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Abstract.

Extending a result of Borodin, et. al. [1], we show that any

branching program using linear queries " Tkixi: C "to sort n numbers
I .

Lty ¢ ){{%Xm nust satisfy the tinme-space tradeoff relation TS = Q(ng)
The sane relation is also shown to be true for branching programs that

uses queries "nmin R=? " Where Ris any subset of {xl,xg,...,xn} .
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1. [ ntroduction.

A fundamental problem in |oworder conputational conplexity is the
probl em of sorting n nunbers XysKpyeees X . In the standard decision
tree nodel (see Knuth [5]), it is well known that =~ n |og n conparisons
x.l :XU are necessary and sufficient in the worst case. This nodel assunes
that all the test information can be retained, but does not address the
question of space needed to store the information. Recently, Borodin,
et. al. [1] studied "branching prograns" for sorting which incorporate
the concept of storage requirenents. It was shown [1] that any branching
programusing " x, :xJ"to sort n elenents nust satisfy the tine-space
tradeoff relation TS = Q(ne) , and that this bound can nearly be
achieved. One open problem raised there is whether the sane tradeoff
relation also holds for prograns with queries other than"xi: X, "

J

The case of linear queries " Z}xixi: c "is of special interest [2][7],
i

both because it deals with the question whether arithnetic helps in a
purely discrete problem and because linear queries are natural in problens
such as network flows, bin packing, and finding shortest paths. The nain
purpose of the present paper is to prove a tradeoff TS =§Xn2)for
branching prograns with linear queries (Theorem2). An intermediate step
is to establish this tradeoff for programs enploying only queries of the
form "which element is the smallest in R?", which may be of interest by
itself (Theorem1).

There is an extensive literature on tinme-space tradeoffs for genera
conputations. W refer the readers to [1] where further references can be

found; however, their understanding is not necessary for this paper.



2. Mbdel and Results.

In this section we review the essence of the branching-program nodel
and state the results to be proved in this paper. The readers are
referred to [1][6] for nore notivations and di scussions of this nmodel.

Let n be a positive integer. \e consider prograns that conpute
an output vector for any input vector X = (x5%5+-.5% ) in some input

domain D. A tree program (or, decision tree) tis a rooted tree with

* -
each internal node V labelled by a queryJ of x and each leaf y

labelled by an out put vector EW' Every edge out of an internal node v
i s lavelled by a possible response to the query at v . For any input x,

the conputation starts at the root, branches and traverses down the tree

according to the responses of the queries until a leaf y is reached.

The vector e—l’ is then the output. The time required by tis the
maxi mum nurmber of queries encountered for any XeD . Ve remark that é’q}
may have different dinensions for different y .

Branching prograns extend the concept of tree programs. A branching
programt is a directed multigraph with a distinguished vertex of
indegree 0 cal |l ed the source. Any vertex of outdegree O is a leaf.

otherwise an internal node. Each internal node v is labelled by a

query of ;, and each outgoing edge of v s labelled by a possible
response to the query and by an output [rl,il;rg:ies Coe 3r£’iz]
(possibly enmpty). The last expression is to be interpreted as part of

an output vector £ (%) = (fl(g),fe(i),...,fm(x)) , in the sense that

*

A query of x is any function g(x) that can only take a finite number
of distinct values (or, responses).



rz {
the conputation for any input ¥ starts at the source, traverses the

f (f) =i.,f (2) =41, . . . . f(;?):i . As in tree prograns,’
ry 1’ 1(2 2’

graph in a natural way until a leaf is reached. The collection of
outputs in the process gives the output vector for x . The number
of conponents in the output vector F may depend on %, and, in general,
some conponents fj (55) may be unspecified in the output. W only
require that the conputation halts in a finite nunber of steps, and
that the outputs are consistent i for any X in the desired I nput

domain. The time required by t is the maxi mum number of queries

encountered for any xeD . The capacity required by tis defined to

be [‘1og2 lVH , Wwhere V is the set of vertices of = that can be reached

by sone XeD ; we shall regard the capacity as the storage requirenment for .

