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Abstract.

Two graphs G and G' are said to be k-isomorphic if their edge
sets can be partitioned into g(g) = E\UE,U. . . UE, and
E(G') =EUEU.. . UE such that as graphs, E, and E!l are
isomorphic for 1<i<k. Inthis note we show that it is NP-conplete

to decide whether two graphs are 2-isonorphic.
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G ven two graphsf/ G= (V,E) and G (V',E') wth the same nunber

of edges, by a k-isonorphismof Gand G we nean a partition of

E = E,UE,U. .. UE and a partition of E =L UE U.

that as graphs, 2 and E; are isomorphic for 1 <i <k . Let

:Ek such

U(G,G') be the mninmum value of k for which a k-isonorphism of G

and G exists. (See [1] for a study of k-isonorphismof graphs.)
In general, the determnation of whether U(G,G') < k for two

graphs G, G , and positive integer k is an NP-conplete problem

For, it clearly belongs to NP, and if we take G to be a star graph

(with the same nunber of edges as G ), then u(G,G') is sinply the

m ni mum si ze of a vertex cover for G, a well-known NP-conplete
-problem [4]. The question "Is UGG) =1+°?"is the famliar graph

i sonor phi sm problem which is not known to be NP-conplete or not [2],[L].

In this note we show that _graph-2-isonorphism (Ge1), i.e., to decide

whether U(G,G') < 2, is an NP-conplete -problem
VW will use a transformation fromthe follow ng probl em which is

known to be NP-conplete [2].

Exact Cover by 3-Sets (X3C).

I nstance: Set X = {1,2,...,n} and a fanmly & = {A;} of 3-element
subsets of X .

Question: Does & contain an exact cover for x, i.e., a subfamily
&' C & such that every elenent of X occurs in exactly

one nenber of &' ?

Theor em X3C is polynom ally transformable to Ge1. Therefore, the

graph 2-isomorphism problem is NP-conplete.

¥/ Ve follow (3] for the termnology on graphs.



Proof . Gven an instance of X3C, we nmay assume w thout |oss of generality
mt+

that n=3m>6, |§ =mz>m, and Xc Uy A. VW shall construct
i=1

a pair of graphs G and H corresponding to (X,%) , as shown in Figure 1.
G aph G contains a connccted conponent T8, correspondi ng to each

Ay in & . |If A = {pya,r}, then TS, is atriangle, with, additionally,

three stars of size ptl , ¢t1 and r+l attached to the vertices of the

m+ ¢
triangle. Ve will denote U Ts; by TS . In addition to Ts,
i=1

graph G contains a connected conponent M, which is a conplete graph
on n vertices with mdisjoint triangles renoved.

Gaph His the disjoint union of four subgraphs KS, N, T, and S .
In KS, we have a conplete graph on n vertices {vl,vg,...,vn} s
together with an i-star attached to each v, - The conplete graph of KS
will be referred to as Kn henceforth. Subgraph N consists of n
di sjoint edges, and T consists of s disjoint triangles. Finally,

S consists of 3z disjoint stars, one of size p+tl for each p that

i=1
Cearly, G and H can be constructed from (X,.4) in pol ynom al

. mtf
occurs in the multiset U A )-x%.

tim. Since G and H are not isonorphic, U(G,H) is at least 2 .
We now show that GH < 2 if and only if & contains an exact cover

for X
Lemma 1. U(G,H) < 2 if & contains an exact cover for X .

Proof of Lemm 1. Wthout loss of generality, assune that {App Ay ash ]

forms an exact cover for X . W deconpose G and Hin two steps as

foll ows.
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Figure 1. The graphs G and # ,



Step 1. Suppose A, = {pyayr}, where 1<i <m. In the corresponding
TS; » W take a subgraph consisting of the triangle together with stars

of size p, g, r, and map it into the triangle in KS incident at
{_vp,vq,vr} with the matching stars. At the same tinme map the triangles

of TS'J’ for mt1 <j < mrg, onto the g triangles of T .

Step 2. The subgraph that is left in G consists of n = 3m isol at ed

m
edges from y TS.l, which are isomorphic to N ; %7 stars from
) l=l

U TS. , isonorphic to S ; and subgraph M, which is isonorphic
JjeEmtl

to the remainder of KS . 3

W nmention in -passing that actually WGH < 3for the graphs (g, )
constructed fromany (X,4) . For we can first map all my triangles of
TS into K and T ; next map the 3(mt+¢) stars of TS into KS and s ;
what is left then in both graphs is isonorphic to MywN . The rest of this

note is devoted to proving the converse of Lemma 1.

Lemma 2. U(G,H) < 2 only if 4 contains an exact cover for X .

VW first introduce sone notations. Under the assunption U(G,H) < 2,
let E(Q = G(l) U G(E) s E(H) :I§'I1>UH(2) be fixed -partitions of the
edge sets, wth isomorphi sm mappi ngs Py G<l) 3 H<l) and  o: G<2> -»H(2> .
For any subgraph F of G (or H),weuse F(j') to denote FmG(i)
(or FDH(i>, respectively); also, let (F<i)) be the isonorphic imge

-1

of F(i> under cp(i> (or (cp(i)> , respectively). For a graph

F-(V,E) , we use e(F) to denote || . Define vertexcover to

be the m nimum size of a subset v'c v such that for every edge (wv)eE,



at least one of u and v belongs to v'. The following facts will

be useful.

Fact A If Fck, and vertexcover < a , then X -F contains an

(n-a) -clique.

