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Abstract. We describe a general method for solving path problems on

directed graphs. Such path problems include finding shortest paths,

solving sparse systems of linear equations, and carrying out global

flow analysis of computer programs. Our method consists of two steps,

First, we construct a collection of regLLar expressions representing sets

of paths in the graph. This can be done by using any standard algorithm,

such as Gaussian or Gauss-Jordan elimination, Next, we apply a natural

mapping from regular expressions into the given problem domain. We

exhibit the mappings required to find shortest paths, solve sparse

systems of linear equations, and carry out global flow analysis.

Our results provide a general-purpose algorithm for solving any

path problem, and show that the problem of constructing path expressions

is in some sense the most general path problem,
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A Unified Approach to Path Problems

1. Introduction.

A fundamental problem in numerical analysis is the solution of a

system of linear equations Ax = b , where A is an nxn matrix of

coefficients, x isan nxl vector of variables, and b is an nX1

vector of constants. Efficient methods for solving Ax = b , such as

Gaussian and Gauss - Jordan elimination, have long been known. These

methods have been repeatedly rediscovered and applied in other contexts.

For example, Floyd's shortest path algorithm [71J which is based on

Warshall's transitive closure algorithm [32], is a version of Gauss -Jordan

elimination. Kleene's method for converting a finite automaton into

a regular expression [20] is a form of Gauss -Jordan elimination;

Gaussian elimination also solves this problem [3]. In all these
.

situations the problem of interest can be formulated as the solution

of a system of linear equations defined not over the field of real

nwnbers but over some other algebra.

In this paper we provide a unified setting for such problems. Our

goal is to show that a solution to one of them can be used to solve them

all. One approach to this task is to develop a minimal axiom system for

which elimination techniques work (see for instance Aho, Hopcroft, and

UlJ.man [1] and Lehman [21]) and to show that the problems of interest satisfy

the axioms. Our approach is somewhat different and resembles that taken

by Backhouse and Car& [3]; we believe that the proper setting for such

problems is the algebra of regular expressions, which is simple, well-understood,

m and general enough for our purposes.
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We shall use a graph-theoretic approach rather than a matrix'

theoretic one because we are interested mainly in sparse problems

(problems in which the coefficient matrix A contains mostly zeros),

Let G be a directed graph with a distinguished source vertex s ,

The single-source path expression problem is to find, for each vertex v

in G, a regular expression R(s,v) representing the set of aILL paths

from s to v . The all-pairs path expression problem is to find, for

each pair of vertices v , w , a regular expression R(v,w) representing

the set of all paths from v to w . We shaU show that it is possible

to use solutions to the single-source and all-pairs path expression

problems to find shortest paths in G , to solve systems of linear

equations defined on G , and to solve global flow problems defined on G .

We solve these problems by providing natural homomorphism  that map the

regular expressions representing path sets into the algebras in which

the given problems are expressed. We define these mappings by reinterpreting

the u, l and * operations used to construct regular expressions. The

technical part of our work is in showing that these mappings are indeed

homomorphisms.

This paper contains nine sections. Section 2 reviews the properties

of regular expressions that we shall use. Section 3 considers shortest

path problems. Section 4 examines the solution of systems of linear

equations over the real numbers. Sections 5, 6, 7, and 8 discuss various

kinds of global flow analysis problems. Section 9 contains some additional

remarks. The appendix contains the graph-theoretic definitions used in the

paper.
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2. Regular Expressions and Path Expressions. .

Let C be a finite alphabet containing neither " A " nor " /6 I'.

A regular expression over C is any expression built by applying the

following rules:

(1 >a ” A ” and ” P ” are atomic regular expressions; for any

ad, I? a V? is an atomic regular expression.

If Rl and R2 are regular expressions, then (RluR2) ,

are compound regular expressions,

In a regular expression, A denotes the empty string, $ denotes

the empty set, U denotes set union, l denotes concatenation, and

* denotes reflexive, transitive closure (under concatenation).f
*

Thus

each regular expression R over C defines a set c(R) of strings

(2 >a a(A) = {A) ; o(p) = $ ; O(a) = {a) for aeC .

Gw 4R, UR,) = 44 > lJG2) = (wIwec(Rl) or weo(R2)] ;

G(RleR2) = G(R~)~(R~ > = cwp2 1 w1 c c(Rl) and w2 E a(R2

where Qq" = Cd
k=O

and Ok =

Two regular expressions Rl and R2 are equivalent

if a(R-$ = a$) . A regular expression R is simple if R = fi

over C as follows:

)I ;

c(Rl)i-l~c(Rl) .

or

R does not contain $8 as a subexpression. We can transform any regular

.f* Note that the symbol A represents both the regular expression " A 'I
and the empty string. Henceforth we shall avoid using quotation marks
and allow the context to resolve this ambiguity; similarly for $ , u ,
' 9 * . We shall also freely amit parentheses in regular expressions
when the meaning is clear.
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expression R into an equivalent simple regular expression by repeating

the following transformations until none is applicable: (i) replace any

subexpression of the form $*Rl or Rl*9 by p ; (ii) replace any

subexpression of the form $8+ Rl or R1'p by Rl ; (iii) replace any

subexpression of the form $* by A .

A regular expression R is non-redundant if each string in d(R)

is represented uniquely in R . A more precise definition is as follows:

(3 1a A3 P , and a for aeC are non-redundant.