V¢ now consider the problem of sorting distinct nunbers X 3¥XpseeesX

n
with branching programs and tree programs, In this case, the output
vect or ?(3(') is required to be the pernutation (01,02,. ,.,cn) such that
x, <x,< . ..<x, . Let Kbe any set of queries. A K-branching
1 2 n

program is a branching program that uses queries in K only; a K-tree
program is defined simlarly. Let L denote the set of queries
{x, x4 (i #j)) . Borodin, et. al. [1] showed the follow ng interesting

result.

Theor em BFKLT [1].  Any K, -branching program for sorting n distinct

nunbers in time T and capacity S requires TS = Q(ng) .

-

In the sense that, if a fj(x) has been specified in the outputs nore
than once, the values nust be the sane.



In this paper, we extend the above theoremto other query sets.
Let MIN denote the set of queries "Mn R=7?", where R c {1,2,...,n}
is any subset and Mn R =i such that ieR and xing for all j ¢ R,
Note that Mn R can have |r| responses, and that X; 1%y is a special
case by taking R = {i,j} . Let LINEAR denote the set of queries

"1(7) : 0" with possible responses <, =, >, where /z(;) =2 A%y < C
|

is any linear function. Qur main results are the follow ng theorens. ¥/

Theorem 1. Any M N -branching programfor sorting n distinct nunbers

intime T and capacity S requires TS = Q(ng) .

Theorem 2. Any LINEAR -branching programfor sorting n distinct
2

nunbers in time T and capacity S requires TS = q(n") .

Before turning to the proofs in the next three sections, we |ist
bel ow sone useful general properties for branching prograns. The proofs
can be found in [I]. Let t be any branching programwith required tine T

and capacity S .

Proposition 1. s > flog, T1.

Proposition 2 (Pippenger). There exists a branching program t' which

uses the sane set of queries, conputes the sane function as = intine T

and capacity < 25, and has the property that its vertices can be partitioned

i For convenience, we have nade the assunption that all x, are di stinct.

For Theorem 2, this assunption clearly only makes the result stronger.
To renove this assunption in Theorem 1, we have to define Mn R when
R contains some equal elenments. As long as the extension preserves
the original nmeaning when all elenents in R are distinct, Theorem 1
of course remains true.



into ™1 sets V 5...5V. such that any edge emanating from a vertex

o1 T
in V. termnates at a vertex in v, . .
i i+l

sV

Proposition 3. There is a tree program which, for each input 2, uses

the sane nunber of steps and has the same output as 7 .

Ve shall call the t* in Proposition 2 a normal formfor =. Cearly
we need only consider branching programs in their normal fornms, for the

proofs of Theorens 1 and 2.



3., (@uessing Ranks in a Partial Oder.

Ve shall develop some |emmas concerning the accuracy with which
one can guess the ranks of elenents in a partial order.

W start with sonme conventions. A partial order P on a set

X = (%% 000X ] is a subset of XxX such that (1) (xi,xi),éP

for all i , and (2) (xi,xj)eP and (Xj,xk)e P inplies (x.l,xk)gP,
i.e., 1t 1s "transitive". W wite Xi<P>§' for (xi,xj)e P, or
simply x, <x. when P is clear fromthe context. Any set | < XxX

J

of consistent inequalities {xi <x‘j , X, <X._, . ..} Qenerates a
1 1

partial order P by taking the closure of |I (i.e., adding to | all
the inequalities inplied by transitivity); we often wite
P = {xil < le, x§< sz, ...} if P can be generated by that set
of inequalities. For any partial order P on X, let N(P) denote
the number of linear orders on X that are consistent with P. W
shall draw partial order P sideways as in Figure 1; an arrow fromb
to a neans a<b in P, and we only draw a subset of arrows whose
correspondi ng inequalities generate P,

