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Abstract .

One classical sorting algorithm whose performance in many cases
remai ns unanal yzed, is Shellsort. Let B be a t-conponent vector of
positive integers. An b -Shellsort will sort any given n elenents
in t passes, by neans of conparisons and exchanges of elements. Let
sj(k—f;n) denote the average nunber of element exchanges in the j-th
pass, assuming that all the n! initial orderings are equally liKkely.
In this paper we derive asynptotic formulas of sj(ﬁ;n) for any fixed
B = (hk1), naki ng use of a new combinatorial interpretation of 83

For the special case b= (3,2,1) , the analysis is further sharpened

to yield exact expressions.

X This work was supported in part by National Science Foundation under
grant McS77-05313. Part of this work was done while the author was
on leave at Bell Laboratories, 600 Muntain Avenue, Mirray Hll,
New Jersey 0797k,



1. [ ntroduction.

The analysis of sorting algorithns has been a prototype for the

mat hematical _analysis of algorithns (Knuth [2][3], Sedgew ck [7]). One

classical sorting algorithm whose performance remains unanalyzed in
nost cases, is the Shellsort proposed by D. L. Shell [8]in 1959, Al
the known analytic results about this algorithmcan be found in Knuth
[2, Sec. 5.2.1] and Pratt [4]. In this paper, we will -present some new
results concerning the average-case performance of Shellsort,

Let h = (h "hz’hl) be a vector of positive integers with

LT

hyp=1. An b -shellsort on a list (or, an array) LIQ n-1] of n

el enents performs an in-place sort in t passes, using conparisons and exchanges

of the elements. In the j-th pass, (1 <j <t) , a straight-insertion sort Wi
is done to each of the ht-j+1 sublists, where the i-th sublist

(0<ix< ht-,j+1) consists of L[i], L[i+hy 51,00 +2h . ,1,. ...
Assuming that all n! initial orderings of the elenments are equally

l'ikely, et Sj(ﬁ';n) be the average nunber of element exchanges in the
j-th pass. The determ nation of sj(ﬁ';n) , a standard performance neasure
for Shellsort, poses challenging mathematical questions. So far, the only

conpletely analyzed case is when h, divides h,, for each 1 <i <t

1
(see Kauth [2]). In the present paper, we derive asynptotic formlas
for sj(ﬂ;n) when & = (h,k,1) is fixed and n = » . In the derivation
an interesting conbinatorial interpretation of S;((hk,1)5n) will be

i ntroduced. For the special case b= (3,2,1) , we further refine the

analysis to give exact expressions for Sj(h;n) .

X See Knuth [2] for a description of the straight-insertion sort.



2. Prelimnaries.

a be a list of distinct real nunmbers. An

12800 e o8y 1)

inversion in L is a pair {i,j} such that i <j and a, > a. . The

total nunber of inversions in L is denoted by I(L) . Qearly, the

Let L = (ao,a.

concept of inversion depends only on the ordering of the a. - It is
known (Xnuth [2, equation 5.1.1-(12)]) that the expected value of (L)
is n(n-1)/4 for a randomlist L (i.e., all n! pernutations of 2,
are equally likely).

For any sublist L' of L , the number of inversions I(L') can
be defined in an obvious way. An inportant property of inversions is
that, when we perform a straight-insertion sort into ascending order
a sublist L' , the nunber of elenment exchanges is exactly equal to I(L').
Thus, sj(ﬁ;n) is the sum of the average nunber of inversions in all the
ht_J.Jrl sublists that are to be sorted in the j-th pass.

For a list L of n elenents, |et L(h’j> (0 <j < h) denote the
sublist (L[jl,L[j+h],L{j+2h],...) of length | (n+h-1-j)/n| . W& will
call L h-ordered if, for each 0 <j < h , the elements in L(h’ 3) are

in ascending order. W say that we h-sort L, if we sort each L(h’ )

(0 <j <h) separately into ascending order.
Instead of drawing a list L as a single array, it is often

conveninet to show L in an h-row representation (Figure 1). The |ist

is arranged in h rows, so that the j-th row (1 <j < h) contains the
sublist L(h’j'l> . Thus, to h-sort L is to sort the elenments in each
row separat el y.

An h-ordered list LIO n-1] is a random h-ordered list if any

ordering of its elenents consistent with h-ordering is equally likely,
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Figure 1.

Alist L and its 3-row representation.




It is not difficult to see that, if we h-sort a randomlist L, the
resulting array is a randomh-ordered list. W renmark that, if Lis
a random h-ordered list and 0 <i <j < h, then the union of row

i+l and row j+1 forms a random 2-ordered list, ie., the sublist

L{i], L[j] , L[i*h], L[j+h] , L{i+2h], L{j+3h], . . . is a random 2-ordered
list. Note that A, the average nunber of inversions in a random

2-ordered |ist of n elements, is given by (see Kauth [2, Sec. 5.2.1])

n=-2 n
ao= 122 (aey) (1)
Asynpt otical ly,
A = /128 D2 4 o(a) . (2)
Remark on the O notation. In Section k4 Appendix, and in the statement

of Lemma 2, the constants in the Onotation are dependent on h and k.

Everywhere el se, the constants are absolute constants.



3., Asymptotics for the (3,2,1) Case.

In this section we present our basic approach, by analyzing the

asynptotic performance of the (3,2,1) -Shellsort on a random list L

of n elenents. It will be shown that, for k =(3,2,1) ,
s, (Bn) = n°/12 + qn) | (3)
SE(E;n) = ﬁ]i?nB/g +Qn) (4)
5,(H3n) = nid + Of N (5)

Several facts for use in later sections will also be given.

Anal ysi s of Pass 1.

Consider L in a 3-row representation (see Figure 1). In the first

pass of the (3,2,1)-shellsort, each row is sorted by a straight-insertion

sort.  Thus, sl(f{;n) is equal to the expected value of the sum

2 I(L(B’j)). As each row is initially a randomlist, we havey
J

s, (n;n) =05713§2 n, (n;-1)/% (6)

W t h n., = L(nt2-1)/3 | . Asynptotically,
Sl(h;n) = ng/lz + Qn) ,

which is (3).

i 1

for any variables X; without explicit reference to it. (E(Xi) is

*/ Here and hereafter, we will often use the fact E(EXi) = 2 E(X;)

t he expected val ue of X, .)



Anal ysi s of Pass 2.

