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Abstract . W describe a general method for solving path problens on
directed graphs.  Such path problens include finding shortest paths,
solving sparse systens of linear equations, and carrying out global

flow analysis of conputer programs. our nethod consists of two steps,
First, we construct a collection of regular expressions representing sets
of paths in the graph. This can be done by using any standard al gorithm
such as Gaussian or Gauss-Jordan elimnation, Next, we apply a natural
mappi ng fromregul ar expressions into the given problem domain. W
exhibit the mappings required to find shortest paths, solve sparse
systens of l|inear equations, and carry out global flow analysis.

Qur results provide a general -purpose algorithm for solving any

path problem and show that the problem of constructing path expressions

is in some sense the nost general path problem
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A Unified Approach to Path Problens

1. [ ntroduction.

A fundamental problem in numerical analysis is the solution of a
system of linear equations AXx =b , where Ais an nxn matrix of
coefficients, x is an nyxl vector of variables, and b is an nx1l
vector of constants. Efficient nethods for solving Ax = b, such as
Gaussi an and Gauss - Jordan elinination, have long been known. These
met hods have been repeatedly rediscovered and applied in other contexts.

For exanple, Floyd's shortest path algorithm[7], which is based on
Warshall's transitive closure algorithm[32], is a version of Gauss -Jordan
elimnation. Kleene's method for converting a finite automaton into

a regular expression [20] is a formof Gauss -Jordan elinination;

CGaussian elimnation also solves this problem[3]. In all these

situations the problem of interest can be fornulated as the solution

of a system of linear equations defined not over the field of real

nurbers but over some other al gebra.

In this paper we provide a unified setting for such problens. Qur
goal is to show that a solution to one of them can be used to solve them
all. One approach to this task is to develop a mnimal axi om system for
which elimnation techniques work (see for instance Aho, Hopcroft, and
Ullmen [1] and Lehman [21]) and to show that the problems of interest satisfy
the axioms. Our approach is somewhat different and resenbles that taken
by Backhouse and carré [3]; we believe that the proper setting for such
problens is the algebra of regular expressions, which is sinple, well-understood,

and general enough for our purposes.



W shall use a graph-theoretic approach rather than a matrix'
theoretic one because we are interested mainly in sparse problens
(problems in which the coefficient matrix A contains nostly zeros),

Let G be a directed graph with a distinguished source vertex s ,

The singl e-source path expression problemis to find, for each vertex v

in G, a regular expression R(s,v) representing the set of all paths

froms to v . The all-pairs path expression problemis to find, for

each pair of vertices v, w, a regular expression R(v,w) representing
the set of a1l paths fromv to w. W shall show that it is possible

to use solutions to the single-source and all-pairs path expression
problens to find shortest paths in G, to solve systens of |inear
equations defined on ¢, and to solve global flow problens defined on G.
W sol ve these problems by providing natural homomorphism that map the
regul ar expressions representing path sets into the algebras in which

the given problens are expressed. W define these mappings by reinterpreting
the y,.and x operations used to construct regular expressions. The
technical part of our work is in showng that these mappings are indeed
hononor phi sns.

This paper contains nine sections. Section 2 reviews the properties
of regular expressions that we shall use. Section 3 considers shortest
path problems. Section 4 examnes the solution of systems of |inear
equations over the real nunbers. Sections 5,6,7, and & discuss various
kinds of global flow analysis problens. Section 9 contains sonme additional
remarks. The appendix contains the graph-theoretic definitions used in the

paper .




2. Regul ar Expressions and Path Expressions.

Let = be a finite al phabet containing neither " A" nor " ¢,

A regular expression over I is any expression built by applying the

follow ng rules:

(1a) "A"and " § " are atomc regular expressions; for any
aeZ, " a " is an atomc regular expression.
(1b) | f R, and R2 are regul ar expressions, then (RlU R2) ,

(Rl'Rz) » and (Rl)* are conpound regul ar expressions,

In a regul ar expression, A denotes the enpty string, p denotes
the enpty set, | denotes set union, .denotes concatenation, and
* denotes reflexive, transitive closure (under concatenation).y Thus
each regular expression R over 1 defines a set o¢(rR) of strings

over % as foll ows:

(2a) o(p) = {a} ; o(P) = p ; o(a) = {a) for aeZ .

(2b) o(R, UR,) = o(R, JUO(R,) = {w |WeG(Rl) or weo(Ry)} ;

g(Rl.RE) = G(Rl)'G(RE) = {Wlw2 l W) e U(Rl) and W, € G(Rg)} H

k i-1
)

, where o(r)® = {a} and o(R) = o(r) o)) .

o(R)) = RC 1

Two regul ar expressions Ry and R, are equi val ent
if o(r)) = 0(32) . Avregular expression Ris sinpleif R=p or

R does not contain ¢ as a subexpression. W can transform any regular

X Note that the symbol A represents both the regular expression " p "
and the enpty string. Henceforth we shall avoid using quotation marks
and al low the context to resolve this ambiguity; simlarly for p, u,
-, ¥, W shall also freely omit parentheses in regular expressions
when the neaning is clear.



expression R into an equivalent sinple regular expression by repeating
the followi ng transformations until none is applicable: (i) replace any
subexpression of the form ¢'Rl or Rl'QS by ¢ ; (ii) replace any
subexpression of the formg@+ R, or Rl+;0 by R, ; (iii) replace any
subexpression of the form ;25* by A .

A regular expression R is non-redundant if each string in d(R)

is represented uniquely in R. A nore precise definition is as follows:

(3a) As §, and a for aeZ are non-redundant.

