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The Benefits of Relaxing Punctuality*t

Rajeev Al& Tomb Feders Thomas A. HenzingerT

May 29, 1991

Abstract. The most natural, compositional way of modeling real-
time systems uses a dense domain for time. The satisfiability of real-
t ime constraints  that  are  capable of  expressing punctual i ty  in this
model is, however, known to be undecidable.

We introduce a temporal language that can constrain the time dif-
ference between events only with finite (yet arbitrary) precision and
show the resulting logic to be EXPSPACE-complete. This result allows
us to develop an algorithm for the verification of timing properties of
real-time systems with a dense semantics.

1 Introduction

The formal study of reactive systems has led recently to a number of sug-
gestions of how real-time requirements of such systems ought to be mod-
eled, specified, and verified. Most of these approaches are situated at either
extreme of the trade-off between realistic modeling of time and feasible ver-
ification of timing properties. Typically, they either use a continuous model
of time at the expense of decidability [ACD90,  Koy90,  LewSO],  or they sacri-
fice continuity to obtain decision procedures [JM86,  AH89, AH90, EMSS89,
HLPSO, Ost90].  This paper shows how a slight relaxation of the notion of
punctuality allows us to combine the best of both worlds.

*An abbreviated version of this paper appears in the proceedings of the Tenth Annual
ACM Symposium on Principles of Distributed Computing (1991).
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Defense Advanced Research Projects Agency under contract N00039-84-C-0211,  and by
the United States Air Force Office of Scientific Research under contract AFOSR-90-0057.

:Department  of Computer Science, Stanford University, Stanford, CA 94305.
“Bell Communications Research, Morristown, NJ 07962.
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Let us be more specific. The linear (trace) semantics of a reactive system
is defined as a set of possible behaviors, each of which is represented by
a sequence’of  system states. ,This model is most naturally extended to
incorporate real time by associating, with every state, an interval of the real
line, which indicates the period of time during which the system is in that
state. That is, we represent the possible behaviors of a real-time system by
timed state sequences.

Alas, even the satisfiability of a very simple class of real-time properties
turns out to be undecidable in this model [AH89].  An inspection of the
proof shows that the only timing constraints required are of the form

q  (p  + %5Q),

predicting that every p-state is followed by a q-state precisely 5 time units
later.

This negative result has led us, at first, to weaken the expressiveness of
the model by adopting the semantic abstraction that, at every state change,
we may record only a discrete approximation - the number of ticks of a
digital clock - to the real time. Thus we have interpreted the formula (t) to
require only that the p-state and the corresponding q-state are separated by
exactly 5 clock ticks; their actual difference in time may be as much as (say)
5.9 time units or as small as 4.1 time units. We have shown that several
interesting real-time logics are decidable under this weaker, digital-clock,
interpretation [AH89, AHgO].

In this paper we pursue an alternative, syntactic, concession. Instead
of digitizing the meaning of a sentence, we prohibit timing constraints that
predict the time difference between two states with infinite accuracy. In
particular, we may not state the property given above, but only an approx-
imation such as

o (P --)  0(4.9,5.1)  4,
requiring that the p-state and the corresponding q-state are separated by
more than 4.9 time units and less than 5.1 time units.

We define a language that can constrain the time difference between
events only with finite (yet arbitrary) precision. The resulting metric inter-
vaZ temporal logic MITL is shown to be decidable in EXPSPACE. Further-
more, we show how to verify a real-time system with respect to a specifica-
tion in MITL.

Properties of timed state sequences can, alternatively, be defined by
timed automata [ADgO].  While the emptiness problem for these automata
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is solvable, they are not closed under complement. MITL identifies a frag-
ment of the properties definable by timed automata that is closed under all
boolean operations. Thus the novelty of our results is that they give a logical
formalism with a continuous interpretation of time that is suitable for the
automatic verification and synthesis of finite-state real-time systems.

Both the semantic abstraction of digitizing models as well as the syntac-
tic restriction of excluding equality in timing constraints limit the real-time
properties that are definable in a similar way: they rule out the notion of
absolute punctuality and replace it by a looser concept of almost-on-time
behavior. This sacrifice is viable because, by choosing the clock tick of the
digital clock small enough, we can still achieve arbitrary precision in ei-
ther approach; moreover, the corresponding costs for achieving the desired
accuracy are the same.

Yet the introduction of a mandatory slack through the syntax (rather
than through the semantics) turns out to be the more powerful technique:
we show that the properties of timed state sequences that can be defined
in MITL are a proper superset of those definable with equality under a
digital-clock interpretation. Also, many of the practically interesting forms
of punctuality are still expressible in MITL, such as the requirement that
every p-state is separated from the closest subsequent q-state by precisely 5
time units.

The remainder of the paper is organized in four parts. In Section 2, we
introduce and motivate the logic MITL, and show it to be more expressive
than digitization. In Section 3, we introduce a variant of timed automata
as a model for finite-state real-time systems. In Section 4, we reduce the
decision problem for MITL to the emptiness problem of timed automata.
In the concluding section, we show how the results of this paper lead to
an algorithm that verifies MITL-specifications of real-time systems that are
given as timed automata.

We remark that in this paper we introduce MITL with future temporal
operators only. All of our results, in particular EXPSPACE-completeness,
generalize to MITL with both future and past temporal operators.

2 Metric Interval Temporal Logic

We define timed state sequences as formal models of real-time behavior.
Then we introduce a temporal language to define properties of timed state
sequences and study its expressive power.
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2.1 Intervals and interval sequences

An interval is a convex subset of the nonnegative real numbers R+. Intervals
may be open, halfopen, or closed; bounded or unbounded. More precisely,
each interval is of one of the following forms: [a, b], [a, b), [a, oo), (a, b], (a, b),
(a, oo), where a < b and a, b E R +. For an interval I of the above form, a
is its left end-point, and b is its right end-point; the left end-point of I is
denoted by Z(I) and the right end-point, for bounded I, is denoted by r(1).

An interval I is singular iff it is of the form [a, a]; that is, I is closed and
Z(I) = r(I).

Two intervals I and I’ are adjacent iff (1) either I is right-open and I’ is
left-closed, or I is right-closed and I’ is left-open, and (2) r(1) = Z(P). For
instance, the intervals (1,2]  and (2,2.5) are adjacent.

An interval sequence r = IoIl 12 13 . . . is a finite or infinite sequence of
intervals that partitions R+:

1. Any two neighboring intervals I; and 1i+i are adjacent.

2.  Forallt  E R+, there is some interval I; with t E I;.

In particular, 10 is left-closed and Z(10)  = 0; fi r is finite, then its last interval
must be unbounded.

We will freely use intuitive pseudo-arithmetic expressions to denote in-
tervals. For example, the expressions 5 b and > a stand for the intervals [0, b]
and (a, oo), respectively; by < I we denote the interval {t’ 1 0 5 t’ < t for all
t E I}. The expression t + I, where I is an interval and t E RS, denotes the
interval {t + t’ 1 t’ E I}; similarly, the expressions I - t and t I stand for the
intervals {t’ - t 1 t’ E I and t’ 2 t} and { tt’ 1 t’ E I}, respectively.

2.2 Timed state sequences

Let P be a finite set of atomic propositions. We assume that, at any point
in time, the global state of a (finite-state) system can be modeled by an in-
terpretation (or truth-value assignment) for P. We therefore identify states
s with subsets of P; that is, s b p iff p E s (for p E P).

A behavior of a discrete system over time can, consequently, be modeled
by a finite or infinite sequence



of states s; E 2’ and corresponding time intervals I; C RS. A timed state
sequence p = (a, 7) consists of a sequence 0 : sosls2  . . . of states and an
interval sequence T: 100-71  I2 . . . of the same length.

A timed state sequence p = (a,~) can be viewed as a map p“ from the
time domain RS to the states 2’ (let p”(t) = s; if t E I;). Thus a timed
state sequence provides complete information about the global state of a
system at each time instant: at time t E I;, the system is in state p%(t) = s;.
Timed state sequences obey the finite-variability condition: between any two
points in time there are only finitely many state changes. This assumption
is adequate for modeling discrete systems.

Given a timed state sequence (a, T), the i-th transition point, denoted
by t;, is defined to be the left end-point of the interval I; ; that is, t; = I( Ii).
Note that the state at time t; is s;-1  if I; is left-open, and is s; if I; is
left-closed.

Our definition allows transient states, which occur only a single point in
time. If Ii is a singular interval [ti, ti], then the state at time ti is si, but the
state just before ti is si-1, and the state just after t; is si+l. Observe that in
such a case neither si-1  nor si+l can be transient, because the interval Ii-1
must be right-open and the interval Ii+1 must be left-open. Transient states
are useful for modeling the truth of propositions that represent instantaneous
events and, thus, are true only at isolated points in time.

