GRAPH 2-ISOMORPHISM IS NP-COMPLETE

by

F. Francis Yao

STAN-CS-79-706 January 19 7 9

COMPUTER SCIENCE DEPARTMENT School of Humanities and Sciences STANFORD UNIVERSITY

Graph 2-Isomorphism Is NP-Complete

F. Frances Yao

Computer Science Department Stanford University Stanford, California 94305

Abstract.

Two graphs G and G' are said to be k-isomorphic if their edge sets can be partitioned into $E(G) = E_1 \cup E_2 \cup \ldots \cup E_k$ and $E(G') = E'_1 \cup E'_2 \cup \ldots \cup E'_k$ such that as graphs, E_i and $E!_1$ are isomorphic for $1 \le i \le k$. In this note we show that it is NP-complete to decide whether two graphs are 2-isomorphic.

This research was supported in part by National Science Foundation grant MCS77-05313.

Given two graphs $\stackrel{*/}{=} G = (V, E)$ and G'(V', E') with the same number of edges, by a <u>k-isomorphism of G and G'</u> we mean a partition of $E = E_1 \cup E_2 \cup \ldots \cup E_k$ and a partition of $E' = E'_1 \cup E'_2 \cup \ldots \cup E'_k$ such that as graphs, E_i and E'_i are isomorphic for $1 \le i \le k$. Let U(G,G') be the minimum value of k for which a k-isomorphism of G and G' exists. (See [1] for a study of k-isomorphism of graphs.)

In general, the determination of whether $U(G,G') \leq k$ for two graphs G , G' , and positive integer k is an NP-complete problem. For, it clearly belongs to NP; and if we take G' to be a star graph (with the same number of edges as G), then U(G,G') is simply the minimum size of a vertex cover for G , a well-known NP-complete -problem [4]. The question "Is U(G,G') = 1?" is the familiar graph isomorphism problem, which is not known to be NP-complete or not [2],[4]. In this note we show that graph-2-isomorphism (G2I), i.e., to decide whether $U(G,G') \leq 2$, is an NP-complete -problem.

We will use a transformation from the following problem, which is known to be NP-complete [2].

Exact Cover by 3-Sets (X3C).

Instance: Set $X = \{1, 2, ..., n\}$ and a family $\mathcal{J} = \{A_i\}$ of 3-element subsets of X.

Question: Does \mathcal{J} contain an exact cover for X , i.e., a subfamily $\mathcal{J}' \subset \mathcal{J}$ such that every element of X occurs in exactly one member of \mathcal{J}' ?

Theorem. X3C is polynomially transformable to G2I. Therefore, the graph 2-isomorphism problem is NP-complete.

 $\frac{*}{2}$ We follow [3] for the terminology on graphs.

2

<u>Proof.</u> Given an instance of X3C, we may assume without loss of generality $m+\ell$ that $n = 3m \ge 6$, $|\pounds| = m+\ell \ge m$, and $X \subseteq \bigcup A$. We shall construct i = 1a pair of graphs G and H corresponding to (X, \pounds) , as shown in Figure 1.

Graph G contains a connected component TS_i corresponding to each A_i in \mathscr{D} . If $A_i = \{p,q,r\}$, then TS_i is a triangle, with, additionally, three stars of size p+1, q+1 and r+1 attached to the vertices of the triangle. We will denote $\bigcup_{i=1}^{m+\ell} TS_i$ by TS. In addition to TS, i=1graph G contains a connected component M, which is a complete graph on n vertices with m disjoint triangles removed.

Graph H is the disjoint union of four subgraphs KS , N , T , and S . In KS , we have a complete graph on n vertices $\{v_1, v_2, \dots, v_n\}$, together with an i-star attached to each v_i . The complete graph of KS will be referred to as K_n henceforth. Subgraph N consists of n disjoint edges, and T consists of ℓ disjoint triangles. Finally, S consists of 3ℓ disjoint stars, one of size p+l for each p that occurs in the multiset $\begin{pmatrix} m+\ell\\ \cup & A_i \\ i=l & \end{pmatrix}$ -X.

Clearly, G and H can be constructed from (X, \mathcal{J}) in polynomial time. Since G and H are not isomorphic, U(G, H) is at least 2. We now show that U(G, H) < 2 if and only if \mathcal{J} contains an exact cover for X.

<u>Lemma 1</u>. U(G, H) < 2 if \mathcal{J} contains an exact cover for X.

<u>Proof of Lemma 1.</u> Without loss of generality, assume that $\{A_1, A_2, \ldots, A_m\}$ forms an exact cover for X. We decompose G and H in two steps as follows.

(dotted lines are the missing edges)

Figure 1. The graphs G and H ,

<u>Step 1</u>. Suppose $A_j = \{p,q,r\}$, where $1 \le i \le m$. In the corresponding TS_j , we take a subgraph consisting of the triangle together with stars of size p, q, r, and map it into the triangle in KS incident at $\{v_p, v_q, v_r\}$ with the matching stars. At the same time map the triangles of TS_j , for $m+1 \le j \le m+\ell$, onto the ℓ triangles of T.

