cm m CONVERGENCE OF TRIGONOMETRIC INTERPOLANTS

by

Kenneth P. Bube

STAN-CS-77-636
 OCTOBER 1977

COMPUTER SCIENCE DEPARTMENT School of Humanities and Sciences STANFORD UNIVERSITY

Kenneth P. Bube ${ }^{*}$

ABSTRACT

For $m>0$, we obtain sharp estimates of the uniform accuracy of the m-th derivative of the n-point trigonometric interpolant of a function for two classes of periodic functions on JR. As a corollary, the n-point interpolant of a function in C^{k} uniformly approximates the function to order $O\left(n^{1 / 2-k}\right)$, improving the recent estimate of $\sigma\left(n^{l-k}\right)$. These results remain valid if we replace the trigonometric interpolant by its K-th partial sum, replacing n by K in the estimates.

[^0]1. Introduction and Notation

Using the concept of aliasing, Snider [6] obtains an $\boldsymbol{\sigma}\left(n^{1-k}\right.$ estimate of the uniform accuracy of the n-point trigonometric interpolants of periodic C^{k} functions for $k>2$, improving the $\sigma\left(n^{-1 / 2}\right)$ estimate for C^{2} functions presented in Isaacson and Keller [2]. Kreiss and Oliger [4] use aliasing to show that if the Fourier coefficients $\hat{v}(\xi)$ of a periodic function $v(x)$ satisfy $\hat{\mathrm{v}}(\xi)=\sigma\left(|\xi|^{-\beta}\right)$ with $\beta>1$, then the trigonometric interpolants of v uniformly approximate v to order $\sigma\left(n^{1-\beta}\right)$. Th'is also gives an $\sigma\left(n^{l-k}\right)$ estimate for C^{k} functions since the largest β we can use in general is $\beta=k$. We use aliasing and a different property of the Fourier coefficients of C^{k} functions--the fact that C^{k} is contained in the Sobolev space H^{k}-- to obtain an $O\left(n^{1 / 2-k)}\right.$ estimate for $\mathrm{k}>1$.

In [5], Kreiss and Oliger estimate the L^{2} accuracy of trigonometric interpolants and their derivatives for functions in Sobolev spaces. This paper applies their approach and an extension of a theorem appearing in Zygmund [7] to obtain an $o\left(n^{1 / 2+m-s}\right)$ estimate of the uniform accuracy of the m-th derivatives of trigonometric interpolants of functions in the Sobolev spaces H^{s} for $s>\frac{l}{2}+m$. By similar methods we obtain an $o\left(\mathrm{n}^{m-k}\right)$ estimate for functions in C^{k} whose k-th derivatives have absolutely converging Fourier series if $k>m$, and we show that these two estimates are sharp. We also obtain an $\sigma\left(n^{1 / 2+m-k-\alpha}\right)$ estimate for functions in the Holder space $C^{k, \alpha}$ if $0<\alpha<1$ and $k+\alpha>\frac{1}{2}+m$. These results remain valid if we replace the trigonometric interpolant by its K-th partial sum, replacing n by
K in the estimates.
All functions considered will be assumed to be defined on \mathbb{R} and one-periodic. We use the following notation.
$\|v\|_{\infty}$ denotes $\sup |v(x)|$.
L^{2} is the set of complex-valued measurable functions $v(x)$ for which

$$
\|v\|_{2}^{2}=\int_{0}^{1}|v(x)|^{2} d x<\infty
$$

The Fourier series of a function $v(x) \in I^{2}$ is

$$
\sum_{\xi=-\infty}^{\infty} \hat{v}(\xi) e^{2 \pi i \xi x}
$$

where

$$
\hat{v}(\xi)=\int_{v_{0}}^{1} v(x) e^{-2 \pi i \xi x} d x
$$

$D^{k} v$ denotes $d^{k} v / d x x^{k}$. If we say that $D^{k} v \in B$ for some space of functions B, we mean that $D^{k-1} v$ is an indefinite integral of the function $D^{k} v$ in $B . \quad C^{k}$ is the set of functions with k continuous derivatives.

$$
\|v\|_{C} k=\sum_{j=0}^{k}\left\|D^{j} v\right\|_{\infty}
$$

For a real number $s>0, H^{s}$ is the set of functions $v(x) \in L^{2}$ such that

$$
\|v\|_{H^{s}}^{2}=|\hat{v}(0)|^{2}+\sum_{\xi=-\infty}^{\infty}|2 \pi \xi|^{2 s}|\hat{v}(\xi)|^{2}<\infty
$$

A is the set of functions $v(x) \in L^{2}$ with absolutely converging Fourier series, i.e.,

$$
\sum_{\xi=-\infty}^{\infty}|\hat{v}(\xi)|<\infty
$$

For $0<\alpha<1$, let

$$
[\mathrm{v}]_{\alpha}=\sup _{x, y \in \mathbb{R}} \frac{|v(x)-v(y)|}{|X-Y|^{a}}
$$

For an integer $k>0, C^{k, \alpha}$ is the set of functions $v(x) \in C^{k}$ such that $\left[\mathrm{D}^{\mathrm{k}} \mathrm{v}\right]_{\alpha}<\infty$.

If $v \in A$, then v is equal a.e. to a continuous function. Since we are interested in interpolation, we will tacitly assume that A C C^{0} and similarly that $H^{S} \subset C^{0}$ for $s>\frac{1}{2}$. For an integer $k>1$, $H k$ is the set of functions $v(x)$ such that $D^{k} v \in L^{2}$ and thus $C^{k} \subset H^{k}$. See Agmon [l] for a discussion of L^{2} derivatives.