We will also need the concept of a sujgix of a timed state sequence. For
a timed state sequence p = (a,~) and time t E Ii, let # = (&,T~)  be the
timed state sequence with the state component 8 : sis;+ls;+2  . . . and the
time component

Tt 1 (Ii - t)(Ii+l - t)(Ii+2 - t) . . .

Note that the suffix operator is defined such that (p’)*(t’)  = p*(t + t’) for
all t’ E R+. In particular, p” = p.

2.3 Syntax and semantics of MITL

We introduce an extension of linear temporal logic, metric interval temporal
logic (or MITL), that is interpreted over timed state sequences. A standard
way of adding timing requirements to temporal languages is to replace the
temporal operators with time-constrained versions, such as the constrained
eventually operator OI~,~I meaning “eventually within 2 to 4 time units”
[EMSS89,  AH90,  Koy90]. We adopt this approach for MITL, with the re-
striction that operators cannot be constrained by singular time intervals.
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The formulas of MITL are built from atomic propositions by boolean
connectives and time-constrained versions of the until operator 24; they are
defined inductively as follows:

where p E P and I is a nonsingular interval with rational end-points (I may
be unbounded).

The formulas of MITL are interpreted over timed state sequences, which
provide an interpretation for the atomic propositions at each time instant.
Informally, the formula C#Q  UI $9 holds at time t E R+ of a timed state
sequence iff there is a later time instant t’ E t +- I such that $2 holds at time
t’ and $1 holds throughout the time interval (t , t’).

Given an MITL-formula 4 and a timed state sequence p = (a, r), the
satisfaction relation p + 4 is defined inductively as follows:

Pi=P iff PESO.
PI= 14 iff PI+ 4.
pb#Oh  iff pbb  andpl=&.
P I= $1 UI 42 iff pt l= 4 2 for some t E I, and #’ I= & for all

t’ E (0, t).

The MITL-formula 4 is satisfiable (valid) iff p k 4 for some timed state
sequence p (all timed state sequences p, respectively).

Observe that the logic MITL is insensitive to stuttering. Given two timed
state sequence p = (0,~) and p’ = ( g’, ?-‘) such that p’ has a subsequence of
the form

(Si-1,  Ii-l)  * (&,I)  + (Si, I’) + (si+ljb+l)

and I U I’ = I;, then p* = plX, and p b C/J iff p’ b 4 for every MITL-formula
4.

The satisfaction relation has another desirable property: the truth value
of any MITL-formula does not change more than w times along a timed state
sequence. Thus timed state sequences satisfy the finite-variability condition
not only with respect to the truth of atomic propositions, but also with
respect to arbitrarily complex MITL-formulas. The following lemma states
this property formally:

Lemma 2.1 (Model refinement) Let 4 be an MITL-formula and p =
(0, r) be a timed state sequence. There exists an interval sequence 74 :
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JoJ1 . . . such that whenever t and t’ belong to the same interval Ji, we have
pt + + ifl pt’ + $ for each subformula T/ of 4. Moreover, if all interval
end-points in T <are rational numbers, then so are all interval end-points in

w

,

Proof of Lemma 2.1 Let p = (a, 7). The proof is by induction on the
structure of 4. For an atomic proposition p, take T* to be r. For a negated
formula l#, take T+,I to be 741. In case of the conjunction 41 A 49, the
interval sequence r+1A4z  is constructed by taking the intersection of the two
interval sequences r41  and T+~.

Now let us consider the case that 4 has the form 4124142.  Let r&1 n$2
be the interval sequence JO J1 . . . We construct a refinement T+ : JA Ji . . . of
~4~~4, such that whenever t and t’ are in the same interval J,!, then both t
and t’ belong to the same interval Jk, both t + Z(1) and t’ $ Z(1) belong to
the same interval Jl, and, if I is bounded, both t $ r(1) and t’ +- r(1) belong
to the same interval Jm, for some k, 1, m. It is clear that such a sequence
can be constructed by a finite splitting of each interval Ji such that, if the
end-points of all intervals Ji are rational, then so are the end-points of all
intervals J;‘. Furthermore, it is easy to check that pt /= 4 iff pt’ + 4 whenever
t and t’ are in the same interval J;‘. n

For any MITL-formula 4, we say that the timed state sequence p = (a, ~4)
is 4-fine.  Clearly, 4 is satisfiable iff it has a &fine model.

2.4 Defined operators

Now let us introduce some standard abbreviations for additional temporal
operators. The defined operators 01 # (constrained eventually) and q  Il#
(constrained always) stand for true UI 4 and lO~l$,  respectively. It follows
that the formula 014 ( or 014)  holds at time t E R+ of a timed state
sequence iff 4 holds at all times (at some time, respectively) within the
interval t + I.

We usually suppress the interval (0, oo) as a subscript. Thus the MITL-
operators 0, q  I, and U coincide with the conventional unconstrained strict
eventually, strict always, and strict until operators of temporal logic. This is
because the until operator of MITL is implicitly strict in its first argument.
The corresponding non-strict operators are definable in MITL as O[o,oo)
(also written O>o ), q  >o , and- -

7



for (62  U= 41 (where 2.C denotes the unconstrained non-strict until operator).
Note that, on the other hand, the operator 241 cannot be defined in terms
of an until operator that is not strict in its first argument; this is why we
have chosen the strict versions of temporal operators to be primitive.

Using these abbreviations, the typical bounded response property that
“every p-state is followed by a q-state within 5 time units,” can be expressed
by the MITL-formula

020 (P + qo,q de

We also define a constrained unless operator as the dual of the until
operator:

41 IU $2 stands for ++2)~1  (+)).
It follows that the formula 41 IU 42 holds at time t E RS of a timed state
sequence iff either 41 is true throughout the interval t + I, or there is a
time instant t’ > t such that $2 is true at time t’ and #I holds at all instants
t” 5 t’ within the interval t + I. Note that the unconstrained version 41 U 42
of the unless operator of MITL differs slightly from the conventional strict
unless operator, which can be defined as 41 U (41 A 49).

We can apply the definition of the unless operator to move negations
through until operators. Thus we may obtain, from any MITL-formula, an
equivalent formula, containing both until and unless operators, in which all
negations are in front of atomic propositions.

2.5 Avoiding undecidability

A few comments on our choice of syntax are in order. First, MITL has no
next-time operator, because due to the density of the time domain there is
no unique next time. Also, MITL is, syntactically viewed, essentially the
restriction of metric temporal logic (MTL [AHgO])  that prohibits the use of
equality in time bounds. For example, in MITL we cannot directly express
the punctuality condition that “every p-state is followed by a q-state after
exactly 5 time units,”

q  >o  (P + 0=5 q ),

because the singular interval [5,5]  is not allowed as a subscript. We will
show that there is, in fact, no MITL-formula that expresses this condition,
and that the restriction of MITL to nonsingular intervals is essential for
decidability.
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Note that some practically important forms of equality are expressible
in MITL; we define (-4) i!& 4, for n > 0, as an abbreviation for the MITL-
formula  ‘7(0,7l)  14 A O(o,n] 4 Thus the stronger condition that “for every
p-state the 1c osest subsequent q-state is after exactly 5 time units,”

is expressible in MITL.
Let MITL=  be the extension of MITL that admits singular intervals as

time bounds on the temporal operators. We show that the decision problem
of MITL=  is complete for the complexity class Hi, which is situated in the
analytical hierarchy strictly above all recursively enumerable sets (see, for
example, [Rog67]).  It follows that MITL=  is not even axiomatizable.

Theorem 2.1 (MITL with equality) The decision problem of MITL,  is
IX: -complete.

Proof of Theorem 2.1 [Hi-hardness] The decision problem for dense
MTL is Hi-complete [AHgO].  A 1c ose inspection of the proof given there
reveals that that only one operator with a singular subscript, O=, for any
n > 0, is used to demonstrate Hi-hardness.

There is, however, a subtle difference between the dense interpretations
defined in [AH901 and timed state sequences: a dense interpretation con-
sists of an infinite sequence of states and corresponding time instants, not
intervals. Consequently, while the formula 01 false (for any finite nonempty
interval I) is not satisfiable by any timed sequence, it is satisfiable by in-
finitely many dense interpretations - those that do not contain any states
with times in I.

