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Abstract.

One classical sorting algorithm, whose performance in many cases

remains unanalyzed, is Shellsort. Let ?i be a t-component vector of

positive integers. An z-Shellsort will sort any given n elements

in t passes, by means of comparisons and exchanges of elements. Let

S;(c;n) denote the average number of element exchanges in the j-th
J

pass, assuming that all the n! initial orderings are equally likely.

In this paper we derive asymptotic formulas of Sj(<;n) for any fixed

h' = (h,k,l) , making use of a new combinatorial interpretation of S
3

.

For the special case h'= (3&l) , the analysis is further sharpened

to yield exact expressions.

f
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1. Introduction.

The analysis of sorting algorithms has been a prototype for the

.

mathematical analysis of algorithms (Knuth [2][3], Sedgewick [7]). One

classical sorting algorithm, whose performance remains unanalyzed in

most cases, is the Shellsort proposed by D. L. Shell [8] in 1959. All

the known analytic results about this algorithm can be found in Knuth

[2, Sec. 5.2.11 and Pratt [4]. In this paper, we will -present some new

results concerning the average-case performance of Shellsort,

Let h" = (ht,html, . . ..h2.hl) be a vector of positive integers with

hl
=l. An z-shellsort on a list (or, an array) LIO: n-l] of n

elements performs an in-place sort in t passes, using comparisons and exchanges

of the elements. In the j-th pass, (1 < j < t) , f*a straight-insertion sort- -

is done to each of the ht-j+1
sublists, where the i-th sublist

Co 5 i < ht-j+l) consists of L[i] , L[i+ht-j+11 > Lb- + “t-j+11 > l l * l

Assuming that all n! initial orderings of the elements are equally

likely, let Sj(g;n) be the average number of element exchanges in the

j-th pass. The determination of Sj(d;n) , a standard performance measure

for Shellsort, poses challenging mathematical questions. So far, the only

completely analyzed case is when hi divides hi+l for each 1 < i < t-

(see Knuth [2]). In the present paper, we derive asymptotic formulas

for Sj($n) when h'= (h,k,l) is fixed and n 3 CX) . In the derivation

an interesting combinatorial interpretation of S3((h,k,1);n)  will be

introduced. For the special case h" = (3,2,1) , we further refine the

analysis to give exact expressions for Sj(&n) .

7 ~~*
See Knuth [2] for a description of the straight-insertion sort.



2. Preliminaries. .

Let L = (ao,a1,a2,...,an 1 ) be a list of distinct real numbers. An

inversion in L is a pair (i,j') such that i < j and ai > a. . The
3

total number of inversions in L is denoted by I(L) . Clearly, the

concept of inversion depends only on the ordering of the a. . It is1

known (Knuth [2, equation 5.l.l-(l2)]) that the expected value of I(L)

is n(n-1)/b for a random list

are equally likely).

For any sublist L' of L

L (i.e., all n! permutations of ai

, the nmber of inversions I(L') can

be defined in an obvious way. An important property of inversions is

that, when we perform a straight-insertion sort into ascending order

a sublist L' , the number of element exchanges is exactly equal to I(L') .

Thus, Sj(c;n) is the sum of the average number of inversions in all the

ht-j+l sublists  that are to be sorted in the j-th pass.

For a list L of n elements, let L (hyj) (0 < j < h) denote the-

sublist (L[dAj+hlAj+2hl ,...) of length L(n+h-l-j)/h_l . We will

call L h-ordered if, for each 0 < j < h , the elements in I, Oh j> are

in ascending order. We say that we h-sort L , if we sort each LOb 2 >

(0 < j < h) separately into ascending order.

Instead of drawing a list L as a single array, it is often

conveninet to show L in an h-row representation (Figure 1). The list

is arranged in h rows, so that the j-th row (1 < j < h) contains the- -

sublist L(h'j-l) . Thus, to h-sort L is to sort the elements in each

row separately.

An h-ordered list LIO: n-l] is a random h-ordered list if any

ordering of its elements consistent with h-ordering is equally likely,



L 3 "0 al a2 3 “4 “5 ‘6 9 “8 ag %o "11 a12 &13 "14 a15
i

/3,0) --)L'

L(3’1) 3

L(3’2)  -)

l

�0 ?3 “6 ag a12 "15

al a4, 9 "10 al3
I

a2 a5
t

“8 �IL "14

Figure 1. A list L and its 3 -row representation.



It is not difficult to see that, if we h-sort a random list L , the

resulting array is a random h-ordered list. We remark that, if L is

a randam h-ordered list and 0 < i < j < h , then the union of row

i+l and row j-l-1 forms a random 2-ordered list, ie., the sublist

L[i] , L[j] , L[i+h] , L[j+h] , L[i+2h],  L[j+3h],  . . . is a random 2-ordered

list. Note that An , the average number of inversions in a random

,&ordered list of n elements, is given by (see Knuth [2, Sec. 5.2.11)

An = Lni21 2n-2/( jn;2_1)

Asymptotically,

An = qmn3/' + 0(&Y).

. (1)

(2)

Remark on the O-notation. In Section 4, Appendix, and in the statement

of Lemma 2, the constants in the O-notation are dependent on h and k.

Everywhere else, the constants are absolute constants.
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3. AsymptoQics for the (3,2,l) Case..-

In this section we present our basic approach, by analyzing the

asymptotic performance of the (3,2,1) -Shellsort on a random list L

of n elements. It will be shown that, for h" = (3,2,1) ,

Sl($n) = n2/12 + O(n) ,

-S2(G;n) = j/Y&92 n3/2 + O(n) Y

S3(iY;n) = n/4 + O ( n213) .

(3)

(4)

(5)

Several facts for use in later sections will also be given.

Analysis of Pass 1.

pass of the

Consider L in a 3-row representation (see Figure 1). In the first

(3,2,1)-Shellsort, each row is sorted by a straight-insertion

Sl(<;n) is equal to the expected value of the sum

-I*As each row is initially a random list, we have

sort. Thus,

Ix I(L(3,j)) l

3

sl (hp) = c
O<i<2

ni(ni-1)/4  Y
- a

with n. =
1 Lb+2-i)/3J  l

Asymptotically,

Sl(h;n) = n2/12 + O(n) ,

which is (3).

(6)

J* Here and hereafter, we will often use the fact E = c E(X.). 1

for any variables Xi , without explicit reference to it. is

the expected value of Xi .)
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Analysis of Pass 2.
.

