
ON THE TIME-SPACE TRADEOFF FOR SORTING WITH LINEAR QUERIES

bY

Andrew Chi-Chih Yao

STAN-CS-79-764
August 1979

DEPARTMENT OF COMPUTER SCIENCE
School of Humanities and Sciences

STANFORD UNIVERSITY

On the Time-Space Tradeoff for Sorting with Linear Queries
-/*

Andrew Chi-Chih Yao

Computer Science Department
Stanford University

Stanford, California 94305

Abstract.

Extending a result of Borodin, et. al. [l], we show that any

branching program using linear queries " rhixi: c " to sort n numibers
i

⌧pp l **,⌧n must satisfy the time-space tradeoff relation TS = n(n*) ,

The same relation is also shown to be true for branching programs that

uses queries " min R = ? " where R is any subset of {xl,x2,...,xnj .

Keywords: Branching program, linear query, partial order, sorting,

time-space tradeoff, tree program.

f
*

This research was supported in part by National Science Foundation
under grant MCS-77-05313.

1

1. Introduction.

A fundamental problem in low-order computational complexity is the

problem of sorting n numbers xp2’““xn l
In the standard decision

tree model (see Knuth [5]), it is well known that = n log n comparisons

X. : x. are necessary and sufficient in the worst case. This model assumes
13

that all the test information can be retained, but does not address the

question of space needed to store the information. Recently, Borodin,

et. al. [1] studied "branching programs" for sorting which incorporate

the concept of storage requirements. It was shown [l] that any branching

program using " xi :x.
J

" to sort n elements must satisfy the time-space

tradeoff relation TS = Q(n*) , and that this bound can nearly be

achieved. One open problem raised there is whether the same tradeoff

relation also holds for programs with queries other than " xi: x. ".
3

The case of linear queries " c hixi: c " is of special interest [2][7],
i

both because it deals with the question whether arithmetic helps in a

purely discrete problem and because linear queries are natural in problems

such as network flows, bin packing, and finding shortest paths. The main

purpose of the present paper is to prove a tradeoff TS = Q(n*) for

branching programs with linear queries (Theorem 2). An intermediate step

is to establish this tradeoff for programs employing only queries of the

form "which element is the smallest in R?", which may be of interest by

itself (Theorem 1).

There is an extensive literature on time-space tradeoffs for general

computations. We refer the readers to [1] where further references can be

found; however, their understanding is not necessary for this paper.

2

2. Model and Results.

In this section we review the essence of the branching-program model

and state the results to be proved in this paper. The readers are

referred to [1][6] for more motivations and discussions of this model.

Let n be a positive integer. We consider programs that compute

an output vector for any input vector G = (~,x,,.,.,x,) in some input

domain D . A tree program (or, decision tree) 't is a rooted tree with

v labelled by a query -I*each internal node of x" and each leaf 9

labelled by an output vector 2 .
$

Every edge out of an internal node v

is labelled by a possible response to the query at v . For any input L

the computation starts at the root, branches and traverses down the tree

according to the responses of the queries until a leaf 9 is reached.
4

The vector e
if

is then the output. The time required by TC is the
3

maximum number of queries encountered for any &D. We remark that e
1c

may have different dimensions for different $.

Branching programs extend the concept of tree programs. A branching

program T is a directed multigraph with a distinguished vertex of

indegree 0 called the source. Any vertex of outdegree 0 is a leaf,

otherwise an internal node. Each internal node v is labelled by a

query of x" , and each outgoing edge of v is labelled by a possible

response to the query and by an output [rl,il;r2,i2; . . . ;rl,iI]

(possibly empty). The last expression is to be interpreted as part of

an output vector F(G) = (fl(~),f2(~),...,fm(~)) , in the sense that

3

A query of x is any function q(x) that can only take a finite number

of distinct values (or, responses).

f (f) = il, f (Z) = i2, f (x') = il .
5 r2 5

As in tree programs,'

the computation for any input x" starts at the source, traverses the

graph in a natural way until a leaf is reached. The collection of

outputs in the process gives the output vector for x" . The number

of components in the output vector ? may depend on x', and, in general,

some components
fj (') may be unspecified in the output. We only

require that the computation halts in a finite number of steps, and

*
that the outputs are consistent f for any x" in the desired input

domain. The time required by 't is the maximum number of queries

encountered for any ZeD. The capacity required by 'I is defined to

be rm2
by some & D ; we shall regard the capacity as the storage requirement for z .

