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ABSTRACT

In this paper we apply matrix splitting techniques and a
conjugate gradient algorithmto the problem of mnimzing
a convex quadratic form subject to upper and |ower bounds
on the variables. This nmethod exploits sparsity structure
in the mtrix of the quadratic form  Choices of the splitting
operator are discussed and convergence results are established.
W present the results of nunerical experinents show ng
the effectiveness of the algorithm on free boundary problens
for elliptic partial differential equations, and we give

conparisons with other algorithms.






0. | nt roducti on

The techni ques developed in [4] will here be applied

to a constrained optimzation problem

m'Xn 1/2 xTAx - xTb

c<x<d

where A is a symetric n x n positive definite matrix.
This quadratic programmng problem often arises in a form
such that the matrix A is large and has a nonrandom
sparsity pattern. The applications considered here arise
fromthe finite difference discretization of free boundary
problens for elliptic partial differential equations.
Problens of this forminclude nodels of water flow through
a porous dam[2], the journal bearing [7], and torsion
applied to a bar [3].

We describe in Section 1 a conjugate gradient algorithm
due to Polyak [18] which is suitable for this problem and
devel op a nodification which can exploit sparsity structure
in the mtrix A. In Section 2, we give alternatives
for the scaling operator for the conjugate gradient
iteration. First some matrix theory is devel oped for eigen-
val ues of submatrices, and then these results are used to
establish bounds on the rates of convergence of the methods

proposed. In Section 3 numerical experiments are presented



whi ch explore the effectiveness of the conjugate gradient
method with matrix splittings and conpare it with other
al gorithms. In Section 4 we summarize our results.

W will use the follow ng notational conventions.
Capital letters will denote matrices, and small letters
denote vectors or scalars. Conponents of vectors wll be
indexed by small letters as subscripts, while subvectors
wi Il have capital indices. Superscripts will denote

iteration nunbers.

1. Conjugate Gadient Al gorithnms for Quadratic Progranm ng

The quadratic progranm ng problem

(1) m‘Xn 1/2 xTAx - x'b

c <x<d

wth A an n xn symetric and positive definite matrix
and b, ¢, and d given n-vectors, often arises in the context
of discretization of elliptic partial differential equations.
A solution to this problem always exists, and it is
necessarily unique.

“An equi valent fornulation of the quadratic programing
probl em can be established through the Kuhn-Tucker optimality

conditions [See 13, Chapter 71. For an arbitrary x ,




let y be defined by
(2) Y = Ax - b.

Then x solves (1) if and only if for j =1,2,...,n

J J j
. < i f =
vy 20 xy = dy
Yj =0 | f C3<xj<dj

An inportant special case of the quadratic progranmm ng
problemis the linear conplementarity problem in which

C=0 and d@ =« . The optimality conditions then

reduce to

xTy =0 (conpl ementarity condition)

x>0, y>0 (nonnegativity condition)

The al gorithm upon which we will build is an iterative
met hod due to Polyak [18]. The Polyak al gorithm maintains

feasibility of the vector iterates x (k) (i .e.,

c < x(k)_g d) while iterating toward the proper sign

conditions ony . Guven an initial feasible x (0)

14

the Polyak algorithm perfornms a series of nested iterations.

“In the outer iteration we choose a subset | of the

i ndices {1,2,...,n} for which the vari abl es x, are

at their upper or lower bounds and the optimality conditions

are satisfied; specifically,

-3-



3)1 = {i: x; = ci and yi>(nWJ{i:xi =4, and y; < 0} .

The vector of x variables whose indices belong to this
set will be denoted x; and all other x variables wll
be denoted by X3 . Corresponding to this choice of the
index set I , we partition and rearrange the y and b
vectors into y; and y; , and b; and b respectively,
and the matrix A is rearranged symretrically. Wth this

notation, (2) is equivalent to

T |
Brr Rgr X by (YI
Byt Agg X3 Ps Y3

“The val ues of variables x; wll be kept fixed during
the inner iteration, which will try to force all variables

y; to be zero by solving

(4) A_.x. = b. - A__Xr.

Al is positive definite and symetric because it is a
principal submatrix of A, so the conjugate gradient

nmet hod [14] can be applied to this linear system W could
solve this systemexactly if we did not have upper and

| ower bounds on the variables, but because we want to

keep these bounds satisfied, we nodify the conjugate gradient

i teration. [f any step in the iteration would cause sone



vari abl e Xg wWwth s e J to attain or to violate one

of its bounds, the step is shortened if necessary to the
poi nt where X attai nsthebound, s is added to the

set | (the index set of the unchanging variables),

and the inner iteration is restarted wwth a new partitioning
of the matrices and vectors. Once we conplete the conjugate

gradient iteration, we know that Yy = 0 and

ch_xJidJ,

w t hout violating any constraint on x

since the inner iteration solved (4)
7 W then begin

a new outer iteration, choosing,as in (3), an index set

| corresponding to the current values of the variables x
If the new index set is the same as the one for the pre-
ceding cycle, then the optinality conditions are satisfied,
and the algorithmhalts with the solution. Qherwise a

new inner iteration begins.