For the moment, assume that n = 3m for some integer m> 0 . At
the end of Pass 1, we have a random 3-ordered list . . Pass 2 w |l
performa straight-insertion sort for the sublists L(E’O) (the "shaded"
list in Figure 2) and L(e’l) (the "blank" list in Figure 2), separately.
Let séj)(n) denote the average nunber of inversions in L(g’j) ,

j €{0,1} . W have

s,n) = 590 + 5P @) (1)

Now, consider a 2 -ordered list L'= (aO’bO’al’bl’aE’bE’""am-l’bm l)
ina 2 -rowrepresentation (Figure 3). Define four sublists as foll ows:

Leven,even (8ps PpraysPpsa),D)s. L) s

Leven, odd - (a O,bl )an’b 2 3, a),,b 4 5’““) ?
Lodd,even = (bO’al’bE’aB’bh’aB""'> ’
Load,oaa = (819P7855b5585,b05.000)
For each o,p ¢ {even,odd} , let X 8 denote the random variable, defined
3
on the set of L', corresponding to the nunber of inversions in La 57
2
and let B, _(2m) = E(X, .) for a random 2-ordered L' . dearly,
a! B a)B
2 B, o(em) = average # of inversions in L'
a’B J B
= Ay (8)

Returning to the evaluation of § we observe that the union of

2!
any two rows in Figure 2 is a random 2 -ordered list at the start of

Pass 2. It follows that

(em) + B

(0) _
S377(n) = Beyen,0aa(® * Boag, even even, even®®) 7



Figure 2. The sublists L(E’O) (the "shaded" |ist)

and &1 (the "blank" 1ist).

Figure 3. A 2-ordered list L'.



and

Sél)(n) (em +B (2m) + B n

odd, even even, odd odd, odd (2)

Together with (7)and (8), these lead to

SE(H;n) - A2m + (Beven,odd(gm) * Bodd,even(zm)) ‘ (9)

It remains to evaluate Beven,odd(zm) + Bodd,even(zm . A 'precise
calculation is possible (see Section 5), but here we will determine it

only asynptotically.

W assert that

By p(em) = %Azm + o(m) for @B e {even,0dd]} . (10)

Suppose (10) is true. It then follows from(9), (10) and (2) that
s,(m5n) = iz /2 + An)

which is (4).
It remains to prove (10), which we will show in a nore general form
Let k >1 be an integer and L' = (aO’bO’al’bl’aE’bE"") a 2-ordered

list of n elements. For each 0 <i,j< k , let L.i 3 denote the |ist
2

(ai’bj’ai+k’bj+k’ai+2k’bj+2k"'”) if i <j, and the list

CIEN. if i >j . Define v, ;to be the

b FIRELINRLE NEL SRR

random variable whose value for ' is the number of inversions in Li 57
>

and | et B.gk).(n) = E(Y.. ) Dbe the expected value of Y. ., for a
1y J 1, 1

J:
random 2 -ordered list L', It is clear that B.Egg(zm) are the
)

B, J.(2m) defined earlier, provided we identify "0 " with "even" and
"1 " wth "odd" in the subscripts. Thus, formula (10) is a special

case of the following result.



k 2 ‘
Lemma 1. For any fixed k > 1, B.i(,;(n) = A /K" + Q(n/k) for 'any

i,j € {O’l’E’CQC,k-l} .

(k/ = [x/128 n5/2/k + o(n/k
Corol | ary. i) = n/ (n/k) .
Proof . Define the foll owi ng random variables on the set of 2-ordered
lists L'

(1 ifas<bt

L O ot herwi se

1 if a > Db,
( { ® for 0<s<t<|n/2] ,

for 0<t< s< n/21

Y — .
s, t = 0 ot herwi se
0 ot herwi se .
Then,
Y., . = Z oy, ., (11)
19 s mod k= 1 )
t mod k=]

*
Ve wish to provethat,—/for 0<i# j<k,

- . o(n/k (12)
Y54 Yy, 5 *+ O(o/k)

and

(13)
Y.J.,J. Yi 3 * an/k) .
. . _ (k)
This would inply the | emma, since all ¥y (and hence B, %(n) ) would

(5) 70y =
be equal up to an additive Qn/k) term v\hereas Z,B (n) = A

15

i An equality (or inequality) involving randomvariables is valid if and
only if, for every event in the sanple_space, the v Itﬁs of the random
variables satisfy the given formila. For example, ~(12]"is equivalent to
the following statenent: there exists a constant ¢ such that, for

' - < cn/k |
any L - Y'i,jl < cn/

10



Ve will only prove (12); the proof of (13)is simlar. For any t
satisfyingt nmod k =i , let t =t+ (j-i) and t_=1t- (k+i-])
if i <j, andt, =t+ (k#-i) and t =t- (i-j) if i >]
Then t_and t are, respectively, the smallest t' >t and the
largest t' < t that satisfy t*mod k =] . For the rest of the proof
of Lema 1, we use variables s , t, t' exclusively for integers
satisfying s md k =tnod k =i and t* nod k =] , and when they

appear in a summation, it is understood that they only range over such

val ues.
From the definition of Yoy and the fact that L' is 2-ordered,
bl
we deduce
Vs, £ < Vs, ¢ < ys,t+ if s >tttk , (1)
and
ys,t < ys,’c < ys,‘b it > stk . (15)

+ -

Now, noting that O <__yu,v <1, we have

2 y t = 2 Yy t - Z NA ,.t

s>t +k 5 s>t 9 tHk>s >t ©
= ¥ - O(n/k)
s>t s b ’
2y = ¥ -z v
< t
s>t+k S0 % s>t Ut pixssst
= - O(n k
s>Z’c'ys %' ( / ) ’
and
Z oy = 2 vy -z oy
s>t+k 52 ¢ s>t 7P takss>t S0t

= 2y PRI O(n/k)

11



Together with (1), this inplies

T oy - on/k) < T ¥ < X Vo4 T O(n/k) .
sS4t S,'t' s>t S,t s>'t's,t
A simlar argument using (15) gives
- 0(n/k) < Z < Ty + 0O(n/k
s<zt‘ys’t' (n/k) T s<t ys’ E T os<t s, ¢! (/%)

Addi ng up (16) and (17), we obtain (12).

This conpletes the proof of Lemma 1. The corollary follows by using

the asynptotic expression (2) of A . O

W have derived (4) for the case n mod 3= 0 . The other cases
be handled in the same fashion. In fact, one obtains the follow ng

generalization of (9): For = (3,2,1) ,

( .

A2m * (Beven,odd(zm) * Bodd,even(em)) It

SE(h;n) = \ A}?mfl * (Beven, odd(gm) * Bodd, even(em) ) Al
A2ml ¥ (Beven, odd(2m+2) * Bodd,even(emg)) Al

-
The asynptotic formula (4), for general n , can be proved using 2),

(10) and (18).

Anal ysis of Pass 3.

(16)
(am)
can
= 5m
= 3mrl , (18)
= 3m+2

W now come to the analysis of Pass 3, which is the nost interesting

part conbinatorially. The question is "what is the average number of

inversions in a list, obtained by first performng a 3-sort and then a

2-sort on a randomlist?" It will be convenient to work with the

12



equivalent form "G ven a random 3-ordered list L of n elenents,
what is the expected nunmber of inversions in the new list L' obtained
from 2-sorting L 2".