(3b) Let Rl and R2 be non-redundant.

RlUR2 is non-redundant if One = fi .

Rl*R2 is non-redundant if each WE c(RleR2) is uniquely

decomposable into w = wlw2 with wle o(Rl) and

5 E a32l l

*

?l

is non-redundant if each non-empty weRT is uniquely

decomposable into w = wlw2...wk with wie O(Rl)

for l<i<k.- -

Note that if AC O(R) , then R* is redundant.

Let G = (V,E) be a directed graph. We can regard any path in G

as a string over E , but not all strings over E are paths in G .

A path eqression P of type (v,w) is a simple regular expression

over E such that every string in c(P) is a path from v to w.

Every subexpression of a path expression is a path expression,  whose

type can be determined as follows.
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(4) Let P be a path expression of type (v,w) . .

If P= PlUP2 , then Pl and P2 are path expressions of type

hw) l

If P = Pl'P2 , there must be a unique vertex u such that Pl

is a path expression of type (v,u) and P2 is a path

expression of type (u,w) .

If P = P; , then v = w and Pl is a path expression of type

(w) = (vi4 l

It is easy to verify (4) using the fact that P is simple.



3. Shortest Paths.

Let G = (V,E) b e a directed graph with an associated real-valued

cost c(e) for each edge e . A shortest path from v to w is a

path p = elJe2,...,ek from v to w such that li c(ei) is minimum
i=l

over all paths from v to w. If G contains no cycles of negative

total cost, there is a shortest path from v to w if there is any

path from v to w . The single-source shortest path problem is to find,

for each vertex v , the cost of a shortest path from s to v , where s

is a distinguished source vertex. The all-pairs shortest path problem is

to find the cost of a shortest path from v to w for all vertex pairs v, w .

We can use path expressions to solve shortest path problems by means

of two mappings, cost and shortest path , defined as follows.

(5 )a cost(A) = 0 , shortest path(A) = A ;

cost(~) = 03 , shortest path($) = no path ;

cost(e) = c(e) , shortest path(e) = e for ed3 l

(5b) c4+JP2~ = min{cost(Pl),cost(P2)] ,

shortest path(PluP2) = g cost(P1) < cost(P2)- - shortest path(Pl)

else shortest path(P2) ;

cost(P1.P2) = cost(P1) + cost(P2) ,

shortest path(PlaP2) = shortest path(Pl) l shortest path(P2) ;

cost(P*) = rwif cost(Pl)  < 0 then --co else 0 ,

shortest path(PT) = Tvuif cost(Pl) < 0 then no shortest path else A .



Lemma1. Let P be a path expression of type (v,w) . If c_ost(P) = 63,

there is no path in c(P) . If cost(P) = -CO , there are paths of arbitrarily

small cost in o(p) l Otherwise, shortest path(P) is a minimum cost

path in a(P) , and the cost of shortest path(P) is cost(P) .

Proof. Straightforward by induction on the number of operation symbols

in P. 0

Theorem 1. Let P(v,w) be a path expression representing all paths

from v to w . If cost(P(v,w)) = 03 , there is no path from v to w .

If cost(P(v,w)) = --03, there are paths of arbitrarily small cost from v

to w. Otherwise, shortest path(P(v,w)) is a shortest path from v

to w; the cost of this path is cost(P(v,w)) .

Proof. Immediate from Lemma 1. Cl

Theorem 2. Let Pl(v,w) be a path expression such that o(Pl(v,w))

contains at least all the simple paths from v to w. If there is a

shortest path frcm v to w , shortest path(P(v,w)) gives one such

path; its cost is cost(P(v,w)) .

Proof. Any shortest path is simple. 0

By applying Theorem 1 we can use a solution to the single-source

(or all-pairs) path expression problem to solve the single-source (or

all-pairs) shortest path problem. By Theorem 2 it is sufficient to

use path expressions representing only the simple paths if we have a

separate test for negative cycles. The following theorem provides such

a test.
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Theorem 3. Let s be a distinguished source

vertex v , let Pl(s,v) be a path expression

contains at least all the simple paths from s

vertex in G . For' every

such that ~(P,(s,v))

to v. Then G contains

a negative cycle if and only if there is some edge e such that

c~st(p+ho > +e(e) < cost(Pl(s,t(e))) .

Proof. Straightforward. See Ford and Fulkerson [lo]. 0



4. Systems of Linear Equations.

The next problem to which we shall apply our technique is the

solution of a system Ax = b of linear equations over the set p

of real numbers [ll]. This problem has pitfalls not present in the other

problems we examine. The system Ax =: b does not always have

a solution; even if it does, the solution need not be unique. Furthermore

the standard algorithms for finding a solution, such as Gaussian elimination,

may not succeed even if a unique solution exists. (To deal with this

difficulty, numerical analysts have devised more complicated algorithms,

such as Gaussian elimination with pivoting[ll-I.)  We shall avoid these

issues by proposing a method that almost always gives a solution when

one exists.

We begin by rewriting Ax = b as -b+ (A-1)x = x , where I is

the nxn identity matrix. Let x, be a new variable; then the

system -b+ (A-1)x = x is eq

(;)+A(;) =
ui

w

valent to

xO
1 where A' =

X

and 6 denotes a zero matrix of the appropriate size. Let G = (V,E)

be the graph having n+l vertices (one for each variable xi) and m

edges (one for each non-zero entry in A' ) such that there is an

edge e with h(e) = vj and t(e) = vi if and only if the entry in

row i and column j of A' is non-zero; let a(e) be the value

of this entry. Then the system of equations takes the form

(6) x(s) = 1 ; x(v

where s = v
0 l

> = c (awQ-de> ) I eeE and t(e) = v) if v # s Y
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We solve this system by extending the mapping a to regular.

expressions over E as follows.