For the moment, assume that n = 3m for some integer m > 0 . At

the end of Pass 1, we have a random 3 -ordered list L . Pass 2 will

perform a straight-insertion sort for the sublists L(2yo) (the "shaded"

list in Figure 2) and L (2y1) (the "blank" list in Figure 2), separately.

Let S;')(n) denote the average number of inversions in L(2yj) ,

j E (0,l) . We have

S2(<;n) = S:')(n) + S:')(n) . (7)

Now, consider a 2 -ordered list L' = (a0,bo,alybl,a2,b2y...,am~l,bm  1)

in a 2 -row representation (Figure 3). Define four sublists as follows:

L =eveqeven (ao, boY a2, bp “4Yb4’ l l l l > Y

Leven,odd = (a 0,b 1 ,a,b 2 3 ,a,b 4 5’““) y

Lodd,even = (bg’~Yb2Ya3’b4YagY”*o)  Y

Lodd,odd = (alyblyaj,b3,aS,b5,....)  l

For each a,@ E (even,odd} , let X
a, B

denote the random variable, defined

on the set of L' , corresponding to the number of inversions in L
%P y

and let B
a, Bw = ma p) for a random 2-ordered L' . Clearly,

Y

c Ba p4 = average # of inversions in L'
%B y

=
%m . (8)

Returning to the evaluation of S2 , we observe that the union of

any two rows in Figure 2 is a random 2 -ordered list at the start of

Pass 2. It follows that

(0)
s2 n( > = Beven,odd(2m) + Bodd,even(2m) ' Beven,even(2m) '

7



Figure 2. The sublists L (2yo) (the "shaded" list)

and L(2y1) (the "blank" list).

Figure 3. A 2-ordered list L' .



and

(1)
s2 n( 1 = Bodd,even (2m + Beven,odd m(2 J + Bodd,odd m l

(2 )

Together with (7) and (8), these lead to

‘@b) = & + cBeven odd(2mY 1 +

It remains to evaluate Beven odd(2m
Y >+Bodd,even (

5), but herecalculation is possible (see Section

only asymptotically.

We assert that

2m) . A 'precise

we will determine it

Bodd,even (2 >m > .

for a,@ e {even,odd} l

>r 00 > andSuppose (10) is true. It then follows from (9

S2(h;n) = 9/mn312 + O(n) ,

which is (4).

) that

(9)

(10)

It remains to prove (lo), which we will show in a more general form.

Let k >l be an integer and L' = (aoyboya1,bl,a2,b2,...) a 2-ordered

list of n elements. For each 0 < i,j < k , let L.
lyj

denote the list

(a1 b�, j, �i+k☺  b j+kY  �i+2kY b j+2kY  � l � � ) if i < j , and the list-

(b �Y aiYb j+kY  �i+kYb j+2k☺  ai+2k>  l l l lJ
) if i > j . Define Yi j to be the

Y
randam variable whose value for L' is the number of inversions in L.

lrj '
and let 04B.

lyj
(n) = E(Y. .)

1, J
be the expected value of Y.

1, j
for a

random 2 -ordered list L1 , It is clear that (2)B.
1, j (2 >m are the

B. .(2m)
l,J

defined earlier, provided we identify " 0 " with "even" and

I' 1 '1 with "odd" in the subscripts. Thus, formula (10) is a special

case of the following result.

9



Lemma 1. For any fixed k > 1 ,
wB.
bj

(n) = An/k2 + O(n/k) for 'any

i,j e (0,1,2,...,k-l] .

Corollary. 04Bi j(n) =
Y

iJ128.d/2/k2 + O(n/k) .

Proof. Define the following randam variables on the set of 2-ordered

lists L' :

Ys,t =

Then,

and

c

1 if as < bt
for Olt< s< [n/2

L O otherwise

1 if "s > bt for O<_s<t< p/2
0 otherwise

0 otherwise .
.

Y.i,j = c yst .
smodk=i '

tmod k=j

We wish to prove that, -/
*

for Oli# j<k,

Y.l,i
= Yi j + Ok@) Y

Y

1,

J 9

w

Y.
JYj

= Yi j + O(n/k) . 03)
Y

w
This would imply the lemma, since all. Yiyj (and hence Biyj(n) ) wofld

be equal up to an additive O(n/k) term, whereas c Bik$n) = A .
i,j '

n

*
J An equality (or inequality) involving random variables is valid if and

only if, for every event in the sample space, the values of the random
variables satisfy the given formula. For example, (12) is equivalent to

the following statement: there exists a constant c such that, for
any L' , IY -Y.

i,i L,j
1 5 en/k .
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We will only prove (12); the proof of (13) is similar. For any t

satisfying t mod k = i , let t+ = t+ (j-i) and t- E t- (k+i-j)

if i < j , and t, = t+ (k+j-i) and t = t- (i-j) if i > j .

Then t, and t are, respectively, the smallest "CT >t and the

largest t' < t that satisfy t' mod k = j . For the rest of the proof

of Lemma 1, we use variables s , t , t' exclusively for integers

satisfying s mod k = t mod k = i and t' mod k = j , and when they

appear in a summation, it is understood that they only range over such

values.

From the definition of yu v and the fact that Lr is 2-ordered,
Y

we deduce

Y
St t- L y, t L1 y, t

y +
and

Y <s,t+ - ys t <Y - ys t9 I

if s >t+k ,

if t > s+k .

Now, noting that 0 < y, v < 1 , we have
- Y -

c Y, t = c Y, t - c Y, t
s>t+k ' s>t y t+k>s>t '

= r/ Y, t - @n/k) ,
s>t y

and

c Y, t = c Y, t - 22
s>t+k ' + s > t  ,+ t+k>s>t

Ys,t
+

= c Y, t' - O/k) Y
s>tr y

G Y, 5, = c Y, t - z Y, t
s>t+k ' - s > t  ,- t+k>s>t ' -- -

=
c Y, t� - Oh/k)  l

s>-t� y

11

(14)
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Together with (lb), this implies

lx Y, tr - Oh/k) 5 c Ys,t I c Ys,t' + O
s>tr y s>t s >tr

A similar argument using (15) gives

c Y, tt - O/k) 1. c Y, 'c I c y,,tr + O
s<tr y s<t y s<tr& -

.

n/k)  l

n/k)  l

16)

17)

Adding up (16) and (17), we obtain (l2).

This completes the proof of Lemma 1. The corollary follows by using

the asymptotic expression (2) of An . 0

We have derived (4) for the case n mod 3 = 0 . The other cases can

be handled in the same fashion. In fact, one obtains the following

generalization of (9): For h" = (3,2,l) ,

r %m + (Beven,odd(2m)  + Bodd,even(2m)) if n = 3m

‘2(‘Jn) = ’ %m+l + cBeven, odd(2m) + Bodd,  even(2m) > if n = 3mt1 , (18)

%m+l + (Beven odd(2m+2) ' Bodd even(2ti2))
if n = 3m+2

Y Y

The asymptotic formula (4), for general n , can be proved using 2)Y
(10) and (18).