Consider the follow ng random variabl es Zy ; (i, j integers)
)

defined on ¢, the set of 3-ordered lists L of n elenents

{1,25.005n} |

(a) For 1<j <i<[n/27, =z J.=1 if the i-th smallest elenent

i,
in L(Q’O) is less than the j-th smallest elenment in L(2’1> s

and z. . = 0 otherw se;
1y J

(b) For 1< i< 3j<n/2),z j=1 if the i-th smallest elenent
2

(2,0) is greater than the j-th smallest elenment in L(E’l) s

in L
and z.. . = 0 otherw se;
1,d

(e) =z, .= 0 otherwi se.
L d

These random variables have the following interpretation. Let L'[0:n-1]
be the 2-ordered list resulting from2-sorting L . (W remark that L
also remains 3-ordered. See Knuth [2, Sec. 5.2.1 Theorem K].) Then

Z), 5= 1if and only if the pair {2i-2,2j-1} is an inversion in L',

i.e., the elements in L' (2,0) [i-1T  and L'(E’l)[j-l] are out of order

in L' . It follows that
)

where the expected values are for a random 3-ordered list L .
Formula (19) can be sinplified, if we observe that Zy 3 is O
J
unless i =j or i =j+1 . This is due to the fact that only adjacent

el enents may be out of order for ', a list both 3-ordered and 2-ordered

13



(see Knuth {2, Ex, 5.2.1-25]). Thus,

8, (Bn) = = E(z, .) + z (20)

E(zs,q 4) .
1<i<|n/2] 1<i< [nf2] b3

W shall derive (5)from (20). Assune that n =3m is a nmultiple
of 3 for the present. A 3-ordered |ist L of n elenments {1 2,...,n}
can be represented as a ternary sequence of n synbols in {1,2,3},

with n/3j 's for each j e {1,2,3} . The i-th symbol in the sequence

isj if and only if the integer i in the list appears in the j-th
row. Note that this representation is a |-I mapping fromthe set ¢
onto the set of ternary sequences with exactly n/3 | 's for each

i i i nci - 51 ) Figure X

j ¢{1,2,3} . This shows, incidentally, l£| = (m’m’m . g

shows a 3-ordered |ist (in its 3-row representation) whose associated
sequence is (1:1:1:2:5’1:5:2313211)2:2:5:5:5:5:2;135’2) .

To eval uate E(zjL i) ., We need to count the nunber of 3-ordered lists
J

in g for which Zy 5= 1 . Consider the 3-row representation of L ,
J
with positions of L(E’O) "shaded" as in Figure 2. It is easy to see
t hat z, ;=1 if and only if there are more "blank" cells than "shaded"

2

cells in the positions occupied by the smallest 2i-1 el enents

{1,2,. . .,2i-1} . For exanple, Z) ) = 1 in the exanple shown in Figure 4,
as there are k4 blank cells but only 3 shaded cells in positions

occupi ed by {1,2,...,7} (see Figure 5), This condition can easily be
tested fromthe ternary sequence representation of L discussed above.
Suppose there are kj j's (J €{1,2,3}) in the first 2i-1 conponents

of the sequence. Then, using Table 1, one imediately sees that

14
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Figure L. A sanple 3-ordered list Lin g

U,

7.

v

Figure 5.  The positions occupied by elements
{1,2,...,7} in the list of
Figure 4,

15



row 1 row 2 Tow 3

= even 0 0 0

= odd -1 +1 -1

Table 1.  The contribution to
(# of blank cells - # of shaded cells)
by positions in rowj as a function
of k.J.

16



4 of blank cells - 4 of shaded cells

=k2rmd2-klrmd2-1%rmd2.

It follows that =z, , =1 if and only if kl and l% are even and k2

i,i

is odd. Thus,yfor l1<ic<\|n/2],

2i-1 3m-(2i-1)
E(zy 3) = 511}1 o ( )(
( m,m’m) ket = 21-1 | Ky kK [ mokysmek, ek,
kl’l% = even
k2= odd

O, equivalently,

1

0= T wonena (0 (25

k2= odd

=
—~
N
"
|

for 1< i<|n/2]. (21)

A simlar argunment for Zi41,1 | eads to

for 1< i < [n/27. (22)

Fornmul as (20), (21) and (22) give an exact formula for SB(H;H) _

Y W use the convention that a multinomial coefficient is zero whenever
any of its lower indices is negative.

17



W now assertthat, as n - =, (21) and (22) lead to

)3 Bz, ;) = n/8 + o),
l<i<in/fey %
(23)
)2 E(z. . .) = n/8+ o(n?/3
1<i< fnf2y i
Intuitively, for each w, the sunmation
1 m m m
(w) Btiptls = \ K AR 5
can be partitioned into four approxinately equal parts (each ~ 1/ ),
according to the parities of k, 5k, and }% . Hence each sumin (23)

is roughly equal to 1/4 tines the nunber of terms. This argument can

be made precise to prove (23), and in fact the next |emm.

Definition. Let h,k >1 be positive integers, and Chox t he set of
2

vectors ¢ = (co,cl,...,ck_l) with integer conmponents 0 < c; <k.
Suppose m > 0 is an integer, and @ = (nO’nl""’nk 1) is a vector

of integer conponents satisfying |ni-m| <2 for all i . For each

CeCh,k , we define

- o {20\ ™ fho1
G (cyn) = % 1 2
h, k O<W<N (1‘\; ) iZji=w kjo

Ji ITDd k= Ci

for all i

18




Lemma 2. Let hy,k >1 be fixed integers. As N~ =,

- = 1 2 =
Gh,k(c;n) = k—h(N+l)+ o /3) for each ce:Ch,k

& enphasize that the constants in the Onotation in Letma 2 are
dependent on h and k . The proof of Lemma 2 will be given in the
appendi x.

Cearly, (23) is a special case of Lemma 2 with h =3, k = 2 .
It now follows from (20) and (23) that, for n nod 3= 0 , (5) is true,
i.e.,

SB(ﬁ;n) = n/4 + O(n2/5)

One can prove (5)for nnod 340 in asimlar way. In fact, for any
n >3, fornula (20) and the anal ogue to (21), (22) read: For

h = (3,2,1)

sB(ﬁ;n) = E(z. .) + > B(Zyyy,5) (24)

1<i<|n/2) Y 1<i<(n/2]

o ) o 1 - (L(n+2)/5j)( L(n+l)/5J)( Ln/5l)
i, i (Qin-l) kl+k2+k3= 2i-1 Ky ko k3

kl,k3 are even

k2 is odd

1<ig |n/2) . (5)

and

19



1 Lm+2)/31\ [ L{er1)/3 1\[ Ln/3]
euns) T TEY e k ’
(21) gty = 2l 5 2 5

kl’l% are odd

k2 IS even

1<i< n/2] . (26)

Fornula (5)then follows from (24)-(26) and Lemma 2, W shall see in
Section 5that O(n2/5) is an overestimte of the error term for 83
W have finished the asynptotic analysis for the (3,2,1) case.

Generalizations and refinements will be made in the next two sections.

20



L, Ceneralization to the (h,k,1) Case.

