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Let x0, xl, x2, . . . be a bounded sequence of points some of which may be repeated,

The problem of Rational Hermite Interpolation of type (m,n) where m + n = N is to determine

a rational function R m,(x) = U(X)/  Y(x) with deg( U)_<m  and deg( Y)sn, which interpolates

an analytic function f(x) at the first N + 1 points of the sequence. If a point xi is repeatedc

nzi + 1 times then R nln(~) should interpolate f(x) and its first “i derivatives at xi. Hermite

solved this problem for (m,n) = (N,O) by constructing the Hermite Interpolating Polynomial

P,v(x)  such that

fw-P/&) = g(x)fJ (x-x;)
i=o

where g(x) is analytic. The general problem of Rational Hermite Interpolation is to find all R,,

satisfying m + n = N which also interpolate f(x) i.e.,

fW--R,,,(x)  = g(x)fi (x--xi)
i = O

(1)

The two extreme cases for this problem have special names : When the sequence of points a r e

distinct it is called Cauchy  Interpolation and when all the points are the same it is called Pad&

Table.

A rational function R,,(x) = U(x)/V( x is said to solve the Modified Hermite)

Interpolation Problem if

N
m) s f(x)V(x)  m o d

rI (x-x;) (2)
i = O
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If R,,,,,(x) solves equation (1) then equation (2) is automatically satisfied. H’owever,  for some

choices of m and 11 equation (1) may have no solutions, and in that case there is a paramet-

erized family of solutions to equation (2). However, each solution (U(x),V(x))  to equation

(2) then yields the same rational function. This unique function is called the (~Jz)‘~ Rational

Interpolant for f(x). Thus the set of rational interpolants for f(x), which is called the Rational

Interpolation Table for f(x), contains all solutions to the problem of rational Hermite  interpola-

tion.

D. Warner studied this problem in his thesis [ 121. In [ 131, he showed all solutions to

the Modified Hermite Interpolation Problem could be computed by Kronecker’s Algorithm [8].

We have independently discovered this and the result that Pad6 approximants can be computed

by Euclid’s Algorithm prior to the paper of McEliece  and Shearer 193. Additionally, we have

shown that Kronecker’s Algorithm and the Extended Euclidean Algorithm are virtually the

same. Our results go beyond those of [8,9] to include new computional techniques as well as

theoretical unifications.

Let  U, = b
i=O

x-xi) and  U, = $ a.xi be the Hermite interpolation polynomial of f(x) .
;&I  l

The extended Euclidean algorithm applied to U, and U, computes a sequence of quotients and

remainders according to the formula for division:

uj+l  = uj-* - QiUi together with iterations for computing the “comultipliers”:

W;+, = Wj-,-QiW; a n d  Vi+l = Vi-1 -Q;Vi  for i> 1, where initially

w. = 1, w, = 0, V()  = 0, V, = 1.

Now, an important relation holds for each i :

WiUO + ViU, = Ui )

and the following results can be established for the Rational Interpolation Table.

Lemma 1: Each step of the extended Euclidean computation gives rise to a unique entry (in

lowest terms) of the Rational Interpolation Table.
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Lemma 2: The rational function Ui/Vi obtainable via the extended Euclidean computation

yie lds  deg(&) equal entries of the Rational Interpolation Table along the

(m + n)th anti-diagonal.

Theorem 1 (Euclid-Hermite): All entries along the (m + .)th anti-diagonal of the Rational

Interpolation Table for the analytic function f(x) are computed uniquely by the

extended Euclidean algorithm.

Lemma 1 and 2 and Theorem 1 have their Cauchy and Pad6 counterparts. The Pade

Table is well known and has been extensively studied; see [33 for an excellent survey article.

As an example we state the above results in the Pad6  case. Let x0 = xl = . . . = 0,
N

U,(x)  = xN+’ a n d  u,(x) = 2 “iXi be the first IV + 1 terms of the Maclaurin expansion of
i=o

f(~). Assuming the usual definition for the Pad6 Table, we have the following results:

Lemma IP: Each step of the extended Euclidean computation gives rise to a unique entry (in

lowest terms) of the Pad6  Table.

Lemma 2P: The rational function Vi/Vi  obtainable via the extended Euclidean computation

yields deg(Qi)  equal entries of the Pad6 Table along the (m + rz)
th

anti-diagonal.

Theorem 1P (Euclid-Pad&): All entries along the (m + n)th anti-diagonal of the Pad6 Table

for the Maclaurin series of f(x) are computed uniquely by the extended Euclidean

algorithm.

