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Abstract.

We call attention to the problem of proving lower bounds on

probabilistic Turing machine camgutations. It is shown that any

probabilistic Turing machine recognizing the language

L = {W 4 w 1 WE [O,l)*) with error h < l/2 must take n(n log n)

time.
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1. Introduction.

The idea of including controlled stochastic moves in algorithms has

received considerable attention recently [4,9,10,12]. The demonstration

by Rabin [g] and Solovay and Strassen [lo], that fast tests for prime

numbers can be done probabilisticaJ.ly  with a small error, raised the hope

that many more problems may allow similar fast algorithms. As in

deterministic computations, a challenging problem is to prove lower

bounds to the computational complexity of specific problems for such

probabilistic algorithms. An investigation for decision tree type models

was initiated in Yao [12], The techniques used there [12], however,

are not applicable t-o Turing machine computations, for which a number

of lower bound results are known for the deterministic computations

( see, e.g. [5]). In this paper, we call attention to proving lower

bounds in probabilistic Turing machines, by proving a non-linear bound

to a palindrome-like language.

It is well known that it takes any deterministic one-tape Turing

machine nb2) steps to recognize the language L = {w 4 w 1 WE (O,l)*)

( see, e.g. [5]). A very interesting result of Freivald [3], cited in.

Gill's paper [4], states that L can be recognized with a small error

by a one-tape probabilistic Turing machine in time O(n(log n)2) .

Recently, this bound was improved to O(n log n) by Nick Pippenger [7]..

This seems to be the only example known in a Turing machine model where

a provable speed-up is achieved, in an order-of-magnitude sense, by

allowing stochastic decisions. The purpose of the present paper is to

show that n(n log n) -time is also a lower bound to any one-tape

probabilistic Turing machine recognizing L with a small error (Theorem 4.1).

2



. 2. Definitions and Notations.

We first give an informal description of probabilistic Turing machines,

the readers are referred to Gill [k] (and references therein) for more

detailed discussions. A probabilistic one-tape Turing machine (l-Pm) M

consists of a finite control, a read-write head on an infinite l-dimensional

tape, and a randam symbol generator (RSG) capable of generating integers i

between 1 and i. with fixed probabilities pi . Before each move,

a random symbol i is generated by the RSG, and the action of Turing

machine M depends on the current state of M , the symbol on the tape

being read, and the random symbol i . There are three distinguished

states go ., cl-i  9 and 92 l The machine starts in go (initial state),

and if it halts, it must halt in either ql (the accepting state) or q2

(the rejecting state). For a given input v t it is possible that M

will not halt for some infinite sequences of random symbols that are

generated by RSG. We shall restrict ourselves to M which, for any

given input v , halts with probability 1 (it maq still not halt for

sane sequences). For each input v ) let pi(v) be the probability

that M halts in state .. % (i = 1,2) . A language L is recognized
e

by M with error A (0 < h < l/2) , if pi(v) > 1-h for each VEL ,

and B2(v) 2 1-h for each v{L . Intuitively, given an input v on M,

- if we accept or reject v when M halts depending on whether the state

is s, or 92 9 then we would be wrong at most with probability h .



We shall now introduce some notations, and give a formal definition

of terms involving probability described in the last paragraph. Let v be

an input word, and c a finite sequence of integers between 1 and i.

generated by RSG that leads to the halting of M , i.e., M halts

immediately after the last element in CT rs generated. We say that c

is a decision sequence for v on M . Let A(v) denote the set of all

decision sequences for v , and Ai c A(v) (i = 1,2) be the subsets

consisting of (J leading to state qi when M halts. We use c[j]

for the j-th element in the sequence c , and \cI for the length of c . .

