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Abstract .
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1. [ ntroduction.

The idea of including controlled stochastic noves in algorithnms has
received considerable attention recently [4,9,10,12], The denonstration
by Rabin [9] and Sol ovay and Strassen [10}, that fast tests for prime
nunbers can be done probabilistically wWith a small error, raised the hope
that many nore problens may allow simlar fast algorithms. As in
determnistic conputations, a challenging problemis to prove |ower
bounds to the conputational conplexity of specific problenms for such
probabilistic algorithms. An investigation for decision tree type nodels
was initiated in Yao [12], The techniques used there [12], however,
are not applicable te Turing machine conputations, for which a nunmber
of lower bound results are known for the determnistic conputations
(see, e.g. [5]). In this paper, we call attention to proving |ower
bounds in probabilistic Turing machines, by proving a non-linear bound
to a palindrone-like |anguage.

It is well known that it takes any determnistic one-tape Turing
machi ne Q(ne) steps to recognize the language L = {w ¢ w | {0,1}*}
(see, e.g. [5]). A very interesting result of Freivald [3], cited in
Gill's paper [4], states that L can be recognized with a small error
by a one-tape probabilistic Turing machine in time 0(n(log n)e) :
Recently, this bound was inproved to Qn log n) by N ck Pippenger [7].
This seems to be the only exanple known in a Turing machine nodel where
a provable speed-up is achieved, in an order-of-mgnitude sense, by
al lowing stochastic decisions. The purpose of the present paper is to
show that Q(n log n) -time is also a |ower bound to any one-tape

probabilistic Turing machine recognizing L with a small error (Theorem 4.1).



2. Definitions and Notations.

Ve first give an informal description of probabilistic Turing machines,
the readers are referred to GIIl [4] (and references therein) for nore

detailed discussions. A probabilistic one-tape Turing machine (1-PT™M) M

consists of a finite control, a read-wite head on an infinite |-dinensional

tape, and a random synbol generator (RSG capable of generating integers i

between 1 and iy with fixed probabilities p; . Before each nove,
a random symbol i is generated by the RSG and the action of Turing
machi ne M depends on the current state of M, the symbol on the tape
being read, and the random symbol i . There are three distinguished

states qy , g7 » and g, . The machine starts in qy (initial state),

and if it halts, it must halt in either 9, (the accepting state) or %,

(the rejecting state). For a given input v , it is possible that M

will not halt for some infinite sequences of random symbols that are
generated by RSG W shall restrict ourselves to Mwhich, for any
given input v , halts with probability 1 (it may still not halt for
sane sequences). For each input v, |et Bi(v) be the probability
that Mhalts in state q (i =1,2). A language L is recognized

by Mwith error A (0 < A< 1/2), if el(v) > 1-A for each veL ,

and Bg(v) > 1-A for each vfL . Intuitively, given an input v on M
~if we accept or reject v when M halts depending on whether the state

S q or a, then we would be wong at nmost with probability N .



Ve shall now introduce some notations, and give a formal definition
of terns involving probability described in the last paragraph. Let v be
an input word, and o a finite sequence of integers between 1 and iy
generated by RSGthat leads to the halting of M, i.e., Mhalts
immedi ately after the last elenent in o is generated. W say that o

is a decision sequence for v on M. 1Iet A(v) denote the set of all

deci sion sequences for v , and Ai(v) c A(v) (i = 1,2) be the subsets
consisting of o leading to state 9 when M halts. W use o[j]
for the j-th element in the sequence o , and |o| for the length of o .
Define P(0) = Po[1] Po[2] . - pc[‘c‘], the probability that the first
|[o] random synbols generated by RSG formthe sequence o . \& now
restate sone terns defined earlier in these notations. The condition

that Mhalts for any v wth probability 1 neans E(P(o) =1 ;
0 ¢ A(v)

the quantities Bi(v) are > P(o) for i =1,2 . Aso, the
GeAi(v)

expected nunber of steps M will make for input v is equal to

TM(V) = 2 P(U)‘lol p) (l)

oeA(v)

since |o] is the nunber of steps made when o is the decision sequence

generated. The running tinme of Mfor inputs of length n is defined

to be the expected nunber of steps Mwill make for the worst input of

length n, i.e.,

T(M,n) = ma.x{'.-[‘M(v) | |v| =n] . (2)

The quantities EM(V) » T(Mn) my be o .
W assune that the tape cells are numbered consecutively from -
to o . Initially, an input v occupies cells 1 to |v|, and the

head points to cell 0 .




3. (Oossing Sequences, Signatures, Patterns.