(3D) Let Ry and R, be non-redundant.

R, UR, i s non-redundant if G(Rl)ﬂG(RQ) =p .
R, R, i's non-redundant if each ve G(Rl-RE) i s uniquely

deconposable into w = WoW, with W) € G(Rl) and

W, EG(R2)°
R:T i s non-redundant if each non-enpty weR;e IS uniquely

decomposable iNtO W = W, W, «o0e W

1V, ,  With WieO(Rl)

Note that if pAe o(R), then R* is redundant.
Let G=(V,E) be adirected graph. W can regard any path in G
as a string over E, but not all strings over E are paths in G.

A path expression P of type (v,w) is a sinple regular expression

over E such that every string in ¢(P) is a path fromv to w
Every subexpression of a path expression is a pathexpression,whose

type can be determned as follows.



(4) Let P be a path expression of type (v,w) .

If P= P UP, , then P, and P, are path expressions of type

(vyw) .

there nmust be a unique vertex u such that P

1'F2
is a path expression of type (v,u) and P, is a path
expressi on of type (u,w) .

If P = PI ., then v = w and Py is a path expression of type

(vow) . (v,v) .

It is easy to verify (4) using the fact that P is sinple.



3. Shortest Paths.

Let G = (V,E) be a directed graph with an associated real-val ued

cost c(e) for each edge e . A shortest path fromv to wis a

k
path p = e,e_,...,e. fromv to w such that 2 c(e,) is ninimm
1’2 k =1 1
over all paths fromv to w If Gcontains no cycles of negative

total cost, there is a shortest path fromv to wif there is any

path fromv to w . The single-source shortest path problemis to find,

for each vertex v , the cost of a shortest path froms to v , where s

is a distinguished source vertex. The all-pairs shortest path problemis

to find the cost of a shortest path fromv to w for all vertex pairs v, w.

W can use path expressions to solve shortest path problens by means

of two mappings, cost and shortest path , defined as follows.

(52)  cost(p) = 0, shortest path(A) =4 ;

L]

cost(f) = » , shortest path($) = no path ;

cost(e) =c(e) , shortest path(e) = e for ecE.

(50)  cost(P; UP,) = min{cost(P;),cost(P,)} ,

short est path(Pl[JPE) = if cost(Pl) < cosj(Pg) then short est path(Pl)

el se shortest pa‘th(PE) :

e el

cost(Pl-Pg) = cost(Pl) + cost(Pe),

short est path(Pl.PE) = Shortest path(p,).shortest path(Pg);

1)
cost(P;f) =f cost(Pl) < 0then -« else 0,

A~ A

shortest path(P?Ei)f =cost(Pl) < 0 then no shortest path else p .

A~




Lemma 1. Let P be a path expression of type (v,w). |If ¢ost(P) = =,
there is no path in c(P) . If cost(P) =-=, there are paths of arbitrarily

small cost in o(P) . Qherwise, shortest path(P) is a nininum cost

path in o(P) , and the cost of shortest path(P) is cost(P)

Proof . Straightforward by induction on the nunber of operation synbols

in P. 0O

Theorem 1. Let P(v,w) be a path expression representing all paths
fromv to w. If cost(P(v,w))=w , there is no path fromv to w .

If cost(P(v,w)) = -o, there are paths of arbitrarily small cost fromyv

to w  Oherwise, shortest path(P(v,w)) 1is a shortest path fromv

to w, the cost of this path is_cost(P(v,w)) .

Pr oof . | mediate from Lemma 1.

Theorem 2. Let Pl(v,w) be a path expression such that G(Pl(v,w))

contains at least all the sinple paths from v to w If there is a

shortest path from v to w, shortest path(P(v,w)) gives one such

path; its cost is cost(P(v,w)) .
Pr oof . Any shortest path is sinple. O

By applying Theorem 1 we can use a solution to the single-source
(or all-pairs) path expression problemto solve the single-source (or
all-pairs) shortest path problem By Theorem2 it is sufficient to
use path expressions representing only the sinple paths if we have a

separate test for negative cycles. The follow ng theorem provides such

a test.



Theorem 3. Let s be a distinguished source vertex in G. For' every

vertex v , let P (s,v) be a path expression such that O(Pl(s,v))

1
contains at least all the sinple paths froms to v. Then G contains
a negative cycle if and only if there is some edge e such that

cost(P (s,n(e) ) +e(e) < cost(P, (s,t(e))) .

Pr oof . Straightforward. See Ford and Fulkerson {10]. O



L,  Systenms of Linear Equations.

The next problem to which we shall apply our technique is the
solution of a system Ax = b of linear equations over the set R
of real nunmbers [Il]. This problem has pitfalls not present in the other
probl enms we examine. The system Ax = b does not al ways have
a solution; evenif it does, the solution need not be unique. Furthernore
the standard algorithnms for finding a solution, such as Gaussian elimnation,
may not succeed even if a unique solution exists. (To deal with this
difficulty, nunmerical analysts have devised nore conplicated algorithns,
such as Gaussian elimnation with pivoting [11].) W shall avoid these
i ssues by proposing a nmethod that alnost always gives a solution when
one exists.