With some care we can still reduce the decision problem for dense MTL
to the decision problem for MITL with equality, which demonstrates the II:-
hardness of the latter logic. Let r be a proposition that is true in infinitely
many transient states and nowhere else; that is,

4% : r  A q  >O (r  -+ (+h).-

It is not hard to see that a dense MTL-formula 4 is valid iff the MITL-
formula 4r + 4” is valid, where 4” is obtained from 4 by replacing every
occurrence of a subformula $~12.41$2  with
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[Containment in II:] We show that the validity of a formula 4 of MITL=
can be phrased as a II:-sentence,  asserting that all timed state sequences
are models of 4. From Theorem 2.2 to be proved shortly, it follows that if 4
has a model, then it has a model in which all interval end-points are rational
numbers (i.e., a rational model). This observation allows us to assert the
validity of 4 as a II:-sentence:  4 is valid iff p + 4 for all rational models p.
It is routine to encode a rational model by a set of natural numbers, and to
express the satisfaction relation in first-order arithmetic. w

Another possible extension of the syntax of MITL is to permit time
bounds on both arguments of the until operator, as is the case for all logics
that admit explicit references to time in atomic formulas (such as TPTL
[AH89]). T he intended meaning of the formula 41 IIUI  42 at time t E RS of
a timed state sequence is that there is a later time instant t’ E t + I such that
42 holds at time t’ and $1 holds throughout the time interval (t +- I’) n [t, t’].
Such an extension leads, however, again to undecidability. This is because
the role of 0=72  4 in the undecidability argument for MITL, can be replaced
by the formula false &4zn 4.

2.6 Real versus rational time

Having justified our choice of syntax, let us look at other options for defining
the semantics of MITL. While timed state sequences are defined by choosing
the set of (nonnegative) reals to model time, for interpreting formulas of
MITL, the crucial property of the time domain R+ is not its continuity, but
only its denseness. In particular, we show that replacing the time domain RS
with the nonnegative rational numbers QS when defining the semantics of
MITL does not change the satisfiability (and validity) of any MITL-formula.

We call a timed state sequence (a,~) rational iff the end-points of all
intervals in r are rational. A formula 4 of MITL=  is said to be Q-satisfiable
iff p + 4 for some rational timed state sequence p, where the satisfaction
relation i= is redefined so that all time quantifiers range over Q+ only.

We show that this new notion of satisfiability is the same as the old one.
In other words, MITL-formulas cannot distinguish the time domain R+ from
the time domain Q +. This equivalence of real and rational models follows
from the following two lemmas.

Lemma 2.2 (Rational models) Let 4 be an MITL-formula and p a ra-
tional 4-fine  timed state sequence. Then p Q-satisfies $ ifl p b 4.
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Proof of Lemma 2.2 We use induction on the structure of 4. Let us
consider only the interesting case, that 4 has the form & UI 42.

Suppose that p = (a, 7) is rational, #-fine, and Q-satisfies #; that is, pt
Q-satisfies #2 for some rational t E I, and pt’ Q-satisfies 41 for all rationals
0 < t’ < t. By the induction hypothesis, we may conclude that pt i= 42 and
pt’ b 41 for all rationals 0 < t’ < t. Since t E R+, it remains to be shown
that pt” b 41 for all reals 0 < t” < t. Consider an arbitrary real 0 < t” < t,
and assume that t” E I;. Since p is rational, there is also a rational t’ E I;
with 0 < t’ < t. We know that p” + 41 and, since p is $-fine, it follows that
Pt" t= $1.

The second direction, that every rational $-fine model of 4 Q-satisfies 4,
follows by a similar argument. n

For any MITL-formula 4, let n4 be the least common denominator of all
(rational) interval end-points in 4; that is, all constants in 4 are multiples
of l/nd.

Lemma 2.3 (Model equivalence) Let p = (0,~) and p’ = (a, 7’) be two
timed state sequences, and 4 be a formula of MITL=.  Suppose that for all
t E R’, if t = ti -/- m/n+ for some left end-point t; of an interval in r and
some nonnegative integer m E N, then t E Ij i# t E Ii. Then p f= 4 i#
PI I= 4.

Proof of Lemma 2.3 We write p k p’ iff the two timed state sequences
p and p’ satisfy the premise of the lemma. First observe that, if p % p’ for
p = (0,~) and p’ = (0,~‘)  and t E I;, then we can find f(t) E Ii such that
Pt - p’fct). Furthermore, f(t) < f (t’) iff t < t’.

Using this observation, the lemma follows by straightforward induction
on the structure of 4. n

Lemma 2.3 classifies timed state sequences into equivalence classes such
that the members of a class cannot be distinguished by formulas of MITL,.
It implies, in particular, the following theorem:

Theorem 2.2 (Rational time) A formula 4 of MITL=  is Q-satisfiable
in it is satisfiable.

Proof of Theorem 2.2 Suppose that 4 is Q-satisfiable in the rational
model p. By Lemma 2.1, there is a rational +-fine refinement of p that
Q-satisfies 4. By Lemma 2.2, this refinement is a (real) model of 4.

The proof of the second direction uses Lemma 2.3. Consider a (real)
model p of $. The lemma allows us to adjust the interval boundaries in p

11



as long as (1) no interval is adjusted across multiples of l/n+, and (2) the
ordering of the fractional parts (modulo l/n+)  of all interval boundaries is
not altered. The denseness of QS allows us to adjust all boundaries to be
rational numbers. The resulting rational timed state sequence is a (real)
model of 4 and, by Lemma 2.1 and Lemma 2.2, its $-refinement Q-satisfies
4 . n

2.7 Expressive power of MITL

We define the semantics of a system as a set of timed state sequences; such
a set is called a real-time property. Every formula C$ of a real-time logic
(say, MITL) specifies a real-time property - the set of models of 4. The
expressive power of a logic is measured by the real-time properties that can
be specified by formulas of the logic.

We compare the expressive power of MITL to the use of a digital clock
and MTL, which admits singular intervals as time bounds on temporal oper-
ators. More precisely, we show that the analog-clock model without equal-
ity (MITL) is more expressive than any digital-clock model with equality
(MTL).

First let us review the definition of the logic MTL [AHgO].  The syntax of
MTL is the same as that of MITL=.  The formulas of MTL are interpreted
over observation sequences. An observation sequence e is an infinite sequence

of observations. Each observation consists of a state si E 2’ and a time
stamp Ti E N. The observation sequence e satisfies the initiality  condition
that 570 = 0, the monotonicity condition that 2’; 5 Z’i+l  for all i 2 0, and the
progress condition that, for all n E N, there is some i 2 0 such that Ti > n.

For an observation sequence e and an MTL-formula 4, the satisfaction
relation e b 4 is defined as usual by induction on the structure of 4. The
following clause considers the case of the (strict) until operator:

e I= Ch$2 8 pi + 42 for some i 2 0 with 2’; E I, and ej I= ~$1
for all 0 < j < i.

(For an observation sequence e and i E N, the observation sequence ei is the
suffix of the shifted sequence e - 5”; that begins with the observation (s;, O).)
We consider only the fragment of MTL without the next-state operator; this
restriction makes MTL-formulas insensitive to stuttering.
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We need to formalize which real-time properties can be specified in MTL.
To this end, let us consider how to extract an observation sequence from a
timed state sequence p that describes the actual .behavior  of a real-time sys-
tem. Observations are made with respect to a digital clock; the observation
at time t records the state p”(t) and the value of the clock at time t. Clearly
the observations depend on how fast the clock ticks, and at what time the
clock is started.

Consequently, we define a digital clock D = (6, E) to be a pair consisting
of the distance 6 E R+ between two successive clock ticks and the time
E E R+ of the first clock tick; that is, 0 < E < 6. At time t E R+ the clock D
shows the integer value tD = [(t - ~)/6].  The clock D is called rational iff
both 6 and E are rational numbers.

The D-observation of the timed state sequence p at time t is Ot =
(P"(t),b)* As ime increases, the D-observation stays the same until eithert
the clock ticks or the state changes along p. All possible D-observations
along p can be described by an w-sequence: the D-observed behavior of p is
the observation sequence

PD : Ot, + ot, + Ot, --+ . . . ,

such that for all i > 0, (1) ti < ti+ly and (2) for all t E (t;, ti+r), Ot
equals either Oti or Oti+,  . These properties define ,oD uniquely modulo
stuttering (i.e., duplication of neighboring observations). Furthermore, the
state component of pD is the state component of p (modulo stuttering) with,
if p is finite, infinite repetition of the final state.

For instance, consider the timed state sequence p:

(so, [o, 1)) -+ (Sl, [l, 11)  + (S2, (L1.51) --+ h Pa5, O"))-

Then the digital clock (1,0.5)  bo serves the observation sequence P(~,~.~):

(so,-))  + (S&l)  -+ (Sl, 1) + (S2J) +

(S3,2) -+ (53,s) + (s3~4) + *"

For every digital clock D, every formula 4 of MTL specifies a real-time
property II? - the set of timed state sequences p such that pD b 4. We
say that the MTL-formula C#I  D-specifies the real-time property II:.

Now we can be specific about the sense in which the analog-clock model
is, even without equality, more expressive than the digital-clock model, for
any choice of digital clock.
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Theorem 2.3 (Expressiveness of MITL) (a) Every real-time property
that can be D-specified by an MTL-formula for some rational digital clock
D, can also be specified in MITL. (b) There is a real-time property that
can be specified in MITL but not D-specified by any MTL-formula for any
digital clock D.