Let us consider the set g(x) of all n!' linear orders on X
as a probability space with each linear order assigned equal probability.
Let ra.nk(xi) be the random vari abl e whose value, for each |inear order,
Is equal to the number of X, | ess than or equal to X, . Any set of
inequalities | (or a partial order P ) induces an event on g(X),
and we shall use the sane symbol | (or P ) to denote the corresponding

event. For exanple, Pr{x, < le P) wll stand for

Pr{event x, < X | event P} ; clearly, Prix, < X | P) = n(Py {x, < xj})/N(P) ,



Ty

Figure 1. A partial order P = {a<b,b<c, d<c, d<e, a<c},
note that the arrow from ¢ t0 a is not shown.



the probability that X, <X assumng all |inear orders consistent

J
with P equally likely. Note that for any two sets of inequalities

I; 5L, the event corresponding to u 12 is the event I.A I

17 2"

Let P be a partial order on AUB where A = {a;;a,,...,2,} and

2’
B = {b”b,),...,bm} are disjoint non-enpty sets. W say P is slanted
on (A,B) if no relation b, < a.J is contained in P, 2-covered

@ B) 'fa1<a2<"'<at andbl<b2<...<bmunderP,

and 2CS on (A,B) if P is both slanted and 2-covered on (4 B) .

(See Figure 2.)

Let z and Wbe two partial orders on AyB, where A, B are
disjoint. Suppose zn (Ax A) = Wn(AxA) and ZN(BxB) = WN(BxB) ,
i.e., Z and w are identical when restricted to either A OIB .

W say that Z is nmore A-selective than Wif zZn(AxB) oWn(AxB)
and zn (BxA) c Wn (B xA) (see Figure 3).Intuitively, the elenents
of Awll be "smaller" under Z relative to B than under W. Note
that if Zis nore A-selective than W, then Wis nore B-selective
than Z.

W need the followi ng result from G aham Yao, and Yao [4].

Lemma 1 (%, Corollary 2 to Theorem1]. Let Z and W be 2 -covered

partial orders on (4,B), and Z is nore A-selective than B . Then

Pr{I|Z) > Pr{I|W}for any I c AxB .

The main results in this section are the next two lemms. Let t+ > 0 ,

m>0, n=ttm, 1<k <t be integers.




&=

(a) ()
A
B
()
Figure 2. (a) A slanted partial order on (A,B) ; note that

no arrow goes fromAto B .
(b) A 2-covered partial order on (A,B) .
(c¢) A 2cs -partial order on (A,B) .

10



Figure 3. Zis nore A-selective than W; note that
ZN (AxB) = {a<b, a'<b,a"<b,a<b',a'<b', a"<b'}

while WN(AxB) = {a<b, a<b'}

11



Lemma 2. Let P be a 2cS-partial order on (4,B) , where
A = {al’aE""’at} and B = {bl’bQ’""bm} . Then, for each k

distinct 1< il’ig’“"i <t and each 1 < TsTpreeesTy <N,

k k

k
Corol lary. Pr{ A (rank(a. )=r£) |P} < (t/mj.n rl)
1< <k . ’

Lemma 3, Let P be a slanted partial order on (A,B) where \aAl =t

and |B] =m . Then, for any k distinct elements a. .a. ....,a. €A
1ot T

and any k integers 1 < ry,rp..e,r <N,

k
Pr{ A (wk(ai'):rmp} < (t/m:;nrl) :

1<1<k

Proof of Lemma 2. Before proceeding with the proof we introduce some

notations involving +o. W regard the expression X, < Ao (or

—e <X, ., OF -e < X, < 4w ) as an event which is certain on g(X) ,

i.e., an event that always occurs. W wll also regard X, <t

(or -al <x, = <x <t ) as the "null" inequality when it appears

in a set of inequalities. For exanple, the set of inequalities (or

partial order) {x7<x5, X5 < tw, -o < X, —00<X7<+cn’ -0 < %) < xg}
means exactly the set of inequalities (or partial order) {x7 < X0 X, < x8} .
Thus, for A = {a;;a,...,a.} and B = {b;b,5...5,0 3, we can wite
| = {al< b, 2 <b, , -=< 8 8 < +o} ¢ AxB even though the

displayed I is not exactly formally a subset of AxB .

