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Abstract.

H(x) ., the negative logarithm of the apriori probability M(x) ,

is Levin's variant of Kolmogorov's complexity of a natural number x .

Let a(n) be the minimum complexity of a number larger than n ,

s(n) the logarithm of the apriori probability of obtaining a number

larger than n . It was known that

e-4 < a(4 < s(n) + H(Lsb> ☺ > l-

We show that the second estimate is in some sense sharp.
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Let T(p) be a partial recursive function defined over binary

sequences with values among the natural numbers which is prefixless:

(4 If Pl is a beginning segment of p2 and T(pl) is defined

then Tb2) = T(Pl)

and optimal:

(b) for any other prefixless p.r. function T* , there is a sequence

p such that T(pq) = T'(q) for all q l

Let R(p) denote the length of the sequence p , Levin introduced

the complexity

H(x) = min{I(p): T(p) = x)

as a useful variant of Kolmogorov's  complexity. See e.g. [1], also

Chaitin [2], Gacs [3].

We denote by T(p;t) a computable "approximation" of T(p) :

on some Turing machine computing T(P) t T(p;t) is T(p) if T(p)

is computed within time t , undefined otherwise, We write

H(W) = min{R(p): T(p;t) = x)

M(x) = 2-H(x) , M(x;t) = 2-H(x;t) ,

S(n) = - 1X( ,, M(i) )

a(n) = mini>n H(i) .



N-4 and e-4 Y two extremely slowly (slower than any

recursive function) growing functions, are closely related.

that

(1) s(n) 5 a(n) ,< s(n) + H(Ls(n) _I Y

unbounded,

It is known

where < and x denote inequality and equality to within an additive,-

< and x to within a multiplicative constant.N

The first inequality is trivial, the second one is well-known (see

e.g. [41). A hint to the proof: to find a number > n , we have only-

toknow 2 -S (0) to within an error term 2 -s (4 .

We will show that the second estimate in (1) is sharp.

Theorem. Let g(n) be any positive, monotone recursive function such that

(2) z 244 = 03 .
n

Then a(n) > s(n)+ g(s(n)) infinitely often.

Proof. It is well-known (see e.g. [3]) that, if Cl(n;t) is a computable

nonnegative rational function over pairs of natural numbers, monotone in t

and c p(n;t) <_ 1 , i.e., for each t , w(n;t) is a semimeasure, then
n

&-G-q < M(n) .N

Put

s(n;t) = c M(i;t)
i>n-

sy(n;t) = c p(i;t)
i>n-
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m(k;t) = max(n: s(n;t) < k}

mJb;t) = max{n;,$n;t)  < k] .

The construction depends on nk , a fast-growing recursive sequence.

We will see at the end of the proof, how we should choose it in dependence

of g .

Let p(n;O) = 0 .

Suppose that P(n;t) is already constructed. Put

k(t) = m={k 2 -lo& - s$O;t)): 3i E [nk-2+1y nkmll

(3) CI(mP(i-g(i);t);t)  > i] .

Put n(t) = nk(t) . Let j(t) = max{j: p(j;t) > O] . Put

P(j(t)+l;t) = 2-n(t)

p (j ;t+l) = &W) for j f j(t) .

We will show that there are infinitely many i's

all t , (3) holds.

This implies, of course, that

cx(mJi-g(i)) > i .

That is, for some n , with

i-g(i) > sJn)

a(n) > i > s (n)+ g(i) L: s
P

and the theorem will be proved.

(n) + g(i) 2 44 + dS(nH

such that for almost

Suppose that, on the contrary, there is a largest i. among the i

such that (3) holds for almost all t and a least to such that (3) holds

for i. and all Q-t,.
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Under the above assumptions,

Yoit) -) IL l

Therefore

t2
Notation. A(tl,t2) = x ,-n(t) ;

t = t,

B(tl,t2,ko) = c (2-"@): t c [tl,t2] , k(t) = ko) .

Lemma. There exists a triple ho, tlyt2) with k. 2 k(tO) ,

t2 2 tl z-to such that

(a> k(t) 2 k() for te [tlyt2] ;

w 2
-nko-l

5 A(tl,t2) <_ 3 B(+t2’kg) .

Proof. For some to , twJO)' to' to) will satisfy (a) and the first

inequality of (b).

Let US say that (ko,tl,t2) < (kb,ti,t$) if k; 5 k. , tl 5 tl < t2 5 t; .

Let (ko,tl,t2) be a minimal triple <_ oeO)’ toYto)  Y among the

triples satisfying (a) and the first part of (b).

(A) For t3 E [tl,t2] we have k(t) = k.

minimal.

For similar reasons we have

Y otherwise the triple is not

(B) If tl <_ tl 5 t; 5 t2 and k(t) > k. in [t;tt;] then

-%
then B(tl,t;) < 2 O .

5



Therefore we have

-?k
A(tpt*) 5 B(tl,t2,ko)+ (l+#{te [tl,t21: k(t) = ko]*2 '

-n

5 2B(tl,t2,ko) + 2
kO

. El

We concentrate now on a triple 0Gl.‘t2) 5 (k(tO),tO,to)

satisfying (a) and (b).

Notation. For i E [~-lynkl Put

Ei = {t E [tl,t2]: 3n H(n;t) < i,H(n;t) < H(n;t-1)) .

We now estimate si = # Ei from below (see (5)). Let us write

*i
= f-t ilyti2' "'Y ist 3, where t.. <tij+l. Put to = tl-1,

i IJ

tisi+ = t2 l

Let u.. = the last t in
1J

[tij+l,t ij+l] (if any) with

k(t) = k . If there is no one, u.. = t.. .
1J 1J

ij-1
Let 0.. = C 2-w

1J
, A..=

t = t; is, 1J
-log 0.. .

13
Then by our

algorithm we have

a(mP(i-g(i)) ;uij-1) 5 i l

On the other hand, by the definition of u.. ,
1J

Therefore we have

A.. =
1J

s(j(tij+l

a(j(tij+l) ;uij-1) > i

1 ;u..-1
1J

2 i-g(i) ,

(4) CT < 2-i+ g(i>
ij - .



On the other hand,

t

2-?k-1 < c' 2-n(t) = c 2-n(t) + z Cj + B(tl,t2,k)
t = to TV Ei 3

-n
< Si’2

k + (si+l)2-i+g(i) + B(tyt2,k) .

Using (b) of the Lemma,

-nk-l
-n

5 (si+1)(2 k+2
-i+g(i) ) 5 2(si+l)(Poi+g(i))  ,

Hence

-nk-l+ =* -g(i)
S
i >

1.2
- 3

-1 Y

that is, for i-g(i) > nkl+2 :

(5) S.

1, 2-n-kl+ i - g(i)

124

l

p& Mk = min[i: i-g(i) > nk-l+2) '

We have
n
*&k . -%

1 L S(O;tp) - S(O;tl) L C. +1
'2-l'(si-si-l)  + 2

"'?k

"mk

nk nk
-1

=
.
c l 2-i si - z 2-i-1. si

l=?k
i= %

nk-l
IL. 2 -nk-l.

9s

> r yi-l 0 Si 2 8
c ,-g(i)  .

i=
%

i=mk

If ?k is chosen far enough from nk-l '
this will obviousv lead

to a contradiction. 0
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