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Abstract.

aw-d is the set of integer m-tuples (a1 ☺ l **t ",) with

o 5 al < .*. < am 5 n , ordered by a < b when ai 5 bi for all i .- - w-s

R. Stanley conjectured that L(m,n) is a symmetric chain order for

all (m,n) . We verify this by construction for m = 4 .
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Lb-b 4 is defined as the lattice formed

direct product of two chains with m and n

Equivalently, it is the collection of integer

by order ideals in the

elements, respectively.

sequences a = (a
19.4 l 9 am)

satisfying O<al<...<am<n, withordering a<b when- - - m-B ai<b.- 1

for all i . The correspondence is simple. If the chain elements are

x1 < . . . < xm and yl < . . . < y, , then the number of elements paired

with xi in the ideal corresponding to a is n-a
i'

In other words, the

antichain generating the ideal is
c(⌧,☺Yn-a L.,bm~Yn-,  >I l

1 m
Clearly, the rank of element a is c. a, , the rank of the entire

1

lattice is mn ,

any element a ,

**
that a = a .

and the cardinality of the lattice is ( m+n
m ) . For

we define its conjugate a* = (n-am' . . ..n-al) . Note

The ranks of an element and its conjugate sum t3 ,~n ,

so the sizes of the ranks are symmetric about the middle. Using complex

algebraic methods, R. Stanley [3] proved the sizes of the ranks are also

unimodal. These are necessary conditions for a stronger property he

conjectured also holds. He conjectured that L(m,n) is a symmetric

chain order. A symmetric chain order is one whose elements can be

partitioned into chains which are saturated (skip no ranks) and symmetric

about the middle rank. The conjecture is clear when m = 1 or m = 2 .

LindstrtJm  [2] provided an inductive construction to verify it for m = 3 .

Here we give a construction somewhat different from his which verifies

the conjecture when m = 4 .

Let S(m,n) , the "shell" of L(m,n) , be those elements which begin

with 0 or end with n . When these are removed from L(m,n) the

remainder is isomorphic to L(m,n-2) . The conjecture holds trivially

when :1 = 1 , and L(m;O) can be defined as having a single element.



So, providing a symmetric chain decomposition of S(m,n) proves the

conjecture by induction. We use this approach here for L(4,n) .

Unfortunately, when m is odd and n is even the rank sizes in e-w4

are not unimodal. So, for that case LindstrtJ;m  was forced to strip off

two shells for his induction. For m = 4 this difficulty does not

arise. It is possible that LindstrBm's construction generalizes for

odd m and this does so for even m . When m and n both exceed 2 ,

L(m,n) is not an LYM-order, so Griggs' sufficient conditions for a

symmetric chain order [1] cannot be applied.

Theorem. L&n) is a symmetric chain order.

It suffices to give a symmetric chain decomposition of S(4,n) .

The chains will be of two types, C.
lj

and D.. for suitable values
1J

of i and j. The chains are clearly saturated, so two steps will

complete the proof.

(1) No element appears in more than one chain.

(2) The nwnber of elements in the construction is the size of
aw-d l

Each chain is composed of six segments, with the top element of

one segment and the bottom element of the next identical. Throughout

a given segment only one position in the integer sequence changes.

Table 1 explicitly defines the chains and gives the ranks where the

changes between segments occur.

Segments must have length at least 0 . That is, top and bottom

elements may be identical, but the top element must not have rank below

the bottom element. Examining the lengths of segments and ensuring that
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we have legal elements at the bottcm of C..
13

and the top of 'D.
lj

yields necessary conditions on i and j . We claim the desired

decomposition is obtained by taking all chains for which these necessary

conditions are satisfied.

S(4,n) = {Cij: 3i+2j < n, i 2 0, j 2 0)~ [Dij: 3i+2j 5 n-3 J i > 0, j 2 0) .-

Figure 1 gives S(4,7) explicitly as an example.

7777
6777
5777
4777
3777
2777
1777
0777
0677
0577
0477
0377

. 0277
0177
0077
0067
0057
0047
0037
0027
0017
0007
0006
0005
0004
0003
.0002
0001
0000

coo

6677
6667
5667
4667

:z;
1667
0667
0666
0566
0466
0366
0266
0166
0066
0056
0046
0036
0026
0016
0015
0014
0013
0012
ooll

co1

5577
5567
5557
4557
3557
2557
1557
0557
0556
0555
0455
0355
0255
0155
0055
0045
0035
0025
0024
0023
0022

C02

4477
4467
4457
4447
3447
2447
1447
0447
0446
0445
0444
0344
0244
0144
0044
0034
0033

co3

5677
4677
3677
2677
1677
1577
1477
1377
1277
1177
1167
1157
1147
J-J-37
1127
ll3-7
0117
0116
0115
0114
013
0112
0111

D00

4577
3577
2577
2477
2377
2277
2267
2257
2247
2237
2227
1227
0227
0276
0225
0224
0223
0222
0122