We now consider the problem of sorting distinct numbers xp*,-,xn

VP , where V is the set of vertices of T that can be reached

with branching programs and tree programs, In this case, the output
44

vector f(x) is required to be the permutation (G~,o~, l . ., 'So) such that

X

5
< ⌧0 < . . l < XD . Let K be any set of queries. A K-branching

2 n

program is a branching program that uses queries in K only; a K-tree

program is defined similarly. Let Ko denote the set of queries

c X.1
: xj (i f j)) . Borodin, et. al. [1] showed the following interesting

result.

Theorem BFKLT [l]. Any Kg-branching program for sorting n distinct

numbers in time T and capacity S requires TS = n(n*) .

*
f

In the sense that, if a fj(;) has been specified in the outputs more

than once, the values must be the same.

4

In this paper, we extend the above theorem to other query sets.

Let MIN denote the set of queries " Min R = ? ", where R c, {1,2,...,n)

is any subset and Min R = i such that ieR and xi<_x.
J

for all j e R ,

Note that Min R can have RI I responses, and that xi :x.
3

is a special

case by taking R = {i,j} . Let LIN3A.R denote the set of queries

" I(7) : 0 " with possible responses < , = , >, where d = c QXi -c
i

-I*is any linear function. Our main results are the following theorems.

Theorem 1. Any MIN -branching program for sorting n distinct numbers

in time T and capacity S requires TS = Q(n*) .

Theorem 2. Any LINEAR -branching program for sorting n distinct

numbers in time T and capacity S

Before turning to the proofs in

below some useful general properties

can be found in [l]. Let T be any

and capacity S .

requires TS = Q(n*) .

the next three sections, we list

for branching programs. The proofs

branching program with required time T

Proposition 1. s > ri0g2 Tl .-

Proposition 2 (Pippenger). There exists a branching program ?' which

uses the same set of queries, computes the same function as T in time T

and capacity 5 2s , and has the property that its vertices can be partitioned

*
f For convenience, we have made the assumption that all xi are distinct.

For Theorem 2, this assumption clearly only makes the result stronger.
To remove this assumption in Theorem 1, we have to define Min R when
R contains some equal elements. As long as the extension preserves
the original meaning when all elements in R are distinct, Theorem 1
of course remains true.

5

into !I+1 sets VoJVl,...,VT such that any edge emanating from a.vertex

in V; terminates at a vertex in ILL, .
I

Proposition 3. There is a tree

the same number of steps and has

.L’ L

program which, for each input 2, uses

the same output as 'c .

We shall call the 'I' in Proposition 2 a normal form for It . Clearly

we need only consider branching programs in their normal forms, for the

proofs of Theorems 1 and 2.

3. Guessing Ranks in a Partial Order.

We shall develop some lemmas concerning the accuracy with which

one can guess the ranks of elements in a partial order.

We start with some conventions. A partial order P on a set

x = (x1,x2,-q is a subset of XxX such that (1) (xiyxi){P

for all i , and (2) (xiyxj) F,P and (xjyxk) E P implies CxiY%)" I

i.e., it is "transitive". We write xi -CP x. for (xi,xj) E P , or
3

simply xi < x.
J

when P is clear from the context. Any set I c XxX-

of consistent inequalities {x. < x. , x. < x. , . ..I generates a
5 Jl l2 J2

partial order P by taking the closure of I (i.e., adding to I all

the inequalities implied by transitivity); we often write

P = rxil < xj , xi < xj , ***I if P can be generated by that set
1 2 2

of inequalities. For any partial order P on X , let N(P) denote

the number of linear orders on X that are consistent with P . We

shall draw partial order P sideways as in Figure 1; an arrow from b

to a means a<b in P, and we only draw a subset of arrows whose

corresponding inequalities generate P ,

Let us consider the set g(X) of all n! linear orders on X

as a probability space with each linear order assigned equal probability.