Analysis of Pass 3.

We now come to the analysis of Pass 3, which is the most interesting

part combinatorially. The question is "What is the average number of

inversions in a list, obtained by first performing a 3-sort and then a

2-sort on a random list?" It will be convenient to work with the

12



equivalent form "Given a random 3-ordered list L of n elements,

what is the expected number of inversions in the new list Lr obtained

from 2-sorting L ?I'.

Consider the following random variables zi j (i, j integers)
Y

defined on g , the set of 3-ordered lists L of n elements

Cl 2, ,...,n] :

(a) For 15 j < is rn/21 , zi j = 1 if the i-th smallest element
J

in LC2Yo) is less than the j-th smallest element in L PYl> Y

and z.
1, j

= 0 otherwise;

(b) For 15 i 5 j <_ Ln/2J t Zi,j = 1 if the i-th smallest element

in LC2Yo) is greater than the j-th smallest element in L (2Yl> Y

and z.
bj

= 0 otherwise;

( )c z.
1, j

= 0 otherwise.

These random variables have the following interpretation. Let L'[O:n-1]

be the 2-ordered list resulting from 2-sorting I, . (We remark that Lr

also remains 3-ordered. See Knuth [2, Sec. 5.2.1 Theorem K].) Then

Z.
1, j

= 1 if and only if the pair {2i-2,2j-13  is an inversion in I? ,

i.e., the elements in L ' C2yo) [i-l] and L'(2'1)[j-l] are out of order

in L' . It follows that

sYj’C >;n = c Eb
iy 3 1, j > Y (19)

where the expected values are for a random 3-ordered list I, .

Formula (19) can be simplified, if we observe that z.
bj

is 0

unless i = j or i = j+l . This is due to the fact that only adjacent

elements may be out of order for L' , a list both 3-ordered and 2-ordered

13



(see Kl?u'ch [2, Ex. 5.2.1-251). Thus,
.

S$h';n) = c E(zi i) + c E(Z
l<iL Lr@J I l<i< [n/21 i+l,i > l (20)

We shall derive (5) from (20). Assume that n = 3m is a multiple

Of 3 for the present. A 3-ordered list L of n elements , ,...,n]Cl 2

can be represented as a ternary sequence of n symbols in {l,2,31 ,

with n/3 j 's for each j e {1,2,3') . The i-th symbol in the sequence

is j if and only if the integer i in the list appears in the j-th

row. Note that this representation is a l-l mapping from the set e

onto the set of ternary sequences with exactly n/3 j 's for each

j E {1,2,31 . This shows, incidentally, 3m
m,m,m

. Figure 4

shows a 3-ordered  list (in its 3-row representation) whose associated

sequence is (lYlYlY~Y3YlY3Y~YlY~YlY~Y~Y3Y3Y3Y3Y~YlY3Y~j  l

To evaluate E(zi i) , we need to count the number of 3-ordered  lists
Y

in d: for which zi i = 1 . Consider the 3-row representation of L ,
Y

with positions of Lc&o> "shaded" as in Figure 2. It is easy to see

that zi i = 1 if and only if there are more "blank" cells than "shaded"
Y

cells in the positions occupied by the smallest 2i-1 elements

(L 2, . . ..2i-13 . For example, z4,4 = 1 in the example shown in Figure 4,

as there are 4 blank cells but only 3 shaded cells in positions

occupied by {l,2,...,7~  (see Figure 5). This condition can easily be

tested from the ternary sequence representation of L discussed above.

Suppose there are kj j's (j E &2,3)) in the first 2i-1 components

of the sequence. Then, using Table 1, one immediately sees that

14



Figure 4. A sample 3-ordered list I,, in $ .

Figure 5. The positions occupied by elements

Cl 2f Y . ..Y73 in the list of

Figure 4.

15



w

row 1 row 2 row 3

k. = even 0 0 0
J

k. = odd -1 +l -1
J

4

Table 1. The contribution to

(# of blank cells - # of shaded cells)

by positions in row j as a function

of k. .
J

16



# of blank cells - # of shaded cells

= k2 mod 2 - kl mod 2 -
5

mod 2 .

It follows that zi i = 1 if and only if
kl

and
3

are even and k
Y 2

is odd. Thus, *f for l< iL p/2J ,

E(zi i) =

'

kg= odd

Or, equivalently,

E(zi i) =
1

Y

k2= odd

f o r  15 is Ln/2J  .

A similar argument for z~+~ i leads to
Y

E(Zi+l,i =>

k@3 = Odd

k2
= even

for 15 i < [n/21 .

Formulas (20), (21) and (22) give an exact formula for S3(C;n) .

(21)

(22)

zl We use the convention that a multinomial  coefficient is zero whenever
any of its lower indices is negative.
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We now assert that, as n + 03 , (21) and (22) lead to

c E(zi i) = n / 8  +  O(n213) ,
l<iFLn/2J Y

(23)

c E(Z i+l,i =1 n/8 + o(n2/3
lsi< rn/21

Intuitively, for each w , the summation

1 m
1 = c

kl+k2+s = w kl

m mI( 1s

can be partitioned into four approximately equal parts (each RS l/4 ),

according to the parities of kl Y k2 and &j l Hence each sum in (23)

is roughly equal to l/4 times the number of terms. This argument can

be made precise to prove (23), and in fact the next lemma.

Definition. Let h,k >l be positive integers, and Ch k the set of
Y

vectors 5 = (cO'C1'"',Ck-l > with integer components O<ci<k.-

Suppose m > 0 is an integer, and n" = (no,nl,..~,nk l) is a vector

of integer components satisfying Ini-ml < 2 for all i . For each

‘+& we define
Y

Gh ,(z;z) = c
Y O<w<N- -

L

5

1 n / no nl

i( jl
C j"= w
i

j,

.
Ji

mod k=c
im

for all i

nh-1

jh-1

18



Lemma 2. Let h,k >l be fixed integers. As N

C$,(;;;) = -$ 0 1)+ + O(N213) for each

We emphasize that the constants in the O-notation in Lemma 2 are

dependent on h and k . The proof of Lemma 2 will be given in the

appendix.

Clearly, (23) is a special case of Lemma 2 with h = 3 , k = 2 .

