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[ ntroduction

In many applications, we wish to solve the follow ng problem
Conpute accurate approximations to the g largest singular values
and corresponding left and right singular vectors of a large sparse

mxn real matrix A where g is nmuch less than both mand n.

Problens of this type frequently occur in factor analysis, regression,

and i mage processing (see Golub and Luk [5]1).

The matrix Ais too large to be stored in core as an mx n
array, but since it is sparse it can be stored in packed form e.g
by storing only the row index, colum index and value of each non-zero
element. Wien Ais stored in this way it is not practical to apply
transformations to A but matrix products AX or A% for a gi ven
matrix X of much snaller dinmension than A can be performed very
efficiently. Thus the usual algorithm for conputing singular values
by transforming A (Golub and Reinsch [6]) is not practical for |arge
sparse matrices. W propose a block Lanczos algorithm for solving such
problems. Qur algorithm does not transform A |t accesses A only
through a user-supplied routine that computes AX or A% for a

given matrix X



2. Al gorithm
W restate our problem we have an mx n matrix A, where m> n,
and we wish to compute the g largest singular values and corresponding

vectors of A, assuming that the h (h<g) largest singular values and

correspondi ng vectors have already been conputed to sonme known accuracy.

0 A
& )hasfor

A” 0
its non-zero eigenval ues the positive singular values of A  each

W discuss an idea of Lanczos [7]; the matrix (

appearing with both a positive and a negative sign. If u and v, are

the left and right singular vectors corresponding to the positive singu-

u. u,
lar value o Oof A then ("'1) and ( '”1) will be the eigenvectors

V.4 v.
~L

~J]

At o

Qur problemcan therefore be regarded as computing the g |argest

0O A
corresponding to the eigenval ues 19 and -045 T€sp., of ( )

0O A
ei genval ues and eigenvectors of ( £ ), when the h | argest eigen-
A” O
val ues and eigenvectors are known to sonme good accuracy.
VW shall use the Euclidean norm for vectors and the Frobenius norm

for matrices, viz.

n o 1/2 %
bl -t - (2, for x = (eI
n n o 1/2 )
lall = lall; = 131 j2=31 aij> for A = (a;,) .

2.1 Restricting A to a Subspace of |nterest

Let 0; 2 0, 2.Me > g be the h largest conputed singular val ues

of A and Iet XO and YO be matrices whose colums are the conputed

left and right singular vectors, resp., such that XZXO = | and



t

YY = . W desire accurate approximations to the (g-h) largest
singular values and vectors of A, defined by & = (I _)%Dg)tA(I_YOYS)

so that the left singular vectors of &4 are orthogonal to the col ums
of X and the right singular vectors of A are orthogonal to the
col ums of Y_. This restriction is necessary because our algorithm
if applied to A wthout taking the already conputed singular vectors

into account, will reconpute the sane |argest singular values of A
o A

=t

W can exploit Lanczos's idea and exam ne (
A" 0

). W& can show

it o Ato

0O A 0O A
t hat ( ) is the restriction of ( ) to a subspace that is
XO XO
orthogonal to the space spanned by the colums of < ) :

Y -Y
o o

Let X, and Y be the matrices consisting of the orthonornal

vectors that are orthogonal to the subspace spanned by the col uims of

X and Y, resp.. Define
o) )

Not e
2T
QtQ=-21-( 21 >=I
2T
Consi der
0 A
1,
B=2g ( )Q
AJC 0
=C+A
wher e
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Not e
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Since Bis simlar to A they have equal eigenvalues. By the
perturbation theory for symetric matrices [14, Chap. 2], the eigen-
values of Cdiffer fromthose of B (and hence A) by anounts that
are bounded by |ja].
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If all the lgiH and |[n; Il were small, then || woul d be

smal| also. For exanple, if

le,ll =<,
and
Hﬂin = 6]'_ 2
t hen
h h
Bl = V2 (T &+ 5 &) =Te
i=1 i=1
and

||A||svl=?- Voe=-e ;
Vo

thus the eigenvalues of Cwll differ fromthose of B, and hence
A, by quantities that are less in modulus than e.

& see, therefore, that the (g-h) largest eigenval ues of

0 A 0 A
) approxi mate the (h+l),(h+),...,g €i genval ues of ( £ )

A o A O

by errors less than e.

2.2 Block Bidiagonalization

Let us describe a block Lanczos algorithm that conputes a block

J( S)

bi diagonal matrix. W shall call this matrix , Where s is

the nunber of blocks and each block is of order p. Then J(S) has
order ps (where we assume ps < n). W shall show in section 2.3
that the p largest singular val ue of J(s) are usually good approxi-
mations to those of A.

. . . t
We start with an arbitrary n x p matrix Q such that Q,q; = |

and performa QR factorization of the product EQl:
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PlAl D= AQl ,

t

wher e Py is an mx p matrix such that P

171

and Al IS a

p x p upper triangular matrix. Qur algorithm continues wth

=t %
UBiy #= AP - Qb
and
- t
L

= 2,3 000y S,

"where Q.B. 1 and P.A, are the QR factorizations of the respective

i1
right hand sides, i-.e.

Qs isan n x p matrix such that Q

Py is an mx p matrix such that

and both B, ,

Thus ,

A(Ql’QQ,oo I,Qs) = (Png,-- ."PS)

and 1
t
1

P Al Bl
t A
P - 2
2 A(Q]-’Qz,ooo,qs) =

Pt

e _ct

and A; are p x p upper triangul ar

matrices.

= 1(s) ,



provided that PJ;Pj = 0 for if j. In order to show this we first

not e that
n t
P} 0 A By
+ ‘. .
P, 0 O "
L s-1 -1
Pt 0 O A\/P. P eeP 00 <0 A
s 172 s Y
L "t - e e A
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t t
0 Q, B, 4 O
. : -. .- t
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t
0 Q; (6] Al
+
0
e 0 OB
N no
0 Q- - -2
2 l/o A\/0 P.O P_.++-0 P A, 0
t l S - . L4 .
<P20 —t = . .t
. A® 0/\q, 0 @, 0 - Q0 &
. - B O A
£ s-1 s
0 Q‘s A O
t S
P O
S

()

So our algorithmto generate the bl ock bidiagonal matrix J ®fromik

is equivalent to the Lanczos al gorithm (Underwood [12]) to generate a
0 A

bl ock tridiagonal matrix from the symmetric matrix <-t ) From
A” 0o/.

[12, pp. 47-51], it follows that

G () () (D () () rom o s

orthonormal matrices. Therefore {Pi} and {Qi} are two sequences of
orthonormal matrices.
The restricted matrix A is not readily available. W wish
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to work with the original matrix A Consider
(5 2)
it o
t
(0 DGR ) #(
> Y At o Ve\y -v ) V2 2
i ((I-xoxz) A) (1-x x°) 0
0 (IYYD}X(Z 0 (IYY))

o}

0 Pl 0 P
and the fact that ( ),( ),...,( ), %) all belong to the
Ql 0 _ Qs 0

O A 0
Krylov space* generated by (_ ) and ( ) We conclude that we
1

ONd' ONd-

it o Q
my replace A by Ain our algorithmif we orthogonalize the P,'s,
1<ig<s, withrespect to X and the Qj's,2_<_,j5s, with respect

to YO:

Al gorithm
Start with an arbitrary n x p matrix Qy such that QiTQl = 1.

Conput e
Pl i = AQZL

and
P, := (I-X.X°)P
1 ool °

Factori ze 131 such that

*The Krylov space generated by A and X is the space spanned by

2y 3

{X,AX,A“X,A"X. .. }+



._ A t, _ _
pA = B, where PPy =1 and A = {\]}
For i = 2,3,.e0,s
(1) Conpute
A % t
Q3= APy 4 - Q3854
and §. := (1-Y.Y°)d
i”* oo’
Factori ze di such t hat
= 3 t = =
QB; ; 1= Q; , Wwhere QQ, | and B; 4 AN
(2) Conpute
P, := AQ, - P, B
i 7 7% T TiLlti-l
and B, = (I-x X°)B, .
1 O 0 1
Fact ori ze ﬁi such that
~ t _ _
PlAi = P, wher e P;P; = I and A; = N} -

2.3 Error Bounds

s)
W give a theoremto show that the singular values of R are

usual |y accurate approxi mations to those of A.

Theorem
Let oy > 0, > .€M> 0 >0 be the singular values of the mx n
- / S
restricted matrix A and | et (Ui}s > c};)>-, Zoés)?_o be the

singul ar values of the psx ps matrix 3(s) generated by the bl ock

. t
Lanczos algorithm Let <t be the smallest singular value of inl’

10



wher e Q isan n x p starting matrix for the Lanczos al gorithm
such t hat cifiql = | and vy isan n x p matrix consisting of the

right singular vectors corresponding to the p largest singular values

of A. W assume T >0 and we see T < 1 since VJ'_TVl: . Then

for k = 1,2,...,p, We obtain

k k k
wher e
e2 (0. 40, ) tange
k = \917% s Lo
( )
2s=1'1-y

V4 — T
k O'k+0'l

and T,  , is the (2s-1)-th Chebyshev polynonial of the first kind.

Pr oof

Since the largest singular values of a matrix B are mnus the

O B
smal | est eigenval ues of ( . ., Wwe obtain the desired result by
B O o &
appl yi ng Underwood' s theorem [12, pg. 37] to (-t )
A" O

V¢ consider an exanple that shows how a proper choice of the block

Size p reduces the error bounds, and how U(is ), 1<i <p, generally

approximates o,, 1 <1 < p, well even for a small s.

