
SU326 P30-57

A GENERALIZED CONJUGATEGRADIENTALGOR ITHM
FOR SOLVINGA CLASS Ok-QUADRATIC PROGRAMMING PROBLEMS

bY

Dianne Prost O'Leary

STAN-CS-77-638
DECEMBER 1977

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

Su326 P30-57

A GENERALIZED CONJUGATE GRADIENT ALGORITHM

FOR SOLVING A CLASS OF

QUADRATIC PROGRAMMING PROBLEMS

bY

Dianne Prost O'Leary*

* Department of Mathematics, The University of Michigan, Ann Arbor,
Michigan 48109

This work was supported in part by the Fannie and John Hertz Foundation,
the National Science Foundation under Grant MCS-76-06595, the Energy and
Research and Development Administration Contract EY-76-S-03-0326 PA #30,
and the National Science Foundation Grant MCS75-13497.

ABSTRACT

In this paper we apply matrix splitting techniques and a

conjugate gradient algorithm to the problem of minimizing

a convex quadratic form subject to upper and lower bounds

on the variables. This method exploits sparsity structure

in the matrix of the quadratic form. Choices of the splitting

operator are discussed and convergence results are established.

We present the results of numerical experiments showing

the effectiveness of the algorithm on free boundary problems

for elliptic partial differential equations, and we give

comparisons with other algorithms.

. .

0. Introduction

The techniques developed in [4] will here be applied

to a constrained optimization problem:

min l/2 xTAx - xTb
X

c<x<d- -

where A isa symmetric n x n positive definite matrix.

This quadratic programming problem often arises in a form

such that the matrix A is large and has a nonrandom

sparsity pattern. The applications considered here arise

from the finite difference discretization of free boundary

problems for elliptic partial differential equations.

Problems of this form include models of water flow through

a porous dam [2], the journal bearing [7], and torsion

applied to a bar 131.

We describe in Section 1 a conjugate gradient algorithm

due to Polyak [18] which is suitable for this problem and

develop a modification which can exploit sparsity structure

in the matrix A . In Section 2, we give alternatives

for the scaling operator for the conjugate gradient

iteration. First some matrix theory is developed for eigen-

values of submatrices, and then these results are used to

establish bounds on the rates of convergence of the methods

proposed. In Section 3 numerical experiments are presented

-l-

which explore the effectiveness of the conjugate gradient

method with matrix splittings and compare it with other

algorithms. In Section 4 we summarize our results.

We will use the following notational conventions.

Capital letters will denote matrices, and small letters

denote vectors or scalars. Components of vectors will be

indexed by small letters as subscripts, while subvectors

will have capital indices. Superscripts will denote

iteration numbers.

1. Conjugate Gradient Algorithms for Quadratic Programming

The quadratic programming problem

(1) min l/2 xTAx - xTb
X
c<x<d- -

with A an nxn symmetric and positive definite matrix

and b, c, and d given n-vectors, often arises in the context

of discretization of elliptic partial differential equations.

A- solution to this problem always exists, and it is

necessarily unique.

-An equivalent formulation of the quadratic programming

problem can be established through the Kuhn-Tucker optimality

conditions [See 13, Chapter 73. For an arbitrary x ,

-2-

let y

(2)

Then x

An important special case of the quadratic programming

problem is the linear complementarity problem, in which

be defined by

Y =Ax - be

solves (1) if and only if for j = 1,2 r-*-t n r

>O ifYj - xj = 3

CO ifYj - = d
xj j

Yj = 0 if
7 < ⌧j

cd
j l

C =0 and d=m . The optimality conditions then

reduce to

Tx y = o (complementarity condition)

x > 0, y > 0- - (nonnegativity condition) .

The algorithm upon which we will build is an iterative

method due to Polyak 1181. The Polyak algorithm maintains

feasibility of the vector iterates xtk) (i e. l I

c < xtk) < d)- - while iterating toward the proper sign

conditions on y . Given an initial feasible x(o) I

the Polyak algorithm performs a series of nested iterations.

- In the outer iteration we choose a subset I of the

indices {1,2-,...,n] for which the variables xi are

at their upper or lower bounds and the optimality conditions

are satisfied; specifically,

-3-

-(I) I = (i: xi = ci and yi>oI’J{i: xi = di and yi< 0) .

The vector of x variables whose indices belong to this

set will be denoted x1 and all other x variables will

be denoted by xJ . Corresponding to this choice of the

index set I , we partition and rearrange the y and b

vectors into yI and yJ , and bI and bJ respectively,

andthe matrix A is rearranged symmetrically. With this

notation, (2) is equivalent to

-The values of variables x1 will be kept fixed during

the inner iteration, which will try to force all variables

YJ to be zero by solving

(4) - AJJxJ = bJ - AJIxI l

AJJ is positive definite and symmetric because it is a

principal submatrix of A , so the conjugate gradient

method [14] can be applied to this linear system. We could

solve this system exactly if we did not have upper and

lower bounds on the variables, but because we want to

keep these bounds satisfied, we modify the conjugate gradient

iteration. If any step in the iteration would cause some

-40

variable xS with SEJ to attain or to violate one

of its bounds,the step is shortened if necessary to the

point where xs attainsthebound, s is added to the

set I (the index set of the unchanging variables),

and the inner iteration is restarted with a new partitioning

of the matrices and vectors. Once we complete the conjugate

gradient iteration, we know that yJ = 0 and

cJ i xJ 2 dJ f since the inner iteration solved (4)

without violating any constraint on xJ . We then begin

a new outer iteration, choosing,as in (3), an index set

I corresponding to the current values of the variables x .