Define P(a) = paLl] paL23
l ** Pu☯ (up �

the probability that the first

I Iu random symbols generated by RSG form the sequence c . We now

restate some terms defined earlier in these notations. The condition

that M halts for any v with probability 1 means c P(Q) = 1 ;
TV E A(v)

the quantities pi(v) are c p(a) for i = 1,2 . Also, the
acAi(v)

expected number of steps M will make for input v is equal to

FM(V) = c p<q+I Y (1)
ceA(v)

since 0I I is the number of steps made when c is the decision sequence

generated. The running time of M for inputs of length n is defined

to be the expected number of steps M will make for the worst input of

length n ,, i.e.,

T(W) = max{TM(v) \ Iv\ =n] . (2)

The quantities f&(v) , ?(M,n) may be o3 .

We assume that the tape cells are nwnbered consecutively fram -03

to a. Initially, an input v occupies cells 1 to Iv1 , and the

head points to cell 0 .



3.

some

that

Crossing Sequences, Signatures, Patterns.

Let M be any probabilistic one-tape Turing machine. We develop

concepts concerning the behavior of M . For convenience, we assume

M satisfies the following conditions:

Standard-Form l-PTM: Before it halts, the head always moves to the

rightmost non-blank cell, where M enters either ql or 92 . The

machine then stays in the same state while making a full sweep to the

left, and halts at the leftmost non-blank cell. Furthermore, it is

assumed that M cannot enter either ql or % until this last sweep,

A routine argument shows that any 1-m M can be transformed into an

M' of standard form with F(M',n) = O(T(M,n)+n)  .

Crossing Sequences.

We extend the notion of crossing sequences used in deterministic

one-tape Turing machines (e.g. [5]). Consider the behavior of M for

input v and some decision sequence ceA(v) l At the boundary between

the j-th and the j+l -st cells, let ~(v,c,j) denote the sequence of

states in which M *passes through this position. The length of
e

p(v,c,j) is denoted by Ip(v,c,j)l , which is 0 if P(v,c,j) is the

empty sequence. The expected length of crossing sequence at j is

- defined as

i(v, j) = C PWJp(vyW) 1 Y
ceA(v)

which may be CO .

A basic connection between running time and crossing sequences is

given by the following lemma.



Lemma 3.1. For any input v , �Mb) 2 c ibbj> l

2

Proof. The lemma is obviously true if yM(v) = 03 ; we therefore assume

tthat FM(v) is fini

at least as large as

By definition,

e. For each ceA(v) , the nwnber of steps taken is

the sum of the lengths of all crossing sequences. Thus,

ph W> 1 . -.

where in the last step we have changed the order of summation of an

absolutely convergent double series (see, e.g. [XL, p. 28, Example 11). 0

Signatures and Patterns.
--.

Let Q = 1~Y91'Q2'...'Qr] be the set of states, and r be the set

of tape symbols used by M . Denote Q - (s,, %'J by Q' .

Suppose during the camputation process of M , the following

configuration is encountered. A word uer* is on the tape from the

j+l -st cell to (j+luI) -th cell, and all cells to the right of u

are blank (see Figure 1 top). The machine M is in state s , and

its head is just crossing from the j-th to the j+l -st cell.

cell j word u blanks

a - f - - - -

cell j word z blanks
\\e

I I I I I I I I I I

7

Figure 1. Illustration for g(s,u;t,z) .
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We are interested in the situation when M cCrlIles back crossing from

the j+l -St cell to the j-th cell for the first time. As M is not

deterministic, the state M is in and the contents of cells at this

time may not be unique. We shall use. g(s,u;t,z) , where teQ , zer* ,

to denote the probability that M is in state t and the contents of

cells from the j+l -St cells on are the word z followed by blanks

(see Figure 1, bottom). The function g is independent of the contents

in cells i 5 j , and the explicit value of j

z g(w;t,q  < 1 l

t, z

Definition 3.2. Let uer*--_ and k_>l. The

of u is the following 2*(r-l)2k-1  -tuple of

G04 b; 'l'$ ‘2, $ . l l , Sk, $)

. Clearly

k-th-order left signature

numbers,

E c

z1Jz2,...,ZkEr+
g(sl,u;tl’zl) xg(s~‘Zl;t2’z2)  X”* d’k’zk_l;tk’zk) t

(3)
for each s1, 1,S2,t2,-,skEQ1t

ad + (qys,3 l

We shall show that G(k) are well defined by (3) and in fact, satisfy

OSG04 (w Yt1 1" . . ..Sk.tk) 5 1 . (4)

As all terms in the summation (3) are non-negative, it is sufficient to

prove that, for every finite subset v s r* , and every uey* ,

slytly...yskEQ' , tke {qlyq2) ,the following is true:
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c
z1,z2~...,Zkd.f

dsl,u;tl,zl)  Xds2,zl;t2�Z2)  ⌧ �* ⌧g(sk,Zk-l;tk~zk) 5 l l

.  .