Step 2. The subgraph that is left in G consists of n = 3m isolated edges from U TS., which are isomorphic to N ; 3ℓ stars from $m+\ell$ i=1U TS, isomorphic to S; and subgraph M, which is isomorphic j=m+1to the remainder of KS . 3

We mention in -passing that actually $U(G,H) \leq 3$ for the graphs (G, H) constructed from any (X, \mathscr{G}) . For we can first map all $m+\ell$ triangles of TS into K and T ; next map the $\Im(m+\ell)$ stars of TS into KS and S ; what is left then in both graphs is isomorphic to $M \cup N$. The rest of this note is devoted to proving the converse of Lemma 1.

Lemma 2. U(G,H) < 2 only if β contains an exact cover for X.

We first introduce some notations. Under the assumption U(G,H) <_2, let E(G) = G⁽¹⁾ \cup G⁽²⁾, E(H) = H⁽¹⁾ \cup H⁽²⁾ be fixed -partitions of the edge sets, with isomorphism mappings φ_1 : G⁽¹⁾ 3 H⁽¹⁾ and φ_2 : G⁽²⁾ \rightarrow H⁽²⁾. For any subgraph F of G (or H),weuse F⁽ⁱ⁾ to denote F \cap G⁽ⁱ⁾ (or F \cap H⁽ⁱ⁾, respectively); also, let (F⁽ⁱ⁾) be the isomorphic image of F⁽ⁱ⁾ under $\varphi^{(i)}$ (or $(\varphi^{(i)})^{-1}$, respectively). For a graph F = (V,E), we use e(F) to denote |E|. Define vertexcover to be the minimum size of a subset V' <u>c</u> V such that for every edge (u,v) \in E, at least one of u and v belongs to V'. The following facts will be useful.

Fact A. If $F \subseteq K_n$ and vertexcover <_a , then K_n -F contains an (n-a) -clique.

<u>Fact B.</u> Let F be a connected component in G. Any edge of H that is incident with a vertex of $(F^{(1)})$ but not contained in $\langle F^{(1)} \rangle$ must belong to $H^{(2)}$.

<u>Proof of Lemma 2</u>. First, we show that any 2-isomorphism of G and H must decompose KS into M and a collection of triangles with stars. Indeed, since KS has more edges than M, we must have either $\langle \mathrm{KS}^{(1)} \rangle \cap \mathrm{TS} \neq \emptyset$ or $\langle \mathrm{KS}^{(2)} \rangle \cap \mathrm{TS} \neq \emptyset$. Assume it is the former.

<u>Proposition</u>. Under the assumption that U(G, H) = 2 and $(KS^{(1)}) \cap TS \neq \emptyset$, we must have $(KS^{(2)}) = (K_n^{(2)}) = M$.

<u>Proof of Proposition</u>. Let TS_i be such that $\langle KS^{(1)} \rangle \cap TS_i \neq \emptyset$. Consider the image of $TS_i^{(1)}$ in H. Let $\{v_i, v_i, \cdots, v_{i_h}\}$ be the vertices of K_n that are incident with $\langle TS_i^{(1)} \rangle$.

Fact C. (i)
$$\langle TS_{i}^{(1)} \rangle \cap K_n$$
 contains at most h edges.
(ii) $\langle TS^{(1)} \rangle \cap K_n$ contains $\leq n$ edges; equality holds only if $\langle M^{(1)} \rangle \cap K_n = \emptyset$.

<u>Proof.</u> (i) is true since TS_{i} with one edge removed is a tree. (ii) follows from (i) immediately.

Fact D. $2 \leq h \leq n-2$.

<u>Proof.</u> (a) Suppose $h \ge n-1$. Then since K_n has no edges disjoint from $\{v_{i_1}, v_{i_2}, \cdots, v_{i_n}\}$, we must have $K_n^{(1)} \subseteq \langle TS_i^{(1)} \rangle$. This implies that vertexcover $(K_n^{(1)}) \le vertexcover(TS_i) = 3$. By Fact A, $K_n^{(2)}$ must contain a (n-3)-clique. Since G does not contain a (n-3) -clique when $n \ge 6$, this is impossible.

(b) Next suppose h = 1. Then by Fact B, an (n-1) -star R must be contained in $\binom{2}{n}$. Since the maximum degree of a vertex in M is n-3, we must have $R \subseteq \langle TS_j^{(2)} \rangle$ for some j. But then $\langle TS_j^{(2)} \rangle$ is incident with n vertices of K_n , and the same argument as given in (a), with step 1 and step 2 interchanged, shows that this is impossible, This proves Fact D. \Box

Fact E.
$$(KS^{(2)}) = \langle K_n^{(2)} \rangle \subseteq M$$
.