If the new index set is the same as the one for the pre-

ceding cycle, then the optimality conditions are satisfied,

and the algorithm halts with the solution. Otherwise a

new inner iteration begins.

Now we will state the Polyak algorithm more

precisely.

Initialization

- Choose an xw such that c -C x (0) <d , and- -

set k = 0 .

- Set I = {1,2 ,...,n) . This definition ensures that

the first halting test in the outer iteration will work

properly.

-5-

Outer Iteration

Let k = k + 1, x(k) = x(k-l), ytk) = AX(~) - b,

and IkWl = I .

Define Ik = (i: x (W
i = c.1 and yi(k) > 0) w

Ii: x(W
i = di and yik) < 0) .

If Ik = Ikrl, halt. The optimal solution has been

found. Otherwise, set I = Ik and begin the inner itera-

tion.

Inner Iteration

/ (4 Partition and rearrange the matrix system as

with AJJ sxs, symmetric, and positive definite. We

initialize the conjugate gradient iteration to solve

equation (4). The sequence {z(q)) will be our approxima-

tions to the solution vector xJ. The vectors p (9) will

be search directions, and vectors r (9) will be

residuals for equation (4). Set q = 0 and

z (0) = x;k)

p(o) = r(O) = b
J - Anxjk) - AJJz(')

-6-

b) Calculate the new iterate and residual. We

compute two step parameters: a
cg

is the conjugate

gradient step in the direction p (9) , and amax is the

largest step in that direction which does not violate any

bounds on the variables.

acg =
[r(q) p(9))

=
(r(q) ,r(q))

(Ptq) ,, p(q))JJ (Ptq) ,A dq))JJ

amax = min

i

min
j=1,2,...,s
p(q)i < 0

\
J

. -25 8)
$-.4) ,min

j=1,2,...,s
(q) > 0‘j

(9)
‘j

The step taken is the smaller of these two positive

numbers.

aq = min(a
cg

,amax)

Z (q+l) = z (9) + aqptq)

r (q+l) = r (9)
- aqAJJP

(9)

The vector y could also be updated at this stage to

correspond to the current values Xik) and z (q+l) .

(4 Test for termination of the inner iteration:

If rtq+l) = 0 , set xik) = ztq+') and restart

the outer iteration.

-70

If (j: zjq+l) = c.
3 or djl = $, proceed

with (d).

Otherwise, set (k) =xJ z (q+') and 1 =

Ci: x (k)
i = c.1 or di) . If I= IL2 ,...,n) , then

restart the outer iteration. Otherwise restart the inner

iteration.

KU Calculate the new search direction p (q+l) I

AJJ' conjugate to the old ones.

b
(AJJp(q),r(q+l))

= - r=
((q+l) ,r (q+l))

q
(P(q) rAJJP

(9)) (r(q',r(q))

Pel+1) = r(q+l) + bqpIq)

Replace q by q+l and go to (b) .

The initialization of z (0) ,pw) (0),r , and q in

step (a) of the inner iteration, plus steps (b) and (d) with

= a
aq cc3

and (c) replaced by

k’) If r(q+l) = 0 , then halt with xJ = z (q+l)
f

comprise the standard conjugate gradient algorithm for

solving the linear system (4) . The first iteration is

equivalent to a steepest descent step for minimizing the

quadratic form, and successive steps use as the search

direction the component of the gradient which is
AJJ

conjugate to all previous search directions.

-8-

The conjugate gradient method for solving positive

definite linear systems terminates in a finite number

of iterations. Moreover, (E(x(~))] is a monotonically

decreasing sequence, where

E bd = l/2 (x-x*,A(x-x*)) ,

X* is the solution to the system Ax* = b , and the

iterates ,(a) are obtained via the conjugate gradient

algorithm [8]. We now show that the quadratic programming

algorithm also has finite termination.

Theorem 1 Polyak's algorithm terminates in a finite

number of iterations.

Proof: Each inner iteration terminates because

either the chosen system is solved by conjugate gradients,

or the size of the system is reduced (possibly several

times) and

gradients.

particular

the reduced system is solved by conjugate

Let xi denote the solution to (4) for a

choice of the set I and values x1 . We

want to show that E(x) , the conjugate gradient descent

function for solving Ax* = b , is a descent function

within the inner iteration. Now

-90

E (x) = l/2 (xTAx - 2xTb + x*Tb)

= l/2 (XSJJXJ + 2xTJaJIxI - 2x;bJ)

+ l/2 (x;AIIxI - 2x;bI + x*Tb)

= l/2 (x, - x;,AJJ(xJ-x;))

+ 1/2(x;AIIxI - 2x;bI + xkTb - xiTAJJx;)

The first term, (xJ-x$AJJ(xJ-xi))/2 , iS the conjugate

gradient descent function for solving the linear system

(4) I and the rest of the expression for E (x) is constant

within the inner iteration, so E (x) has been shown to

be a descent function for any inner iteration between

restarts. But any restart of the conjugate gradient

-algorithm will preserve the descent property, so E b) is a

descent function for the entire algorithm. Thus no linear

system can repeat once it has been solved in an inner

iteration, and since there are finitely many linear systems

(corresponding to a choice of index set and the choice of

either upper or lower bound for each variable in it),

the algorithm must terminate. a

Diamond's algorithm [lo] is a special case of Polyak's for

problems with c=O,d = 03 and A an M-matrix. In that

case, the chosen system for the inner iteration can always

be solved without violating the constraints on xJ , and

-lO-

it can be shown that the subsets I are nested:

'k+l ='k l

Diamond chooses to solve the linear problems in the inner

iteration by an iterative method other than conjugate

gradients.