Proof of Theorem 2.3 (a) G iven a rational clock D = (6, E) and a for-
mula 4 of MTL, we construct an MITL-formula that specifies the real-time

Dproperty II+ . We assume that 4 cant ains only intervals of the form [O, 01,
IL 11, Em,4  for 2 I m < n, and [m, 00) for m 2 2. It is trivial to convert
any MTL-formula into this form; for instance, the MTL-formula O<s $ is
equivalent to the formula O=o$ V O=l$ V O12,,l’tc,.

We model the ticks of the digital clock D by a new proposition r that
holds only in transient states:

40: q  <, lr A o<, r A q  >O (r + (lr)i’& r).- -

Let 4* be the MITL-formula that results from C#J by replacing every occur-
rence of a subformula $1 UI $3 with

if I is [0, O]; with

(r A ($1 A 1r)u>o+2) v wqo,q(T A $1 A wqO,6]ti2)-

if I is [I, l]; with

$1 q(I(I)-1)6,t(I)b)( r A $1 A Tw(o,s] $2)

if I is bounded and Z(I) > 1; and with

Thh(l(I)-1)s ( r A $1 A Wti2)

if I is unbounded and Z(I) > 1. It is not hard to show that pD b C#J iff
p 1 c$D A 4” for every timed state sequence p.

For example, consider the MTL-formula

‘?>o (P * 0=5q),

and the digital clock D = (1,O). Thi s formula D-specifies the property that
“for every p-state there is a q-state separated from p by exactly five integer
times :” and is equivalent to the MITL-formula

ha -A bl (P + 0[4,5)b A O(O,l ] q>>*
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(b) From the tableau decision procedure for MTL [AHSO],  it follows that
if a formula 4 of MTL is satisfiable, then it has a model pD such that any
two state changes in p are separated by at least some minimum time gap
(which depends on D and the size of #). In fact, for any digital clock D one
can always construct timed state sequences in IIF that become periodic after
some point in time. We show that this is not the case for MITL (although,
as we shall see later, it is the case that any satisfiable MITL-formula has a
model in which in any fixed interval of time there is only a bounded number
of state changes).

Let us construct a satisfiable MITL-formula C$ with the property that
every model p = (a,~) of 4 contains arbitrarily close state changes; that is,
for every real b > 0, there is some i 2 1 such that si-1  # si and si # si+r
and ti+l - ti < S. The set of models of 4 can clearly not be specified in
MTL, for any choice of digital clock D .

The formula # uses three propositions p, q, and r. First, it requires at
most one of these three propositions to be true at any state. In addition, it
has the following three conjuncts.  The f&t condition,

r  A q  >o (r  --+ (1 r )& 2r ),-
places transient r-states at precisely the even integers. The second condition,

ensures that p and q can only hold in the second half of the intervals of
length 2 separating consecutive r-states. The third condition,

O<2p A q  >,(p + o<l q) A ‘,,(q + o(2,3)p)y

implies that there is a p-state, and later a q-state, between every pair of
consecutive r-states, and thus between every odd integer and the subsequent
even integer .

Moreover, from any model of C#J we can extract an infinite sequence of
alternating p and q states, with the q-state following a p-state guaranteed by
the conditionp  --+ O<r q, and the p-state following a q-state by the condition
q + Oc2,3)p. The times that are associated with the states in this sequence,
taken modulo 2, form a strictly increasing infinite sequence of reals contained
in the interval (1,2).  Since this time sequence is bounded above, there must
be arbitrarily close pairs of a p-state followed by a q-state. It follows that 4
has no eventually periodic models.

15



On the other hand, the MITL-formula 4 is satisfiable; a model for 4 can
be readily constructed by introducing, in addition to the transient r-states at
all even integers, transient p-states at time 2n - 2/4”, and transient q-states
at time 2n - 1/4n, for each integer n 2 1. n

3 Timed Automata

We use a variant of timed automata defined  in [AD901  to model finite-state
real-time systems. This formalism is a generalization of (nondeterministic)
finite-state machines over infinite strings. While w-automata generate (or
accept) infinite sequences of states [ThoSO],  timed automata are additionally
constrained by timing requirements and produce timed state sequences.

A timed automaton operates with finite control - a finite set of states
and a finite set of real-valued clocks. All clocks proceed at the same rate
and measure the amount of time that has elapsed since they were started
(or reset). Each transition of the automaton may reset some of the clocks;
each state of the automaton puts certain constraints on the values of the
atomic propositions as well as on the values of the clocks: the control of
the automaton can reside in a particular state only if the values of the
propositions and clocks satisfy the corresponding constraints.

We permit only simple constraints on the clock values. A clock constraint
Xc R+isafi I-U e union of (possibly unbounded) intervals with rational end-‘t
points; the value y(z) E RS of a clock x satisfies the constraint Z iffy(c) E 2.
We usually denote the clock constraints for a clock x as boolean combination
of arithmetic expressions containing x; for instance,

l<x<3Vx=4Vx>5

stands for the clock constraint [l, 3) U [4,4] U (5, oo) that restricts the value
of x. Let R be the set of clock constraints.

Formally, a timed automaton is a six-tuple M = (S, C, p, u, So, E), where

S is a finite set of states,
C is a finite set of clocks,
p:s+2p assigns to each state and proposition a truth value,
Y: S -+ RC assigns to each state and clock a clock constraint,
SO C S is a set of initial states,
E 2 S2 x 2’is a set of transitions. Each transition (s, s’, X)

identifies a source state s, a target state s’, and a set X C C
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Ofxclocks  to be reset; we usually denote this transition by
s-e’.

The runs of a timed automaton define  timed state sequences. At any
time instant during a run, the configuration of the automaton is completely
determined by the state in which the control resides and the values of all
clocks. The values of all clocks are given by a clock interpretation y, which
is a map from C to R + : for any clock x E C, the value of x under the
interpretation y is y(x) E R+.

Assume that ,  a t  t ime  t E R+, a timed automaton is in state s and
the clock values are given by the clock interpretation y. Suppose that the
state of the automaton remains unchanged during the time interval I with
Z(1) = t. All clocks proceed at the same rate as time elapses; at any time
t’ E I the value of any clock x is y(x) + t’ - t. During all this time the value
of x satisfies the clock constraint that is associated with s and x:

(y(x) t t' - t) E Y(S) 2).
Now suppose that the automaton changes its state at time r(1) = t” via
the transition ~5s’. This state change happens in one of two ways. If I is
right-closed, then the state at time t” is still s and

(y(x) t t" - t) E v(s, x)
for all clocks x; otherwise the state at time t” is s’ and 0 E Y(s’,  x) for all
clocks x E X, which are reset, and

(y(x) + t” - t) E v(s’,x)
for all other clocks.

Let us formalize this intuition. Suppose we are given a timed automaton
M = (S, C, p, v, So, E); a run of M is a finite or infinite sequence

r : +&+ (so, IO) 3 (sl,I1)  -x-z-t (s2,12) -5 * - *
71 72 73

of states si E S, intervals I;, clock sets Xi C C, and clock interpretations
y; : C -+ RS such that

. so E so,
l (s;, s;+l, A;) E E for all i 2 0,
. I&12... is an interval sequence,
l for all x E C and i 2 0, we have y;+r (x) = 0 if x E Xi+l,  and

yi+l(x)  = y;(x)  $ r(l;)  - Z(I;)  otherwise.
l (Y;(X) t t - Z(Zi)) E V(si, X) for all x E C, i 2 0, and t E Ii.
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x<2 2<x<5

Figure 1: Timed automaton

Note that, according to this definition, the clocks may start at any real
values that satisfy the clock constraints of an initial state.

The run r uniquely determines the timed state sequence

By II(M) we denote the set of all timed state sequences pr that correspond
to runs of the timed automaton M. We say that M generates (or accepts)
the timed state sequences in II(M).

We will use timed automata to model real-time systems. A real-time
system is represented by the timed automaton M iff its possible behaviors
are exactly the timed state sequences in II(M). Accordingly, the system
modeled by M satisfies its MITL-specification 4, denoted by M + 4, iff
pT i= 4 for all runs T of M.

We point out that a run may contain transient states. Such states allow
us to model instantaneous conditions during the execution of a real-time
system, like the occurrence of events. Their times can be enforced accurately
by using singular intervals as clock constraints.

Consider, for example, the timed automaton M in Figure 1. The au-
tomaton M has six states, so to ss, and uses two clocks, x and y. The label
x := 0 on a transition indicates that the clock x is reset by that transition.