12



Bydef|n|t|onal<a <. .. <a andbl<b2<. . <bmunder P.

2 t
. . s o o
Wthout |oss of generality, We assune that 1<i, <i,<. . . <i <t
1<ry<r,<. .. <r <n, andr, >i for all ;. Define

I, =T L for 1<y <k, then 1< 353500050, Swl . The

condi tion rank(a.l Y=r1 is clearly equivalent to the condition

£

b. <a, <b, where we have adopted the convention by = -« and
oty

bml = +o , t0 be used throughout the proof of Lemma 2 unless specified
otherwise. V& can thus further assume that j; <, < < Jg .

W now show that P can be restricted to a standard form  For

convenience, let us use the notation a(i

Pr { A (ra.nk(ai ) = rz) | P} .
1<i<k :

i .,ik;rl,...,rk; P) for

Reduction 1. W can assunme that P includes a. <b. , a. <bv
_— 1 J i
1 1 k
Proof . Qtherwise, let ?'=Py(a <b , . ,a <b } . CQearly,
1 9 k k

0< N(P') < N(P) . Thus,

ai,. . oisrne.nr 8?7 = NP U, ,<a_<b.. .. .,b, .<a
1 k7L k Jll 1,079 Jkl I
> N(PU{b, ,<a, <b, , .. . ,b. _
Jp7t T 9y I Tt
= Oﬂ(il,i;‘uik;I‘l,...,I‘k;P) .
The validity of the lemma for P' will inply that for P . d

13



Reduction 2. We can assumne that P-=fa;<a, <...<a,b <b, <...<D

2 12 y m’
a, <b_.a_.<b ,....a <b.,}.
S J2 ko Jk
Proof . By Reduction 1, we can assune that P includes
. <bh, ....a, <b, . Let P= <...< b.<. . . <D
all bll’ i e {al 89 01 m’
a. <b . .... a, <b,}, then p* is nore B -selective than P .
1% k Yk
Let E ¢ BxA denote the conditions (b.jl_1 < g.l ’bjg-1< aiz, ,
b. < a, . Then, by Lemma 1,
Jk"l lk
iy . wiy 3 Tyseeerty 00 . pr{E| P}

> Pr{E | P}

= oc(il,o ,,,ik;rl,...,rk;P) .
Again, it is sufficient to orove the lemma for », O

Henceforth we assune that P is as given in Reduction 2. Let us

denote the event b. <a. by E,2 for L<y¢ < k . Then
Jl-l 1£ L - -

a(il,. i e 3i3B) = Pr{Ei AL AR, | P}

= Pr{E, | P}Pr{E, \P/\Ek} .eo Pr{E, \ PABA e AE ]

veo Pr{By [PAE, A . . AELY (1)

14



Let us denote Pr{b, ; < a la._ <b._, a <b_, ..., a <b, }
i xk 1 1 to J2

as h(il,...,ik; jl,. *,jk). t,m) , where the dependency on t and mis

explicitly exhibited. Keep in mnd that b, = += for jg = mrl . By

J

S
definition,
Pr{Ek | P} = h(il,...,ik; jl,...,jk;t,m) . (2)
For 1< ¢ <%k, one can show that
1 ifj =1
£+1
Pr{E, |PAEkA.../\E£+l} = %/ (3)

h(i:L’ L ‘,il;jl’ “"jz;i£+l-l’3£+l-l> Ot herV\A se

by the follow ng argunent. Wen Jp41 =1, we nust have i, = 1 and the
event Ef Is thus -»< a, , a certainty. In the other case, under