Let M be any probabilistic one-tape Turing nmachine. W devel op
sone concepts concerning the behavior of M. For convenience, we assune

that M satisfies the follow ng conditions:

Standard- Form 1-PM: Before it halts, the head always noves to the

rightnmost non-blank cell, where M enters either 4 Or q, - The
machine then stays in the same state while naking a full sweep to the
left, and halts at the leftnost non-blank cell. Furthernore, it is

assuned that M cannot enter either q Or g, until this last sweep,

A routine argunment shows that any 1-PIM M can be transformed into an

M of standard formwith T(M',n) = O(-T(M,n)+n) .

Crossing Sequences.

Ve extend the notion of crossing sequences used in determnistic
one-tape Turing machines (e.g. [5]). Consider the behavior of M for
input v and sone decision sequence oeA(v) . At the boundary between
the j-th and the j+1 -st cells, let p(v,0,j) denote the sequence of
states in which M .passes through this position. The length of
p(v,0,3) is denoted by |p(v,0,3)| , which is 0 if p(v,0,3) is the

enpty sequence. The expected | ength of crossing sequence at | is

. defined as

;(V: j) = 2 P(U)"P(V,":j) l )
oeA(V)

whi ch may be « .
A basic connection between running time and crossing sequences is

given by the follow ng |ema.



Lemma 31  For any input v, T,(v) > T i(v,J)
J

Proof . The lenma is obviously true if @M(v) = o, We therefore assune
t hat E'PM(v) I's finite. For each oeA(v) , the number of steps taken is

at |east as large as the sumof the lengths of all crossing sequences. Thus,
‘0‘ > Z lP(V’ 0,3) l .
J
By definition,

'EM(V) = 2 P(U)"U' > 2 Z?P(U)‘p(v:c:j)‘ = Tz(vyj) ’
J J

oeA(v) ocA(v)
where in the last step we have changed the order of sunmation of an

absol utely convergent double series (see, e.g. [11, p.28 Exanple 1]). OO

Signatures and Patterns.

Let Q = {qo,q];qe,...,qr} be the set of states, and I be the set

of tape synbols used by M. Denote Q - {ql, q2} by Q'

Suppose during the computation process of M, the follow ng
configuration is encountered. A word uer® is on the tape fromthe
j+l -st cell to (j+|u|) -th cell, and all cells to the right of u
are blank (see Figure 1 top). The machine Mis in state s , and

its head is just crossing fromthe j-th to the j+1 -st cell.

cell j word u bl anks
a - f - - - -
i
cell | word z bl anks
L 1 1 | I I I
e—-
t
Figure 1. Illustration for g(s,u3t,z) .



W are interested in the situation when M comes back crossing from
the j+1 -st cell to the j-th cell for the first tine. As Mis not
determnistic, the state Mis in and the contents of cells at this
time may not be unique. We shall use g(s,u;t,z) , where teq , zer* ,
to denote the probability that Mis in state t and the contents of
cells fromthe j+1 -st cells on are the word z followed by bl anks
(see Figure 1, bottonm). The function g is independent of the contents
incells i <j , and the explicit value of j . dearly

Z g(s,ustsz) < 1 .

t, 2z

Definition 3.2.  Let uer* and k> 1. The k-th-order left signature

of uis the follow ng 2o'(r-1)2k'l -tuple of nunbers,

k
G( )(u; Sl,tl’ 52) t2) 0 e e = Sk, tk)

= 2 x g(sl’u;tl’ Zl) Xg(sg’ Zl;tQ’ ZE) Xere Xg(sk,zk—l;tk’zk) 2
Z132Zp5eeesZ) € r

(3)
for each sy tyssptoyeeers eQ and tye {g59,} .

V¥ shal |l show that G(k) are well defined by (3)and in fact, satisfy

0 < G(k)(u;sl,tl,. . .,sk,tk) <1l. (&)

As all terms in the sumation (3) are non-negative, it is sufficient to

prove that, for every finite subset v c r* , and every uer*

Spptyreeers, €@, e {ql,qg} ,the following is true:



Z g(sl,u;tl,zl) Xg(sgf Z1;t2’z2) X cer xg(sk’zk-l;tk,zk) .<_ l

zl,zg,...,zkev

This can be proved by induction on k ; we have

< g(syrusty,z.)] max z
z. eV 1 L Z, €V
1 p? fzrt e0) T

< 7. g(sl,u;tl,z xl < 1,

Z, eV

£L

1)

when the induction hypothesis is used to bound th

by 1 .