The automaton starts in the initial state so with the clock y initialized to
0. At time 40 the automaton moves to state ss, and simply loops there. The
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proposition p denotes an external event which is true only at instantaneous
points t < 40 in time (and no more than once every 5 time units), namely,
whenever M is in state ~2. The automaton responds to p by resetting the
clock x, and then it requires that the proposition Q holds over the interval
t + [2,5).  Thus the automaton M models a system which responds, until
time 40, to the event p by setting Q to true for the interval [2,5)  following
p. A possible timed state sequence generated by M is

The emptiness problem for timed automata is solved in [ADgO]:  the
problem of whether a timed automaton has any run is PSPACE-complete.
Our definition of timed automata is somewhat more general than the one in
[ADgO];  it can also enforce transient states. But the decision procedure for
checking emptiness can be easily adapted to prove the following result:

Theorem 3.1 (Emptiness of timed automata) The problem of decid-
ing if II(M) = 0 for a timed automaton M = (S, C, p, Y, So, E) is PSPACE-
complete. Moreover, there is an algorithm that decides this problem in time
O(( IS/ + IEl) . 2’v’).

To enforce fairness constraints on the legal behaviors of a real-time sys-
tem, we add standard liveness conditions to timed automata, such as BGchi
acceptance criteria or Muller acceptance criteria for w-automata (see [AD901
for details). Theorem 3.1 carries over to either case.

4 Deciding MITL

We solve the satisfiability problem for MITL by reducing it to the emptiness
problem for timed automata. Our main result is that, given an MITL-
formula 4, we can construct a timed automaton M+ such that the runs
of ,U+ that meet certain fairness requirements correspond precisely to t,he
timed state sequences that satisfy 4.

4.1 Restricting the problem

To simplify the exposition of the decision procedure, we restrict the satis-
fiability question for MITL to formulas and models of a specific form and
show that this can be done without loss of generality.

19



Given an MITL-formula 4, a timed state sequence p, and a constant
a E Q, let a4 and ap be the MITL-formula and the timed state sequence
that result from 4 and p, respectively, by replacing each interval I by the
interval al. Clearly, p /= 4 iff ap b aqb. Thus, for the purpose of checking
the satisfiability of 4, we may assume that all interval end-points in 4 are
integers; for if they are not, then consider n& for the least common denom-
inator n4 of all (rational) interval end-points in #. This translation causes
at most a quadratic blow-up in the size of the formula.

Next we give a series of transformations that allow us to rewrite any for-
mula 4 into an equivalent formula $* that cant ains  only temporal operators
of very specific forms.

First, we require that no interval in 4 contains 0. This can be achieved
by applying the following equivalence:

Thw+2 * w2 " $1 &"(O,oo)  $2)

provided that 0 E I.
Secondly, we require that the only unbounded intervals in 4 are of the

form (0,oo).  This can be achieved by applving the following two equiva-
lences:

provided that n > 0.
Thirdly, we require that only the eventually and the always operators

are constrained with bounded intervals I such that Z(1) = 0. This can be
achieved by applying the following equivalence:

provided that Z(1) = 0.
Finally, we push all negations in 4 to the inside and use the following

equivalence to eliminate each subformula of the form $1 U $9:

The resulting formula +* is equivalent to 4 and consists of atomic propo-
sitions, negated atomic propositions, conjunctions, disjunctions, and tempo-
ral subformulas 2c,  of the following six types:
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1. $~UI$J~ with bounded I and Z(I)  > 0.

2. $1 IU $5 with bounded I and Z(1) > 0.

3. O,T/’ with I = (0,n) or I = (O,n].

4. q ~$J’ with I = (0,n) or I = (0, n].

Although these rewritings blow up the size of the formula 4, we can
bound the size of the constants in 4” and the number of subformulas in 4”
as follows:

l Let K E N be such that K - 1 is the largest (integer) constant ap-
pearing as an interval end-point in 4. Then the largest constant that
occurs as an end-point of an interval in 4” is K - 1.

l Let N E N be the number of atomic propositions, boolean connec-
tives, and temporal operators in 4. Then the number of syntactic
subformulas of $* is O(N).

Thus we restrict ourselves to test the satisfiability of MITL-formulas each
of whose temporal subformulas are, according to the above classification, of
one of six types, type-l to type-6.

Moreover, to check the satisfiability of an MITL-formula 4, by Lemma 2.1
we can confine ourselves to the question if 4 has a &fine model. There-
fore we consider, throughout this section, only $-fine timed state sequences
p = (CT, 7). It follows that, if $J is a subformula of c$, we may write pi i= $J
for ‘LPt  t= $ for all t E Ii. ” In addition, we assume that all intervals in r
are either singular or open. This is sufficient, because any model of 4 can
be brought into this form by splitting all nonsingular (half)closed intervals;
for instance, the interval [a, b) can be split into the two intervals [a, a] and
(a, b)-

Let us introduce a new atomic proposition psing such that pi I= psing iff
the i-th interval Ii of p = (a, 7) is singular. Hence the propositionp,;,g  holds
exactly in every other interval. For a timed state sequence p that satisfies
these conditions and t E R +, let i be such that t E Ii. Then:
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Pt t= 2cIl~I~2 iff pi k & V psing,  and both pj I= $2 and
pi /= $1 V psing for some j with Ij n (t + 1) + 0, and pk b ql
for all i < k < j.

pt I= $1 IU $2 iff pi I= $1 if Ii n (t + 1) # 0, and either
pi I= $2 A lpsing 7 or pj b $9 for some j > i and pk b +l
for all i < k 5 j with Ik fl (t + 1) # 8, or pk I= +l for all k > i
with Ik n (t + I) # 0.

The different types of temporal subformulas of 4 are handled differently
by our algorithm. The simplest case is that of type-5 and type-6 formulas;
they are treated essentially in the same way in which tableau decision pro-
cedures for linear temporal logic handle unconstrained temporal operators.
The most interesting case is that of type-l and type-2 formulas. We con-
centrate first on this case. The case of type-3 and type-4 formulas will be
considered later.

4.2 Outline of the algorithm

Consider the MITL-formula

q  [o,l)(P + O[l,,]c?).

Let us assume that both p and Q are true only in singular intervals and let
us try to build a timed automaton that accepts precisely the models of this
formula.

Whenever the automaton visits a p-state, it needs to make sure that
within 1 to 2 time units a q-state is visited. This can be done by setting a
clock x to 0 when the p-state is visited, and demanding that some q-state
with the clock constraint 1 2 x 5 2 is visited later. This strategy requires a
clock per visit to a p-state within the interval [0, 1). However, the number
of such visits is potentially unbounded and, hence, any automaton with a
fixed number of clocks cannot reset a new clock for every visit. That is why
this simple strategy cannot be made to work.

An alternative approach is to guess the times for future q-states in ad-
vance. The automaton nondeterministically guesses two time values tl and
t2 within the interval [O,l);  this is done by resetting a clock x at time tl
and another clock y at time t2. The guess is that the last q-state within the
interval [l, 2) is at time tl + 1, and that the first q-state within the interval
[2,3)  is at time t2 + 2. If the guesses are correct, then the formula 0~~~~1  Q
holds during the intervals [0, tl] and [t2,1),  and does not hold during the
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interval (tl, t2). Consequently, the automaton requires that every p-state
within the interval [O,l)  1ies either within [0, tl] or within [t2,1).  It also
needs to make sure that the guesses are right; that is, whenever either x = 1
or y = 2, the automaton must be in a q-state. This strategy requires only
two clocks for the interval [O,l)  of length 1, irrespective of the number of
p-states within [O,l).

We say that the guessed times tl + 1 and t2 + 2 witness the formula
OL~,~I  Q throughout the intervals [0, tl] and [t2,1),  respectively. In general,
the witnesses need not be singular intervals, they can be open intervals. In
the following we develop an algorithm based on this idea of guessing, in
advance, time intervals that witness temporal formulas and, later, checking
the correctness of these guesses. The crucial fact that makes this strategy
work, with a finite number of clocks, is that the same interval may serve as
a witness for many points in time.

4.3 Witnessing intervals

The interval I’ is called a witnessing interval for the MITL-formula  ?,,bl UI~+!J~
under #, for a timed state sequence p and t E R+, iff I’ n (t + 1) # 0 and
# b $1 UJ-t  $9 for every nonempty  interval J C I’. Observe that if I’
witnesses +r ZAI $2 under #, then $’ b $1 for all t < t’ < ~(1’) and #’ t= $2
for all t’ E I’. The interval I’ is a witnessing interval for the MITL-formula
$1 IU $9 under # iff t + I C I’ and # b $1 II-,U $9.

Witnessing intervals are defined such that the following property holds:

Lemma 4.1 (Witnessing intervals) Let $ be an MITL-formula  of the
form $1 l-41 $9 or $1 IU $5, let p be a timed state sequence and t E R+.
There is a witnessing interval for + under pt ifl pt k $.

Proof of Lemma 4.1  If Pt 1 + for the formula 1c) = $1 UI $2, then #’ 1 $9
for some t’ E t $ I and the singular interval [t’, t’] witnesses ‘1c, under ,ot. If
# i= $ for the formula $ = $1 IU $9, then the interval t + I witnesses $
under pt.