Let h, k > 1 be fixed distinct positive integers and = (hyk,1) .
In this section, we will derive asynptotic formulas for the (h,k,1)
-Shellsort on n elenents. Let y(h,k) denote a function to be defined

inamnent. W wll establish the follow ng results,

Theorem 1. Suppse ged(h,k) = 1 . Then, as n - = ,

2
n

s, (B3n) = gz + o(n) ,

-1
S }T;n) = A-/-E;-J-t /o _- (kl\/ﬁ) n3/2+ o(n) ,

o (
and
5, (Bsn) = y(mk)n + o(n?/3

Theorem 2. Suppose ged(h,k) =d > 1 . Then, as N - =,

Sg(h;n) = —8- k n 3

and
= [ (a-1) 3/2
S5 (hyn) = 5 «/E n + 0(n)
W will now define y(h,k) and some other terns. Assune that

ged(h,k) =1 . Consider the hxk matrix v[l:h, 1:k] , where
VvI[i, 3] = ((j-1)h+ (i-1)) mod k . Each row of Vis then a pernutation of the
integers in (0,1, 2,. . ,k1}. For each ae {0,1,2,...,k-1} and each

0<i<h, let ui(oz) denote the position in row i+l where a

appears, i.e., 1< ui(oz) < k and V[i+l,ui(Ot)] = a . For each

21



a,Be {0,1,2y...,k-1} , there are sone rows i+l in which o appedrs
before g in the pernmutation, i.e., ui(oz) < ui(fs) ; denote the set
of such i as KOC,{s , and define I%‘,B = {O’l"“’h’l}'Ka,B . Let
My = 18\, and by = lK&,B‘ =h-m, o . It is easy to see that,
for any ieKOt,B , the nunber of positions between the appearances of
a and g in row i+l is wu,(B)-u, (@) Is independent of i , which
we denote by AG’B . Also, for any ie K&,B , the nunber of positions
bet ween the appearances of g and & is ui(oc) -ui(a) = h- AOA:B .

An illustration of these definitions is given in Figure 6. Note that
the matrix v can be obtained by filling in the sequence 0,1,2,...,k-1,
05152 000sk-1,0,1,2,40.45k-1,0,1,... , iNn a colum by colum nanner;
this is in general true.

For any integers p, ¢ satisfying f#p > 0 and any real nunber

0<qg<1l, let

J
£ I+ .
£(p25a) = (1-9)%a :@(z}j’)(ﬁ—l) BT (27)
Define y by
1
y(hk) _ T o§a§s<kf<mo"5_1' h'mbc,s’%,s/k) . (28)

Finally, throughout this section, we use the synbol n, for

L (ath-i-1)/h} (0 <i <h) .

22



h=8,k=5;

5223 (3 appears before 2 inrows 1, 4 and 6);
252 = 8'3 = 5 H
42 = uO(E) -u0(5) = 5-2 = 3 |

Figure 6. M illustration of definitions for the matrix V

and rel ated terns.

23



4.1 Proof of Theorem 1.

Consider the first pass on a randomlist L . As each L(h’l) is
initially a random |ist of n. elenents, its average nunber of inversions
is ni(ni—l)/h . Thus,

S (1 = = (n,-1)/4 = n~ + n
l( n) O§i<hnl i / In an)

This proves the formila for S, in the theorem
Consi der a random h-ordered list L of n elenents in the h-row

representation. For each 0 <r<k, O0<s<h, 0<t<h, let

(h:r)

L denote the sublist of elements in L that are in the

rys,t
(s+1) -st and (t+1) -st row.  Then

s (hsn) = 3 T_(n)
2 O<r<k *

= 7 z T . (30)
O<r<k o<s<t<n T3St 7

: . . . h
where T,(n) is the average nunber of inversions in L( > ) ; and T

rus,t
Is the average number of inversions in Lr;s,t .
Let Py, = ((j-1)h+ (i-1)) mod k for 1<i<h, 1<Jj<n ;.
Then the j-th element of the i-th row (in the h-row representation) of
(k,7)

LisinL where r = P,. . Cearly, the first k colums of
the matrix (Pij)forma matrix identical to the matrix VvV defined
earlier. As each row of (Pij) is periodic with period k , the sublist

L(k’ r)

occupies positions v(s,r), v(s,r)+tk, v(s,r)+2k, ... in row
st1 , where wv(s, r) is the position of the integer r in the (stl) -st
row of matrix V. 1t follows that, for 0 <r<k, 0<s<h,

0<t<h,
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T = B(k>(n g : (31)

I‘;S’t i,j Sy
where i = v(s,r)-1, |j = v(t,r)-1 and ns,t =n +n .
According to the corollary of Lemma 1,
5/2
(k) [ 1 é&) .
B,5005,¢) =V 2% + o(n) (32)

Substituting (32) into (30), we obtain

k(g)«/—“- L (%?)3/2 +on)

-1
Ul ()™ 572, o

This proves the formla for 8, in Theorem 1.

W will now anal yze Pass 3. Let g be the set of all h-ordered

lists of n elenments {1,2,3,...,n} . For each 0 < a <8<k, let
I, B(L) denote the nunber of inversions between elenents in ' (k,@)
g

and T B)  and et

Sa,p = D To,s) (39)
Cearly
= 1
S;(hsn) = — % Z I, (L)
5 £l neg o<a<p<k %8
= b I 34
o§oc<5<ka’f’% ’ (34
wher e
- n
I = 4 . 35
B a,a/(no,nl““,nk_l) (35)
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Consider any list Le g in the h-row representation (Figure 7).
A position is called of type @, or an a-cell (0 <a < k) if it is
(k,)

It is easy to see that, for each 1<i <h, 1<j<n.,

in L
1

the j-th position of rowi is a P'i,,j -cell.  For each 0 <m< n and
each Le £, let Qm(L) be the set of positions occupied by elenents
{1,25...,m} , and Da,B(m;L) = |# of a-cells - # of p-cells |in Qm(L)
for each 0 <o <p <k . W shall say that Qm(L) has shape (relative
to the h-row representation) (jo,jl,._. jh_l) if it consists of the

| ef t nost J; positions of row i+l for O <i <h . In the exanple
shown in Figure 7, Q,m(L) has shape (4, 6,3,3%, 8) and

Do’l(m,L) = |9-8] = 1 when m= 24 (see Figure 8). Let s(m1;L)

denote the type of the -position that the el enent m1 occupies, W

have, for 0 < a < B <k,

o 2 - O<§1<n6°‘:8(m*151:) Doy, (w31 (36)

Formula (36) can be proved as follows. For any given 0 < a <p<k,

'(59) g 1 (R be uni quely I abel ed

an inversion between L
as (m+l,i,j) , meaning that the i-th snallest element in L'(k’o‘) is
the elenent mt1 , and is less (or greater) than the j-th smallest
el ement in L'(k’B> where j<i (or j>1i). Foranygiven m

and L, there are 8, m; L) such triplets (m+l,i,j) .

) S(m+lSL)Da)B(
Formula (36) follows.