We begin by rewiting Ax = b as -b+ (A-I)x = x , where | is
the nxn identity mtrix. Let x. be a new variable; then the

0
system -b+ (A-I)x = X iS equivalent to

(0o(2) - 1) e )

and 0 denotes a zero matrix of the appropriate size. Let G = (V,E)

O

be the graph having nt+l vertices (one for each variable X, ) and m
edges (one for each non-zero entry in A ) such that there is an
edge e wth h(e) = vy and t(e) =, if and only if the entry in
rowi and colum j of A is non-zero; let a(e) be the value

of this entry. Then the system of equations takes the form
(6) x(s) =1; x(v) = Z{a(e)x(h(e)) |eet and t(e) =v) if v #5s 5

where s = v



W solve this system by extending the mapping a to regular.

expressions over E as follows.

(7a) a(A) =1 ; a(p) =o .

(o) a(RUR) = a(®) +al®) ;
a(Rl°R2) = a(Rl)a(Rg) ;
a(®) = 1/(1-a(®))

Not e t hat a(R;) is defined if and only if a(Rl) £1 . If R
is a regular expression over E, then a(R) is a rational function of
a(el),a(eg),..o a(em) and is defined except on a set of measure zero
in ® . Note also that the operation of addition into which union is
mapped is not idenpotent. This forces us to deal only with non-redundant

regul ar expressions.

, and R, are two equi val ent non-redundant regul ar

expressions over E , then a(Rl) = a(Rz) whenever both a(Rr

Lemma 2. If R

l) and

a(RE) are defined.

Lenma 2 is the hardest result in this paper, and we shall postpone

its proof.
Theorem 4,  For each vertex v , let P(s,v) be a non-redundant path
expression representing all paths froms tov . If a(P(s,v)) is

defined for all v , then the mapping x defined by x(v) = a(P(s,v))

satisfies (6).

10



Proof . The only path from s to s in Gis the enpty path; by

Lemma 2, x(s) = a(P(s,s)) =a(A) =1 . |If v£s , then
U {P(s,h(e))-e | ecE and t(e) = v} is a non-redundant regular expression

representing the set of all paths from s to v . By Lemm 2,

x(v) = a(P(s,v)) = a( Uy {P(s,h(e))+e|ecE and t(e) = v}

= 2 {a(e)x(h(e) |eeE and t(e) = v} . O

Thus the mapping a al most always gives a solution to (6). It
remains for us to prove Lemma 2. V& enploy salomaa's nethod for show ng
the conpl eteness of an axiom system for regular expressions [28], we
shal| use the notation Q= Rto denote that 0(Q) = o(R) and a(Q = a(R
wherever both a(Q and a(R) are defined. A non-redundant regular

expression Qis equationally characterized in terms of non-redundant

regul ar expressions Q> QE,...,Qq if Q= Q and

(8) Q = (El Qij -ej) UD(Qi) wher e D(Qi) ¢ {#,A} and

Qije{lelgqu}for all j

Lemma 3. Every non-redundant regul ar expression over E is equationally

characteri zed.

Proof . By induction on the nunber of operation synbols in the regular

m
U pre.lun
3=1 J

expr essi on.

o[

it

B

lfé'ej)us?f 5 A

11



e, =feU. ..Uk UL L ufeup for 1<g<m

Thus every atomc regular expression is equationally characterized.

Suppose Q and R are equationally characterized. TILet Qs o Qq

be non-redundant regul ar expressions such that Q = Q and (8) hol ds.

Let Rl" .

and (9) hol ds.

v R, be non-redundant regular expressions such that R = Ry

(9) R, = ( .ILIJI R..'ej) UD(Ri) where D(Ri) e {#,A} and
J=

Rije{Rk|l§k§r}for all j

V¢ shal|l equationally characterize QUR, @R, and @ , assuning they
are non-redundant .
Let 1<u<g, 1<v<r, andsuppose Q UR, i's non-redundant .

Conbi ning (8) and (9) we obtain

(10) QUR, (Qu5 UR,5) ey ) u D(Q) u D(R)

1
P
()}

2

1
~— N
c
3
—
80
(@
[>e]
<
[N
®
C.
~————
(@
w]
(and
[>s]
<\/

since if U(Qu) ﬂG(Rv) =, then D(Qu) = f or D(Rv) = p . Furthernore
Qs U Ry is non-redundant for 1< j<m. Thus if QURIisS
non-redundant, the set of equations (10) such that QuURV is
non-redundant equationally characterizes QUR = Q UR; .

Let 1<v<r, s>0, and1l<uy <u, <. .. <u<q.

S
Suppose QoRVU( U Q, ) is non-redundant. |f D(Rv) =0, we
i=1 i

obtain from (8) and (9) that



)) J) U'(igl D(Qui))
jU( i-.lil QulJ )) ‘e'j) UD(Q.RVU (igl Qui)).

Furthernore Q-Rvju( U Ruj) i's non-redundant for 1 <j <m. If
i=1 i

il
- N
e i
e}
/——\

L

o]

<
[

C
/_\
|_)-

N C w
v-'pp

[

Ry (igl Q“i)

1]
TSN
Tcr
(=]
TN

o

7o)

<

D(R) = A, we obtain from(8) and (9) that
S

(12) @R, U ( U Qui) = ( u (Q-Rvqulju (igl %ij))-ej)UD(Ql)

i=1 j=1

m
= U QR .U Q.U
( ( Y g (il

=1

hcCuon
e
[N
~—
~—
.
0]
cu.
~—

S
Furt hernore Q-RVJ.UQ,J_J.U (igl Qui‘j) is non-redundant for 1<j <m.
It follows that if @R is non-redundant, we can equationally characterize
_ . q
QR = QR; in terms of QR,U igl Qui |1<v<r, s<o0, 1<u <u,<...<u <q,
q
and Q‘RVU (.U Qu) is
i=1 i
non-r edundan
Finally we nust consider ¢ . Suppose Q is non-redundant.