The other direction of the lemma follows from the semantic clauses for
the until and unless operators. n

Now we show that the same interval may serve as a witnessing interval
for a temporal formula under (infinitely) many suffixes of a timed state
sequence.
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Consider,
p and q:

for example, the timed state sequence p over two propositions

HP>> K4 1.21)  + UP> q), (141.6))  + UP), [W 4)

Thus along p the proposition p is always true, but the proposition Q is true
only during the interval Iq = ( 1.2,1.6). The interval 1q witnesses the formula
pZ4c,,,)q  under # for every t E [0,0.6).  On the other hand, the interval
[1.6,3]  witnesses the formula [7(1,2)  (1~)  under pt for every t E [0.6,1].

Lemma 4.2 (Sharing type-l witnesses) Let $ be the type-l MITL-for-
m7.h $Gh $2. For every timed state sequence p, there are two bounded
intervals I1 and I2 such that, for every t E [0, 1): the formula $J is satisfied
by $ ifl either I1 or I2 witnesses 1c( under pt. Furthermore, Ii is either
singular or open, and r( Ii) 5 r(I) f 1 for i = 1,2.

Proof of Lemma 4.2 Let p = (a, 7) be a $-fine  timed state sequence with
only singular and open intervals, including the singular interval [T( 1) $ 1,
r(l) + l] (split intervals if necessary). We choose two witnessing intervals I1
and I2 as follows:

l Let ^z be the maxima2 i 2 0 such that Ii n I # 0, both pi b $5 and
Pi + $1 V Psing, and p” k $1 for all 0 2 k < i with Ik n I # 0. If no
such i exists, let I1 = 0; otherwise, let 1r = Ii.

l Let j be the minimal j > 0 such that Ij n(I+ 1) # 0, both pj + q2 and
pj~~lVp,;,,,andpk~~lforallOLk<jwith~kn(I~Itl)#O.
If no such j exists, let I2 = 0; otherwise, let I2 = Ij.

Assume that 0 5 t < 1; then # satisfies 2c,  iff #’ b $1 for all t < t’ < I
and either Ii n (t -+ I) # 0 or Ij n (t + 1) # 8. The first case is equivalent
to 11 witnessing $J under #; the second case is equivalent to I2 witnessing
$ under pt. n

In the case of type-2 formulas, a single witness per unit interval suffices
to reduce the problem to type 3:

Lemma 4.3 (Sharing type-2 witnesses) Let + be the type-2 MITL-for-
mula $1 IU $2. For every timed state sequence pI there is a bounded interval
I’ such that, for every t E [0, 1), the formula T/J is satisfied by # ifj either
pt satisfies the type-3 formula O(o,c,)n(<I) $9 or I’ witnesses + under pt.
Furthermore, r(I’) 5 T(I) $ 1.
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Proof of Lemma 4.3 Let p = (cr,~) be a +-fine  timed state sequence
with only singular and open intervals, including the singular interval In =
[T(  1) $1, T( 1) + l] (split intervals if necessary). We choose witnessing interval
I’ as follows:

l Let ^z be the minimal i 2 0 such that Ii n I # 0 and either

1. p” b $1 for all k > i with Ik fl I # 0, or
2. there is some i 2 j 5 n such that pi b $1 A $2 and pk k $Q for

aLlilk< j.

l Given ^2, let j be the maximal ^z 2 j 5 n such that either ,ok k & for
all^z<k<j,orpkb&A$  f2 or some ^z 5 k 5 j. Note that if ^z  exists,
then so does 3; in particular, if ^z  exists because of clause 2, then j = n.

If no appropriate ^z exists, let I’ = 0; otherwise, let I’ be the union of all Ik
for ^2<  k Q.

Assume that 0 2 t < 1; then pt satisfies $J iff either (1) pi /= Z/Q for all
i with Ii n (t f 1) # 8, or (2) pi 1 $1 A $5 for some i with Ii n (t + I) # 0
and pj + $1 for all j < i with Ij n (t + I) # 0, or (3) pt’ + $2 for some
t < t’ < t + I. In either of the first two cases, I’ witnesses $ under #;
the third case is equivalent to # satisfying the formula OC~,~)~(<Q $9. If I’
witnesses $ under #, then # /= $J by Lemma 4.1. n

4.4 Type-l and type-2 formulas

Now we can be more precise about how we will construct the timed au-
tomaton M+ that accepts exactly the models of 4. To check the truth of
type-l and type-2 subformulas of 4, the automaton guesses corresponding
witnessing intervals. The boundaries of a witnessing interval are marked
by clocks: a clock interval is a bounded interval that is defined by its type
(e.g., left-closed and right-open) and a pair of clocks. Given a time t and
a clock interpret ation  y , the clock interval C = [x, y], for two clocks x and
y, stands for the closed witnessing interval [t -/- K - y(x), t -+ K - y(y)]; the
clock interval C = [z, y) stands for the corresponding half-open interval, etc.
We write K - C for the interval {K -y(z), K-y(y)}, for any type of clock
interval C = {z, y}.

For simplicity, let us consider a type-l subformula $ of the form OI$‘.
The automaton resets, nondeterministically, any of its clocks at any time.
When guessing a witnessing interval I’, it writes the prediction that “the
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clock interval C = {x, y} witnesses the formula $” into its memory. If
the clock x was reset at time tl, and y was reset at time t2 2 tl, then
the witnessing interval guessed is I’ = {tl t K, t2 $ I-C}. To check the the
truth of the temporal formula $ at time t 2 t2, the automaton needs to
verify that its guess I’ is indeed a witness. The condition I’ n (t + I) # 0
translates to verifying the clock constraint (K - C) n I # 0. It remains to
be checked that $J’ is satisfied throughout the witnessing interval I’; that
is, the automaton needs to verify that T/J’ holds at all states with the clock
constraint 0 E (K - C).

The Lemmas 4.2 and 4.3 are the key to constructing an automaton that
needs only finitely many clocks. For the type-l formula ~&2.41$5,  at most two
witnessing intervals need to be guessed per interval of unit length. Further-
more, the fact that the right end-point of a witnessing interval is bounded
allows the automaton to reuse every clock after a period of length r(l) + 1.
Thus we need, at any point in time, at most 2r(I)  + 2 active clock inter-
vals; that is, clock intervals that stand for a guess of a witnessing interval
and, therefore, have to be verified later. Similarly, to check a type-2 for-
mula $l IU $9, we need, at any point in time, no more than r(l) + 1 active
clock intervals. Consequently, 2K clock pairs suffice to check any type-l
subformula of 4, and K clock pairs suffice for any type-2 subformula of 4.

4.5 Type-3 and type-4 formulas

Now let us move to formulas of the form 01 $J’ and 01 $J’ with I = (0, n) or
I = (0, n]. Checking the truth of such a formula is much easier and can be
done using a single clock.

Consider the type-3 formula + = OI+‘.  Whenever the automaton needs
to check that $ holds, say at time t, it starts a clock x and writes the
corresponding proof obligation into its memory - to verify that $’ holds at
some later state with the clock constraint x E I. The obligation is discharged
as soon as an appropriate @-state is found. If the automaton encounters
another q-state  in the meantime, at time t’ > t before the obligation is
discharged, it does not need to check the truth of + separately for this state.
This is because if there is a $/-state  after time t’ within the interval t-+1, then
both # b O& and #’ + 01 $J’. Once the proof obligation is discharged,
the clock x can be used again. Thus one clock suffices to check the formula
$ as often as necessary.

The described strategy works for checking the truth of $J at singular
intervals. There is, however, a subtle problem with this method when the

26



truth of $ during open intervals needs to be checked, as is
following example. Consider the timed state sequence

illustrated by the

(0, Pm --+ (-9, (0,1>> + ({P), [I, 4);
it satisfies the formula O(o,l)p at all times t E (0,l). To check the truth of
Oc,,,)p during the open interval (O,l), the automaton starts a clock x upon
entry, at time 0. However, the proof obligation that p holds at some later
state with the clock constraint x E I can never be verified. On the other
hand, if the automaton were to check, instead, the truth of the formula
O~,,,]p  during the interval (l,O), then our strategy works and the corre-
sponding proof obligation can be verified, because there is a p-state while
x E (0, l] holds. Furthermore, observe that the validity of O~,,,]p throughout
the open interval (0,l) ’ pl’lm les that O(,,,)p is also true throughout (0,l).

In general, the following lemma holds:

Lemma 4.4 (Weakening type-3 formulas) Let $ and 4 be the type-3
MITL-formulas OI+’ and OI,{,(I)}  $‘, respectively. For every timed state
sequence p = (u, r) and open interval Ii in r, pi + $ ifl pi + 4.

Proof of Lemma 4.4 First note that, for all t 2 0, if $ is satisfied by pt,
then 21, is also satisfied by pt. This is because I C I U {r(l)}.