This can be proved by induction on k ; we have

c

z
z2, z3". .., Zk E v

g(s2,z;t2,z2) x '** xgbk,zk-l;tk'Zk)1
< 2-;:

z, EV
g(sp;tpzl) xl < 1 Y

when the induction hypothesis is used to bound the expression

by 1 .

In a similar way, we shall define the "right-signatures". Denote by

h(t,x;s,y)  the probability that, given M entering the word x from

the right end in state ta , the head first comes back across the right

end, having changed the word x to y (Figure 2). We further use the

notation h&%Y) for the probability that, given that M entered

the region containing x from the left end in state ~0 , it will first

cross the right end of x in state s and have changed x to y

(Figure  3).



X I . . .

y . .

Y I . . .

S

Figure 2. Illustration  for h(t,x;s,y) .

Figure 3* Illustration  for ho(x;s,y) .
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Definition 3.3. Let xer* and k>l. The k-th-order right signature

of x is the (r-1)2k-1 -tuple,

04H (x;s1' + ‘23 $2 � � l , �k-1,  $1, �k)

-.
=

Y+$, l -,Yk E r*
ho(x;slYYl) Xh(tlPYl;S2JY2)  Xh(t2YY2;s3YY3)

x ‘*’ x h(tk,l’Yk,l;sk”Yk) ,

where all si,ti EQ' .

As in the case of G04 , the numbers H(k) are well defined and

satisfy
-v.

040 < H (X;sl,tl,...,sk) < 1 .

Definition 3.4. For each uey" and k 2 1 , the k-th-order pattern of u

i s  a bk-ttiple of integers defined below, where bk = C 2+-l)2i-1 <

k?
lzisk

Let Ik = r , the b$xple is given by

2r2k .

\
r~k*Go(u;Slyt12 ...,Si,'i)l 1 l<i<k, s- - l,tl☺S2>t2,**�,Si~  Q �  Y tic {ql,%☺)  l

Same Facts.

LennnaY3.5. The number of distinct k-th -order patterns is at most

exp(4d r2k In r) .

Proof. Because of (4), the value of each component in a k-th -order

pattern is an integer between 0 and Ik' There are thus at most

(Ik+l)
bk k3

5 (r +1)
2r2k

5 exp(2d ln r x 2r2k) distinct patterns. Q
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Definition 3.6. A sequence of states (sl,tl,~2,t2,...,~ ,k tk) is said

to be legal ifs~,~~,s~,~~,..,,s~E Q'
and $ E (s,l s} l

.

Lemma,  3 .7 . Let B be a set of legal sequences and v = xu an input. .

word to M . men h l+3) , the probability that, with input word v ,

the crossing sequence at position 1x1 is in B , is given by

a(~, IxI,B> = z c 04
kll b,,t,,-.,sb,tb)  EB H (x;sl’tlJ”.‘S~)

-L -L n n

x G
(k)

b;S1+““s&) .

--,

Proof. The probability that the crossing sequence at 1x1 is

(Sl' tlJ . . ..sk.tk) is eqti to

c
Yl' z1,Y2’  ‘2’ l l l , yk� Zk E: r*

Xh(tl,Yl;S2,Y2) xg(s2Yz~;t2YZ2)  xh(t2YY2;s3~Y3) X l � Xg(SkY~kml;tk,Zk)
Y

which is H04 (x; SlblY . . ..Sk) ⌧ dk) (u;sl,tl,  . l 0, Sk, tk) l Thelemma

follows. 0

Lemma 3.8. Let x,u,wEr* and d,m positive integers. If &u,lx() 5 d
.

