RELATION BETWEEN THE COMPLEXITY AND THE PROBABILITY OF LARGE NUMBERS

by

Peter Gacs

STAN-CS-79-765
September 1979

DEPARTMENT OF COMPUTER SCIENCE School of Humanities and Sciences STANFORD UNIVERSITY

Relation Between the Complexity and the Probability of Large Numbers

Peter Gacs
Computer Science Department Stanford University Stanford, California 94305

September, 1979

Abstract.

$H(x)$, the negative logarithm of the apriori probability $M(x)$, is Levin's variant of Kolmogorov's complexity of a natural number x. Let $a(n)$ be the minimum complexity of a number larger than n, $s(n)$ the logarithm of the apriori probability of obtaining a number
larger than n. It was known that

$$
s(n) \leq \alpha(n) \leq s(n) \quad H(\lfloor s(n)\rfloor)
$$

We show that the second estimate is in some sense sharp.

This research was supported in part by National Science Foundation grant MCS-77-23738 and by Office of Naval Research contract N00014-76-C-0330. Reproduction in whole or in part is permitted for any purpose of the United States government.

Relation Between the Complexity and the
 Probability of Large Numbers

Peter Gacs

Let $T(p)$ be a partial recursive function defined over binary sequences with values among the natural numbers which is prefixless:
(a) If p_{1} is a beginning segment of p_{2} and $T\left(p_{1}\right)$ is defined then $T\left(p_{2}\right)=T\left(p_{1}\right)$
and optimal:
(b) for any other prefixless p.r. function T^{\prime}, there is a sequence p such that $T(p q)=T^{\prime}(q)$ for all q.

Let $R(p)$ denote the length of the sequence p, Ievin introduced the complexity

$$
H(x)=\min \{\ell(p): T(p)=x)
$$

as a useful variant of Kolmogorov's complexity. See e.g. [1], also Chaitin [2], Gacs [3].

We denote by $T(p ; t)$ a computable "approximation" of $T(p)$: on some Turing machine computing $T(p), T(p ; t)$ is $T(p)$ if $T(p)$ is computed within time t, undefined otherwise, We write

$$
\begin{aligned}
& H(x ; t)=\min \{\ell(p): T(p ; t)=x) \\
& M(x)=2^{-H(x)}, M(x ; t)=2^{-H(x ; t)} \\
& S(n)=-\log \left(\sum_{i=n}^{\infty} M(i)\right. \\
& a(n)=\min _{i>n} H(i)
\end{aligned}
$$

$\alpha(n)$ and $s(n)$, two extremely slowly (slower than any unbounded, recursive function) growing functions, are closely related. It is known that

$$
\begin{equation*}
s(n) \leq \alpha(n) \leq s(n)+H(L s(n)\rfloor, \tag{1}
\end{equation*}
$$

where \leq and \boldsymbol{X} denote inequality and equality to within an additive, \lesssim and \approx to within a multiplicative constant.

The first inequality is trivial, the second one is well-known (see e.g. [4]). A hint to the proof: to find a number $\geq n$, we have only to know $2^{-S(0)}$ to within an error term $2^{-S(n)}$.

We will show that the second estimate in (1) is sharp.

Theorem. Let $g(n)$ be any positive, monotone recursive function such that

$$
\begin{equation*}
\sum_{n} 2^{-g(n)}=\infty \tag{2}
\end{equation*}
$$

Then $a(n)>s(n)+g(s(n))$ infinitely often.

Proof. It is well-known (see e.g. [3]) that, if $\mu(n ; t)$ is a computable nonnegative rational function over pairs of natural numbers, monotone in t and $\sum_{n} \mu(n ; t) \leq 1, i . e .$, for each $t, \mu(n ; t)$ is a semimeasure, then

$$
\mu(n ; t)<M(n)
$$

Put

$$
\begin{aligned}
& s(n ; t)=\sum_{i \geq n} M(i ; t) \\
& s_{\mu}(n ; t)=\sum_{i \geq n} \mu(i ; t)
\end{aligned}
$$

$$
\begin{aligned}
& m(k ; t)=\max \{n: s(n ; t)<k\} \\
& m_{\mu}(b ; t)=\max \left\{n ; s_{\mu}(n ; t)<k\right\}
\end{aligned}
$$

The construction depends on n_{k}, a fast-growing recursive sequence. We will see at the end of the proof, how we should choose it in dependence of g.