Let oy = 1.0, o, = 0.9, 05 = 0.5, and? = cos 0.1. Let

ps < 10. W shall see in section 3 how the available conputer storage

pl aces an upper bound on the value ps. If we choose p =1, s = 10,

t hen 1



tan € 7299,

7 = xTo) = 0%

1ira |
1-7, = 1.105

T)4(1:105) = 2.8 x 100,

o —2X99—'= 2.5 ><10'5 ;

and : H
(2.8 x 100 )2
whereas if p =2, s =5, then

1.0 - 0.5
7n=T0+10="%"

0.9 - 0.5+ 21
Y2=55 =+ 1% .~
1+y

1 1.25 .
I, o T
1
2 121 _
1_72 - 0.79 1'55 ’
e
T9(l.67) =10 ,

To(1.53) = 3.7 x 100,

and

2 22X 99150100

10

L

2 - 1.9x992'=1_ux 10-5 .
(3.7 x 107)

€

Ve see that for the block method, we can expect a nore accurate
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approxi mation to o and we note that o, is conputed to the same

accuracy as ¢, when p = 1.

1

2.4 Reorthogonalization

W have shown that the {P,} and {;} are two sequences of
orthogonal matrices. But the property holds only in exact arithnetic.
In practice, the two sequences |ose orthogonality very rapidly due to

cancel lation errors in the Lanczos steps

t t

Q (TAFR ) -8 54,

{ 2 < i <s
A "
Py :=AQ; - Py 4B5 5 5

A renedy is to reorthogonalize Pi(Qi) with respect to Pj(Qj),j <,
as soon as Pi(Qi) I's conput ed.

The loss of orthogonality does not have adverse effects on the
accuracy of the conputed singular values (Paige [8]). Rut their nultipli-
cities are questionable because once orthogonality is lost, the Lanczos
method essentially restarts and reconputes the singular values that it
has already conputed. Reorthogonalization apparently stabilizes the
Lanczos process but its cost in machine time is high. The cost in
storage may even be prohibitive, for all the {Pj} and {Qj} nust
now be stored in core. The Lanczos method without reorthogonalization
allows us to keep only the nost recently conputed P, and Qy in
menory and store the others on disk or magnetic tape.

Partial reorthogonalization, i.e. reorthogonalization of Pi(Qi)
with respect to only some of the previously conputed Pj's (Qj's),

| ooks promsing too. It appears that just reorthogonalizing Pi(Qi)

13



with respect to ) may reduce the effects of cancellation

Pi-1(Q
errors present in the conputation of Pi(Qi) and help preserve
orthogonality at a very low cost in machine time and storage.

W have tacitly assumed that we can carry out the Lanczos iterations
for s steps. (dearly this my not always be the case. W decide
to check the length of each col um of Pi(Qi) as soon as it has been
generated in the QR factorization. |If a colum has a Euclidean
length I ess than sone tolerance, chosen in the program as the square
root of the machine precision, it is set equal to the zero vector. W
thus elimnate the errors caused by normalizing vectors consisting of
nunerical roundoffs to unit Euclidean |ength.

Before a Lanczos iteration begins, our program checks the starting
matri x Q, for colums of all zeros. It first replaces any such
colums with colums of random nunbers and then orthonormalizes the re-
sultant matrix. In this way, our program can restart itself even after
l'inear independence has been lost. Since the work to check for col ums
of all zeros is prohibitive, we check for zero singular values conputed
in the previous iteration instead, assumng that they are caused only
by colums of all zeros. Since our problemis to compute the few
(usually < 10) largest singular values of a matrix of large order
(usual Iy > 1000), it is extremely unlikely that a desired singular value
is zero.

5

2.5 Conputation of Singular Values and Vectors of

Ve now wish to conpute the singular values and vectors of the
ps x ps block bidiagonal matrix 3(51

{8)5(8)(s)® _ (s)

14



In the rest of this section we shall omt the superscript s. from
J(s) and denote its order by t = ps. Since the p x p blocks which
formthe bl ock diagonal of J are upper triangular and the p x p
bl ocks which form the block superdiagonal are lower triangular, we see
that the blocks all fit together to form an upper triangular band
matrix , dense within the band and with bandw dth (nunmber of super-
di agonal s) equal to p. The rest of this section treats the problem
of conputing the singular values and vectors of an upper triangular
band matrix J. The case where the vectors are not required is also
considered since this section may be useful outside the block Lanczos context.

The method consists of two phases. The first phase reduces
J to bidiagonal formby a finite sequence of orthogonal transformations.
The problem of doing this efficiently is the main subject of this
section. The singular values of A are preserved under the trans-
formations. The second phase reduces the bidiagonal form to diagonal
formby a modified version of the QR algorithm  This process is described
in detail in Goiub and Reinsch [ 6] and will not be discussed any further
here. The singular values of J are the final diagonal elenents, and
the matrices of left and right singular vectors are the products of
all the left and right transformations {resp.) used in the two phases
of the reduction.

W are left with the first phase, reducing J to bidiagonal form
The methods of Gvens and Househol der for reducing a full symetric
matrix to tridiagonal form preserving eigenvalues are well known and
described for exanple in WIkinson [14]. In order to preserve eigen-
values, the same elementary transformations (either Gvens or Househol der)

are applied to both the left and right sides of J to reduce it to

15



tridiagonal form A simlar nmethod for reducing a nonsymretric matrix

to bidiagonal form preserving singular values (but not of course eigenvalues)
is described in Golub and Reinsch [5]. Singular values are preserved

when different elenentary transformations are applied to the left and right
sides of A CGolub and Reinsch use Househol der transformations, but G vens
transformations could easily be used instead. For the reduction of a full
matrix to bidiagonal or tridiagonal form the nmethod of Househol der is about
twice as fast as the method of Gvens. However in 1972 Gentleman [3] showed
how "fast Gvens" transformations can be inplemented. These are also described
in Van Loan [13], and it appears that there is now little difference in the
speed or effectiveness of the two nethods.

Reducing a symetric band matrix to tridiagonal formin a straightforward
manner imediately fills in the zeros off the band. Rutishauser [9] shows how
this may be avoided and the reduction conpleted while preserving the band
structure, using either Gvens or Househol der transformations. Here we describe
how. to generalize this to the reduction of an upper triangular band matrix to

bi di agonal form (in general a simlar process would apply to any nonsymmetric

band matrix).
Recal | that a Gvens transformation matrix P(i"j) I's given by
J‘ -
1
1
c d
1
P(l""j = ‘. where ¢© + d® = 1 and has the property
1
j -d C
1

that if it is applied to J on the left then the resulting matrix
g = plisdly has elements different from J only in rows | and j,

16



with zeros in both rows in those colums where there were zeros in
both before, and, if ¢ and d are chosen appropriately, with its
(i,3) elenent equal to zero. Let us wite J = (713), J' = (7ij)'
Then in particular we have

Vi T Vg t Wy
(L<k<t)

o= =dy.. + .
7Jk 711{ Cka

SO 75i =0 if c = 7:11/ 7?1 + 7§i’ d = 7ji/\/7ii + 7?1- The price
paid for the annihilation is that a new nonzero el ement appears in one
row wherever there was one already in the other. W say that row j
is rotated against row i by the transformation. Sinilarly if P(i’j)
is applied on the right only colums i and j of J are changed with
733‘3 = 0if c and d are chosen correctly.

To describe the reduction process let us suppose that J is an
upper triangular band matrix with order t = 11 and p = 4 superdi agonal s.
Then the first thing the algorithm does is to zero 715 by nul tiplying
J on the right by P(4’5) with ¢ and d chosen correctly, or in
other words by rotating colum 5 against colum 4. This introduces one
new non-zero el enent 75'Ll-' This new elenment is annihilated by nmultiplying
J' on the left by P(4’5), that is by rotating row 5 against row 4.
This in turn introduces a new non-zero elenent 71'9. Two nore trans-
formations, one fromthe left and one fromthe right, are now required to
conpletely "chase the elenent off thewmatrix". At this point the resulting
matrix has the same zero pattern as the original mtrix J except that
715 has been annihilated. Now the process is repeated for an and
then for 713 and then the first row has the desired bidiagonal form

17



Finally, the entire process is repeated for every row until the
matri X becomes bidiagonal. The method is illustrated in Figure 1. Let
us call this nmethod Band Gvens I.

Reducing the matrix to bidiagonal formin this way requires approxi-
mat el y upte mul tiplications using ordinary Gvens transformtions, or
2pt2 using "fast Gvens", assuming 1 << p << t. Thi s compares W th
a count of approximtely 4t3/5 nul tiplications required to do the
reduction by the standard Gol ub-Reinsch algorithm using Househol der
transformations and ignoring the band structure, filling in the zeros off
the band. This is of course a big savings if p <<t as assuned, and
furthernore only pt storage |ocations are required to store the band

2 g orage locations are required for the standard Golub-

matrix while t
Reinsch reduction. If left and right singular vectors are required
however, the rotations used in Band Gvens | nust be accunul ated as the
conputation proceeds. This requires WO milti plications using ordinary
Gvens transformations or 2t3 usi ng "fast Gvens", as opposed to 8t3/3
mul tiplications for the Golub-Reinsch reduction, so that if the vectors
are required, Band Gvens | still requires Iess nultiplications than

Col ub-Reinsch if the fast Gvens transformations are used. Both methods
require approximtely 2t 2 storage |ocations.