D01

3477

;;g

;;z;
3337
2337
1337
0337
0336
0335
0334
0333
0233
0133

D02

4567

252;
1567
0567
0467
0367
0267
0167
0157
0147
0137
0127
0126
0125
0124
0123

clo

2457
1457
0457
0456
0356
0256
0156
0146
0136
0135
0134

C11

2367
2357
2347
1347
0347
0346
0345
0245
0145

cl2

2467
1467
1367
1267 1357
1257 0357
1247 0257
1237 0247
0237 0246
0236
0235
0234

D10 c20

Figure 1. S(4,7)



Outline of Proof. To show the elements are all distinct, we express

the D-chains in terms of the C-chains and then restrict OUT

attention to the C -chains. Let Cr
ij

be the element of C.. of rank r f
IJ

r
similarly for D. . . We claim that chain D

1J i,j-1 is the conjugate of

chain C.
b j

when the top and bottoms elements of the latter are removed.

That is, (Dr
*
) = C

4n-r
i,j-1 i,j '

It suffices to perform the conjugation on

the transition elements between segments of D.l,j-1 l

They become the

transition elements of C.
l,j l

Note the top and bottom elements of C.
b 3

are unaffected and are conjugates of each other. Whenever Di,j-1
exists,

CZj
exists. The affected C.. are those where

iJ
j>O and 3i+2j<n.

Distinctness now reduces to showing:

@a> The elements of U C’ijl
are all distinct.

(lb) The chains Cio and 'i,(n+i)/2 are self-conjugate.

(1 >c There are no conjugate pairs among the elements of ' Ecij3 f

where 0 < j < (n-3i)/2 , other than the tops and bottoms of

chains.

(lb) is seen immediately by conjugating the transition elements in those

chains. The other two statements require eliminating a large number of

easy cases.

To show we have the correct number of elements, we proceed by

induction. Simple counting verifies it for small n . In general, the

size of S(m,n) is IL(m,n)\  - JL(m,n-2)1  . x0,

I c4S )I n+4
rn =

(4)

This is the sum of a familiar

_ ( n+;2  ) = (n+l)(n+;)@n+3).

ISPbn) \ - \s(bn-1)

Indeed,

j2 l

sequence.

I = (n+l
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Now we examine the changes in the construction between n-l and n ,

For all values of i and j such that C.. or D.. exists in the
iJ iJ

construction for n-l , a similarly indexed chain exists in the construction

for n . Subtracting ranks, the number of elements in C.. is
. iJ

4(n-Ji-j)+l , and the number in D..
iJ

is 4(n+i-j)-5 . Each of these

chains has 4 more elements than the similarly indexed chain in w+>n-1) Y

if that chain exists. We will see there is a C.. for every element of
1J

the middle rank which begins with 0 and a D.. for every such element
1J

whose first position is not zero.

The chains which arise newly when n is reached are those C.. for
iJ

which 3i+2j = n and those D.
13

for which 3i+2j = n-3 . For each value

of i from 0 up to In/31 or p/3J-1 , depending on parities, there

will be one new C.. or D.. , but not both.
iJ iJ

Verifying that the construction picks up the proper number of elements

reduces to:

(2 >a Computing (and multiplying by 4) the number of chains in the

construction for S(4,n-1) -- that is, the sum of the nwflber

of solutions to 3i+2j < n-l and 3i+2j < n-4 .-

(W Computing the total number of elements in new chains.

(2~) Verifying the sum of new elements in (2a) and (2b) is (n+l ☺2 l

(2b) breaks into cases depending on the parity of n , and (2a) does the

same with the parity of L43J 9 so (2~) requires six cases, depending

on the congruence class of n modulo 6 .

Details of Step 1. If (la) does not hold, suppose a = Cr. = Cr
iJ kl' we

have a number of cases to consider, depending on which segment contains a

7
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p=5,q=6. ?*i+j=k. a2 3 2i+j = 2k+l . Subtracting

3
implies i=k+l, so j=l=O.

p = 6 , q = 4 , al * n-3i-j = R . a2 3 n-2i-j = k+R . Subtracting

y gives i = k , Substituting in a2 yields n-gk-1 = j , giving the

same contradiction  as in (??,d = (695) '

p = 5 , q = 4 . al 3 n-3i-j > R (equality returns us to the previous

case). a2 * n-2i-j = k+,! , Subtracting y gives i < k .

3
3 n-i-j > 2k+B .- Subtracting a2 gives i > k .-

p=6,9=3. Lest p-q be smaller, the requirement on ranks is

4n-3i-3j < n+3k+31 , so n-2i-j < k+R . But a2 =3 n-2i-j = k+B .

p = 5 , q = 3 . a2 * n-2i-j = k+1 ,
9

* n-i-j = 2k+& .

Subtracting y yields i = k . Substituting this in the two previous

equations gives the familiar contradiction n-3i-j = 1 and n-3k-1 = j ,

This completes the -proof of (1).