Fast Computation of an arbitrary iterate of the Extended Euclidean Algorithm

The computational aspects of the problems of the previous section can be realized by

an asymptotically fast extended Euclidean algorithm. We have improved and extended the

HGCD algorithm of Aho, Hopcroft, and Ullman  [I] in two significant ways. First, we have

developed an improved HGCD algorithm called EMGCD (for Extended Middle GCD).
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EMGCD produces the 2 by 3 matrix of polynomial entries

Mi = (u;:,;:,vyj ’ where (2,) = (;,;,>< ;).
The cost of EhlGCD  is less than the cost of HGCD; however,  both’algorithms  have  an

O ( N  log*N)  asymptotic cost. Thus Uj and ui+l are computed free relative to HGCD. Note

also that algorithm EMGCD computes all of U, V, and W which are the essential quantities

of the extended Euclidean algorithm. The second improvement comes from generalizing

BMGCD.  We have developed algorithm PRSDC (Polynomial Remainder Sequence by Divide

and Conquer) which produces any desired iterate Mi in the PRS sequence and not just the

middle term. The cost of PRSDC is also O(N log*N)

Algorithm PRSDC has many useful applications. One example is the computation of

the greatest common divisor of two polynomials A and B. By setting U,(x)  = A(x) and

U,(x) = B(x) and specifying U,, 1 (x) = 0 or deg(  Uk) 2 0 we can compute, using algorithm

PRSDC

Q(x) = GCD(A (x),B (x)) = qw.Jw + I/k(x)B(x)  .

Another example of its utility concerns fast computational algorithms for the above Theorems.

Using algorithm PRSDC we can compute an arbitrary entry R,, where m + n = N of the
N

Rational Interpolation Table starting with U. = fl (X-Xi)  and U, = the Hermite  interpolation
i=O

polynomial of f(x) through these N+ 1 points. Gustavson [4]  has shown, using the ideas of

Yun [14], that starting with Xi , I”  , j = 0 ,..., mi , i = 1 ,...,k that the Hermite Interpola-

tion polynomial PN(x)  through these k distinct points can be found in O(N log*&).  Combining

these facts we can state the foliowing

Theorem 2 (Euclid-Hermite-Cauchy-Pade): An arbitrary entry of the Rational Interpolation

Table for the analytic function f(x) can be computed in O( N 1og”N)  where N is

the degree of the relevant Hermite  interpolating polynomial.
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Fast Toeplitz Computation

For the case m = n , equating coefficients of xn, xfl+l 2n,...* x in the relation for the

(n, n) Pade approximant, we get a Toeplitz system:

(;y.:“,cp,  = <i’>

n n

where the matrix, denoted by T , is Toeplitz. The vectors u = (u~,...,u,,)
T

and

v = & T,...J,> are the coefficients of the (n,n) Pade approximant (Uj(X),Vj(x))  . This fact

and the above results suggests that Euclid’s algorithm can be adapted to solve Toeplitz systems

of equations. We now state a new theorem which is a compaction of two theorems due to

Gohberg and Semencul [2]. This theorem reveals that the computation of Y and u, is, in fact,

crucial.

Theorem 3 : Let the Toeplitz matrix

a� l l a0 a-1

(

. . . .

?= . . . .

a2n arl l
>

a2n+l’ l l a,,

be a bordering of the Toeplitz matrix T with one additional row and column consisting of all

the same elements except two. Suppose x = (x~,...,x~+~)
T

and yR = (un+, ,..-Y~)
T

are

-Rsolutions of ?x = e. and Ty = e,+ 1 and suppose x0 =Yo#O. Then T is invertible and

it’s inverse S is formed according to the formula

Furthermore,  suppose x and yR solve TY = e. and TyR = e, and x0 = y. # 0 . Then

T-’ = S is given by formula (3) with x,+, and yn+, set equal to zero.
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The formula (3),  for the system with T , was discovered by Trench [ 111, used by

Zohar [ 151 and given a convolutional setting by Kailath,  Viera,  and Morf 171. In [7]  the

formula (3) for the system with ? is shown to be the the discrete analog of the Christoffel

Darboux formula. Suppose now that Det(T)#O  . Ordinarily we would solve T X = e. to see if

xo#O  . If x0 = 0 then formula (3) is no longer valid. However, a-, and a*,,+,  can be chosen

so that Det(?)#O . Then x0 = LIT;,’ = Det(T)/Det(&O . Thus we have the following

stronger result :

Corollary 1 : For solving Tz = b it is always possible to find x and y of formula (3) such that

x0 =yo # 0 .

Formula (3) is important because it expresses the inverse S as a product of Toeplitz

matrices. To solve T z = b we can form four matrix-vector multiplications to affect z = Sb.