(7 >a a(A) = 1 ; a(P) = 0 .

(7-w 4yJR2) = a$, + 4R2) ;

“oyR2) = 4Rl)&(R2)  ;

a($) = l/(1-a(Rl)) .

Note that a(R;) is defined if and only if a(Rl) f 1 . If R

is a regular expression over E , then a(R) is a rational function of

4elL de,), l l l y de,) and is defined except on a set of measure zero

in mm . Note also that the operation of addition into which union is

mapped is not idempotent. This forces us to deal only with non-redundant

regular expressions.

Lemma 2. If Rl and R2 are two equivalent non-redundant regular

expressions over E , then a(R ) = a(R ) whenever both
1 2 q and

a(R2) are defined.

Lemma 2 is the hardest result in this paper, and we shall postpone

its proof.

Theorem 4. For each vertex v , let P(s,v) be a non-redundant path

expression representing all paths from s to v . If a(P(s,v)) is

defined for all v , then the mapping x defined by x(v) = a(P(s,v))

satisfies (6),
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Proof. The only path from
” -

s to s in G is the empty path; by

If v # s , thenLemma 2, x(s) = a(P(s,s)) = a(A) = 1 .

u {P(s,h(e))=e \ eeE and t(e) = v] is

representing the set of all paths from

a non-redundant regular expression

s to v . By Lemma 2,

x(v) = 4P(SY v> ) = 4 U (P

= c {a(e>x(h(e)

Thus the mapping a almost

(s,h(e))Oe \ eeE and t(e) = v}

I eeE and t(e) = v} . 'a

always gives a solution to (6). It

remains for us to prove Lemma 2, We employ Salomaa's method for showing

the completeness of an axiom system for regular expressions [28L we

shall use the notation Q = R to denote that o(Q) = a(R) and a(Q) = a(R)

wherever both a(Q) and a(R) are defined. A non-redundant regular

expression Q is equationally characterized in terms of non-redundant

regular expressions
&s

if Q = Ql and

(8) UDkQ
where D(q) E {&A] =d

&ij E (Q, 11 5 k 5 q] for all j .

Lemma 3. Every non-redundant regular expression over E is equationally

characterized.

Proof. By induction on the number of operation symbols in the regular

expression.

11



e.
J

=- fbelu . . . uA*ejlJ . . . UfbernUfl for l<j<m .- -

Thus every atomic regular expression is equationally characterized.

Suppose Q and R are equationally characterized. Let Ql, . . ., Q
q

be non-redundant regular expressions such that Q = Ql and (8) holds.

Let Rl, . . ., Rr be non-redundant regular expressions such that R = Rl

and (9) holds.

(9) Ri - (j!lRi..j*ej) IJo where D(Ri) E Cpl,Al and

Rij E ts I l<k<r] for all j .

We shall equationally characterize QUR , Q’R , and Q* , assuming they

are non-redundant.

Let l<u< q, l<v<r, and suppose &uUR
is non-redundant.- - - - V

Combining (8) and (9) we obtain

(10) ($tlj URvj).ej
1

u D(g) u D&J

m
=-. U (~j uRvj’*‘j

j=l
Umpv) .,

since if o(Q@a(Rv) = a , then D(s) = p or D(RV) = $ . Furthermore

%j l-1 Rvj is non-redundant for l<j<m. Thus if QuR is- -

non-redundant, the set of equations (lo) such that Q$Rv is

non-redundant equationally characterizes QuR = QIURl l

Let l<v<r, s > o ,
- -

and 1 <_ ul < u2 < . . . < us f q l

Suppose QeRv  U is non-redundant. If D(RV) = a, we

obtain from (8) and (9) that

l2



O-J-) Q'Rvu (iil CI) 3 (j!l(Q'RVju (ii1 8,1)).'j) "(e, D(Q"=i))

Furthermore is non-redundant for 1 < j < m . If- -

D(R) = A Y we obtain from (8) and (9) that

(12) Q*Rv U (iil %L) E (jil(Q'Rvju?Lj" (ifl %ij))..j)uD(?l)

m
=-( (U

j=l
&'Rvj U Qlj U

(81 SiJ)) .'j)

UD( Q~RvU (e, n))
l

Furthermore Q*RvjU%jU is non-redundant for l< j < m .- -

1% follows that if Q'R is non-redundant, we can equationally characterize

&OR = Q'Rl in terms of

non-redundant .

Finally we must consider Q* . Suppose Q*
1

is non-redundant.

Then D(Q) = fi . From (8) we obtain
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(13)

-(

m *
= U Q l Qlj*ej

j=l

Furthermore Q** Qlj is non-redundant for 1 < j < m .

Let s >l and l<- y < u2 < . . . < us < q . Suppose Q*e

is non-redundant. If D(Qu ) = $ for l< i < s , then
.

(14)

where Q** is non-redundant for 1 < j < m .- -

If DcQt, > = A for some (unique) i such that 1 < i < s , then.

