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Abstract

In this report we analyze and compare hash-join based parallel multi-join al-
gorithms for sequenced and pipelined processing. The BBN Butterfly machine
serves as the host for the performance analysis. The sequenced algorithm handles
the multiple join operations in a conventional sequenced manner, except that it
distributes the work load of each operation among all processors. The pipelined al-
gorithms handle the different join operations in parallel, by dividing the processors
into several groups, with the data flowing through these groups.

The detailed timing tests revealed the bus/memory contention that grows lin-
early with the number of processors. The existence of such a contention leads to
an optimal region for the number of processors, given the join operands fixed. We
present the analytical and experimental formulae for both algorithms, which incor-
porate this contention. We discuss the way of finding an optimal point, and give
the heuristics for choosing the best processor’s partition in pipelined processing.

The study shows that the pipelined algorithms produce the first joined result
sooner than the sequenced algorithm and need less memory to store the interme-
diate result. The sequenced algorithm, on the other hand, takes less time to finish
the whole join operations.

Key words: sequenced algorithm, pipelined algorithm, processor partition, intermediate
buffer size, parallel computer, computation time, bus and memory contention.
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1 Introduction

The emergence of parallel computers in the late 1970s has been thought of as a
breakthrough in solving the Van-Neuman bottleneck problem. Thus parallel computing
tethniques have been developed over the past decade. Among various parallel computer
applications, the most promising one is building parallel database systems. The two
major pervasive problems in database systems that have bothered computer scientists,
are slow transaction processing time and insufficient transaction throughput. The Para-
data project at Stanford is investigating the first problem. The goals of this research
are to develop database technology that will take advantage of medium grained  paral-
lelism, and to demonstrate a system on parallel computers using the algorithms we have
developed.

1.1 Related Work

During the last ten years, much research has been done in two directions, the
development of database machine and of new algorithms for parallel database operations.
XRDB, a high-speed extended relational database engine, has been developed [Yamane];
a hardware design for associative parallel join algorithm has been created [Hurson]; and
a query processor has been designed, which consists of four processing modules. Each
module processes tuples of relations in a bit-serial, tuple-parallel manner for each of the
primitive database operations that comprise a complex relational query [Gajski]. The
database machine GR,4CE  adopts a novel relational algebraic processing algorithm based
on hash and sort [Kitsu]. In addition, many other references on hardware architecture
can be found in [Wieder].

Recently, for investigating new algorithms for database operations, a pipelined 2-
way merge sort algorithm for sorting has been developed, since, for efficient execution
of relational algebraic operations, it is often advantageous to sort the object relations
by key attributes in advance, reducing the range of comparison and simplifying down-
stream processing [Itoh]. Some algorithms for the parallel processing of relational oper-
ations have been presented and analyzed, incorporating I/O, CPU, and message costs
[Boral, Shultz, Jajodia, Valdu,  Murphy, Bitton, Qadah, Nakay, DeWittl,  Richard\. Some
works reveal that distributing a database for paLlle1 processing is ru’P-hard [Du]: Other
research has addressed parallel lock management iStone], and parallel concurrency con-
trol [Tsitsik].

Although much work has been done on join algorithms, relatively little attention
has been given to parallel multiple join operations, let alone the pipelined processing of
these join operations, which are quite common in database queries. This observation
stimulate us to do some work in this area and we believe our study will be instrumental
in furthering research in parallel database systems.

1.2 Algorithms, Tests, and Results

The algorithms we used are based on hash join algorithms [Kitsu, Brat, DeM’ittl!.
The sequenced algorithm divides the work loads for each join operation evenly among
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the processors, and handles the multiple joins sequentially. The pipelined algorithms,
including the single pipelined and the double pipelined algorithms, divide the processors
into several groups, each of which is responsible for a separate join operation and its
related hash tables. Data is made to flow through these hash tables in a pipeline, so
that several joins take place in parallel, and each join implements a parallel hash join.

We believe that the Butterfly is a good choice for the experimental vehicle because
it has a hierarchical shared memory architecture that is popular for parallel machines
and is commercially available.

The experiments were designed to test the performance of each of the join algorithms
under several different conditions. We assumed that all multiple join operations can
proceed in main memory. For the purpose of the study, we discounted the input/output
time, which varies significantly from machine to machine. First, we examined how the
computation time is related to the change in the size of join relations, the increase in
the number of processors, and the change in the partitioning of processors with differnt
algorithms. Xext, we analyzed the data we got, investigated the optimal point, the best
partition, the optimal join sequence, with regards to the overall computation time. Our
goal was to show how the performance of each algorithm is affected as the number of
processors increases and the inter-processor communication and bus/memory contention
become significant. Finally, we investigated the memory usage and its effect on the
performance of different algorithms.

Our results showed the following:
l Bus/memory contention affects multi-join operations
l There is an optimal point for overall computation time and the time to get the first
result
l There is an optimal join sequence for overall computation time in sequenced algorithm
l There are empirical best partitions for pipelined processing
l Pipelined algorithms produce the first result sooner.
l Pipelined algorithms allows one of the relations to be arbitrarily large.
l Pipelined algorithms need less memory to store the intermediate results.

The remainder of this report is organized as follows:
Section 2: 0 verview of the BBN Butterfly machine
Section 3: Parallel multi-join algorithms
Section 4: Analytical and experimental results
Section 5: Future work
Section 6: Summary
Section 7: References

2 Overview of the BBN Butterfly machine
In this section, we present a brief overview of the Butterfly parallel machine. For a

complete description of Butterfly see [Butterfly].
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2.1 Hardware Configuration

Butterfly is a MIMD parallel computer. Each processor, along with an associated
memory module, is connected through a high performance network-interconnect system.
Featuring an efficient shared-memory architecture, the Butterfly computer can offer a
gigabyte of shared memory in configurations containing as many as 256 processors.
Each processor node consists of MC68020 microprocessor with MC68881 floating point
coprocessor, MC68851 paged memory management unit (PMMU), and 4 megabytes of
semiconductor dynamic random access memory (DRAM) for local and remote memory
accesses, and so on. Typical memory reference instructions that access local memory take
about one microsecond. Those accessing remote memory take about five microseconds.
The memory bandwidth is 102-Megabytes-per-second.

2.2 Software Overview

The operating system in GPlOOO is Mach 1000. which supports the standard LXIX
4.3BSD functions, then extends these functions to encompass a multiprocessing envi-
ronment. Mach 1000 features high-performance virtual memory, efficient interprocessor
communication via shared memory, atomic operations for fast multiprocessor-application
performance, the ability to dedicate processors to parallel applications, and SO on.

This architecture of the Butterfly system provides a program execution environment
where tasks can be distributed among processors with little regard to the physical loca-
tion of data associated with the tasks. The Uniform System is a software development
environment which is effective for applications containing a few frequent repeated tasks.
it provides higher-level memory and processor management facilities. The goal of storage
management is to keep all the memory modules in the machine equally busy, thereby
preventing the slowdown that occurs when many processors attempt to access a sin-
gle memory module. The goal of processor management is to keep all the processors
equally busy, thereby preventing the inefficiency that occurs when some processors are
overloaded while others sit idle without work to do. The memory management is based
on two principles:
l Use of a single large address space shared by all processes to simplify programming.
l Scattering application data uniformly across all memories of the machine to reduce
possible memory contention.
The processor management requires identification of the parallel structure inherent in a
chosen algorithm, and control of the processors to achieve the determined parallelism.

3 Parallel Multi-join Algorithms
We designed three parallel versions of multi-join algorithms: sequenced, single

pipelined, and double pipelined for double-join queries. The common feature of the
parallel versions of each of these algorithms is that there are two phases, namely, hash
phase and join phase, in all three algorithms. Before the hash phase, the input relations
are distributed in a round-robin manner among multiple processors’ memories. During
the hash phase, in parallel, each processor takes the data in its memory and hashes
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it, by using the same hash function, into the output buckets. The output buckets are
distributed through the multiple processors’ memories also. During the join phase, each
processor can handle the join operation with the buckets that have already been filled by
other processors during the hash phase. The first join needs to reapply the hash function
to its result and redistribute the join results among other processors, to prepare for the
next join operation.

The actual hash and join computation depend on the algorithm: in all three algo-
rithms, hash tables for all join operands are built; in the sequenced algorithm, the two
joins are done successively; in the single pipelined algorithm, the two joins are done in
parallel, in the sense that the second join starts right after there are joined results from
the first join; in the double pipelined algorithm, building the hash table for the largest
relation is done in parallel with the two joins, which means the first join can start as
soon as there are hashed tuples available for the largest relation. More details on each
algorithm are presented in the following sections.