Let rank(xi) be the random variable whose value, for each linear order,

is equal to the number of x.
J

less than or equal to xi . Any set of

inequalities I (or a partial order P) induces an event on e(X) ,

and we shall use the same symbol I (or P) to denote the corresponding

event. For example, Pr{xi < xj 1 P) will stand for

Pr{event xi < xj \ event P] ; clearly, Pr{xi < xj \ P) = N(PlJ {xi < xjl)b(P) ,

d

Figure 1. A partial order P = {a<b,b<c,d<c,d<e,a<c} ;

note that the arrow frm c to a is not shown.

the probability that xi < x.
J

assuming all linear orders consistent

with P equally likely. Note that for any two sets of inequalities

11 Y I2 Y the event corresponding to IllJ I2 is the event Ill I2 .

Let P be a partial order on AUB where A = [al,a2,...,at} and

B = {b,,b,,..., bmj are disjoint non-empty sets. We say P is slanted

on (A:B)~

111

if no relation bi < a. is contained in P , *-covered
3

(A,B)on if a1 < a2 < . . . < at and bl< b2 < . . . < bm under P

and 2CS on (A,@ if P is both slanted and *-covered on (A, B)

(See Figure 2.)

Y

.

Let Z and W be two partial orders on AUB , where A, B are

disjoint. Suppose Zg (Ax A) = Wn(AxA) and Zn(BxB) = Wn(BxB) t

i.e., Z and W are identical when restricted to either A or B .

We say that Z is more A-selective than W if Zn(AxB) zWn(AxB)

and zn (BxA) c Wn (B xA) (see Figure 3). Intuitively, the elements

of A will be "smaller" under Z relative to B than under W . Note

that if Z is more A-selective than W , then W is more B-selective

than Z.

We need the following result from Graham, Yao, and Yao [4].

Lemma 1 [4, Corollary 2 to Theorem 11. Let Z and W be *-covered

partial orders on (A,B) , and Z is more A-selective than B . Then

Pr{I \ Z) 1 Pr{I IWl for any 15 AxB .

The main results in this section are the next two lemmas. Let t > 0 ,

m>O,n=t+m, _ _l< k < t be integers.

9

04

(>C

Figure 2. (a) A slanted partial order on (A,B) ; note that

no arrow goes from A to B .

(b) A *-covered partial order on (A,@ .

(c) A 2CS-partial order on (A,B) .

10

B

Z W

Figure 3. Z is more A-selective than W ; note that

Zn(AxB) = {a<b,a'<b,a7'<b,a<b1,a1<bt,a"<b1~

while Wn(AxB) = [a<b,a<b') .

11

Lemma 2. Let P be a 2CS-partial order on (A,B) , where

A = {al,a2,...,at] and B = [bl,b2,...,bm} . Then, for each k

distinct 15 il,i2,...,ik _< t and each 1 <_ rl,r2,...,rk < n ,

.

Pr A
l<e<k

(rank(ain) = re) IP
I -

< n 2 .
l<a<k 1- -

Corollary. Pr A (rank(a.
l<L<k 5

> IP) 5 (t,,,r☺k l

Lemma3. Let P be a slanted partial order on (A,B) where \A\ = t

and BI I =m. Then, for any k distinct elements a. ,a. ,...,a. EA
5 i2 ik

and any k integers 1 5 rlJr2,...,rk 5 n ,

Pr A
l<l<k

(rank(ai) =
I

- -

Proof of Lemma 2. Before proceeding with the proof we introduce some

notations involving +J. We regard the expression xi < +03 (or

--03 < xi , or -03 < xi < +CO) as an event which is certain on dx> Y

i.e., an event that always occurs. We will also regard xi < +a

(or -al < xi , --co < xi < +03) as the "null" inequality when it appears

in a set of inequalities. For example, the set of inequalities (or

partial order) {XI < x3 , x,j < +43 , -a, < x6 , -03 < 7 < +a0 , -02 < x4 < x8}

means exactly the set of inequalities (or partial order) [x, < 3 , x4 < x8) .

Thus, for A = {al,a2,...,at] and B = {bl,b2,...,bm) , we can write

I = {al< b2 , 3 < b4 , --a3 < a4 , a5 < +a) c AxB even though the

displayed I is not exactly formally a subset of AxB .