2. Trigonometric Interpolation

We state some well known results on trigonometric interpolation. These appear in this form for odd n in Kreiss and Oliger [4]. See also Isaacson and Keller [2] and Zygmund [7].
A. n is odd. Let $N>0$ be an integer and $h=\frac{1}{2 N+1}$ and let $x_{v}=\nu \mathrm{h}$ for $v=0,1,2, \ldots, 2 \mathrm{~N}$. There is a unique trigonometric polynomial $I_{\mathrm{N}} \mathrm{v}(\mathrm{x})$ of order at most N which interpolates $\mathrm{V}(\mathrm{x})$ at the points x_{v} for $0 \leq v \leq 2 N$ given by

$$
\begin{equation*}
I_{N} v(x)=\sum_{\xi=-\mathbb{N}}^{N} a(\xi) e^{2 \pi i \xi x} \tag{I}
\end{equation*}
$$

where

$$
\begin{equation*}
a(\xi)=h \sum_{v=0}^{2 N} v\left(x_{v}\right) e^{-2 \pi i \xi x_{v}} \tag{2}
\end{equation*}
$$

The effect called aliasing is the fact that

$$
\begin{equation*}
a(\xi)=\sum_{j=-\infty}^{\infty} \hat{v}(\xi+j(2 \mathbb{N}+1)) \quad|\xi| \leq \mathbb{N} \tag{3}
\end{equation*}
$$

provided that the Fourier series for $v(x)$ converges at the points x_{v} for $0 \leq v \leq 2 N$.

Following the notation of Zygmund, define for $1 \leq K \leq N$

$$
\begin{equation*}
I_{N, K} V(x)=\sum_{\xi=-K}^{K} a(\xi) e^{2 \pi i \xi x} \tag{4}
\end{equation*}
$$

where $a(\xi)$ is given by (2). $I_{N, K}$ is the K-th partial sum of $I_{N} v$, and $I_{N, N^{V}}=I_{N} v . \quad$ If $v(x)$ is real-valued, so is $I N^{V} K^{V} \cdot$
B. N is even. Let $N>0$ be an integer and $h=\frac{1}{2 N}$ and let $x_{v}=v h$ for $0 \leq v \leq 2 N-1$. There is a unique trigonometric polynomial $\mathrm{E}_{\mathrm{N}} \mathrm{V}(\mathrm{x})$ of order at most N which interpolates $\mathrm{V}(\mathrm{x})$ at the points x_{v} for $0<v \leq 2 N-1$ given by

$$
\mathrm{E}_{\mathbb{N}} \mathrm{v}(\mathrm{x})=\sum_{\xi=-\mathbb{N}}^{N} a(\xi) e^{2 \pi i \xi \mathrm{x}}
$$

which also satisfies

$$
a(-N)=a(N)
$$

The Σ^{\prime} notation indicates that the first and last terms are multiplied by $1 / 2$. The coefficients are given by

$$
\begin{equation*}
a(\xi) \cdot h \sum_{v}^{2 N-1} v\left(x_{v}\right) e^{-2 \pi i \xi x_{v}} \tag{6}
\end{equation*}
$$

Provided that the Fourier series for $v(x)$ converges at the points x_{v} for $0<-v \leq 2 N-1$, we have

$$
\begin{equation*}
a(E)=\sum_{j=-\infty}^{\infty} \hat{v}(\xi+j(2 N)) \quad|\xi| \subseteq \mathbb{C} \tag{7}
\end{equation*}
$$

Define for $1<K<N$

$$
\begin{equation*}
\mathrm{E}_{\mathrm{N}, \mathrm{~K}} \mathrm{~V}(\mathrm{x})=\sum_{\xi=-\mathrm{K}}^{\mathrm{K}} a(\xi) e^{2 \pi i \xi \mathrm{x}} \tag{8}
\end{equation*}
$$

where $a(\xi)$ is given by (6), and let $E N, \mathbb{N}^{V}=F_{N} V$. If $V(x)$ is real-valued, so is $E_{N, K} V^{V}$ for $K<N$. If $w(x)$ is a trigonometric polynomial of order at most N and $\hat{W}(\mathbb{N})=\hat{W}(-\mathbb{N})$, then $E_{N} w=w$.

3. Accuracy Estimation

Define

$$
\begin{aligned}
& \delta(v, m, N, K)=\left\|D^{m} v-D^{m}\left(I_{N, K}\right)\right\|_{\infty} \\
& \epsilon(v, m, N, K)=\left\|D^{m} v-D^{m}\left(E_{N}, K^{v}\right)\right\|_{\infty}
\end{aligned}
$$

The $m=0$ case of the following lemma appears in Theorem 5. 16 of Chapter 10 in Zygmund [7].

Lemma 1. Let $m \geq 0$ be an integer, and suppose that $u=D^{m} v \in A$. Then

$$
\delta(v, m, N, K) \leq 2 \sum_{|\xi|>K}|\hat{u}(\xi)|
$$

Proof. Let
(9) $\quad v_{L}(x)=\sum_{\xi=-K}^{K} \hat{v}(\xi) e^{2 \pi i \xi x}$

$$
\mathrm{v}_{\mathrm{R}}(\mathrm{x})=\mid \sum_{|\xi|>K} \hat{\mathrm{v}}(\xi) \mathrm{e}^{2 \pi i \xi \mathrm{x}}
$$

(10) $\quad W_{L}=I_{N, K} V_{L}$

$$
w_{R}=I_{N, K} v_{R}
$$

Then $v=v_{L}+v_{R}$ and $I_{N,} K^{v}=W_{L}+{ }_{W}$. Since $W_{L}=V_{L}$,

$$
\begin{equation*}
\mathrm{v}-\mathrm{I}_{\mathrm{N}, \mathrm{~K}} \mathrm{~V}=\mathrm{v}_{\mathrm{R}}-\mathrm{w}_{\mathrm{R}} \tag{11}
\end{equation*}
$$

so

$$
\begin{equation*}
\delta(v, m, N, K) \leq\left\|D^{m} v_{R}\right\|_{\infty}+\left\|D^{m} w_{R}\right\|_{\infty} \tag{12}
\end{equation*}
$$