3.1 Sequenced algorithm

Our parallel version of the sequenced multi-join algorithm is a straightforward adap-
tation of the traditional single processor version of the algorithm. It consists of three
parts: relation distribution, hash table construction, and join operation. The relations
participating in the multi-join will be first distributed across the memory of the Butter-
fly processors. Then the actual hash process will take place followed by the join process.
Diagram 1 depicts the sequenced processing of the multi-join operations.

From Diagram 1, we can see that in sequenced algorithm, each hash and join opera-
tion is handled by all processors one by one. From the three join operands, relations 1,
2, and 3, we build up corresponding hash tables 1, 2, and 3, in steps 1, 2, and 4. The
first join operation can start as step 3 after step 1 and 2, and the results are rehashed
to build up the hash table 1 w 2. In step 5, the second join starts with the data from
both hash table 1 x 2 and hash table 3. The join results can be further hashed, if there
are successive join operations in the query.

3.2 Single pipelined algorithm

In the single pipelined algorithm, the hash phase is exactly the same as that in the
sequenced algorithm. In the join phase, however, we handle the two joins in parallel.
After the hash phase, we divide the whole processors into two groups, with each group
works on one join. By starting the two joins simultaneously, we can have the second
join started whenever there is a result tuple from the first join operation. With the first
join operation going on in the first group of processors, their results will flow continuely
to the second group of processors. Diagram 2 depicts the single pipelined algorithm.

3.3 Double pipelined algorithm

In the double pipelined algorithm, we further improve the parallelization, by starting
the join phase in parallel with part of the hash phase. Diagram 3 depicts this algorithm.
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From Diagram 3, we can see in the first step, we build up hash tables for relations 2
and 3 in parallel. .4fter that, we start to build up hash table 1 for the relation 1, do the
first and the second join, simultaneously. The whole processors are divided into three
groups, with each group handles a specific operation, and with data flow through these
groups.

4 The implementation of the algorithms

4.1 Data structures

When a relation is loaded or created tin the Butterfly computer, it is distributed
across all the shared memories in equal sized segments. Assuming the relation can be
thought of as a continuous block of memory with concurrent access, we used the same
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method as .~.~oJia] to divide the relation up among the processors. Let p be the number
of processors, f be the number of tuples in a relation, and b be the number of tuples to
be worked on by each processor, then a good initial value for b would be

This will allow every processor to work on at most [f/p] tuples.
As discussed in [Jajodia], in order to minimize memory contention, we distribute the

rows of the hash table across all of the memories and allow chains of buckets to run
from processor to processor. The Butterfly has a mechanism for distributing rows of an
array across all the memories of the machine. This mechanism distribute the M x Iv
array by allocating the M rows to different processor’s memory. Each row will be a
vector of size N and can be accessed using standard C syntax (A[i][j]). This will reduce
contention for each row by a factor of p, the number of processors. Also this will increase
the maximum size of the file to be operated on by allowing the file to occupy all of the
processors’ memory. This scatter matrix is maintained by a vector of M pointers each
of which points to the next row in the array. This vector is stored on one processor’s
memory thus causing a secondary place of contention, however, this contention can be
removed by making a local copy of this vector at each processor that will be accessing
the scatter matrix.

The five fields that make up each slot of the hash table are two pointers to the
first and the last buckets (initialized to NULL), two integer fields to keep track of the
positions for input and output in the chain and a lock field (all initialized to 0). The
lock field will 11a ow only one processor to manipulate a particular row at a time. Since
each row of the hash table has its own lock, only those processors with tuples that have
hashed to that row will have to wait. By choosing a large enough hash table, the number
of requests for the same row will be kept to a minimum. Only the code involved with
chains will be locked. This is kept to a minimum to prevent processor wait.

4.2 Implementation highlights

In the implementation of the three algorithms, we have paid more attention to the
following issues:
l The code is flexible in dealing with different join operands’ sizes, the number of pro-
cessors available, and different partitions of these processors when using pipelined algo-
rithms.
l There is a input fle storing the processors’ partition information. In the sequenced
algorithm, the total number of processors participating in the query is stored. In the
single pipelined algorithm, the partition between the first and the second join is stored.
In the double pipelined algorithm, the partition between the first hash, the first and
second join, the partition for the hash 2 and 3 are also stored. From the the information
stored in the input file, the code can recognize which algorithm should be put to use.
l Hash tables are scattered among processors, and copies of all global variables and data
structures’ pointers exis : in local memory of each processor to improve efficiency.
l We use the principle of the locality of reference to improve the access efficiency. In the
implementation, each hashed tuple is put into the bucket located in certain processor’s
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memory, where this tuple will be used later on by this processor. Allocating memories
this way will guarantee that the input data needed by a process will resides in its local
memory, the output will locate at remote memory, which is in fact, the local memory of
processors that are going to use them as input.
l We release memory when it is no longer in use.
l In order to guarantee the atomicity of parallel operations, in case that different proces-
sors will access the same data structures at the same time, we use the synchronization
facilities provided by the Uniform system. There are more synchronization overhead in
pipelined algorithm than in the sequenced algorithm.

5 Analytical and experimental results
In this section, we present our analysis of the three proposed algorithms, based on the

experimental conditions and assumptions. In our experiments, we chose that the join
attributes are uniformly distributed over their domains, in all relations participating in
the double join queries. In addition, the work load in both hashe and join phases is
evenly distributed among processors. We present the relevant analytical work and the
corresponding experimental results for the computation time, the time needed to get the
first result, the optimal number of processors for a fixed job, and the best partition of
processors in the pipelined algorithms. A comparison of the three algorithm, and some
derivations from the analytical formulae are also discussed.

5.1 Analytical criteria and experimental design .
The following notations are needed to evaluate the three proposed algorithms:
Fl, F2, F3: names of the relations that participate in the join query.
fl, f2, f3: the number of tuples in the three relations Fl, F2, F3 participating in

the join query.
el, e2, e3: the size of one tuple in relations fl, f2, f3, respectively.
sl, s2: the first and second join selectivity factors, which are defined by sl =

card(F1 W F2)/(fl x  f 2 )  a n d  s2 =  card(F1 W F 2  w F3)/(sl x  fl x  f2 x  f 3 ) .
thashwait: average unit of waiting time caused by bus/memory contention in the hash

phase.
t pipcharhwait  1 average unit of waiting time caused by the bus/memory contention in

the hash phase of pipelined algorithm.
&h&,.& average unit of time for hashing and storing one hashed tuple
t *har hwmmu * average unit of time for transferring one hashed tuple to a remote pro-

cessor.
t* .josnstore : average unit of time for comparing and storing one joined tuple.
t. *Joanwait: average unit of waiting time caused by the bus/memory contention in the

first join.
t* *jotncommu : average unit of time for transferring one joined tuple to a remote processor.
p: the total number of processors that participate in the query processing.
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Notice that we defined the tjoinwoit in the first join only. In our current algorithms, we
consider only two successive joins, and there is no need for the second join to redistribute
its results to other processors. This feature guaranteed that there will be no waiting
time in the second join due to the communication with other processors. If multiple (N)
joins are incorporated into the queries, then tjoinwoit  will also apply to the first N - 1
joins.

These parameters allow one to measure the CPU time, the bus/memory contention
time, and the interprocessor communication time when executing a multiprocessor al-
gorithm. The identified parameters depend on hardware capabilities.

The CPU time is used to perform several basic operations, namely, computing a
hashing function, comparing two tuples, and storing hashed or joined tuples locally or
remotely. Under our test conditions, because fewer tuples are required to be transferred
to remote processors after hashing in the first join than in the hash phase, we use a
different  thashstme and tjoinstore to denote the time to hash and store one tuple in the
hash phase, and the time to compare and store one tuple in the join phase.

The bus/memory contention is caused by the existence of “hot spots,” a memory
module that several processors u-ant to access at the same time. This contention causes
the access request to wait or retransmit. In our analysis, we chose a simple contention
model specific to Butterfly memory interconnection networks. If there are p processors,
each of which has the same probability to access any other processors, then the average
contention time can be expressed as t * (p - I). The coefficient t is the average M-aiting
time caused by the bus/memory contention, if there are two processors accessing one
memory module at the same time.

The communication time we considered is the “pure” time it takes to transfer data
between processors, if there is no bus/memory contention. In our algorithm, the data
communication occurs at the hash phase and the first join, where tuples have to be
hashed and put into corresponding local or remote memories.