The performance of the Polyak or the Diamond

algorithm can be greatly enhanced by improving the con-

vergence rate of the inner iterations. This can be

accomplished by using the scaled conjugate gradient algorithm

with matrix splittings described in [4]. In this algorithm,

we base our search direction p on M-1r rather than

on r , where E-1 is an approximation to the matrix

-1
AJJ l

One precaution must be taken, however. A problem

may arise if, in beginning the inner iteration, some

X
S

is at its bound for s&J. Suppose, for example,

that xs = cs and rs > 0 . (A negative value for r
S

would imply that s & I.) Then for the normal conjugate

gradient iteration, p (0) = r(w , SO p(w > 0
S

and the step increases xs since the step parameter aO
is positive. Thus the bound on xs remains satisfied.

If we apply the scaled algorithm, however, (M-4 p))
S

may be negative and the algorithm would not be able to

take a step without violating the constraint that xs > cs .-

We avoid this problem by performing one initial steepest

descent step (p (0) = p)
> at the beginning of each

-ll-

-inner iteration and then proceeding with the scaled

algorithm.

The resulting algorithm is as follows

Initialization

- Choose an x (0) such that c < x (0) < d , and- -

set k = 0 .

Set I = ilf2 ,...,n) .

Outer Iteration

- Let k=k+l,x (W = x(k-l), y(k) = Ax(k)-b I

- and Ikml = I .

- Define Ik = (i: x (W
i = c.1 and yi(k) > 01 u

(W(i: x.
1

= di and yik) < 0) .

If Ik = IkWl, halt. The optimal solution has

been found. Otherwise, Set I = Ik and begin the inner

iteration.

Inner Iteration

Ia) Partition and rearrange the matrix system as

-120

ATJI

AJJ

with AJJ s x s , symmetric, and positive definite.

We initialize the iteration to solve equation (4). Set

p) =
bJ - AJIxik) - AJJz(') .

(b) Calculate the new iterate and residual. We

calculate two step parameters: a
cg

is the conjugate

gradient, or, equivalently for this step, the steepest

descent parameter, and amax is the largest step which

does not violate any of the bounds.

(0).
amax = min

I

min
* , min

j=1,2,...,s rj
q.j-

(O) < 0
j=1,2,...,s rj

'j
(O) > 0
3 1

The step taken is the smaller of these two positive numbers.

aO = min(a cgfamax 1

z(l) = z(o) + aor

p) = r(o) -
aOAJJr

(0)

-13-

If r(l) = 0 , set xjk) = z(l) and restart

the outer iteration.

If {j: Zil) = cj or dj) = 4, proceed with

(cl l

Otherwise, set tk) = z(1) andxJ

I = ii: x(k)
i = Cm or di} .

1
If I = (1,2,...,n) , then

restart the outer iteration. Otherwise repartition

x, b, and A as in (a), set

,U) =
bJ - AJI xik) - z (1) I

and continue with (c).

(cl Initialize the scaled conjugate gradient

algorithm. Choose g to scalethe matrix AJJ , set

q = 1, and

p(l) = jypr(l)

.

Id) Calculate the new iterate and residual:

a =
cg

-149

amax = min

t

min
j=1,2,...,s

(q) < 0
pj

(9)
“j’“j

(9)
pj

, min
j=1,2,...,s

(q) > 0‘j

aq
= min(a

cg
,amax)

Z (q+l) = ,w + aqPtq)

r (q+') = r(q) - aTA
q JJp

(9)

(e)
Test for termination of the inner iteration:

If rtq+l) = 0 , set xjk) = ztq+l) and restart

the outer iteration.

If ij: ziq+') = cj or dj) = $, proceed with

If) l

(JdOtherwise, set xJ = z (q+') and

I = {i: x Ud
i = cior'di) . If I = {1,2,...,n} then

restart the outer iteration. Otherwise restart the inner

iteration.

(f) Calculate the new search direction, AJJ

orthogonal to the old ones.

bq = -

(AJJp(q),H-lr(q))
=

[(q+l),$-lr(q+l))r

(Ptq) ,A P('))
(r(q) ,R'l r(q))

JJ

-159

p (q+l) = jq -1 r (q+l) + bqp(q)

Replace q bY cl+1 and go to (d).

Initialization of zu) , r(l) and q , plus steps

(c), (d), and (f) with aq = acg and (e) replaced by

(e’) If r(Cf+l) = 0 then halt with xJ = z (q+l)

comprise the scaled conjugate gradient algorithm for

solving the linear system (4). [See 41.

Since E(x) is a descent function for both the

original conjugate gradient algorithm and the scaled

version [4], the convergence proof given above for Polyak's

algorithm applies to the modified version, too.

One further refinement is possible in the computation.