Now consider an open interval Ii and assume that pi I= 4. If I is right-
closed, then $ = 3. So suppose that I is right-open, and let t E Ii. Since
Ii is open, there exists some t’ E 1; with t’ < t. Since #’ I= 4, there exists
some j 2 i such that Ij n (t’ -+ (I U {r(l)})) # 0 and pi /= $‘. It follows that
Ij n (t + 1) # 0 and, hence, that pt b $. n

Consequently, to check the truth of a type-3 formula $ during an open
interval, it suffices to check the truth of the weaker formula ~6. Accord-
ingly, the automaton we construct writes only the proof obligation thatA
corresponds to checking ‘1c, into its memory.

For checking a type-4 formula of the form + = q  I+‘, the situation is
symmetric. The automaton uses also a single clock x to check this formula.
Whenever the formula $ needs to be verified, say at time t, the automa-
ton starts the clock z with the proof obligation that as long as the clock
constraint x E I holds, so does $‘. The obligation is discharged as soon as
x > I. If the automaton encounters another +-state  within the interval t +I,
say at time t’, it simply resets the clock x, and thus overwrites the previ-
ous proof obligation. This strategy is justified by the observation that if $’
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holds throughout the interval (t, t’] and $’ I= q  31 +‘, then also # + q  I$‘.
Once the proof obligation is discharged, the clock x can be reused to check
$ again whenever necessary.

As in the case of type-3 formulas, we need to be more careful when
checking $ during open intervals. For the type-4 formula G = q  I$‘, let 4
be the formula q  I-{?(I)) $‘. From Lemma 4.4 and duality, it follows that
for every timed state sequence p = (0, T), if Ii is open, then pi /= $ iff
pi + 4. Hence to check the truth of $ during an open interval, it suffices
again to check the truth of the weaker formula T,&.  Accordingly, only a proof
obligation for 4 is set up. This is because the corresponding clock x is
started at time T(li),  and for $ to hold during the open interval Ii, $’ need
not hold at time r(l;)  -+ r(l),  even if I is right-closed.

4.6 Constructing the timed automaton

Now let us define the timed automaton M4 formally. For each temporal
subformula of 4 of type-l, the automaton Md has 2K pairs of clocks. These
clocks always appear in pairs, to form clock intervals. From any pair of
clocks x and y, four different clock intervals can be formed: (x, y), [x, y),
(x,y], and [x, y]. According to Lemma 4.2, for checking type-l formulas we
need only singular and open witnessing intervals. Thus associated with each
type-l subformula 2c,  of 4 we have 4K clock intervals; they are denoted by
c,(?% . .C$K($). For each type-2 subformula of 4 the automaton uses K
clock pairs giving 4K clock intervals. For subformulas $ of types 3 and 4,
the automaton needs one clock x+ per formula.

In addition to these clocks, we use the clock xsi,g to enforce that the
runs of M+ have alternate singular and open intervals.

Given the MITL-formula 4, we define its closure set Closure(+)  to consist
of the following items:

1. All subformulas of #.

2. For each type-2 formula $1 IU $9 in the closure set, the type-3 for-
mula Oc,,,),(,I) $2;  for each type-3 formula $ = OI$’ in the closure
set, the type-3 formula $ = OI,{,(I))  $‘; and for each type-4 formula
$ = q  I$’ in the closure set, the type-4 formula ~8 = ‘71-{,(I))  $‘.

3. For each type-l formula $ in the closure set, the clock intervals Cl($),
. . . C~K($);  for each type-2 formula ‘1c, in the closure set, the clock
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intervals Cl(+),  . . .C~K($J); and for each type-3 and type-4 formula $J
in the closure set, the clock x+.

4. For each clock interval C = Cj (+) in the closure set, where $ is
&241$9  or $1 IU $9, all clock constraints of the form 0 < (K - C),
0 C (K - C), 0 = (K - C), (K - C) = 8, I & (K - C), and
(K - C) n I # 0; and for each clock x+ in the closure set, where
$ is OI+’ or 01 q!~‘, the clock constraints x E I and x > I.

We write 0 C (K - C) short for { 0) c (K - C). It should be
clear that all of these conditions are indeed clock constraints. For
instance, the condition 0 c (K - [x, y)) stands for the clock constraint
x 5 K A y > K; the condition 0 = (K - [x, y)) is never satisfied.

5. The clock constraint xsing  = 0.

Note that the number of subformulas of 4 is O(N) and the number of clocks
is 0 (K) for each subformula of #J. Hence the size of the closure set CZosure(  4)
is O(NeK).

The states of the desired automaton M4 will be subsets of Closure(+).
We need to consider only those subsets of CZosure(4)  that satisfy certain
local consistency constraints. Whenever the automaton is in state s, the
formulas in s indicate which subformulas of 4 are true. Accordingly, a state
s c CZosure(  4) is initial iff both 4 and xsing  = 0 are in s, and for each state
s the propositional constraints ,u(s) are defined  such that p E p(s) iff p E s
for all atomic propositions p E P.

The clock constraints V(S)  are the conjunction of all clock constraints
in s. The clock intervals in s indicate which clock intervals are currently
active and represent witnessing intervals for type-l and type-2 formulas; the
clocks in s indicate which clocks are currently active and represent proof
obligations for type-3 and type-4 formulas.

The transitions of M+ are all triples ~1s’ that satisfy certain global
consistency criteria. Both the local and the global consistency conditions
are defined in the following catalog. For every state s C CZosure(  4) and
every transition sls’ with source state s:

Logical consistency

l For each atomic proposition p E P, precisely one of p and lp is in s.

l If the formula $1 A $2 is in s, then both $1 and $9 are in s.
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l If the formula $1 V $9 is in s, then either & or $2 is in s.

These conditions ensure
mutually inconsistent.

that no state contains subformulas that

Timing consistency

l s contains at most one of the clock constraints 0 < (K - C), 0 c
(K - C), 0 = (K - C), and (K - C) = 0 for each clock interval C.
Furthermore, no two clock intervals in s share clocks; for instance, s
does not contain both the clock intervals (x, y) and [x, y).

l s contains at most one of the clock constraints x+ E I and x+ > I for
each type-3 or type-4 formula $.

l Ifs contains xsing  = 0, then xsing  9 A. Ifs does not contain x,;,~ = 0,
then xsi,g E X and s’ cant ains  x stng = 0.

These conditions guarantee that no state contains clock constraints that
are mutually inconsistent. We say that a state s is singular iff it contains
X sing = 0; otherwise s is open. The last clause of the above conditions
ensures that singular and open states alternate along any run.

Type- 1 formulas

Consider a type-l formula $ = $1 UI $5 in the closure set.
Firstly, if + is in s, then there is some clock interval C = Cj(+)  such

that

l (K - C) n I # 0 is in s, and

l either C is in s, or s is singular and C is in s’ and the clocks associated
with C are not in A.

The first condition checks that the interval K-C is an appropriate candidate
for witnessing the formula $. The second condition activates the clock
interval C to represent a witnessing interval for $.

Secondly, if some clock interval C = Cj(+)  is in s, then

l if either 0 = (K - C) or 0 c (K - C) is in s, then $5 is in s, and

l if either 0 < (K - C) or 0 c (K - C) is in s, then $1 is in s, and
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l the clocks associated with C are not in X and either C or (K - C) = 8
is in s’.

The first two conditions verify that the active clock interval C represents
indeed a witness for the formula $J. The final condition keeps the clock
interval C active as long as necessary.

Suppose that these conditions are satisfied along a run T and the formula
T/J is in a state at time t. Also assume (the induction hypothesis) that, along
the run T, whenever a state at time t’ contains a subformula $’ of q!~, then
pc i= +‘. A clock interval C = Cj($) is activated at time t. It is not hard
to show that the interval t + K - C is a witnessing interval for $J under pi.
By Lemma 4.1, it follows that pi + $J.

Conversely, if pt /= $J, then there is a run T that satisfies all conditions.
This is because, by Lemma 4.2, the automaton can, at time t, either share
an already activated clock interval Cj( $) or has enough clocks to activate
an unused clock interval Cj( $J).

Type-2 formulas

Consider a type-2 formula + = $1 IU I+!J~ in the closure set.
Firstly, if + is in s, then either

l 0(0,~)n(d)lCl2  is in s

or there is some clock interval C = Cj($)  such that

l I c (K - C) is in s, and

l either C is in s, or s is singular and C is in s’ and the clocks associated
with C are not in X.

If O(o,oo)n(<~)$2  holds then so does $. The second clause corresponds to
guessing a witness. The first condition checks that the interval K - C is an
appropriate candidate for witnessing the formula $. The second condition
activates the clock interval C to represent a witnessing interval for $.