There are several other possible nethods to reduce J to bidiagonal
form The nethod we shall call Band Gvens || applies a sequence of
rotations to J as before, but instead of reducing each row in turn to
two elements, it systematically reduces the bandwi dth by zeroing each
superdiagonal in turn. In other words, in the exanple presented in Figure

1, after zeroing 715 and chasing it off the matrix, it next turns to

756 i nstead of 714 This nethod requires nore rotations, since the

18



FI GURE 1.

Bi diagonal i zing a Pentadiagonal Upper Triangular Mtrix of Oder 11

Using Gvens Rotations by the Method Band G vens |

XxXxXcba

| XX XXXC
g CXXXXXDb
bxxXxxxa
axXxXxxx
XX XXXC
CXXXXX
b x x X X
f‘ axxx
X X

X

STEP 1:

(i) Zero 715 and chase it a a a off the matrix:

Rotate col. 5 against col. 4 to zero y,; and introduce yg.
Rotate row 5 against row 4 to zero 7éu and i ntroduce 7119.

Rotate col. 9 against col. 8 to zero 7119 and introduce 7§8'
Rotate row 9 against row 8 to zero 7§8
- chased off

© (i) Zero 7y, and chase it b b b off the matrix simlarly.

% (iii) Zero 743 and chase it ¢ ¢ c al so.

STEP 2: Repeat for the second row - etc.

19



decreasing bandw dth causes nore nonzero el ements to be introduced before
a certain element is chased off the matrix, but for the same reason
each rotation is less work if the vectors are not required. The two
consi derations cancel each other out so that Rand Gvens | and Il
require about the same number of multiplications if vectors are not
required, but the latter is slower by a factor of about fn p if
vectors are required.

Let us consider now a nmethod we shall call Rand Householder. This
follows an idea suggested in Rutishauser [9 ] for the corresponding
ei genval ue tridiagonal reduction problem Recall that a Househol der
(i,3,p)

transformation matrix Q can be chosen to have the property that

when applied to A on the left the resulting matrix A = Q(i’j’p)A

has zeros in positions i+l,...,j of colum p but is different from
Aonly in rows i,...,j and has zeros in all rows in those colums

where there were zeros in all before. As before the role of rows and col ums
is reversed when the transformation is applied on the right. Let us describe

the algorithmfor the t = 11, p = 4 case again. The first step is to zero

all of a
Q(2,&,1)

107 8137 w1y simul taneously by applying a Househol der transformation
to Aon the right. Instead of introducing one new non-zero
element as in the first step of the algorithm using G vens transformation

this introduces a whole lower triangle (of order 3) of non-zero elenments

This is annihilated by a sequence of 3 Househol der transformations (the

| ast a degenerate one) which introduces another upper triangle on the other
side of the band. The triangle is chased off the matrix, as the single

el ement was before, after another two repetitions of this. However a

little thought will make it clear that the extra triangle of elements

20



at every step makes the method nuch less efficient than Band Gvens | -
indeed, it introduces an extra factor of p in the nunber of nulti-
plications required, whether or not vectors are needed.

There is yet another possible approach, which we call the
triangle Gvens nethod -- it does not attenpt to preserve the band
structure, but does preserve the upper triangle structure. It is con-
sidered in Chan [2 ] for finding the singular values of an upper tri-
angular matrix. In this method elenents are elimnated row by row in the
upper triangle using colum rotations, and after each colum rotation one
row rotation is applied to nove the nonzero el ement introduced in the
lower triangle back up to the upper triangle. Since the upper triangle
is filled in,this method requires nmore nultiplications than Band G vens
. If fast Gvens transformations are used and no vectors are required
the nunber of mltiplications required for Triangle Gvens is less than
for Golub-Reinsch, but if vectors are required they are the sane.

Finally we describe a rather conplicated variant of Band Gvens |
which we call Band Gvens Il1, which requires less nultiplications when
vectors are required. In the standard Gol ub-Reinsch algorithm
Househol der transformations are used to elimnate elenents, but instead
of accumulating the transformations directly the transformations are
stored in place of the elements just annihilated and after the reduction
is conplete they are then accunulated in reverse order. The reason for
this is that when they are accumulated in forward order, the jth trans-
formation on either the left or the right, having been chosen to

th colum or row of J, wll affect

annihilate t-j elenents of the |
(t-3)t elements of the t xt matrix of transformations so far

accunul ated, whereas when they are accumulated in reverse order the sane

21



transformation need only be applied to the (t-j) x(t-j) matrix
of transformations so far accunulated. This elimnates one third of
the multiplications needed. This trick is also enployed in conputing
a tridiagonal reduction for eigenvalue problens or the conplete OR
factorization of a matrix using Househol der transfornmations. Wen
Gvens transformations are used in the band eigenval ue problem however
they are always accumulated in the forward direction as the reduction
proceeds although the same savings potential exists if they are
accumilated in reverse. Storing all the transformations used in Band
Gvens | would be a conplicated task, but it is by no means inpossible.
The nethod requires approxi mately t2/2 transformations each on the
left and the right, and since each transformation can be stored in and
recovered from one storage |ocation (see Stewart [11]), all the trans-
formations nay be stored in the two tXt arrays in which they are
-to be accumul ated. Farthermore they can be accumul ated one by one
in reverse order without disturbing the transformations stored but not
yet accunul ated, since the nunber of transformations required to reduce
the first j rows to bidiagonal formis approximtely t2/2 -(t—j)2/2
on each side which may be stored with roomto spare w thout being
disturbed by the two (t-j) x (t-j) submatrices needed to accunul ate

the transformations operating on rows j+1 through t:

N

stored as go along

accunul at edL
in
reverse
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However the storing and retrieving of these transformations woul d
indeed be an arduous task, and although Band Gvens |l requires
only 8t3/3 mul tiplications using ordinary Gvens transformations and
LH:3/3 using fast Gvens, the big question is whether it would still
be worthwhile with all the extra bookkeeping.

Thus the best method seenms to be either Band Gvens | or III,
but we should make some disclaimers. These results are only valid
assuming 1 << p <<t which may not be the case. Miltiplications
are not the whole story, since indexing operations also take time and
on nodern machines nultiplications do not take much nore time than
indexing. O course the amobunt of overhead required by a method is
also inportant. Another thing to note is that the second phase
reducing the bidiagonal formto diagonal formto obtain the singular
val ues typically takes 8t3 mul tiplications using ordinary G vens
transformations or 4t3 usi ng fast Gvens so that this may dom nate
any slight savings in the reduction phase. O course no final con-
clusion about which method is best can be made without extensive
nunmerical tests.

The multiplication counts for the different nethods are summarized

in Table I.
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2.6 Convergence Tests

Let us exam ne what we have done so far. W apply the ILanczos

method to generate a block bidiagonal matrix J(S) fromthe matrix A:
Pt A Q= (S)
wher e P = (Pl’Pe""’% ),
and Q = (Q,:L:QQJ---;QS) .
Then we conpute the singular value deconposition of J(S)
J(s) _ X(S)Z(S)Y(S)t
0 A 0 J(S)
By considering the matrices and , We can
it o ( PACILIN
verify that
P o (X(s)) (PX(S)
0 g &) QY(S)

=11

[o K\
are the eigenvectors of the matrix |, } restricted to the subspace

[P O\ |&° o
spanned by the col ums of \ )
0 Q 0 J(s)\

W have seen that the p smallest eigenval ues of are
\J(s)t 0 )

0 A
usual Iy accurate approxinmations to those of ( t ) , in which case it
A” O

ty

o 5(&)
can be shown that the p corresponding eigenvectors of ( (s) ) s
P O
when premultiplied by ( ) , are also good approxinations to those

0 Q

0 A
of ( ) , albeit not to as high an accuracy.
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Qur convergence test uses Winstein's inequality [1%, pp. 170-171],
which states that for a symetric matrix A and a vector x of unit

length, if

lax - uxll =

for some scalar p, then there is an eigenvalue A of A such that

I)\-ulﬁé-

. u
Let ‘L) be the i-th colum of (
QY

= |lay - cf‘)gﬂe + % - ciS)QF :

Assume ¢ S the user-supplied error tolerance for the singular val ues.
If

(s), ”2+-HAt _ (s) ” l/2 §S)

la; - 05"y Ri )

then there is a singular value of Awthin relative error e of oi(S)

(s) (s)

and we may accept o5 as a singular value of A (If a: is
| ess than one we use ¢ as an absolute error tolerance instead.)

W note that in our algorithmthe computed singular values and
vectors are converging to the singular values and vectors of A and
not of A.  Thus if we compute the residuals with respect to A and

not to A, thereis a lower bound to their values. W take this error
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into account by adding to e the residuals corresponding to the
accepted singular values. To avoid an error tolerance that is close
to the nmachine precision, we add to ¢ a third term combining the
machine *precision nctheps and the matrix dinensions m and n. Thus,

i f

t .

Tﬁ = llay Vi - o u ”2 IM - ck ﬂkHE, 1<k <i-l,
t hen

. i-1 1/2

Ty 3T T + 10 X (m+n) X ntheps ,

k=1

where ntheps = 2.20 x 10'16 for double precision arithmetic on the
| BM Systens 360 and 370. W shal |l accept oﬁS) as a singular value of

|
Aif

G§S)Xi”2 1/2 < o (s)

| (s) |2 t
HA!.l - 04 l,{,l” + |la % - - T

2.7 Updating p and s

W shall see in section 3 how the available conputer nemory places
an upper bound on the product ps. W wish to determne optiml values
for p and s subject to this constraint. W can see fromthe error
bounds in section 2.3 that such choices are dependent on the singular
val ue spectrumof A and thus are usually not *possible a priori wth-
out further information.

W shall discuss initial choices of p and s in section 3.3. W
are concerned here with updating p and s after sone singular values
and vectors have converged.