(15)

where Q
*.j9!"(igl Qkj)) is non-redundant for 1 < j < m . It

- -

follows that we can equationally characterize Q* in terms of

IQ*jU {Q** ( i4, %i) \ -1, l<y<'$<-<us(q, a--id Q*O (i;l si)

is non-redundant
>

. 0

We are now ready to prove Lemma 2, We extend u , l , 3

pairs of regular expressions by defining h-pR1) u (QpR2) =

&$Y~)*(Q~R~) = (Ql*Qp Rl*R2) Y (QpR1) = &-$32) if and

Ql 3 $2 and % z R2 .

to ordered

CquQp 5’JR2) Y

only if
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Proof of Lemma 2. Suppose Q and R are non-redundant regular

expressions such that a(Q) = a(R) . Let Q, R be characterized in

terms of (Qi 11 5 i 5 q) , (Ri \l <, i <_ r] by (8), (9, respectively.

We construct a set X of pairs CQ&) such that
ocg, = a(R☺  l

and add new

We process a

We begin with X = ((Q,R)] . We process pairs in X

elements to X until all pairs in X are processed.

we havepair (G+Rv) as follows. By (15) and (16)

>
1

u ox%Vq☺) l

Since o(\) = a(Rv) Y we have D(g) = D(RV) and a(
$Lu'

. = o(Rvj) for

l<j<m. We add each pair Cgj, Rvj 1 for l< .i < m to X if it- - -“-

is not already present.

We obtain a set of pairs X = {(Q(1) ,R
. .

that s < qr , Q i 5 R i( > ( > for l< i < s- - -
m

> Y l **, (Q(~),R(“))) such

and

(Q(i),R(i)) z J (Q(~),R(~)).  (e
. .

j=l J J
j,ej) U (Di,Di) , where each pair

(Q(~),R(~)

j j
) appears in X .

m
Consider the system of equations xi = c a(e )x

j=l
j ij + a(Di) Y

where x.. = xk if ( )Q.
i w

iJ J
=Q . This system is satisfied by

x. = a(Qci)) if a(Qci)) is defined for 1 < i < s and by xi = a(R ( >
1 - - 7

.
if a(R ' )( > is defined for l<i< s . We can rewrite this system as

x= Ax+b, where each entry in A is a linear cconbination of

a(el),a(e2)y*o~,a(em) , or equivalently as (A-1)x = -b . This system

has a unique solution when the determinant of A-I is non-zero, which

is true except for values of a(el),a(e2),...,a(em)  forming a set of

15



measure zero in mm . Thus a(Q i ) = a(R( > (i)) for 1 5 i < s 'except

on a set of measure zero. In particular a(Q) = a(R) except on a set

of measure zero. Since a(Q) and a(R) are rational Actions of the

a(ej) 'SY a(Q) = a(R) when both are defined. 0
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5. Continuous Data Flow Problems.

Many problems in global code optimization can be formulated as

path problems of the kind we are considering. The general setting is

as follows. We represent a computer program by a flow graph

G = (V,E,s) l Each vertex represents a basic block of the program

(a block of consecutive statements having a single entry and a single

exit). Each edge represents a possible transfer of control between

basic blocks. The start vertex s represents the start of the program.

We are interested in determining, for each basic block, facts which

must be true on entry to the block regardless of the actual path of

program execution. Such facts can be used for various kinds of code

optimization. See Aho and Ullman [2], Hecht [lb], and Shaefer [25].

To represent the universe of possible program facts, we use a set

I, having a commutative, associative, idempotent meet operation A ;

such an algebraic structure is called a lower semi-lattice. If x and y

are two possible program facts, XAY represents the information common

to both. We can define a relation 5 on L by x < y if and only if

x/\y=x. The properties of A imply that < is a partial order

on L 1271; we interpret x 5 y to mean that fact y contains more

information than fact x . We shall assume that L is complete, by

which we mean that every subset X c L has a greatest lower bound with

respect to <, ; we denote this greatest lower bound by r\x . If

X = (xl,x2,...,xn] , then AX = X~AX~A...AX~  . We use I to denote

AL , i.e., the minimum element in L . For any functions f and g

having c-on domain and range L , we define f < g if and only if

f(x) 5 g(x) for all elements x in the dcmain of f and g ,

17



TO represent the effect of the program on the universe of facts,

we associate with each edge e a function fe such that, if fact x

is true on entry to h(e) and control passes through edge e , then

f,(x) will be true on entry to t(e) . We ca.n extend these functions

to paths by defining fp(x) = x if p is the empty path,

fp(x) = (f of 0 l a* 0 f
ek ek-l el

)

to compute is A (f& 1 P is

( >X if p=elJe2,...Jek . What we want

a path from s to v) for each vertex v .

(We assume the minimum fact 1 is true on entry to the program.)

This discussion motivates the following definitions.

A continuous data flow framework (L,F) is a complete lower semi-

lattice L with meet operation A and a set of functions F: L 3 L

satisfying the following axioms:

(16a) (identity) F contains the identity function Z, .

(16b) (closure) F is closed under meet, function composition, and * y

where @A 9) (4 = f(x)Ag(x) and f*(x) = I\ {fi(x) 1 i > 0) .-

(16~) (continuity) For every feF and X c L ,- f( A x> = A (f(x) \ XEX) .