Now we observe that the multiplication of Toeplitz matrices and the vector b given by

c

x0

X1
.

Xtl

xn+
0

;

0. 0
. . .

. . 0 b0
l �1 ⌧0 .

lXnO Xi

1

0
. . .

d,

. .
Xr7

l O X,*+1

and

are precisely the concatenations of the four matrices in formula (3) and clearly correspond to

polynomial multiplications. Performing multiplication modulo t”+’ via FFT with appropriate

ordering of the coefficients xi, Yi, and bi, we can easily derive the following result :

Corollary 2 : Given x and y with x0 = y. # 0, the cost of solving Tz = b by effecting

z = Sb without explicitly computing S = T-’ is O(n log n).

2n
L e t  U,(x) = x2"+' a n d  U,(X) = C Oixi .

i = O
The polynomial U, represents the Toeplitz

matrix T . Now apply the extended Euclidean algorithm to U. and U, . The following two

theorems demonstrate the importance of this computation and establishes a direct connection

between the Euclidean algorithm and the solution of Toeplitz systems of equations.
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Theorem 4 : Let (Uj, Vi, wi) be the iterate of the extended Euclidean algorithm that com-

putes the (n, n) Pade approximant to U, . Then Det(T)#O if and only  if

deg( Ui) = n .

T h e o r e m  5 : Let (Uj, Vj*  wi) and (Uj+  1, Vi+ 1, wi+,) be two successive extended Euclidean

iterates with deg(Uj)  = n. These two extended Euclidean iterates contain all the

necessary information to compute x and y where T X = e. and TyR = e, .

Furthermore, if x0 = 0 then the same two extended Euclidean iterates contain all

-Rinformation needed to compute ?‘x = e. and T y = e,+*  with x0 =yo=l.

The solutions x and y can be expressed as linear combinations of the Vi and V/+,

polynomials. The term “all the necessary information” means that the constants of the linear

combinations turn out to be natural by-products of the extended Euclidean algorithm. A partial

explanation of why Theorem 5 is true is the fact that the Pade Table has many relationships

(Frobenius Identities) connecting the Table entries. The condition of Theorem 5 implies that

the (rz,  n) and  (n - 1, n + 1) Pade approximants are computed by successive Euclidean

iterates. Theorems 4 and 5 and formula (3) provide the basis of another important application

of algorithm PRSDC. We state this application as follows:

Theorem 6 (Euclid-Toeplitz) : The complexity of solving the Toeplitz system Tz = b is at most

O(n log*n)  and the extended Euclidean algorithm can be used to effect the

solution with this complexity.

We have also established new complexity results for banded Toeplitz systems. Let Thr

be a banded Toeplitz matrix whose semi-bandwidths are b and c i.e., a0 = . . . = a,I-b-I  = 0

and a n+c+l = -** = ‘2n = 0 . Then by applying PRSDC to U,(x) = x*+~+I  and

U,(x) = a,+,xb+c  + . . . + an-b we can solve T z = d in O(n log n)  +  O((b + c)log*(b  + c)) .

The best previous result of O(rr log n) + 0( (b + c)*) is due to Jain [6] and Morf and Kailath

[lo, p. 2691. Theorems 4 and 5 above are valid for the banded case. The only change in their

statements is the replacement of (n,n) with (b,n) and (n - 1,n + 1) with (b - 1,n + 1) .

Recently, Brent discovered a fast O(n log’n) algorithm to compute .r and y via a fast
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continued fraction expansion. A joint paper by him and the authors is planned to detail some

of the results described here. The best previous  algorithm to solve Toeplitz systems is t h e

O(n’)  algorithm of Trench [ 111 corresponding to the Levinson algorithm in the continuum.

The Berlekamp Algorithm, Shift register synthesis, and BCH decoding

Let S(x) = s,” + . . . + sZn-x2” be a given syndrome polynomial. The key equation to

finding the error location polynomial of BCH decoding is

( 1  +  S(x))a(x)  = w(x) m o d  ( x2n+l
1

where

a(x) = 1 + six’ a n d  W(X)  = 1  + f: .WiX’

i= I i=l

and e = deg(a)  = deg(o) is small. Berlekamp’s algorithm is an 0(n2)  method [S]  for comput-

ing a(x) and w(x) . Algorithm PRSDC also solves this problem. Let U,(x)  = x2”+’  and

U,(x)  = 1 + S(x) . Then the iterate (u;, I), wi) of the extended Euclidean algorithm which

computes the (n,n) Pad6  approximant to U, is the solution to the key equation. Also the

complexity of this problem is lowered to O(n log2n).
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