12

By definition a1 < a2 < . . . < at and bl < b2 < . . . < bm under P .

Without loss of generality, we assume that 1 < il < i2 < . . . < ik < t ,-
.

15 rl < r2 < . . . < rk <, n , and rQ 2 iR for aJ3 & . Define

. =r -i +1
Jl RI

for l< R < k, then l<_ jlyj2,...,j, <_m+l g The- -

condition rank(a.) = r
5

is clearly equivalent to the condition

b. -l<ai <b. , where we have adopted the convention
JR Ji

b. c --co and
I

bti1=
+a , to be used throughout the proof of Lemma 2 unless specified

otherwise. We can thus further assume that jl<- j, < . . . <_ jk l

We now show that P can be restricted to a standard form. For

convenience, let us use the notation a(il, . . ., ik;rly...,rk; P) for

Pr A
l<a<k

(rank(ai) = ra) \ P
&- -

Reduction 1. We can assume that P includes a. < b.
5 JIY

l . . , a. <b. .
'k Jk

Proof. Otherwise, let P' = Pu (a. < b. , . . . , a. < b.
5 Jl 'k 'k

] . Clearly,

o <

a

N(P') 5 N(P) . Thus,

ilYik.rl,...,rk,l P') = N

> N (-

p'U(b. <a. <b. ,b.
Jl-1 l1 Jl J&

< aik<bj 1)/N(P' >
k

03PU(b. <a. <b.
Jl-1 l1 Jly

l . . ,b. -l<ai <b.))/N
Jk k Jk

= Nil, . . l , ik;rl,...,rk; p> l

The validity of the lemma for P' will imply that for P . 51

13

Reduction 2. We can assume that P = [al< a2 < .,. < at,bl<b2 < A, <bm,

a. < b. , a. < b. , a.
5 Jl l2 J2

<b.}.
'k Jk

Proof. By Reduction 1, we can assume that P includes

a. < b.
5 5,

l . . , a. <b. .
'k Jk

Let Pf = (al< .,. < at,bl< . . . <bm,

a. < b. , a. <b. } , then P' is more B -selective than P .
=1 Jl 'k Jk

Let E c BxA denote the conditions (b.
Jl-1 I1 J2

< a. ,b. -1< ai , . . . ,
2

b.
Jk

-1 < �i 3 l
Then, by Lemma 1,

k

a($l'k;rlya-yrk'l P�) = Pr{E 1 P']

2 WE \ PI

= a(il.' l ..,lSk ; rly ..*, rk;P) '

Again, it is sufficient to Drove the lemma for P' , 0

Henceforth we assume that P is as given in Reduction 2. Let us

denote the event b. for l< 1 < k . Then
Jl
-l< "i bY El - -

&

Nil, ik;jl ,..., 2,;') = Pr{EIA...hEk \ P]

=Pr(Ek IP]Pr{Ekml\P~Ek}...Pr{Ee \ PAEkA... AE~+$

..* Pr(EIIPAEkA . ..AE2} . (1)

14

E

Let us denote Pr[b. < a. \ a. < b. , a. < b. ,
Jk-l 'k 11 Jl I2 J2

. . . , a: <b. 3
'k Jk

as h(il, ..a, ik ; Jl,' l .*,jk)l w-4
, where the dependency on t and m is

explicitly exhibited. Keep in mind that bi = +CO for j_ = m+l . By

definition,
%

Pr(Ek \P} = h(il,...,ik; jl,...,jk;t,m)

3

. (2)

For l<R<k, one can show that-

1 if j =l
Pr{Ed IPAE~A...AE~+~} =

1+1

h(ily~.~yip;jlyo~~yjLjiR+l-l,jp+l-l)
%f (3)

otherwise ,

by the following argument. When jl+l = 1 , we must have j1 c 1 and the

event E
1

is thus -a< a.
?l

, a certainty. In the other case, under

PAE~A...AE~+~, the elements in {a, Is >ip+l)U{bs Is 2 j,,,] have

ranks rg+l,ra+l+l,...,n , and for any relative order among these elements,

the probability distribution of the linear order on

’ blyb2y l “’ b.Jl+l-l 3
is identical to that under the

partial order (al< a2 < . . . < ai
A?+1

-l,bl< b2 < .,. < b.
J 1+1

-1,

a. < b. , a.
=1 Jl

<b.].
5 Jl

(See Figure 4.)