Now we will state the Polyak algorithm nore

precisely.

Initialization

(0)

- Choose an x such that c 5_x(°) <d , and
set k =0 .
- Set I = {1,2,...,n} . This definition ensures that

the first halting test in the outer iteration will work

properly.



Quter Iteration

Let k =x * 1, x &) < x(k_l),y(k) = ax®

- b,

Define 1, = {i: xﬁk) =c¢.,  and yﬁk) > 0} U

(k)

fi: =¥ = 4, and y. ' < 0}
i i

I'f 1, =1, ,, halt. The optimal solution has been
found. CQtherwise, set | =1, and begin the inner itera-

tion.

Inner Iteration

(a) Partition and rearrange the nmatrix system as

(k) (k) T

(k) X1 by Ar; Bgr
O N ) A P O A (P

X3 J g1 2ag

Wi th Ass S X s, symmetric, and positive definite. W

initialize the conjugate gradient iteration to solve
equation (4). The sequence z'¥3 will be our appr oxi ma-

tions to the solution vector xj. The vectors p(q) Wil |

be search directions, and vectors r(q) will be

residuals for equation (4). Set q = 0 and

(0) _ (K

z J

p(0)=r = b_. - A



(b) Calculate the new iterate and residual. W
conpute two step paraneters: acg is the conjugate
gradient step in the direction p(q) . and Apy 1S the
| argest step in that direction which does not violate any

bounds on the vari abl es.

SR CLL LU R L L
(p(q),AJJp(q)) (p(q)'AJJp(q))
(q) (a)
C.=-Z. d.-z.
a =mn|[mn —17—1—— »min ~L L
max j=1,2,...,s p.q) j=1,2,...,s pgq)
5@ < g ] @ , )
j Py

The step taken is the smaller of these two positive
nunbers.

aq = mln(acg’amax_)

7(a+l) _ , (q) aqp(q)

r(q+l) (q) _ a A (q)

=r g~ 3JP

The vector y could also be updated at this stage to

correspond to the current val ues xék) and z(a*1)

(c) Test for termnation of the inner iteration:
£ (@) = 0 | set x}k) = 2(@*1) and restart

the outer iteration.



If  {j: 2 (a*+1)

3 = c, or dj} =¢ , proceed

with (d).

Ct herwi se, set x;(rk) =z (@) 4pg 1 =

{i: xi(k) =Cq or di}. If I= {1,2,...,n}, then

restart the outer iteration. O herwi se restart the inner

iteration.

(a) Cal cul ate the new search direction p(q+1)

r

A;; conjugate to the old ones.
(@) _(g+1)
h = _[AJJP X )= (r (at1) . (a+l)y
q
(p(q), JJp(q)) (r (q),r(Q))

platl) _ (q+l) bqp(q)
Replace q by g+l and go to (b) .

The initialization of z(o),p(o),r(o), and g in
step (a) of the inner iteration, plus steps (b) and (d) with

and (c) repl aced by

a :ac

q g

) 1f T~ 0 | then halt with x; = z (@*1)
conprise the standard conjugate gradient algorithm for |
solving the linear system (4) . The first iteration is
equivalent to a steepest descent step for mnimzing the
quadratic form and successive steps use as the search
direction the conmponent of the gradient which is =a

JJ
conjugate to all previous search directions.

-8~



The conjugate gradient method for solving positive
definite linear systems termnates in a finite nunber
of iterations. Moreover, {E(x(g))} is a nmonotonically

decreasi ng sequence, where
E(x) = 1/2 (x-x*,A(x~-x¥*)) ,

x* |s the solution to the system Ax* = Db , and the
iterates x*) are obtained via the conjugate gradient
algorithm([8]. W now show that the quadratic progranmm ng

algorithm also has finite termnation

Theorem 1 Pol yak's algorithm termnnates in a finite

nunber of iterations.