and w,u have the same (ma)-th -order pattern, then

2
Bib) 1 (10 rOd )(+u) -m-l) - 2r

-(m3d3-d2-md)
.

l
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Corollary. Let x,u,wEr* and d >lO . If I(xu,~x() < d ,

Bib) z 9/10 I and w,u have the same (2d)-th -orde-r pattern,

then pi(m) 2 l/5 l

Proof. Since cw\xl) 5 d Y the probad'ility that the crossing sequence

at 1x1 has length exceeding md is at most l/m . Let Bi (i = 1,2)

be the set of legal crossing sequences ending in % and of length at

most md . Then

e=b IXIYBl) + a(xu,~x\,B2) 2 fi - ; l

Since  a& \xI,B2) 5 B2(~) = l+$xu) , we have

--.
c+u,~x\,Bl)  2 1 - $ - (l-@m)) = pi(m) - ; l

Now, by Lemma 3.7,

ah 1x1, B1> - a(w Ixl,Bl)

= c H(x;a)(G(w;a)  - G(u;a))
OEB1

= x. H(x;o)(G(i;+G(u;a))

G(w') <r
d2

/Irnd

(5)

+ c H(x;o)(G(w;+G(u;~))  . (6)
(JCB1 I

G(u; i) & rd2/hd

12



We have used here abbreviations G(v;a) and H(v;a) for

G04 (v;~~~t~,..~~s~~t~) and H04 (v;sl,tl, .*e> sk) respectively,

where � = (s~�tl��*,Sk�tk)  l
The absolute value of the first term

rd2
a=!

in (6) is bounded by lBll XI < '2rmdx r-=*ar-<J
d3-d*-md)

md - snd
9 and

that of the second term by c H(x;a) + <
UB1 md -

ha) zr
d*

/Irnd

c H(x;a> + G(u;a) 5 cll(x~,IxI,B~)  -+ . Thus, we have
GEB1 rd rd

G(u; 0) >r
d*
/IGd

from (6),

ah I#$) -a!(~ Ix/+) 2 -2r
-(m3d3-d*-md) *

-rmd ah lx&)

N=%

Using  (5 >,

a

-(n?d3-d*-md)
.

.

(7)

(7) we obtain

Bl(=) 2 a(xwt (xl+) 2 @rod2 ) (B,(xu) - i ) - *r-(‘d3gd2mmd) .

- This proves the lemma. The corollary follows by setting m = 2 l 0
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4. Palindrome Recognition.

In this section we prove the following main result of this paper,

using lemmas developed in Section 3.

Theorem 4.1. Let M be a probabilistic one-tape Turing machine that

recognizes the language L = [w Q w \ WE {O,l}*] with error h , where

0 < h < l/2 . Then there exists a constant c > 0 such that

?(M,n) 2 cn log n for infinitely many n .

Corollary. If M is a l-PTM recognizing the language (1" 6 11" I n > l]

with error h <l/2 , then for infinitely many n , F(M,n) > cn log log n-

for some constant c > 0

Proof. We shall assume

because, from any l-PTM

one can construct an M'

that h = l/10 . The general case follows

1 1
M that recognizes L with error h = 2 - A < 5,

recognizing L with error l/10 and with

running time at most a constant multiple of M . In fact, one can

?3ZlM 2t-1 times, where t satisfies t(l-4A2)t < l/10 t and pick

the majority answer as the output. This new M1 has an error bounded by

O-9
t-lkt < t(l-4A2)t < $/$O 2

-

where we have used
< **t-1

. Without loss of generality, we can

further assume that M is of the standard form.

Let Lfl = 11" w # ln w I WE (OJ]"] 5 L . Roughly, the idea is to show

that, at each of the n+l positions after the # mark (between the j-th

and j+l -s-b cells for 2n+l < j < 3n+l ), most of the words in L- - n have

an expected length of crossing sequence greater than n(log n) F This

14



leads to the existence of a v"Ln with an n(n log n) expected total

length of crossing sequences. From Lemma. 3.1, we would then have

?(M,h+l) 2 FM(v) 2 n(n log n) , proving the theorem.