Then D(Q =9 . From(8) we obtain

13



(13) Q = ( U e)
ATl

m
= (UQ [ Qlj'ej)UA
j=1

Furt hermore Q*- Q,lJ. I's non-redundant for 1 <j <m.

Let s >1 and l<u1<u2<...<us<q, SupposeQ*.(lngu
i's non-redundant. |f D(Qm) =pfor 1<i <s, then
i
) x [ 8 \ fm [ s \ \ p
Q- U = u @-{ U . ]ee. U
\1:1 Y } Lj:l ki:l Qui‘]} J) ’

S
wher e Q*'( U Quj) I's non-redundant for 1 <j <m.
i=1 -7

If D(Qu) A for some (unique) i such that 1 <i <s , then

* s o x s
(15) Q'(ifl Qui) E(jng'(QljU(ifl Quij))'ej)w ’

S
wher e C*'(Ql,ju( U Quj)) is non-redundant for 1 <j <m. It
i=1 i

follows that we can equationally characterize @ in terns of
* * s
fQluga-| U q | s>1, 1<w <u,<...<ug <q,a.ndQ U Qu
i=l i

i s non-redundant O

We are now ready to prove Lemma 2, W extend y, ., = to ordered

pairs of regular expressions by defining (Ql,Rl) U(QQ,RQ) = (Q:LUQQ,R:LUR)

(QsR)(QsRy) = (Q+QsR“Ry) » (@R) =(Q»R,) if and only if
Q =4, and R, =

1k

)

b



Proof of Lemm 2.  Suppose Q and R are non-redundant regul ar

expressions such that o(q) = o(R) ., Let @, R be characterized in
terms of {q |1 <i <0q), (R |1<i <r}by (8),(9), respectively.
We construct a set x of pairs (Qu,Rv) such t hat G(Qu) . G(Rv) .
W begin with X = {(@R)} . W process pairs in X and add new
elements to X until all pairs in X are processed. W process a
pai r (Qu’Rv) as follows. By (15) and (16) we have

m

(Qu’Rv) = (jgl (Q‘uJ VJ) (e ,e )U(D(%)’D(R

Since 9(q,) = o(R ) , we have D(Q,) = D(R,) and a(Qu,j) = G(RVJ.) for
1<j<m. W add each pair (Quj,RvJ.) for 1< j<mto Xif it
is not already present.

We obtain a set of pairs X = (l l)) —vfy(Q(S),R(S))} such

that s < qr , dV=r®) o l<_i <s , and

LR (1) (1) o -
(Q ) = UJ—iQ_. ;R P ey j) U (D;sD;) , where each pair

(Qgi),Rgi)) appears in X .

Consi der the system of equations x, =2 a(e,)x,. + a(D.),
i =1 J’ i3 i

wher e X = X i f Q.J(i) :Q(k). This systemis satisfied by

4 = a(Q(l) i f a(Q(i)) is defined for 1 <i_<'s and by X, = a(R(i))
i f a(R(l) is defined for 1<i<s . W canrewite this system as

X = Ax+b , where each entry in Ais a |inear combination of
a(e;)sa(ey)s..05a(e ) , or equivalently as (A-I)x = -b . This system
has a unique solution when the determnant of Al is non-zero, which

is true except for values of a(el),a(eg),...,a(em) formng a set of

15



measure zero in [Rm . Thus a(Q(i>) = a(R(i>) for 1<i <s 'except

on a set of neasure zero. In particular a(Q = a(R) except on a set

of measure zero. Since a(Q and a(R) are rational functions of the

a(ej) 's, a(Q) = a(R) when both are defined. O

16



5. Conti nuous Data Fl ow Probl ens.

Many problens in global code optinization can be formulated as
path problens of the kind we are considering. The general setting is
as follows. W represent a conputer program by a flow graph
G = (V,E,s). Each vertex represents a basic block of the program
(a block of consecutive statements having a single entry and a single
exit). Each edge represents a possible transfer of control between
basic blocks. The start vertex s represents the start of the program
Ve are interested in determning, for each basic block, facts which
must be true on entry to the block regardless of the actual path of
program execution. Such facts can be used for various kinds of code
optimzation. See Ahc and Ullman [2], Hecht [1k], and Shaefer [25].

To represent the universe of possible program facts, we use a set
L having a comutative, associative, idenpotent meet operation A ;

such an algebraic structure is called a lower senm-lattice. If x and vy

are two possible program facts, x Ay represents the information common
to both. W can define a relation <on L by x <y if and only if
XAy =x . The properties of A inply that <is a partial order

on L [27]; we interpret x <y to nmean that fact y contains nore
information than fact x . W shall assume that L is conplete, by
which we mean that every subset X c L has a greatest |ower bound with
respect to <; we denote this greatest |ower bound by Ax . If

X = {xl,xg,...,xn} , then aX =X AX Ao AX - W use . to denote
AL , i.e., the mninumelenment in L . For any functions f and g

havi ng camon domain and range L , we define f < g if and only if

f(x) < g(x) for all elenments x in the domain of f and g ,

L7



Torepresent the effect of the program on the universe of facts,
we associate with each edge e a function fe such that, if fact x
Is true on entry to h(e) and control passes through edge e , then
fe(x) will be true on entry to t(e) . W can extend these functions
to paths by defining fp(x) =X if pis the enpty path,

e, . \What we want

fp(x) = (f of o.a* 0 fe | (X) if p= 19800 e es €y

*k  %k-1 1
to conpute is A {fp(;) | » is a path froms to v) for each vertex v .
(W assune the mnimumfact » is true on entry to the program)
This discussion notivates the follow ng definitions.

