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ABSTRACT.

A variant of the singular value decomposition for orthogonal

matrices due to G. W. Stewart is discussed. It is shown to be usef'ul

in the analysis of (a> the total least squares problem, (b) the

Golub-Klema-Stewart subset selection algorithm, and (c) the algebraic

Riccati equation.



1. Introduction.

In a recent survey article G. W. Stewart [8] presented the following

variant of the singular value decomposition (SVD):

Theorem 1.

If QeIRmXm is orthogonal and partitioned as follows,

Q = $I1 'I2 kI 1% Q22 p

k + p = m , k > p-

k P

then there exist orthogonal Ul and Vl in IRkxk
and orthogonal U2

and V
2

in BPXP such that
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C = diag(cl,...,cp)

S = diag(sl,...,sp)

C.1 = cos (e,)
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For notational convenience we will sometimes express the above

decomposition in the form

k

P

k P

where G = diag(Ul,U2), v = diag(Vl,V2), Co = diag(1
k-p' C>, and

so = [ 0 up .
k-P P

Note that UT Q.. V.
=J J

displays the singular values of Q.. . The
13

quantities c19...,cp will be referred to as the p-singular values of Q

and the entire decomposition as the p-SVD . The p-singular values of Q

are thus the singular values of Q's trailing pxp principle submatrix,

'The assumption p < k is not restrictive.-

The aim of this paper is to demonstratethat the p-SVD can play a useful

role in the analysis of certain matrix computation problems. This is not

a new endeavor; Davis and Kahan [21 made use of the p-SVD in their detailed

paper about invariant subspace perturbation. Although this paper precedes

Stewart [81, it was in the latter article that Theorem 1 was first made

explicit.

We briefly indicate how Theorem 1 can be proved. For clarity, assume

p=krm3 T
. Let ul &11 1V = diag(c1'c2' 3c > be the SVD of Qll .

Since 11Ql11i2  5 (I&/I2 = 1 > it follows that cl < 1 .-
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Let U2 be an orthogonal matrix such that the first column of u@21vl)

is a non-positive multiple of el '
the first column of the 3x3 identity.

Similarly, let V2 be orthogonal so that the first row of $Q,2)V2 is

T
a non-negative multiple of e1 . It then follows that

diag(UF,Uz)  Q diag(Vl,V2)  =

I)I)
..
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where a>O, rl0 and "x" denotes an arbitrary scalar.-

Since this transformed matrix is orthogonal, both row 1 and column 1

have unit 2-norm and thus, if s1 =m then a = s1 and r = - s
1 1'

This implies that f = cl because columns 1 and 4 must have a zero inner

product. It then follows from the unit length of row 4 and column 4 that

wwbWbdyky and j are all zero. This leaves us with 2 X 2 blocks --

Q.E. D. by induction.

2. The p-SVD, Direct Rotations, and Angles between Subspaces.

In this section we relate the p-SVD to certain well known relationships

that exist between subspaces. As we mentioned, Davis and Kahan [2] used

p-SVD ideas in their study of the invariant subspace perturbations.



In their analysis of this problem, it is necessary to be able to rotate

a given p-dimensional subspace A into another p-dimensional subspace B

in the most "economical" fashion. More precisely, if

Z = [ZJ z21 w = [WJ w21
n-p P n-p P

are nXn orthogonal matrices with A = Range (Z,) and B = Range (W2) ,

then we wish to determine an orthogonal T,;, E R nXn that minimizes

II T -
'nflF

subject to

a unitarily invaniant

It is clear that

must have the form

the constraint T Z2 = W2 . (Here, II IIc2=
F trace (CTC),

norm. )

any orthogonal T E IRnxn satisfying T Z2 = W2

T = [WIVll W2] [ZIUll Z2]l - W Z'

where
ul

and V are orthogonal matrices in IR (n-pMn-p>
1

. From the

identity

llq w,ll; + /I$ yll’F = llz,zi2’  - w2$ll;

it follows that

II T - InIl; = lliTT i - InIl; = IliT; - Inil;

= l#z; wlhl - I.-,ll; + ll~p~ w2) 11;

+ II q wl)vllI;  + I@ 5 - IpIg

= ppz; wlhl - In-pll; + I/z2.g - w21”12T1/2F  + llz3J2-  Ipll;
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This expression is minimized by choosing Ul and Vl so uT(zT w >v
1 1 1 1

is diagonal. (See [7]). Moreover, if

[

ul O

0 u2

is the p-SVD of Q = ZT W , then

T
min

= -t; ;T = ;(zT;)iT

= Z(ZT W> diag(VIU~,Ip)  ZT

ST
0

C 1 UTZT
11[ IVTZT
22

ST
0

C
I

and

II Tmin- ‘nll~ = 11’ - Ip/j2F + 211sll~ + 11’ ‘~~~‘2 ’ - Ipll~ ’

The p-singular values {c0&~)?, of ZT w provide a measure of how

different the subspaces A and B are. The 8i are referred to as the

"principle angles" between A and B and a stable, efficient algorithm

for their computation is given in a paper by Bjork and Golub [l]. Wedin [p]

has developed a perturbation theory for the principle angles. Tmin is

referred to in [2] as a "direct rotation" from A to B .