From (33) and. (36), we have
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31 L5 182512637 3| uk]lLs

1] 61112222327} 2840 |k
o
2113 1&'29 361 38) 391 46| 47

1017 | 19§30 |31 |32133|35|Le

71 81 915116 20]21|24§3L

Figure 7. A 5-ordered list L . Qm(L) consi sts of
all the cells to the left of the heavy Iine,
where m= 24 .

ol e} 1 042 110121110
lj]o}l2y1]lo0la2agl}otatl
——

Figure 8. In the exanple in Figure 6, Qm(L) cont ai ns
9 Ocells, 8 I-cells, and 7 2-cells. Thus
Dy l(m,L) =19-8| = 1 . (Each cell is marked
2
with its type.)
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(m; L)

o
I

= 2 2 B v\ D
Q, B O<mEn L eg Q, s(m+13L) ", B

#of Legf Wth
el enment mtl in

= 2 2 3
0<m<n 0<j;<n,,vi O<i<h row i+l, and shape
) Ji : 1 Pi+l; ji+1=o‘ (jo’jl’ . 0 W@8@®
| for Qm(L)

XgOt,B(JO’Jl"”’Jh—l) )

wher e ga,B(jO’jl"""jh—l) = Da,B(m;L) for all L whose Qm(L) have

shape (jo, S jh-l) ~ Cearly, whether the (ji+1) -st position in

row i+l is an a-cell or not depends only oni , o, and c = 3s mod k .

(Remenber that P. 3 is periodic inj wth period k .) Define

x(i,a, ¢) = 1 if it is an a-cell, and O otherw se. Then
3 = 2 2 Z g (G2 daseeesd )
a, B . . X 0, 807 Y1 h-1
0<m<n Jgreeerdyq 0<i<h
. X i,0,j, modk)=1
Z\Jt—ln -
t
/ m \ n-ml

X
(jo, dyzeees Jh_l) Ny=dgreee ,l’li-Ji—l, R L )

= z z Z &, g(3gpdseeesd o)
O<i <h 0<m<n Jor e erdpg »B77077L h-1
ZJ =m
Tt

x(i,q, j; mod k)=1

m n-ml
X . (37

‘jo,jl,...;jh—l no—jo’"')ni—Ji_l,"'!nh_l_Jh_l
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Now, note that the value of Da,a(mL) depends only on .

jo mod ¥s .. g, mod k where (3grdqreeerdpg) IS the shape of

q (L) , because of the fact that P ; is periodic on j with period k.

Thus, we have ga’a(jo,al,--»,ah_l) = ga,a(jo mod k, j, mod k, . j, , mod k).
Thus, (37) leads to
S5 = & z &, 50?1772 %p1)
¢ 0<i<h 0<cysCyseeerCy 1<k
n
Z Z . * .
O0<m<n jo,jl’ooa)jh_l ( JO’Jl, "'?Jh-l
%jt=m
jtmodk=ct, ¥t
n-ml
: ] e
no'«jo)’-'}ni-ji'lh-‘ @‘@.@a’m@‘
From (35) and (38), we obtain
i Z E gOf (Co} Cl3... ‘Ch-l)
%BE . 0<i<h OSCO,CI’.."ch-l<k 'B
x(i,a,ci).—: 1
n n n.-Jj.
2o T s I
0<m<n m) jO: . ’jh-l Jo J\ 91 dp-1
2., =m
£ t
Jtmodk.—.ct, LAY

W can use Lemma 2 to estimate the inner sum as follows:
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I
5P
)
N
BEM
N
o
P
o
B}_ll—\
e
[N
)
.
: ™M
<.
7
'_l
~—
s S
—
N
=]
o M
H 1
'—I
~——
~
A
S
~——

= n%(-%+ O(ng/B))
k

hk

Thus, (39) inplies

ioa,fs = 1—11];—h Ofco’cl’-z:-’ch_l<k ga,B(CO:---:Ch_l)'(# of i with x(i,oz,ci)=l)1n
+ O(nE/B) . (41)
Let
e kh%l Of_?<h ogco,cl,.zj.,ch_lik &y, 5(C0 017 v oo )2 (L% ey)  (k2)
and
T h—lE O§a§5<1§9’6 . (43)

It follows from(34 and (41) that,
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s;(fn) = g+ o(n/3)

To prove the formula for 55 in Theorem 1, it remains to show

g . y(hk) . (44)

The Eval uation of g .

Wite (42) as
_ 3 (1)
wher e
1 ‘
= == 2 (capCrssesrcy 1)x(i,a,c.) . L6
ga,s s OSCO:...,Ch-1<kgO"B @rPrrerTh-l T (46)
In (46), there are at most ¥™1 pon_vanishing terms for each i , since
r(i,o:,ci) = 0 except for one value of c; - In fact, we can wite
1 (3)
BT e L <k ( RERISYACH)
I L TS AR JA1
if ie P
0 %o, 8
6 = < (47)
1 - (3)
kh-l O<ec : z <k ( 1 +- Z nn@:ﬁ(cj)),
L T L LR T T J41
L if ie K&;B

The functions ng?)a are defined as foll ows:
)
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Lo ifu@ e <u®),

1T Jeky oo then 1) ()
0 ot her wi se,

and (48)

(-1 i f uj(s) <c < uj(oz),

if e, then ’ﬂé‘g)é(c)

_ 0 otherw se.

Formula (47) follows from (46), by witing gOC,B(CO’Cl""’Ch—l> as a
sum of ng’)ﬁ(cj) , Which are the contributions to
|# of a-cells - 4 of p-cells| fromrows j , with the row i contribution
explicitly taken care of.

To sinplify (¥7) further, consider the follow ng game using a biased
coin with probability q to be a "Head". Suppose we first flip p tines,
collecting $1 for each occurrence of "Head", and then flip it ¢ tines,

losing ¢1 for each "Tail". What is the expected absolute value of

payof f? The probability for nmaking ¢jis,

Pr(payoff = |) =a_;€ J ( g)qa(l-Q)p-a (é ) (l—q)bql-b
a,b
- e 2 (D))
a,b
= (1-9)%d (% (é ) (bfj )) (ﬁ)a
- (1-q)qu(§j§) (ﬁa)j . (49)
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The expected absol ute value of payoff is then

£(py £5q) = Z Pr(payoff = j). |j|
J
— (1-0)P4? Itp 4 j. i
= a-0%' 2 (1F) (%)l (50)

as defined earlier. Let us also define a related function f by

f (p 40 = 2 Pr(payoff = j)-[3-1] . (51)
J

It is easy to verify from (50) and (51) that

£ (py2-1,9) = f(p-1,4,q9) . (52)

Returning to the evaluation of ES)B from (47) we note that g(al)B
4 3

can be regarded as the expected absolute payoffs in the coin game with

(2) } . . .
Na,s the payoff fromthe g-th coin toss (¢ # i) . For ie KOé,B s

= - = = l: ! = =
the paraneters of the gane are p IKO’,Bl 1=m 4 1, |Ka’6| h M5 ?

and ¢ = Aoc,a/k . Thus,

(L)

S8 = f(moc,(:s'l’ h—mOL,B’ %‘:B/k) » for 1 eKy o . (53)
Simlarly,

(L) . T -

ga’B = f (ma’ 5’ h Ty, 8 1, Aa’ B/k) for i e KO&, 5 - (54)

From (L5), (52), (53), (54), we obtain

5 L)
0<i<h Sa,5

Sa,p
= R p Ty s by g0y /%)

+ l%,B‘f-(mOt,B b h-ma,B-l ) %}B/k)
= hef(m, oLy o Aa,B/k) _ (55)
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Substituting (55) into (43), we obtain

1
E _ T 2 fm, -1, h-m _, /k
= K oca<p<k  MP %p” s

= ‘U(h:k)
This proves (44). The proof of Theorem 1 is conplete. ]

As an illustration of the formula for y(h,k) , consider the exanple
h =5, k =3, whose V matrix consists of the first three colums in

Figure 8, It is easy to see that my, =2, 8, =2, m =14,

AO,2=1,II]1,2:2,A1,2: 2. Thus,

Ol

¢(5)5) = (f(l) )4;2/5) + f(5,3:l/5) + f(:'-34, 2/5))

- 2 2@, h,2/5) F2(3,3,1/5)

SIS

L,2 Proof of Theorem 2.