W assunme that before the current Lanczos iteration the block size
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is p; the step size is 8 and the bound on PSS, 1S q,-
Assune that g singular values are to be conputed and gOU.g g, < g)
singul ar val ues have been computed and accepted in the current iteration
Qur problemis to choose the new bl ock size Py and step size 5;-

Qur strategy is that if p > g, then

Pl := b, - &,
q‘0 j gO

and N e (Herel_aJ denotes the

1. integer part of o.)
The rationale is that if the user chooses a block size greater than
the nunber of singular values desired, he nust have a good reason, e.g
he may have chosen the block size to be the nunmber of singular values in
the cluster of largest singular values. W wish to preserve the user's

choice of block size in this case

If p, < & then we pick P, to be the smaller of the current

bl ock size and the nunber of singular values remaining to be conputed.

Thus,
Py = min(Po;g'go) )
o 1= | =
1 Py .
W test s, toseeif s;>2 If it is not, then we set

pl:': —2— 2




W note that the step size nust be at least 2 to carry out the

Lanczos net hod.

2.8 Conplete Al gorithm

VW have described one iteration of the Lanczos nethod. W do not
expect to conpute all the desired singular values in one iteration and
so we shall iterate the nethod with improving starting matrices. W
saw in section 2.6 that the first P, colums of QY are usually better
appr oxi mations than Q to t he P, right singular vectors corresponding
to the 18 | argest singular values of A |f 8, = 0, then those P,
colums of QY will serve as a good starting matrix for another Lanczos
iteration. If g >0, then the (go+l),...,(go+pl)-th col utms wi | |
be chosen as the starting matrix for the next iteration. W have seen
that the (go+1),...,po-th colums of QY are usual |y good approximations
to the (go+l),...,po-th right singular vectors of A Qur experinental
results show that the other colums are usually rich in the direction
of the (po+l),... »P; -th right singular vectors of A

¢ see that the convergence test in section 2.6 involves nmultipli-
cations by A and At; so we wish to avoid performng the test unless
we think some of our singular values have converged. A good test is to
| ook at the relative increase of the largest singular value fromthe
previous iteration. W perform the convergence test only if the relative
increase is less than the user supplied tolerance <. The criterion
is good in that we shall seldom overshoot the desired accuracy, because
if the convergence test is satisfied, the conputed singular val ues,
as Rayleigh quotients, are likely to have errors proportional to =

unless they are poorly separated.

29



Qur conplete block Lanczos algorithm fol | ows:

A gorithm
1. Start with an arbitrary n X p matrix N

2. Othonormalize the colums of Ql.

3. Apply the Lanczos nethod to conpute the block bidiagonal matrix

5(s) using @ as the starting matrix:
g = 5%
L.  Compute the singular value deconposition of J(S)
X(S)Z(S)Y(S)t _ (s
5. |If the relative increase in the largest singular value of
J(S) is less than e, then performthe convergence test. Qtherwse
go to step 8.

6. Stop if all desired singular values have converged.

7. If one or more singular values have converged, update the
val ues of p and s.

8. Take the first p colums of QY that have not been accepted
as singular vectors as the starting matrix @ for the next iteration.

Co to step 2.

It appears that step 2 is unnecessary after the first iteration
since both Qand Y are nmatrices consisting of orthonornal colums.
Nurerical experinents have shown, however, that the colums of QY
are not necessarily orthonormal and we need to performstep 2 to

maintain nunerical stability.
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3. | npl enent ati on

W have witten a set of subroutines inplementing our algorithm
V¥ use the Bell Laboratory PFORT |anguage, a subset of the ANS FORTRAN
| anguage.

Qur routines use integer and double precision arithnetic. W have
a subroutine that computes the inner product of two vectors. W would
have obtained better nunmerical results had we accunulated inner products
in higher precision. W recommend the usage of extended precision
arithmetic to conpute inner products if the work is done by the computer
hardware. The additional cost is small and the results are nore
accurate. W have not incorporated the extended precision conputations
into our routines to provide program portability. Experiments show t hat
the nunerical results are still satisfactory without recourse to higher
precision arithnetic.

Qur routines usually need a large core to store the matrices X
and Y. On an | BM System 360 or 370, the requirenent is
(mtn) X g x & bytes, which forces q to be small for large mand n;
e.g. if m=n = 1000, then an available core of size 200K bytes would
force q to be less than or equal to 12.

MAXVAL is our main routine that calls all the other subroutines.

3.1 Formal Paraneters

(a) Quantities to be given to MAXVAL:

m,n : the dimensions of the matrix AL 2 < n < m< 1000.
q: the nunmber of vectors of length m contained in the
array X; also the nunber of vectors of length n

contained in array Y, g<26 and g <n.
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pinit :

eps :

op :

iorthg :

| out :

ncheps :

the initial block size; if pinit < 0, then -pinit
becomes the bl ock size and col ums h+l,...,h+(-pinit)

of Y are assuned to be initialized to a matrix to be used
to start the Lanczos nethod.

the nunber of singular values and left and right singular
vectors desired, 1< g<q.

t he maxi num nunber of matrix-vector products Ax and
At§ al | owned.

the relative precision to which singular values and
vectors will be conputed;, eps becomes an absolute
tolerance if the singular value is less than one
subroutine op (m,n,p,u,v,orig) conputes U = AV when
orig is true, and V = A% when orig is false; U
isanmx p matrix and Vis an n x p matrix; the
input matrix must not be altered by the subroutine call.
the nunber of singular values and vectors already conputed;
if h >0 then colums 1 through h of x(Y) nust
contain the left (right) singular vectors of A

an array of length at l|east q.

an array of length at least mX qg.

an array of length at least n x Q.

the nunmber of inmediately preceding bl ocks of vectors
with respect to which reorthogonalization of the present
bl ock of vectors is to be carried out.

output unit nunber.

-16

machine precision, equals 2.2 x 10 for double

precision arithnetic.
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(b) Quantities produced by MAXVAL:

h: the total number of singular values and vectors conputed

including any already conputed when MAXVAL was entered

D: elements 1 to h of D contain the conputed singular
val ues
X . the first mxh elements contain the left singular

vector approximations--the first vector in the first m
E el enents, the second in the next melenents, and so on
& Y : the first n xh elements contain the right singular
vector approximtions--the first vector in the first n
el enents, the second in the next n elenments, and so on.

iecode : the error nessage;

=0: successful termnation.

=1:n<2

=2 :n>m

3 : m> 1000.

=k g<1.

=5:q<8:

=6 : q> 26.

T : q>n.

=8 : mmax IS exceeded before g singular values and

vectors have been conput ed.

3.2. Program O ganization

’ MAXVAL is the main routine that calls all the other subroutines.
It also checks the input data for inconsistencies. The main body of

the subroutine begins by filling the appropriate colums of Y with

33



random vectors if a starting matrix is not provided. The random vectors
are orthonormalized in a call to the subroutine ORTHOG  MAXVAL then
calls BKLANC to carry out the block bidiagonalization of A and then
SVBUTM to solve the singular value problem of the resulting block

bi di agonal nmatri x (5). Two calls to the subroutine ROTATE conpute
the matrices PX and QY. A test is then made of the relative increase

in the |argest singular value of 3 (s)

to determine if it is necessary
to call the convergence test routine CNVIST. |f some but not all the
desired singular values have converged, then the subroutine PCHO C

is called to choose new values for p and s for the next iteration,
which begins with the first p colums of QY that have not been
accepted as singular vectors as the starting matrix.

ORTHOG al ways reorthogonalizes the input vectors with respect to
the vectors in the first h colums of the input matriXx. Reortho-
gonalization is also carried out with respect to the previous |CORTHG
bl ocks of vectors. The resulting vectors are then orthormalized
using a nodified Gam Schmdt nethod [I].

ORTHOG cal | s INPROD to conpute inner products in the reortho-
gonal i zation process.

BKLANC inplenments the block Lanczos reduction. The banded upper

J(S) is stored in colums 2 through p + 2 of the

triangular matrix
matrix C, the main diagonal being stored in the first ps elenents
of colum 2, the upper diagonal being stored in the first ps -1
el enents of colum 3, and so on.

SVBUTM is designed to solve the singular value problem of a banded

(s)

upper triangular matrix. The matrix J has been stored in the

correct formin BKLANC for input into this routine. SVBUTM first calls
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BIBAND to bidiagonalize J (s)

using the algorithm Band Gvens |
described in section 2.5, and then SVDBlI to apply the QR nethod
to compute the singular values of the bidiagonal matrix. The routines
ROTROW and ROTCOL inplenent Gvens transformations to rotate rows

(s)

and colums of J to reduce it to a bidiagonal form-note however
that an inprovenent here would be to inplement fast Gvens trans-
formations instead. SVDBl calls DROTAT to conpute the singular vectors
of 5,
ROTATE computes PX and QY, the left and right singular
vectors of A.

CNVTST tests the computed singular values and vectors for con-
vergence. It tests first the largest singular value, then the second
| argest singular value, and so on until it finds either non-convergence
or all the desired singular values.

PCHO C conputes new values for p and s if some but not all

desired singular values have converged.

3.3 Nunerical Properties

The user can easily nodify the bounds on mand g by changing
the storage allocation for the arrays C, U, V, Rand T at the
begi nning of MAXVAL. The tests of the values of mand q nmust then
be appropriately nodified.