. .

Definition 4.2. F
no J @I

5 c Iv veLn, ?(v,j) 5 d) .

Claim 4.3. Let d 2 10 be an integer. For each 2n+l < j < 3n+l ,- -

IF, 9 j(d) 1 5 e~(T*d  3 r 4d lnr) .

Proof of Claim 4.3. For any veLn 3 write v = v'v" with Iv'1 = j .

It is easy to--verify that, for any v # WE Ln , the word v'w"{L .

If the lemma is false, then IF, jCd) 1 > 3 4deq(32d r lnr), and
9

by Lemma 3.5, there exist v # we F
nj 3 (4

such that v", w" have the

same (2d) -th order pattern. Now pl(v'v") > g/l0 . By the corollary

to Lemma 3.8, we have Bl(v'w") > l/5 , contradicting'the fact that

V'W" $! Ln (thus Bl(v'w') = 1-p*(vw") 5 l/10 ). 0

Let d = r$ iog, n 1 . Then, for all sufficiently large n ,

Claim 4.3 leads to

Thus,

I Ln - F w 1 > 2n- exp(32d3r4d  In r) > ' 1
nrj -

-2X2n = z

for each 2n+l < j < 3n+l , we have- -

C hj> 2 d*)4,-Fn j(d)1 2 $d*IL 1 .
VE Ln t n

Lnl ’

(8)
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I.

Now Lemma 3.1 implies

- ‘Mb> > 1

VE Ln
c iM(v) 2

VE Ln *n+l<j<Tn+l- -

1

r-rLn
c x

*n+l<j<3n+l veLn- -
hj>

Because of (8), this gives

max r,(v) 2 t
l-r

c
VE Ln n *n+l<j<3n+l

$ de \L,I = $ d(n+l)

- -

= Q(n log n) .
-=.

As explained earlier, this proves Theorem 4.1.

The corollary can be proved using the same idea. Denote the words

Q. B li
'by vi 0 2 1) and define Ln = (vi I2n 5 i 5 3n) . One shows

that, at each of the n+l positions after the # mark, say the j-th

position (1 < j < ntl) , at least half of the words vi in L'- - n have

an expected length of crossing sequence i(vi,i+j)  greater than

dlog 93 n> . As before, this implies the existence of a vie Ln.

whose expected total length of crossing sequence is n(n log log n) .

The corollary follows. We cmit details of the derivation, as they are

very-similar to the proof of the theorem, 0
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5. Some Remarks,

One curious fact is that, while the recognition of [w#w] requires

only O(n log n) steps on an l-PTM allowing a small error, a closely

related "copying" problem -- changing an input w to w#w -- needs

*(n*) steps on any l-PTM allowing a small error [13]. It seems in

general easier to speed up the computation probabilistically if only the

"checking" of an answer is involved.

In this connection the following interesting phenomenon concerning

integer multiplication is worth noting -- one can check the answer of

multiplying two n-bit integers x and y probabilistically with a

small error faster than calculating the answer exactly.-v. m fact, on a

random access machine, if two n-bit numbers can be multiplied without

error (probabilistically or deterministically) in M(n) bitwise operations,

then one can check the validity of xxy = z , for a *n-bit number z ,

probabilistically with a small error in o(pw) bitwise operations,

where m = *rig( . For example, the Schl)nhage -Strassen algorithm

( see, e.g. [l]) gives M(n) = O(n(log n)(log log n)) , which implies

that the checking of xxy = z can be done probabilistically in only

e O(n(log log n)(log i0g log n)) operations.

