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ABSTRACT.

A variant of the singular value deconposition for orthogonal
matrices due to G W Stewart is discussed. It is shown to be useful
in the analysis of (a) the total |east squares problem (b) the

Gol ub- Kl ena- Stewart subset selection algorithm and (c) the al gebraic

Riccati equation.



1. | ntroducti on.

In a recent survey article G. W Stewart [8] presented the follow ng

variant of the singular val ue deconposition (SvD):

Theorem 1.

If e R™™ js orthogonal and partitioned as follows,

Q = QCl.lﬁ k k+p=m, k>p
b1 p

k P
then there exist orthogonal Uy and vy in R¥* and or t hogonal A
and V, in RP*® sych that
1 0 .07) k
k-P : P
u:o ] [a. ta. [v.io 0 C s
17 JIL 12 ) L - Coooonsp P
0 :U, Q211Q2| 0:V, e - s:C P
k-p p p
wher e
C = diag(cl,...,cp) C, = cos (ei)
S = diag(sl,...,sp) §, = sin(ei)
and 0< ) < ... <O < n/2



For notational convenience we will sonetines express the above

deconposition in the form

T
C S k

-[--JTQ T o= 0 0
-8, ¢ p

kP

where U = dlag(Ul,Ug), VvV = dlag(Vl,Ve), CO = dlag(Ik_p, ¢), and

s, =[0 s] p
k-P P

Not e t hat Ug Q.l.:J VJ di spl ays the singular values of % . The
quantities CpreeesCy will be referred to as the p-singular values of Q
and the entire deconposition as the p-SVD . The p-singular values of Q
are thus the singular values of Qs trailing pxp principle submatrix.

' The assunption p < k is not restrictive.

The aimof this paper is to denonstratethat the p-SVD can play a useful
role in the analysis of certain matrix conputation problens. This is not
a new endeavor; Davis and Kahan [2] made use of the p-SVD in their detailed
paper about invariant subspace perturbation. Athough this paper precedes
Stewart [8], it was in the latter article that Theorem 1 was first nade
explicit.

V% briefly indicate how Theorem 1 can be proved. For clarity, assune

o B T
p=k=3 . Let Ul Qll

Since [lay,ll, < “QH2 = 1, it follows that ¢l <1 .

V, = diag(cl,cg,cs) be the SVD of Qg -



. . T
Let U, be an orthogonal matrix such that the first colum of U2<Q21V1)

Is a non-positive nultiple of e s the first colum of the 3x3 identity.

. . T .
Simlarly, let V2 be orthogonal so that the first row of (U1Q12)V2 is

a non-negative nultiple of eTl . It then follows that

. T T . :
dlag(Ul,Ug) leag(Vl,Vg) = 00 O c,:d x X

..................

where a>0, r < O and "x" denotes an arbitrary scalar.

Since this transformed matrix is orthogonal, both row 1 and colum 1
have unit 2-norm and thus, if s, = Vl-ci then a = Sy and r = - Sq
This inplies that f = ¢y because colums 1 and 4 nust have a zero inner
product. It then follows fromthe unit length of row 4 and colum 4 that
u,v,g,h,b,d,k, and j are all zero. This leaves us with 2 X 2 bl ocks --

QE D. by induction.

2. The p-SVD, Direct Rotations, and Angles between Subspaces.

In this section we relate the p-SVD to certain well known relationships
that exist between subspaces. As we nentioned, Davis and Kahan [2] used

p-SVD ideas in their study of the invariant subspace perturbations.



In their analysis of this problem it is necessary to be able to rotate
a given p-dinensional subspace A into another p-dimensional subspace B

in the nost "econonmical" fashion. Mre precisely, if

7 = [zl| z,] W = [wll W]
n-p P n-p P

are nxn orthogonal matrices with A = Range (ZE) and B = Range (Wg) ,
then we wish to determine an orthogonal T . ¢ R™® that nininizes

. : 2 T
IT - InHF subject to the constraint T z, =W, . (Here, lcle = trace (¢ c),

a unitarily invaniant norm )

X0 satisfying T 7, = W

It is clear that any orthogonal T ¢ R 5

must have the form

A AT
W 2

T = [wlvll Wyl (2,0, | ZQT*

where Uy and V, are orthogonal natrices in & (-p)x(@-p) £ the

identity

T 42 T 12 _ T T2
”Zl WQHF + ”22 wlIIF - ”Z2Z2 - WQWEI!F

it follows that

IT- )8 = Jz'r 2 - g = 175 - 5
= HU]T_(ZJT_ wl)vl - |n_p||§ + HUf(zf We) H?
w1 (g v IS+ iz W, - IS
- oy g vy - 1B+ Nz, - wiglE - lizgng- T



This expression is mininized by choosing U, and v, SO U:rl(Zi w, )V,

is diagonal. (See [7]). Moreover, if

u o 27 W, zg W) [ v, o e 5
{0 U, ;Zg wozpw,| Lo v, ) -8, ¢
————
7t W
is the p-SVWD of Q = 7t W, then
T = w2t = z2(zh)z
= 2(zt W) diag(vlui,xp) 7T
- [ZlU;L'ZeUe][Co Sgl UiT}
-5, C Vo
and
IT 5o Tl = e - TS + 2llsl® + lle (0, ) - TS

. T .
The p-singular val ues {cos(el)}1i°=l of Z° w provide a neasure of how

different the subspaces A and B are. The ¢, are referred to as the
"principle angles" between A and B and a stable, efficient algorithm
for their conputation is given in a paper by Bjork and Gol ub [1]. Wedin [9]
has devel oped a perturbation theory for the principle angles. T . is

min

referred to in [2] as a "direct rotation" fromA to B .