A continuous data flow problem consists of a flow graph G = (V,E,s) ,

a continuous data flow framework W) 9 and a mapping from E to F;

we use fe to denote the function associated with edge e . The meet

over all paths (MOP) solution to this problem is the mapping mop from

V to L given by mop(v) = A (p,(l) \p is a path from s to v) .

We can use path expressions to solve continuous data flow problems

by means of the mapping f defined as follows.

18



(17a) f(h) = t ;

f(e) = f
e '

(17b) f(PlUP2) = f(p$ Af$,) ;

f(pp2) = fey O f(Pl) ;

f($) = f(Pl)* .

Lemma4. Let P # $ be a path expression of type (v,w) . Then for

all XEL, fWW = A (fp(⌧)  1 P E a(p>  ] l

Proof. By induction on the number of operation symbols in P . The

lemma is immediate if P is atcmic, Suppose the lemma is true for

path expressions containing fewer than k operation symbols, and let

P contain k operation symbols. We have three cases.

Suppose P =
y☺p* l Then

f(P)(x) = f (p,) (X> A f(P2) (X> = (A {f,(X) 1 PE a@l)]) A (A {f,

IP4P)]  l

w IP4y])

= A {fp(X) 1 XE dp,, U o(p2, ] = A {fp(X)

Suppose P = PlmPp . Then

f (P >( >X = fog Wl) (4 > = f(P2) ( A (fplb)

= A {f(P2)  (fpl(x)  > 1 P1 E @I) 1

= A{A{fp1p2Cx) 1 p2 E o(P2)3 \ Pp o(PIH

1 P1 E “(Pl) 3)

by continuity

= A Cfplp2(x) Ipl ECJ(P~) and P24P2)3 = A {fp(X) IPEG( .

19



Similarly we can show that if Pl has fewer than k operation symbols

then f(Pl)i(x)
.

= A {fp(x) 1 pc O(Pl)l] for any i 2 0 .

Suppose P = PT . Then

f(P)(x) = f(Pl)*(x) = A {f(Pl)i(x)  Ii 2 0)

= A {A [f,(x) 1 PE O(P~)~] 1 i 2 O} = A [f,(x) I PE o(Pi)} . 0

Theorem 5. For any vertex v , let P(s,v) be a path expression

representing all paths from s to v. Then mop(v) = f(P(s,v))(l) .

Thus we can use a solution to the single-source path expression

problem to solve continuous data flow problems. For examples and extensive

discussions of such problems see Cousot and Cousot [5], Fong, ~a;m, and

ULlman [g], Graham and Wegman [13], Kam and Ullman [16,17],  ICildall  [lg],

and Rosen [23].



6. Monotone Data Flow Problems. .

Many important global flow problems are not continuous [17']. For

such problems there is in general no algorithm to compute the meet over

all paths solution [17], and we must be satisfied with less information

than the MOP solution provides. In such situations the following approach

is appropriate.

A monotone data flow framework (L,F) is a

lattice L with meet operation A and a set of

satisfying the following axioms:

complete lower semi-

functions F: L 4 L

(184
Wb >
ww

( 184

(identity) F contains the identity function t .

(closure) F is closed under meet and function composition.

(monotonicity)

f(x) 5 f(Y)

(approximation

a function

w f@(x)

For every feF and x,yeL, _X<Y implies

.

to f*) For every function feF , there is

f% F such that
.

<f'(x) for all xeL, i>O;and

(ii) if x,yeL satisfy f(x)Ay > x , then @f (y) > x .

Monotone frameworks generalize continuous frameworks by requiring only

monotonicity (18~) in place of continuity (16~) and by

pseudo transitive closure function. Note that f* is

requiring only a

the maximum

function satisfying (18d).

A monotone data flow problem consists of a flow graph G = (V&S) ,

a monotone data flow framework (LA Y and a mapping from E to F

whose values we denote by fe for eeE . A fixed point for this problem

is amapping z: V 4L such that
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(19) z(s) = I and f,(z (h(e))) 2 4% (p)) for any eeE . -

A safe solution to the data flow problem is a mapping x: V -+ L such that

(204 x(v) < f (I) for any vertex
- P

v andanypath p f'ram s

to v;and

(2Ob > X(V) > z(v) for any fixed point z- and any vertex v .

Thus a safe solution is a conservative  approximation to the MOP solution which

is at least as informative as any fixed point. It is easy to prove that

a,ny fixed point satisfies (2Oa); if the data flow problem is continuous,

the MOP solution is the maximum fixed point [lg].

We can use a slight variant of the mapping defined in Section 4 to

compute a safe solution to a monotone data flow problem. Let f be

defined as in (17), except f(PT) = f(Pl)@ .

Lemma 5. Let P # $ be a path expression of type (v,w) . Then

f(P)(x) 5 fp(x) for all pe S(P) and xeL .

Proof. By induction on the number of operation symbols in P , The

lemma is immediate if P is atomic. Suppose the lemma is true for path

expressions containing fewer than k operation symbols, and let p

contains k operation symbols. We have three cases.

Suppose P = P, UP, and pep . If pep, then
A L

f(P) (4 = f’(5)  (X> A f(P2) (X> < f(Pl)-

similarly if pep2'

A

4 5 fp(x) by the induction hypothesis;
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.
SuPPose P = Pl*P2 and p = plp2 with pie p1 , p2 EP . Then

f(P)(x) = f(P2WogW  5 f(P2)  (fplW  < ‘fp2 O fpl)o = fpO

by monotonicity and the induction hypothesis.