The derivation of the expression for Sl(ﬁ;n) is exactly the same as
in the -proof of Theorem 1.

To prove the fornula for sg(ﬂ;n) , hote that, at the end of Pass 1,
we have h independent sorted sublists L(h’ 1) , 0<i<h. These
sublists can be grouped into d lists, with the (stl) -st list M,

h, st+jd)

(0 <s <d) containing the sublists L( for 0<j<nh'. The

action of Pass 2 is equivalent to performng a k'-sort (USing straight-

insertions) on each M, . Therefore,
s,((h,k,1)3n) = 2 8,((h',k',1);5 (ntd-s-| y/a) . (56)
O<s<d
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As gcd(h',k') = 1, we obtain fram (56) and Theorem 1 that,

1)) = a x A e () /2\5/2+o"
Sg(( sk,1)3n) = X ) kT kd) (n)
-1
=£ﬁ'd(ﬁ)—n5/2+o(n)
8 k
We turn to the evaluation of 83 Let £ be the set of h-ordered
lists L of n elenents {1,2,...,n} . For each 0 <m<n, |et Z,

denote the random variable on g defined as follows. For any Leg,
let L' be the list obtained by k-sorting L , then Zm(L) is equal

to the number of inversions in L' that involve the (m+tl) -st small est

element, i.e., ml . (Jearly,
- 1
s,(hsn) = 3 2 E(Z) (5T)
E 2o<m<n ™

where the expectation values are taken for a random Le g .
Let AS = {S+}\d | }\. = O,l,E’OOl’h'-l} and Aé = {S+ )\.d ‘ )\ = 0,1,2,...,]&'-1}

for o< s<da. Consider any list Le g in its h-row representation.

Suppose @ (L) has shape (Jg»dqs--+sd, ;) - Define szgfl,\sjr .
Lenma 3.  Suppose that the element m+l is in (D Let
t =1 nod d, then
BB = o<§<d i |- o)
Proof . VW first prove the followi ng fact.

Fact 1. Let L' be the list obtained fromL by k-sorting. Then in

its k-row representation, @ (L') has shape (/zo,;zl,...,zk_l) with

+0(1) , for O0<p<k.
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Proof of Fact 1. Let M. (0 <s <d) be the sublist of L' t hat

consi sts of L' (¥, ) > Tehl . Then MY can be viewed as obtained from
the n'-sorted |i st M, by k'-sorting. As gecd(h',k') = 1, the number
of r-cells in each row of l\/g are the same for all repl , up to an

additive Q1) term Thus, for each pe Ay

1
f 2 3. - o1
P o lAQ rep t

S

To prove Lemma 3, suppose that, in L', elenment mtl appears

in L'(u>. Note that u nod d =t . The number of inversions in L'

involving m+l is then

z (L) = Z ||+ 0(1)
v#u

0<v<k

Dividing the range of v into groups AL and nmeking use of Fact 1, we

obt ai n

7, (1)

1
v

1
<
w
]
[y |
ct
O
—_
E

This proves Lemma 3.0
Let n, = L (n+th-1-i)/hj for 0<i<h, and ﬁs = 2 n, s
rej
S

O<s<d. 1Itis easy to see that n, = | (ntd-1-s)/d). Cearly n,

n, 1)

is the length of [ist L( It follows from Lenmma 3that,
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n-ml
o )
Ny=Jgreeeo By 3795 1o Ry7d5mbo0y 9=dy 0 e ey 170y 4

x( T 13735 peaal +0(1)> - (58)

0<s<d

Formula (58) | eads to

m

B(7) - _ .3 > (..

(_ _ _ ) Sordprererdqy OSE<B\ Jpdpse-erdy
NypBoseeerl -

ZJr=m

’ n-ml

[~ _ - - - - - - -
(no'Jo’ ceesBy 9=y g Bemdpmbany g -dp g e o0y 1731 )

x( AN o(l)) : (59)
O<s<d

The derivation of (59) from (58) is elenentary but tedious, and will be
sketched later. W now observe that (59) can be regarded as, up to an
additive Q1) term the expected nunber of inversions involving the

element m+1 in a random d-ordered list of n elenents {1,2,...,n} .

Thus, from (57), we have as desired
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0
&
\J

I

OS] o

T E(z)

3 O§m<n

= 5,((8,1)30) + O(n)

= > Ao 4 + O(l’l)
o<s<t<d g

- () F () oo

= % %n5/2+ 0(n)

Tt remains to derive (59) from (58). We write (58) as

B o ey
B(z) - 5 5 Jo Ji-1J\ Ji+1 1) T\ 3

m R . - n-1
Jgrdyreerdpy 0<i<h n( 0 )
ZJI = m
X A J_-3. 1) + o(l) (60
(O§s<d S imodd

For any o < s < « and integer JS , define

n
0.(7) = z ml -7 ,
Ip (reAs) relhg Ir
er=Js
r
n.-1 n
o) - T 2 |af m )
i ie/\‘s ‘jr (re/\s ji I‘EAS_{i} Iy
§3r=Js

38



ng _ [l
Fact 2. GS(JS) = S , and OS(JS = ng ;i
S S

Proof of Fact 2. (bserve that

T " = @ ° . (1)

re
AS

J ES J
ZQQ(J )X = 2 x ® ’
g - 8 g, \J

S

This gives

and hence the first equality.
To obtain the other equality, we differentiate both sides in (61).
This gives
-1 n n -1

Z n.(l+x)ni T (+x) ¥ | = n (1x) ®
ie/\s + reAs-{i} s

The formula follows immediately by equating terns. O

Now write (60) as

E(Zm) = Z‘ nll - . Z | Z Z
JO’Jl""’Jd—]_ n( m) JO’Jl""’Jh_l OSt<d l€At
%\Jv=m r€Z>AVJI‘=JV’VV
Yv
n,-1 n )
x| 1 1 / ( 5 ‘J —J‘b\ + 0(1)
' i o<s<d °©
Jq 141 3, <
0<g<h
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n-1
TgrdpreeerTg m) o<t<ad
2J =m
v v

O<s<d

X ( Z JS—Jt])Q{;(Jt> i QS(JS)]I + 0(1)
s#t

n n,-1
d-1 Bt K ( z \JS—'J,C|) + 0(1)
Ta-1 J. J\o<s<d

This is just an alternative way of witing (59).

This conpletes the proof of Theorem 2. O
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5. An Exact Analysis of (3,2,1) -Shellsort.