L
PAE A...AE, ., > the elements in {a, [s>1 ,}Ufo [s >3, have

ranks r l,...,n, and for any relative order anmong these elenents,

g+1’rz+l+
the probability distribution of the linear order on

{a,58,50.058,  _15b5b, Lu,b. 3 isidentical to that under the

1’72 1471702 AL

partial order f{a,<a, <. . . <a,  _4,b,<b,<...<b_ 5,
1772 1,717 2 ) 1t

a. <b .. .. .a <b,}. (See Figure kL)

1 9% Ty 9y

we now digress to derive certain properties of the function h .

By Lemma 1, we have, for j #1,

Pr{a, <b_ _la_<b , ..., & <b } > Pr{a, <b, ,|a <b },
s T e g o et K k
7 W enphasi ze that h(ll,...,lzg,jl,...,J£;1£+l-l,3£+l-l) is
Pr{b.<al. |ai<b.,a.1<b., ..., a <b. }in A uB', where
A e R R 1, 9,

A.' = {al,ag;a-.’a_t'} y B' = {bl)bg,ooa,bm,} \Mth t’ = il"‘l-l 2
m' = Jpa-l . and where the valug b is +e if s =mn+l and -»
if S = O .

15



1 £ +1

Figure 4  The el enent a. divides AUB into the "left"
+1

part {a ,...,a, 49 by LD _ } and the
1 1,10 1 !

"right" part (a. yesesd 3 0. se..b 3
Ty tt v m

the right part occupies ranks r, .+l, r

+1 n,

w12 -
and the actual rankings within it does not affect the

probability of the event E, .

16



which inplies

Pr{bj . < a \a. < s v ED 5 B4

b. : <b, ) > Prib_<a. |la, <b._},
kl e 11 1 1y Iy = -1 1 1

Jx k x  Jx

where the probabilities are taken with |A| =t and |B| == . The

last inequality is clearly also true for Iy = 1, Therefore,
h(ipeeerdy 5 30 fardy s tom) < h(ip,dy s tom) . (W)
By definition, 1<4i <tandl<j <mtl, For the nonent
assume t hat ik<tand J < mtl . Let Ql={al<a2<. C S Ay,
by < b, < ... <D, aik <bjk} , and Q = Qlu{bm< aik+l} . Then Qg
is nore B-selective than Q - Using Lenma 1 and the fact that the ranks

of all a, (£ >1

we obtain

k) and b (s > jk) are fixed under A (see Figure 5),

h(ik,jk; i ‘jk) = Pr{bj L < aik l Q’Q}

v

1>r{b_jk_<_L a.:Lk 1Q, }

= h(ik:JkSt:m)
Ve now claimthe inequality,
is true for all 1<i <tand1<j, <mtl. There are three renaining

cases

17
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1 1k 1k 1
A Ol— € < L e ]
B
b b. b
1 I m
a a. a. a
1 i 1k+l t
A <

Figure 5. Partial orders o and Qs for i. <t and Jy < ml

k

18



Case 1. i, <t and Ji = mtl . Defi ne Q and Q formally as before

(see Figure 6), UWilizing Lemma 1, we obtain

h(ik’jk; ik,m) = Pr{bjk-l < alkl Q’E}

v

Prib, . <a. |O}
J~t 1 Q1

h(ik) Jk_ ; t’m)

Fornula (5) follows by observing that h(ik,jk; ik,m)

= h(dp Jy 5 ik,jk) when j, = mtl (see Figure 7).

Case 2. ik = 1t and jk < ml . Define Q as before. Then, as the

rank of b, is fixed at t+s for each s > j,  (see Figure 8),

we have
Blipdys fedy) = Pri o< ailel}
k
Case 3. i = t and Iy = mtl . In this case,

as observed in Case 1.