We do not need to solve the linear systems in the inner

iteration to a high level of accuracy, since the sole purpose

of this step is to determine the next index set I we wish

to consider. We need only guarantee that no system will

repeat. Thus we can work with a large error tolerance

and test whether llr (q+l) 11 <
'k in step (e) , rather then

whether r (q+l) = 0 . This tolerance is refined before

termination in the solution of the final linear system.

This device reduced the number of operations in the com-

putation by a factor close to two in numerical experiments.

-16-

Thus far we have developed a finite algorithm to

solve the quadratic programming problem with upper and

lower bounds. The algorithm never changes the matrix

A and in fact only needs to use A to form products

with arbitrary vectors. Thus the algorithm is suitable

for sparse matrices A .

2. The Choice of the Scaling Matrix z

A remaining issue is the choice of the matrix

i3 . We need a scaling matrix %' such that the computation

of z- 1r can be performed easily and so that the convergence

of the conjugate gradient algorithm is accelerated signifi-

cantly. The convergence rate for the conjugate gradient

method applied to the linear system is bounded as follows:

(‘5) E(x'~') < (1,~'~) E(x(~-'))-

where K is the ratio of the largest and smallest eigenvalues

--l/2of the matrix M --l/2
AJJM and E is the descent function

for equation (4). [8]

We consider in this section two classes of scaling

w matrices. The first class is determined by the knowledge

of good scaling matrices for the full operator A , and

the second class is formed by applying alternate iterative

methods to the quadratic programming problem.

-179

2.1 Methods Based on a Scaling of the Matrix A

Suppose that M is a positive definite scaling matrix

for A and that P is the permutation matrix corresponding

to the current partitioning and rearrangement of the linear

system:

I T

PAPT = AII AJI

\ AJI AJJ 1 .
There are three simple methods which could be used to

obtain a matrix z whichscales AJJ .

Method 1:

Partition and rearrange the matrix M in a

manner corresponding to the current rearrangement of A

PMPT =

and use MJJ as the scaling matrix %i .

Method 2:

Partition and rearrange the matrix W = M-1

in a manner corresponding to the current rearrangement

of A :

T
PWP =

and use -1
'JJ as the scaling matrix E .

-18-

Method 3:

If a Cholesky factorization of M is available,

partition and rearrange the factors LLT as

PLLTPT = (PLPT)(PLTPT) = LII LIJ

LJI LJJ

'r T
LII LJI

T
LIJ L5J

and use T
LJJLJJ as Fi .

In actual computation, the matrices and vectors

are never physically rearranged. A vector of logical

variables can indicate membership in I or J and

can be used to ignore the appropriate matrix or vector

elements.

In special cases a single factorization of M = LLT ,

where L is lower triangular, suffices for Method 1.

Consider a tridiagonal matrix of the form

i

M1

M =

M2
.

.
.

.
M
~t nxn

-19-

where

Mi=

* \

"1 m2

.. .
. .. .

. m2

m2 "1

Then 6i has the form

f oll+c12+...+at=n

where. Hi has the same form as the matrix Mi , but

different dimension. SO the factors of each block Mi

are the leading principal submatrices of the factors

L and LT of the largest matrix M. in M .
1

Although Method 2 seems to be the most complicated,

it can easily be implemented without forming M-1 .

Since -wJJ = (MJJ-MJIM;;M;I)-l , we can form y2 = WJJr

by solving the system

-2o-

(1:: I%)(::) =(:)
Thus it suffices to have a subroutine to set up the right

hand side, solve a linear system with the original matrix

.M , and pick the appropriate elements from the solution

vector y . The disadvantage of this technique is that it

is much slower than the others if the set I has many

elements, since we must work with a full size matrix

system each time.

We now wish to show that whenever z is obtained from

a matrix M by one of the three methods above, then the

convergence bound for the conjugate gradient method applied

to a linear system involving the matrix AJJ using the

scaling matrix H is at least as good as that for the conju-

gate gradient method applied to a linear system involving the

full matrix A with scaling M . To do this, we compare

- -1
the eigenvalues of M AJJ with those of M-1A and thus

get a bound on K in expression (5). For any positive

definite scaling matrix M we have the following results:

Lemma 1 Let the scaling matrix M be obtained using

Method 1 or Method 2 above. Then it is positive definite.

Suppose the dimension of E is n-l , and let

-219

.X1LX2F...Lhn>0 berootsof det(A-XM)=O and

X1 1 x2 > . . . > xn-l> 0 be roots of det(AJJ-AM)= 0 .- -

- - -
Then '1 1 '1 1 ‘2 1 A2 1 l m* 2 �n-1 1 X,-l 1 �n l

Proof: H is positive definite since it is a principal

submatrix of a positive definite matrix. For the proof of

the interlacing of the eigenvalues, see Wilkinson [20, p.3401 n

Lemma 2 Let the scaling matrix 'iiii be obtained using

Method 3 above. Then the results of Lemma 1 hold for it.

Proof: The main diagonal elements of the factor LJJ

-are a subset of the main diagonalelementsof L , which

are all non-zero since LLT is positive definite. Thus

LJJLJJ
T is positive definite, too. To prove that the

eigenvalues interlace, note that

det(A-XM) = det(A-XLLT) = det(L-lAL-T-XI) .