It now follows from (20) and (23) that, for n mod 3 = 0 , (5) is true,

i.e.,

S3(iT;n) = n/4 + O(n2/') .

One can prove (5) for n mod 3 # 0 in a similar way. In fact, for any

n > 3 , formula (20) and the analogue to (21), (22) read: For

h” = (3&l)

S3(Z;n) = c E(zi j-1 + c E(Z )
l<izLn/2J Y l<i<rn/21

i+l,i ' (24)

E(zi i) =
y (2iil) k.l+k2+<= 2i-1

(Lb;bJ)(  L(n;;h)(  1:) ,

kl,5
are even

k2 is odd

153-5 Ln/2J . (25)

and

19



0i+l,i =)
1

( >2:

c
%+k2+s = 2i

"1,%
are odd

k2 is even

(L(n;/)!)(  L(ny2)/3J)(  L;‘) ,

l<i< rn/21 .

Formula (5) then follows from (24)-(26) and Lemma 2, We shall see in

Section 5 that O(n2/3 j is an overestimate of the error term for S
3 l

(26)

We have finished the asymptotic analysis for the (3,2,1) case.

Generalizations and refinements will be made in the next two sections.

20



4. Generalization to the (h,k,l)
.

Case.

Let h, k > 1 be fixed distinct positive integers and h" = (h,k,l) .

In this section, we will derive asymptotic formulas for the ObkYl)

-Shellsort on n elements. Let $(h,k) denote a function to be defined

in a moment. We will establish the following results,

Theorem 1. Suppse gcd(h,k) = 1 . Then, as n 3 ~0 ,

n2S16;4 = 4h + O(n) y

Jr JiI - (,/Ky-
S2(<;n) = +J- k

n3/2 + o(n)  Y

and

s3 ok-4 = q(h,k)n + O(n213

Theorem 2. Suppose gcd(h,k) = d > 1 . Then, as n + 03,

and

n2
Sl(~;n)  = E + O(n) Y

S,(ii;n) = 8& IJ;; - d(& r1 n3/2 + o(n)
k Y

L

S3 (h’;n > = > .

We will now define $(h,k) and some other terms. Assume that

gcd(h,k) = 1 . Consider the hxk matrix V[l:h, l:k] , where

VP-d = ((j-l)h+ (i-l)) mod k . Each row of V is then a permutation of the

integers in (OYL 2, . . ..k-13 . For each ae {0,1,2,...,k-13 and each

O<i<h, let ui(a) denote the position in row i+l where a

appears, i.e., 15 ui(a) 5 k and V[i+l,ui(a)] = CI . For each

21



a,pe (0,1,2,...,k-l}  , there are some rows i+l in which a appears

before p in the permutation, i.e., ui(@ < ui(p) ; denote the set

of such i as %I!
'

YB y
and define Ka!YB

= {O,l, ...yh-l]-~,p . Let

mayB = I$,,\ , and latB = \~,J = h-ma,@ . It is easy to see that,

for any iel&py the number of positions between the appearances of

cx and p in row i+l is ui(@)-ui(a) is independent of i , which

we denote by by@ . Also, for any ie K& , the number of positions

between the appearances of p and a is ui(CX)-ui(@) = h- byp .

&I illustration of these definitions is given in Figure 6. Note that

the matrix V can be obtained by filling in the sequence 0,1,2,...,k-1,

0,1,2,...,k-1,0,1,2,...,k-1,0,1,... , in a column by column manner;

this is in general true.

For any integers p , R satisfying I+p 2 0 and any real number

O<q<l,let

Define I# by

g(bk ) 1
= I;: c f Cm

O<_a<@<k a'@
-1, h-m

%B' QIYdk I l

Finally, throughout this section, we use the symbol ni for

L(n+h-i-l)/hJ  _(0 < i < h) .

22
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h= 8,k=5;

5 2 = 3 (3 appears before 2 in rows 1, 4 and 6);

I32 = 8-3 = 5 ;

4 2 = ~~(2) -u,(3) = 5-2 = 3 .

Figure 6. &II illustration of definitions for the matrix V

and related terms.
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4.1 Proof of Theorem 1.

Consider the first

initially a random list

is ni(ni-1)/4 . Thus,

S,&n) =

pass on a random list L . As each L(hyi) is

of n.
1

elements, its average number of inversions

c
O<i<h

ni(ni-1)/4 = & n2 + O(n) .

This proves the formula for S, in the theorem.

Consider a randam h-ordered list

representation. For each 0 < r < k ,

Lr.s t denote the sublist of elements
9 f

(s+l) -st and (-1) -st row. Then

S2(G;n)  = C
O<r<k

TJn)

= c c m

O<r<k O<s<t<h lr;s,t '

L of n elements in the h-row

O<s<h, O<t<h,let-

in Lo-v! -that are in the

(30)

where T,(n) is the average number of inversions in Lob r> 9 Emi Tr.s t> Y

is the average number of inversions in L
r;s,t l

Let Pij = ((j-l)h+ (i-l)) mod k for l< i< h ,- - l<j<nil.- -

Then the j-th element of the i-th row (in the h-row representation) of

L is in L(kyr) where r = Pij . Clearly, the first k columns of

the matrix (Pij) form a matrix identical to the matrix V defined

earlier. As each row of (Pij) is periodic with period k , the sublist

L(kY r> occupies positions v(s,r),v(s,r)+k,v(s,r)+2k,  ,.. in row

St-1 , where 4% 4 is the position of the integer r in the (s+l) -st

row of matrix V . It follows that, for 0 < r < k , O<s<h,-

O<t<h,-
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T 04= B. (ns .& I .
r;s,t lyj I

where i = v(s,r)-1 , j = v(t,r)-1 and n
s,t

=ns+n .
t

According to the corollary of Lemma 1,

04B.bj Y(ns tj = Jg -$-(~)3’2+O(n) .

Substituting (32) into (30), we obtain

S2(<;n) = k(i)& -$ (F)'/' + O(n)

& &- - (&j-l d/2 + o(n>
=-?T k .

This proves the formula for S2 in Theorem 1.

We will now analyze Pass 3. Let J be the set of all h-ordered

lists of n elements (1,2,3,...,n] . For each 0 < a < p < k , let-

Ia p(L) denote the number of inversions between elements in L ' (k,a)

,k LrckyB) , and let

Clearly

where

= c Tap Y
O<a<B<k '-
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.

Consider any list LE e in the h-row representation (Figure 7).