W have thus established fornula (5) in all cases.

19



i, ik+l
A * o0

m
Y
a a.
i i, +1
A k k
B
b
m
%

Figure 6. Partial orders Q and Q for i < t and i = mHl .
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i K
A *-—o—0¢—2 A oﬁ——“—4<_\
B -l E—o0-C—0 B M.—A(-_—*L
01 P b1 P Pl
(a) (b)

Figure 7. h(ik,jk; ik,m) = h(ik,jk; ik,jk) when jk = mtl,
as the forner is the probability of b < aik in (a)

and the latter is the probability of b < aik in (b).

Figure 8, The partial order Q when t = i k and J < mtl .
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Fromthe definition of h , we obtain

s
lk Jk 2
jk-l
hi dy s dy) = FE;J_)

JyL

i
_ k
- 'ik+jk—l . (6)

Formulas (4), (5), and (6) lead to

“k
h(i ,coo’i ;j ,.a.’j ;t,m) _<_ L T (7)
1 kYL k I A
Fornmula (7) is the purpose of this digression; note that it is valid for
all permssible values of the i 's,j 's,t, and m,

Ve now return to formulas (2) and (3), and continue the proof of Lemma 2.

From (2), (3), and (7), we obtain (noting that in (3), j,, =1 inplies i,=1)

i i
s 4 1
Pr{E, |P A A B 3L < — for 1<2<k. (8)
{’Z (£<s§k S)} EERTICITE I B
Substituting (8) into (1) gives
1
C((i ,-.c,i ;r’aoo’r ;P) S —
1 k’ 1 k 1<r<k Ty

This conpletes the proof of Iemma 2. O

22



The Corollary follows imediately from Lemma 2 as i, <t for

all £ .

1

Proof of Lemma 3. Let Ay and Ay denote the sets of all linear orders

on A and B, respective*. Then, using the Corollary t

obtai n

Pr{ A (ra.nk(ai)=rl)|13}
1<1<k !

2 Prii, A Mg | P} Pr { A (rza,nk(a:.L ) =

<1<k 2
Ay €0, 1<14<
Ap € ly
i«
S {nmnz ) 2 PringAdg | 73
A€l
Lemma 3 follows, as L Pr{pA g [ PP L1 . O
)\A’XB

23
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L, Proof of Theorem 1.

The -proof follows the same general outline as the corresponding -proof
in [1], aside from stylistic changes. The main nodification is in the use
of nore sophisticated results on partial orders developed in Section 3.

W begin by discussing a property of general MD-programs. Let

n>0 and 1<k, n,<n beintegers, <t be a MNbranching program

0

of timet >0 . Cearly, the output for any input vector (Xl’xe""’xn)

depends only on the pernmutation and not the actual values. From now on,
inthis section, we only consider inputs (xl,xg:---,xn) that are
permutations of (1,2,...,n) . Let us say an input pernutation to be

(k,n.) -respected by v, if all the output -pairs (rpjp) are correct

o)

(i.e., rank(xi ) = r, ) and if there are at least k distinct rzvvith
4

r,>1n, . Let (t) be the set of input permutations (k no) -respected
by T .
k
Lemma L. |@(t) | < n! ((t+k)/ng)
Proof. The lemma is trivially true when t+k > n . Ve shall, therefore,

assume t+k < n .