We now digress to derive certain properties of the function h .

By Lemma 1, we have, for j, f 1 ,

pr(a. < b. -ll a. < b. , . . . , a. < b.]
'k Jk il Jl ik Jk

2 Pr{ai < b.
k Jk-l k

\ ai < bj 3 Y
k

f* We emphasize that h(il,...,il;jl,...,j~;i~+l-l,j~+l-l) is

Pr(b. < a. la. <b. ,a. <b. ,
J, la l-1 Jl i2 J2

. . . , a. < b.) in A' UB' , where
5 JR

A1 = {al,a2,...,atl] , B' = ~b1,b2,...,bm1) with t' = il+l-l,

m' = jp+l-l , and where the value b is +r~, if s = mt-t-1 and --o3
S

if s=O.

15

..* a.
5

a.
5+1

a .

'k

b. . . . b b.
Jl 3,-l JQ

b.
J1+l

-1b. 0-b. -1 b.
JR+1 'k Jk

Figure 4. The element a.
lit-1

divides AUB into the rrleftfr

part (al,eaa,ai -1, bl, . .e, b.
I+1 JQ+l

-13 and the

'rright" part (a. +1,-Y
5+1 "t ' bjp+l

v,bm] ;

the right part occupies ranks rl+l+l, rI+l+2, n ,

and the actual rankings within it does not affect the

probability of the event Eg .

16

which implies

Pr{b. < a. \a. < b.
Jk-l 'k l1 Jl ’

l *. , a. <b.) 2 Pr{b. <a. \a. <b.),
"k 'k Jk-l lk 'k Jk

where the probabilities are taken with IA\ = t and 1~1 =m, The

last inequality is clearly also true for j, = 1 , Therefore,

h (il, .a*, ik *; Jp l *erJ'k; hm> <_ h(ikYjk; tym) . (4)

By definition, 15 ik < t and l<_ j, < m+l , For the moment-

assume that ik < t and j, < m+l . Let Ql = {al < a2 < . . . < at,

bl<b2<...<bmJai
k
<b.), and s= QIU{bm<ai+-&

Jk k
men Q2

is more B-selective than Ql . Using Lemma 1 and the fact that the ranks

of all a L (1 >ik) and bs (s > j,) are fixed under Q2 (see Figure 5),

we obtain

h(ikYjk; ikdk) = PrCbj -1 < ai
k k

1 &23

2 Pr(b. < a.i&-l IQ 1“k 1

= h(ikYjk ; hm> .

We now claim the inequality,

h(ikYjk; ikyjk) 2 h(ikJjk; hrn) Y (5)

is true for all 15 ik < t and 15 j, < m+l .- There are three remaining

cases :

17

al
a
i,+l “t

: *

bl

A

bm

B

bl
b.
Jk bm

Figure 5. Partial orders &I
and 62 for ik < t and j, < m+l .

18

Case 1. ik<t and jk=m+l. Define Ql and (+, formally as before

(see Figure 6). Utilizing Lemma 1, we obtain

h(ikyjk; ikJm) = Pr{bo < "i I Q.23
Jk'l k

2 Pr{bj,-1 < a. IQ 3lk 1

= h(ikYjk; hrn) .

Formula (5) follows by observing that h(ik,jk;ik,m)

= h(ik,jk;ik,jk) when j, = mtl (see Figure 7).

Case 2. ik
= t and j, < m+l . Define Ql as before. Then, as the

rank of bs is fixed at t+s for each s > j, (see Figure 8),

we have

h(ikyjk; ik,jk) = Pr(b. < "i IQ13
Jk-l k

= h(ikY jk ; hm> .

Case 3. ik = t and j, = m+l . In this case,

h(iky jk ; ikym) = h(ikY jk ; ikYjk) Y

as observed in Case 1.

We have thus established formula (5) in all cases.