By the Courant-Fischer characterization of eigenvalues,

x = min T -1
a+1 p

max{x L AL-Tx: II IIX = 1, Px = 0)
X

axn

= min max(yTAy: II LTY II = 1, Py = O),cr = O,l,...,n-1
P
oxn Y

where P is any matrix of the indicated dimension.

-22-

Suppose that AJJ is obtained from A by deleting the k-th

row and column. Then

-_
x cr+l = min

P
max{xzL;$JJL;TJxJ:

oxn-1 xJ
II XJ II = 1, PXJ = 0)

= min T

P
~~X(YJAJJYJ: IIL;JYJll = If ‘YJ = ‘1

Wn-1 yJ

= min Tmaxfy Ay: T T =lfPy=O)
P Y

yk = Of(L y)k = 0, llL yII

axn

= min
P

max{yTAy: II~~yll = 1, Py = 0, ely=O,e;flLTy= 03
cTxn Y

where ek is the k-th unit vector. Therefore, x0+l < Aa+l .-

Similarly,

x = maxcr+1 p
min{xTL-WTx: II IIX = 1, Px = 03

n-a-lxn
X

= max min{yTAy: IIL~~II = 1, Py = O),cr=O,l,...,n-1
P
n-a-lxn Y

= max min{xTL-l
P

J J*JJL;zxJ: IIxJII = ‘fpxJ= O3

n-a-lxn-1

= max
P

min(yTAy: II~~yll = 1, Py = O,e~y=O,e~L$=O3

n-cr-lxn Y

Therefore, x, > A0+l and the result follows. m

-Lemma3 If E is obtained by either Method 1, Method 2,

or Method 3, then if x1 and Xn are respectively the

largest and smallest roots of det(A-AM) = 0, and xl and

hs are respectively the largest and smallest roots of

det(AJJ-AR) = 0 , where the matrices z and AJJ have

dimension s , then A1 1 xl and Xnl‘r;s .

Proof: This result follows from induction using the results

of Lemmas 1 and 2. #

Lemma 3 gives us the following result:

Theorem 2 The convergence bound for the conjugate gradient

algorithm applied to the subproblems is at least as good

as that of the conjugate gradient method applied to

the original matrix.

Thus, if we have a matrix M for which linear systems

M d = r can be solved easily, and M scales A well in the

sense that the roots of det(A-XM) do not have a wide

range, then we have a good scaling operator for the sub-

problems in the scaled conjugate gradient algorithm for

quadratic programming.

- The simplest scaling matrix M is the diagonal

portion of A (mRR = aRR, m
Rj

= 0 R,j = 1,2,...,n,~#j)=

It has been shown by Forsythe and Straus [12] that if A

is two-cyclic, then among all diagonal matrices, this choice

-240

minimizes Ic in (5) and thus maximizes the estimated

convergence rate. Even for a general matrix A , it is

often advantageous to scale the problem in this way.

From the form of the matrix M in Method 3 , we

can see that the matrices E for Methods 1 and 3 differ

by at most a rank n-s matrix, where s is the dimension

of E, and the eigenvalues of the matrix obtained by

' Method 1 are greater than or equal to the eigenvalues of

the matrix obtained by Method 3 .

2.2 Methods Based on Iterative Algorithms

.
It has been shown before [For example, 11 that

suitable iterative techniques for solving linear or

nonlinear systems can be accelerated by application of the

conjugate gradient algorithm. We can extend this idea

to our problem. Define E -1 r (9
bY

z (9 z where

z is the vector obtained by applying a double sweep of

modified symmetric successive over-relaxation (SSOR)
.

to the linear system (4) using z (9 as the initial

guess. The SSOR iteration is modified so that no variable

violates the constraints. More precisely, let

fJ = bJ - AJIXI

AJJ = ('j!t s x s1

-259

f (i)
j-l S

* z. = z.
7 3

+ W(fj - c a. ~ - c a. z(i))/cr..
Q=l JR Q

Q=j IQ Q 33

- i

f
7

if
9

< c.
3c

'j =
d. if I>d
3 9 j
f

,= n3
otherwise

-We apply the SSOR iteration to the system

For j = 1,2,...,s, let

and for j = s,s-l,...,l, let

.

zb =
j S

j
;j+w(fj- c ii -

Q=l "jQ Q Q=:+l. cc ji%l'a j j

_ -I

9
if b

'j < 9
z. = d. if zb > d

3 J j j

Zb
j

otherwise

where o is a parameter such that 0<0<2. Then the

result of one iteration of modified SSOR is z . The

nonsymmetric version of this iteration (using forward

sweeps only) has been discussed by Cottle and Goheen [5].

for problems with A an M-matrix.

-26-

For the modified SSOR iteration, the scaling

operator M-1 has no simple form. The matrix is neither

symmetric nor positive definite, and it changes from

iteration to iteration in the conjugate gradient algorithm.

Thus, none of the conjugate gradient convergence theory

applies. No,netheless, it has performed well in experiments

on elliptic partial differential equations.

As mentioned in Sectionl, for the special case inwhich

C = 0, d = 00 and A is an M-matrix, the linear systems

/ can always be solved without violating the constraints

on
⌧☺ l

In this case, we can simply set

.
ii =z f b
j j

and z =z.
j J

without degrading the convergence of the iteration,

reducing the matrix E-l to

--
M l = w(2-u)(I-wLT)-1(I-~L)-1D-l

where AJJ = D(I-L-LT), L is strictly lower triangular,

and D is diagonal. As long as AJJ is normalized so that

its diagonal elements are equal, this matrix is symmetric

and positive definite, and the conjugate gradient con-

vergence theory applies.