The benchmark relations are based on the standard Wisconsin Benchmark [Bitt].
Each tuple in relation F1, F2, and F3 consists of ten, eight, and eight 4byte integer
values, and three, one, and one S2-byte string attributes, respectively. The tuple size
is 190 in Fl, and 84 in both F2, and F3. The typical tests are joins among 1000
tuple relation (approximately 200 Kbyte in size), with two 100 tuple relations (each of
which approximately 8 Kbyte in size); 10,000 tuple relation (about 2 megabyte in size),
with two 100 tuple relations; and 10000 tuple relation, with two 1000 tuple relations.
The tests will produce 1000, 10,000, and 100,000 tuples after the first join, and 1000,
10,000, and l,OOO,OOO tuple relations after the second join, respectively. The largest of
these relations which needs being stored in the memory, with 100,000 tuples, uses 20
megabytes, while the total memory available on the Butterfly is 320 megabytes. Because
there is only 4 megabytes per processor, and we don’t want to include the input/output
in our tests, we could not conduct experiments on larger databases.
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5.2 Formulae for overall computation time

As discussed above, we formulate the computation time for the sequenced operation
as follows:

where

Tharhcr = Tharhl + Thaahz  + Thaah3

= (fl + f 2 + f3) * (thashwait * (p - 1)

Sthashstore/p  + thashctnnmu) J

T. .joms = Tjoinl  + T&nay

T. A.join1  = L30instae * fl x f2/p $ tj&nwait * Sl* fl * f2 * (p
4-t joincommu * sl * f 1 * f 2,

T*J o i n 2  = t- *fmnstote *sl*fl*f2*f3/p
4-tj&n=-mu  * Sl * 52 * fl * f2 * f3.

( 12

(3)

1)
(4)

( >5

Since in the sequenced algorithm, both hash and join phase are processed serially,
with one hash or join operation at a time, the overall computation time is the addition
of the time needed in each phase (Equation 1). In the hash phase, the hash operation on
each tuple can be done in parallel on each processors. Once the hashed tuple has been
sent to the corresponding memory, the storing work can be done in parallel with other
processors. This portion of time is illustrated by term tha8hstmc/p  in Equation 2. The
term  thashwait  x (p - 1) in Equation 2 is corresponding to the bus/memory contention
cost during the hashing phase. We came up with this simple contention model by the
following considerations:
l If there is only one processor, there will be no bus/memory contention whatsoever.
l From the test results, we see clearly that when the number of processors participating
in the whole computation is large enough, the overal  computation time reveals a linear
increase with the number of processors.
l We can assume that if only two processors access one memory module at the same time,
one processor must wait tharhWa;t time for another processor. If there are p processors
access one memory module at the same time, the longest waiting time on one processor
vi-ill  be thashwait*(p-l). C onsidering all the processors, we can choose the average waiting
time, which is expressed as thaahwait * (p - 1)/2.  We then incorporate the denominator
2 into thashwait-

Based on these considerations, we give the term thashwait * (p - 1) in Equation 2.
Xotice that this contention model is a simplified one, under the current test conditions.
The last term in Equation 2 is thashcommu,  the “pure’, communication time needed to
transfer one tuple to remote processor.
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With all parallel computation time, serial waiting time, and communication time
being considered, and the total number of tuples in the three join operands is f l+ f 2- f 3,
finally we get the Equation 2, the time used in the hash phase in the sequenced algorithm.

In the join phase, since multiple joins will be handled one after another, we have
Equation 3 for the time to finish two joins. In our algorithm, we do the joins locally
with the data that are already put into the local memory from other processors in
the hash phase. In addition, in the first join, after joining two matching tuples, we
rehash it and redistribute it across the whole processors, in order to do the second
join. This will cause the bus/memory contention, just as that in the hash phase. The
term t. +joanstore * f 1 * f2/p in Equation 4 represents the simple parallel computation in
comparing and storing each matching tuple. The term tjoinwait * ~1 *: f 1 * f 2 * (p - 1)
expresses the waiting time caused by redistributing those joined results from the first
join (sl * fl * f2) among all processors. The “pure” communication time needed is
represented by tjoinc-mu j: sl t f 1 t f 2 in the third term in Equation 4. The summation
of the three part results in Equation 4.

For the second join, the local join operation can be done in parallel with other
processors, which is expressed by the term tjoinrtmc * sl * f 1 * f 2 * f 3/p in Equation 5.
For the constant term, although we use tjknc-mu as that in Equation 4, it represents
the small amount of time needed for the overhead.

By investigating the multiple join operations, we are interested in the time to get the
first result. The following formulae describe the timing for this. We express the elapsed
time to get the first result with the sequenced algorithm as:

Tl sequ = Thashes + TjoinI- (6)

In Equation 6, we see that the time to get the first result using the sequenced
algorithm includes the time for hashing and the first join only. This is because with our
tests conditions and assumptions, the first joined result will be produced instantly after
finishing the first join and starting the second join.

Similarly, with the single and double pipelined algorithms, the elapsed time to get
the first result:

Tl ring1  epipe = Tharhcr

= (f 1 + f2 -k f 3) * (tpipchashwait  * (p - 1)

+tharhrtore  /p + thashcommu )- ( 17

For the single pipelined algorithm, the hash phase is the same as that in ‘the sequenced
algorithm, in the sense that all three hashes are done one by one by all processors. The
test results showed that it takes no time to produce the first join result when the first
and the second join starts simultaneously. Therefore, the time to get the first join result
will be approximately the time used in the hash phase.

Tl doubl tpipe = maX{ Thashl,  Thaah2)

= maX{ f 2 * (tpipeharhwait x (~1 - 1) + thashstore/pl  $ thashcommu),

f3 * (t pipehashwait x (P2 - 1) $ thashstore/pz  -k thrhcommu)}, (8)
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where pl, p2 is the partition of p that handle the hash phase over two relations, in
parallel.

For the double pipelined algorithm, we have the similar observation as in the single
pipelined algorithm. The first result comes out instantly after starting the first hash,
the first and the second joins simultaneously. We then consider the time to get the first
result as the time used in the hashing phase, which in this algorithm, is the maximum
of the time used in doing hashes for relation 2 and 3.

We got the coefficients appearing in the above equations, by fitting them to our test
results. The best fit yields the following relations:

thashwait  = 0.0205 millisecond,
t hashrtore = 1.60 millisecond,

tharhcommu = 0.052 millisecond,
t. *joanstore  = 0.0095 millisecond,
t.Joinwait = 0.002 millisecond,

t. .Jofncommu = 0.0068 millisecond,
tpipehashwait = 0.019 millisecond.

on the Butterfly, under the experimental conditions. By examining the statistic of the
fit between the theoretical results and the test results, we see a very good agreement
between them. By using the standard deviation (a) from the analytical and experimental
results, we derived that the fluctuation (a/( mean of the test data)) of the fit is within
10%.

Kate that there is no bus/memory contention contribution in the second join, as
predicted by Equation 3. This is the common conclusion got from much other research,
where only single join operation is studied. Figure 1 shows results for the time used
in the second join with different file sizes. The standard deviations of the difference
between the analytical results from Equation 3 and experimental results in both tests
showed a fluctuation within 5%.

The bus/memory contention effect clearly stands out in the hashes and the first join.
In Figure 2 we present the time verses the number of processors in the first hash. The
pretty good fit to the Equation 2 (fluctuation 5 lOconfirms our conjecture that the
bus/memory contention is proportional to (p - 1).

Due to the bus/memory contention in the hash phase and in the first join, we can
predicate that the overall computation time will also be affected by this contention. We
show in Figure 3 the total computation time for the hash and join computations using
the sequenced algorithm, with different processors and relation sizes.

An important issue in studying pipelined algorithms is to investigate the time to
get the first result. Because of the parallelization among hash and join operations, we
predicate that the pipelined algorithm will get the first joined result sooner than the
sequenced algorithm. We measured the time needed to get the TIsequenced, Tl,inglepipey
and Tl doublepipe  J and found that this always true. In Figure 4 we show the results of Tl
by using the three algorithms. The order of the algorithms with regard to the time to
get the first result, from least to most, consuming, is the double pipelined, the single
pipelined, and the sequenced.
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5.3 The optimal point

From Equation l-5, we can calculate the optimal processor (PC@), for the overall
computation time, in the sequenced algorithm by the equation:

Popt = ,!a/b (9)
where

a = (f 1 + f2 + f3) * thclrhrtcm
+fl * f 2 * tj&nrtorc  + Sl * f 1 * f 2 * f 3 * tj&*rtmc (10)

b = (f 1 + f 2 + f 3) * thashruait  + ~1 * f 1 * f 2 * tjoinwait 01)

Equations 9-11 predict a weak f l-dependence for the Popt, if f 1 >> f 2 and f 3. In
this case, we can simplify Equations lo-11 by crossing out f2 and f 3 in the first term,
which will cause further simplification by crossing out the common factor f 1 from both
the numerator and the denominator.