In this section we prove the following theorem Recal

t hat Ah'

the expected nunber of inversions in a random 2-ordered |ist of n

el enents, is Ln/2J2n-2/ Ln72J)

Theorem 3. For n > 3,
s,((3,2,1)3n) = I T L)% §a
0<i<2
(5, 1 _\°
2A2m 8 2m
(%)
1 4"
5((3,2,1)30) = < bomi1 T2 %om 8 Tom
(=)
L1 Y
ol T 5 Mopen T8 T ome
( (1)
and
5((3,2,1)m) = n -5 + Ry
r
1
o T) if n=3m,
where R(n) = J -3 2;1) if n=3ml,
3 if n = 3mt+2
8(2mt3)

The expression for s follows directly from (6).

fornmula for 8, , Wwe start with formula (18). Wite

B =B (2m) + B (em) .

m odd, even even, odd We have

41

if n=3m,
if n=3m1l,
ifn=5m+2,

To derive the



A2m + Bm |f n = 5m 9
5,((3,2,1)3n) = Ayl + By if n=3ml, (62)
A2nr|-l+Bm+l ifn=5m+2.
Let
- i 4 om- (i+j+1
L (i, 3,m) =( il )( m (r;ja ))
It was known (kKnuth [1, Exercise 5.2,1-14]) that
(znrqn)Azm = z |1-3 |u(is 3om) (63)

0<i,j<m

W extend it to show the following lenma. For a,p e {even,odd} , we
agree that even = odd , odd = even , and (-1)O‘+f3 =1if a,p are

both odd or both even, and -1 otherw se.

Lemma 4. For each a,Be {even,o0dd} ,
— s s (OB
(Vo pem = B B3 gm o+ oz G Tl m
? 0<i,j<m 0<i,j<m
i=a i=0
j=a j:d
Proof . W will prove the lemma for & = even , p=o0dd ; the other three

cases can be proved in a simlar way.

Let ¢ be the set of 2 ordered lists (ao,bo,al,bl,...,am_l,bm l)
of 2melements {1,2,...,2m} . For each Leg , |let Qi(L) be the
set of inversions of the form (ai,bz) with odd 2 . Then

(21111][1)Beven,odc1(Errb = Z Z lQi(L) l . (6L)

Le £ i= even

Lo



For any even i , if a., isthe (i+j+1) -st smallest elenent in L

1
withj <i , then
Qi(L) = {(ai,bz)lllis odd, j <z2<1i) ,
i mpl yi ng
i2-j if j is even,
lo, (1) | =
=g+l if | is odd .

2

Simlarly, if j >1i then

Q. (L) ={(ai,b£)]l is odd, j >t >1i},

i
and
12" if j is even,
lo; (L) | =
R it j is odd
Thus, for any even i , if a; is the (i+j+1) -st smallest el enent
in L, then
i-2j if j is even,
lo;(T) | = (65)
li’g‘“l' it j s odd.

Observing that u(i,j,m) is the nunber of Le g such that a; is the

(i+j+1) -st smallest element in L = we have from (64) and (65)
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(erlnn)Beven,odd(zn) = Z Z IQ;_(L) ‘

i=even Le §

]

2 ( 2 "ll_-izl' u(i,j:m) + X li_j+ll “,(i,j,m))

i=even |\ j=even j=odd :

This proves Lenma 4 when o = even , 8 = odd . a
Def i ne
Wm = 2 u(i:j,m) + 2 p,(i:j:m) - p(i:j:m) - 2 u(i) Jrm) .
j<i J<i j > j >
i=o0dd 1= even 1= even 1= Odd
j=even j= odd Jj=odd Jj=even

Fron Lemma L and (63), we obtain after some manipul ations,

|
|-

Em) . .. 1
B = 2 |i-3 |p(i3om) + = W
(m m 0<i,j<m 2 m

|
| =

(m Pon* 2 (6

W shall now show that, for m> 1,

W= ™ (67)

m
Formul as (62), (66) and (67) inply immediately the expression of 5,
given in the theorem

To prove (67), we use a result due to R. Sedgew ck [6].

Lemm 5 (Sedgewick [6, Theorem2]). Let f£(i,j) be a function defined
for integers 0 < i,j < m, and satisfying £(i,j) = £(i-3,0) for i > | ,

£(i,3) = £(0,3-i) for j > i , and £(0,j+l) = £(3,0)+1 .  Then

Tt el b)) = T ( 2‘“) (2F(3)+3) »

0<i,j <m j>1N T
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where F(j) =2  £(4,0) .
0<1<j

In our problem we wite

Wm = - 2 f(i:j)u(i:j:m) ’
0<i,j<m
wher e
( 0 for i, j both even or both odd,
£(i,3) = -1 0<j<i<m .
ot her wi se.
1 0<i<j<m
It is easy to verify that all conditions in Lenma 5 on f are satisfied.
Not e that
F(k) = ¥  £(3,0) = -Lk/2]
0<j<k

W have, using Lenma 5

oo oD o) eL/e )
) _k§1 ‘mg;l)
oz [(Es) . (2]
-5 (3)
2m-2

This proves (67), and hence the expression for s.2 i n Theorem 3,
W now derive the expression for 83 The derivation will be given
only for the case n = 3m (integer m> 1 ). The other two cases

n=3ml, n=3m2can be simlarly treated.
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Recall the formulas (24), (25), (26) for the case n = 3m :

,2,1)3 = Z E(z, . + = E(z. .o .) » (68)
BB = 8 ey b aqagTyera B
m my/ m
E(zy ;) = —31;— > ( )( )( ) 1<i<|nf2), (69)
’ 2 oie1 g ity =2i-l \ Ky VAGS
k1,k3 are even
k_ is odd
2
and
1 m m m) , )
E(z,,, .) = Z » 1< i <T[n/27 . (70
(21+l,1) (32?1) kl+k2+k5= 2i (kl)( kg) 1%
kl,k3 are odd
k, is even
Consi der the expansions
1 n n _ y n k
= [(x)" + (1-x)7] = X X,
e (1) (1) k= even k)
and
1 n n, _ n k
= [(+x)" - (-x)"]1 = 2 ( X
L (@® - (1%) Z 2)

It is easy to see that the quantity E(Zi,i) , as given by (69), is

-1 o i-1
( sm ) times the coefficient of x-

in the function
2i-1

(@™ + (102 (@)™ - 10

()™ + (1-x)™) (@) = (1-%)°™)

od -

(07 - (120%™ + & (10" @0 - Q-0 @™

H
i o

i~ - m 2m
§(£rill‘)xel 1, % « (terms of odd -powers in (1-x) (+x)7") .
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Let &k be defined by
2m k
(1-x)(#x)™ = T & X
k>0 ¥
Then

1 1 Zyei-1

Bz, =1+ 3 5—m)

2i-1
Simlarly, we can show that

1 1 %m,oi
B(z31,4) = T % Fom
2i

Fram (68), (72) and (7 3), We obtain

5,(3:2,1)3n) =  (n-1) - g
Noting that &, =1 and & 3 = (-1)
85;((3,2,1)3n) = § (2¥1) -
Let
k  %m,k
a_ = b (-1) 2
M o<k<3m 5m Y
< \ x

m

for 1< i < |3m/2]

for 1<i <[3m/27

z

0<k<3m

3 (-1)k (k+1)r(3m-k+1)

0<k<3m

where T1(x) is the Gama function (see, e.g. [I]).