By (3),

$$
\begin{aligned}
\mathrm{w}_{R}(x) & =\sum_{\xi=-K}^{K} \sum_{j=-\infty}^{\infty} \hat{\mathrm{v}}_{R}(\xi+j 2 N+1) e^{2 \pi i \xi x} \\
\left\|D^{m} w_{R}\right\|_{\infty} & \leq \sum_{\xi=-K}^{K}|2 \pi \xi|^{m} \sum_{j=-\infty}^{\infty}\left|\hat{v}_{R}(\xi+j(2 N+1))\right| \\
& \leq \sum_{\xi=-K}^{K} \sum_{j=-\infty}^{\infty} \mid 2 \pi\left(\xi+\left.j(2 N+1)\right|^{m}\left|\hat{v}_{R}(\xi+j(2 N+1))\right|\right. \\
& \leq \sum_{\xi=-\infty}^{\infty}|2 \pi \xi|^{m}\left|\hat{v}_{R}(\xi)\right|
\end{aligned}
$$

$$
\begin{equation*}
\left\|D^{m} w_{R}\right\|_{\infty} \leq \sum_{|\xi|} \sum_{K}|\hat{u}(\xi)| \tag{13}
\end{equation*}
$$

Also

$$
\begin{equation*}
\left\|D^{m} v_{R}\right\|_{\infty} \leq \sum_{|\xi|>}|\hat{u}(\xi)| \tag{14}
\end{equation*}
$$

Combining (12), (13), and (14) gives the lemma.

Lemma 2. Let $m \geq 0$ be an integer, and suppose that $u=D^{m} v \in A$.
Then

$$
\begin{array}{lll}
\epsilon(v, m, N, K) \leq 2 \quad \text { for } \quad \sum_{|\xi|}|\hat{u}(\xi)| & K<N \\
\epsilon(v, m, N, N) \leq 2 & \sum^{\sum}|\hat{u}(\xi)| \geq N
\end{array}
$$

Proof. For $K<N$, the proof is the same as in Lemma 1.

Using (9) with $\mathrm{K}=\mathrm{N}-1$ and replacing (10) by

$$
\begin{equation*}
W_{L}=E_{N} V_{L} \tag{15}
\end{equation*}
$$

$$
{ }^{w_{R}}=E_{\mathrm{N}} \mathrm{v}_{\mathrm{R}}
$$

we obtain

$$
\begin{equation*}
\epsilon(v, m, N, N) \leq\left\|D^{m} v_{R}\right\|_{\infty}+\left\|D^{m} w_{R}\right\|_{\infty} \tag{16}
\end{equation*}
$$

By (7),

$$
\begin{aligned}
{ }_{W_{R}}(x) & =\sum_{\xi=-\mathbb{N}}^{N}, \sum_{j=-\infty}^{\infty} \hat{v}_{R}(\xi+j(2 N)) e^{2 \pi i \xi x} \\
\left\|D^{m}{ }_{w_{R}}\right\|_{\infty} & \leq \sum_{\xi=-\mathbb{N}}^{N} \sum_{j=-\infty}^{\infty}|2 \pi(\xi+j(2 N))|^{m}\left|\hat{v}_{R}(\xi+j(2 N))\right| \\
& =\sum_{\xi=-\infty}^{\infty}|2 \pi \xi|^{m}\left|\hat{v}_{R}(\xi)\right|
\end{aligned}
$$

and the lemma follows as'in the proof of Lemma 1.
Theorem 1. Let $m>0$ be an integer and $v \in H^{s}$ with $s>\frac{1}{2}+m$. Then for each K,

$$
\begin{equation*}
\sup _{N \geq K} \delta(v, m, N, K)<\mathrm{CR}_{K}(v) K^{I / 2+m-s} \tag{17}
\end{equation*}
$$

where

$$
\mathbf{c}=\frac{2(2 \pi)^{\mathrm{m}-\mathrm{s}}}{\sqrt{\mathrm{~s}-\frac{1}{2}-m}}
$$

and

$$
\left.R_{K}(v)=\left.\left(\sum_{\xi \mid>K}|2 \pi \xi|^{2 s} \hat{v} \xi\right)\right|^{2}\right)^{1 / 2}
$$

Also

$$
\begin{equation*}
\sup _{N>K} \epsilon(v, m, N, K) \leq C R_{K}(v) K^{I / 2+m-s} \tag{18}
\end{equation*}
$$

and

$$
\epsilon(\mathrm{v}, \mathrm{~m}, \mathrm{~K}, \mathrm{~K}) \leq \mathrm{CR}_{\mathrm{K}-\mathrm{I}}(\mathrm{v})(\mathrm{K}-1)^{1 / 2+\mathrm{m}-\mathrm{s}}
$$

Note that since $v \in H^{s}, R_{K}(v) \rightarrow 0$ as $K \rightarrow \infty$.