We have conducted several groups of tests for the sensitivity analysis on the optimal
point. We examined the relationship between the total computation time, the optimal
point and the original relations’ sizes. In our tests, we first chose fl=lOOO as one of
the join operands, then we varied the sizes of f2 and f 3. There are four combinations
we tested: a) fl=lOOO, f2=100, f3=100; b) fl=lOOO,f2=lOOO, f3=1OO;c)  f l=lOOO,
f2=100,  f3=1000; and d) f 1 =lOOO, f 2=1000,  f 3=1000. The test results are presented
in Tables 1-4. For the optimal point, from the tests results for b) and c), we can see
that if f 1 >> f2 or f 3, and the hash and the first join phase use over 50% of total
computation time, the optimal point is in a weak f l-dependence, both within,p=16  to
p=20. While if f 1 is comparable with f2 and f3, and the second join dominate the whole
computation, the optimal point will move towards larger processors. Similar tests for
three combinations, a) fl=lO,OOO, f2=100, f3=100; b) fl=lO,OOO, f2=100, f3=1000;
c) f1=10,000, f2=1,000, f3=1,000 also revealed the same conclusion. The test results
can be found in Tables 5-7.

From Figure 3, We observe the similar behavior for the computation time for se-
quenced algorithm. The optimal p is almost identical for different f 1 varying from
1,000 to 10,000, which indicates a very weak f l-dependence. Test results strongly sup-
port our previous analysis, qualitatively and quantitatively. The theoretical optimal
point (Popt = 10) is in good agreement with the experimental optimal point (p = 12).

However, if fl is comparable with f 2, and f3, the minimum point will shift towards
larger processors, which means that in this case the join, especially the second join
operation, dominates the total computation time. In Figure 5, we show this phenomenon
by giving the computation time for some larger relations.

In Figure 6, we show the sensitivity of the optimal number of processors in terms of
the time to get the first result with respect to the file sizes, in single pipelined algorithm.

JVe noticed that there is little difference for the optimal p in these two cases, which
is in agreement with what Equation 9 predicts. From Equations 7-8, we see that the
choice of the optimal processor number, in term of getting the first result in pipelined
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Figure 5: The total computation time with the increase in
processors, in large databases. a) fl=lO,OOO, f2=1,000,
f3=1,000; b) fl=lO,OOO, f2=5,000, f3=5,000.

algorithms should not depend on fl, f2, and f3, but rather on the intrinsic parameters
tpipeharhwait and brhrtorc  - Theoretically, this value is given by the equation:

Popt = j/thaahdore  /t pipduuhwait  * (12)

5.4 Join sequence

Having shown our experimental results and compared them with the analytical
equations, we further discuss the optimal choice of the join sequence in the multi hash-
join sequenced algorithm. As can be observed from Equation 4, the contribution of the
bus/memory contention is proportional to sl * fl * f2. Thus the smaller the sl * fl * f2,
the less the bus/memory contention affects the elapsed time of the sequenced operations.

For the purpose of testing the above optimization ideas, we conducted tests with
different join sequences. The results can be found from Tables 5 and 8 and shown in
Figure 7, from which we can clearly see that the smaller sl * fl * f2 choice takes less
computation time.

However, we cannot get this improvement, if f I, f2, and f3 are comparable. Tables
9 and 10 record the timing results for F3 W (Fl W F2) and Fl W (F2 W F3).
where fl=lO,OOO, f2=5,000, f3=5,000. We can see that there are not much time saved
by changing join sequence.

The same idea is also valid for sequenced multiple joins. Suppose we have fl, f2,
‘“¶ fN, and $1, ~2, . . . . sN - 1, the best choice corresponds to join the largest s * fi * f j
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at the end.

5.5 Best processors’ partition
For the single and double pipelined algorithms, partitioning of processors is required.

An improper partition of the processors leads to an inefficient coordination between the
producer (first join) and the consumer (the second join) and frequently causes mutual
waiting. This type of waiting consumes a large proportion of the total computation time
(kom 20% to 80%).

Through extensive timing tests for different partitions in both single and double
pipelined algorithms, we have found that the time needed to get the first result is not
affected by the way the processors are partitioned, while the computation time is quite
sensitive to it. We assume that with the best or near best partition among proces-
sors, the extra mutual waiting time needed between different group of processors will be
minimized, that is, the parallel processing part will dominate the whole operation. In
pipelined algorithm, although there might be more complicated model for the interfer-
ence between processors, the bus/memory contention, and communication model, the
model for the parallel operation part is similar to that in the sequenced algorithm. By
using the corresponding part in Equations 4-5, we should have the following reasonable

. -

.

.

100-j 1 , T. . . . .
1 1 0 1 0 0

Ptocll

test: II -IWO

theoy fl=lOOO

test: fl=lOOOO

theory:fl=lOOOO

Figure 6: The time to get the first result using single pipelined
a l g o r i t h m .  a)  fl=l,OOO, f2=100, f3=100; b )  fl=lO,OOO,
f2=100,f3=100.
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Proc#

Figure !: The comparison between the two different join se-
quences. 51 = 52 = 0.01. a) joinl=F2 W F3, join2=
Fl w (F2 w F3); b) joinl=Fl W F2,
join2=F3 WI (Fl W F2), w h e r e  f l  =  1 0 , 0 0 0 ,  f2 =
100, f3 = 100.
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relation between the two joins for the single pipelined algorithm:

pl 1 p2 = tj*inrto+e * fl* f2 : tj&nrtmc * s1 * f1 * f2 * f3

from which we get the best partition in the single pipelined algorithm as follows:

pl:p2 = l:sl*f3 (13)

where pl : p2 is the processors’ partition between the first and the second joins.
For the double pipelined algorithm, we should have the similar relation between the

first hash, the first and the second join operations. The relation can be expressed as:

~1 : p2 : p3 = tharhstme  * f 1 : tjoirutae * f 1 * f 2

: t joincrtote  * lS1 * fl * f2 * f3

which is then simplified as:

pl:p2 :p3 = /Ff2:sl*f2*f3 (14)
where pl : p2 : p3 is the processors’ partition between the first hash, the first join and
the second join. Notice that we used p in Equation 14, instead of using an expression
of thashatc,we and thashc-mu. This is because we want these best partition formulae to be
empirical so that they may fit with the test result better. From our test result, we fit
this ,0 by 80.

Based on our empirical formulae, we checked our test results from the single pipelined
algorithm for a) fl=l,OOO, f2=1OO, f3=1OO, where sl*fl=l; b) fl=l,OOO,  f2=100,
and f3=1,000,  where sl * f3=10. The test results showed that the empirical formula
works well in this case, although usually around the theoretical best partition, there is
a processors’ partition range where the timing showed a very insensitive relation to the
partition. The partition tests have been done exclusively for p=lO, and non-exclusively
for p=20, 40. Th e results are stored in Tables 14-21. The optimal p to get the first
result for these relations is also tested, which is about 10, fitting with the theoretical
result.

Figures 8 and 9 show examples of these best partition tests. With the single pipelined
algorithm, the difference between the best partition tested and that from Equation 13
is less than 5%. The difference between the experimental result and that from Equation
14 with the double pipelined algorithm is less than 10%. It is worth mentioning that
the difference in computation time between using the tested optimal partition and that
predicted by Equations 13-14 is also quite small (less than 10%); The best partition
from Equations 13-14 gives a good estimation in practice.

For double pipelined algorithm, we checked the results from a group of tests inves-
tigating the relationship between the computation time, processors’ number, and the
processors’ partition (Table 25, Figure 9). Exclusive partition tests are on p=16 (Table
26). The empirical formula gives best partition about 455, and it is quite near the
experimental best partition 4:6:6. Tests are also conducted on p=40 (Table 27), where
several partitions around empirical optimal partition are tested. A few partitions were
also tested with different number of processors. The minimum point for these relations
are 10, exactly the same as predicted by the optimal point formula.

22



10000 -

.

8000 -

.

6000 -

.

4000 -

.

for partition n:( 1 O-n)

2000 : 1 . 1 1 I 1
0 2 4 6 8 10

Ptocll I n  the fIrat g r o u p

Figure 8: The total computation time versus different parti-
tions in the single pipelined algorithm. p = 10, sl * f3 = 1.
f1=1,000,f2=100,  f3=100.

23



18oooQ-
.

A
i

160000 -
.

00: 14oocm-
== .

3 120000-

: . Z partition n:(Wn)/2:(16-n)/2
F= 100000-

.

10 12 14
Prod In tha fItat group

Figure 9: The total computation time versus different parti-
tions in the double pipelined algorithm. p = 16. Partition:
2:7:7,4:6:6, 655, 8:4:4,12:2:2. fl=lO,OOO, f2=100,f3=100.

24



5.6 Sequenced vs. pipelined algorithms in getting the last .
joined result

It remains an open question whether the pipelined algorithms would be superior to
the sequenced algorithm in terms of the elapsed time. In fact, one of the motivations of
the present work is to check quantitatively the existence of such a possibility. We found
that in all our tested cases, it always takes longer for the pipelined algorithm to get
the last joined result. The order of the algorithm with regard to the total elapsed time
to get the last joined result, from least to most, is sequenced, single pipelined, double
pipelined, the order exactly opposite to that for getting the first joined result.