Details of Step 2. We begin with (2a). The top element of segment 4

in Cij has rank 3n-3i-2j > 2n , SO every C.. has a 0 in the first- 1J
position of its middle rank element, The bottom rank of segment 3 in

Dij is n+3i+2j+2 < 2n-1 , so D..
13

has a positive first position in

its middle rank element. The non-decreasing  sequences of length 4 which

start with 0 , end in k , and sum to 2n run from (0, 2n-2k, k, k) to

(0 ;t L(2n-k)/2J  I r(2n-k)/21 ) k) when n > k > r2n/31 . So, we want the- -

nuxiber of C./s to be
1J

c
r2n/31 <k<n

k - r(2n-k)/21  +l . Similarly,

- -

the elements covered by D.. 's run from (k, k, n-2k, n) to
1J

11



(k, L(n-k)/2J  , [(n-k)/21 , n) for 1 < k < Ln/3 J , for a total of- -

c L(n-k)/2J - k+l.
l(k< P/3 J

On the other hand, the number of solutions to 3i+2j < n is-

c
Orir p/3_]

1+ l(n-3i)/2J and to 3i+2j < n-3 is-

c
Ozi< p/3_]-1

l+ L(n-3i-3)/2J  . These turn into the desired

summations when i is set to n-k in the first case and k-l in

the second.

We wish to ccrmbine the summations. Separating the i = 0 term

from the first and adjusting the index in the second, the total number

f(n) of chains becomes

f(n) = I+ Ln/2J + 2 c (1 + Lb3i)/2J ) .
l<i<, p/3J

To compute the suranation, we pair terms for consecutive values of i ,

If L43J is odd, we separate i = p/3_] . Adding the terms for

i= 2k-1 and i = 2k gives 2+ ~(n-6k+3)/2J  + ~(n-6k)/2J  = n+3-6k .

There are Ln/6J pairs altogether, and c (n+3-6k) =

195 L46J

(n+3)Ln/6J -3p/6J ~(n+6)/6J . When p/3 J is odd, the term

l+ L(n-3p/3J )/2 J remains. This

2 if n E 5 mod 6 .

Summarizing, if n E r mod 6 ,

of chains is

is 1 if n 5 3, 4 mod 6 , but

O<r<5, then the total number- -

f(n) = Ln/2J + 2(n+3) Ln/6J -

{

1 ; r=0,1,2

6p/6~ Lb+6)/6J + 3 ; r = 3> 4

5 ; r=5

1 ; r=0,1,2

= Ln/2J + (n+3)(n-r)/3 - (n-r)(n-r+6)/6+ 3 ; r = 3, 4

5 ; r=5

12



Next we consider (2b). If n is even, a new chain C
ij

'occurs

for even values of i with 0 5 i <_ p/3 J , and a new Dij for odd

values of i with 1 < i 5 I$/3 J -1 . Similarly, when n is odd we

have a new D.. for even i
13

with 1 < i < p/3 J -1 and a new C..- - 13
for odd i with 15 i < Ln/3 J .

To sum the number of elements in these chains, we can again pair

consecutive terms. For the total number g(n) of these elements, we

have

i

I 'O,n/2 +I c
l<ksL+J

lD2k-l,(n-6k)/21 ’ Ic2k, (n-6k)/2(

dn> =

; n even

c
o<k<Lb-3)/6_1

I D2k, (n-6k-3)/z I I+ '2k+l, (n-6k-3)/z ' n OddI
- -

Since /Cij) = 4(n+i-j)+l and 1~~~1 = 4(n+i-j)-5 , this quickly becomes

Ed4 =

I

1+2n+ c 4(n-6k)+ 8 ; n even
lLk<_LnPJ

c 4(n-6k)-4 ; n odd
O<k< Ltn-3)/6~- -

c

l+ 2n+ 4(n+2) Ln/6J -12p/6~ L(n+6)/6J ; n even

=

4(n-1) Lb-3)/6J -uLb3)/6J Lb+3)/6J ; n odd

1+2n+2(n+SI)(n-r)/3 - (n-r) (n-x+6)/3 ; r =0,2,4

= 2(n-l)(n-x+6)/3 - (n-r)(n-r+6)/3 ; r= 315

L 2 (n-l j2/3 - b7Hn-1)/3 ; r= 1

13



For (2c), we need only compute 4f(n=l)+g(n) , which b&comes

simple algebraic manipulation when we consider a particular congruence

class of n module 6 . Beginning with r = 1 , we easily obtain

expressions like

r = 1: 4+ (n-l)(n+3) r= 4: 4n+ 9+ (n+2)(n-4)

r 2:= 2n+5+ (n-2)(n+2) r = 5: 2n+lO+ (n+)(n+5 )/3+2

r 3:= 4+ (n-l)(n+3

all of which reduce to

This completes the

( 1n-

( 2n-r = 0: 4n+l7+2(n-6)(n+4)/3  +n

(n+l)2 .

proof.

)

),

(n+l)/3

/3
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