Proof. By Lemma 1, for $\mathbb{N} \geq K$ we have

$$
\begin{aligned}
\delta(\mathrm{v}, \mathrm{~m}, \mathrm{~N}, \mathrm{~K}) & \leq 2 \underset{|\xi|>\mathrm{K}}{\sum|2 \pi \xi|^{\mathrm{m}}|\hat{\mathrm{v}}(\xi)|} \\
& \leq 2\left(\sum_{\xi \mid>\mathrm{K}}|2 \pi \xi|^{2 s}|\hat{\mathrm{v}}(\xi)|^{2}\right)^{1 / 2}\left(\sum_{|\xi|>K}^{\sum_{\mathrm{K}}}|2 \pi \xi|^{2(\mathrm{~m}-\mathrm{s})}\right)^{1 / 2} \\
& \leq 2 R_{\mathrm{K}}(\mathrm{v})(2 \pi)^{\mathrm{m}-\mathrm{s}}\left(2 \frac{K^{1+2(m-s)}}{2(\mathrm{~s}-\mathrm{m})-1}\right)^{1 / 2}
\end{aligned}
$$

and (17) follows. (18) and (19) follow similarly from Lemma 2. Theorem 2. Let $k \geq m \geq 0$ be integers, and suppose $D^{k} v \in A$. Then for each K,

$$
\begin{equation*}
\sup _{N \geq K} \delta(\mathrm{v}, \mathrm{~m}, \mathrm{~N}, \mathrm{~K}) \leq \mathrm{Cr}_{\mathrm{K}}(\mathrm{v}) \mathrm{K}^{\mathrm{m}-\mathrm{k}} \tag{20}
\end{equation*}
$$

where

$$
c=2(2 \pi)^{m-k}
$$

and

$$
r_{K}(v)={ }_{|\xi|>K}^{\Sigma}|2 \pi \xi|^{k}|\hat{v}(\xi)| .
$$

Also

$$
\begin{equation*}
\sup _{N>K} \epsilon(v, m, N, K)<C r_{K}(v) K^{m-k} \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\epsilon(\mathrm{v}, \mathrm{~m}, \mathrm{~K}, \mathrm{~K}) \leq \mathrm{Cr} r_{\mathrm{K}-1}(\mathrm{v}) \mathrm{K}^{\mathrm{m}-\mathrm{k}} \tag{22}
\end{equation*}
$$

Note that since $D^{k} v \in A, r_{K}(v) \rightarrow 0$ as $K \rightarrow \infty$.

Proof. By Lemma 1, for $N \geq K$ we have

$$
\begin{aligned}
\delta(\mathrm{v}, \mathrm{~m}, \mathrm{~N}, \mathrm{~K}) & \leq 2 \underset{|\xi|>\mathrm{K}}{\sum^{2}}|2 \pi \xi|^{\mathrm{m}}|\hat{\mathrm{v}}(\xi)| \\
& \leq 2(2 \pi \mathrm{~K})^{\mathrm{m}-\mathrm{k}} \sum_{|\xi|>K}^{\sum}|2 \pi \xi|^{\mathrm{k}}|\hat{\mathrm{v}}(\xi)|
\end{aligned}
$$

and (20) follows. (21) and (22) follow similarly from Lemma 2.
Theorem 3. Let $m \geq 0$ be an integer and $v \in C^{k, \alpha}$ with $k+\alpha>\frac{1}{2}+m$. Then for each k,

$$
\begin{equation*}
\sup _{\mathbb{N} \geq \mathrm{K}} \delta(\mathrm{v}, \mathrm{~m}, \mathrm{~N}, \mathrm{~K})<\mathrm{C}\left[\mathrm{D}^{\mathrm{k}} \mathrm{v}\right]_{\alpha} \mathrm{K}^{I / 2+\mathrm{m}-\mathrm{k}-\alpha} \tag{23}
\end{equation*}
$$

where

$$
c=\frac{2^{\alpha+1 / 2} \pi^{m-k}}{1-2^{1 / 2+m-k-\alpha}}
$$

Also

$$
\begin{equation*}
\sup _{N \geq K} \epsilon(v, m, N, K)<C\left[D^{k} v\right]_{\alpha} K^{I / 2+m-k-\alpha} \tag{24}
\end{equation*}
$$

Proof. The method of proof is similar to that of Bernstein's theorem that $C^{0, \alpha} \subset A$ for $\alpha>\frac{1}{2}$. See Katznelson [3]. Let $u=D^{m}{ }_{v}$ and $f=D^{k} v$. If $t=\frac{1}{3} 2^{-\nu}$ and $2^{\nu} \leq|\xi| \leq 2^{\nu+1}$, then $\left|e^{2 \pi i \xi t}-1\right|>\sqrt{3}$, so since

$$
f(x+t)-f(x)=\sum_{\xi=-\infty}^{\infty}\left(e^{2 \pi i \xi t}-1\right) \hat{f}(\xi) e^{2 \pi i \xi x}
$$

Parseval's relation implies that

$$
\begin{aligned}
2^{\nu} \leq|\xi|_{\leq 2^{\nu+1}}|\hat{f}(\xi)|^{2} & \leq \frac{1}{3} 2^{\nu}<|\xi|_{\leq 2^{\nu+1}}\left|e^{2 \pi i \xi t}-1\right|^{2}|\hat{f}(\xi)|^{2} \\
& \leq \frac{1}{3}\|f(x+t)-f(x)\|_{2}^{2} \\
& \leq \frac{1}{3}\|f(x+t)-f(x)\|_{\infty}^{2} \\
& \leq \frac{1}{3} t^{2 \alpha}[f]_{\alpha}^{2} \\
& \leq \frac{1}{3} 2^{-2 \nu \alpha}[f]_{\alpha}^{2}
\end{aligned}
$$