In the following paragraphs, we compare the total elapsed time used in the sequenced
and pipelined algorithms under ideal conditions, that is, there is no waiting because of
buffer limitation or improper partition, no synchronization overhead (lock, unlock), no
bus/memory contention, and no communication time needed for transferring data to
remote processors. Such an analysis is useful in understanding the fact that under
the current experimental conditions, we can only, get last result later with pipelined
algorithms, and in understanding the Equations 13-14. We claim that in the ideal case,
the time used to get the last joined result is the same with both sequenced and pipelined
algorithms.

Let us consider the single pipelined algorithm. In this ideal case, since there is no
time difference between the sequenced and single pipelined algorithm for hashes, we only
need to consider the time for joins.

With the sequenced algorithm,

Tlartrequ = Tjknl + Tjtin2

= fl* f2 * tj&nstme/P  t Sl* fl * f2 * f3 * tj0instO?e/p
= (l+ Sl* f3) * fl* f2 *tj&,,twe/p. (1 15

With the single pipelined algorithm,

Tlartpipe = T* Tjtin2pin1 =

= f 1* f2 * tj&n*tore/P1

= 51 * f 1 * f2 * f3 * tj&n,t,,/p2* (16)
Foote that Equations 16 gives the partition relation pl : p2 = f 1 * f2 * tjoinrtme :
Sl T f 1 v f2 * tj&nrt*c = 1 : sl t f3, which is exactly the same as that in Equation
13. Since p = pl + p2 = pl + pl t sl * f3 = pl x (1 + sl * f 3), we see immediately that
Tiartrequ = Tla&pipe> that is, in the ideal case the last result comes out at the same time
in both algorithms.

Similar analysis can be done for the double pipelined algorithm. In the sequenced
algorithm,

Tlastsequ = Thashl  + Tjbnl j Tjoinz

= f 1 * thashstme/P  -k f 1 * f 2 * (1 + ~1 * f 3) * tjoimtme/P

= (f 1 x thashstmc  3 f 1 * f 2 x (1 + ~1 * f 3) * tjoinatme)/P*

(1 17
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Figure 10: The comparison between three different algo-
rithms in the total computation time for the multi-join oper-
ation versus the number of processors. fl=lO,OOO, fZ=lOO,
f 3=100.

In the pipelined case,

Tlartpipc = Thorhl = TjAnl = Tjkn2

= f  1 * thaahatorc/pl  = f  1 * f  2 * tjoinrtcwe/P2

= Sl * f 1 * f2 *: f3 * tj&n,tmc/p3. (18)
Again we can see that Equation 18 gives the partition relation pl : p2 : p3 =

tharhrtotc  : tjoinrtore * f2 : tjoinatorr I f2 * (1 + sl * f3), which is similar to Equation 14.
Since p2 = ~1 * f 2 * tj&natorc/thahatore,  ~3 = ~1 * ~1 * f 2 * f 3 * tjoinatorc/tharhrtore,  thus

p=pl+p2+p3=pl*(tharhrtotc  + f 2 * (I+ sl* f 3) * tj~n~t~c)/tho.h,t~c. We then have- -

From the above discussion, we see that in the ideal case the computation time for
getting the last joined result is the same with both sequenced and pipelined algorithms.
In reality, because of improper partitioning of processors, high communication costs, and
synchronization overhead, pipelined algorithms take more total computation time. The
best partitioning rules Equations 13-14 turn out to be exact in this ideal case. Figure
10 compares the different algorithms in regard to getting the last result.

The agreement of Equations 13-14 with respect to predictions of the best partition
in the ideal case indicates that the bus/memory contention, the synchronization between
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Figure 11: The comparison between three different algo-
rithms in efficiency. fl=lO,OOO, f2=100, f3=100.

groups of processors, and so on, are not very significant in determining the best partition.
Moreover, the p in Equation 14 can be written explicitly in the form t~ahat~e/tj~n,t~es
The numerical calculation shows that they are indeed close. We use the experimental
results to determine the p in our tests.

5.7 Memory usage
In this subsection we briefly discuss memory usage in regard to various algorithms.

With the sequenced algorithm, all hashes and joins can be done only one at a time.
This limitation requires enough storage for the intermediate results, for example, the
first hash table, the results from the first join, and so on. Therefore

Memory(sequ) = fl* el + f2 * e2 + f3 * e3 t
sl t fl * f2 * (el + e2) t C (19)

where C is a constant amount of memory needed for the global data structures and
variables.

With the single pipelined algorithm, although the same amount of memory is needed
to store the hash tables, less memory is needed for the first join results. This is because
of the first and the second join working in parallel. Only enough memory to coordinate
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Figure 12: The comparison in the largest job size for the se-
quenced and pipelined algorithms, given the available mem-
ory fixed.

the two join operations is necessary. Thus, in the single pipelined algorithm,

Memory(single) = fl* el+ f2 * e2 + f3 * e3 + (el+ e2) * V -t- C,
(20)

where p < V 5 sl * f 1 * f2. When V = p, there is only one memory slot
on each processor to store the first join result. This saves memory, but at the same
time, it introduces much waiting time in both first and second join, since they have a
producer-consumer relationship.

We can analyze similarly the memory usage in the double pipelined algorithm. The
amount of memory that can be saved, comparing to that with the single pipelined
algorithm, comes from the part that stores the first hash table. Therefore,

Memory(double) = f2 * e2 + f3 * e3 t el * Vl + (el + e2) * 172 + C,

(21)

where p 5 Vl 5 f 1, and p < V2 5 sl * f 1 = f2. The pro and con in choosing
Vl, I,‘2 are similar to the discussion in the single pipelined case.
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6 The future work
Our future work in this direction includes the optimizer generation based on the ana-

lytical work presented in this report, the generalization of the analysis to non-uniformly
distributed join attributes and non-evenly distributed work load among processors. The
system throughput problem will also be of interest to us. From our test data, especially
the results from the sequenced algorithm, we found that the marginal utility of proces-
sors is decreasing with the increase of the number of processors, and it becomes nearly
zero around the minimum point. This observation suggests that if there are multiple
jobs submitting to a system simultaneously, a good scheduling strategy will maximize
the system throughput.

7 Summary
In this report, we have presented an application of the pipeline:: and sequenced

parallel multi-join ideas, and analyzed the performance behavior for tnree hash based
join algorithms.

l The bus/memory contention limits the processor’s utilization (that is, the Popt
can’t be too large in some cases). This effect is proportional to (p - l), and can’t be
ignored in multi-join algorithms.

l The formulae for the total computation time and the time to get the first result
for the sequenced algorithm can be generalized to N-hash-N - ljoin.

l The pipelined algorithms get the first result sooner than the sequenced algorithm,
with the same join sequence.

o The optimal processor number, with both the sequenced and pipelined algorithms,
is in weak dependence on the relation sizes, if the first join operand is much greater than
the other two operands. In this case, it depends mainly on the intrinsic parameters of
the machine.

l The best partition formulae for both single and double pipelined algorithms are
empirical, but work well when checking with the experimental results.

l The double pipelined formula for the best partition includes a parameter ,f?, which
may be estimated from tharhrtme  / tjhnrtwe.

l The pipelined algorithms needs longer elapsed time than sequenced algorithm to
finish the entire join operation.

l .4n optimal join sequence, when using the sequenced algorithm, joins the largest
relation last.

l Memory usage with the pipelined algorithms can be less than that in the sequenced
algorithm.
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Pro+F 1

9
10
15
20
30
40
30
60
80

Timehashl
678( 6’78)
844(  578)
687(450)
601(360)
544(310)
463(272)
469( 256)
427(228)
457(233)
447(236)
450(178)
530( 137)
683( 119)
813(89)

lOOl(52)
1258(  54)
1766(69) 1

Timehash Timehash Timejoinl Timejoin Total
48(48) 47(47) 931(931) 644 -ziz-
94( 36) 91(35) 670(631) 469 2168
93( 27) 91(26) 525(410) 316 1712
i4( 19) 62( 20) 409( 330) 242 1388
79( 15) 73( 17) 326(  269) 191 1213
53( 14) 54( 14) 279(  234) 164 1015
68( 11) 60( 11) 242(  210) 139 978
52( 11) jO( 10) 180( 187) 123 832
60(10) 68( 10) 190(175) 112 887
W) W) 138( 150) 100 828
W6) w6) lOO(112) 71 756
54(j) 54( 5) 130( 79) 53 821
W) W) 177(93) 34 1028
W) 79(j) 248( 55) 26 1238
128(7) 140( 8) 289(48) 20 1578

118(11) 142( 6) 433(307) 21 1972
190(28) 142( 5) 469(58) 20 2387

Table I: This group of tests are for relations fl=l,OOO, f2=100,  f3=100 with the se-
quenced algorithm. The number of processors varies from 1 to 80. From these group
of data, we can get curves for the time to get the first result, the total computation
time, and the time for each hash and join phases. The optimal range in regard to the
computation time is from p=lO to p=15. The analytical optimal point is about 12.
The time used in the hash phases is from 30% to 80% of total computation time. The
bus/memory contention can use up to 99% of the total time in hash phase. The number
within () is the pure computation time without bus/memory contention. ’
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Proc# Timehashl Timehash  Timehash  T i m e j o i n l Timejoin:! T o t a l
10 767 639(87) 30( 10) 1340 848 3624
16 639 256(53) V) 1014 556 2472
20 587 428(41) W) 1083 436 2553
40 1086 970( 24) 25( 7) 867 230 3178

Table II: This group of tests are for sensitivity analysis. We examined the relationsnip
between the total computation time, the optimal point and the original relations’ sizes.
The relations’ combination is fl=l,OOO, f2=1,000, f3=100; For the optimal point, we
can see that if fl >> f2 or f3, and the hash and the first join phase use over 50% of
total computation time, then the optimal point is in weak f-dependence, within p=16
top=20.