<u>Proof.</u> Given 2 < h < n-2, and that an h $_{\rm X}$ (n-h) bipartite graph Y must be contained in ${\rm K}_{\rm n}^{(2)}$ because of Fact B, it is easy to see that Y must lie in $\langle {\rm M}^{(2)} \rangle$, thus $\langle {\rm M}^{(2)} \rangle$ is incident with all n vertices $\{{\rm v}_1,{\rm v}_2,\ldots,{\rm v}_n\}$. It follows that $\langle {\rm KS}^{(2)} \rangle = \langle {\rm K}_{\rm n}^{(2)} \rangle \subset {\rm M}$.

To finish the proof of the Proposition, note that by Fact E, the edges of K_n are divided into those in $\langle TS^{(1)} \rangle \cap K_n$ and those in $(\langle M^{(1)} \rangle \cup \langle M^{(2)} \rangle) \cap K_n$. This is possible only if the latter contains $e(M) = \binom{n}{2}$ -n edges and the former contains n edges, because of Fact C (ii). But then, $\langle M^{(1)} \rangle \cap K_n = \emptyset$ by Fact C, which implies that $e(\langle M^{(2)} \rangle \cap K_n) = \binom{n}{2}$ -n , and hence $\langle K_n^{(2)} \rangle = M$. This proves the Proposition.

We can now complete the proof of Lemma 2. It follows from the Proposition that KS⁽²⁾ is the isomorphic image of M , while KS⁽¹⁾ consists of m disjoint triangles, each attached with three stars. Without loss of generality, write $\langle \text{KS}^{(1)} \rangle = \text{TS}_1^{(1)} \cup \text{TS}_2^{(1)} \cup \ldots \cup \text{TS}_m^{(1)}$ where for 1 < i < m, $\text{TS}_i^{(1)}$ is a subgraph of TS_i and moreover, they are triangles with stars of size $\{p',q',r'\}$ and $\{p+1,q+1,r+1\}$ respectively, with p' < p, $q' \leq q$ and $r' \leq r$.

If \mathcal{J} does not contain an exact cover for X , then we will not have p' = p , q' = q , r' = r in $TS_{1}^{(1)}$ and TX_{1} for all $1 \le i \le m$. Hence $TS_{1}^{(2)} \cup TS_{2}^{(2)} \cup \cdots \cup TS_{m}^{(2)}$ will contain fewer than n isolated edges. This makes it necessary, because of the subgraph N in H , for $TS_{m+1} \ u \ TS_{m+2} \cdots \cup TS_{m+\ell}$ to yield $\delta \ge 1$ isolated edges in either step 1 or 2. Assume without loss of generality that TS_{m+1} contributes an isolated edge (u,v) in step 1. We examine two cases.

- <u>Case 1</u>. Suppose (u, v) is in the triangle of TS_{m+1} . Then $TS_{m+1}^{(2)}$ contains a path of length 4, which does not exist in $N \cup T \cup S$ of H (Figure 2(a), 2(b)).
- <u>Case 2</u>. Suppose (u,v) is in one of the stars of TS_{m+1} . Then in $TS_{m+1}^{(2)}$, u is a vertex of degree ≥ 3 , and hence must be

mapped by φ_2 into a star of S. This implies that $TS_{m+1}^{(1)}$ contains a path of length ≥ 3 , which again does not exist in NUTU S (Figure 2(c), 2(d)).

Thus we can have U(G,H) = 2 only if 2 contains an exact cover for X , and this completes the proof of Lemma 2 and the Theorem. \Box

(d)

Figure2

We wish to point out that in our construction, it is necessary to employ a different representation for elements of X in TS than in KS (such as using (p+1) -stars versus p-stars for $p \in X$). The following example shows that, for instance, if just p-stars were used in both G' and H', then one could have U(G',H') = 2 even though \mathcal{J} does not contain an exact cover for X.

<u>Example.</u> Let X = {1,2,...,6} and $\mathscr{J} = \{A_1 = \{1,2,5\}, A_2 = \{4,5,6\}, A_3 = \{2,3,4\}\}$. (See Figure 3. We use R_p to denote a p-star.) One can first map two of the edges of R_5 in TS_1 into the R_5 of s; the triangle of TX_3 into T; and M into K_n . The remaining subgraphs of G' and H' are then isomorphic. Such unwanted phenomena cannot be remedied simply by choosing other representations, say, using p^2 -stars for $p \in X$, in both G' and H'.

М

Figure 3. An example with U(G',H') = 2 .

References

- [1] F. Chung, P. Erdös, R. Graham, S. Ulam, F. Yao, "Minimal decompositions of two graphs into pairwise isomorphic subgraphs," to appear.
- [2] M. Garey, D. Johnson, <u>Computers and Intractability</u>, Freeman and Company, San Francisco, CA, 1979.
- [3] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass,, 1969.
- [4] R. Karp, "Reducibility among combinatorial problems," in <u>Complexity</u> of <u>Computer Computations</u>, edited by R. Miller and J. Thatcher, Plenum Press, 1972,85-104.