Suppose P = Pl and P = PlP2 l *Pk with pieP1 for l<i<k.- -

Then

f(P)(x) = f(Pl)@W 5 f(Pl)kw bY VW(i)

5 fp(x) by monotonicity and the induction

hypothesis, as above. 0

Lemma 6. Let P # $ be a path expression of type (v,w) . If z is

any fixed point, then f(P)(z(v)) > z(w) .

Proof. By induction. The lemma is immediate if P is atomic. Suppose

the lemma is true for path expressions containing fewer than k operation

symbols, and let P contain k operation symbols. We have the usual

three cases.

Suppose P = PlUP2 . Then f(P)(z(v)) = f(P1) wJ> 1 A fP2) (z(v>)

> z(w) by the induction hypothesis.-

Suppose P = PlaP2 . Let u be the vertex such that Pl is of

type (v,u) and P2 is of type (u,w) . Then f(P)(z(v)) =

f(P2Hf(PlMw 2 f(P2)(z(u)) 2 z(w) by the induction hypothesis.

Suppose P = Pl . By the induction hypothesis, f(Pl)(Z(V)) AZ(V)

2 z(v) l B Y @d)(ii), f@)(z(v))  = f(Pl%(v)) 2 z(v) . 0
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Theorem 6. For each vertex v , let P(s,v) be a path expression

representing all paths fram s to v. Then the function x: V 3 L

definedby x(v) = f(P(s,v))(l)  is a safe solution.

Proof. By Lemma 5, x(v) = f(P(s,v))(d 5 %(4 for m PC S(P(sy4) ;

thus x satisfies (20a). Let z be any fixed point. By Lemma 6,

x ( v )  = fO3%v))(d = f(WYV))Ms))  2 z(v) ; thus x satisfies (2Ob). Cl
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Bounded Data Flow Problems.- 7.

Most interesting data flow problems satisfy a stronger condition on L

than completeness, called the descending chain condition; every descending

chain x1 >x,> >...
3

in L is finite. For semi-lattices satisfying

the descending chain condition, continuity is equivalent to distributivity:

f(xAy) = f(x)~ f(y) for 4-l feF and x,yeL . Our continuous data

flow problems are thus a generalization of the distributive data flow

problems considered by BldaJl [l% Although most global flow problems

satisfy the descending chain condition, sme, such as type checking [33],

do not.

If the set of functions F in a data flow framework satisfies a

boundedness condition, then we can compute an approximation f@ to f*

for any function feF using only function meet and composition. If

the framework is continuous as well, it is possible to compute the MOP

solution from a set of path expressions representing only some of the

paths from the start vertex. We shall consider a hierarchy of boundedness

axioms. For k >l, a k-bounded data flow framework (L,F) is a

complete lower semi-lattice L with meet operation A and a set of

functions F: L -+ L satisfying identity (18a), closure (I&),

monotonicity (~SC), and

(21) (k-boundedness) fk(x) 2 A(fi(x)  IO 5 i 5 k-l} for all feF and xeL .

For k > 1 , a k-semi-bounded data flow framework (L,F) is a complete

lcwer semi-lattice L with meet operation A and a set of functions

F:L-,L satisfying (18a), (18b), (18~)~ and

(22) (k-semi-boundedness) $(x) 2 (A (fi(x) IO 5 i <, k-1)) A fk(y)

for all fcF and x,y~L .
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We define k-bounded and k-semi-bounded data flow problems in the

obvious way. It is easy to show that k-boundedness implies k-semi-

boundedness and k-semi-boundedness implies (k+l) -boundedness.

Boundedness, being a property of F and not of L , is neither

stronger nor weaker than the descending chain condition. The k-bounded

and k-semi-bounded data flow problems include some, but not all, of the

global flow problems mentioned in the literature. Problems that use

bit vectors, such as finding available expressions [31] and finding

live variables [18] are l-semi-bounded but not l-bounded, Problems

that use "structured partition lattices", such as common subexpression

detection [9,16,19], are 2-bounded but not l-semi-bounded. Type checking

[331 is not k-bounded unless some bound is artificially imposed,

Lemma 7. In a k-bounded data flow framework (L,F) ,

f* =
.

A If1 \ 0 < i < k-l] for all feF .- -

Proof. We prove by induction on j that if j > k ,

fj(x) 2 A $(x) 10 5 _i < k-l) for all feF and XEL . The claim

is true for j = k by k-boundedness. Suppose j > k and the claim

is true for j-l . Then

fj(x) = fj-l(f(x)) 2 A {fi(x) ) 1 < i 5 k) by the induction

hypothesis

2 A $(x) 10 5 i 5 k-l] by k-boundedness.

The lemma follows from the claim. c]

Lemma 8. In a k-bounded data flow framework (L,F) , the function f@

defined by f@ = @At) k-1 for feF satisfies (18d).
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Proof. By repeated use of monotonicity, we obtain .

f@c >X = (f At)k-l(~)  < r\(fi(x) IO 5 i < k-l] , which implies (18d)(i)

by Lemma 7. We prove by induction on j that if f(x)hy > x ,-
.

then (fAc)J(y)  2 x . The result is immediate for j = 0 . Suppose

(fAL)j-l(y)  2 X . Then (fAL)j(y) 2 f(x)hx 2 x . Thus

f(x) A y 1 x implies f@c >X = (fhG)k-l(x) 2 x , and (18d)(ii) holds. tf

If (W’) is a k-bounded data flow framework and feF , we can

*
compute f using O(k) function meets and compositions by Lemma 7.