3. A Welandt-Hoffman Theorem for p-Singular Val ues.

If an orthogonal matrix Q is perturbed, how are its p-singular values

effected? The follow ng theorem answers this question.

Theorem 2.

If Q and & are mxm orthogonal nmatrices having p-singular values

{cos(ei)}fz and {Cos(gi)}§= respectively, then

1 1
1) [1-cos(ey-6,) 1= 8) sin L %) <fa-df.
i=1 i=1

Pr oof
If the p-svD's of Q and @ are given by
T . T
v © 91 Yo Vy O } _ ‘% %o K
0 U %1 % 10 Y Sy C P
k P
and
~ 1 T A ~ A - ~ A~
U o O | | Vg © J % SO“ k
0 U, Ay Qo 0 v, -8, C P
kK Pp
respectively, then
~2 T ~oA AT 2
o - ally = uCovy - U057l
T, T ~ ATAT D
T A A
T ~oAoT2
+ollugSery - USeT g
T A U=
+ [uecvy, - U, cC VEHF



Now the Wel andt-Hoffman for singular values states that if the nxn

matrices R and R have svD's U diag(ci)VT and U diag(ai)VT respectively,

t hen

)

A )2 e
z (Oi' Oi) < IR - R”F
i=1

This result follows by applying the "original" Welandt-Hoffnman Theorem [5]

| | . 0 RY 0 &"
for eigenvalues to the symmetric matrices IR and £ 0
L J |-
(These matrices have eigenvalues + o and = &, respectively. ) Thus, if
¢,= cos(e,), s;= sin(e, ), &= cos(p;) and 8= sin(g,) , then
2 . 2
~ A~ 2 ~
lo - 315 > 2) (e;- 607 + (s, - 5)
i=1

P
- uE: f1 - cos(e, - 6.)]
=1

Y IS o
= 8Z sin 5 . [
i=1

In the next section it will be necessary to know how far a given mx n

orthogonal matrix Q is to the set O’E defined by




i.e., the set of all mxm orthogonal matrices whose trailing pxp

principle submatrix is singular.
Theorem 3.

I[f Qis an mxm orthogonal nmatrix with p-SVD given by Theorem 1,

and if q is defined by

T oflo T
. U, 10 P v,'o
e = | v |lo c st
6 1 - - ==X J—;\- O Ve
; 2“lo s fc '
with
Cc = diag(cl,...,cp_l ,O)
S = diag(sl,...,sp_l,l)
t hen
la - Q”F = minlq - Z“F = 2VY1- sin(ep) < 2 cos(ep)
7 e Q‘m
P
Proof .
Any Z € QI; has p-singular values of the form{cos(él),. .,cos(gp_l), 0]

and so from Theorem 2,

-t 6. -0. g - m/2
1z - @ > 8 Z sin® ( e l) + 8 sin” ( P—g——_) > 4(1 - sine))
i=1

~

By setting z= ¢ , the lower bound is attained. The rest of the Theorem

follows from elementary trigononetry. ]



4.  Sonme Applications.

V¢ now apply the p-SVD to several conputational problens.

(a) Total Least Squares [k4].

mxp

Gven A« R™®, B ¢ R (m > n+p) and nonsingul ar "weighting

mtrices" D = dia,g(dl,...,dm) and T = diag(t 1,...,tn+p), the total |east

squares probl em (TLS) invol ves ni ninizing

IprelrRlTl, E <®™", R e¢r™®

subject to the constraint
Range (B + R) ¢ Range (A + E) .

If amninizing E and R can be found, then any X ¢ B*® satisfying

~

(A + E)X = B + R
is a TLS solution. Note that this last equation inplies

[x]

{D[AIB]T + D[ﬁlﬁ]T}T‘l | = 0
[ %)

and thus, the TLS problem involves finding the nearest matrix to pra|s]r

that has a null space of dimension p . If

[Ul'Ue]T DlA|BIT [@)]Q,] = diaglo,. <30
m-p P np



is the SVD of D[A|B]T , then
DIE|R]T = - U, diag( )QQT
= - 2 g O'n+l"oo’o'n+p .

ALGA

The nininizing [E|R) is unique if a, >o,,. Mreover, if

Q n
a = [ala,] =[Q11 ¥
D1 %) P
nop
t hen
X Q .
-1 -1 M2 -1 .. -1 -1
T { 11 = T [QE } %o dlag(tn+l,...,tn+p)
) 2
provi ded Qs is nonsingular. In this case

. -1 .. A -
Xopg = diag(tyseeast ) Q007 dlag(tn+l,...,tn+_p).