Pro+ T i m e h a s h l  Timehash Timehash T i m e j o i n l  Timejoin T o t a l
10 578 W) 139(96) 294 631 1704
16 375 109( 7) 121(53) 67 415 1087
20 525 24(7) 307(7) 194 319 1369
40 2139 149(6) 982(28) 888 167 4325

Table III: This group of tests are for sensitivity analysis. We examined the relationship
between the total computation time, the optimal point and the original relations’ sizes.
The relations’ combination is fl=l,OOO, f2=100, f3=1000; For the optimal point, we
can see that if fl >> f2 or f3, and the hash and the first join phase use over 50% of
total computation time, then the optimal point is in weak f-dependence, within p=16
to p=20.
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Pro+ T i m e h a s h l  Timehash Timehash T i m e j o i n l  Timejoin:! T o t a l
10 560 211(85) 148(95) 1363 6285 8567
16 463 246(  54) 240( 54) 981 4118 6048
20 536 345(42) 183(45) 868 3180 5112
40 1150 956( 23) 133 1199 1695 5133

.

Table IV: This group of tests are for sensitivity analysis. We examined the relationship
between the total computation time, the optimal point and the original relations’ sizes.
The relations’ combination is fl=l,OOO, f2=1,000, f3=1,000.  For the optimal point, if
fl is comparable with f2 and f3, and the second join dominate the whole computation,
the optimal point is moving towards larger processors.

Pro+ T i m e h a s h l  Timehash Timehash T i m e j o i n l Timejoin T o t a l
2 7905 84 357 24028 4852 36964
4 5573 70(20) 63(20) 3715 2331 11752
5 4903 66(16) 45(16) 3024 1858 9896

10 3597 77(8) 65(8) 1606 930 6295
15 3857 62(6) w6) 1275 615 5627
16 3419 W) 59(6) 1172 613 5357
17 3657 51(6) 50(6) 1077 558 5219
20 4950 38(j) 54( 5) 1059 477 6598
30 7153 70(j) 64( 5) 958 341 8586
40 8347 90(j) W) 949 258 9733
50 10207 128(7) 103(7) 944 196 11577
60 12334 118(10) 142(4) 1204 199 13997
70 14853 145(13) 122(4) 1466 196 16782
80 16021 186(12) 120( 5) 2699 193 19219

Table V: This group of tests are for relations fl=lO,OOO, f2=100, f3=100 using se-
quenced algorithm. Detailed timing tests are available for processors from 2 to 80,
where at least two processors are needed to handle the job. From these group of data,
we can get curves for the time to get the first result, the total computation time, and
the time for each hash and join phases. The optimal point can also be seen clearly
from the data, which is around p=15. Notice that from p=lO to p=20, the time for the
computation doesn’t vary much. The time used in the hash phases is from 20% to 85%
of total computation time.
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Pro+ T i m e h a s h l  Timehash Timehash  T i m e j o i n l  Timejoin T o t a l
2 7793 98 1641 18922 33811 62265
5 4935 112 235 2873 16i75 24930

10 3620 147 172 1985 9501 15425
15 3456 144 216 1710 6600 12126
16 3537 156 302 1311 5921 11227
17 3607 127 246 1519 6698 12197
18 3798 173 273 1903 5766 11913
20 4156 181 352 1377 6135 12201
25 5742 202 398 1403 5191 12936
30 5866 190 816 1345 5114 13331
35 6861 165 641 1599 3601 12867
50 9997 286 1336 1550 2906 160’75
80 23491 388 2088 5180 2885 34032

Table VI: This group of tests are for relations fl=lO,OOO,  f2=100, f3=1000 using
sequenced algorithm. Detailed timing tests are available for processors from 2 to 80,
where at least two processors are needed to handle the job. From these group of data,
we can get curves for the time to get the first result, the total computation time, and
the time for each hash and join phases. The optimal point can also be seen clearly
from the data, which is around p=l5. Notice that from p=lO to p=20, the time for the
computation doesn’t vary much. The time used in the hash phases is from 20% to 85%
of total computation time.
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Pro& Timehashl Timehash Timehash Timejoinl
8 3779 223 492 134936

10 3513 197 256 61033
20 4036 440 150 11457
30 7104 764 166 11044
40 8074 i61 620 9116
45 9018 1175 770 12669
48 9094 1326 783 13395
49 9806 2081 822 11548
50 10080 1475 715 9444
52 16051 1313 29 10060
55 10899 1321 29 11424
60 12414 1444 35 11736
80 17990 2224 30 13636

Timejoin
314210
77275
37144
37534
34095
23488
21970
22612
21954
25313
25700
29976
17462

Total
463740
142274
53227
56612
52666
47120
46568
46869
43668
52966
48184
55605
51342

Table VII: This group of tests are for relations fl=lO,OOO, f2=1000, j3=1000 using
sequenced algorithm. Detailed timing tests are available for processors from 8 to 80,
where at least eight processors are needed to handle the job. From these group of data,
we can get curves for the time to get the first result, the total computation time, and
the time for each hash and join phases. The optimal point can also be seen clearly
from the data, which is around p=50. Notice that from p=40 to p=52, the time for the
computation doesn’t vary much. The time used in the hash phases is from 20% to 85%
of total computation time.
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Proc#
2
4
5

10
15
20
40
60
80

Timehashl Timehash Timehash
84 49 4297
70 38 2786
65 29 2427

547 26 1676
98 29 1499

276 99 1943
302 278 4930
374 335 8856
413 431 17006

Timejoinl 1 Timejoin:! Total1
93 3024 7547
53 1522 4469
50 1216 3787

314 609 3172
31 430 2086

305 311 2934
918 207 6635
270 156 10191
914 145 18909

Table VIII: This group of tests are for relations jl=lOO, j2=100,  j3=10:000 using se-
quenced algorithm. The tests are conducted in order to check the algorithm’s behavior
under the different join sequences, comparing to jl=lO,OOO, j2=100,  and j3=100.  De-
tailed timing tests are available for processors from 2 to 80, where at least two processors
are needed to handle the job. From these group of data, we can get curves for the time
to get the first result, the total computation time, and the time for each hash and join
phases. The optimal point can also be seen clearly from the data, which is around p=lO.
Notice that from p=lO to p=l5, the time for the computation doesn’t vary much. The
time used in the hash phases is from 2070 to 85% of total computation time.

1 Pro+
40
60
70
80

T i m e h a s h l  Timehash:!  Timehash T i m e j o i n l  Timejoin:! Total
9211 4319 6601 555126 951402 1526659
18139 8777 5606 66927 567633 667082
20572 8756 5226 62618 347623 644795
26316 12398 7335 92993 505768 644810

Table IX: Tests for jl=lO,OOO,  j2=5,000,  j3=5,000. When jl is comparable with j2
and j3, the optimal point with respect to the overall computation time moves towards
larger processors.
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Proc+ Timehashl Timeioin2 Total
20 2608 1357500 1391005
30 3499 961667 999780
40 4457 763750 808717
50 5443 645000 697720
60 6441 565833 626755
70 7447 509286 578666
80 8458 466875 5448 74

Table X: Tests for jl=j,OOO, j2=5,OOO, j3=10,000.  When comparing with table x, we
see that changing the join sequence doesn’t help in saving time, when jl is comparable
with j2 and j3.
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Pro& Timehashl
1 1362
2 1336
4 1057
6 936
8 733

10 668
11 645
12 654
13 649
15 671
20 829
30 1011
40 1841
50 2389( 98)
60 2652( 78)
70 5232( 96)
80 3396(50)

Timehash:!
63

49(46)
42(25)
25( 18)
31(13)
25(U)
87(g)
2w
51(8)
25(8)
137(6)
116(j)
65(6)
126( 5)

137
264

185( 14)