3. A Wielandt-Hoffman Theorem for p-Singular Values.

If an orthogonal matrix Q is perturbed, how are its p-singular values

effected? The following theorem answers this question.

Theorem 2.

If Q and 6 are rnxm orthogonal matrices having p-singular values

ccos (6, ))~=1 and [cos(~^~)]~_, respectively, then

P P 8.- ii.
4x 11 - cos (ei- ii) 1 = 81 sin2 ( I2 ') < 11~  - ill’, .-
i=l i=l

Proof.

If the p-SVD's of Q and i are given by

1 ul

0

and

respectively, then
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Now the Wielandt-Hoffman for singular values states that if the nxn

matrices R and i have SVD's U diag(oi)VT and 6 diag(ei)GT respectively,

then

P

1
(0 - ; I2 <ii-

i=l

IIR-

This result follows by applying the "original" Wielandt-Hoffman Theorem [5]

for eigenvalues to the symmetric matrices I 1rO RT 0 RT
q o and
c i i Iii0 l

(These matrices have eigenvalues + CT. and +- 1 6. respectively. > Thus, if- 1

ci= COS(~~), si= sin(Bi), si= co&$ and gi= sir&$ , then

P

IIQ - ill', >, 2~ (ci- ~i,2 + (si - si)2

i=l

P
= 4x El - COs(ei- e^i)'

i=l

= 8

In the next section it will be necessary to know how far a given m x n

orthogonal matrix Q is to the set sf" defined by
P

i

zll

z21

z12q
Z
22 i

m-p

P I ZTZ = Im , det(Z22) = 0
}

#

m-p 'P
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i.e., the set of all rnxm orthogonal

principle submatrix is singular.

Theorem 3.

matrices whose trailing px'p

If Q is an mxm orthogonal matrix with p-SVD given by Theorem 1,

and if 6 is defined by

with

? = diag$...,cp-l,O>

i = diag(sl, "'YSp-l" 1)

then

IIQ - illF = min I/Q - z[& = 2qxp) 5 2 cos(ep)

z E a;

Proof.

Any Z E S$ has p-singular values of the form rcos($,.

and so from Theorem 2,

II z - QII > 8 Esin2 (9) + 8 sin2 ( ep-eTI/2 ) _> 4(1 -

.,co&,-,)Y 01

sin(ep)) .

By setting 2, = i , the lower bound is attained. The rest of the Theorem

follows from elementary trigonometry. g



4. Some Applications.

We now apply the p-SVD to several computational problems.

(a) Total Least Squares [4].

Given A e Wmxn , B E lRmxp Cm _> n+p) and nonsingular "weighting

matrices" D = diag(dl,...,$) and T = diag(t
1,***, tn+p), the total least

squares problem (TLS) involves minimizing

llD [E tR]T (IF E E Rmxn, R c RmxP

subject to the constraint

Range (B + R) c Range (A + E) .

If a minimizing i and i can be found, then any X E 8" satisfying

(A + ;,X = B f R

is a TLS solution. Note that this last equation implies

[D[AlB]T + D[i$]T]T- = 0

and thus, the TLS .problem  involves finding the nearest matrix to D[AIBlT

that has a null space of dimension p . If

[9b21’ D[Ab]T  NJ%]  = dia&,. •.,~n+p)
m-p P n P
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is the SVD of D[AIB]T , then

D[~I~]T = - U2 diag(an+l,~~"On+p)~  l

The minimizing [GIGI is unique if a, > an+l l Moreover, if

[QltG$
&11= LQ2 1 &12

$22I

n P

then

T-l ‘-[ 1 =
-1
P

T-1 &12

[ I$2 2

-1
s2 diag

n

P

(t -1n+l Y**'Y t-l >
n+'p

provided Q22 is nonsingular. In this case

-1 -1
yrLS =

diag(tl,...,tn) Q&2,$ diag(tn+ly"~,tn+p)  l

Numerical difficulties arise in the TLS problem if
%

2 is close

to singularity. Consequently we are interested in how close the TLS problem
A

{A,B,D,T} is to a corresponding problem {i,B,D,TJ  with no solution.

Theorem 4.