19

A

a. a
'k ik+l

Ql

Figure 6. Partial orders Ql and 62 for ik < t and j, = m+l .

20

a1
a.
=k

A -
&l

A -

(1a

bm

04

bm bm+l

Figure 7. h(ik,jk; ikym) = h(ikyjk; ikYjk) when jk = m+l 3

as the former is the probability of bm < ai in (a)
k

and the latter is the probability of bm < ai in (b).

k

b.
Jk

bm

Ql

Figure 8. The partial order Ql when t = ik and j, < m+l .

21

From the definition of h , we obtain

h(ikY jk ; ik, jk) =

ik
= .

'kfJk
.-l l

Formula (7) is the purpose of this digression; note that it fs valid for

all permissible values of the i Is, j 's, t , and m ,

We now return to formulas (2) and (3), and continue the proof of Lemma 2.

From (*>, (3)~ and (7), we obtain (noting that in (3), jQ+l = 1 implies jJ = 1)

. .
7 < . 5 5
) -
f lQ+J &l -l = 5

for l<l<k .- - (8)

Substituting (8) into (1) gives

.
Tr 5

F- l

l<Kk 1
- -

This completes the proof of Lermaa 2. 0

22

The Corollary follows immediately frm Lemma 2 as il <.t for

Proof of LeIrMla 3. Let AA and AB denote the sets of all linear orders

on A and B , respective*. Then, using the Corollary to Lemma 2, we

obtain

pr A
l<l<k

(rmk(ail) = rr) \ P
>- -

= c Pr{hAA hg \ ‘3 Pr A
%?'A

l<a<k
(rak(aie) = ra) 1 PA AAA hg

- - >

< t k
-()min r

R a

C Pr{?+Xg \ PI l

hAen,

Lemma 3 follows, as ⌧ pr{lA/\ l,j 1 p] = 1 l a

'AJhB

23

4. Proof of Theorem 1.

The -proof follows the same general outline as the corresponding -proof

in Dl, aside from stylistic changes. The main modification is in the use

of more sophisticated results on partial orders developed in Section 3.

We begin by discussing a property of general MID-programs. Let

n>O and l<k, no < n be integers, 7 be a MIN-branching program-

of time t > 0 . Clearly, the output for any input vector (xl,x2,...,xn)

depends only on the permutation and not the actual values. From now on,

in this section, we only consider inputs (y,x2,...,xn) that are

permutations of (1,2,...,n) . Let us say an input permutation to be

by)) -respected by 't , if all the output -pairs (r pip) are correct

(i.e., rank(xi) = r1) and if there are at least k distinct rQ with
R

rR >no . Let a(z) be the set of input permutations (k9 no) -respected

by T .

Lemma 4. IQ(T) \ < n! ((t+k)/no)k l

Proof. The lemma is trivially true when t+k > n . We shall, therefore,-

assume t+k < n .

Because of Proposition 3 in Section 2, we can assume that 'I is a

MIN-tree program of time t . For each leaf $ that can be reached by

some input, let P
JI

be the partial order at $ that represents all the

information gathered along the path from the root to $. Then P is
Jr

generated by a collection of inequalities {x1 < x
i

j for j eRi-{Pi],

l<_ i 5 tJI] , where min Ri = li is the response to the i-th query on

the path and t
$

is the distance of $ from the root. Clearly t < t .
$-

24

Let zp be the set of reachable leaves JI for which there are at

least k output pairs (re,ir) with all rQ distinct and greater than no .

For each $ E ip) define AIc = {x, ad
i
11 5 i 5 tO)U{Xi 'Xi ,**.JXi]

1 2 k

Bt = {%,x~,...~x~] -A* . Clearly, both A$ and BJI are non-empty, and

Pt is slanted on ($,J$) . Let a,+ denote the set of input permutations

leading to \li , and dJl' ,c aq the subset of those (k,no) -respected

by z . BY -a 39

Therefore,

2iLI I
I Ia$

I az()

t+k k
< --() n!

nO
. Ll

We now proceed to prove Theorem 1. Assume n > 20 . Let T be

any MIX-branching program (in normal form) for sorting n numbers with

time T and capacity S . Since z has to identify the element xi

with rank n , we must have T > n-l, because all other elements x.
3

have to be shown less than some elements and each Min R = ? query can

only supply such a certificate for one x. .
J

By Proposition 1 in

Section 2 and the fact T > n-l , we have-

S>l. (9)
Without loss of generality, we also assume that S < n/20 , as

TS = n(n2) otherwise.