Inasinlar way, we shall define the "right

g(se)z;tg)zg) ) S Xg(sk’zk'l;tk,lk)

e expression max 2, ...
zeV

-signatures". Denote by

h(t,x;s,y) the probability that, given Mentering the word x from

th‘e right end in state t , the head first comes back across the right

end, having changed the word x to y (Figure 2).
notation ho(x;s,y) for the probability that, g
the region containing x fromthe left end in st

cross the right end of x in state s and have

(Figure 3).

We further use the

iven that M entered
ateqo, it wll first

changed x to vy

-



Figure 2. Illustration for h(t,x;s,y) .

Figure 3., Illustration for ho(x;s,y) .



Definition 3.3. Let xeI™ and k >1 . The k-th-order right signature

of x is the (r-1)Z1 _typie,

k
H( )(X;Sl, tl’SE’tE’ ¢ 0 sk-l, tk-l, sk)

T @%MG o ho(%381577) xB(ty5¥935,0¥,) X Bt Yp3ss:¥3)
latd

XeoeoeoX h(tk-l,yk.-l;sk,yk) ]
where all si’ti €eqQ' .

As in the case of G(k) , the nunbers H(k) are well defined and

satisfy

0 < I—‘kzx;él,tl,...,sk) < 1

Definition 3.4 For each uer® and k > 1, the k-th-order pattern of u

is a bk-tliple of integers defined bel ow, where b

. = z 2-(r-1)2i'l < or°k
i

k

2 LS
Let I, =7 , the b-tuple is given by

i N\
(rIk°G( )(ussl)tl"“)si}ti)-l l l<__i<_k, Sl,tl}se)t2"qc,si€ > o 2 ti€ {ql’qe}) .

Some Facts.

Lemma 3.5. The nunber of distinct k-th -order patterns is at nost

exp (k4 2* 1 r)

Proof . Because of (4), the value of each component in a k-th -order

pattern is an integer between 0 and Ik' There are thus at nost

o, © . orek

(Ik+1) < (r +1) < exp(zk3 In r x 2r2k) distinct patterns. (3

10



Definition 3.6. A sequence of states (sl,tl, 52’t2""’ S tk) is said

to be Sl’tl,SE)t2’..o,Sk€ Q,' and tk € {q_l, q2} .

Lemma 3.7. ILet B be a set of legal sequences and v = xu an input
word to M. Then a(v, |x|,B) s the probability that, with input word v,

the crossing sequence at position |x|is in B, is given by

afv, |x],B) = T z ) (x56,050008,)
k>1 (S'l_:',t"_.’_""sb,;’tk) €eB

k
X G( )(u;sl,tl,...,sk,tk) .

Pr oof . The p}obability that the crossing sequence at |x| i's

(sl, t, . .,sk,tk) is equal toO

= ho(X38,57,) x&8(s1,u5t,,2,)
yl’zl’YE}ZE)-.. Yk: Zker* ° l l l l l

Xh(tl}ylssg:y-g) xg(sg’zl;tz’zg)xh(tg’ye;SB’yB) = e © Xg(sk, Zk_l;tk,zk)

. . k k
which is H( )(x; sl,'bl,. . ..Sk) xG( )(u;sl,tl, ""sk’tk) . The lemma

follows. O

¥* -
Lenma 3.8, ILet x,u,wel and d,m positive integers. If f(xu, |x|) < d
and w,u have the same (md)-th -order pattern, then

2

3.3 2
By (W) > (1- ™ ) (B, (xu) -m'l) - 2r - (or'd” -d"-md)

11



Corollary. Let x,wwer and d >10 . If F(xw|x|) < d ,
Bl(m) >9/10 , and w, u have the same (2d)-th -order pattern,

then Bl(xw) >1/5 .

Pr oof . Since 1(xu;|x|) < d, the probability that the crossing sequence
at |x| has length exceeding nd is at nost |/m. Let B; (i =1,2)
be the set of |legal crossing sequences ending in g and of length at

nost nmd . Then

oz(xu,lxl,Bl) + oz(xu,]xl,Be) > 1 - 1%1"

Since oz(xu,lx‘,Bg) < Be(xu) = l-Bl(:xu) , we have

ol [x,B) > 1 - = - (1-p () = Bylm) - . (5)

Now, by Lemma 3.7,

a(xw, |x|, Bl) - a(xu, [x|,Bl)

2 H(x;0)(G(w;0) - G(u;0))
UeBl

S. H(x;0)(a(w;0) - G(u;0))

GeBl
d2
G(u;0) <r /I 4

I

+ 2 H(x;0) (G(w;0) - G(u30)) . (6)

7eB)

]