Proof : Each inner iteration termnates because

either the chosen systemis solved by conjugate gradients,
or the size of the systemis reduced (possibly severa
tinmes) and the reduced systemis solved by conjugate
gradients. Let x! denote the solution to (4) for a

J

particular choice of the set | and values x; . W&
want to show that E(x) , the conjugate gradient descent
function for solving Ax* = b , is a descent function

within the inner iteration. Now



E(x) = 1/2 (x'Ax - 2x°b + x*Ib)

= 1/2 (xTA x. + ZXEAJIXI - 2x§b

J JJ°Jd J)

T LT *
+ 1/2 (xIAIIxI 2xIbI + x "b)

- ' —_!
1/2 (xJ Xy, Ag(x5-xY))

T - T + x*Tp - x!Ta !
1/2(xIAIIxI 2x1b J JJXJ)

+

The first term [XJ—X&,AJJ(XJ—X&))/2 , is the conjugate
gradi ent descent function for solving the linear system
(4) , and the rest of the expression for E (x) 1is constant
within the inner iteration, so E (x) has been shown to

be a descent function for any inner iteration between
restarts. But any restart of the conjugate gradient
-algorithmwill preserve the descent property, so E(x) is a
descent function for the entire algorithm  Thus no linear
system can repeat once it has been solved in an inner
iteration, and since there are finitely many linear systens
(corresponding to a choice of index set and the choice of

ei ther upper or lower bound for each variable in it),

the algorithmnust termnate. 1

D anond' s algorithm [10] is a special case of Polyak's for
problens with ¢=0,8 = « and A an MmatriXx. |n that
case, the chosen system for the inner iteration can always

be solved w thout violating the constraints on x and

J ]

-10-



it can be shown that the subsets | are nested:

I CI

k+1l k

Di anond chooses to solve the linear problenms in the inner
iteration by an iterative method other than conjugate
gradi ents.

The performance of the Polyak or the D anond
al gorithm can be greatly enhanced by inproving the con-
vergence rate of the inner iterations. This can be
acconpl i shed by using the scaled conjugate gradient algorithm
with matrix splittings described in [4]1. In this algorithm
we base our search direction p on M~1r rather than

1

onr , where M~ IS an approximtion to the matrix

&% One precaution nust be taken, however. A problem
may arise if, in beginning the inner iteration, some

A

x, is at its bound for s e J . Suppose, for exanple,

that x, = c, and r_ > 0 . (A negative value for r_

would inply that s ¢ 1.) Then for the normal conjugate

(0) _ (), (0) > 4
S

and the step increases x_ since the step paraneter ag

gradient iteration, p so p
IS positive. Thus the bound on x, remains satisfied
If we apply the scaled algorithm however, (ﬁfl r(o))s
may be negative and the algorithmwould not be able to
take a step without violating the constraint that Xg > Cg

We avoid this problemby performng one initial steepest

descent step (p(O) = r(o)) at the beginning of each

-11-



-inner iteration and then proceeding with the scaled

al gorithm
The resulting algorithmis as follows

Initialization

- Choose an x' such that ¢ 5x(°) <d, and

set kK =0 .

Set | = {1,2,...,n}.

Quter Iteration

14

- Let k = k+1, x(k) = x(k—l), y(k) = Ax(k)—b

k-1
- Define 1, = {i: xi(k) =¢, and yi(k) >0} U
{i: xék) = d, and y{k) < 0}
| f I, = Ioqr halt. The optinal solution has
been found. Qherwise, Set | =1k and begin the inner

iteration.

I nner Ilteration

(a) Partition and rearrange the matrix system as

-12-




(k) (k) T

IR N P i &
<X | p) |7 A A

J J JI "33

W th Ajy S xS, symretric, and positive definite.

We initialize the iteration to solve equation (4).  Set

MO

(0) _ (k) (0)
r = bJ - AJIXI - AJJz

(b) Calculate the new iterate and residual. W

calculate two step paraneters: g i's the conjugate

gradient, or, equivalently for this step, the steepest

descent paraneter, and a, is the largest step which

ax
does not violate any of the bounds.

(2(0),(0)

a =
cg (r(O)' JJr(0))
) . c.-zso) d-'-2§0)
a =mn|{ mn —17—7$L—— , mn -4 J
rmx j=1,2,...,S r00 j=112l""s r'(O)
r§0)< 0 ? r(0)> 0 ’
J j

The step taken is the snaller of these two positive nunbers.

a; = min(a__,a )

cg’“max
LD 2 L0, (O
2D L0 g (0

-13-



1f ) =0 , set xék) = z(1) and restart
the outer iteration.

| f {j:zjgl) = cy oOr dj} = ¢, proceed with
(c).

O herw se, set xék) = 2z anag
I = {i: xi.(k) =c. or d;} . If I ={1,2,...,n}, then

restart the outer iteration. Qherwise repartition

X, b, and A as in (a), set

L) _ L (K)

(1) _ (k) (1)
r = bJ - AJI Xy -Z ’

and continue with (c).