Fact B. Let F be a connected conponent in G. Any edge of H that
is incident with a vertex of (F(l)) but not contained in (F(l)) must

bel ong to H(2> :

Proof of Lemma 2. First, we show that any 2-isomorphism of G and H

nust deconpose ks into Mand a collection of triangles with stars.
| ndeed, since KS has nore edges than M, we nust have either

(KS(1)>OTS £ ¢ or (KS(2)>QTS # ¢ . Assume it is the forner.

Proposi ti on. Under the assunption that U(GH) = 2 and (KS(1)> NTs £ 0

we nust have (KS(2>> = <Kr(12>> =M.

Proof of Proposition. Let Ts, be such that (KS(l)sti £ 9 . Consider

the i mage of Ts.(l> inH. Let {v.,v.,smsv. } Dbe the vertices of
1 ll ZL2 lh

K, that are incident with (TSi(l>).

Fact C. (i) <Tsfil)>n K, cont ains at nost h edges.

(i) (TS(l))ﬂKn contains < n edges; equality holds only if

<M(l)> ﬂK}L: fb )

Proof. (i) is true since TS, with one edge renoved is a tree.

(i1) follows from (i) imrediately. O



Fact D. 2<h<n-2.

Proof . (a) Suppose h > n-l1 . Then since K, has no edges di sjoint
[ S
from {v; sV, e mvih} , We nust have Kr(]l) c (Tsi\1)> . This inplies
1 2
t hat vertexcover(Kr(ll)) < Ver‘texcover(TSi) =3. By Fact A Kr(]e>

nust contain a (n-3)-clique. Since G does not contain a (n-3) -clique

when n >6, this is inpossible.

(b) Next suppose h =1 . Then by Fact B, an (n-1) -star R nust

be contained in (Ki) Since the nmaxi num degree of a vertex in Mis
n-3 , we nust have R c (TS§2>> for some j . But then (§S>§ is

incident with n vertices of Kn , and the sane argunent as given in (a),
with step 1 and step 2 interchanged, shows that this is inpossible, This

proves Fact D. [
Fact E. (K§2)= (K§12>>gM.

Proof . Gven 2 <h <n-2, and that an h x (n-h) bipartite graph Y

nust be contained in Krgg) because of Fact B, it is easy to see that Y

must lie in (M(2)> , thus (M(2)> is incident with all n vertices

(
{v>vgs «-pvp} o It follows that <Ks(2)) = <K§1>) e d



To finish the proof of the Proposition, note that by Fact g, the
edges of K, are divided into those in (Ts(l)m K, and those in
((M(l)>u (M(2)>) nK . This is possible only if the latter contains
e(M = (g)-n edges and the former contains n edges, because of
Fact C (ii). But then, (M(U)m{n = ¢ by Fact C, which inplies that
e(<M<2>)ﬂKn) = (; )-n , and hence <Kr(12)> = M. This proves the

Proposition. O

V¢ can now conplete the proof of Lemma 2. [t follows fromthe

Proposition that KS(2> is the isonorphic image of M, while KS(1>

consists of mdisjoint triangles, each attached with three stars.

(1) (1)

) = TS; (1)

Wthout loss of generality, wite (XS uTsél) U TS

where for 1 <i <m, TSi(:L) i's a subgraph of Ts, and noreover, they
are triangles with stars of size {p's5q',r'} and f{p+tl, qtl,r+1}
respectively, with p<p, gq'<gq and r'<r.

If & does not contain an exact cover for X, then we will not
have p'=p , g'=q, r" =1 in TS,El) and TX.1 for all 1 <i<m.
Hence Ts§2>u Tség) U. ..UTSél2> will contain fewer than n isolated edges.
This makes it necessary, because of the subgraph N in H, for
TSy U TSppp... UTS to yield 5 >1 isolated edges in either

step 1 or 2. Assune without |oss of generality that T84y contributes

an isolated edge (u,v) in step 1. \W& examne two cases.

. . 2
Case 1. Suppose (u,v) is in the triangle of TS 41 . Then _Tséﬁi

contains a path of length 4, which does not exist in NyTys

of H (Figure 2(a), 2(b)).

Case 2. Suppose (u,v) 1S in one of the stars of TSy - Then in
Tsélﬂ , U is avertex of degree >3, and hence nust be



(1)

mapped by ¢, into a star of S. This inplies that TS, 41

contains a path of length >3, which again does not exist

in NyuTu S (Figure 2(c), 2(d)).

Thus we can have UGH =2 only if & contains an exact cover

for X, and this conpletes the proof of Lemma 2 and the Theorem O

(a) v (b) v

(2

)
A subgraph of TS,

Tsm+l

(c)

(1)
TSm+l A subgraph of Tsm+l

Fi gure2



VW wish to point out that in our construction, it is necessary to
enploy a different representation for elenents of X in TS than in KS
(such as using (p+tl) -stars versus p-stars for pex ). The following
exanpl e shows that, for instance, if just p-stars were used in both g
and H', then one could have U(G',H') = 2 even though & does not

contain an exact cover for X.

Exanple.  ILet X = {1,2,...,6} and &= {8, = {1,2,5), A, ={%5,63,

A3 = {2,3,4}} . (See Figure 3.\ use Rp to denote a p-star.) One

can first map two of the edges of Rs in TS, into the R5 of s ;

the triangle of TX3 into T; and Minto K, - The remaining subgraphs
of G and H' are then isonmorphic. Such unwanted phenonena cannot be

remedi ed sinply by choosing other representations, say, using p2 -stars

for pex, in both ¢ and H'.
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An exanple with u(g',H') = 2 .
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