-27-

3. Alternate Algorithms and Numerical Results

Standard algorithms for the general quadratic programm-

ing problem involve complementary pivoting and inversion or

factorization of submatrices of A [9,11,13,15,17]. These

algorithms may not be practical for large, sparse, structured

matrices. For example, free boundary problems in elliptic

partial differential equations often give rise to irreducible

Minkowski matrices (M-matrices), and A
-1 may be totally

full even though A is highly sparse. Successful algorithms

for this special application of quadratic programming have

often involved some modification of the SOR algorithm.

Cea and Glowinski [3] propose a block form of the

modified SOR iteration discussed in Section 2.2.

Cryer [7] obtained good results with the specialization

of this algorithm to the linear complementarity problem.

Cattle,. Golub, and Sacher [6] propose a SOR algorithm

for the complementarity problem which uses Sacher's

algorithm [19] for subproblems involving linear com-

plementarity problems with tridiagonal matrices.

Cottle and Goheen [51 extend this algorithm to

the quadratic programming problem and survey several

alternate methods.

We now present-a summary of the results of numerical

experiments on three groups of problems. We compare the

-28-

performance of the algorithm proposed in this paper

with that of Cottle and Goheen's SOR algorithm

discussed in Section 2.2, since in experiments reported

in 151, it ranked among the most effective algorithms.

Example 1 The first problem is the linear complementarity

problemwiththe matrix A corresponding to the Laplacian

. 5-point finite difference operator:

A =

-1

T -1
4

.
,

. '-1

-1 'T1m2xm2
-1

4
,
l

.

-1
.

-1

The conjugate gradient algorithm was run with scaling

matrices equal to the tridiagonal portion of A , a

partial LLT factorization, and the SSOR operator.

(These algorithms are denoted in the tables and figures

by CG+T,CG+LLT , and CG + SSOR respectively), The

LLT factorization was chosen to be one for which L has

the same sparsity patternas the lower triangular portion of

A . The algorithm is due to Meijerink and van der Vorst

and is defined in [16]. The scaling was performed using

Methods 2 and 3 for the tridiagonal and LLT matrices,

\

-1

4
mxm

but there was no significant difference between the

-29-

performance of the two methods. The SSOR scaling was

also performed in each of the two ways discussed in Section 2.2,

and, as expected, there was no difference in performance

for this example problem. Table 1 shows the results of

numerical e.xperiments with randomly generated vectors

b . We present the average number of inner iterations

over five examples for the various algorithms and for

m = 16 and m = 23 (n = 256 and 529 variables respectively).

For the algorithms with parameter w , results shown

are the average over w = 1.1, 1.3, 1.5, 1.7, and 1.9 .

In all cases, the initial guess x (0) was 0 , and

& = loo3 for all but the last iterations, with a

final criteria of E = 10-6 .

The conjugate gradient algorithms required 5-7

outer iterations for n = 256 and 6-8 for n = 529,

independent of scaling. The average number of active

variables per outer iteration was s = 196 for n = 256

and s = 435 for n = 529.

There is, of course, a varying amount of work per

iteration depending on which scaling is used. The

tridiagonal scaling from Method 3, for example, requires

approximately 3s operations (multiplications and

additions) while SSOR requires the equivalent of two

matrix-vector multiplications involving the matrix AJJ

(s x s) . The SOR algorithm requires a matrix-vector

-300

3
”

-
CG tiith CG with
Tridiagonal Partial
Scaling I

CG with
SSOR SOR

LLT Scaling I Scaling Algorithm

n=256

n=529

TABLE 1 Number of Iterations fdr Example 1 '

. Method 3 Method 3 (CG+SSOR)
(CG+T) (CG +LLT)

67 35 38 94

67 60 58 > 212

TABLE 2 Average Number of Variables Not at

Their Bounds During the Conjugate

Gradient Iteration for Example 2

S s/n

n c 5 c=9 c=13. C=5= c=g C=l3

256 185 138 109 .72 .54 .43

529 399 277 234 .75 .52 .44

900 662 473 393 .74 .55 .44

-310

multiplication by the entire matrix A (nxn) at every 8

-iteration, regardless of how many variables are at their

bounds.

It can be shown that K for the matrix A and for the

matrix M-1A with tridiagonal scaling is G(m2) . Using

the optimal value of o , SOR is expected to converge

in O(m2) iterations when applied to a linear system

involving the matrix A . The number of

iterations for the quadratic programming algorithm is

predicted well by the linear theory.

Figure 1 shows the variation in average number of

iterations for different values of the parameter w in

the SOR algorithm and for conjugate gradients with

SSOR scaling. The conjugate gradient algorithm can be

seen to be much less sensitive to the choice of o .

Example 2 This is a model for studying the effects of

torsion applied to a rectangular bar. Cea and Glowinski [3]

present the model for a crossection of the bar as follows

min l/2 [IIVu12dxdy - C I/ u dx dy
U 52 52

u=O on l?

lu(x,y) 1 < Dk,yJ’)-

where C is a positive constant related to the magnitude

of the torsion, D(x,y,l?) is the distance between the

-320

Iterations

100

1 , I I . .. 4

1.1 1.3 1.5 1.7 1.9
w

Figure 1. Algorithm Performance on Example 1
with Varying o.