Because of Proposition 3 in Section 2, we can assume that 7is a
MN-tree programof time t . For each leaf y that can be reached by
some input, |et P‘# be the partial order at y that represents all the
information gathered along the path fromthe root to y . Then P s

¥

generated by a collection of inequalities {Xfi <Xy for j eR,-{4;1}

1<i < tW} , Where min R, = £, is the response to the i-th query on

the path and t’b is the distance of y fromthe root. Clearlytw<_t

2L



Let 3 be the set of reachable |eaves y for which there are at

| east k output pairs (rz,il) with all r, distinct and greater than n

1

For each y e § , define A\p = {Xzi |1 <i < tw}u{le,sz,...,xik} and
B’# = {xl,xg,...,xn} -Aﬂ' . Qearly, both A\# and BW are non-enpty, and
P‘p is slanted on (Aw,Bw) . Let 4‘4' denote the set of input pernutations
leading to y , and d\l" c d‘# the subset of those (k,no) -respect ed
by 7 . By Lemma 3,
@' | £,H Y tk \©
() < ()
- 0 0
A
Theref ore,
la(t)y| = 2 \a*'l
yed
k
< (t—*—‘) Z gl
0 yed ¥
k
< Lk n! . O
o
& now proceed to prove Theorem 1. Assume n > 20 . Let 7t be

any M X-branching program (in normal form for sorting n nunbers wth
time T and capacity S . Since 1 has to identify the el enent %,
with rank n, we nust have T > n-l, because all other elenments X

have to be shown |ess than sone elenents and each Mn R =? query can

only supply such a certificate for one x.J . By Proposition 1 in
Section 2 and the fact T > n-1 , we have
S > 1 . (9)

W thout loss of generality, we also assume that s < n/20, as

TS = Q(ng) ot herwi se.

25
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Tet ny = n/W1, t = Ln/203, and g = |T/t] . As T > n-l »

we have g > 2 . Ve wish to prove

S >7T (any)/(gr1) 1, (10)

which will inply the theorem by the following argunent. From (10) and
the definition of g, we have s(T/t) > (n-no)g/(g+l) , i nmplying
ST = Q(ne) and hence the theorem

It remains to prove (10). W assume that S < r(n-no)/ (gtl) 7 and
will show that it leads to a contradiction.

Let v, be the set of nodes on level 1, O0<2<T (the root

being on level 0 ). Define v' =y V-J . For each vev',
o<iceg Mt

| et T, be the sub-branching programrooted at v and of height <t ,
such that all nodes of t at a distance > t are chopped off and all
descendants of v at exactly a distance t are converted to |eaves
of T Thus, 7t is divided by level into g+l consecutive groups,
with the j -th group being the (usually non-disjoint) union of T
VeV(j_l)t . Any path in 7t (fromthe root down) is divided into no
nore than g+l intervals, each starting at a vev' and tracing a
path in L

Let o be any input pernutation. There nust be n-n, distinct
output pairs (r,i) with r > n, along the path it follows in 7.
Thus, the interval of the path between levels jt and (j+1)t for
some | nust have out put r(n—no)/(gﬂ.ﬂ > S such pairs. By the previous

di scussions, that means the existence of a g wWith vev' that

(S,no) -respects ¢ . Therefore,

> o lav) | > nro, (1)
VEV'
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where p(v) denotes the set of pernutations that are (S;ny) -respected
by Tv .
By Lemma 4, |5(v)| < ( (t+S)/nO)Sn1 L As [vri<2®, t <20,

1< S<n/20, and ny > n/k, we have

S
2(t+s .
7olav) | < (—(n—l) n!
veV' 0
o
< —5—n.
This contradicts fornula (11). W have thus shown that (10) nust be true.

This conpletes the proof of Theorem 1. d
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5. Proof of Theorem 2,

Let L be a LINEAR-branching program (in normal form for sorting any
n distinct input nunbers X%y eees% - W shall construct a MIN -branching
program t for sorting any n distinct numbers with the same required
time and capacity. Theorem 2 then follows from Theorem 1 inmrediately.