(c) Initialize the scaled conjugate gradient
algorithm  Choose M to scale the matriXx Ary + set

g =1, and

(d) Calculate the new iterate and residual :

) | )
@ a__plah

(p 75P

-14-



C. = Z. . N
a =nmin|mn 4 _J __  qnin -4 __J
max §=1,2,...,8 p;q) j=1,2,...,s p@D
(qQ) < (q) j
Pj 0 Pj >0
ag = min(acg,amax)
Jlatl) o @) équ(q)
+1 }
p(atl) _ (@) _ anJJp(q)
(e) Test for termnation of the inner iteration:
1f (@) - o set x}k) = 21 and restart
the outer iteration.
If {3 z§q+l) = oy or dj} = ¢ , proceed Wth

(£).

QO herwi se, set g? = 2 (@) g

=i %™ =c

restart the outer

iteration.

(£) Cal cul ate the new search direction, A

orthogonal to the

(a

b

ior'di} . | f

iteration.

ol d ones.

JJP

| ={1,2,...,n} then

O herwise restart the inner

JJ

(q),ﬁ-d.r(q)) (r(q+1),—-4.r(q+1))

M

q=

(p

(q) (Q))

-15-
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p(Q+1) gt+l)

(a)
+ bqp

_g-l,

Replace q by g+l and go to (d)-

Initialization of z‘%) : r 1) and g , plus steps

(c), (d), and (f) wth aq T Agg and (e) replaced by

C

ey 1£ @ =0 then halt with x; = z (T
conprise the scaled conjugate gradient algorithm for
solving the linear system (4). [ See 4].

Since E(x) 1is a descent function for both the
original conjugate gradient algorithm and the scal ed
version [4], the convergence proof given above for Polyak's
algorithm applies to the nodified version, too.

One further refinement is possible in the conputation.
We do not need to solve the linear systems in the inner
iteration to a high level of accuracy, since the sole purpose
of this step is to determine the next index set | we w sh
to consider. W need only guarantee that no system will

repeat. Thus we can work with a large error tolerance

and test whether Hr(q+l)||< €y in step (e) , rather then
whether r (@*1) _ o This tolerance is refined before
termnation in the solution of the final Iinear system

This device reduced the nunber of operations in the com

putation by a factor close to two in nunerical experinents.

-16-



Thus far we have developed a finite algorithmto
solve the quadratic programm ng problem w th upper and
| ower bounds. The al gorithm never changes the matrix
A and in fact only needs to use A to form products
with arbitrary vectors. Thus the algorithmis suitable

for sparse matrices A .

2. The Choice of the Scaling Matrix M

A renmaining issue is the choice of the matrix
M. W need a scaling matrix M such that the conputation
of Ml can be perforned easily and so that the convergence
of the conjugate gradient algorithmis accelerated signifi-
cantly. The convergence rate for the conjugate gradient

method applied to the linear systemis bounded as foll ows:
(5) E_(x(k)) < (l—K‘-l) E(x(kcl))

where « 1is the ratio of the largest and snallest eigenval ues

'l/zA ﬁ'l/z and E is the descent function

of the matrix W 13

for equation (4). I[8]

We consider in this section two classes of scaling
matrices. The first class is determned by the know edge
of good scaling matrices for the full operator A, and
the second class is forned by applying alternate iterative

methods to the quadratic progranm ng problem

-17-



2.1 Met hods Based on a Scaling of the Matrix A

Suppose that Mis a positive definite scaling matrix
for A and that P is the permutation matrix correspondi ng
to the current partitioning and rearrangenment of the |inear

system

There are three sinple methods which could be used to

obtain a matrix M whichscal es Ars .

Met hod 1:

Partition and rearrange the matrix Min a

manner corresponding to the current rearrangenent of A

T
M M
pmpT = II JI
M1 Myg
and use M;; as the scaling matrix M .
Met hod 2:

Partition and rearrange the matrix W= hﬂl

In a manner corresponding to the current rearrangenent

of A :
T
W W
T M Yor
PWP' =
W1 Wi
and use W&% as the scaling matrix M .

-18-



Met hod 3:
|f a Cholesky factorization of Mis available,

partition and rearrange the factors 1Ly as

T T
L L L L
prrTeT = (preT) (eTpT) = II “1J I; il
Lyt Lgg L3 L3g
and use L LI as M
JI-3J :

In actual conputation, the natrices and vectors
are never physically rearranged. A vector of |ogica
vari ables can indicate menbership in | or J and
can be used to ignore the appropriate matrix or vector

el enent s.