A continuous data flow framework (L,F) is a conplete |ower semi-

lattice L with nmeet operation a and a set of functions F: L - L

satisfying the follow ng axions:

(16a) (identity) F contains the identity function ¢ .

(16b) (closure) F is closed under meet, function conposition, and ¥,

where (£4 g) (x) = £(x) ag(x) and F*(x) = A {£5(x) | i > 0)

(16c) (continuity)  For every feF and X c_L , f(AX) = A (f(x) |xx}.

A continuous data flow problem consists of a flow graph ¢ = (V,E,s) ,

a continuous data flow framework (1,F) , and a mapping from E to F;
we use fe to denote the function associated with edge e . The neet

over all paths (MOXP) solution to this problemis the mapping mop from

V to L given by nop(v) = A {f:p(.l_) |p is a path froms to v)
W can use path expressions to solve continuous data flow problems

by means of the mapping f defined as follows.

18



(l?a) f(A) = 7z 3
f(e) = f

(17p) £(PyUR,) = £(Py) AL(B,) ;

f(Pl-PE) = f£(p,) o £(P

o 13

f(PI) = £(p

Lemma 4. Let P # ¢ be a path expression of type (v,w) . Then for

all xeL, f£(P)(x)= A {fP(X)| _ea(P)} .

Proof . By induction on the nunber of operation synbols in P . The
lenma is imediate if P is atomic. Suppose the lemma is true for
path expressions containing fewer than k operation synbols, and |et

P contain k operation synbols. W have three cases.

Suppose P = P, UP, . Then
FP(x) = f(2) (0 A 2(3) () = (A (£,(x) | pe 9(B)D) A (A (£,(x) |peo(py)])

= A {fp(x) | xe G(Pl) U G(PE) }= A {fp(x) | peoa(P)}

Suppose P = PP, . Then
£(B)(X) = f(Pe)(f(Pl)(X)) = f(PE)(A{fpl(X) | py ca(P)})
= A {£(py) (fpl(x) )| py e o(py)} by continuity
= A{A {fplpe(x) l P, € O(PE)} l P € O(Pl)}
= /\{fplpg(X) | Py co(P;) and p e ()} = A {£,(x) |peo(®)} .
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Simlarly we can show that if Py has fewer than k operation synbols

t hen f(Pl)i(x) A {fp(x) | pe o(Pl)i} for any i >0 .

Suppose P = P; . Then
PP () = £(2) (x) = A {£(B) () |1 > 0]
= a[A (500 | P a(PY | 2 01 = A {2,(0) | pe oE))} .
Theorems. For any vertex Vv , let P(s,v) be a path expression

representing all paths froms to v. Then mop(v) = £(P(s,v))(1) .

Thus we can use a solution to the single-source path expression

probl em to solve continuous data flow problems. FOr exanples and extensive

di scussi ons of such probl ens see Cousot and Cousot [5], Fong, Kam, and

Ullman [9], Graham and Wegman [13], Kem and Ullman[16,17], Kildall [19],

and Rosen [23].



6. Monot one Data Fl ow Probl ens.

Many inportant global flow problens are not continuous [17]. For
such problems there is in general no algorithmto conpute the neet over
all paths solution [17], and we nust be satisfied with less information
than the MOP solution provides. In such situations the follow ng approach
I's appropriate.

A nonotone data flow franework (L,F) is a conplete |ower semi-

lattice L with meet operation A and a set of functions F: L - L

satisfying the fol | owi ng axi ons:

(18a) (identity) F contains the identity function ¢ .
(18 ) (closure) F is closed under neet and function conposition.

(18c) (monotonicity) For every feF and xyeL x<y inplies
£(x) < £(y) .

(18a) (approximation to £ )  For every function feF, thereis
a function %¢ F such that
(1) (x) < £*(x) for all xeL, i>0; and

(ii) if xyel satisfy £(x)ay > x , then f&y) >x .

Monot one franmeworks generalize continuous frameworks by requiring only
monotoni city (18c) in place of continuity (16c) and by requiring only a
pseudo transitive closure function. Note that f* is the maxinmm
function satisfying (18d).

A nonotone data flow problem consists of a flow graph ¢ = (v,Es) ,

a nonotone data flow framework (L,F) , and a mapping fromE to F
whose val ues we denote by £, for ecE . A fixed point for this problem

iS amapping z: V - I, such that
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(19) z(s) = + and f_(z(h(e))) > z(t(p)) for any eckE .

A safe solution to the data flow problemis a mapping X: Vv -~ L such that

(20a) x(v) < fP(.L) for any vertex v andanypath p from s
to v ; and

(200 ) x(vy > z(v) for any fixed point z and any vertex v .

Thus & safe solution IS a conservative approximation to the MOP sol ution which
is at least as informative as any fixed point. It is easy to prove that
any fixed point satisfies (20a); if the data flow problemis continuous,
the MOP solution is the maxinum fixed point [19].

W can use a slight variant of the mapping defined in Section 4 to
conpute a safe solution to a nonotone data flow problem Let f be
° .

defined as in (17), except f(PI) = f(Pl

Lenma 5. Let P # p be a path expression of type (v,w). Then

f(P)(x) gfp(x)for all pe S(P) and xeL .

Proof . By induction on the nunber of operation synbols in P, The

lemma is imediate if Pis atomc. Suppose the lemma is true for path
expressions containing fewer than k operation synbols, and let p
contains k operation synmbols. W have three cases.