By the Schwarz inequality,

$$
\begin{aligned}
2^{\nu} \leq|\xi|<2^{\nu+1} & |\hat{u}(\xi)| \leq\left(2^{\nu+1} 2^{\nu} \leq|\xi|<2^{\nu+1}|\hat{u}(\xi)|^{2}\right)^{1 / 2} \\
& =\left(2^{\nu+1} 2^{\nu} \leq|\xi|^{\sum}<2^{\nu+1} \frac{|\hat{f}(\xi)|^{2}}{|2 \pi \xi|^{22(k-m)}}\right)^{1 / 2} \\
& \leq(2 \pi)^{m-k} 2^{\nu(1 / 2+m-k)}\left(2 \quad 2^{\nu} \leq|\xi|^{\sum}<2^{\nu+1}|\hat{f}(\xi)|^{2}\right)^{1 / 2} \\
& \leq(2 \pi)^{m-k} 2^{\nu(1 / 2+m-k-\alpha)}[f]
\end{aligned}
$$

Given K, let j satisfy $2 j<K<2^{j+1}$. Then by Lemma 1, for $N \geq K$ we have

$$
\begin{aligned}
& \delta(v, m, N, K) \leq 2 \sum_{|\xi| \geq k}^{\sum}|\hat{u}(\xi)| \\
& \leq 2 \sum_{\nu=j}^{\infty} 2^{\nu} \leq|\xi|_{<2^{\nu+1}}|\hat{u}(\xi)| \\
& \leq 2(2 \pi)^{m-k}[f]_{\alpha} \sum_{\nu=j}^{\infty} 2^{\nu(1 / 2+m-k-\alpha)} \\
& \leq 2(2 \pi)^{m-k}[f] \\
& \alpha \frac{\left(2^{j}, 1 / 2+m-k-\alpha\right.}{1-2^{1 / 2+m-k-\alpha}}
\end{aligned}
$$

and (23) follows since $\frac{K}{2} \geq 2^{j}$ and $\frac{1}{2}+m-k-\alpha<0$. (24) follows similarly from Lemma 2.

4. Sharpness of Estimates

Theorem 1 shows that if $v \in H^{s}$ and $s>\frac{1}{2}+m$, then $\delta(v, m, N, K)$ and $\epsilon(v, m, N, K)$ are $O\left(K^{\beth / 2+m-s}\right)$, independent of $N>K$. Theorem 2 shows that if $D^{k} v \in A$ and $k>m$, then $\delta(v, m, N, K)$ and $\epsilon(\mathrm{v}, \mathrm{m}, \mathrm{N}, \mathrm{K})$ are $\mathrm{O}\left(\mathrm{K}^{\mathrm{m}-\mathrm{k}}\right)$, independent of $\mathrm{N}>\mathrm{K}$. We prove in this section that these estimates are sharp: they cannot be improved for these two classes of functions.

Theorem 4. Let $\left\{\gamma_{\nu}\right\}$ be a sequence of positive numbers converging to 0 . Let $m \geq 0$ be an integer, and $s>\frac{1}{2}+m$. Then there exists a $v \in H^{s}$ such that

$$
\begin{equation*}
\lim _{\mathrm{K} \rightarrow \infty} \frac{\inf _{\mathrm{N}} \mathrm{~N}>\mathrm{K}^{\delta(\mathrm{v}, \mathrm{~m}, \mathrm{~N}, \mathrm{~K})}}{\gamma_{\mathrm{K}} \mathrm{~K}^{l / 2+\mathrm{m}-\mathrm{s}}}=\infty \tag{25}
\end{equation*}
$$

Proof. Let $p_{O}=1$ and define a strictly increasing sequence $\left\{p_{j}\right\}$ of positive integers inductively such that for $j>1$, if j is odd $p_{j}=2 p_{j-1}$, and if j is even p_{j} is a power of 2 such that

$$
\begin{equation*}
\gamma_{\nu} \leq 2^{-j} \quad \text { for } \quad v \geq p_{j} / 4 \tag{26}
\end{equation*}
$$

Define the sequence $\left\{b_{\nu}\right\}$ for $v \geq 1$ by

$$
\begin{equation*}
b_{\nu}=\left(\frac{2^{-j}}{p_{j+1}-p_{j}}\right)^{1 / 2} \quad \text { for } \quad P j \leq \nu<p_{j+1} \tag{27}
\end{equation*}
$$

Then $\sum_{\nu=1}^{\infty} b_{\nu}^{2}=\sum_{j=0}^{\infty} \sum_{j} \leq \nu<p_{j+1}^{2}=\sum_{j=0}^{\infty} 2-j<\infty$.

Note that $b_{\nu} \geq b_{\nu+1}$ for $\nu>1$ since $p_{j} \geq 2 p_{j-1}$ for $j>0$. Let

$$
\begin{equation*}
v(x)=\sum_{\nu=1}^{\infty}(-1)^{\nu} \frac{1}{(2 \pi \nu)^{s}} b_{\nu} e^{2 \pi i \nu x} \tag{28}
\end{equation*}
$$

Since $\sum_{\xi=-\infty}^{\infty}|2 \pi \xi|^{2 s}|\hat{v}(\xi)|^{2}=\sum_{\nu=1}^{\infty} b^{2} \nu^{<} \infty, \quad v \in H^{s}$. Define v_{L}, V_{R}, W_{L} and w_{R} as in (9) and (10). By (11),

$$
\begin{equation*}
\delta(v, m, N, K) \geq\left\|D^{m} v_{R}\right\|_{\infty}-\left\|D^{m} w_{R}\right\|_{\infty} \tag{29}
\end{equation*}
$$

NOW

$$
\left|D^{m} v_{R}\left(\frac{1}{2}\right)\right|=\left|\sum_{\mid \xi b K}(2 \pi i \xi)^{m} \hat{v}(\xi)^{\pi i \xi}\right|=\sum_{\nu>K}(2 \pi \nu)^{m-s_{b}}{ }_{v}
$$

so

$$
\begin{equation*}
\left\|D^{m} v_{R}\right\|_{\infty} \geq \sum_{\nu>K}(2 \pi \nu)^{m-s_{b}} \tag{30}
\end{equation*}
$$