-33.

3

\
\\ SOR n = 256

\
\
\
\
\
\
\
\
\
\
\

CG+SSOR n = 529 \

point (x,y) and r I the boundary of the region s2 ,

and u is the stress function. After discretization,

this is a quadratic programming problem. The distances

form the upper and lower bounds, the matrix A is taken

to be the Laplacian 5-point operator, and b has every

component equal to C . Figures 2-4 show the results of

experiments with m = 16, 23, and 30 (n = 256, 529, and

900 respectively) and C = 5, 9, and 13. The initial guess

and the convergence tolerance were as in Example 1.

Increasing values of C correspond to more variables

at their bounds in the final solution (approximately

30% for C = 5, 60% for C = 9, and 80% for C = 13).

The constraints for this problem are much tighter than those

for Example 1, and the second SSOR scaling for conjugate

gradients is not effective here.

Figures 5-7 show the variation in convergence for various

values of 0 for the SOR algorithm and the conjugate

gradient algorithm with SSOR scaling. Results are

similar to those of Example 1, but in this problem, where

so many variables are at their bounds in the optimal

solution, it is even more important to take advantage of

the reduction in work achieved by partitioning the system

instead of working with the entire set of variables at

each iteration. The average number of active variables

is given in Table 2 i and the number of outer iterations varied

from 4 to 8 for n = 256, and from 5 to 11 for n = 900.

-340

Iterations

100

SOR

CG+T

/
/

/
/

CG + LL
T

CG + SSOR

- 0

n

Figure 2. Algorithm Performance on Example 2, C = 5.

-3!5-

Iterations

0

CG+T

CG+LLT

SOR

--cm-- - -
CG+SSOR

256 529
t
900

n

Figure 3. Algorithm Performance on Example 2, C = 9.

-36

Iterations

200

100

0

-

. .

. .

-L

. .

. .

. .

. .

II

. .

. .

. .

. .

n

CG+LLT

CG+T

Figure 4, Algorithm Performance on Example 2, C = 13.

-37.

300.

Iterations

200

100

0

T

. .

. .

. .

. .

31

. .

. .

. .

m.

-I

. .

. .

I.

I.

-

‘\
\
\
\
\
I
\
\
\

SOR n = 900

CG+SSOR n = 900

w
1 . . 1 . l -

1.1 1.3 1.5 1.7 1.9

0

Figure 5. Algorithm Performance on Example 2
with Varying o , C = 5.

-389

Iterations

- 0

\

SOR n = 900

CG+SSOR n = 529

t . . . 1 I r I I I

1.1 1.3 1.5 1.7 1.9
0

Figure 6. Algorithm Performance on Example 2
with Varying o , C = 9.

-39-

Iterations

.

529

CG+SSOR n = 529

. I 1

1.1 1.3 1.s 1.7 1.9

Figure 7. Algorithm Performance on Example 2
with Varying w, C = 13.

-4o-

The typical pattern for examples using conjugate

gradients with SSOR scaling is that many restarts take

place at the beginning until a reasonable set I is identified.

Throughout this period then, the algorithm is equivalent

to SSOR used alone with some variables kept fixed.

Once I has stablized, few restarts occur, so the fast

convergence of the conjugate gradient algorithm can be exploited

with great effectiveness.. One of the advantages of this algorithm is that

the transitionfram SSOR toconjugategradientswith SSOR scaling is

is made autanatically.

Example 3

The matrix A of Examples 1 and 2 is a 2-cyclic matrix,

and theory tells us the optimal o for the SOR iteration

for a linear system. The matrix in this example is not

2-cyclic. It is the discrete Laplacian g-point operator

iA =.

T1 T2

T2 T1 T2... .
..

. 'T2
. .

T2 Tl

.

\
i

T1 =

If m2xm2

/ '20 -4
t
1, -4 20 -4 1;

.
I . . . i
i I
I . .
i

.-4 j
.,b

i .
'1

-410

400 -

Iterations ’
.

. .

. .

100 --

CG+SSOR
---.--. . -09 -0w,,,,,.-

l
.

t
. . . . I

. . .

1.1 1.3 1.5 1.7 1.9
0 -

w

Figure 8. -Algorithm Performahce on Example 3
with Varying w , n = 529.

-4%

.

.

-1
:I

-1

-4 mxm

All other features of this example were the same as in

Example 1. Figure 8 shows the results of applying the

conjugate gradient algorithm with SSOR scaling and

the SOR algorithm to a matrix of dimension n = 529

with five random vectors b . Results are similar

to Example 1, with SOR showing sensitivity to w while

the number of iterations for conjugate gradients with SSOR

scaling is relatively constant. The number of variables

not at their bounds in the final solution varied from

513 to 463 for the five problems, and the number of outer

iterations was 7 for all of the conjugate gradient runs.

4. Discussion and Conclusions

We have presented a conjugate gradient algorithm

with matrix splittings which is suitable for certain quadratic

- programming problems. The performance of the method on

special classes of problems might be enhanced by preprocessing

or by modifications to the inner iteration.