A position is

-jn LCkYa) l

called of type cx , or an &cell (0 <a < k) if it is

It is easy to see that, for each l< i < h ,- - l<j<ni,- -

the j-th position of row i is a P.
lyj

-cell. For each 0 < m < n and-

each LE $, let Qd )L be the set of positions occupied by elements

Cl 2, ,...,m) , and Da +m;L) = I# of a-cells - # of p-cells I in %(L)
Y

for each 0 < a < p < k . We shall say that- s(L) has shape (relative

to the h-row representation)
(joy  jlY � l l I jhBl) if it consists of the

leftmost ji positions of row i+l for 0 < i <h . In the example

shown in Figure 7,
Qm( jL has shape (4, 6,3,3, 8) and

Do l(m,L) = IV-81 = 1 when m = 24 (see Figure 8). Let s(m+l;L)
Y

denote the type of the -position that the element m+l occupies, We

have, for 0 < cx < @ < k ,

I
a, B 03

=
IF %,s(mtl;L)  Da,p b;L) l

O<m<n

Formula (36) can be proved as follows. For any given 0 < a < p < k ,

an inversion between L ' ow) and Ll(k,B) -can be uniquely labeled

as (m+l,i,j) , meaning that the i-th smallest element in L'CkYa) -js

the element m+l , and is less (or greater) than the j-th smallest

element in L '(kyB) where j<i (or j_>i). Foranygiven m

and L, there are 8CX,s(m+l;L)DCX,p cm; L) such triplets b+lyiyj) .

(36)

Formula (36) fouows.

From (33) and. (36), we have
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Figure 7. A 5-ordered list L . %l( )L
consists of

aJZL the cells to the left of the heavy line,

where m = 24 .

Figure 8. In the example in Figure 6, Qm( )L contains

9 O-cells, 8 l-cells, and 7 2-cells. Thus

Do l(m,L) = 19-8) = 1 . (Each cell is marked

wiih its type.)
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.
+w = c c 6 cm; L)

O<m<n Leg a,s(m+l;IJ) Da,p

#of LEI: with

= z c c
element m+l in

Olm<n O(ji<-n/i O<i<h row i+l, and shape

⌧, ji = m
i

- ::

�i+l, ji+lza (jOyjly  � l yj,_,)
for Qm(L) ‘:

⌧~,~(jo~+~o~jh-l Y>

where ~,$oyjly~~*~jh-l ) = Dayp(m;L) for all L whose Q(L) have

shape (joy j,, . . .Y jhml) . Clearly, whether the (ji+l) -st position in

row i+l is an a-cell or not depends only on i , a , and c = ji mod k .

(Remember that P.
1, J

is periodic in j with period k .) Define

x(i,Ci, c) = 1 if it is an a-cell, and 0 otherwise. Then

c
o<m<n joy"'yjh-l

= c c z
O<i<h O<m<n j,, "'Yjhwl

~,p(jo’jly~“‘jh-l)

Fjt=m x
c

O<i<h

i,a,ji modk)=l

/ n-m-l

x(i,a,jimodk)=l

n-m-l
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Now, note that the value of Da &m;L) depends only on .
Y

j, mod k, . . . . jh-lmod k where (jOyjly...yjh-l ) is the shape of

Qtrl( )L Y because of the fact that P.
1, j

is periodic on j with period k.

Thus, we have ~,p(jo+~~Oyj,-l)  = q-&j0  mod k, 3, mod k, l  ,  jhMl mod k) .-

Thus, (37) leads to

%,p =
z c

Osi<h 0<_~~,~,...,c~-~<k
G, /3 (�0, �1� � l l f �h-1)

. c
'O<m<n jo+'*o~~h-l ( jo+ 'kihml)

T j,=m

jtmodk=ct, Vt

n-m-l

no-joy. l .yni-ji�ly  l l l ,s-l-jh-l

From (35) and (38), we obtain

f
%P =

c lz
O<i<h 0<_~~,~~,.~.,c~-~<k ga,B ( �0, �1, l l l , �h-1 )

x(iyCXyci)= 1

c 1

O<m<n z
n-

j Y"'yjh-l0

$i j,=m

jtmodk=cty Vt

We can use Lemma 2 to estimate the inner sum as f&Lows:
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1
c

joy*eeyjh-l

$&=a

jtmodk=cty Vt

1 1=
n c c

O<m<n joy'e'yjh-l

5 j,=m

jtmodk=cty Vt

n.
1

= n
(

n + O(n213)
kh )

= 22 n + O(n213)
hkh

.

nh-1

jh-1

nO

j0

ni-ji

n-m

. . .

(40)

Thus, (39) implies

C

c
o~CO,C1,"',Ch-l <k

~,,(c,,...~c,_,)~(# of i with X(iyayCi)=l) n1
+ O(n2/') . (41)

Let

1
ct

=
YB kh-l c c

Ozi.<h O<_cOJcl,...,ch-l<k
$I,~(CO~c~~".'Ch_~)x~i~~~c~~  , (42)

and

5 IL=hk = %B lO<a<B<k
(43)

It follows from (34 and (41) that,
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.
sp;n) = p+ o(n2j3)  .

To prove the formula for
3

in Theorem 1, it remains to show

5 = (r(h,k)  l

The Evaluation of e .

Write (42) as

where

In (46), there are at most kh-1 non-vanishing terms for each i , since

r(i,a,c;) = 0 except for one value of ci . In fact, we can write1
kh-' O<cI

c

- 03 l **3 C
i-1�  �i+l�  � l l � �h-1

<k

( >i
bYB

=

5 1

kh-' O<cI
c

- 030 l l 3 C
i-1� �i+l�  l l l �h-1

<k

c ,tLCcj)
jfi '

if iE 52YB Y

-1 + c p (c )
jfi %B j

if ix K'
%P l

(44)

(45)

(46)

.
The fbnctions 17 (J)

a'@
are defined as follows:
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1
.

i f  uj(a) 5 c < uj(p) )

If je%
YB '

then (J)Ta ,(c) =
3

0 otherwise,

and

-1
.

if uj(p) 5 c < uj@) ,

if je
%P '

then (J)&, ,(c) =
3

LO otherwise.

Formula (47) follows from (46)’ by writing ~,p(cO,cl,...,ch-l)  as a
.

sumof 7 (J) (c.) ,
%p 3

which are the contributions to

IF, of a-cells - # of p-cells\ from rows j , with the row i contribution

explicitly taken care of.

