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Abstract.

Two graphs G and G' are said to be k-isomorphic if their edge

sets can be partitioned into E(G) = ElUE2 u . . . uEk and

E(G' > = E-j-U E; IJ l . . IJEk such that as graphs, E
i and E! are

1
isomorphic for l<i<k.- - In this note we show that it is NP-complete

to decide whether two graphs are 2-isomorphic.
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-I*Given two graphs G = w, E) and G' (KE’) with the same number

of edges, by a k-isomorphism of G and G' we mean a partition of

E = El U E2 U . . . U s and a partition of E' = E-j-U E; U . . . I_./ Ek such

that as graphs, Ei and Ed are isomorphic for 15 i 5 k . Let

U(G,G') be the minimum value of k for which a k-isomorphism of G

and G' exists. (See [l] for a study of k-isomorphism of graphs.)

In general, the determination of whether U(G,G') < k for two-

graphs G , G' t and positive integer k is an NP-complete problem.

For, it clearly belongs to NP; and if we take G' to be a star graph

(with the same number of edges as G ), then U(G,G') is simply the

minimum size of a vertex cover for G , a well-known NP-complete

-problem [4]. The question "Is U(G,G') = 1 '?" is the familiar graph

isomorphism problem, which is not known to be NP-complete or not [2],[4].

In this note we show that graph-2-isomorphism (G21), i.e., to decide

whether U(G,G') 1. 2 J is an NP-complete -problem.

We will use a transformation from the following problem, which is

known to be NP-complete [2].

Exact Cover by 3-Sets (aC>.

Instance: Set X = {1,2,...,n}  and a family $I = (Ai] of 3-element

subsets of X .

Question: Does & contain an exact cover for X , i.e., a subfamily

&' c ,& such that every element of X occurs in exactly-

one member of ,&' ?

Theorem. GC is polynomially transformable to G2I. Therefore, the

graph 2-isomorphism  problem is NP-complete.

J* We follow [3] for the terminology on graphs.
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Proof. Given an instance of X3C, we may assume without loss of generality
m+I

that n = 3m > 6 , 14 =m+,!>m, and Xc U A.. We shall construct- - .l=l =

a pair of graphs G and H corresponding to ob&) 9 as shown in Figure 1.

Graph G contains a connected component TSi corresponding to each

Ai in & . If Ai = {p,g,r} , then TSi is a triangle, with, additionally,

three stars of size p+l , q-t1 and r+l attached to the vertices of the

m+l
triangle. We will denote U TSi by TS l In addition to TS ,.l=l

graph G contains a connected component M , which is a complete graph

on n vertices with m disjoint triangles removed.

Graph H is the disjoint union of four subgraphs KS , N , T , and S .

In KS t we have a complete graph on n vertices {vpp....’ ",I f

together with an i-star attached to each vi . The complete graph of KS

will be referred to as Kn henceforth. Subgraph N consists of n

disjoint edges, and T consists of R disjoint triangles. Finally,

S consists of 31 disjoint stars, one of size p+l for each p that

occurs in the multiset

Clearly, G and H can be constructed from (X,&) in polynomial

time. Since G and H are not isomorphic, U(G,H) is at least 2 .

We now show that U(G,H) < 2 if and only if & contains an exact cover

for X.

Lemma 1. U(G,H) < 2 if ,& contains an exact cover for X .-

Proof of Lemma 1. Without loss of generality, assume that
{Al,+.  l .,A,]

forms an exact cover for X . We decompose G and H in two steps as

follows.
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Figure 1. The graphs G and H ,



Step 1. Suppose Ai = {p,q,r] , where 15 i 5 m . In the corresponding

TSi Y we take a subgraph consisting of the triangle together with stars

of size PY qYrY and map it into the triangle in KS incident at

cY-p, vq’ vr 3 with the matching stars. At the same time map the triangles

of TS. ,
3

for m+l < j < m+I , onto the I triangles of T .- -

Step 2. The subgraph that is left in G consists of n = 3m isolated

m
edges from U TS. , stars from

.
m-t-1

l=l i
which are isomorphic to N ; 3R

U TS. ,
3

isomorphic to S ; and subgraph M , which is isomorphic
j= m-t1

to the remainder of KS . 3

We mention in -passing that actually U(G,H) < 3 for the graphs- (6 H)

constructed from any
Ob☺d l For we can first map all m+R triangles of

TS into Kn and T ; next map the 3(m+a) stars of TS into KS and S ;

what is left then in both graphs is isomorphic to MUM. The rest of this

note is devoted to proving the converse of Lemma 1.

Lemma 2. U(G,H) < 2 only if & contains an exact cover for X .-

We first introduce some notations. Under the assumption U(G,H) < 2 ,-

let E(G) = G (l) u Gc2) (1)E ( H ) = H  IJH (2)Y be fixed -partitions of the

edge sets, with isomorphism mappings cpl: G(1) 3 H(l) (2)andv2:G +H ( )2
l

.
For any subgraph F of G (or H),weuse F1( >

.
to denote FnG '( >

*
( or FnHi ,( ) respectively); also, let (F (i)) be the isomorphic image

of F ( >i under v(i) (or (,P(~))-' , respectively). For a graph

F = (V,E) , we use e(F) to denote \El . Define vertexcover to

be the minimum size of a subset V1 c V such that for every edge b,v) E E Y-



at least one of u and v belongs to V' . The following facts will

be useful.

Fact A. If FcK- n and vertexcover < a ,- then Kn-F contains an

(n-a) -clique.