Nunerical difficulties arise in the TLS problemif q,, is close

to singularity. Consequently we are interested in how close the TLS problem

{A,B,D,T} is to a corresponding problem {A,B,D,T} with no sol ution.

Theorem k.

Let 4,B,D, and T be as above and suppose F = D[A|BIT has SVD
0'FQ = disgloysesop, ) WEN oy > 0. If feos(e)} ) are the
p-singul ar values of Q, then there exists a TLS problem fA,B,D,T} with

no solution satisfying

ID(AlBIT - plalBIT],

< 2 cos(ep)

Ioral®lzl,

10



Pr oof .

Let &be the matrix in Qg+p closest to Qas in Theorem3 . Now

U'FQ = U (FaQ1)Q = diegloyse-asoy, )

and so by defining [A|B] from

DlA|B]T QQT

DIA[B]T = roQ’

we see that the TLS probl em ?A:B,D,T‘) has no solution and

IntalBlr - oialslTll, < [oalBiT), fla-all, .

The Theorem fol | ows since HQ-&HF =<2 cos(ep) <0 O

(b) ol ub-Kl ena- Stewart Subset Sel ection [3].

Consi der the problem

min||Ax - b”2 Aec®E® b er”

where A has SVD

T .
(v, 0,17 A fe,Q,] = diagloy,.--s0,)
r n-r r mr
and op >0 g ~0 . Thisinplies that A is close to a rank r matri x.
One way of "coping” with the ill-conditioning is to mnimze HArx - b”2



I

where A = U, diag (cl,...,or)Ql

This |east squares problem has the solution

aQ

r u?b
Xr :ZE: 4

i=1 *
wher e 9, and Uy denote the i-th colums of Q and U respectively.
A shortcomng of this approach is that the predictor Ax of b involves
all n colums of A . Since rank degeneracy inplies redundancy in the
underlying linear model, it may be desirable to approximte b with r
suitably chosen colums of A .

A nethod for doing this is suggested in [3]. Suppose P ¢ R s

a permutation matrix and that §e RY  nininizes ”Bly - b”g wher e

AP = [Blle}
n-r
| f . .
Q Q r
PTQ _ {}1 ~12]
%y ] n-T
and
x = P[¥|*
oin-r
then it can be shown that
~ , Or+1 ,=-



Here, the notation r nmeans r = b -Az, the residual of z .

Since

|Ax - U

T

g -,
r

it can be argued that X , vis-a-vis P , should be chosen to make this

quantity as small as possible because UlUJ*Tb represents the "stable"

component of b . In [3] this task is approximtely acconplished by

chosing P so that the resulting 91 is well-conditioned. This is done

by applying the QR with colum pivoting algorithmto Q -

T.T _ T, _ -
P =z& ) zz=1, r =\
r n-r
In many applications, however, n -r <<r . Since the p-SWD
i mplies ||Q:'&||2 = ”Q,;i|2. we can essentially determine P by triangularizing
the "skinny" matrix Qz thus saving work . Note, that if r = n-l , then P
should nerely interchange rows k and n of Q where lqknl =maxd. nX
1
1<i<n
(c) The Algebraic Riccati Equation.
Suppose A,RB,C ¢ R™™ are such that AT= A >0, ¢’= . > .\l -

known conditions of stabilizability and detectability [10] guarantee that if

then there exists T,Y,2 ¢ B syuch that

13



where Z is nonsingular and T's eigenvalues are in the right-half-plane.

1

Furthermore, it can be shown that X = YZ = is the unique, non-negative

definite, symetric solution to the algebraic Riccati equation
A+ BX+ XBT - xcx = O .

The matrix Mis said to have Hamiltonian structure and in [6] the

foll owi ng deconposition is proved:

T - ;
. 91 % B A U1 %1 T R
D1 Y1 c -3 %y 9 |0 1
N
Q

where T is upper quasi-triangular, R is symretric and Q orthogonal.
. . , : _ -1
If T has its eigenvalues in the right-half-plane, then X = Q%7 sol ves
the Riccati equation.
The transformation Q is said to have synplectic form  Othogonal

synplectic matrices 'preserve Hamltonian structure and noreover, their p-SVD

is of very special form

Theor em 5.
- n
y g - |1 T
V1 % n
n n

1k



is orthogonal, then there existnxn orthogonal matrices U and V such that
T

Uu o0 Qll -le v © _ = 1
0O U Q?l Qll o Vv A

—_ . * %
T = dlag(o'l,...,o'n) 1>0 >% >0, >0

wher e

A= dleg(sy,...06) K+ F = 1
The proof is given in [5]. Note that A may have negative diagonal entries

and that if 51;4 0 then

_ =1 _ . T
X = QllQ’zl = U dlag(di/éi) U

(I'n the Riccati application, the 6, are positive.)

In practice it is inportant to understand the significance of small 8,
since the accuracy of a conputed X depends on the size of 6 In [6] this

topic is pursued. Roughly speaking, it can be shown that perturbations in A B,
and C of order 6, can result in a Riccati equation A+ BX + XBL- Xo¥ = 0

that has no symetric positive definite solution.

15
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