In special cases a single factorization of M= LLT
where L is lower triangular, suffices for Method 1.

Consider a tridiagonal matrix of the form

-19-



wher e

e
My "1 My
Mi= ’ al+oz2+...+ont=n
m,
m m
2
1 a; xa;
Then M has the form
My
M _
2 My By * By
M—u Bl+82+...+8u = s ,
S X s

wher e. Mi has the same formas the matrix M., but
different dimension. Sothe factors of each bl ock b_’li
are the leading principal subnatrices of the factors
L and i of the largest matrix M. in M.
Al though Method 2 seens to be the nost conplicated,
It can easily be inplemented w thout formng VE
-1.7T -1

Since Wiy = (Myg=My M TM_o)

by solving the system

, we can form y2 = Wy

-20~



Thus it suffices to have a subroutine to set up the right
hand side, solve a linear systemwth the original matrix
.M, and pick the appropriate elenments from the solution
vector y . The disadvantage of this technique is that it
is much slower than the others if the set | has many
el ements, since we nmust work with a full size matrix
system each ti ne.

V¢ now wish to show that whenever M is obtained from
a matrix Mby one of the three nethods above, then the
convergence bound for the conjugate gradient method applied

to a linear systeminvolving the matrix A using the

JJ
scaling matrix M is at |least as good as that for the conju-
gate gradient nethod applied to a linear system involving the
full matrix A with scaling M. To do this, we conpare

t he ei genval ues of M-IAJJ with those of MIA and thus
get a bound on « in expression (5). For any positive

definite scaling matrix M we have the follow ng results:

Lemma 1 Let the scaling matrix M be obtai ned using
Method 1 or Method 2 above. Then it is positive definite.

Suppose the dinension of M is n-I , and let

-21-



A 2 Xy > ... > A >0 berootsof det(a-aM) =0 and
Xy 2%,>. . ._>% _;>0 be roots of det(a;;-aM)=0 .
Then A7 > x; >X, 72X, > 0 >A 3 > >

Proof: M is positive definite since it is a principa

submatrix of a positive definite matrix. For the proof of

the interlacing of the eigenval ues, see WIKkinson [20, p.340]1 }

Lemma 2 Let the scaling matrix M be obtained using

Met hod 3 above. Then the results of Lemma 1 hold for it.

Proof : The main diagonal elenments of the factor L ;

_.are a subset of the mmin diagonal el enentsof L , which

are all non-zero since LLT is positive definite. Thus
T . L .

LysL;y 1S positive definite, too. To prove that the

ei genval ues interlace, note that

T

det (A XM = det (A-ALLT) = det (L™1aL™T-a1)

By the Courant-Fischer characterization of eigenvalues,

1,.-T

- T, - -T_. _ _
XG+1 = gln m;x{x L AL “x: x| =1, Px = 0}
oxn
= nmn max{ y Ay: ||L%|| =1 Py =0},06 =0,1,...,n-1
oxn Y

where P is any matrix of the indicated dinension.

-292-



Suppose that a is obtained fromA by deleting the k-th

JJ
row and col um. Then

- eom -1 -T_ - _
Agg1 = |ann rr}n(ax{xJLJJAJJLJJxJ. I %1l =1, Pxy = 0}
oxn-1 “J
= |ann rt;,ax{y‘:r;\.JJyJ IILJJyJH 1, Py; = 0}
oxn-1 ~J

min max{y Ay: yk = 0, (@y)k = 0, ||t]y]l =1,py=o0}
Y

oxXn

= gin max{y Ay: HLTyH =1, Py =0, ky—O e L y= 03
Y

oxXn

where ek is the k-th unit vector. Therefore, X < A

o+l — "o+l -
Simlarly,
_ . T —l -T — —_
Aop1 = g&x min{x L “AL “x: IXII = 1, Px =0}
n-a-|xn
. T T — = =
= max min{y Ay: ||Ly|| = 1, Py =0},0=0,1,...,n-1
Pn-a-lxn
A = max min{x L L x_: l|x;]] = 1,Px_ =01}
s =1 inixghgihagtaa®st 1%g rPXg
n-a-lxn-1 °J
. T T T
= max mln{yTAy: ||LTyH = 1, Py =0,e,y=0,e Ly =0}
Pn-o-lxn

Therefore, X_ > A and the result follows. 1

o “o+l

-23-.



Lemma 3 |If M is obtained by either Method 1, Method 2,
or Method 3, then if A, and A, are respectively the
l'argest and smallest roots of det(A-AM = 0, and Xx; and
XS are respectively the largest and smallest roots of

det(AJJ-AE) =0, where the matrices M and A have

JJ

dimension s , then x; > X; and X <X .