Qur program has proved to be very efficient for large and sparse

- singular value problens. The convergence is very fast if the |argest

singular values are fairly well separated. FEven in cases when the
| argest singular values are clustered, our program appears to be able

to conmpute them accurately.
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W have seen that the optimal choice of the block size depends on
the singular value spectrumand is therefore not possible a priori. A
" safe" choice appears to be choosing the block size as the nunber of
desired singular values. The singular values thus conputed are usually
fairly accurate. A drawback is that sonetines this choice produces a
very slow convergence rate.

V¢ cannot overenphasi ze the inportance of s. Storage limtations
place a bound on the product ps. The two matrices X and Y require
(mtn) X q storage locations, a significant amount for large m and n.
Since g bounds ps + h, we see that the value of p uniquely
determ nes the maximal value of s. Since s nust be at |east 2,
the block size p will be reduced to give s the value of 2 or 3.
Experinents have shown that s = 2 often produces intolerably slow
conver gence. It appears that we should always give s a value of at
least 3. In fact, for a problemwith a dense singular value spectrum
the best choice appears to be p =1, s =g - h and no reortho-
gonal i zati on.

Reorthogonal i zati on appears to be unnecessary if the singular
val ue spectrumis dense. If the largest singular values are
wel | separated fromthe rest, then conplete reorthogonalization
is required to keep multiple images of these singular values from
appearing. Partial reorthogonalization, e.g. with iorthg =1, is
insufficient although it does produce better results than no reortho-
gonal i zation at all.

From the theoremin section 2.3, we can see that a good choice
of the block size is the nunber of the dom nating singular val ues.

Experiments confirmthe theory and we see also that it is better to
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overestimate the nunber of dom nating singular values than to under-
estimte.

The use of extended precision arithmetic to accunulate inner
products produces nuch nore accurate results at an average cost of about
204 nore conputing time. W have, however, found its use to be
unnecessary for a large value of eps; we have obtained satisfactory
results from 1000 x999 matrices with eps = 10 73 using only double

precision arithnetic.
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4. Test Exanpl es

V¢ have chosen rectangul ar diagonal matrices in all but one test
examples. W feel diagonal matrices are sufficiently general because
we do not transform the given matrix; we obtain information about the
given matrix only through the subroutine that conputes the product of the
matrix (or its transpose) with an input matrix. Diagonal matrices
are convenient in that we know the singular value spectrum and so
can study the behavior of our algorithmas a function of the block and
step sizes.

W have run our program on an |BM 370/168 conputer using the
EXTENDED FORTRAN H conpiler. Qur program takes 6.95 seconds to conpile.

In the exanples below the following rotation is used:

m(-n) =mX 10"

iter = total nunber of iterations

imm = total nunber of matrix-vector nultiplications
i w = total nunber of vector inner products in the

orthogonal i zation process

exec time = execution time in seconds on the machine

Exanple 1
Ais a 1000 X 999 matrix w th diagonal elenents

0.006,-0.007,0.008,-0.009,...,1.000, and 2,2,2 and -10. Wth
g =14, q =12, eps = 10'5 and iorthg = 0, we obtain the foll ow ng

results.
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10+1(-15) 10-4(-15) 10-1(-10) 10-2(-7) 10-5(-12) 10-k(-12)

°1

op 10 - 1(-15) 2 2+h(-12) 2 +2(-9) 2-3(-8) 2-2(-8)
o5 2 -6(-15) 2-8(-15) 2 -1(-9) 2-3(-11) 2-1(-7) 2-6(-8)
oy, 2 -3(-9) 2 -1(-8) 2 -L4(-10) 2-9(-7) 2-6(-7)
iter 5 3 3 5 5
imm 105 67 62 85 100
ivv 224 114 108 200 300
exec time program fails 6.06 3.81 3.71 5.33 7.34

to termnate

W see the advantage of a block algorithmin this exanple. The
point algorithm gives a double image for the singular value 10 and
then fails to termnate because it converges to a value 2.738. W obtain
the fastest convergence using p = L4, as we expect. Note the high
accuracy in the solution values with eps = 107,
Example 2

A is a 1000 X YYY matrix with diagonal elements

-0.005,0.006,-0.007,0.008,...,1.000, and 2,-2 and 2. W choose

g=3 q=12,eps = 10~ and iorthg = 0.
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In this exanple,

o1

%2

o3

iter

I mm

i w

exec time
bl ock size.

115
124

6. 52

2-2 x10~%

2-1x 10"
2-2x 10
4

89

132

5.2k4

P=3 p =L
p-2x10 o-hx10 H
2-3x 107 ogx1071l
2-3x 10" 10 2-5x10 10

2 3

52 0

18 108

3.18 4.70

we see again the advantage of a properly chosen

Note al so the better results obtained by overestimting

rather than underestimating the nunber of dom nating singular val ues.

Exanpl e 3
Ais a 1000 X 999 matrix with diagonal

0.006,-0.007,0.008,-0.009,...,1.000, and 2, 10,

choose g = 3, q = 6, eps

i mm
i w

exec tine

p=1

10-2 X 10'15

10-3x 1071
2-5x1o'7
4
Yo
48

1.85

107

p=2

and iorthg = 0.

10-3x 10719

10-2 X10~

10-2X% 10~

56
82
2.46
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7

el enent s

-10 and 10. W

p=373
10-4x 1071
11
8

10-2x 10~
10-2x 10"
3
37
36
1.76



W see the failure of the point algorithmto obtain the third
singular value 10. This exanple also shows how fast our algorithm can
be even with very linited storage (¢ = 6) as long as the separation

of the singular values is good.

Exanpl e &

Ais the sanme matrix as in Exanple 1. But we choose g = 3,
q = 12, eps = 10'3 and p =1. W run our programwth no, partial

and conpl ete reorthogonalization.

iorthg = 0 lorthg = 1 lorthg = 12
oy 10+1x10" 14 10 10
o 10-1x10° 1 10-2 x 1072 22x 1077
o3 2-6x10™ 1 2l x 1071 2-lix 107
iter 1 1 3
i mm 31 31 71
i w 0 22 392
exec tine 1.69 1.77 5.27

W see only complete reorthogonalization gives the correct solution.
W also see that the block algorithm (Exanple 1) with p = 3 and %
and no reorthogonal ization conputes four singular values correctly in
25¢ | ess machine tine.

W also run the first case (iorthg = 0) using extended precision
arithmetic to accunulate inner products. The results are unfortunately

unchanged.
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Exanple 5
A is a 1000 X 999 matrix with diagonal elements

0.002,-0.00%3,0.004,-0.005,...,1.000. W& choose g = 3, q=12,eps=1o'3

and iorthg = 0.

p=1 p=2 p=3
oy 0.9999%2 N 0. 999956
o5 0. 998960 0. 998951 . 998999
o5 0. 998036 0. 998005 . 997980
iter 13 33 27
i mm 305 11 609
i w 190 784 676
exec tine 17.59 41. 20 38.09

This is an exanple where a point algorithmis a good choice. The
denseness of the singular value spectrum takes away the virtues of a

bl ock algorithm the best choice is therefore to naxinize s.

Exanpl e 6

A is a 314 X 80 nmatrix obtained from earthquake research and

is of the follow ng special form

A= la),
wher e A, s 314 X 24 and bl ock diagonal,
and A, s 314 x 56 and randoniy sparse.

A, consists of six diagonal blocks, whose dinensions are 53 x 4,

51 X 4, 46 x 4, 58 x 4, 55 X 4 and 51 x 4. There are about 4 non-zero
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el ements per row in A, and a total of 2509 non-zero elenents in A
W store only the non-zero elements of A W use three one-

di mensi onal arrays IINDEX, JINDEX and A, each of length 2509, to

store i, j and a.l.J. This conpact storage scheme also enables us to

conpute the matrix-vector products Ax and Atx efficiently.

Assune A is m xn and has NDATA non-zero el ements. Then

the follow ng FORTRAN statenents conpute x = Ay:

DO10 K=1,M
X(K) = 0.D0
10 CONTI NUE
DO 20 K = 1,NDATA
I = TINDEX(K)
J = JINDEX(X)
x(1) = x(1) + ALK * Y(J)
20 CONTI NUE

The follow ng statements conpute y = At}Nc:

Y .DO
110 CONTI NUE
DO 120 K = 1,NDATA
| = IINDEX(K)
J = JINDEX(K)
Y(I) = Y(J) + A(K) * x(1)

120 CONTI NUE

A full singular value deconposition of A was conputed using the
subroutine SVD in EISPACK [10]. The demand on storage is excessive,
for we need to supply at least 2 xmx n x 8 bytes (¢ 393 K byt es)
if we want the singular vectors. The execution time was 23. 18 seconds.
The main disadvantage of SVDis its inflexibility: we always have
to conpute all the singular values whether or not we need all of them
Qur Lanczos program on the other hand, requires only (m+n) x q X 8

bytes (31 K bytes for g = 10) if we give it q vectors of
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storage to conpute the singular vectors. It can then conpute up to
(g - 1) singular values and correspondi ng vectors. W need
2509 X (4 + 4 + 8) bytes (* Lo K bytes) to store A using our
conpact schene.

The following table summarizes our results when we apply our

programon Awith p =1, q = 10, eps = 10'3 and iorthg = 0:

g 1 2 3 4 5 6 7 8 9
iter 1 2 3 5 ! 9 12 18 23
i mm 23 44 63 93 119 141 166 206 229
i w 0 18 50 134 230 330 474 726 886

exec time 1.66 2.21 2.73 3.61 4.38 508 5.2 7.23 7.9%

All our conputed results agree to at least 6 significant digits with the
values from SVD, agreeing with the expectation that the accuracy is
0(eps®).