We can compute an approximation f@ to f* in O(log k) diction meets and

compositions by Lemma 8. (We trade accuracy for time if we compute f@

instead of f* .) Theorem 6 thus gives a method to solve bounded

data flow problems using only function meet, composition, and application.

Suppose (WY We) is a data flow problem which is not only

bounded but continuous. In this case f@ = f* Y and we can compute

the MOP solution using only function meet, camposition, and application,

with O(log k) such operations replacing each * . We can also use

path expressions representing only some of the paths from s , as

demonstrated by the next results.

Lemma 9. Let (L,F,G,fe) be a k-bounded continuous data flow problem.

Let v be a vertex in G and let p be a path from s to v that

is not k-simple. Then there is a set S of paths from s to v such

that each path in S is shorter than p and fp L A cf, I @I l

Proof. If p is not k-simple, then p contains some vertex u at

least k+l times. Let p = POPlP2 l  * �  PkPk+l ,
where each pi for

1 < i < k is a cycle from u to u .- - (Both p. md Pk+l maY be

the empty path.) Then
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f
P

>

>

fpk+l  O ( A Cfp I 1
i

f
'k+l

o A {( A {fp
i

5 i 5 k})ko f
PO

by continuity

11 5 i < k])j \ 0 5 j 5 k-1)0 f
pO

by k-boundedness

>- A (f, 1 q = PO ql 92 . . . qf pk+l where 0 5 1 5 k-1

and qjefpi(l<isk] for lLjL1] . 0

Corollary 1. Let (L,F,G,fe) be a k-bounded continuous data flow problem.

Let v be a vertex in G and let p be a path from s to v . Then

f > A [fq \ q is a k-simple path from s to v 1 .
P-

Proof. By induction on the length of p using Lemma 9. 13

Theorem 7. Let (L,F,G,fe) be a k-bounded continuous data flow problem.

For each vertex v , let Pk( s,v) be a path expression such that

s(pk(sJv)) contains at least all the k-simple paths from s to v .

Then mop(v) = f(Pk(s,v))(I)  , where f is defined as in Section 5.

Proof. Immediate from Lemma 4 and Corollary 1. 8

Lemma 10. Let (L,F,G,fe)  be a k-semi-bounded continuous data flow problem.

Let v be a vertex in G and let p be a path from s to v which

is not k-semi-simple. Then there is a set S of paths from s to v

such that each path in S is shorter than p and fp > A (fq I qeS} .
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Proof. If p is not k-semi-simple, then p can be partitioned into

P = pOP1P2P3  l Pk+2Pk+3 Y where pl and Pi for 3 5 i 5 k+2 are

cycles, and PO , P2 Y Pk+3
are possibly empty. Then

f > f
P- 'k+3

o(A[fp 13 <_irk+2))kof
i POPlP2

by continuity

L f
'k+3

OA(b{fp 135 ’i < k+2))' IO 5 j 5 k-1) of
i POPlP2

Af
'k+3

o(A[fp 13 lilk+2])kof by k-semi-boundedness
i pop2 and continuity

2 ( A cf q 1 q = PO Pl P2 91 ?$ l l l qL Pk+3 where 0 < 1 < k-1

and qj e (pi \ 3 5 i 5 k+2} for 15 j 5 a))

for l<j<k)) . 0

Corollary 2. Let (L,F,G,f,) be a k-semi-bounded continuous data flow

problem. Let v be a vertex in G and let p be a path from s to v .

Then f > A {f, \ q is a k-semi-simple path from s to v) .
P-

Proof. By induction on the length of p using Lemma 10. 0

Theorem 8. Let (L,F,G,fe) be a k-semi-bounded continuous data flow

problem. For each vertex v , let Pk(s,v) be a path expression such

that S(Pk(s,v)) contains at least all the k-semi-simple paths from

s to v. Then mop(v) = f(Pk(s,v))(l)  , where f is defined as in

Section 5.
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Proof. Immediate from Lemma 4 and Corollary 2. 0
.

Corollaries 1 and 2 require continuity; in fact, the MOP solution

is not effectively computable in a general 2-bounded monotone data

flow problem [17]. See Kam and Ull..ma~ [16] and Tarjan [29] for further

discussion of the effect of boundedness on global flow analysis.
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8. An Idiosyncratic Data Flow Problem. .

As a final application of our technique, we shall consider a data

flow problem that does not fit naturally into the semi-lattice

framework, but that can still be solved easily using a mapping from path

expressions. The problem arises in the optimization of very-high-level

languages and has been studied by Fong [8].

Let G = (V,E,s) be the flow graph of a program which contains

occurrences of an expression & . With each edge e of the program

is associated an effect, which has one of four values depending upon

what flow of control through edge e does to the value of & .

effect(e) =

.
wn

kill

injure

tram
. I if

*the program recomputes &

the program makes a large change in the value of &

the program makes a small change in the value of e

the program does not affect the current value of &

For any vertex v , we say & is implicitly available on entry to v

if there is a positive bound b such that, for every path

p = el,e2,".,ek from s to v , there is an i such that

(i) effect(ei) = gen , (ii effect(ej)  # kill for 1 < j < k ,

and (iii) the number of values j such that i < j < k and

effect(ej) = injure is bounded by b . Note that the bound b can

depend upon the vertex v but not upon the path p ,

The problem we wish to solve is to determine fra (effect(e) 1 e e &]

the vertices at which & is implicitly available. The idea is that if

the most-recently-computed value of & can be injured only a bounded

number of times before entering v , we can compute the value on entry
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to v from the most-recently-computed value by performing a bounded

number of updates. Otherwise, we must completely recompute & to obtain

its value on entry to v .