We now show that the above result easily follows from some basic

observations of Pippenger [7] in his O(n log n) -time l-PTM for

recognizing [w#w] -- (a) A t-bit random prime p (i.e., a random

prime between 1 and
t

2 -1 ) can be generated probabilistically with

a small error in time 6O(t ) for some constant 6 , and (b) if w ,w
1 2

are two distinct positive integers of at most n bits, then for a

2rlg nl -bit random prime p , we have wl(mod p) # w2(mod p) with

probability greater than some absolute constant E > 0 ; thus one can

17



decide if wl = w2 with only a small chance of error by comparing

wl(mod p) with w,(mod p) for a fixed number of such randoti primes p

generated by, for example, the method used in (a). These ideas imply

that we can check the equation xxy E z Smith only a small chance of

error by generating a few m-bit random primes p , computing x(mod p) ,

y(mod p) and z(mod p) , and checking equations

(x(mod p)*y(mod p))(mod p) = z(mod p) . The running time is dominated

by the computing of x,y,z(mod p) , which takes 0 (iM(m)) time

(cf. [ll) 0

To end this section, we remark that the bound in the corollary to

Theorem 4.1 is the best possible. By a slight adaptation of Pippenger's

l-PTM for recognizing [wtiw')  [7], one can construct a l-PTM recognizing

rl-" # ln 1 n > 1) with a small error in time O(n log log n) , thus

achieving the lower bound stated in the corollary.
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6 . Conclusions.

The subject of proving lower bounds for probabilistic Turing machines

offers many challenging problems, of which only one is solved in this

paper. It seems to be most fruitful to consider problems where good

bounds exist in the deterministic case. We believe such studies will

provide insights to probabilistic computations beyond the framework of

Turing machine models. We mention only two such problems for further

research.

( >i

( )ii

With a read-only input tape and several working tapes, is the extra

space requirement for recognizing {w#w) probabilistically (with

error) !&log n) ? (See [3, p. 154, Exercise 10.33 for the

deterministic analogue.

Can Rabin's language defined in [8] be recognized in real time by

a probabilistic Turing machine with one working tape?

(Deterministically  it cannot [8].)

Finally we like to mention that the overlap argument for on-line

multiplication (Cook and Aanderaa [2], also Paterson, Fischer, and

e Meyer [6]) can be extended to the probabilistic case [13].

Acknowledgments. I wish to thank John Gill for a stimulating conversation

and for communicating Pippenger's result [7] to me.

19



p

Dl

PI

131

i
VI

[51

El

171

I81

L91

DOI

D-U

cm

References

A. V. Aho, J. E. Hopcroft, and J. D. UUman, The Design and Analysis

of Computer Algorithms, Addison-Wesley, Reading, Mass,, 1974.

S. A. Cook and S. 0. Aanderaa, "On the minim computation time of

functions," Trans. Amer. Math. Sot. 142 (1969), 291-314.
R. V. Freivald, "Fast computation by probabilistic Turing machines,"

Theory of Algorithms and Programs, no. 2, Latvian State University,

Riga, 1975, 201-205 (in Russian).

J. T. Gill III, "Computational complexity of probabilistic Turing

machines," SIAM J. on Computing 6 (1917), 675-695.

J. E. Hopcroft and J. D, Ul&nan, Formal Languages and Their Relation

to Automata, Addison-Wesley, Reading, Mass., 1969.

M. S. Paterson, M. J. Fischer, and A. R, Meyer, "An improved overlap

argument for on-line multiplication," SIAM-AMS Proc., vol. 7,

Amer. Math. SOC., Providence, R.I., 1974, 97-111.

N. Pippenger, private cammunication, November 1977.

M. 0. Rabin, "Real-time computation," Israel J. Math. 1 (1963),

203-211.

M. 0. Rabin, "Probabilistic algorithms," in Algorithms and Caaplexity:

New Directions and Recent Results, J. F, Traub, ed., Academic Press,

New York, 1976, 21-39,

R. Solovay and V. Strassen, "A fast Monte-Carlo test for primslity,"

SIAM J. on Computiq 6 (l-977), 84-85.
E. T, Whittaker and G, N. Watson, A Course of Modern Analysis,

4th edition, Cmbridge  University Press, 1958.

A. C. Yao, "Probabilistic computations -- toward a unified measure

- of complexity," Proc.  18th Annual Symp. on Foundations of Computer

Science, 1977, 222-227.

' [13 1 A. C. Yao, unpublished.

20


