The arrangement can be computed and the cells traversed in
0( n*) steps.

3 Partitioning an Assembly

Problem 2 concerns an assembly A of polyhedra Py,. . ., Pr. The method of the
previous section can be extended to find a trandation d and a proper subassem-
bly S of A such that d separates S from the remaining parts A \ S.

As above, each pair of tetrahedra T; and U; from different polyhedra define
a region R;; of the unit sphere S2. A directed graph G(f) with weighted arcs is
associated with each face f in the corresponding arrangement on S2. The nodes
of each graph represent the objects P1,. . . , Px. The weight of an arc from F; to
Pj in G(f) is the number of pairwise intersections of tetrahedra from P; and P;
during any trandation d in f. Arcs with weight zero are removed from G(f).

The graphs G(f) and G(f? for neighboring faces f and f” sharing an edge
e are related by the following crossing rules:

e If e is a boundary segment of a projected configuration obstacle from
tetrahedra in P; and P;, and f” is in the interior of the region, then the
weight of the arc from P; to P; is one greater in G( f) than in G(f).

e If eis a boundary segment and f” is outside of this region, the weight of
the arc from P; to P; is one less in G(f’) than in G(f).

e If eis the extension of a boundary segment, G( f?) = G(f).

Similar to the case of two polyhedra, if several edges coincide then G(f?») differs
from G(f) by the sum of the changes for the coinciding edges.

A proper subset S of A can be removed aong a direction d in a face f if
and only if there are no arcs in G(f) from nodes in S to nodes in A \ S. A
node P; is a successor of P; in the graph G(f) if i = j or there is a path in
G(f) from P; to P;. The predecessors of a node are defined similarly. If the set
of successors of every node in G(f) is the entire set of graph nodes, then there
is no subassembly that can be removed using directions in face f. However, it
suffices to compute the sets of successors and predecessors of a single arbitrary
node Py:

e If the set of successors and the set of predecessors of P are both equal
to A, then there is no proper subassembly of A that can be removed in a
direction in f. This follows from the transitivity of the successor relation.

o |If the set of successors S; of P, is a proper subset of A, then S; is a
removable subassembly of A.



o If the set of predecessors Sy of P is a proper subset of A, then by definition
no arcs connect nodes in A \ S, to nodes in S;. Therefore A \ Sz is a
removable subassembly of A.

To find a removable subassembly of A, we again project the configuration
obstacles C(T;, Uj) onto two planes z = 1 and z = -1. However, if a trandation
d separates a subassembly S from A \ S, then -d separates the subassembly
A\ S from S. Thus it suffices to search only one planar arrangement. This gives
rise to the following agorithm for finding a removable subassembly:

1. Calculate the arrangement of regions R;; on the plane z = 1.
2. Compute the graph G(fo) for an initid face f, of the arrangement.

3. Perform a depth-first traversal over the arrangement, computing G(f) for
each new face f. If in any graph G(f) the successors or predecessors of
P, are a proper subset S of A, output S and a trandation d in f.

The arrangement of projected regions can be caculated in O(n*) steps, and
the initial graph G( fo) can be found in O(n?) steps. Finding the set of successors
or predecessors of a node in one graph requires O(k?) steps. There are O(n*)
faces in the arrangement, so traversing them all requires O(k%n*) operations.
We now have the following lemma:

Lemma 2 Let A = {Pi,..., Pt} be a set of k polyhedra with a total of n ver-
tices. It can be decided in O(k2n4) steps whether there is a proper subassembly
of A that can be translated to infinity without intersecting the remaining parts.
An appropriate subassembly and direction can be computed in the same number
of steps.

As an example, consider the simple configuration of four cubes aligned aong
the z-axis in figure 2. The corresponding planar arrangement consists of 12
polygons in each of the planes 2 = 1 and z = -1; several of these polygons
coincide. Figure 4 shows the plane z = 1. The projected configuration obstacle
corresponding to cubes Py and Py is the region R( 1,4) and is bounded by a line
segment and two rays.

Figure 5a shows the graph G(R( 1,4)). R( 1,4) is contained in R( 1,2) and
R(l, 3), so there are arcs in the graph from node 1 to nodes 2, 3, and 4, each
of weight 1. R(1,4) is contained in R(2,4), R(2,3), and R(3,4). Since node 4
has no successors, it is a removable subassembly for trandations in R( 1,4). If
cubes P, and P4 represent a single part Pa4, the graph in figure 5b results.
Nodes 24 and 3 form a strongly connected component, so cubes 2, 3, and 4
must be removed simultaneously for trandations in R( 1,4).
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Figure 4: The arrangement for the assembly in figure 2

Figure 5: Graphs for region R( 1,4) where (a) Py, . . ., P4 can be moved indepen-
dently (b) P, and P4 must be moved simultaneously

IS

4 Finding Assembly Sequences

The above method can be used to decide whether there is a complete assembly
sequence for an object with polyhedral parts. Here each subassembly can only
be removed by a single translation, but each translation in the sequence can
involve one or more parts.

Lemma 3 It can be decided in O(k3n4) steps whether polyhedra Py, . . ., P; can
be separated completely using motions where each subassembly is removed from
the remaining objects by a single translation.