Proof: This result follows from induction using the results

of Lemmas 1 and 2. |
Lemma 3 gives us the following result:

Theorem 2 The convergence bound for the conjugate gradient
algorithm applied to the subproblens is at |east as good
as that of the conjugate gradient method applied to
the original matrix.
Thus, if we have a matrix Mfor which |inear systens

Md =r can be solved easily, and M scales A well in the
sense that the roots of det(A-AM) do not have a wide
range, then we have a good scaling operator for the sub-
problens in the scaled conjugate gradient algorithm for
quadratic progranm ng.

- The sinplest scaling matrix Mis the diagona
portion of A (mzz = ag s "&j =04%2,3=1,2,...,n,8#3).
It has been shown by Forsythe and Straus [12] that if A

Is two-cyclic, then anmong all diagonal matrices, this choice

-24-



mnimzes « in (5 and thus maximzes the estimated
convergence rate. Even for a general matrix A, it is
of ten advantageous to scale the problemin this way.
Fromthe formof the matrix Min Method 3 , we

can see that the matrices M for Methods 1 and 3 differ
by at nost a rank n-s matrix, where s is the dinension
of M, and the eigenvalues of the nmatrix obtained by
“Method 1 are greater than or equal to the eigenval ues of

the matrix obtained by Method 3 .

2.2 Met hods Based on lterative Al gorithns

|t has been shown before [For exanple, 11 that
suitable iterative techniques for solving linear or
nonlinear systems can be accelerated by application of the
conjugate gradient algorithm W can extend this idea
to our problem  Define g1y () by 21 _ 2 where
z is the vector obtained by applying a double sweep of
modi fied synmmetric successive over-relaxation (SSOR)
to the linear system (4) using 7 (1) as the initial
guess. The SSOCR iteration is nodified so that no variable

violates the constraints. Mre precisely, |et

g3 = (@50 L x ¢



‘We apply the SSOR iteration to the system

For | =1,2,...,s, let

2l =24 4 w(f, - Jz-la z, - Zsa (l))/a
3 s A N WS E . 33
c. |If zt < C.
] % J
z. =<d. - > d.
zJ dJ | f z:J 3
z; ot herw se
and for | = s,s-1,...,1, let
b~ J . S _
. = + " - . .
2y = zy w(fj 22_1 %5020 JL=jz+1 U.JQ/ZQ/)/OLJ J
: b
cj i f zg < cj
Z. = i f : .
zJ dJ z] > dj
b .
zj ot herw se
where o 1S a paraneter such that 0 < w < 2 . Then the
result of one iteration of nodified SSOR is z . The

nonsymmetric version of this iteration (using forward
sweeps only) has been discussed by Cottle and Goheen [51.

for problens with A an Mmatri x.
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For the nodified SSOR iteration, the scaling
oper at or 871 has no sinple form The matrix is neither
symmetric nor positive definite, and it changes from
iteration to iteration in the conjugate gradient algorithm
Thus, none of the conjugate gradient convergence theory
applies. No,netheless, it has perforned well in experinents
on elliptic partial differential equations.

As nentioned in Sectionl, for the special case inwhich
C=o0,da==and Ais an Mmatrix, the linear systens

can always be solved without violating the constraints

on  xj In this case, we can sinply set

—

3 —zj and zj = zJ

N ¢

wi t hout degrading the convergence of the iteration,

reducing the matrix M L to

M1 = w(2-0) (I-wiT) "1 (1-0n) "1p71
wher e Ass = D(I-L—LT), L is strictly lower triangular,
and D is diagonal. As long as A I's normalized so that

JJ
its diagonal elenents are equal, this matrix is symetric

and positive definite, and the conjugate gradi ent con-

vergence theory applies.
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3. Alternate Al gorithnmse and Nunerical Results

Standard algorithns for the general quadratic programm
ing problem involve conplementary pivoting and inversion or
factorization of submatrices of A [9,11,13,15,17]1. These
algorithns may not be practical for large, sparse, structured
matrices. For exanple, free boundary problens in elliptic
partial differential equations often give rise to irreducible

1 may be totally

M nkowski matrices (Mmatrices), and A
full even though A is highly sparse. Successful algorithns
for this special application of quadratic programm ng have
often involved some nodification of the SOR algorithm

Cea and d ow nski [3] propose a block form of the

nmodi fied SOR iteration discussed in Section 2.2.

Cryer [7] obtained good results with the specialization

of this algorithmto the linear conplenentarity problem
Cottle, ol ub, and sacher [6] propose a SOR algorithm

for the conplenmentarity problem which uses Sacher's

al gorithm [19] for subproblenms involving |inear com-
plementarity problems with tridiagonal nmatrices.