Ve first chop off the "= » pranches of L at all nodes. Then we

replace each internal node v of L by a new node g(v) in the followng

=2 %5 +.E VSR O, wth
eOl |eO2

Olﬂ02= o, A > 0 for ie Ol and Ay < 0 for ie 02, be the |inear

way (see Figure 9). Let E(;)
i

query at v . W replace it with a Mn query " Min(OlUOE) =7?",
The |OlU 02| outgoing edges of the new node g(v) are divided into
two groups B, and B, . Each edge in B, corresponds to a response
Min(OlUOQ) =1 with ie Ol; it goes into the leftson of v , and

outputs the same output pairs as the original left-branch edge of v ,

Simlarly, each edge in B, corresponds to a response ieo2 , goes

2
into the rightson of v | and has the sane output pairs, if any, of the
original right-branch edges of v in L . (By convention the |eft-branch
edge of v in L corresponds to the response 1(;) < 0.) This defines 7,
Cearly, 1t has the sane required time and capacity as L . It remains to

prove that v actually sorts, for any n distinct inputs XppKpseoer Xy

For each internal node v of L, et /gv(;) : 0 be the linear query
wher e JZV(X) "1§§§r>f"ixi_cv . Define q = I\;l,jf-l“kvil |%Vi £ 0},

B = max{l)\Vl| l)\,n £0}, and y = gax \cvl ; clearly M, g exist and
Vy |

are strictly positive. Let 51’52"”’% be defined by
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Figure 9. Transforming L into v ; the replacement

of v by Eg(v) .
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5 = -1,

n
(12)
1 .
5, = - = . +1 for =n-l,n-2, . . 1.
It is easy to check that 8, <&, <...< 8, <0 and hence are all
di stinct.
For each internal node v in L , let Ov1={il)‘vi>o’ 1<i <n}

and 0, = {i‘Mi<O’ 1<i<n}. Let pbe the set of input vectors

x defined by:
A = {(xp%y . . ox ) |7 a permutation ¢ such that x i%(l)"" xn d 5 _(n)] -
Cearly, all conponents x, are distinct for any (Xl’XE""’Xn) eh,

Lemma 5.  For any Xepn and any internal node v in L, zv(x) <0

if Min(Ole OVQ) e 0, » and zv(x) >0 if Min(ovluov?) €0, -

Pr oof . Suppose x,; = ac<i) for 1<i <n . Define @', = {c(i) | 1e Qo)

for a=1,2. |If Min(ovluov’a)eovl’ then there exists | e 0%y such

that j <i for all other ie 011 U0, Thus,
Q) = , , & o\ -
109 = T e g By e) T
1
< 7\1,1'53- +i eEO \Avi"‘63+1‘ - % (13)

2

where 1i' = c—l(j) .

VW now use formula (12) in (13) to obtain

1(x) < -nB|8j+ll -7 -1+ 10,8 |63+1l - Sy

< 0.
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The case when Mj.n(ovluove)e 0, Can be simlarly treated. O

The above lemma implies that, for each input vector xXe p , the path
followed in t is exactly the image of the path followed in L . Thus,
1 gives the sane set of output pairs as L . As L conputes the sorted
output vector £(x)= (o T(1)y0 T(2)s..uro (n)) by definition, so does t .
Since A contains all n! pernutations, © is a MNbranching program
for sorting any n distinct numbers,

V¢ have conpleted the proof of Theorem 2. a
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6.  Concluding RenarKks.

In this paper we have extended the time-space tradeoff result of
Borodin, et. al. [1] to prograns using |linear queries. It is perhaps
worth noting that a major step in the proof is to show |ower bounds for
prograns with MN-queries. This iS a somewhat unexpected technique, as
t he MIN -queries | ook too powerful to be used for |ower bound proofs
(e.g. due to the Q(n) -way branching of a MX-query, one can sort
n elements in n-I MNaqueries in the decision tree nodel). Aside
fromthe direct conparisons % x.J, linear queries are the nost-studied
primtives for sorting-related problems (e.g. [2][3]1[7]). The approach

used here offers yet another technique for dealing with such questions.

Acknowl edgenent . | wish to thank Nancy Iynch for critical conments

on an earlier draft.
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