To simplify (47) further, consider the following game using a biased

coin with probability q to be a "Head". Suppose we first flip p times,

collecting $1 for each occurrence of "Head", and then flip it R times,

losing $1 for each "Tail". What is the expected absolute value of

payoff? The probability for making $j is,

Pr(payoff = j) = C
a-b= j

(49)
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The eqected absolute value of payoff is then

a?’ 13 s> = C Pr(payoff = j), \j\
j

= (WPs~ cj (::p)(i$+i ’ (50)

as defined earlier. Let us also define a related function f by

f- (PY 13 s> = C Pr(payoff = j)a)j-11 . (51)
j

It is easy to verify from (50) and (51) that

(52)

( >ai,
.

Returning to the evaluation of 5 from (47)’ we note that s 1( >
a, B

can be regarded as the expected absolute payoffs in the coin game with

0)
%B

the payoff from the &-th coin toss (1 # i) . For ie I&
YB '

the parameters of the game are p = \ K~ B(-1 = m
3 a3 B

-1 , I = \K&~I = h-m
QGP '

_ and q=. 42 /,@k. Thus,

( >i
%

= f(m
%P

-13 h�~,p�  L&p/k,  3 for i �Kol,p  l

Similarly,

( >i
QW

= f- (ma, B Y h-ma, B-l Y $I, @ for i E K&, p .

From (45)’ (52)’ (53)’ (54)’ we obtain

(53 )

(54)

= h*f(m
a3 B

-1, h-m
a& aa,plk�  l

(55 >
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Substituting (55) into (43)’ we obtain

1
E = E c f b

O<a<p<k a'@
-1, h-m

%B' YB%J
k

$(hYk)  l

This proves (44 ). The proof of Theorem 1 is complete. cl

As an illustration of the formula for $(h,k) , consider the example

h = 5 , k = 3 , whose V matrix consists of the first three columns in

Figure 8,. It is easy to see that m. 1 = 2 ,
3

a~ 1 = 2 ,
3

m. 2 = 4,
3

%*
=l, ml,* = * ' %,2 = 2. Thus,

ql(5’3) = $ (f(l, 4, */5) + f(33 3 I l/5) + f(L 4, */5))

= 5 f(L 43 */5) + g f(3,3,1/5) l

4.2 Proof of Theorem 2.

The derivation of the expression for Sl(g;n) is exactly the same as

in the -proof of Theorem 1.

To prove the formula for S2(z;n) , note that, at the end of Pass 1,

we have h independent sorted sublists L(h, i> 3 O<i<h. These

sublists can be grouped into d lists, with the (s+l) -s-t list MS

(0 < s < d) containing the sublists L(hy St-34 for O<j<h' . The

action of Pass 2 is equivalent to performing a k'-sort (using straight-

insertions) on each MS . Therefore,

s2 wYkY1.);n) = c
O<s<d

~*uh”k”~
-

);I (n+d-s-l
)/d☺  > l (56)
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As gcd(h',k') = 1, we obtain frcm (56) and Theorem 1 that, .

s2((h,kJ);n) = d x 7

= & & - d(& )-l n3/* + o(n)
8 k l

We turn to the evaluation of S
3 l

Let X be the set of h-ordered

lists L of n elements P *3 �?4]  l For each 0 < m < n , let zrn-

denote the random variable on S, defined as follows. Forany Lee,

let L* be the list obtained by k-sorting L , then Z,(L) is equal

to'the nwnber of inversions in L' that involve the (m+l) -st smallest

element, i.e., ~13-1 . Clearly,

S3(iT;n) = $ C
O<m<n

mm) 3

where the expectation values are taken for a random Leg.

Let ~~ = {s+hd \ h = 0,1,2,...,h'-l] and Ai = {s+hd \ h = 0,1,2,...,k'-l}

for O<s<d. Consider any list LE 1: in its h-row representation.

Suppose Qm( )L has shape (j,,j,,...,j, 1) . Define 5, = r jr .
r E As

.
Lemma 3. Suppose that the element m+l is in L 1 .( > Let

t = i mod d , then

?tn( )L = T

O&d
I☺☺, \ + o(1)  l

Proof. We first prove the following fact.

Fact 1. Let L' be the list obtained from L by k-sorting. Then in

its k-row representation, Q&' > has shape (80,.+..y,$l) with

I
17

P = k' Jpmoddfo(l)  ) for O<pcke
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Proof of Fact 1. Let M; (0 5 s < d) be the sublist of L' that

consists of L ' 0% 4 3 reA;. Then MB can be viewed as obtained from

the hr-sorted list MS by k'-sorting. As gcd(h',k') = 1, the number

of r-cells in each row of M are the same for all
S

reA;, up to an

additive O(1) term. Thus, for each pe ~'s ,

1
R -
p = IA;\

c jr + O(1) l Cl

r E A,

To prove Lemma 3, suppose that, in L' , element m-t-1 appears

1 u( >inL . Note that u mod d T t . The nwnber of inversions in I,'

involving m+l is then

Z,(L) = c
v$U
O<v<k

I~,-l,l  + O (1) .

Dividing the range of v into groups AH , and making use of Fact 1, we

obtain

z,(L) = c iJ, - jumoddl + O(l)
O<s<d

= c 13,-j,\  + o(1) l

O<s<d

This proves Lemma 3. U

Let ni = L(n+h-l-i)/hJ for O<i<h, and Es = z nry-
r E As

O < s < d . It is easy to see that ns = l,(n+d-l-s)/dj . Clearly ni

is the length of list L(h, i)
l It follows fram Lemma 3 that,
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EC 'm) ( n

no3 n13 ""\,l >
joy jl’ ’ ’ ’ Y jhBl

Tj,=m

m
c

O<i<h- joy  jly  l l l Y jhml

n-m-l
X

no- joy  l l l Yni-l-ji-13  ni�ji -l-Y  ni+l�j  i+lY
� � �\-l-j,_,

>

X C Ijs-Simodd
O<s<d-

I +o

Form-d.a  (58) leads to

n-m-l

X c I☺, - 5,l + o(1) l

O<s<d-

The derivation of (59) from (58) is elementary but tedious, and will be

sketched later. We now observe that (59) can be regarded as, up to an

additive O(1) term, the expected number of inversions involving the

element m+l in a random d-ordered list of n elements Cl *y y-yn] .

Thus, from (57)’ we have as desired

(58)

(59)
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Fact 2. Y and Q$Js

Proof of Fact 2. Observe that

n (l+x)nr = (1+x+ .
r E As

This gives

c 8 (J )xJs
Js ' '

= ii
S

3

(61)

and hence the first equality.

To obtain the other equality, we differentiate both sides in (61).