Suppose P = PA UFC>, and peP . |If peP, then
£(P)(x) = f(Pl) (x) A f(Pg) (x) < f(Pl) x) < fp(x) by the induction hypothesis;

simlarly if peP,,
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Suppose P = P,+F, and p = p;p, With p, e P, , p, cP . Then

(@) = £E(EE)E) < £EF) (5, () S (5, + 50 = £

2

by nmonotonicity and the induction hypothesis.

* i .
Suppose P =P, wip H ny O M with peP, for 1<i<k.

Then
k .
£(R)(x) = £()%(x) < £(p)(x) by (8a)(1)
< fp(x) by nonotonicity and the induction
hypot hesis, as above. O
Lemma 6. Let P # p be a path expression of type (v,w). If z is

any fixed point, then f(P)(z(v)) > z(w) .

Proof . By induction. The lemma is immediate if P is atomic. Suppose
the lemma is true for path expressions containing fewer than k operation
synbols, and let P contain k operation symbols. W have the usual
three cases.

Suppose P = P, UP, . Then f(P)(z(v)) = f(Pl) (z(v)) Af(Pe) (z(v))
> z(w) by the induction hypothesis.

Suppose P = P +P, . Let u be the vertex such that Py is of

2

type (v,u) and P, is of type (w,w) . Then f(P)(z(Vv)) =

£(p) (£(2)) (2(v))) > 2(p,
Suppose P = PI . By the induction hypothesis, f(Pl)(z(v)) A z(V)
>z2(v) . .. (BO)(11), £(®)(2(v)) . £(P(2(v) > 2(v) . O

)(z(u)) > z(w) by the induction hypothesis.
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Theorem 6.  For each vertex v , let P(s,v) be a path expression
representing all paths from s to v. Then the function x: V - L

definedby x(v) = £(P(s,v))(L) is a safe solution.

Pr oof . By Lemma 5, Xx(v) = £(P(s,v))(1) < fp(_l.) for all pe S(P(syv))
thus x satisfies (20a). Let z be any fixed point. By Lemma 6,

x(v) = £(P(s,v)) (1) = £(P(s,v))(2z(s)) > z(v) ; thus x satisfies (20b). [
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7. Bounded Data Fl ow Probl ens.

Most interesting data flow problens satisfy a stronger condition on L

than conpl eteness, called the descending chain condition; every descending

chain X >Hy > K > inLis finite. For sem-lattices satisfying

the descending chain condition, continuity is equivalent to distributivity:

f(xAy) = £(x)A f(y) for all feF and x,yeL . Qur continuous data
flow problems are thus a generalization of the distributive data flow
probl ems considered by Kildall [19]. A though nost global flow problens
satisfy the descending chain condition, some, such as type checking [331,
do not.

If the set of functions F in a data flow framework satisfies a
boundedness condition, then we can conpute an approxi nation # to £
for any function feF using only function neet and conposition. |f
the framework is continuous as well, it is possible to conpute the MOP
solution froma set of path expressions representing only sone of the
paths from the start vertex. W shall consider a hierarchy of boundedness

axionms. For k >1, a k-bounded data flow framework (1,F) is a

conplete lower senmi-lattice L with meet operation A and a set of

functions F: L - L satisfying identity (18a), cl osure (18b),

nmonot oni city (18¢), and
(21) (k-boundedness) fk(x) > /\{fi(x)|o <i < k-1} for all feF and xeL .

For k > 1, a k-sem-bounded data flow framework (L,F) is a conplete

lower semi-lattice L with meet operation A and a set of functions

F: L - L satisfying (18a), (18b),(18c), and

(22)  (k-seni - boundedness) fk(X) > (A {fi(x) lo<i <k-1)) A fk(Y)

for all fer and x,yel .
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V¥ define k-bounded and k-sem -bounded data flow problens in the
obvious way. It is easy to show that k-boundedness inplies k-semi-
boundedness and k-sem -boundedness inplies (k+1) -boundedness.
Boundedness, being a property of F and not of L , is neither
stronger nor weaker than the descending chain condition. The k-bounded
and k-sem -bounded data flow problens include some, but not all, of the
gl obal flow problenms nentioned in the literature. Problens that use
bit vectors, such as finding available expressions [31] and finding
live variables [18] are |-sem -bounded but not |-bounded, Problens
that use "structured partition lattices", such as common subexpression
detection [9,16,19], are 2-bounded but not |-seni-bounded. Type checking

(331 is not k-bounded unl ess some bound is artificially inposed,

Lenma 7. In a k-bounded data flow framework (z,F),

* ) .
f = A{fl|05|_<k-1}for all  feF .

Proof . We prove by induction onj that if j >k,
fi(x) >A{f(x)]04 < k-1) for all feF and xeL . The claim

is true for j = k by k-boundedness. Suppose | > k and the claim

is true for j-I . Then
fj(x) = fj"l(f(x)) zA{fi(x)| 1<i <Kk) by the induction
hypot hesi s
> A {fi(x) |o <i < k-1} by k-boundedness.
The lemma follows fromthe claim d
Lemma 8. In a k-bounded data flow framework (1,F) , the function @

k-1

defined by @ (fA2) for fer satisfies (18d).
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Proof. By repeated use of nonotonicity, we obtain