(see, e.g. [1]) defined by

rx)ry

B(%,¥) T ()
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r(3m+l)

my k

The Beta function

3

, We can wite this as

(71)

(72)

(73)

(74)

(75)



has an integral representation (when Re X >0, Rey > 0),
1 X-1 -1
B(x,y) = [ dt +*~(1-t)Y™" dt
(lO
We can wite (75) as

o,  BEr LY R(kHL, 3m-ke+1)

I
~~
¥

-+

=

I
Py
g
X
oc‘-’
'
o
1IN
N
|
AN
B
B
-
o
/—\
b
Gt
S—”
B
=
(€Y
B
=

Using (71), we have

s}
1l

1 m 2
n = (uml) fo (1+% ) (1 - f_ig) " e

1
= (3url) [ 0(1-2t)2m dt

3mrl
2m+1

Therefore, from (74), we obtain

=T
Q

5,((3:2,1)50) = T (nel) -

|
=
2
E
1
=
g
+
’_'

11 1
T8  Blowa)

for n =3m. This proves the formuls for 53 when n = 3m.

V& have completed the proof of Theorem 3. O
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6. Concl udi ng Remar ks.

In this paper we have analyzed the asynptotic behavior of
(h,k,1) ~-shellsort for fixed h , k . This procedure can be generalized

to anal yze b -Shellsort with nmore than 3 increments. W shall report

the results in a future paper, where we shall also study the situation

when I—f varies with n .

Acknowl edgenent s. | wish to thank Bob Sedgewi ck for hel pful suggestions

that led to the sinplification of several derivations.
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Appendi x: Proof of Lenma 2.

In this appendix we will show that, for each ce Ch’k ’

G, (&) = (e 4 oa/?) (a2)
For notations and definitions, see Section 3 of the paper. In this appendix,

the constants in the Onotation can depend on h and k , which are fixed

i nt egers.
Wite ¢! = (n.-c.) nod k for 0 <i < h , and
1 1 1 -
G}(l )(c n) = 2 X1 k(E’;H;w) ) (A.2)
o<w< |N/2y Y
wher e
n n
- - 1 o\["™1 -1
Xh k(c,n,w) = N E . . -o( ) .
’ (w) %J =v Jo J\ 91 dp-1
j.modk=c
Vi
It is easy to see that
i) l
Gh, k(c;n) = }(1’ (c n + }(11>:(c' n) + 0o(1) .

To prove (A.1), it clearly suffices to prove the follow ng result:
}(11>:(C n) = (LN/2_j+l)/kh + O(NE/B) for each ¢ . (A.3)

W shal | prove (A 3) by establishing the follow ng claim

—_

daim If ¢ = (co,cl,cg,...,ch_l) eC and 4 L(% +1) modk,cl,cg,,. D@mmﬁm)

() <

( )(d 2 + O(N2/5
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The Caimwould inply that, if c,de C differ only iﬁ the first
conponent, then their values of Géll)g differ at nost by O(NQ/B).
3
By symetry, this conclusion is also true for c,d differing only

in any one component. It then follows that, for any c,de C,

G = 6@ + o)

Fornul a (A.3) fol l ows as

L2z 5 - o

(c;3n) ¥ w(c3n)
Cec M O<w< LN/2) cecC b,k

LN/2]+1

It remins to prove the daim TFor ie {1,3} , |et Ri(w) denot e

the set of integers in the interval (wWh - iv@/5 , Wh + iV\2/3) :

Lemma Al. If 1< w< |N/2], then
J w-J
5 0 > 0
3o # Ry () (v)

_ _ _ nO I\T-nO N
Proof . The hypergeometric di stri bution P = . . s
We= w

(k = 0,1,2,...) , has expected val ue wnO/N =wh + (1) and variance
n n
0 0 w-1 _
W-N—(l'ﬁ)(l'm) = ow

(see, e.9. Rényi [5, p. 1051). The lemma then follows from Chebychev's

= o(w'l/B) » for each ie (1,3} .

Inequality (see, e.g. Rény [5, ». 3731). O
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Lemma A2 Let 1 <w< LN/2), 0< 3o <1y 5 and Jo - g = o(w2/5)
Then

Jo Jott -1

IE (@ + o(w/?y)

W w+l)
Pr oof

(h) (35+1) (-w)
X( no) = (g3 (W)
J

w/h + o(w2/3) N-w
(N-w)/h - o(w?/Dy Wl

1+ o(wrl/B) | -

W shal| now prove the daim Wthout |oss of generality, assume N

is-large enough so that nO;ERB(w) . Let g(ggw) denote the set of h-tuples

(Joajl,n. @jh_l) of non-negative integers such that Z ji = w, and
i

j; mod k =c, for all i . Then, for each 1 < w< |N/2],

> 1 no)(rﬁ)’.. o1
Je glcsw) (g ) Jo J\ 91 dpo1

1

Xa, x(e305%)

L A
= ‘
Jo & (W) ( wl/ \do/\ I \ In-1
3 e gc,w)




OeR (w) (

J eg(c,w

+ ) 5 (nl) - (nhl
JO}gRB(W) Jl ”"jh—l_ jl jh-l
\ Jot ety = Wi

Usi ngf/Lermas Al and A2, we have then

\ -1/3, 1 %o =l -1
Xp, (&) = L1+ ofw )ﬁ ( )( ) ( )
Jo € B (W) (wfl It/ \ 9y In-1

T ek ( ? )(“1) o B} o (A1)
o€ RB(W) jo+l q ‘jh-l
Je ﬂ(aw)

It is straightforward to check that R, (wl) c {j;+1 | Jg € %(W)} , Thus,

from(A.L4),

Y Note that jOeR3(w) inplies j, # n, , because we have assuned
no’éR}(m . This enables us to apply Lemma A2 in the ensuing
derivation.
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>
=
AY)
WA
ol
\‘D
=
v
.
(@]
m
=
T
=
Ve
¥ 2|
-
/——\
c. s
(@] (@)
~————
/—\
c [a]
| =
S~
/——\
[
A
= |
N——
+
(@)
—~
~
~
N

= Xh,k(a';:—f;wl) + o(w'l/5) . (A.5)

In the last line of the above derivation, we used a formula sinmlar to

(A.4) for (E;H;wﬂ . On the other hand, it follows directly from

Xn,k
(A 4) that

(Simyw) < Xn ’k(a;ﬁ;wl) + O(w_l/5) . (A.6)

Xh,k

Therefore, we obtain from (A 5) and (A.6) that
—_ — - - —l
xh,k(csn;W) = xh’k(d;n;wﬂ + 0w /3) . (A.7)

“From (A 2) and (A.7), we obtain

(1) 2.7 5 .5
¢/ (c3n) = (csn3w) + 0O(1)
h;k( ) 1<w< | N/2) *h, k
= Z X k(&;n;w*—l) + 2 O(W-l/B) + 0(1)
1<w< | N/2) 7 1<w< | N/2]

- e (@i) + oaf/?)

This proves the daim and conpletes the proof of Lemma 2. a
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