By (3),

$$
w_{R}(x)=\sum_{\xi=-K}^{K} a(\xi) e^{2 \pi i \xi x}
$$

where for $|\xi| \leq K$,

$$
a(\xi)=\sum_{j=-\infty}^{\infty} \hat{v}_{R}(\xi+j(2 N+1))=\sum_{j=1}^{\infty} \hat{v}(\xi+j(2 N+1))
$$

Since $2 \mathrm{~N}+1$ is odd, this last series is an alternating series of terms decreasing in absolute value, so

$$
|a(\xi)| \leq|\hat{v}(\xi+2 N+1)|
$$

Hence

$$
\begin{aligned}
\left\|D^{m} w_{R}\right\|_{\infty} & \leq \sum_{\xi=-K}^{K}|2 \pi \xi|^{m}|a(\xi)| \\
& \leq \sum_{\xi=-K}^{K}|2 \pi(\xi+2 N+1)|^{m}|\hat{v}(\xi+2 N+1)| \\
& =\sum_{\nu=2 N+1-K}^{2 N+1+K}(2 \pi \nu)^{m-s_{b}}{ }_{\nu} \\
& \leq \sum_{\nu=K+1}^{3 K+1}(2 \pi \nu)^{m-s_{b}}{ }_{\nu}
\end{aligned}
$$

since the b_{v}^{\prime} s form a decreasing sequence ${ }_{\text {ce. }}$ Combining this with (29) and (30) yields

$$
\delta(v, m, N, K) \geq \sum_{\nu=3 \mathrm{~K}+2}^{\infty}(2 \pi \nu)^{m-s_{b}} .
$$

For even $j>4$, let $K_{j}=p_{j} / 4$. Then since $p_{j+1}=2 p_{j}$,

$$
\begin{aligned}
\delta\left(v, m, N, K_{j}\right) & \geq \sum_{\nu=p_{j}}^{\infty}(2 \pi \nu)^{m-s_{b}}{ }_{\nu} \\
& >P_{j} \leq \nu<p_{j+1}(2 \pi \nu)^{m-s}\left(p_{j} 2^{j}\right)^{-1 / 2} \\
& \geq\left(p_{j} 2^{j}\right)^{-1 / 2}(2 \pi)^{m-s} \int_{P j}^{2 P_{j}} \frac{d x}{x^{s-m}}
\end{aligned}
$$

Now $\int_{p_{j}}^{2 P_{j}} \frac{d x}{x^{\beta}}=c_{\beta} p_{j}^{\text {l- }}$ where

$$
c_{\beta}=\left\{\begin{array}{lll}
\frac{2^{1-\beta}-1}{1-\beta} & \text { for } & \beta \neq 1 \\
\log 2 & \text { for } & \beta=1
\end{array}\right.
$$

so if $d_{\beta}=2^{1-3 \beta_{\pi}-\beta_{\beta}}$,

$$
\begin{aligned}
\delta\left(v, m, N, K_{j}\right) & \geq c_{s-m} 2^{-j / 2}(2 \pi)^{m-s} p_{j} 1 / 2+m-s \\
& =d_{s-m} 2^{-j / 2} K_{j}^{1 / 2+m-s}
\end{aligned}
$$

Thus (26) implies that

$$
\frac{\delta\left(\mathrm{v}, \mathrm{~m}, \mathrm{~N}, \mathrm{~K}_{\mathrm{j}}\right)}{\gamma_{\mathrm{K}_{j}} K_{j}^{I} / 2+\mathrm{m}-\mathrm{s}} \geq \mathrm{a}_{\mathrm{s}-\mathrm{m}^{2}}{ }^{\mathrm{j} / 2}
$$

and the theorem follows.

Theorem 5. Let $\left\{\gamma_{v}\right\}$ be a sequence of positive numbers converging to 0 . Let $\mathrm{k}>\mathrm{m} \geq 0$ be integers. Then there exists a with $D^{k} v \in A$ such that

$$
\begin{equation*}
\lim _{K \rightarrow \infty} \frac{\inf _{n \geq K} \delta(v, m, N, K)}{\boldsymbol{\gamma}_{K} K^{m-k}}=\infty . \tag{31}
\end{equation*}
$$

Proof. Same as the proof of Theorem 4 with the following alterations. Replace s by k throughout the proof. Replace (26) by

$$
\begin{equation*}
\gamma_{\nu} \leq 2^{-2 j} \tag{26'}
\end{equation*}
$$

for
$v \geq p_{j} / 4$.

Define $\quad b_{\nu}=\frac{2^{-j}}{p_{j+1}-p_{j}} \quad$ for \quad Dj $\leq \nu<p_{j+1}$.
Then $\sum_{\nu=1}^{\infty} b_{\nu}<\infty$ and $\sum_{\xi=-\infty}^{\infty}|2 \pi \xi|^{k}|\hat{v}(\xi)|<\infty$ so $D^{k} v \in A$. We have for even j > 4

$$
\begin{aligned}
\delta\left(v, m, N, K_{j}\right) & \geq \sum_{\nu=p_{j}}^{\infty}(2 \pi \nu)^{m-k_{b}} \\
& >p_{\nu} \sum_{\nu<p_{j+1}}(2 \pi \nu)^{m-k}\left(p_{j} 2^{j}\right)^{-1} \\
& \geq\left(p_{j} 2^{j}\right)^{-l}(2 \pi)^{m-k} \int_{p_{j}}^{2 p_{j}} \frac{d x}{x^{k-m}} \\
& =c_{k-m^{2}} 2^{-j}(2 \pi)^{m-k} p_{j}^{m-k} \\
& =\frac{1}{2} a_{k-m^{2}} 2^{-j} K_{j}^{m-k}
\end{aligned}
$$

Thus (26') implies that

$$
\frac{\delta\left(v, m, N, K_{j}\right)}{\gamma_{K_{j}} K_{j}^{m-k}} \geq \frac{1}{2} d_{K-m} 2^{2^{j}}
$$

and the theorem follows.