Timehash Timejoinl Timejoin Total
62 1752 1250 4489

46( 45) 1298 874 3603
27 709 445 2280

22( 18) 478 296 1757
23( 14) 362 224 1373
23( 10) 307 178 1201
ll( 11) 266 162 1171
24(9) 254 152 1107
g(g) 222 135 1066

W) 217 116 1059

w 302 91 1365
j(5) 285 65 1482

134( 5) 187 48 22X
158(j) 322( 98) 39 3034

w 177 30 3000

w 400 36 3936

w 442 35 4062

Table XI: This group of tests are for relations jl=2,000,  f2=100, j3=100  with the
sequenced algorithm. Detailed timing tests are available for processors from 1 to 80.
From these group of data, we can get curves for the time to get the first result, the
total computation time, and the time for each hash and join phases. The optimal point
can also be seen clearly from the data, which is around p=12. Sotice that from p=lO
to p=l5, the time for the computation doesn’t vary much. The time used in the hash
phases is from 30% to 85% of total computation time.
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Pro& 1 Timehashl 1 Timehash 1 Timehash 1 Timeioinl
4
10
20
30

2069 40( 24) 32( 24) 1460
1500 W) ll( 11) 681
1433 136( 5) w 459
2065 96( 5) 5(j) 405

354 2615
181 2215
130 2701

Table XII: Th’is group of tests are for relations fl=4,OOO, f2=100, f3=100 with the
sequenced algorithm. A few tests are for p=4, 10, 20, 30. From these group of data, we
can get curves for the time to get the first result, the total computation time, and the
time for each hash and join phases. The optimal range for overall computation time is
between p=lO to p=20. The time used in the hash phases is from 50% to 80% of total
computation time.

Pro+

;
10
12
14
15
16
17
20
30
40
50
60
70
80

Timehashl Timehash Timehash Timejoinl Timejoin
9871 43( 18) 22 6119 3613
12425 49( 12) 15 3856 2221
7170 67( 10) 53 3179 1771
7045 69(g) 10 2782 1522
6990 940 W) 2456 1259
6980 W) 8 2328 1160
7508 104( 7) 7 2392 1163
8068 53( 7) 7 2218 996
9527 116(6) 6 2079 903
13276 134( 5) 5 1961 645
15283 140( 8) 4 2089 480
18018 181( 11) 3 2033 371
24248 174(x) 3 1676 314
28466 186(11) 4 1989 350
18290 205( 13) 4 3240 353

Total
19614
18566
12240
11428
10872
10554
11174
11344
12631
16021
17996
20606
26415
30993

1 22092

Table XIII: This group of tests are for relations fl=20,000, f2=100, f3=100 with the
sequenced algorithm. Detailed timing tests are available for processors from 5 to 80,
where at least five processors are needed to handle the job. From these group of data,
we can get curves for the time to get the first result, the total computation time, and
the time for each hash and join phases. The optimal point can also be seen clearly
from the data, which is around p=15. Sotice that from p=lO to p=20, the time for the
computation doesn’t vary much. The time used in the hash phases is from 50% to 85%
of total computation time.
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Proc# T i m e h a s h l  Timehash Timehash T i m e j o i n l  Timejoin:! T o t a l
2( 1:l) 822 108(29) 109(31) 1417 3169 4208
3( 1:2) 855(381) 94( 20) lOO(23) 2936 2938 3987
4(2:2) 724( 240) 73( 19) 76( 17) 1310 2087 2960
6( 3:3) 559 67( 14) 75( 12) 1950 2060 2761
8( 4:4) 512 62( 11) W) 1309 1993 2660

lO( 5:5) 427 40 79 1481 1774 2321
16( 8:8) 463 W) 115(j) 1520 1713 2370

20( 1O:lO) 513 105(5) 138(4) 1306 1946 2702
30( 15:15) 710 92(j) 168(4) 1274 2809 3779
40(20:20) 1560(  150) 137(6) 251(6) 1391 2368 4316
50( 2225) 1090(59) 198(j) 308( 1) 1117 2629 4225
60( 30:30) 1646(  60) 281(2) 272(  8) 1336 2733 4932
70( 3535) 1759(54) 126( 10) 317(17) 1656 3606 5800
80(40:40) 1672(38) 236(28) 445( 14) 1731 3492 5845

Table XIV: This group of tests are for fl=l,OOO, f2=100, f3=100 with the single
pipelined algorithm. Processors are from 2 to 80. Different partitions have been tested
with different processor numbers. We have found that the empirical best partition works
well in this case, sl * f3=1, that is, the best processors’ partition for two joins is 1:l.
From the test results, we also see that the optimal processor to get the first result is
around 10.

Pro+ Timehashl
117 968
2:6 549
3:5 518
4:4 512
5:3 532
6:2 514
7:l 544

Timehash:! Timehash Timejoinl Time-join2
58( 10) W) 3268 3281
61( 10) W) 2541 2743
81( 10) W) 1829 2101
62( 11) W) 1309 1993
73( 11) W) 1202 2265
71( 11) 79( 9) 1025 3296
68( 11) 59( 10) 916 6666

Total
4383
3439
2794
2660
2969
3960
7337

I

Table XV: This group of tests are for fl=l,OOO, fZ=lOO,  f3=100 with the single
pipelined algorithm. The exclusive partitioning with 8 processors are tested. The best
partition found is 4:4.
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P r o c #  T i m e h a s h l  Timehash Timehash T i m e j o i n l  Timejoin T o t a l
1:9 851 6W 126(6) 3460 3438 4484
2:8 676 128( 8) 125(6) 2594 2994 3923
317 488 w9 103( 6) 1834 1905 2586
4:6 471 7-w) W) 1802 1922 2553
55 483 65( 8) W) 1370 1836 2473
6:4 473 4769 W) 1186 2094 2693
713 527 W) 72( 7) 1042 2737 3413
8:2 321 74( 8) 77m 939 4258 4930
9:l 493 72(8) W8) 878 7936 8587

Table XL?: These tests are the exclusive partitioning tests for 10 processors, with the
single pipelined  algorithm. The relations are fl=l,OOO, f2=100, and f3=100. The
results showed very good agreement with the empirical formular pl : p2 = 1 : sl * f3,
where sl * f3=1 in this case. there is also a range around the best partition where the
total time isn’t sensitive to partitions.

Pro+ T i m e h a s h l  Timehash:!  Timehash T i m e j o i n l  Timejoin T o t a l
1:19 665( 82) 76(g) M(4) 4252 4258 3150

1O:lO 513 103(j) 138(4) 1306 1946 2702

Table XVII: These two tests are for fl=l,OOO, f2=100, and f3=100 with the single
pipelined algorithm. The number of processor is 20. The result from the processors’
partitioning 1O:lO is better than 1:19,  indicating an agreement with the empirical for-
mular pl : p2 = 1 : sl * f3, where sl * f3=1 in this case.
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Pro& T i m e h a s h l  Timehash
6( 1:5) 677 28
10(3:7) 395 47

20(5:15) 415 106
40(4:36) 560 278

9

Timehash  T i m e j o i n l  Timejoin:! T o t a l
289 12956 13098 14092
308 11541 11890 12640
533 10857 12069 13123
1664 16868 19188 21690

Table XVIII: Th e relations are fl=l,OOO, f2=100,  f3=1,000, with sl * f3=10. The
processors’ partitioning is chosen according to the empirical best partition formula. The
optimal p in regard to the time to get the first result is is about 10, fitting with the
analytical result.

Pro+ T i m e h a s h l  Timehash Timehash Time-join1 Timejoin Total
1:9 711 56 323 12201 12231 13321 ’
2:8 460 30 313 12061 12261 13064
3:7 395 47 308 11541 11890 12640
4:6 378 56 323 12168 12905 13662
55 396 15 291 13242 13960 14662
6:4 391 13 298 15291 17121 17823
713 399 51 302 19601 19807 20559
8:2 387 20 283 32059 33490 34180
9:l 381 32 347 79628 81330 82090

Table XIX: This group of test is to check the empirical processor partition formular
pl : p2 = 1 : sl * f3 for the single pipelined  algorithm. The relations are fl=l,OOO,
f2=100, f3=1,000, with sl *f3=10. partition tests have been done exclusively in p=lO.
The test results showed that the empirical formula works well in this case.
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Proc#
1:19
2:18
3:17
5:15
7:13

1O:lO
15:5

Timehashl Timehash Timehash Timejoinl Timejoin:!
776 25 646 16260 17239
478 17 592 14758 15189
489 35 602 13673 14053
415 106 333 10857 12069
443 77 541 11398 12839
540 82 494 12426 14040
538 55 453 21096 22399

Total
18686
16276
151i9
13123
13900
15156

i 23445

. . 1Table XX: Th’is group of test is to check the empirical  processor partition formular
pl : p2 = 1 : sl x f3 for the single pipelined algorithm. The relations are fl=l,OOO,
f2=100, f3=1,000, with sl * f3=10. Tests are for p=20. The test results showed that
the empirical formular works well in this case, although usually in the middle range of
partition combination, the timing showed a very insensitive relation to the partition.