Fact B. Let F be a connected component in G . Any edge of H that

is incident with a vertex of (F (1) ) but not contained in (F(l)) must

belong to H (2) .

Proof of Lemma 2. First, we show that any 2-isomorphism of G and H

must decompose KS into M and a collection of triangles with stars.

.

Indeed, since KS has more edges than M , we must have either

(KS"))nTS + j? or (KS(2))nTS f p . Assume it is the former.

. Proposition. Under the assumption that U(G,H) = 2 and (KS (1)
)nTsfb

we must have (Kd2)) = (Kn2)) = M .

Proof of Proposition. Let TSi be such that (EP))nTs, # /25 . Consider

0)the image of TSi in H . Let Iv. ,v. Y l **t V . ] be the vertices of
il i2 'h

Kn that are incident with (1)(TSi ) .

Fact C. (i) (TS@&'l Ki n contains at most h edges.

(ii) (TS@))nKn
contains < n edges; equality holds only if-

(M(l)) nK,,, = $ .

Proof. (i) is true since

(ii) follows from

TSi with one edge removed is a tree.

(i) immediately. 0
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Fact D. 2 < h < n-2 .- -

Proof. (a) Suppose h > n-l . Then since Kn has no edges disjoint-

from {v. ,v. Y l **Y V . ] , we must have K (1) (1)

il l2 'h n C CTSi > ' This implies

(1)that vertexcover(Kn ) 5 vertexcover(TSi) = 3 . By Fact A, K(2)
n

must contain a (n-3)-clique. Since G does not contain a (n-3) -clique

when n > 6 , this is impossible.-

(b) Next suppose h = 1 . Then by Fact B, an (n-l) -star R must

(2)be contained in Kn . Since the maximum degree of a vertex in M is

n-3 , we must have R 5 (TSi2)) for some j . But then (TS.2 is( >
J '

incident with n vertices of Kn y and the same argument as given in (a),

with step 1 and step 2 interchanged, shows that this is impossible, This

proves Fact D. 0

Fact E. ( > ( >(KS 2 )= (Kn2 )cM.

Proof. Given 2 < h < n-2 , and that an h x (n-h) bipartite graph Y

must be contained in K (2)
n because of Fact B, it is easy to see that Y

must lie in (M(2)) , thus (M(2)) is incident with all n vertices

CV3-YV2Y -a*, ",I ' It follows that (= ( >2 (2)) = (K, ) CM . Cl
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To finish the proof of the Proposition, note that by Fact E, the

edges of K are divided into those inn (TS('))n Kn and those in

((M('))U (M(2))) "Kn . This is possible only if the latter contains

e(M) = (l)-n edges and the former contains n edges, because of

Fact C (ii). But then, (M(l)),Kn = p by Fact C, which implies that

e((M(2))nKn) = (g )-n , and hence (KL2)) = M . This proves the

Proposition. 0

We can now complete the proof of Lemma 2. It follows from the

Proposition that KS (2) is the isomorphic image of M , while KS (1)

consists of m disjoint triangles, each attached with three stars.

Without loss of generality, write (KS(')) = TSP) UT@) IJ (1). . . UTSm

where for 1 < i < m , (1)
- - TSi is a subgraph of TSi and moreover, they

are triangles with stars of size {p',q',r'] and fp+l, q+l,r+l]

respectively, with p' < p ,- q'<q and r'<r.-

If & does not contain an exact cover for X , then we will not

have p' = p , q' = q, r' = r in (1)TS, and TX. for all l<i<m l

I

(2)Hence TSl U TSi2) U (2). ..uTSm will contain fewer

This makes it necessary, because of the subgraph N

TS,+1 u TSm+2  u l l l u TSm+l
to yield 6 >l isolated-

1 - -

than n isolated edges.

in H , for

edges in either

step 1 or 2. Assume without loss of generality that TSm+l contributes

an isolated edge (u,v) in step 1. We examine two cases.

Case 1. Suppose (u,v) is in the triangle of TS (2)
m+l l

Then TSm+l

contains a path of length 4 , which does not exist in NUTuS

of H (Figure 2(a), 2(b)).

Case 2. Suppose (u/v) is in one of the stars of TSwl . Then in

Td2) um+l ' is a vertex of degree > 3 , and hence must be-
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mapped bY 'p, into a star of S . (1)This implies that TSm+l

contains a path of length 2 3 , which again does not exist

in NUTU S (Figure 2(c), 2(d)).

Thus we can have U(G,H) = 2 only if & contains an exact cover

for X , and this completes the proof of Lemma 2 and the Theorem. 0

(4 V
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We wish to point out that in our construction, it is necessary to

employ a different representation for elements of X in TS than in KS

(such as using (P+l) -stars versus p-stars for peX ). The following

example shows that, for instance, if just p-stars were used in both G'

and H' , then one could have U(G',H') = 2 even though & does not

contain an exact cover for X l

Example. Let x = {1,2,...,6} and &= (Al= {1,2,5],A2 = {4,5,6],

% = [2,3,4]] . (See Figure 3. We use Rp to denote a p-star.) One

can first map two of the edges of
R5

in TSl into the R
5

of s ;

the triangle of TX
3

into T ; and M into Kn' The remaining subgraphs

of G' and H' are then isomorphic. Such unwanted phenomena cannot be

remedied simply by choosing other representations, say, using p
2

-stars

for peX , in both G' and H' .
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Figure 3. An example with U(G',H') = 2 .
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