2(x) = (f A) " x) < af{ei(x) |0 <i <x1}, which inplies (18d)(i)
by Lemma 7. W prove by induction on j that if f(x)Ay > x ,

then (f/\L)J(y) > x . Theresult is imediate for j =0 . Suppose

(£r2)0 7 () > x . Then (£A2) () > f(x)Ax > x . Thus

k-1

f(x) Ay >x inplies f@'(x) = (fAz) “(x) > x , and (18d)(ii) holds. O

If (L,F) is a k-bounded data flow framework and feF , we can
conput e £% usi ng Qk) function neets and conpositions by Lemma 7.
V& can conpute an approximation 2 to £ in 0(log k) function neets and
conmpositions by Lemma 8, (W trade accuracy for tine if we conpute £©
instead of f* .) Theorem 6 thus gives a nethod to solve bounded
data flow problems using only function neet, conposition, and application.
Suppose (L, F, G,fe) is a data flow problem which is not only
bounded but continuous. In this case - £ , and we can conpute
the MOP solution using only function neet, canposition, and application,
wi th 0(log k) such operations replacing each x . W can also use

path expressions representing only some of the paths froms , as

denonstrated by the next results.

Lemma 9. Let (L,F,G,fe) be a k-bounded continuous data flow problem
Let v be a vertex in Gand let p be a path froms to v that
is not k-sinple. Then there is a set S of paths froms to v such

that each path in S is shorter than p and fp ->-A{fq | qes} .

Proof . If pis not k-sinple, then p contains sone vertex u at
| east k+1 times. Let p = PoP1Ps. o PPy - where each p; for
1<i <kisacycle fromutou. (Both P, and P, ., may be
the enpty path.) Then
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. k o
f o> f o (A{Sf 1<i <k}) of by continuity
P P+ py 11t Sy

> £ eA{(Alf |1<i <kDY|0<] Sk1Yef
Prr1 P P,
by k-boundedness
Z A[fqlq:POqqu"'qlpk+l where 0 < 4 < k-1

and qje{pi|l§i§k} for 1<3j<} . O

Corol lary 1. Let (L,F,G,fe) be a k-bounded continuous data flow problem
Let v be a vertex in Gand let p be a path froms to v . Then

fp zf\ffq]q is a k-sinple path froms to v }.

Proof. By induction on the length of p using Lemma 9. O

Theorem 7.  Let (L,F,G,fe) be a k-bounded continuous data flow probl em
For each vertex v , let Pk( s,v) be a path expression such that
s(Py(s,v)) contains at least all the k-sinple paths froms to v .

Then nop(v) = f(Pk(S,V))(.L) , Wwhere f is defined as in Section 5.

Proof . | medi ate from Lenmma 4 and Corollary 1. O

Lemma 10. Let (L,F,G,fe) be a k-sem -bounded continuous data flow problem
Let v be a vertex in Gand let p be a path froms to v which
is not k-sem-sinple. Then there is a set S of paths froms to v

such that each path in S is shorter than p and fp > A {fq | qes} .
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Proof . If pis not k-sem-sinple, then p can be partitioned into

P= PoPy PpPs.PyypPyyz » Where py and Pi for 3 < i < k2 are

cycles, and PO, P2 , Pres Q€ possibly enpty.  Then

k o
fo > f o (A{F 3<i<k+2}) of by continuit
P T Pz { Pi 3515w PoP1Po g g
> £ e A{(AfE B<ke])lo<] <k-1) of
k .
AT o (A{f. |3 <i<kt2}) of by k-sem -boundedness
Pit3 {Pi 1354 s we] PoP2

and continuity

v

(A{fq|q=p0plp2qlq2‘"qllpk+5 where O < f < k-1
and qje{pi|3§i < k+t2} for 1< <1¢})
/\(/\{fq\q:popgqqu...qkp]m_3 where qje{pi|5§1§k+2}

for 1<Jj<k}) . O

Corol lary 2. Let (L,F,G,fe) be a k-sem -bounded continuous data flow
problem Let v be a vertex in Gand let p be a path froms to v .

Then fP > A {fq | g is a k-seni-sinple path froms to v)

Proof . By induction on the length of p using Lenma 10. O

Theorem 8. Let (L,F,G,fe) be a k-sem -bounded continuous data flow
problem  For each vertex v , let Pl'{(s,v) be a path expression such
t hat S(Pl'i(s,v)) contains at least all the k-sem-sinple paths from
s to v. Then mop(v) = f(P}'{(S,V))(.L) , Where f is defined as in

Section 5.
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Proof . | medi ate from Lenma + and Corol lary 2. d

Corollaries 1 and 2 require continuity; in fact, the MOP solution
is not effectively conputable in a general 2-bounded nonotone data
flow problem[17], See Kam and Ullmen[16] and Tarjan [29] for further

di scussion of the effect of boundedness on global flow analysis.
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8. An ldiosyncratic Data Flow Probl em

As a final application of our technique, we shall consider a data

flow problem that does not fit naturally into the sem-lattice

framework, but that can still be solved easily using a mapping from path

expressions.  The problem arises in the optinization of very-high-Ilevel

| anguages and has been studied by Fong [8].

Let G = (V,E,s) be the flow graph of a program which contains

occurrences of an expression ¢ . Wth each edge e of the program

is associated an effect,

what flow of control

" gen

Ki Il

effect(e) =

injure

trans

N\

?if<

whi ch has one of four values depending upon

through edge e does to the value of e

*the program reconputes e
the program makes a | arge change in the value of ¢
the program makes a small change in the value of ¢

the program does not affect the current value of ¢

For any vertex v , we say & is inplicitly available on entry to v

if there is a positive bound b such that, for every path

P = eprenreeisey froms to v , there is an i such that

(i) effect(ei) =gen , (il effect(e ) # Kkill for 1 <j <k,
and (iii) the nunmber of values j such that i <j < k and
effect(ej)= injure is bounded by b . Note that the bound b can

depend upon the vertex v but not upon the path p ,

The problemwe wish to solve is to deternine fram (effect(e) | e e ¢}

the vertices at which e is inplicitly available. The idea is that if

the nost-recently-conputed value of & can be injured only a bounded

number of times before entering v , we can conpute the value on entry
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to v fromthe nost-recently-conputed value by performng a bounded
nunber of updates. Qtherwise, we nust conpletely reconpute ¢ to obtain
its value on entry to v .