Cottle and Goheen [5]1 extend this algorithmto

the quadratic progranm ng problem and survey several

al ternate nethods.

We now present-a summary of the results of nunerical

experinents on three groups of problens. W conpare the

-28-



performance of the algorithm proposed in this paper
with that of Cottle and Goheen's SOR al gorithm
di scussed in Section 2.2, since in experiments reported

in [5], it ranked anong the nost effective algorithns.

Exanple 1  The first problemis the linear complementarity
probl emni ththe matrix A corresponding to the Laplacian

5-point finite difference operator:

The conjugate gradient algorithmwas run with scaling
matrices equal to the tridiagonal portion of A, a

T

partial LL  factorization, and the SSCR operator.

(These algorithns are denoted in the tables and figures

by ce + T, cc + Lt | and CG + SSOR respectively), The
1T factorization was chosen to be one for which L has
the sane sparsity patternas the |ower triangular portion of
A. The algorithmis due to Meijerink and van der Vorst
and is defined in [16]. The scaling was perfornmed using
Met hods 2 and 3 for the tridiagonal and Lt matrices,

but there was no significant difference between the
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performance of the two nethods. The SSOR scaling was

al so performed in each of the two ways discussed in Section 2.2,
and, as expected, there was no difference in perfornance

for this exanple problem Table 1 shows the results of

nunmeri cal experiments W th randonly generated vectors

b. W present the average nunber of inner iterations

over five exanples for the various algorithnms and for

m= 16 and m= 23 (n = 256 and 529 variables respectively).

For the algorithms with paranmeter w , results shown

are the average over » = 1.1, 1.3, 1.5, 1.7, and 1.9

In all cases, the initial guess x (9 was 0 , and

£ = 10'3 for all but the last iterations, with a

final criteria of ¢ = 1079

The conjugate gradient algorithms required 5-7
outer iterations for n = 256 and 6-8 for n = 529,

i ndependent of scaling. The average nunber of active
vari abl es per outer iteration was s = 196 for n = 256
and s = 435 for n = 529.

There is, of course, a varying anmount of work per
iteration depending on which scaling is used. The
tridiagonal scaling from Method 3, for exanple, requires
approximately 3s operations (nultiplications and
additions) while SSOR requires the equivalent of two

matrix-vector nultiplications involving the matrix Agjg

(sxs) . The SOR algorithmrequires a matrix-vector
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TABLE 1 Nunmber of Iterations fdr Exanple 1

CG with CG wth CG with SOR
Tri di agonal Parti al SSOR Al gorithm
Scal i ng 1T Scaling | Scaling g
Met hod 3 Met hod 3 (CG+SSOR)
(CG+T) (CG +LLT)
n=256 67 35 38 94
n=529 67 60 58 > 212
TABLE 2  Average Nunber of Variables Not at
Thei r Bounds During the Conjugate
G adient Iteration for Exanple 2
S s/n
n cC =5 cC =9 c =13 cC =5 ¢=9 C =13
256 185 138 109 .72 .54 .43
529 399 277 234 .75 .52 .44
900 662 473 393 .74 .53 .44
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mul tiplication by the entire matrix A (nxn) at every
-iteration, regardless of how many variables are at their
bounds.

It can be shown that « for the matrix A and for the
mtrix MIA with tridiagonal scaling is O(m?) . Usi ng
the optimal value of w , SOR is expected to converge
in CXnF) iterations when applied to a linear system
involving the matrix A . The nunber of
iterations for the quadratic programmng algorithmis
predicted well by the linear theory.

Figure 1 shows the variation in average nunber of
iterations for different values of the paraneter y in
the SOR al gorithmand for conjugate gradients with

_SSOR scaling. The conjugate gradient algorithm can be

seen to be much |less sensitive to the choice of w .

Exanple 2 This is a nodel for studying the effects of
torsion applied to a rectangular bar. Cea and d ow nski [3]

present the nodel for a crossection of the bar as follows

mn 1/2 [[|vu|?dxdy - C [f u dx dy
u Q ]
u=0 on T

lu(x,y) | < D(x,y,T)

where Cis a positive constant related to the nmagnitude

of the torsion, D(x,y,I') is the distance between the
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Figure 1. Algorithm Performance on Example !
with Varying w .
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point (x,y) and T , the boundary of the region @ ,

and u is the stress function. After discretization

this is a quadratic programming problem The distances
form the upper and | ower bounds, the matrix A is taken

to be the Laplacian 5-point operator, and b has every
conponent equal to C. Figures 2-4 show the results of
experiments with m= 16, 23, and 30 (n = 256, 529, and

900 respectively) and C =5, 9, and 13. The initial guess
and the convergence tolerance were as in Exanple 1.