Let A,B,D, and T be as above and suppose F = D[AIB]T has SVD

UTFQ = diag(oly...,on+ p> with 0, > an+l  l If (co&$)]!& are the

p-singular values of Q , then there exists a TLS problem &~,D,T} with

no solution satisfying

lW~If31~ - WbI~ll~  < 2 cos(e >

ll~MbI~/l~  - P l
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Proof.

Let 6 be the matrix in hzn+P
P

closest to Q as in Theorem 3 . Now

UTFQ = UT(FQQT& = diag(aly~~~,on+P)

and so by defining [Xl from

D[A I ii ]T = ?Q;T = D[AIB
A h \

IT QGT

we see that the TLS problem [A,B,D,T) has no solution and

IID[AI~]T - D[AIBITII~  < IINAIBITII~  IIQ-~I& .-

The Theorem follows since IlQ-~ll F = 5 2 cOs(ep) . q

(b) Golub-Klema-Stewart Subset Selection [3].

Consider the problem

minIlAx - b(12 A E flxn , b E Wm

where A has SVD

[uJu~I~  A [Ql,gI = diag(al,...,on)

r n-r r m-r

and or >> o
r+l m

0 . This implies that A is close to a rank r matrix.

One way of "coping" with the ill-conditioning is to minimize IJA,x - bll
2



where Ar = Ul diag (oly T
l l l �0

�%

.r

This least squares problem has the solution

X
r

=
'i

where q. and ui denote the1 i-th columns of Q and U respectively.

A shortcoming of this approach is that the predictor Axr of b involves

all n columns of A . Since rank degeneracy implies redundancy in the

underlying linear model, it may be desirable to approximate b with r

suitably chosen columns of A .

A method for doing this is suggested in [3]. Suppose P E lRnxn is

a permutation matrix and that y E R' minimizes
FLy - b/l2 where

AP = [B11B21  l

r n-r

If

PTQ =

and

A

x = P Y r

iI0 n-r

then it can be shown that

II r^ - rX



Here, the notation rz means rz = b - AZ , the residual of z .

Since

II r" - r
X II

xr 2

it can be argued that G , vis-a-vis

quantity as small as possible because

component of b . In [3] this task
Cy

= IIAi - up; bl12 I

P , should be chosen to make this

T
UIUlb represents the "stable"

is approximately accomplished by

chasing P so that the resulting Qll is well-conditioned. This is done

by applying the Q-R with column pivoting algorithm to $1 :

Q;P' = Z[RlIR2] ZTZ = Ir , Rl = 7 .

r n-r

In many applications, however, n - r << r . Since the p-SVD

implies II i$12 "-1= 11% II2 2 ' we can essentially determine P by triangularizing

the "skinny" matrix Q2 thus saving work . Note, that if r = n-l , then P

should merely interchange rows k and n of Q where Is,1 =maxq. .I Iin
l<i<n- -

(c) The Algebraic Riccati Equation.

Suppose A,B,C e Wnxn are such that AT= A > 0 , CT= c > 0 l Well-- -

known conditions of stabilizability and detectability [lo] guarantee that if

B A
M = [ 1C -BT

then there exists T,Y,Z E Rnxn such that

13



where Z is nonsingular and

Furthermore, it can be shown

definite, symmetric solution

A +

T's eigenvalues are in the right-half-plane.

that X = YZ
-1

is the unique, non-negative

to the algebraic Riccati equation

BX+ XBT - xcx = 0 .

The matrix M is said to have Hamiltonian structure and in [6] the

following decomposition is proved:

(1)

where T is upper quasi-triangular, R is symmetric and

T

0 -

R

3
TT

Q orthogonal.

-1If T has its eigenvalues in the right-half-plane, then X = Q..&& solves

the Riccati equation.

The transformation Q is said to have symplectic form. Orthogonal

symplectic matrices 'preserve Hamiltonian structure and moreover, their p-SVD

is of very special form:

Theorem 5.

If

n n

14



is orthogonal, then there existnxn orthogonal matrices U axid V such that

c -A[ 1A C

where

C = diag$, ""on 1 1 > a1 > l ** > on > 0- - -

A = diag(61,.oo,6 > Q2+ $= I
n n l

The proof is given in [5]. Note that A may have negative diagonal entries

and that if 4+ 0 then

-1
X = Qusl = U diag(&) UT

(In the Riccati application, the 6
i

are positive.)

In practice it is important to understand the significance of small 6i

since the accuracy of a computed X depends on the size of 6
1 ' In [63 this

topic is pursued. Roughly speaking, it can be shown that perturbations in A,B,

and C of order hl can result in a Riccati equation i + 6X + XT?.- x6x = 0

that has no symmetric positive definite solution.
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