Fong [8] claims that this problem cannot be formulated within the

semi-lattice framework, "at least in the only natural choice of semi-

lattice." However, Fong observes that the problem can still be solved

efficiently. We shall define a mapping from path expressions for this

purpose.

Let D = {gytoyt+,w} be a set having operations A , 0 , @ defined

by the following tables.

A
I

65 to t, w
I
I

63 g to t, w

t0 %I to t+ w
t+ t+ t+ t+ w

w w w w w

0

gIt0t+w
65 t0 t+ w

g g 65 w

Q to t+ w

g t, t, w

g w w w

6%

65 t0

t0 t0

t+ w

W w

Let the mapping f from path expressions to D be defined as follows.

f(e) = 1 if effect(e) =

izen

kill

injure

I trans I for eeE .
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@lb > f(5UP2) = f’(5) Af(P2)  ;

f(Pl O p2> = f(Pl) O f(P2) ;

f (pin) = f(P$@ l

We call a path p = el,e2, .a*, ek in G a ti -path if

effect(ej) E (injure,trans] for 1 < j < k and the number of edges e.- - J

such that effect(ej) = injure is i . We call a path p a gi -path

if it can be partitioned into p = pl,e,p2 , where effect(e) = gen

and p2 is a ti -path. We call a path p an w-path if it can be

partitioned into p = plJe,p2 , where effect(e) = kill and p is a

'i
-path for some i .

Lemma 11. Let P be a path expression. Then

( >i f(P) = 63 if there is a bound b such that every path in o(p>

isa gi -path with i < b ;-

(ii) f(P) = to if there is a bound b such

is either a gi -path with i < b or

contains at least one to path.

(iii) f(P) = to if there is a bound b such

is either a gi -path with i < b or

that every path in a(P)

a to -path, and a{P)

that every path in a(P)

a ti -path with i < b ,-

and a(P) contains at least one ti -path with i > 0 .

(iv) f(P) = w in all other cases. (For any bound b , a(P) contains

either a gi -path with i > b , a t, -path with i > 0 , or

an u-path.)

Proof. Straightforward but tedious, by induction on the number of

operation symbols in P . 0
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Theorem 9. For each vertex v in G , let P(s,v ) be a path expression

representing all paths from s to v in G. Then & is implicitly

available at v if and only if f(P(s,v)) = g .

Proof. Immediate from Lemma 11.

Actual occurrences of the implicit availability problem usually

involve a number of expressions. We can perform the computation

associated with Theorem 9 in parallel for all the expressions by using

bit vector operations. Since D contains four elements, we need two

bit vectors for each value computed (rather than the three proposed by

Few l31). By adding an additional element to D we can compute the

explicitly available expressions (those available with no injuries) in

addition to the implicitly available ones.
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9. Remarks.

We have shown how to use path expressions to solve three kinds of

path problems on directed graphs. Our results allow us to build a

general algorithm for solving path problems on directed graphs; to solve

a particular path problem, we merely interpret (J , l , and *

appropriately. We can base such m algorithm on Gaussian or Gauss -Jordan

elimination [21]. Tarjan [30] discusses another algorithm, which is

especially efficient on reducible and almost-reducible graphs [ 15,281.

Our results serve to formally justify the empirical observation

that the same algorithms work on many different path problems, There

are of course algorithms that solve only a particular kind

of path problem, such as Dijkstra's  [6] and Fredman's [12] shortest

path algorithms and Pan's improvement to Strassen's algorithm for solving

linear equations [4,22,26]. However, any algorithm able to compute path

expressions also solves all the path problems we have considered here.

Our ideas extend easily to matrix multiplication problems and to

problems requiring the transitive closure of a matrix. See Aho, Hopcroft,

and ULtman [l] and Lehman [21] for discussions of such problems.
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Appendix: Graph-Theoretic Definitions

A directed graph G = (V,E) is a finite set V of vertices and a

finite set E of edges such that each edge e has a head h(e)eV and

a tail t(e)eV . We regard the edge e as leading from h(e) to t(e) .

A path p = el,e2, . . ., ek is a sequence of edges such that t(ei) = h(ei+l)

for 1 < i < k-l .- - The path is from h(el) to t(e,) . The path contains

edges el,e2,...,ek and vertices h(e,),h(e,),o**,h(e,),t(ek)  , and

avoids all other edges and vertices. There is a path of no edges from

any vertex to itself. A cycle is a non-empty path from a vertex to

itself.

If there is a path from a vertex v to a vertex w , then w is

reachable from v . A flow graph G = (V,E,s) is a graph containing

a distinguished start vertex s such that every vertex is reachable

from s.

A simple path p is a path containing no vertex twice. For k ~1,-

a k-simple path is a path containing no vertex k+l times. Thus a

l-simple path is simple. A k-semi-simple path is a path p that can

be partitioned as p = pl,e,p2 , where p is simple, e is an edge,

and p
2

is k-simple.
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