The 80 non-trivial singular values of A are (to 3 significant
digits) 12.6, 9.53, 8.87, 8.06, 7.77, 7.59, 6.42, 5.54, 5.16

4.49 ,...,1.28x 107°, 4,45 x 10 -7 , L9x 10-7 , 593 x 10" and

2.48 x lo'lb. Al though the |argest singular values of A are quite
uniformy distributed, we observe a uniforminprovement in program

speed when we choose the block size equal to 2, i.e. P =2, q =10,
-3

eps = 10 and iorthg = 0:
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g 1 2 3 4 5 6 T 8 9

iter 1 2 3 5 7 8 10 18 ol
imm 22 43 59 88 109 121 136 190 21k
i w 10 28 66 158 248 304 394 798 990

exec time 1.62 213 249 3.34 3.83 416 4.62 628 7.15

The effect of storage space on program speed is exam ned using both
12 and 15 vectors of storage to deternine 9 singular values. The results

wWith p=1, eps = 10'3 and iorthg = 0 are:

q 10 12 15
iter 23 9 5
i mm 229 129 123
i w 886 530 530
exec tinme 7.99 5.21 4.99

The trade-offs between space and tine are obvious
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SUBROUTINE MAXVAL(M,X,Q,PINIT,G,EHAX,BPS,OP,H,D,X,Y,IORTHG,
LOUT ,HCHEPS ,IECODE)

| NTEGCER ®,¥,Q,PINIT,G,MHAX,H,IORTHG,LOUT,IECODE

DOUBLE PRECISION EPS,D(Q) ,X(X,Q),Y(N,Q) ,NCHEPS

EXTERNAL CP
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CALCULATE TEE LARGEST SI NGULAR VALUES OF A LARGE SPARSE MATRIX

WRITTEN BY : FRANKLIN LUK
coMPUTER SC| BBCE DEPARTMENT
STANFORD UNIVERSITY
SBPTBRBER 1976

LAST UPDATE : APRIL 1977

- e A W G A G e M NS U YD P D R AR NS AR R R ES D A Gh R WD W AN DGR WD Y TS WD WP SR RS G W Te TR B WD W W N W - e Er e en b w e

TBI' S SBT oprouTINES USES | NTEGER ap DOUBLB PRECI SI ON ARl THVETI CS
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THIS SBT OP ROUTINES INCLUDES : MAXVAL, BKLANC, ORTHOG, INPROD,
ROTATB, cEvrst, PCEQ C, RANDON,
AND SVBUTH( PLUS BIBAND, ROTROW,
ROTCOL, SVDBI, AND DROTAT ).
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THIS SUBROUTINE |S THE MAIN SUBROUTINE INPLENENTING
THE ITERATIVE BLOCK LANCZOS HMBTHOD POR CONMPUTING THE LARGEST
SINGULAR VALUES AND CORRESPONDING LEPT AND BRIGHT SINGULAR VECTORS
OF Al B-BY-N NATRIX.

DESCRIPTION OP PARAMETERS :

M,N : INTEGER VARI ABLES. TEE wuMBER OF ROAG AND COLUMNS
OP TEB BATRIX A WHOSE SINGOULAR VALUES AND VECTORS
ARE BEING COMPUTED. | T | S ASSUNED TRAT 2 .LE. ¥ .LB. A.

0 : INTEGER VARI ABLE. THER NUNBER OF VECTORSOPLENGTH M
CONTAINED || TEE ARRAY X, AND THE wumBER OF VBCTORS
OF LENGTH N CONTAINED IN THE ARRAY Y. THE VALUB OP @
SHOULD BE LESS THAR OR BQUAL TO 26, AT LBAST ONE GREATER
TEAM TEE VALUE or 6 A¥Dd LBSS TEAR OR EQUAL TO .

PINIT : INTEGER VARIABLE. THE INITIAL BLOCK sizE TO BE usED
INTHB BLOCK LANCZOS METHOD. | ? PINIT | S NEGATIVE,
THEN -PINIT | S USED ror TEB BLOCK S| ZE AND COLUNNS
B¢1, + 2+ H¢(-PINIT) OF THE ARRAYS Y ARE ASSUNED
TO BE INITIALIZED TO A MATRIX USED TO START TEB BLOCK
LANCZ0S HBTHCOD. | F THE SUBROUTINE TERMINATES WITH
A vALO® OF H LBSS THAI 6, THEN PIKIT |S ASSIGNED
A VALUE -p, WHEREP|S THB rImAL BLOCK sizt CECSBR
IN TH S CIRCUASTANCE, COLUNNS H+1, . . .  HeP OF Y
WILL CONTAIN THB HOST RECENT SET of Rl GET SINGULAR
VI CTOR APPROXINATIONS WHICH CAN BE USED TO RESTART
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THE SUBRQUTI NE IF DESI RED.

G: InTBGER VAR ABLE. TEB UUHBBR OR SI RGULAR VALUBS AND
sINeULAR VECTORS BEI®G COHPUTBD. THAT |S, MAXvAL
ATTENPTS TO COHPUTB ACCURATE APPROXINATIONS TO TEE
6 LARGEST S| RGULAR VALUES amp THEIR CORRBSPONDI UG
LBPT Al D RIGHT SINGULAR VBCTORS O TEE ®arRIX A TEE
THE VALUB op G SEQULD BE POCsI Tl VE a¥bp LESS TEAR Q

MMAX INTEGER VABIABLE. TEB HMAXINUER BUMBER OP MATRIX-VECTOR
PRODUCTS A*X AND TRANSPOSE (A) *X, WHERE X | S AN APPRO
PRI ATE VBCTOR, TEAT aARE ALLOUBD puRiwG ONE CALL OF
THIS SUBROUTINE TO CONPLETE | TS TASK OP COHNPUTING
G sincuLAR VALUES awD VBCTORS. UNLESS THE PROBLEN
INDICATES OTHERWISE, BMAX SECULD BB 6IVEN A VERY
LARGE VALUB.

EPS : DOUBLE PRBCI SI QU vARIABLE. BPS SHOULD courtaiu
A VALUE INDICATING THE BRELATIVE PRECISION TO WHICH
BAXVAL WILL ATTENPT TO COHPUTB TEB S| RGULAR VALUBS
AND VECTORS opA. PoR SINGULAR VALUES LESS | N MODOLUS
THAN 1, BPS U LL BE AuaBSOLUTE TOLBRAUCE.

oP : SUBROUTI PB ®am®. TEE ACTUAL ARGUMENT CORRESPONDING

TO op SEOQULD BB TEB Nan® OF ASUBROUTINE USED TO
DEFINE TEB MATRI X A. THI' S SuBRQUTINE SHOULD HAVE
SI X ARGUBENTS ¥, X, P, U, V, AND ORIG, SAY, WHERE
A IS aun-BY-N ARRAY, U ISAU X-BY-P ARRAY,
VIS AU U BY-P ARRAY, AND OBRIG |S A LOG CAL VARI ABLE.
THR STATEMENT

CALL OP (n,¥,P,0,V,.TRUB.)
SEQULD RESULT IN THE ARRAY A*Y BEI NG COHPUTBD AND
STORED I® U. THE STATENENT

CALL OP (n,¥,P,U,V,.FALSE.)
SEQULD RESULT 1IN THB ARRAY TRANSPOSE (A) *U BEING
COHPUTED a¥p STORBD INV.

INTEGER VAR ABLE. #GIvEs THB mouBER OF S| RGULAR
VALUES AND LEPT AND RIGHT SINGULAR VBCTORS ALRBADY
COVPUTED. THUS, INITIALLY, # SHOULD BB ZERO

IF B | S GREATER THAR ZFRO, tTHEN ELEMENTS OUB THROUGH
H OF THB VICTOR D COUTAlI U APPROXINATIONS TO THE H
LARGEST SIGULAR VALUBS or A, COLUWS ORB THROUGH H

oF THB ARRAYS X AND Y CONTAIN APPROXINATIONS TO TEE
CORBESPONDING LEPT ANMD RIGHT S| RGULAR VBCTO?S,

AT BXIT, H CONTAINS A VALUB eual TO THE TOTAL wumBER
OF SINGULAR VALUBS ANMD LEPT AND RIGHT S| RGULAR VBCTORS
COBPUTED INCLUDINGANY ALREADY COHPUTBD WHEN MAXVAL
WAS BNTERED. THUS, AT EXI T, THE PIRST HELENENTSOF D
ANDTHE PIRSTH COLUVNS OF X AND Y WILL CONTAIN
APPROXINATIONS TO THEH LARGEST SINGULAR VALUES OF A AND
THEIR CORRESPONDING | BPT AWD RIGHT SINGULAR VECTORS.

D ¢ DOUBLE PRECISION ARRAY. D cosTaAIss THB COHPUTBD SINGULAR
VALUES. D SHOULD BB AU oOmE-DIRENSIONAL ARRAY WITH AT
LEAST 6 ELENENTS.

) O DOUBLE PRBCI SI OR ARRAY. x cowTAI®ws THB CCEPUTBD LBFT
S| RGULAR VECTORS. x SEQULD BE AN ARRAY CONTAINING AT
LBAST n+Q BLENENTS. X | S USED ROT oWty TO STORB THE LEPY



'
cNoNoNeoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNO N oNoNoN s N s o N NoNoNeo Nt Ro e Re R ReReReReRe ReReRe e Re o No Ro Ne Ne)

aaoaaoaoaoon

Sl UGULAR VECTORS COVPUTED BY mAxvaL, BUT ALSO as
WORKING STORAGE POR TEE BLOCK LANCZOS NETHOD.ATEXI T,
THB Pl RST M*H ELEMEETS OPF X CONTAIN THE LEPT SINGULAR
VECTCOR APPROXINATIONS -- [HE rimast VECTOR i® TEB PIRST
M ELEMENTS, THE SBCOUD IN THE SBCOND a ELEMENTS, ETC.