Let $\mu(\mathrm{n} ; 0)=0$.
Suppose that $\mu(n ; t)$ is already constructed. Put

$$
\begin{gather*}
k(t)=\max \left\{k \geq-\log \left(1-s_{\mu}(0 ; t)\right): \sharp i \in\left[n_{k-2}+1, n_{k-1}\right]\right. \\
\left.\alpha\left(m_{\mu}(i-g(i) ; t) ; t\right)>i\right\} . \tag{3}
\end{gather*}
$$

Put $n(t)=n_{k(t)}$. Let $j(t)=\max \{j: \mu(j ; t)>0\}$. Put

$$
\begin{aligned}
& \mu(j(t)+1 ; t)=2^{-n(t)} \\
& \mu(j ; t+1)=\mu(j ; t) \quad \text { for } j \neq j(t) .
\end{aligned}
$$

We will show that there are infinitely many i's such that for almost all t , (3) holds.

This implies, of course, that

$$
\alpha\left(m_{\mu}(i-g(i))>i .\right.
$$

That is, for some n , with

$$
\begin{aligned}
& i-g(i)>s_{\mu}(n) \\
& a(n)>i>s_{\mu}^{(n)+g(i) \geq s(n)+g(i) \geq s(n)+g(s(n))}
\end{aligned}
$$

and the theorem will be proved.
Suppose that, on the contrary, there is a largest i_{0} among the i such that (3) holds for almost all t and a least t_{0} such that (3) holds for i_{0} and all $t \geq t_{0}$.

Under the above assumptions,

$$
s_{\mu}(0 ; t) \rightarrow I
$$

Therefore

$$
\sum_{t} 2^{-n(t)}=1
$$

Notation. $A\left(t_{1}, t_{2}\right)=\sum_{t=t_{1}}^{t_{2}} 2^{-n(t)}$;

$$
B\left(t_{1}, t_{2}, k_{0}\right)=\Sigma\left\{2^{-n(t)}: t \in\left[t_{1}, t_{2}\right], k(t)=k_{0}\right\} .
$$

Lemma. There exists a triple $\left(k_{0}, t_{1}, t_{2}\right)$ with $k_{0} \geq k\left(t_{0}\right)$, $t_{2} \geq t_{1} \geq t_{0}$ such that
(a) $k(t) \geq k_{0} \quad$ for $t \in\left[t_{1}, t_{2}\right]$;
(b) $2^{-n_{k_{0}}-1} \leq A\left(t_{1}, t_{2}\right) \leq 3 B\left(t_{1}, t_{2}, k_{0}\right)$.

Proof. For some $t^{0},\left(k\left(t_{0}\right), t_{0}, t^{0}\right)$ will satisfy (a) and the first inequality of (b).

Let us say that $\left(k_{0}, t_{1}, t_{2}\right)<\left(k_{0}^{\prime}, t_{1}^{\prime}, t_{2}^{\prime}\right)$ if $k_{0}^{\prime} \leq k_{0}, t_{1}^{\prime} \leq t_{1} \leq t_{2} \leq t_{2}^{\prime}$.
Let $\left(k_{0}, t_{1}, t_{2}\right)$ be a minimal triple $\leq\left(k\left(t_{0}\right), t_{0}, t^{0}\right)$, among the triples satisfying (a) and the first part of (b).
(A) For $t_{3} \in\left[t_{1}, t_{2}\right]$ we have $k(t)=k_{0}$, otherwise the triple is not minimal.

For similar reasons we have
(B) If $t_{1} \leq t_{1}^{\prime} \leq t_{2}^{\prime} \leq t_{2}$ and $k(t)>k_{0}$ in [$\left.t_{1}^{\prime}, t_{2}^{\prime}\right]$ then then $B\left(t_{i}^{\prime}, t_{2}^{\prime}\right)<2{ }^{0}$.

Therefore we have

$$
\begin{aligned}
A\left(t_{1}, t_{2}\right) & \leq B\left(t_{1}, t_{2}, k_{0}\right)+\left(1+\#\left\{t \in\left[t_{1}, t_{2}\right]: k(t)=k_{0}\right\} \cdot 2\right. \\
& \leq 2 B\left(t_{1}, t_{2}, k_{0}\right)+2^{-n_{k_{0}}}
\end{aligned}
$$

We concentrate now on a triple $\left(k, t_{1}, t_{2}\right) \leq\left(k\left(t_{0}\right), t_{0}, t^{0}\right)$ satisfying (a) and (b).