Secondly, if some clock interval C = Cj($)  is in s, then

l if either 0 = (K - C) or 0 C (K - C) is in s, then $1 is in s, and

l either $2 is in s, or the clocks associated with C are not X and either
C or (K - C) = 0 is in s’.
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These conditions ensure that the active clock interval C represents indeed a
witness for the formula $ and that it is kept active as long as necessary.

Soundness and completeness of these conditions follow by the Lem-
mas 4.1 and 4.3.

Type-3 formulas

Consider a type-3 formula $ = OI$’ in the closure set
Firstly, if $I is in s, then either

a s is singular and x+ E s’, or

l s is open and I is right-open and $J is in s, or

l s is open and I is right-closed and x+ is in s.

These conditions activate a clock to represent a proof obligation. Lemma 4.4
justifies the decision to check, if s is open, instead of $ the weaker type-3
formula 4.

Secondly, if x~ is in s, then

l xd E I is in s, and

l either q!+ is in s, or x+ is in s’ and X~C,  # A.

These conditions verify the proof obligation that is represented
X,J, and keep it active as long as necessary.

by the clock

Type-4 formulas

Consider a type-4 formula $ = q  I$’ in the closure set.
Firstly, if $ is in s, then either

l s is singular and x$ E s’ and x+ E A, or

l s is open and I is right-closed and $ is in s, or

l s is open and I is right-open and x+ E s and x$ E s’ and X,J  E A.

These conditions activate a clock to represent a proof obligation, and reset
it, as was justified in the previous subsection. Recall that if s is open, then
instead of checking I/J,  it suffices to check the weaker type-4 formula 4.

Secondly, if X,J is in s then
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l $J’ is in s, and

l either X,J  or x > I is in s’.

The first condition verifies the proof obligation that is represented by the
clock x4, and the second condition keeps it active as long as necessary.

Type-5 formulas

Consider a type-5 formula Z/J = $1 i2$ 2 in the closure set. Whenever +!I is in
s, then either

l s is singular and $ E s’, or

l s is open and $1 is in s, and either $9 is in s or q2 is in S’ or both T,/I~
and $ are in s’.

These conditions ensure that unconstrained until formulas are propagated
correctly (remember that singular and open intervals alternate).

Type-6 formulas

Consider a type-6 formula $ = •I $ ’ in the closure set. Whenever $J is in s,
then either

l s is singular and $J E s’, or

l s is open and $’ E s and both $J’ and Z/J are in s’.

These conditions guarantee that unconstrained always formulas are propa-
gated forever.

This concludes the definition of the timed automaton M4. The runs of
M+ are defined as before. We put, however, additional fairness requirements
on the timed state sequences that are generated by Mb. A run T is called
accepting iff for every type-5 formula $J of the form $1 U $9,  if $ is in some
state s along T, then $12 is in some later state s’.

The following main lemma states the correctness of our construction by
relating the accepting runs of M, to the models of 4.

Lemma 4.5 (Correctness of M+) A timed state sequence p satisfies an
MITL-formula 4 ifi the timed automaton M+ has an accepting run T with
f = PT.
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Proof of Lemma 4.5 It can be shown, by induction on the structure of
4, that given an accepting run T of M4, if a subformula $ of 4 is in a state
s in Y at time t E R +, then & + $. We have outlined the crucial arguments
for the six interesting cases of temporal subformulas above.

Conversely, given a $-fine model p of 4 with alternating singular and
open intervals, we can construct an accepting run T of Md such that p = p?.
The Lemmas 4.2 and 4.3 instruct us how to use the limited number of
available clocks to mark witnessing intervals. n

This result yields algorithms for checking the satisfiability and validity
of the given MITL-formula 4. To check satisfiability, we first construct the
timed automaton M+, and then we use the algorithm that checks whether
M+ has any accepting run to test if # has a model. Similarly, 4 is valid iff
M,$ has no accepting run.

4.7 Complexity of MITL

We conclude this section by showing that our decision procedure for MITL
is in EXPSPACE, and that this is optimal, because the decision problem for
MITL is EXPSPACE-complete.

Recall that the size ( CZoszlre(  4) 1 of the closure set of 4 is 0( N . K),
where N is the number of atomic propositions, boolean connectives, and
temporal operators in 4, and K - 1 is the product of the largest constant
in 4 and the least common denominator of all constants in 4. Clearly,
jCZosure(l~)l  = O(N-K)  as well.

Hence the number of states in Md and M ‘4 is 0 ( 2NK). Consequently,
the description of M+ can be given in space polynomial in N-K; that is, in
space exponential in the length of 4, assuming binary encoding of all interval
end-points. The emptiness problem for a timed automaton M can be solved
in space polynomial in the length of the description of M. It follows that
the validity of 4 can be decided in space polynomial in N. K, that is, in
EXPSPACE.

The lower bound of EXPSPACE for MITL can be shown along the lines
of the proof of the EXPSPACE-hardness of the real-time logic MTL [AHgO].

Theorem 4.1 (Complexity of MITL) The decision problem of MITL is
EXPSPACE-complete. Furthermore, we have an EXPSPACE algorithm that
solves this problem.
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5 Model Checking

Model checking is a powerful and well-established technique for the auto-
matic verification of finite-state systems (see, for example, [BCM+90]);  it
compares a temporal-logic specification of a system against a state-transition
description of the system.

In the qualitative case, the system is modeled by its state-transition
graph, also known as Kripke structure, and the specification may be pre-
sented as a formula of the propositional linear temporal logic PTL [LP84].
For real-time systems, model checking algorithms have been developed for
linear temporal logics under a digital-clock interpretation of time [AH89,
AH90,  HLPSO] as well as for branching-time logics under a continuous inter-
pretation of time [ACDSO, Lew90]. Using our results about MITL, we can
present a real-time verification procedure that checks linear specifications
under a continuous model of time.

We model a real-time system by a timed automaton M and give the
specification as a formula 4 of MITL. Hence the model checking problem is
to decide whether or not the automaton M satisfies the specification 4:

Our construction for testing the satisfiability of MITL-formulas can be
used to develop an algorithm for model checking. The first step is to con-
struct a timed automaton M,$ such that its accepting runs precisely cap-
ture the models of the negated formula 14: for every timed state sequence
p, M,$ has an accepting run T with pt = p iff p k 14.

The model checking question can, then, be reformulated as follows:
M k $ iff no timed state sequence is generated by both M and M+. The
next step in the model checking algorithmis to construct a timed automaton
M’ that is the product of M and M,+; a timed state sequence is generated
by M’ iff it is generated by both M and M,+.

The product construction for timed automata presented in [AD901  can
be easily modified to our version of timed automata. We assume that the
clock sets of the component automata, M and M +, are disjoint. The set
of clocks of M’ is the union of the clocks of the component automata. The
states of M’ are of the form (s,s’), where s is a state of M and s’ is a
state of M,+ and both s and s’ agree on the assignment of truth values to
propositions. The clock constraints for (s, s’) are the conjunctions of t,he
clock constraints for s and s’. For any pair of transitions wJ+v and ~L’JNJ’
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in M a,nu$M+, respectively, the product automagon  has three transitions:
(‘u.3  4 --+ (v,~‘),  (u,u’) -L (v,~‘),  and (u,u’) J+ (u, v’). Thus the tran-
sitions of M’ simulate the joint behavior of the two component automata.
The acceptance conditions of the individual automata are handled as in the
product construction for (untimed) w-automata.

Hence we have reduced the model checking problem to the emptiness
question for timed automata: M I= 4 iff M’ has no accepting runs. The
size of M’ is polynomial in the sizes of M and M-,4. Consequently, the
description of M’ is exponential in the length of 4, and polynomial in the
length of the description of M. Since the emptiness for timed automata can
be solved in PSPACE, it follows that the model checking problem can be
solved in EXPSPACE.

As for all linear temporal logics, the model checking question for MITL
is no simpler than the satisfiability question: a formula # is unsatisfiable
iff the universal timed automaton, which generates all possible timed state
sequences, satisfies 14. Thus EXPSPACE-hardness of satisfiability implies
EXPSPACE-hardness of model checking. The following theorem follows:

Theorem 5.1 (Model checking) The problem of checking if a timed au-
tomaton M satisfies an MITL-formula q5 is EXPSPACE-complete.

The time complexity of the model checking algorithm is polynomial in
the qualitative part of the system description, exponential in the qualitative
part of the MITL-specification, exponential in the timing part of the system
description, and doubly exponential in the timing part of the specification.
Compared to this the model checking algorithm for PTL [LP84] is polyno-
mial in the size of the Kripke structure and exponential in the size of the
specification.

Thus moving to real-time gives an additional exponential blow-up. This
blow-up seems, however, unavoidable for formalisms for quantitative reason-
ing about time. It occurs even in the simplest case - synchronous processes
that are clocked by a digital clock - in which we can model time by a dis-
crete domain and identify next-state with next-time [EMSS89,  AHgO].
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