This gives

1+x)

The formula follows immediately by equating terms. gl

Now write (60) as

EC 'm)
=

Jo, Jl, l l .> JdBl

1
n-ln

( 1m

c
joy jly  l � �Y jhBl

z
O<t<d-

c
i E A,

x [ ni( ‘:;‘) ,Vi (,: )i(,i4,d lJsmJt’) + O(‘)
o<a<h-
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= z
Jo,+-,Jd-l

rJv=m
V

X

CC

z
O<s<d-

Using Fact 2, we obtain

mm) c
Jo, Jl, . . . , Jdvl

xJv=m
V

Js - Q;(Jt,  n Qs
O<s<d

Gt

1
n-l

-7-T
n m

rid-l -

- )Jd-l
nt

- (

c
O<t<d

(J >S 1 + o(1) .

c IJ,-Jtl + 00)
s<d

This is just an alternative way of writing (59).

This completes the proof of Theorem 2. a
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5. An Exact Analysis of (3,2,1) -Shellsort. .

In this section we prove the following theorem. Recall that A
n'

the expected number of inversions in a random *-ordered list of n

elements, is p/2J2n-2
� ( L&☺ l

Theorem 3. For n > 3 ,

s1((33*31);n) = i G L(n+i)/3]*- j+ 3
O<i<*

S2(b,2,1);n)  = &+l + $ %m - $

52
1

m+l +P2m+2- i

m+l4
2m+2

( >m+l

and

S3((3,2,1);n) = t n - i + R(n ) 3

- 8(2ki)

3
8(m3).

if n=3m,

if n = 3m+l,

if n = 3m+2 ,

if n=3m,

if n = 3m+l,

if n = 3m+2 ,

The expression for Sl follows directly from (6). To derive the

formula for S2 , we start with formula (18). Write

Bm = Bodd,even(2m) + Beven,odd(2m) ' we have
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%?n + Bm

S2((3,2yl);n) = J&,+l + Bm

A2 + Btil m+l

if n = 3m,

if n = 3m+l,

if n = 3m+2 .

(62)

Let

i+j
p(iyjym) = i

( I(

2m-(i+j+l)
m-j .

It was known (Knuth [l, Exercise 5.2.1-141) that

2m
( > ?2m

= c Ii-j I& M-4 .m (63)
OLi,j<m

We extend it to show the following lemma. For a,@ E {even,odd) , we

agree that even = odd , odd = even , and ( 1)
a+B- = 1 if a, p are

both odd or both even, and -1 otherwise.

Lemma 4. For each &BE {even,odd3 ,

( 1
2m B

(2 > C J$$ ~(i,j,m) + C
Ii-j, (-l)a+p 1

m ayf3 m = 2 - p(i3jy4 .
Ori,j<m O<i,j<m-

. a .1= l=Cl

j=Cl j=E

Proof. We will prove the lemma for a = even , p = odd ; the other three

cases can be proved in a similar way.

Let x be the set of 2 ordered lists (aO,bo,al,bl,...,am-l,bm  1)

each Leg, let &(L) be the

) with odd 1 . Then

of 2m elements Cl *, ,...,2m) . For

set of inversions of the form (a b
i' 1

even,odd (2 >m = c � l�iCL)  \ l

Le x i= even

42
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For any even i , if a. is the1 (i+j+l) -st smallest element in L

with j < i , then

pi = ((aiybr) 1 I is odd, j 5 1 < i) ,

implying

lniCL) \ = I
i-j
2 if j is even,

i-j+1
2 if j is odd .

Similarly, if j > i then

Ri CL) = ((a&) 1 R is odd, j > & 1 i] ,

and

j-i
2 if j is even,

IniCL) \ =

j-i-l
2 if j is odd ,

Thus, for any even i , if ai is the (i+j+l) -st smallest element

in L , then

ii-j!
2 if j is even,

IniCL) 1 =

Ii-j+11
if j is odd l

2

(65 >

Observing that p(i,j,m) is the number of LE d: such that ai is the

(i+j+l) -st smallest element in L , we have from (64) and (65)
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even,odd
(2m) = c

i=
' IQiCL) 1

even LE 6:

t; ii-j p(i,j,m) + r Ii-j+"' p(i,j,m)
2 2 .

j= odd

This proves Lemma 4 when CI = even , p = odd . 0

Define

wm = c pJiyjym> + C p(bjym> - C p&U4 - C p& hm> .
j<i j<i j > i j > i

.l=odd . .1= even l=even .1= odd

j= even j= odd j= odd j= even

From Lemma 4 and (63)’ we obtain after some manipulations,

c Ii-j \Cl(bj,m) +
Ozi,j<m

1 2m=
2 m %m+* m l( >

LW

We shall now show that, for m > 1 ,

m-lwm=-4 .

Formulas (62)’ (66) and (67) imply tiediately the expression of S2

given in the theorem.

(66)

To prove (67)’ we use a result due to R, Sedgewick [6].

Lemma 5 (Sedgewick [6, Theorem 23). Let f(i,j) be a function defined

for integers 0 < i,j < m , and satisfying f(i,j) = f(i-j,O) for i > j ,

f(i,j) = f(O,j-i) for j 2 i , and f(O,j+l) = f(j,O)+l . Then

c f(b j >p(iy jym> =
O<_i,j <m

c (i"j> (*F(j)+j) y
j>l -
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where F(j) = z f(W) l

Oz!<j

In our problem, we write

wm = - Tr f(i3j>p(iyjym>  ,
O<_i,j<m

where

r
0 for i, j both even or both odd,

O<j<i<m_ _
otherwise.

Osi<j<m

It is easy to verify that all conditions in Lemma 5 on f are satisfied.

Note that

F(k) = r f(j,O) = -Lk/2] .
O<j<k

We have, using Lemma 5

= - k~l[(m?Gl) + (EZ)]

= -

This proves (67), and hence the expression for S2 in Theorem 3.