-430

For applications with A an M-matrix , the pre-

processing scheme of Cottle and Goheen [5] could be

used before beginning our algorithm in order to identify

some of the variables which will be at their bounds in

the optimal solution. These variables could then be

held fixed throughout the conjugate gradient iteration.

Other algorithms could be substituted for the

conjugate gradient iteration, as long as there is a

descent function for the inner iteration which guarantees

that no subproblem will repeat. The conjugate gradient

algorithm is quite versatile, however, and has rapid

convergence when used with a suitable scaling matrix.

Such scalings may be chosen to be portions of the matrix

A (for example, the diagonal or band part of the matrix)

or an operator arising from application of an iterative method

' forsolving linear systems. Operators for related physical

problems may also be used effectively. For example,

a fast direct method for solving Laplace's equation

over a regular region might be used as a scaling for a

problem with a matrix corresponding to Laplace's equation

over a region which does not permit separation of variables.

The conjugate gradient algorithm with matrix

splittings has been demonstrated to have finite termination

and to be effective for free boundary problems for elliptic

partial differential equations. The method, however, requires

only that the matrix A be positive definite and thus

I
440

has broader applications. Test results suggest that

the algorithm is effective whether or not the constraints

are tight.

Acknowledgements

Part of this work was completed while I was a doctoral student

of Dr. Gene H. Golub at Stanford University. I am deeply grateful

to him for his inspiration, guidance, and continual encouragement.

This research was begun at his suggestion, and he has given valuable

advice improving the work and its presentation. Special thanks go

to Mr. Lee Zukowski who prepared the figures and to Mr. F'ranklin

Luk for his careful reading of the manuscript.

-450

REFERENCES

[l] 0. Axelsson, "On preconditioning and convergence acceleration
in sparse matrix problems", Report CERN 74-10, CERN European
Organization for Nuclear Research (Geneva, 1974).

[2] C. Baiocchi, V. Comincioli, E. Magenes, and G.A. Pozzi,
"Free boundary problems in the theory of fluid flow through
porous media", Ann. Mat. Pura. Appl. 97 (1973) l-82.'

[3] J. Cea and R. Glowinski, "Sur des methodes d'optimisation par
relaxation", R.A.I.R.0 R-3 (1953) 5-32.

[4] Paul Concus, Gene H. Golub, and Dianne P. O'Leary, "A generalized
conjugate gradient method for the numerical solution of elliptic
partial differential equations", in: James R. Bunch and Donald J.
Rose, ed., Sparse matrix computations (Academic Press, New York,
1976) pp. 309-332. '

[5] Richard W. Cottle and Mark S. Goheen, "A special class of iarge
quadratic programs", Report SOL 76-7, Stanford University Systems
Optimization Laboratory (Stanford, California, 1976).

[6] Richard W. Cottle, Gene H. Golub, and Richard Sacher, "On the
_ solution of large, structured linear complementarity problems III",
Report 74-7, Stanford University Operations Research Department
(Stanford, California, 1974).

[7] C.W. Cryer, "The method of Christopherson for solving free
boundary problems for infinite journal bearings by means of finite
differences", Math. Comp. 25 (1971) 435-443.

[8] J.W. Daniel, "The conjugate gradient method for linear and
nonlinear operator equations", SIAM J, Numer. Anal. 4 (1967) 10-26.

[9] G.B. Dantzig and R.W. Cottle, "Complementary pivot theory of .
mathematical programming", in: G.B. Dantzig and A.F. Veinott,
Jr., ed., Mathematics of the decision sciences, part 1 (American
Mathematical Society, Providence, R.I., 1968) pp. 115-136.

[lo] Martin A. Diamond, "The solution of a quadratic programming problem
using fast methods to solve systems of linear equations", Int. J.
Systems Sci. 5 (1974) 131- $36.

- 46 -

Ul

WI

I El31

I El41

1 [151

~ WI

1171

* _ WI

I ml

R. Fletcher and M.P. Jackson, "Minimization of a quadratic
function of many variables subject only to lower and upper
bounds", J. Inst. Maths. Applies. 14(1974) 159-174.

G.E. Forsythe and E.G. Straus, "On best conditioned matrices",
Proc. Amer. Math. Sot. (1955) 340-345.

G. Hadley, Nonlinear and dynamic programming (Addison-Wesley
Publishing Co., Reading.Mass., 1964).

Magnus R. Hestenes and Eduard Stiefel, "Methods of conjugate gradients
for solving linear systems", J. Res. Nat. Bur. Standards 49(1952)
409-436.

C.E. Lemke, "Bimatrix equilibrium points and mathematical
programming", Management Sci. 11 (1965) 681-689.

J.A. Meijerink and H.A. van der Vorst, "An iterative solution
method for linear systems of which the coefficient matrix is a
symmetric M-matrix", Math. Comp. 31 (1977) 148-162.

W. Murray, "An algorithm for finding a local minimum of an indefinite
quadratic program", Report NAC 1, National Physical Laboratory
(Teddington, England, 1971).

B.T. Polyak, "The conjugate gradient method in extremal problems",
U.S.S.R. Computational Mathematics and Mathematical Physics 9
(1969) 94-112.

Richard S. Sacher, 'On the solution of large, structured linear
complementarity problems II", Report 73-5, Stanford University
Operations Research Department (Stanford, California, 1974).

J.H. Wilkinson, The algebraic eigenvalue problem .(Clarendon Press),
Oxford, 1965).

- 47 -