Proof: Assume that A = {P,,. .., P;} can be disassembled. Applying the
method of the previous lemma to A gives two subassemblies, each consisting of
one or more parts. Each application increases the number of subassemblies by



one, and the final number of subassemblies is k. Therefore the above method is
applied k — 1 times.0

Findly, let d be a bound for the number of binary digits used to represent
the coordinates of vertices in the input assembly. The size of al intermediate
values occurring in the computation is bounded by O(d). Thus using standard
agorithms for rational arithmetic we obtain O(k3n%d?) as a time bound for
finding an assembly sequence with the above agorithm. Here all computations
can be performed without loss of accuracy.

5 Experimental Evaluation

The above methods were implemented in C on a DECstation 5000 using floating-
point arithmetic, with a number of modifications giving practica improvements.
The program was tested on randomly generated assemblies to estimate its char-
acterigtics in the average case and find practical bounds on its application.

5.1 Implementation

A drawback of the algorithm above is the storage requirement: the arrangement
may take O(n*) space to store, which is impractical for complicated assem-
blies. Furthermore, the number of cells is increased dramatically by computing
the arrangement of the supporting lines instead of just the boundary segments
themselves. The topological sweep-line algorithm in [2, 4] sweeps over an ar-
rangement of m lines in O(m) space and optimal O(m?) time, but cannot be
extended directly to the case of line segments instead of lines.

Our implementation addresses these problems by performing a vertical line
sweep [8, 13} over the arrangement of O(n?) line segments. This agorithm only
stores O(n?) of the cells of the arrangement at one time, and has running time
of O((n? + I)logn), where I = O(n*) is the number of intersections between
segments.

An imaginary vertical line passes over the arrangement. The cells cut by
the sweep line in its current position are kept in a sorted list; the initia list is
found by sorting the lines by dlope. Start points and end points of segments and
intersections between two segments are events, kept in a priority queue sorted
by z-value. As the sweep-line moves from left to right, events are processed
and the list of cut cells is changed accordingly. Each event can be processed
in O(log m) time, so the total running time is O((m + 1) log m), where | is the
number of intersection events. In our case m = n2. Thus the arrangement
calculation requires O((n? + 1) log n) steps, where 1 = O(n?).

The vertica sweep-line algorithm maintains the graph G(f) for each face cut
by the vertica line. The graphs for faces intersecting the initial sweep-line are
propagated down from an initial face at the top of the sweep-line. To process an

10
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Figure 6: An intersection event in the sweep-line agorithm

event, the graph for a new face is caculated by stepping from the face above it
in the vertical line, as described in section 3. Thus the graphs for al faces in the
arrangement are calculated and checked without keeping the whole arrangement
in memory. The total computing time for finding an appropriate subassembly
using the modified agorithm is O(k?n* + n* log n).

Figure 6 illustrates the processing of an intersection event. The interior of
region R(2,3) is below edge e; , and edge ey is the lower boundary of region
R( 1,3). The graphs for faces fi, f2, and f3 have aready been computed; al the
graph links have weight one. When the sweep line processes the intersection of
e; and ey a point p, the face f; is entered. Edge e; is between f; and f; in
the new sweep line, so G(fy)is computed by stepping over e, from G(f1). The
interior of R( 1,3) is above ez, s0 G( f4) is obtained from G( f,) by deleting the
link from node 1 to node 3. Nodes 1 and 2 form a stongly connected component
of G(fa), so the corresponding parts are a removable subassembly.

The implementation generates configuration obstacles for isothetic three-
dimensional solids (rectangloids or boxes) instead of tetrahedra; however, the
arrangement computation applies to the general case.

5.2 Experiments

To evaluate the practical computing bounds on the implementation, n random
digoint boxes were generated and linked together to form k complex objects for
different values of n and k. Removable subassemblies were identified for these

1



Figure 7: An assembly of four random boxes

n k |t loﬂt/n4 tmin tmas Smazx

4 2 0.2 0.78 0.1 0.2 16210
8 4 0.6 0.15 0.5 0.6 19644
16 4 51 0.078 4.7 5.4 30908
32 8 48.7 0.046 39.4 48.7 44163
64 8 283.6 0.016 281.0 284.2 61816
128 | 16 | 1150.7 | 0.0042 1120.8 | 1243.7 | 88264

Table 1: Computing times for partitioning composite objects consisting of iso-
thetic rectangular solids (units: seconds of CPU-time and 1024 Bytes)

assemblies using the described implementation of the above method. Figure 7
shows a random configuration of four boxes.

Table 1 shows the computing times and storage requirements observed. For
each value of n and k, 32 samples were run and the average, minimum, and
maximum running times recorded (¢, tmin, and tmays, respectively), along with
the maximum storage needed (smaz). IN @l cases the entire arrangement and all

graphs were computed instead of stopping at the first removable subassembly
found.

6 Conclusions

Severa extensions of the described methods might be considered. Unconnected
subassemblies usualy require more complicated fixtures and more difficult ma-

12



nipulation than do connected subassemblies. As a result, connected subassem-
blies are often preferred in manufacturing planning. By analyzing a connection
graph of the assembly, the above algorithm can be extended to generate only
subassemblies which are connected.

In practice, an arrangement of fewer segments would result from projecting
the configuration obstacles of complete polyhedra. The projected configuration
obstacle for polyhedra P, and P» is the union of al projected configuration ob-
stacles R;; of two tetrahedra T;, U; from P; and P,. The configuration obstacles
could also be found using more direct methods [8].

Finally, other types of motions could be considered. For instance, a sequence
of trandations might be allowed to separate subassemblies, or spatial screw
displacements could be considered instead of trandations.
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