Y : DOUBLE PRBCI SI QU ARRAY. Y co¥raius THB CONPUTED RIGHT
SIBGULAR VECTORS. Y SHOULD BE A¥ ARRAY CONTAINING AT
LBAST w#Q PLENBRTS. Y |S USED HOTONLY TO STORE THE
BRIGHT S| NGULAR VECTORS coupuT:d BY EMAXVAL, BUT ALSO AS
WORKING STORAGE FOR TEB BLOCK LANCZOS NETHOD. AT EXI T,
TEE PIRST ¥W*H ELENEBETS OPF Y CONTAIN TEB RI GHT S| NGULAR
VECTOR APPROXIMATIONS -- THB PIRST VECTOR IN THE PIRST
¥ ELENENTS, THE SECOND IN THE SBCOUD ¥ ELEMENTS, ETC

InTEGEBR VARI ABLE. | TS VALUB | S THB NUMBER OF INNEDIATELY
PRECEDING BLOCKS O? VECTCORS wit# RBSPBCT TO WHICH
REORTHOGONALIZATION CP THB PRBSBUT BLOCK O? VBCTORS

|'S cargIEp QOUT.

LOJT : INTEGER VARI ABLE. QUTPUT UNI T NUMBER.
DOUBLE PRECI SI ON VAR ABLB. THE MACH NE PRBCI SI QU.

INTEGER VAR ABLB. TEE VALUE OF | BCODE | UDI CATBS
WHETHER MAXVAL TERNINATED SUCCESSPULLY, AND | ? HOT,
TEB REASON WHY.

IECODE=0 : SUCCESSPUL TERMINATION.

IEcopE=1: THE VALUB O? ¥ | S LSS THAN TPQO

IORTHG

MCHEPS

IECODE

IECODB=2 : TEE VALUB O? ¥ | S GRBATBR rHAW TEB VALUE
Oor HN.

IECcoDE=3 : THE VALUE or m | S GRBATBR THAN 1000.

Iecope=4 : THE VALUB O? 6 | S LBSS THAN ORB.

IBCODE=S : THE VALUE O? Q | S LBSS THAN OR EQUAL TO G

IEcOoDE=6 : THE VALUB orQ | S GREATER THAN 26.

IECODE=7 : THE VALUE O? @ BXCBBDS u.

IBCODE=8 : THE VALUB or muAx \WAS BXCBBDBD BEPORE

6 S| UGULAR VALUES AND LEFT AND RIGHT
sI¥GuLAR VECTORS UBRB COVPUTED.

UOTB TEAT THE SUBROUTINE HAS BEEW DESIGNED TO ALLOW INITIAL
APPROXINATIONS TO THB RIGHT S| NGULAR VECTORS COBRRES-
PONDINGTO THB LARGEST SI¥GULAR VALUES TO BE UTILIZED
( TP THEY UBRB KNO®N ) BY STORING THBH I¥ Y AND ASSIGNING
PINIT HINUS THE VALUE O? THEIR WUMBER. FURTHERNORE, | T
HAS ALSO BEEN DESI GNED TO ALLOW RESTARTING |? | T STOPS wrra
IECODE=8. THUS, THE USEROP THIS PROGRAN CAN RESTART | T APTER
EXAMINING ANY PARTI AL RESULTS WITHOUT LOSS oF PREVI OUS WORK.

INTEGER I,IEBRR,INM,IPH,IPQ,ISEED,ITER,IVY, NCONVY,P,PNI,PS,PP3
INTEGER QPPS,QP1,S

REAL PLOAT

DOUBLE PRBCI SI OU BRRBED,ERRC

THE sInInus LENGTAS O? THE LOCAL ARRAYS ARE AS POLLOWS. THESE
CCQULD BE CHANGED BY THB USER | 7 NECESSARY BY CHANGING TEB BAXINUN
vALUBS O? @ OR m WHICH AT PRBSBUT amE 26 aWp1000( TEB TESTS
BBLOU SHOULD ALSO BE MODIPIED ).

LBT @2 DBUOTB TEB 1wrEcER PART O? @/2, THEN
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C(Q*(Q2+3)),U(2*Q),V (Q*Q) ,R (Q2%Q2),T (H)

DOUBLE PRECISION C(416) ,0(676) ,V(676),R(169) ,T(1000)
DOUBLE pRECISION DBLE

ISEED | S SBBD FPOR RAKDON NUNBER GENERATOR
DATA ISEED/99991/

CHECK THAT THE INITIAL VALUES OoF THB SUBROUTI UB PARA-
METEBRS ARE IN RANGE.

12 (ULT.2) 60 TO 901
IF (A.LT.¥) GO TO 902
IF (8.GT.1000) 60 TO 903
IP (6.LT.1) 60 TO 904
IF (Q.LB.6) 60 TO 905
1r (Q GT.26) GO TO 906

| F (Q.6T.H) GO TO 907

INITIALIZE THE SI NGULAR VALOESTO VERY LARGE NEGATIVE MUMBERS.

DO 110 | = 1,6
D(1) =-1.010

110 COUTI| NUE

120

200

CEOCOSB I NI TI AL VALUES FOR THB BLOCK SIZE P, THE WOUMBER S
oF STBPS TEAT TUB BLOCK LA®CzOS METHOD | S CARRIED QUT, AMND
CEOCSB AH INITIAL ||-BY-P ORTHONORNAL MATRIX 11 TO START
TEE BLOCR LANCZO0S NETHOD.

P = pINIT

| ? (P.LT.O, P =-p

S = (Q-H) /P

IP (S.6E.2) GO TO 120
s - 2

P = (Q-H)/2

| ? (PINIT.LT.0) GO TO 200

INSERT RANDON VECTORS INTO COLUNNS H+1 THROUGHH+P OF TEE ARRAY Y.
CALL BaNDON (W,Q,P,H,Y,ISEED)

SET CoNSTANTS FOR LATER CONVERGENCE TESTS.

ERRBND = BPS ¢+ 10.DO*DBLE (PLOAT (N+N) ) *NCHEPS

ERRC =0.D0
ITBR = 0

.I88 = 0

Iw = (

THE maxm BODY OF THE SUBROUTI UB STARTS HERE. INM
COUNTS THE NUNBER OF MATRIX-VECTOR PRCDUCTS COMPUTED.
IVY COoUNTS THE NONBER OF VECTOR INNBR PRODUCTS PERFPORNED
IN THE ORTHOGONALIZATION ROUTINE. ERRC HEASURES THE
ACCUNULATED ERROR IN THE SINGULAR VALUES A¥D VBCTCRS



300 IF (4.GE.G) GO TO 900
IF (IMn.GT.MHAX) GO TO 908
ITER = ITER+1
PS = P*S
PP3 = p+3
¥RITE (LOUT,6010) ITER,P,S
6010 PORMAT(I8H e ** ITERATION,I4/SX,4H P =,I3,5X,8H S =,I3)

C
C USE ra¥Dpor VECTORS TO RESTART THE LA®CZOS ALGORITHN IF
C LI NEAR INDEPENDENCE HAS BEBP LOST.
C
Do 310 I= |, P

IPH = I+H

| F ¢(p (IPH) .6T.0.D0) GO TO 310

PHI = P-|

CALL RABDOM (N,Q,PHI+1,IPH-1,Y,ISEED)

@0 TO 320
c 310 CONTI NUE
C ORTHONORMALIZE COLUNES H+1 THROUGH HeP OF TEB ARRAY Y.
C

320 CALL omrTrHOG (¥,Q,H,H,P,R,Y,IORTHG,IVV,LOUT,NCHEPS)

C
C BKLANC CARRIES OUT TEE BLOCK LANCZ0S NETHOD AND
C RETURNS TEE rBsuLrING BAUDBD opPPER TRl ANGULAR BATRIX NS
C IN C, THE M~-BY-PS OBTHONORMAL MATRIX XS IN X AND THB
C N- BY- PS ORTHONORNAL BATRIX YS IN Y. THB INITIAL
C N- BY-P ORTHONORMAL MATRIXVI| S aSsuneEDp TO BE STORED
C IN COLURES H+1 THROUGH H+P OPF Y,
C

CALL BEKLANC(M,N,Q,PP3,H,P,S,0P,C,X,Y,R,IORTHG,IVY,LOUT, NCHEPS)
INN = INA + P& (2%S-1)

svBuTe SCOLVES THE SINGULAR VALUE PROBLBH FOR THE PS- BY-PS
ARRAY ns, RETURNING THB S| NGULAR VALUES 18 THE SBCOBD coLuax
or C asdp THB RIGHT S| NGULAR VECTORS IR THB PIRST P*S COLUNES
OP u, AND TEB P LEPT SINGULAR VECTORS CORRESPONDING TO THB
P LARGEST SINGULAR VALUES |N TEE FI RST P CoLuMNs OF V.

nonooaoaa

CALL svsuTH(Q,PS,P,PP3,C,PS,PS,U,V,HCHEPS,IERR)
Ir (IEBR.EQ.0) 60 TO 330
WRITE(LOUT,6020) IERR
6020 PORMAT(5X,39H *** ERROR IN SUBROUTINE SVBUTH. IEBRR =,I3,4H **%)
330 QP1 =Q+1
QPPS = Q4PS
WRITE(LOUT,6030) (C(I),I=QP1,QPPS)
6030 PORMAT (5X,20H SINGULAR VALUBS . ..,6 (/5X,1P5D24.15))

ROTATE COHPUTBS THE LEPT aWD RIGHT SINGuLAR VECTORS
OF THB RESTRICTED MATRIX USI NG XS STORED 1w X, AND ¥S
STORED 1IN Y.