We now derive the expression for
s3 l

The derivation will be given

only for the case n = 3m (integer m 2 1 ). The other two cases

n= 3m+lY n = 3m+2 can be similarly treated.
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Rec& the formulas (24 >Y (25) , (26) for the case n = 3m :

(68)Sj((33w);n > = c E(zi i
l$< Ln/2J ’

+ c Eb )
lzi<,rn/*l-1

i+l,i '

m m

I( )kl k2 ( m'

5

m( I( m

FL k2 I( m

5

3 1 5 i < p/q , (69

3 15 i < [n/21 . (70

E ( Z .x,i =)

7 - i
*il

c

klfk2+% =2i-1

%I;53 are even

k2 is odd

and

E(Zi+l,i > c
kl+k2+S= 2i

"1,5
are odd

k2 is even

1
3m

( 12i

Consider the expansions

l-x)n] = c
k= even

and

l-x)n] = Xk .(l+x)n -

see that the quantity E(ziyi) , as given by (69)’ isIt is easy to

times the coefficient of x
*i-l in the function

(l-x)2m( l+x)m)

x (terms of odd -powers in (l-x)m(l+x)2m) .
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Let am k be defined by
Y

(l-~)~(l+x)~ = C am kxk .
k>O '

Then

1 1
E(zi i> = r + '4

am,2i-1
3 ijm

( 1*i-l

Similarly, we can show that

E(Z > 1 1 am2i
i+l,i = '4-4 3m

f-72i

Fran (68)~ (72) and ( 7 3

Noting that am o = 1
3

, we obtain

for l<, i 5 L3m/*J

for 15 i < r3m/21

and a ( 1)mm,3mE - , we can write this as

S+,*,l);n) = +j (n+l) - +j C ( 1)- k
OLkz3rn

Let

a =
m

- -

= c (-l)k SW amyk )
O<k<3m- -

where r(x) is the G-a function (see, e.g. [l]). The Beta f’bnction

( see, e.g. [1]) defined by

(71)

(72)

(73)

(74)

(75 >
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a

has an integral representation (when Re x > 0, Re y > 0 ) ,

1
B(x,y) = r dt tX-l(l-t)Y-l  dt .

“0

We Can write (75) as

a =
m r) -(1

Olkf3m
>
k

am k(3m+l~Rfk+l,3m-k+l)
3

= (3m+l) C wk a
O<k<3m

m,k s tk(l-t)3m-k d-t
0- -

= (3mt-1) s’
0

(l-t)3m dt .

Using (71)' we have

a =
m (3m+l) s’ (1 +

0
& )n(l - &)2m (l-t)3m dt

1
= (3m+l) / (l-2t)2m dt

0

Therefore, from (74)’ we obtain

&J(3y*yl);n) = i b+l> - i a
m

=

1 1
= P--+

1
8 8(2mt1) '

for n = 3m . This proves the formula for S
3

when n = 3m .

We have completed the proof of Theorem 3. r]
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6. Concluding Remarks.

In this paper we have analyzed the asymptotic behavior of

(h,k,l) -Shellsort for fixed h , k . This procedure can be generalized

to analyze h' -Shellsort with more than 3 increments. We shall report

the results in a future paper, where we shall also study the situation

when h' varies with n .

Acknowledgements. I wish to thank Bob Sedgewick for helpful suggestions

that led to the simplification of several derivations.
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Appendix: Proof of Lemma 2.

In this appendix we will show that, for each ZE Ch k t
Y

Gh &;n) = (N+l)/kh + O(N2/3) ,
Y (A4

For notations and definitions, see Section 3 of the paper. In this appendix,

the constants in the O-notation can depend on h and k , which are fixed

integers.

Write cf = (ni-ci) mod k for 0 < i < h , and-

where

jimodk=ci

Vi

It is easy to see that

Gh k(z;$ = Gf$;) + G;@;;) + O(1) .
3 3 3

To prove (A.1)' it clearly suffices to prove the following result:

G$;;;) = (LN/2,+l)/kh + O(N2/3) for each c" . (A 3. )

We shall prove (A.3) by establishing the following claim.

Claim. If c"= (CoyC1yC2y...y~h-l)~C  a n d  d= o((c +l)modk,c 923  l l o,ch-l ) ,

2;;) + O(N 213) .
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.
The Claim would imply that, if 2,;~ C differ only in the first

component, then their values of 0)
%

'13
,k

differ at most by O(N ) .

By symmetry, this conclusion is also true for -6', d' differing only

in any one component. It then follows that, for any z,& C ,

(1)= s,k(z;z) + O(N213) .

Formula (A.3) follows as

c ' Xh,k(
O<w< LN/2J &C

Z;n")

- -

= LN/2_1+1 .

It remains to prove the Claim. For ic {1,3) , let Ri(w) denote

the set of integers in the interval (w/h - iw2/3 , w/h + iwZ/3) .

Lemma Al. If- l< w 5 LN/2] , then

= o(w-+ > for each ie {1,3) .

Proof. The hypergeometric distribution pk =

(k = O&2,... ) , has expected value wno/N = w/h + O(1) and variance

w;(l-;)(l-$$ = o(w) ,

( see, e.g. RGnyi [5, p. 1051). The lemma then follows from Chebychev%

Inequality (see, e.g. R6ny [5, p. 3731). Cl
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Lemma A2. Let 1 5 w 5 LN/2 I J O~jo<no, and

Then

j, - ;= O(w2j3) .

Proof.

= l+ o(w413) . !I

We shall now prove the Claim. Without loss of generality, assume N

is-large enough so that
no@pd l Let #(Z;w) denote the set of h-tuples

(j,, jl, l l l I j,-,) Of non-negative integers such that x j
i = w , and

i
ji mod k = ci for all i . Then, for each 1 5 w 5 LN/2J ,

xh &;n;w) =9
= cj, E R3 (4
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c
+e’Jjh-l

&+ . ..+jhml= w-j,

Using* Lemmas Al and A2, we have then-I

Xh ,(2;Z;w) = z
J

j, E 3 W
(l+ o(w+y) ;

nw+l

"10 (%-1
. . l .

jl jh-1

It is straightforward to check that Rl(w+l) 5 (j,+l \ j, E 3(w)) , Thus,

from (A.&),

*
J Note that j0 y"'E implies j, # no , because we have assumed

noeyw, l
This enables us to apply Lemma A2 in the ensuing

derivation.

53

(A.4)



xh ,(‘;‘;w)
J

In the last line of the above derivation, we used a formula similar to

(A.4) for xh k(z;z;w+l
J

(A.4) that

1 nO

ir( )
N
w+l j0

> c
- j, cR1(TJfl

j+E &J+l)

-l/S= Xh k(;i;&7+l) + o(w
J ) l

nh-1 + 0(,-q

jh-1

(A.5)

. On the other hand, it follows directly from

xh ,(‘;‘;w) 5 xh ,(d;n’;%+l)  + o(w-l/3) .
J 9

Therefore, we obtain from (A.5) and (A.6) that

Xh,k
(:;;;w) = Xh,k( ' '

&Y*w+l

- From (A.2) and (A.7)' we obtain

+ o(w+) .

G~$;S) = cJ l<w<_ LN/2J
$.-&;‘;w) + O(l)

= c xh k&l;*‘)  + c o(w+ > + 00)
15w<_LN/2] ' 195 LW?l

= @(;;;) + O(N2/7)

(A.7)

This proves the Claim, and completes the proof of Lemma 2. 0
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