The following lemma is geometrically obvious.

Lemma 3. Let $\left\{\beta_{\nu}\right\}$ be a decreasing sequence of positive numbers converging to 0 . Then $\sum_{\nu=1}^{\infty} \beta_{\nu} e^{2 \pi i \nu / 3}$ converges and

$$
\left|\sum_{\nu=1}^{\infty} \beta_{\nu} e^{2 \pi i \nu / 3}\right| \leq \beta_{1} .
$$

Theorem 6. Let $\left\{\gamma_{v}\right\}$ be a sequence of positive numbers converging to 0 . Let $m \geq 0$ be an integer, and $s>\frac{1}{2}+m$. Then there exists a $v \in H^{S}$ such that
and

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \sup _{N \rightarrow(\mathrm{v}, \mathrm{~m}, \mathrm{~N}, \mathbb{N})} \frac{\epsilon}{\gamma_{\mathbb{N}} \mathbb{N}^{\mathcal{l}} / 2+\mathrm{m}-\mathrm{s}}=\infty \tag{33}
\end{equation*}
$$

If k is an integer with $k>m$, then there exists a v with $D^{k} v \in A$ such that

$$
\begin{equation*}
\lim _{K \rightarrow \infty} \sup _{\mathrm{N} \rightarrow \mathrm{~K}, 3 \nmid N^{\epsilon(v, m, N, K)}}^{\gamma_{K} K^{m-k}}=\infty \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{\epsilon(v, m, N, N)}{\gamma_{N} N^{m-k}}=\infty \tag{35}
\end{equation*}
$$

Proof. The proof of (32) is the same as the proof of Theorem 4 with the following alterations. Replace (28) by

$$
v(x)=\sum_{\nu=1}^{\infty} e^{2 \pi i \nu / 3} \frac{1}{(2 \pi \nu)^{s}} b e_{\nu}^{2 \pi i v x}
$$

For $N>K$, we have

$$
\epsilon(v, m, N, K) \geq\left\|D^{m} v_{R}\right\|_{\infty}-\left\|D^{m} w_{R}\right\|_{\infty}
$$

where v_{R} is given by (9) and $w_{R}=E_{N, ~} \mathrm{~K}_{\mathrm{R}}$. Now

$$
\left|D^{m} v_{R}\left(\frac{2}{3}\right)\right|=\left|\sum_{|\xi| \geqslant K}(2 \pi i \xi)^{m} \hat{v}(\xi) e^{4 \pi i \xi / 3}\right|=\sum_{\nu>K}(2 \pi \nu)^{m-s_{b}}{ }_{\nu}
$$

so

$$
\left\|D^{m} v_{R}\right\|_{\infty} \geq \sum_{\nu>K}(2 \pi \nu)^{m-s_{b}}
$$

By (7),

$$
w_{R}(x)=\sum_{\xi=-K}^{K} a(\xi) e^{2 \pi i \xi x}
$$

where for $|\xi| \leq K$,

$$
a(\xi)=\sum_{j=-\infty}^{\infty} \hat{v}_{R}(\xi+j(2 N))=\sum_{j=1}^{\infty} \hat{v}(\xi+j(2 N))
$$

Suppose $3 k N$. Then $j(2 N)$ cycles through the equivalence classes mod 3, so by Lemma 3,

$$
|a(\xi)| \leq|\hat{v}(\xi+2 N)|
$$

Hence, as before,

$$
\left\|D^{m} w_{R}\right\|_{\infty} \leq \sum_{\nu=K+1}^{3 K+1}(2 \pi \nu)^{m-s_{b}} b_{\nu}
$$

and the rest of the proof goes through, establishing (32).
To prove (33) for this v, imitate the proof of Theorem 4 as above with-the following changes. Define v_{L} and v_{R} by (9) with $\mathrm{K}=\mathrm{N}-1$, and define w_{L} and w_{R} by (15). Then

$$
\left\|D^{m} v_{R}\right\|_{\infty} \geq \sum_{\nu>N}(2 \pi \nu)^{m-s_{b}}{ }_{v}
$$

By (7),

$$
w_{R}(x)=\sum_{\xi=-\mathbb{N}}^{N} a(\xi) e^{2 \pi i \xi x}
$$

where

$$
\begin{array}{ll}
a(\xi)=\sum_{j=1}^{\infty} \hat{\mathrm{v}}(\xi+j(2 N)) & \text { for } \quad|\xi|<N \\
a(-N)=a(N)=\sum_{j=0}^{\infty} \hat{v}(N+j(2 N)) &
\end{array}
$$

For $\mathbb{N}=K_{j}$ for even $j>4,3 \backslash \mathbb{N}$, so by Lemma 3,

$$
\begin{array}{ll}
|a(\xi)| \leq|\hat{v}(\xi+2 N)| & \text { for }|\xi|<N \\
|a(-N)|=|a(N)| \leq|\hat{v}(N)| . &
\end{array}
$$

Hence

$$
\begin{aligned}
\left\|D^{m}{ }_{w_{R}}\right\|_{\infty} & \leq \sum_{\xi=-N}^{N}|2 \pi \xi|^{m}|a(\xi)| \\
& \leq \sum_{\xi=-N+1}^{N-1}|2 \pi(\xi+2 N)|^{m}|\hat{v}(\xi+2 N)|+|2 \pi N|^{m}|\hat{v}(N)| \\
& =\sum_{\nu=N}^{3 N-1}(2 \pi \nu)^{m-s_{b}} b_{\nu}
\end{aligned}
$$

So

$$
\epsilon(v, m, N, N) \geq \sum_{\nu=3 N}^{\infty}(2 \pi \nu)^{m-s_{b}}{ }_{\nu}
$$

and (33) follows.
(34) and (35) follow by similar alterations to the proof of

Theorem 5 .