Fong [8] clains that this problem cannot be fornulated within the
sem-lattice framework, "at least in the only natural choice of semi-
lattice." However, Fong observes that the problem can still be solved
efficiently. W shall define a mapping from path expressions for this
pur pose.

Let D::{g,gyt+,w} be a set having operations A,.,.@ defined

by the follow ng tables.

A g ty t, w ° g ty t, W @
g g ty t, o g g &8 & w g | %
to [tg tg ot w t, g ty t, w to | o
t,o[t, ot ot w t, g t, t. w t, w
w w oW oW W w g w o wow w w

Let the mapping f frompath expressions to D be defined as foll ows.

(21a) £f(p) = to 5
(& ) gen )
w il
f(e) = < P it effect(e) = ( ~ for eck .
t, injure
\tOJ L trans
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(21b) f(PlUPe) = f(Pl) /\f(Pe) ;

(P, °P) = f(Pl) o T(P;)
f(PI) = 2(p)®

W call a path p = ©19€n0 e nes € in Ga by -path if

effect(ej) ¢ {injure,trans} for 1 <j < k and the nunber of edges e.J

such that effect(ej) =injureisi . W call a path p a g; -path
if it can be partitioned into p = Py2€ D, where effect(e) = gen
and P, is a ti -path. W call a path p an w-path if it can be
partitioned into p = Py1r€D, where effect(e) = kill and p is a

1N -path for some i

Lemma 11. Let P be a path expression. Then

(i) f(P) =g if there is a bound b such that every path in o(P)
is a gi-path withi <b;

(i) f(P) = g if there is a bound b such that every path in a(P)
is either a g -path with i <b or a ty -path, and o!p)
contains at least one t, path.

(iii) f(P) = %, if there is a bound b such that every path in o(p)
is either a g, -path withi <bor at,-pathwithi <b,
and a(P) contains at |east one ti-path withi >0.

(iv) f(P) = w in all other cases. (For any bound b , o(P) contains
ei t her a g, -path withi >Db, a ti-path withi >0, or

an w-path.)

Proof . Straightforward but tedious, by induction on the nunber of

operation synmbols in P. O
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Theorem 9. For each vertex v in G, let p(s,v) be a path expression
representing all paths froms to v in G. Then e is inplicitly

available at v if and only if f£(P(s,v)) =0 .
Pr oof . | medi ate from Lenma 11.

Actual occurrences of the inplicit availability problem usually
involve a nunber of expressions. Ve can perform the conputation
associated with Theorem9 in parallel for all the expressions by using
bit vector operations. Since D contains four elenents, we need two
bit vectors for each value conputed (rather than the three proposed by

Fong [8]). By adding an additional element to D we can conpute the

explicitly available expressions (those available with no injuries) in

addition to the inplicitly available ones.



9. Renar ks.

V¢ have shown how to use path expressions to solve three kinds of
path problens on directed graphs. Qur results allow us to build a
general algorithm for solving path problens on directed graphs; to solve
a particular path problem we nerely interpret y, ., and *
appropriately. W can base such an al gorithmon Gaussian or Gauss -Jordan
el imnation [21]. Tarjan[30] di scusses another algorithm which is
especially efficient on reducible and al nost-reducible graphs [ 15,28].

Our results serve to formally justify the enpirical observation
that the same algorithms work on many different path problens, There
are of course algorithnms that solve only a particul ar kind
of path problem such as Dijkstra's[6] and Fredman's [12] short est
path algorithns and Pan's inprovement to Strassen's al gorithm for solving
linear equations [%,22,26], However, any algorithm able to conpute path

expressions also solves all the path problems we have considered here.

Our i deas extend easily to matrix nultiplication problems and to
problens requiring the transitive closure of a matrix. See sho, Hopcroft,

and Ullman [1] and Lehman [21] for discussions of such problens.
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Appendi x:  Graph-Theoretic Definitions

A directed graph G=(V,E) is a finite set V of vertices and a

finite set E of edges such that each edge e has a head h(e)eVv and

atail t(e)ev. W regard the edge e as leading fromh(e) to t(e) .

A path p = epye, . e I's a sequence of edges such that t(ei) = h(ei+l)
for 1 <i <k-1 . The path is from h(el) to t(ek) . The path contains
edges €19€7 e ees €y and vertices h(el),h(eg),...,h(ek),t(ek) , and

avoi ds all other edges and vertices. There is a path of no edges from

any vertex to itself. Acycle is a non-enpty path froma vertex to
itself.

If there is a path froma vertex v to a vertex w, then wis
reachable fromv . A flow graph G = (V,E,s) is a graph containing

a distinguished start vertex s such that every vertex is reachable

from s.
A sinple path p is a path containing no vertex twice. For k >1,

a k-sinple path is a path containing no vertex k+1 times. Thus a

|-sinple path is sinple. A k-seni-sinple path is a path p that can

be partitioned as p = Py2€P, where p is sinple, e is an edge,

and P, I's k-sinple.
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