2
6(w; o) 3 /1,

12




W have used here abbreviations G(vio) and H(v;o) for
k .
G(k)(v;sl,tl,...,sk,tk) and H( )(v;sl,tl,...,sk) respectively,

where o = (sl,tl,...,sk,tk) . The absolute value of the first term
2 2

d ) d (353 52
in 6)is bounded by |B | xi— < 2™y T— = 2o (£-"na) g
Ind md
that of the second term by 2. H(x;0) -I-}— <
oe By md
4
G(us0) >r /Imd
2 H(x;0) -—1—2- G(u;o0) < a(xu, |x|,Bl) 2 Thus, we have
OeB d - d2
1 r r

42
G(u; 0) >r /I;l‘d

from (6),

- (m3d5 -a2 -md) _

2
~-d
a(xw, |X|:Bl) - a(xu, |X|:Bl) > -er r o o(x, |x|’B]_) *

2 3 2
a(xw, |x|,B)) > (1-r~¢ Ja(xu, |x|,B,) -2r-(m§d -d"-md) @)

Using (5), (7)we obtain

2 3_42
Bl(XW) 2 a(xw, le,Bl) > (1_r‘d ) (Bl(m) - % ) - er-(m3d -d"-md)

. This proves the lemma. The corollary follows by settingm=2. QO

13



4. Pal i ndrone Recogni ti on.

In this section we prove the following main result of this paper,

using | emas devel oped in Section 3.

Theorem 4.1. Let M be a probabilistic one-tape Turing machine that
recogni zes the language L = {w ¢ w | ve {0,1}*} with error A, where
0 <MN<1/2. Then there exists a constant ¢ > 0 such that

T(M,n) > cn log n for infinitely mny n .

Corollary. If Mis a 1-PIM recognizing the |anguage {1* ¢ 1" | n > 1}
with error M <1/2, then for infinitely many n, T(M,n) > cn log log n

for some constant ¢ > 0 .,

Proof. W shall assune that ™ = 1/10 . The general case follows
because, from any 1-PTM M that recognizes L with error A =1§ - A< 51,
one can construct an M' recognizing L with error 1/10 and with
running tinme at nost a constant multiple of M. In fact, one can

ran M 2t-1 tines, where t satisfies ’c(l-lmg)t < 1/10 , and pick
the majority answer as the output. This new M' has an error bounded by

2t-1 2t-1-k , k 2t-1 t-1,1t 1l 2.t
kg‘b k )(l—%-) N < t( % )(l-}\.) A< mt(l-hA) < l/:lO s

2t-l) < 2%l \wihout |oss of generality, we can

where we have used ( t
further assunme that Mis of the standard form

Let I, = (" w ¢ yh wlwz{O,l}n} Cc L. Roughly, the idea is to show
that, at each of the n+l positions after the ¢ mark (between the j-th
and j+1 -st cells for 2ntl < j < 3n+l ), nost of the words in Ln have

an expected |ength of crossing sequence greater than q(log n) ., This

14



| eads to the existence of a vel, with an (n log n) expected total
| ength of crossing sequences. From Lemma. 3.1,we would then have

T(M, bn+1) > ’.'I'TM(v) > Qn log n) , proving the theorem

Definition 4.2 Fn,j(d) = {v]ver , 1(v,3) < a} .

Claim4.3. Let d > 10 be an integer. For each 2n+tl < | < 3ntl,

[Fy s 5(@)| < exp(32d3rkd | nr)

Proof of daim43  For any Vel , Wite v = v'v' with |v'] =]

It is easy to--verify that, for any v ,éV\ELn , the word v'w"¢L .

If the lemma is false, then |Fn,j(d) | > exp(52d3rhd Inr), and
by Lemma 35,there exist v # we Fn, J.(d) such that v"', w" have the
sane (2d) -th order pattern. Now Bl(v'v") > 9/10 . By the corollary
to Lemma 3.8, we have Bl(v'w") > 1/5 , contradicting the fact that

viw' £ L, (thus g, (v'w') = 1-p,(v'w") < 1/10 ). O

Let d = ri% iogr n1 . Then, for all sufficiently large n ,

Claim43leads to

n 3_ka 1 n _ 1
yLn- Fn,j(d)[ > 2 -exp(32¢’r 1n 1) > 5x2 = 3 |Ln| .
Thus, for each 2ntl < j < 3n+l , we have
1
Z (v, 3) > d-|L -F_ j(c1)| > §d~|LA . (8)

veLn

15



Now Lemma 3.1 inplies

- 1 - 1 -
max T > T.(v) > 2 h2 i(vy3)
VE Ln M(V) - ILn[ ve L w2 |Lnl veLn 2n+tl<j<3ntl

\

= z T iwm) .
rnar 2ntl<j<3ntl veLI1

Because of (8), this gives

1

mx T (v) > 2 z 5 d(n+l)
I Bnr ontl < g <3n+l

d‘ lL | =
M n
VE L

o=

=q(m log n) .