Pro+ Timehashl Timehash:! Timehash Timejoinl Timejoin Total
1:39 1046 27 1622 32065 33769 36464
3:37 671 191 1500 20400 24298 26660
4:36 360 278 1664 16868 19188 21690
5:33 552 389 1608 15285 19284 21833
10:30 747 141 1694 14381 19222 21798
15:25 734 112 1444 11116 14179 16469
20:20 1154 155 1583 14116 18685 21577
3O:lO 1550 213 1435 41929 49292 52490

Table XXI: Th’is group of test is to check the empirical processor partition formular
pl : p2 = 1 : sl * f3 for the single pipelined  algorithm. The relations are fl=l,OOO,
f2=100, f3=1,000, with sl * f3=10. Tests are for p=40. The test results showed that
the empirical formular works well in this case, although usually in the middle range of
partition combination, the timing showed a very insensitive relation to the partition.



Proc#
4(2:2)
6(3:3)
lO( 5:5)
16( 8:8)
18( 9:9)

20( 1O:lO)
30( 15:15)
40(20:20)
60(30:30)
80(40:40)

Timehashl Timehash:!
2189 34(25)
2050 29( 18)
1432 38(g)
1257 W)
1322 W)
1386 109( 5)
2112 74( 7)
2880 127(6)
3857 127(8)
7197 157(20)

Timehash Timejoinl Time-join2 Total
32( 26) 9090 9844 12070
34( 15) 8709 8900 11013
53(8) 6546 7663 9186
lOl(6) 6462 6654 8095
7w 6064 7364 8856
131(j) 6226 8261 9887
140(6) 5292 7665 9991
276(8) 5614 6842 10125
178(11) 5830 9946 14108
630(24) 6916 13078 28254

Table XXII: This group of tests are for fl=4000, f2=100, f3=100 with the single
pipelined algorithm. The minimum number of processors needed to handle the work is
4 processors. Tests are done from p=4 to p=80. For each processor, the empirical best
partition is used, which in this case, sl * f3=1, is 1:l. The optimal range to get the first
result is within p=lO to p=18.

Pro+
4( 2:2) 6370
8(4:4) 4265

lO( 5:5) 3936
12( 6:6) 3672
14(7:7) 3480
18( 9:9) 3466

20( 1O:lO) 3657
40( 20:20) 6074
60(30:30) 10701
70(35:35) 15258
80(40:40) 13031

Timehashl 1 Timehash
62( 18)
60( 11)
65(8)
W)
102( 6)
117(j)
115(j)
169(j)

228(22)
213( 10)
483( 17)

Timehash Timejoinl ) Timejoin
61( 17) 42091 47201
63(g) 25450 35506
W) 23886 28185
87(7) 26597 37380
90(j) 23265 32626
138(4) 23697 26209
144( 4) 23218 24982
267( 5) 24377 35158
325( 6) 30861 55045

324( 12) 36965 61098
509(11) 40906 / 116746

Total
53694
39894
32290
41410
36298
29930
28898
41668
66299
76893
130769

Table XXIII: This group of tests are for fl=lO,OOO,  f2=100, f3=100 with the single
pipelined algorithm. The optimal point, which is 12, with respect to the time to get the
first result, is quite near to that predicted by the analytical formular.
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Pro+ T i m e h a s h l  Timehash:!  Timehash T i m e j o i n l Timejoin T o t a l
40( 10:30) 7206 173(j) 319(6) 36239 42484 50182
40( 20:20) 6074 169(j) 267( 5) 24377 35158 41668
40(30:10) 6039 144(  6) 141( 7) 27227 53507 59851

Table XXIV: This group of tests are for fl=lO,OOO, f2=100, f3=100 with the single
pipelined algorithm. The optimal partitioning tests are for p=40. The tests results for
10:30, 20:20, 3O:lO showed a good agreement with the expression pl : p2 = 1 : sl x f3,
where sl * f3=1. The optimal point is also equal to that predicted by the optimal
formular, which is 10.
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Proc# Timehashl Timehash Timehash Timejoinl
6(2:2:2) 41472 232 274 63926
10(2:4:4) 53914 138 214 63340
10(3:3:4) 42859 79 116 66715
16(4:6:6) 58804 53 66 58806
20( 2:9:9) 58028 187 304 67298
20(6:7:7) 44972 81 117 73546

40(8:16:16) 52828 207 527 65877
80( 10:35:35) 99184 485 763 135092
80(20:30:30) 69467 382 633 80958

Timejoin Total
69283 69789
63355 63707
67123 67318
58836 58955
67351 67842
73728 i3926
66297 67031
135501 136749
81281 82296

Table XXV: The relations are fl=lO,OOO, f2=100, f3=100, producing 10,000 tuples
after each join. This group of tests investigated the relationship between time and
processors’ number and processors’ partition using the double pipelined algorithm. Ex-
clusive partition tests are on p--16. The empirical formular gives best partition about
4:5:5, and it is quite near the experimental best partition 4:6:6. Tests are also con-
ducted on p=40, where several partitions around empirical optimal partition are tested.
A few partitions are also tried in other processor numbers. The optimal point to get the
first result for these relations is 10, exactly the same as predicted by the optimal point
formular .

Proc# T i m e h a s h l  Timehash  Timehash  T i m e j o i n l  Timejoin Total
21717 55507 43 67 67618 67693 67803
4:6:6 58804 53 66 58806 58836 58955
655 88238 43 84 88233 88267 88394
8:4:4 56437 66 72 80795 80869 81007
12:2:2 156000 41 76 170336 170386, 170503

Table XXVI: For relations fl=lO,OOO, f--3-100,  f3=100,  producing 10,000 tuples after
each join. Exclusive partition tests are on p--16. The empirical formular gives best
partition about 4:5:5, and it is quite near the experimental best partition 4:6:6.
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Pro+
4:18:18
8:16:16
10:15:15
16:12:12
2O:lO:lO

30:5:5

Timehashl 1 Timehash 1 Timehash I Timeioinl
74963 399
52828 207
59578 219
65099 I 210
69583 I 170
65566 174

201 74954
527 65877
231 72604
442 87766
371 68801
346 203426

Timejoin Total
75105 75703
66297 67031
72725 73175
88175 88827
68897 89438

203457 203977

Table XXVII: The relations are fl=lO,OOO, f2=100, f3=100, producing 10,000 tuples
after each join. Tests are conducted on p=40, where several partitions around empirical
optimal partition are tested.

Proc# T i m e h a s h l  Timehash Timehash  T i m e j o i n l
2:1:13 146964 31 390 229836
2:2:12 63372 44 399 134999
4:l:ll 236323 121 733 289099
4:4:8 117447 86 393 118010
6:1:9 316669 109 677 366618
81117 406216 109 678 4443 14

Timejoin Total
230042 230463
139059 139502
289147 290001
134611 135090
366902 367688
444681 445468

Table XXVIII: This group of tests investigated the relationship between the computa-
tion time, the number of processors, and the processors’ partitioning with the double
pipelined algorithm. The relations are fl=lO,OOO,  f2=100,  f3=1000. sl * f3=10. Ex-
clusive partition tests are on p=16. The empirical formular gives best partition about
4:5:50, and the best experimental partition we can arrange is 2:2:12.



Pro+ Timehashl Timehash
3( 1:l:l) 22935 84
6( 1:2:3) 21664 63
6( 2:2:2) 14203 47

lO( 2:4:4) 6912 122
lO( 3:3:4) 6664 43
lO( 4:3:3) 8933 45
16(2:7:7) 9415 49
16(4:6:6) 6418 45
20( 2:9:9) 9430 47
20(6:7:7) 9328 38

40(4:18:18) 12725 160
40( 8:16:16) 9400 61

40( 10:15:15) 8139 160
80( 10:35:35) 18340 701
80( 20:30:30) 10965 627

Timehash
134
97
117
200
65
65
65
73
93
199
597
137
128
391

I 1054

Timejoinl
28054
21678
20631
12600
13211
14653
11169
12497
11546
13530
13418
11850
11859
19539
14910

Timeioin2 Total
28058 28276
21686 21846
20849 21846
15344 15666
14217 14325
15024 15134
11308 11422
15157 15275
13545 13685
19948 20185
13437 14194
13692 13890
13522 13810
19620 20712
20814 1 22495

Table XXIX: This group of tests investigated the relationship between computation
time,the number of processors, and the processors’ partitioning with the double pipelined
algorithm. The relations are fl=4,000, f2=100,  f3=1000, producing 4,000 tuples after
each join. For each fked number of processors, several partitioning arround the empirical
best partition have been tested. The optimal point to get the first result is still around
p=lO.
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