25

which will imply the theorem by the following argument. From (10) and

the definition of g , we have S(T/t) 2 (n-no)g/(g+l) , implying

ST = n(n2) and hence the theorem.

It remains to prove (10). We assume that S < [(n-no ,/ k+l) -I and

will show that it leads to a contradiction.

Let V1 be the set of nodes on level 1 , O<R<T (the root_ _

being on level 0). Define VT = u V. For each veV* ,
O<jLg Jt '

let +rv be the sub-branching program rooted at v and of height < t ,-

such that all nodes of 'I at a distance > t are chopped off and all

descendants of v at exactly a distance t are converted to leaves

-Let no = rn/4] , t = Ln/20 J) and g = LT/tJ . As T 2 n-l ;)

we have g >, 2 . We wish to prove

S 2 r (n-no)/k+l)l 9 (10)

of T
v l

Thus, 7 is divided by level into g+l consecutive groups,

with the j -th group being the (usually non-disjoint) union of 'tv ,

VEV(~-+~ . Any path in a (from the root down) is divided into no

more than g+l intervals, each starting at a VEV' and tracing a

path in rlv .

Let o be any input permutation. There must be n-no distinct

output pairs (r,i) with r > no along the path it follows in z .

Thus, the interval of the path between levels jt and (j+l)t for

some j must have output [(n-no)/(g+l)? > S such pairs. By the previous

discussions, that means the existence of a 'rv with VEV' that

(w@ -respects 0 . Therefore,

c)BW 1 1 nf 9 w

VEV'

26

where B(v) denotes the set of permutations that are (S,no). -respected

bY TV 9

By Lemma 4, \a(~)\ <, ((t+S)/no)Sn! . As Iv'\ 5 2' , t <, n/20 ,

l< S <, n/20 , and no 2 n/4 , we have

F pw \ 5VEV’
(y)‘n!

4
<?n! .

This contradicts formula (11). We have thus shown that (10) must be tm;Le.

This completes the proof of Theorem 1. cf

27

5. Proof of Theorem 2,

Let L be a LINEAR-branching program (in normal form) for sorting any

n distinct input numbers xl,x2,...,xn . We shall construct a MIN-branching

program 'I for sorting any n distinct numbers with the same required

time and capacity. Theorem 2 then follows from Theorem 1 immediately.

We first chop off the " = " branches of L at all nodes. Then we

replace each internal node v of L by a new node 5(v) in the following

way (see Figure 9). Let &) = c hixi + c hixi-c : 0 , with
i E Ol i E O2

Ol"O2 = fi , hi > 0 for ie Ol and hi < 0 for ie 02 , be the linear

query at v . We replace it with a Min query " Min(Olu02) = ? I'.

The Pp,I outgoing edges of the new node u-4 are divided into

two groups Bl and B2 . Each edge in B
1

corresponds to a response

MiJ34yJo2) = i with ie 01 ; it goes into the leftson of v , and

outputs the same output pairs as the original left-branch edge of v ,

Similarly, each edge in B2 corresponds to a response ie 02 Y u=s

into the rightson of v , and has the same output pairs, if any, of the

original right-branch edges of v in L . (By convention the left-branch

edge of v in L corresponds to the response 1(z) < 0 .) This defines T ,

Clearly, T has the same required time and capacity as L . It remains to

prove that T actually sorts, for any n distinct inputs xp2’““xn l

For each internal node v of L , let iv(z) : 0 be the linear query

where
avG, = c hiXi-Cv l Define 'Q =

l<i<n
mClhi

- - v,i

p = max{\h\ lh f O] p and y = max lcvI ; clearly 1
v, i V

are strictly positive. Let $S2, ..O) En be defined by

,3 exist and

28

V

Figure 9. Transforming L into 7 ; the replacement

of v by s(v) .

29

i

En = -1 ,

6
3 = 3

' (nBI'j+ll +Y +l) for j= n-l,n-2, . . . , 1 .