As explained earlier, this proves Theorem 4.1.

The corollary can be proved using the sane idea. Denote the words
J..i¢li 'by v; (1 >1) and define I} = {v; |2n < i < 3n} . One shows
that, at each of the ntl positions after the ¢ mark, say the j-th
position (1 <j < ntl) , at least half of the words v, in L, have
an expected length of crossing sequence Z(vi,i+j) greater than
Q(log log n) . As before, this inplies the existence of a v, € L
whose expected total length of crossing sequence is q(n log log n) .

The corollary follows. W omit details of the derivation, as they are

very-simlar to the proof of the theorem O

16



5. Some Remarks,

One curious fact is that, while the recognition of {wgw} requires
only Q'n log n) steps on an 1-PTM allowing a small error, a closely
related "copying" problem -- changing an input wto wg¢w -- needs
Q(nz) steps on any 1-PTM allowing a small error [13]. |t seens in
general easier to speed up the conputation probabilistically if only the
"checking" of an answer is involved

In this connection the follow ng interesting phenonenon concerning
integer nultiplication is worth noting -- one can check the answer of
multiplying two n-bit integers x and y probabilistically with a
smal | error fafter than calculating the answer exactly. mfact, on a
random access machine, if two n-bit nunbers can be nultiplied without
error (probabilistically or determnistically) in Mn) bitwise operations,
then one can check the validity of xxy =2z, for a 2n-bit nunber z ,
probabilistically with a small error in o(%M(m)) bitwise operations,
where m = 271g(2n)] . For exanple, the Schnhage - Strassen al gorithm
(see, e.g. [1]) gives M(n) = O(n(log n)(log log n)) , which inplies
that the checking of xxy =2z can be done probabilistically in only
0(n(log |1 0og n)(logiog | 0g n)) operations.

Ve now show that the above result easily follows from some basic

observations of Pippenger [7]in his Qn log n) -tine 1-PmM for
recognizing {wgw} -- (a) At-bit randomprine p (i.e., a random
prime between 1 and 2t-1 ) can be generated probabilistically with
a small error in time o(tG)'for sone constant & , and (b) if W 5 W,
are two distinct positive integers of at nost n bits, then for a
2f1lg n7 -bit randomprinme p , we have wi(mod p) # Wé(mod p) with

probability greater than sonme absolute constant ¢ > 0 ; thus one can

17



decide if w = v, with only a small chance of error by conparing
wy (mod p) with wy(mod p) for a fixed nunber of such random prines p
generated by, for exanple, the method used in (a). These ideas inply
that we can check the equation xxy = Z ¥ith only a small chance of
error by generating a few mbit random primes P , computing x(mod p) ,
y(mod p) and z(nod p) , and checking equations

(x(mod p)ey(mod p))(nmod p) = z(mod p) . The running tine is dom nated

by the conputing of x,y,z(mod p) , which takes 0(?1 M(m)) tine

(cf. [1]).

To end this section, we remark that the bound in the corollary to
Theorem 4.1 is the test possible. By a slight adaptation of Pippenger's
1-PM for recogni zi ng {w¢w}[7], one can construct a 1-PTM recogni zi ng
1 41" | n>1) withasmll error intime Qnloglogn) , thus

achieving the lower bound stated in the corollary.

18




6.  Concl usions.

The subject of proving |ower bounds for probabilistic Turing machines
offers many challenging problems, of which only one is solved in this
paper. It seens to be nost fruitful to consider problens where good
bounds exist in the determnistic case. W believe such studies wll
provide insights to probabilistic conputations beyond the framework of
Turing nmachine nodels. W mention only two such problems for further

research

(i) Wth a read-only input tape and several working tapes, is the extra
space requirement for recognizing {wgw} probabilistically (wth
error) @(log n) ? (See [5, p.154, Exercise 10.3] for the

determnistic anal ogue.

(ii) Can Rabin's language defined in [8] be recognized in real time by
a probabilistic Turing nmachine with one working tape?

(Deterministically it cannot [8].)

Finally we like to mention that the overlap argunment for on-line
mul tiplication (Cook and Aanderaa [2], al so Paterson, Fischer, and

Meyer [6]) can be extended to the probabilistic case [13].

-
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