Remarks. Theorem 4 shows that the $o\left(K^{I / 2+m-s}\right)$ estimate of $\delta(v, m, N, K)$ given by Theorem 1 is sharp by showing that there is no function $g(K)$ going to 0 faster than $K^{1 / 2+m-s}$ for which $\delta(v, m, N, K)=\sigma(g(K))$ for all $v \in H^{S}$. Note that we can obtain a real-valued function in H^{S} satisfying (25): since the trigonometric interpolants of real-valued functions are real-valued, at least one of the real or imaginary parts of the v constructed must also satisfy (25). Similar statements hold for Theorem 5 and 6. Also, many of the details of the constructions are for convenience, e.g. making the p_{j} 's powers of 2 , and placing the singularities at $x=\frac{1}{2}$ in the odd case and at $x=\frac{2}{3}$ in the even case.
5. Corollaries and Summary

Let w_{n} denote the n-point trigonometric interpolant of v.
i.e., if $n=2 N+I, w_{n}=I_{N V} v$ and if $n=2 N, w_{n}=F_{N} v$.

Corollary 1. Let $m \geq 0$ be an integer. If $v \in H^{s}$ with $s>\frac{l}{2}+m$, then

$$
\left\|v-w_{n}\right\|_{c^{m}}=o\left(n^{1 / 2+m-s}\right)
$$

If $D^{k} v \in A$ and $k>m$, then

$$
\left\|V-w_{n}\right\|_{c^{m}}=o\left(n^{m-k}\right)
$$

If $v \in C^{k, \alpha}$ and $k+\alpha>\frac{1}{2}+m$, then

$$
\left\|v-w_{n}\right\|_{c^{m}}=\sigma\left(n^{1 / 2+m-k-\alpha}\right)
$$

The $m=0$ case gives the improved estimate for C^{k} functions:

Corollary 2. If $v \in C^{k}$ and $k>1$, then

$$
\left\|\mathrm{V}-\mathrm{w}_{\mathrm{n}}\right\|_{\infty}=o\left(\mathrm{n}^{\mathrm{l} / 2-\mathrm{k}}\right)
$$

These corollaries also hold for the K-th partial sums of w_{n} if wereplace n by K in the estimates.

Although we gain an extra half power of n in the estimate for general C^{k} functions over the recent $\boldsymbol{O}\left(n^{\text {lek }}\right)$ estimate, there are other classes of functions for which Kreiss and Oliger's $\theta\left(n^{1-\beta}\right)$ estimate for functions satisfying $\hat{\mathrm{v}}(\xi)=\boldsymbol{\sigma}\left(|\xi|^{-\beta}\right.$, yields better
results. For example, if D^{k} is not necessarily continuous but is of bounded variation, then $\hat{v}(\xi)=\sigma\left(|\xi|^{-k-1}\right)$, so $\left\|v-w_{n}\right\|_{\infty}=\sigma\left(n^{-k}\right)$. Or, if $D^{k-l_{v}}$ is absolutely continuous (or equivalently if $\left.D^{k} v \in L^{l}\right)$, then $\hat{v}(\xi)=o\left(|\xi|^{-k}\right)$, and Kreiss and Oliger's proof shows that $\left\|v-w_{n}\right\|_{\infty}=o\left(n^{1-k}\right)$ if $k>1$. See Katznelson [3] and Zygmund [7] for discussions of the growth of Fourier coefficients. We conclude with a table of estimates.

$$
\begin{array}{lll}
\text { If } D^{k} \in & \text { then }\left\|v-w_{n}\right\|_{\infty}= & \text { for } \\
L^{1} & \circ\left(n^{1-k}\right) & k>2 \\
L^{2} & o\left(n^{1 / 2-k}\right) & k>1 \\
C^{0, \alpha} & \sigma\left(n^{1 / 2-k-a}\right) & k+\alpha>\frac{1}{2} \\
H^{s} & o\left(n^{112-k-s}\right) & k+s>\frac{1}{2} \\
\text { B.v. } & \sigma\left(n^{-k}\right) & k>1 \\
\text { A } & o\left(n^{-k}\right) & k>0 .
\end{array}
$$

Acknowledgement. The author would like to thank Dr. Joseph Oliger for

[^1][1] S. Agmon. Lectures on Elliptic Boundary Value Problems. Princeton: D. Van Nostrand Company, Inc., 1965.
[2] E. Isaacson and H. B. Keller. Analysis of Numerical Methods. New York: John Wiley and Sons, Inc., 1966.
[3] Y. Katznelson. An Introduction to Harmonic Analysis. New York: John Wiley and Sons, Inc., 1968.
[4] H.-O. Kreiss and J. Oliger. Methods for the Approximate Solution of Time Dependent Problems. GARP Publications Series, No. 10. Geneva: World Meteorological Organization, 1973.
[5] H.-O. Kreiss and J. Oliger. Stability of the Fourier Method. Report STAN-CS-77-616, Computer Science Department, Stanford University, 1977.
[6] A. D. Snider, "An Improved Estimate of the Accuracy of Trigonometric Interpolation," SIAM J. Numer. Anal., v. 9, 1972. pp. 505-508.
[7] A. Zygmund. Trigonometric Series. Cambridge University Press, 1959.

[^0]: * Stanford University, Stanford, California 94305.

 Supported in part by the Office of Naval Research under Contract NO0014-75-C-1132.

[^1]: the helpful suggestions he made during the preparation of this paper.