(12)

It is easy to check that El< E2 < .,. < En < 0 and hence are all

distinct.

For each internal node v in L , let Ovl = {i I hi > 0 , 15 i 5 n]

and 0,={iI&i<O,l<-i$+ Let n be the set of input vectors

x" defined by:

A = {(xppxn) 13 a permutation o such that
5 = am� l l l t⌧n = 8 30a(n)

Clearly, all components xi are distinct for any (xl,x2,...,xn) E n ,

Lemna 5. For any &A and any internal node v in L, P,(G) < 0

if Wn(OvlUOv2) E Ovl , and Q(f, > 0 if Min(OvluO& Ov2 .

Proof. Suppose xi = 8
a(i)

for l< i < n . Define- - Q& = [0(i) \ i E Q&

for a=l,2. If Min(OvlUOv2) E Ovl , then there exists j E OGl such

that j < i for all other ie OvluOk , Thus,

l(Z) = I3
i E Ol

h',(i) + i ,Co h&(i) - 'V
2

<- +'Fj + c l&iI*l”j+ll - ‘V ’
i E O2

where if =cT-l(j) .

We now use formula (12) in (13) to obtain

w 5 -nB16j+ll - ’ - IL + 1’21 p I’j+ll - ‘V
< 0 .

30

(13)

The case when Min(OvlUOti)e Ov2 can be similarly treated. 0

The above lemma tiplies that, for each input vector X"E A , the path

followed in ?: is exactly the image of the path followed in L . Thus,

z gives the same set of output pairs as L . As L computes the sorted

output vector z(z)= (o-1(l),o-1(2),...,o-1(n)) by definition, so does z .

Since A contains all n! permutations, 't is a MIN-branching program

for sorting any n distinct rnxribers.

We have completed the proof of Theorem 2. 0

31

6. Concluding Remarks.

In this paper we have extended the time-space tradeoff result of

Borodin, et. al. [l] to programs using linear queries. It is perhaps

worth noting that a major step in the proof is to show lower bounds for

programs with MIN-queries. This is a smewhat unexpected technique, as

the MIN-queries look too powerful to be used for lower bound proofs

(e.g. due to the O(n) -way branching of a MIX-query, one can sort

n elements in n-l MIN-queries in the decision tree model). Aside

from the direct comparisons xi: x. ,
J

linear queries are the most-studied

primitives for sorting-related problems (e.g. [21[31[71)* The approach

used here offers yet another technique for dealing with such questions.

Acknowledgement. I wish to thank Nancy Qynch for critical comments

on an earlier draft.

32

P

References

[l] A. Borodin, M. J. Fischer, D. G. Kirkpatrick, N. A. Lynch, and

M. Tompa, "A Time-Space Tradeoff for Sorting and Related Non-Oblivous

Computations," Technical Report No. 79-01-01, January 1979,

Department of Computer Science, University of Washington, Seattle,

(See also Proc. 20-th Annual IEEE Symp. on Foundations of Computer

Science, to appear, 1979.)

[2] D. Dobkin and R. J. Lipton, "On the Complexity of Computations under

Varying Sets of Primitive Operations," in Automata Theory and Formal

Languages, Springer-Verlag Lecture Notes in Computer Science, No. 33,

Springer-Verlag, Berlin/New York, 1975.

[3] F. Fusseneggar and H. N. Gabow, "A Counting Approach to Lower Bounds

for Selection Problems," Journal ACM 26 (lg'j'g), 227-238.

[4] R. L. Graham, A. C. Yao, and F. F. Yao, "Some Monotonicity Properties

of Partial Orders," Stanford Computer Science Department Report, 1979,

to appear.

[5] D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and

Searching , Addison-Wesley, Reading, Mass., 2nd printing, 1975.

[6] M. Tompa, 'Time-Space Tradeoffs for Straight-Line and Branching

Programs," Technical Report 122/78, University of Toronto, July 1978,

[7] A. C. Yao, "On the Complexity of Comparison Problems Using Linear

Functions," Proc, 16-th Annual IEEE syq, on Foundations of Computer

Science, Berkeley, 1975, 85-89.

33