Notation. For i $\in\left[n_{k-1}, n_{k}\right]$ put

$$
E_{i}=\left\{t \in\left[t_{1}, t_{2}\right]: \mathbb{Z n} H(n ; t)<i, H(n ; t)<H(n ; t-1)\right\} .
$$

We now estimate $s_{i}=\# E_{i}$ from below (see (5)). Let us write $E_{i}=\left\{t_{i 1}, t_{i 2}, \ldots, t_{i}\right\}_{i}$, where $t_{i j}<t_{i j+1}$. Put $t_{i 0}=t_{1}-1$, $t_{i s_{i}+1}=t_{2}$. Let $u_{i j}=$ the last t in $\left[t_{i j}+1, t_{i j+1}\right]$ (if any) with $k(t)=k$. If there is no one, $u_{i j}=t_{i j \jmath}$.

Let $\quad I_{j}^{\sigma} .=\sum_{t=t_{i, j+1}}^{u_{i j-1}} 2^{-n(t)}, \lambda_{i j}=-\log \sigma_{i j}$. Then by our
algorithm we have

$$
\alpha\left(m_{\mu}(i-g(i)) ; u_{i j}-1\right) \leq i .
$$

On the other hand, by the definition of $u_{\text {Ty }}$,

$$
\alpha\left(j\left(t_{i j}+1\right) ; u_{i j}-1\right)>i .
$$

Therefore we have

$$
\begin{align*}
& \lambda_{i j}=s\left(j\left(t_{i j}+1\right) ; u_{i j}^{-1} \geq i-g(i),\right. \\
& \sigma_{i j} \leq 2^{-i+g(i)} . \tag{4}
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
2^{-n} k-1 & <\sum_{t=t_{0}}^{t_{2}} 2^{-n(t)}=\sum_{t \in E_{i}} 2^{-n(t)}+\sum_{j i j}^{\sigma}+B\left(t_{1}, t_{2}, k\right) \\
& <s_{i} \cdot 2^{-n_{k}}+\left(s_{i}+1\right) 2^{-i+g(i)}+B\left(t_{1}, t_{2}, k\right) .
\end{aligned}
$$

Using (b) of the Lemma,

$$
\frac{2}{3} \cdot 2^{-n_{k} k} \leq\left(s_{i}+1\right)\left(2^{-n} k+2^{-i+g(i)}\right) \leq 2\left(s_{i}+1\right)\left(2^{-i+g(i)}\right)
$$

Hence

$$
s_{i} \geq \frac{1}{3} \cdot 2^{-n_{k-1}+i-g(i)}-1
$$

that is, for $i-g(i)>n_{k-1}+2$:

$$
\begin{equation*}
s_{i} \geq \frac{1}{4} \cdot 2^{-n k-1}+i-g(i) \tag{5}
\end{equation*}
$$

Put $m_{k}=\min \left\{i: i-g(i)>n_{k-1}+2\right\}$.
We have

$$
\begin{aligned}
I \geq & \mathrm{s}\left(0 ; t_{2}\right)-s\left(0 ; t_{1}\right) \geq \sum_{i=m_{k}+1}^{n_{1}} \cdot 2^{-i} \cdot\left(s_{i}^{-s_{i-1}}\right)+2^{-m_{k}} \cdot s_{m_{k}} \\
& =\sum_{i=m_{k}}^{n_{k}} \cdot 2^{-i} s_{i} \quad \sum_{i=m_{k}}^{n_{k}-1} 2^{-i-1} \cdot s_{i} \\
& >\sum_{i=m_{k}}^{n_{k}-1} 2^{-i-1} \cdot s_{i} \geq \frac{1}{8} \cdot 2^{-n_{k-1}} \cdot \sum_{i=m_{k}}^{n_{k}} 2^{-g(i)} .
\end{aligned}
$$

If n_{k} is chosen far enough from n_{k-1}, this will obviously lead to a contradiction.
[1] L. A. Levin, "Laws of information conservation," Problems of Information Transmission 10, 3 (1974), 206-210.
[2] G. Chaitin, "A theory of program size formally identical to information theory," Journal ACM 22 (1975), 329-340.
[3] P. Gacs, "On the symmetry of algorithmic information," Soviet Math. Doklady 15 (1974),1477-1480; Corrections, ibid, 6, v.
[4] R. Solovay, unpublished manuscript.