I ncreasing values of C correspond to nore variables

at their bounds in the final solution (approximately

30% for C =5, 60%for C=9, and 80%for C = 13).

The constraints for this problem are nuch tighter than those
for Exanple 1, and the second SSOR scaling for conjugate
gradients is not effective here.

Figures 5-7 show the variation in convergence for various
values of w for the SOR algorithm and the conjugate
gradient algorithmw th SSOR scaling. Results are
simlar to those of Exanple 1, but in this problem where
so many variables are at their bounds in the optimal
solution, it is even nore inportant to take advantage of
the reduction in work achieved by partitioning the system
instead of working with the entire set of variables at
each iteration. The average nunber of active variables
is given in Table 2 , and the nunber of outer iterations varied

from4 to 8 for n = 256, and fromb5 to 11 for n = 900.
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Figure 2. Algorithm Performance on Example 2, C = 5.
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Figure 3, Algorithm Performance on Example 2, C = 9,
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Figure 4, Algorithm Performance on Example 2, C = 13.
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Figure 5. Algorithm Performance on Example 2

with Varying w , C = 5.
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Figure 6. Algorithm Performance on Example 2
with Varying w , C = 9,
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Figure 7. Algorithm Performance on Example 2
with Varying w, C = 13.
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The typical pattern for exanples using conjugate

gradients with SSOR scaling is that many restarts take

place at the beginning until a reasonable set | is identified.
Throughout this period then, the algorithmis equivalent

to SSOR used al one with sonme variabl es kept fixed.

Once | has stablized, few restarts occur, so the fast
convergence of the conjugate gradient algorithmcan be exploited
with great effectiveness.. One of the advantages of this algorithmis that

t he transition from SSOR toconj ugat egradi entswith SSOR scaling is
is made autanatically.

Exanpl e 3

The matrix A of Exanples 1 and 2 is a 2-cyclic matri x,
and theory tells us the optimal w for the SOR iteration
for a linear system The matrix in this exanple is not

2-cyclic. It is the discrete Laplacian g-point operator

T, T, / 0 -4 \
]
! 20 -4

-4]1-



400

Iterations

300

200

100

SOR
CG+SSOR g -
1.1 1.3 1.5 1.7 1.9
W
Figure 8. ~Algorithm Performance on Example 3

with Varying w , n = 529.

L2~



m X m

All other features of this exanple were the sane as in
Exanple 1. Figure 8 shows the results of applying the
conjugate gradient algorithm with SSOR scaling and

the SOR algorithmto a matrix of dinension n = 529

with five random vectors b . Results are simlar

to Exanple 1, with SOR showing sensitivity to w while
the number of iterations for conjugate gradients with SSCR
scaling is relatively constant. The nunber of variables

not at their bounds in the final solution varied from

513 to 463 for the five problens, and the nunber of outer

iterations was 7 for all of the conjugate gradient runs.

4. D scussi on and Concl usi ons

W have presented a conjugate gradi ent al gorithm

wth matrix splittings which is suitable for certain quadratic

- programming problens. The performance of the nmethod on

special cl asses of problens might be enhanced by preprocessing

or by nodifications to the inner iteration.
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For applications with A an Mnmatrix , the pre-
processing schene of Cottle and Goheen [5] coul d be
used before beginning our algorithmin order to identify
some of the variables which will be at their bounds in
the optimal solution. These variables could then be
hel d fixed throughout the conjugate gradient iteration.
QG her algorithns could be substituted for the
conjugate gradient iteration, as long as there is a
descent function for the inner iteration which guarantees
that no subproblemwill repeat. The conjugate gradient
algorithmis quite versatile, however, and has rapid
convergence when used with a suitable scaling natrix.
Such scalings may be chosen to be portions of the matrix
A (for exanple, the diagonal or band part of the nmatrix)
or an operator arising from application of an iterative method
" forsolving linear systens. Operators for related physica
probl ens may al so be used effectively. For exanple,
a fast direct method for solving Laplace's equation
over a regular region mght be used as a scaling for a
problemwith a matrix corresponding to Laplace's equation
over a region which does not permt separation of variables.
The conjugate gradient algorithm with nmatrix
splittings has been denonstrated to have finite termnation
and to be effective for free boundary problens for elliptic
partial differential equations. The nethod, however, requires

only that the matrix A be positive definite and thus
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has broader applications. Test results suggest that
the algorithmis effective whether or not the constraints

are tight.
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