COOO0

CALL mOTATE(M,Q,H,PS,PS,U0,X,T)
CALL ROTATE(N,Q,H,PS,PS,V,Y,T)

TEST | ? BELATIVE INCREASE O COMPUTED S| NGULAR VALURS EXCEEDS
TEE USER- SET PRECISION BOUND.

OMoOon

wcouy = (
| 2 (ITER.EQ.1)GO TO 340
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340

I|F ( (C(Q+1)-D(H+1))/C(Q+1) .GT. BPS) GO TO 400

CNVTST DETERMINES HOW BABY oF THB SINGULAR VALUEBS
AND LEPT aND RI GHT SINGULAR VECTORS HAYE CONVERGED.
THE NUNBER THAT HAVE CONVERGED | S STORED INNCONV.
| F NCORV=0, THEN NONE HAS CONVERGED.

CALL cwvrsT(m,¥,0,H,G,ERRBND, ERRC,0P,C,X,Y,NCONV,LOUT,T)

INM = INN + (NCONV+1)s2

400 CONTINUE

DO 410 1= |, PS
IPH = I+H
| PQ = I+Q
D (IPH) = C(IPQ)

410 CONTI NUE

420

pcHoIC CHOCSES weEw VALUBS FOR P amp s, THE BLOCK
SI ZE AID THE ¥omBER OF STEPS FOR THE BLOCK LANCZOS
'SUBPROGBRANM, RBSP. .

CALL pcHOIC(Q,H,6,NCORY,P,S)
VWRI TE (LOUT,6040) INM,IVY,NCONY

6040 FORMAT(5X,6H INN =,I5,5X,6HIVV =,I5,5X,8H NCONV =,I3)

(@}

0,00 o0

900
901
902
903
904
905
906
907 |
908

I = H+NCOMNY
@O TO 300

TH'S |S TEE EWDorTHEEAIN BODY OF THE SUBROUTINE.
NoWw SET THE vaLuoe OP THB | BCODB ANDBXIT.

| ECODE = 0
RBTURR
| ECODE =1
RETURN
| ECCDE = 2
RETURN
| ECODB = 3
RETURN
IECODE = 4
RETORN
| BCCDB = 5
RETURN
| BCODB = 6
RETORN
BCODB = 7
RETURN
| BCODB = 8
PINIT =-P
RETURN

END
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110
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SUBROUTI NE BKLANC(H,R,Q,PP3,H,P,S,OP,C,X,!,R,IORTBG;IVV,

LOUT,MCHEPS)
INTEGER M,N,Q,PP3,H,P,S,IORTHG,IVV,ICUT
pcoBLE PRECI SION c(Q,PP3) ,X(X,Q) ,Y(N,Q) ,R(P,P) ,ACBEPS

TH'S SUBROUTINE INPLEMENTS THE BLOCK LANC20S
METHOD W TH EEORTHOGONALIZATION. BKIANC CCMEUTES
A PS-BY-PS ( ps=p#s ) BANDED UPPER TRIANGOULAR
MATRIX VS WHICH IT STORES IN COLUMNS 2 THRCUGH P+2
OF THE Q-BY=-P+1 MATRIX C ( THE DIAGCRAL BEING STORED
IN TBE FI RST PS LOCATI ONS or coLuMN 2, TEE mEXT
SUPERDI AGONAL BEI¥G STORED IN TBE FI RST ps=1 LOCATI ONS
CPCCLUMN 3, AND SO ON), AND A PS-BY-PS ORTHOGCNAL
MATRIX XS WHICH | T STORES IN COLUMNSH+1 THEOUGH H+PS
OF THE E-BY-Q ARRAY X, AND A PS=-BY-ES ORTHOGCHNAL
MATRIX YS WHICH | T STORES IN COLUMNS H+¢1 THROUGH H+PS
op TBB N- BY-Q ARRAY Y.

s CAN ALSO BE REGARDED ASABLOCK UEEER BIAGCNAL
MATRI X WITH P- BY-F UPPER TRI ANGULAR mAaTRICES R(l), . . .
R(S) ON | TS DIAGONAL ARD P-BY-E IO0WEF TRl ANGULAR
MATRICES T(2)', . . . . T(S)' ALONG | TS UPEER LIAGONAL.

XS IS CC?ESSED OF S PS-BY-P ORTHONOREAL EATRICES
X(1) s coes X(9).

YS | S COMPOSED OF S PS-BY-P ORTHONOEMAL MATRICES
Y(V), oo Y(S), WHERE Y (1) | S G VEN AND SHOULD BE
STORED IN COCLUMNS H+1 THROUGH H+P OF Y,

OP IS TRE NAME OP AN EXTERNAL suBRCUTINE USED 10
CEFINE TEE MATRIX A

INTEGER I1,I11,12,d,J8P,J1,32,K,K1,L,1L,LLNP,10
DOUBLE PRECI SI ON 1

L =1
IL = H+1
LU = H+P

CCNPUTE X (1) = ASY(1)

CALL op(s,N,P,X(1,LL),Y(1,LL),.TRUE,)

FACTORIZE X(1) := X (1) *R(1)

CALL oRTHOG (M,Q,H,H,P,R,X,IORTHG,IVY,LOUT,NCHEES)
stcRE R(1) INC

DO 1203 = |, P

DO 1101 =1,3
J1 = J=1+2
C (1,31 =R (1,J)
CCNTINUE
CCNTINUOE
L +GE. 2

|P (S.LT.2) GO TO 900
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220

230

310

320

DO 600 L = 2,5
LL

L0
I1
I2

In

He (L=1) #P+1
HeL*P

= (L-2) *
I1+P

COHPUTB at#x(1-1)

LLMP = LL-P
CALL op(M,N,P,X(1,LLHP),Y(1,LL),.FALSE.)

DO 230 Kk = LL,LU

CONMPUTE Y (L-1)*R(L-1)"

T=T+
CONTINUER

COHPUTB Y(L) = a*sx(i=1) - Y(L-1) @ PB(L-1)'

(I,JMP)*R (K1,J31)

Y(I,K) =Y (I,K)-T
CONTI NUE

CCNTINUE

PACTORIZE Y(L) := Y (L)*T (L)

CALL oORTHOG (N,Q,H,LL-1,P,R,Y,IORTHG,IVV,IQUT,NCHEES)
STORB T(L)' INC
DC 320 3 = 1,P

J1 = J+I1

DO 3101 =1,
32 = P=J+1I+2
C(31,32) = R(I,J)
CONTINUE

CCNTINUE

CCHPUTE A*Y(L)

CALL op(H,¥,P,X(1,LL),Y(1,LL),.TRUE.)
DO 430 A = 1LL,LD

COMPUTE X (L-1)3T(L)"*
K1 = K-LL+1
DO 420 | =1,n



DO 410J = K,LU
Jup = J-P
31 = J=11+¢1
=T +« X(1,IJMP)*BR(K1,J1)
410 CONTI NUE
c
C COMPUTE X(L) = A*Y (L) = X (L-1) *T(L)"*
c
X (I,K) = X(I,K)=T
420 CONTINUE
C
430 CCNTINUE
C
C FACTORIZE X(L) := X(L)*R(L)
C

CALL oORTHOG (M,Q,8,L1-1,P,R,X,IORTRG,IVV,LQ0UT,NCHEES)
C
c STORE R(L) IN C

DO 5203 = 1,P

C
DO510 | =1,3
11 = 1412
J1 = J-142
c(11,J31) = R{(I1,J)
510 CONTI NUE
C
520 CCNTINUE
C
600 CCATINDE
T C
900 CCRTINUE

EETUEN
END



OOOOOO0O0OO0O0

O O O O

O O O O

110
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130
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220
230

300

SUERQUTI UE ORTHOG {N,Q,H,L,P,R,X,I0RTHG,IVV,LCUT,NCHEES)
INTEGER N,Q,H,1,P,IOFTHG,IVV,LCUT
DCUBLB PRECI SION E (P,P) ,X(N,Q) ,MCHEES

OBTEOG REORTHOGONALIZES TEE N- BY-P MATBIX Z STORED IN
CCLUMNES L+1 TRROUGH 1+P OF TEE N-BY-Q AERAY X WITH
RESPECT TO tHE VECTORS STORED I N COLUMNS 1 THBCUGH H
AND COLUMNS (L-IORTHG*P+1) THROUGH I OP TEE MATRIX X
US| NG GRAN-SCHNIDT ORTHOGONALIZATION. TBE MCDIFIED
GEAM~-SCHNMIDT METBOD | S USED TO PACTO&IZR THE RESULTI NG
MATRIX | NTO TEE PRODUCT OF AN N-BY-F ORTHONCEMAL MATRIX
XORTH STOBED I N COLUHNS L+1 THROUGH 1+4P OP X, AND
AP-BY-P UPPER TRIANGULAR ARRAY R

| NTEGER 1,181,IP1,J,K,K8L,L1,1LP1,LPP
INTEGER MAXO

DOUBLE PRECISION SUM

DOUBLE PRECISICN DSORT

IP (BF.2Q.0) RETURN

1LP1 = L+1

LPP = L+pP

P (H.EQ.0) GO TO 200

DC 130 | = Lp1,LPP

DO 120 kK = 1,8
CALL INPROD(N,X{1,I1),X (1,K),SUN)

DO 1108 = I, N
X(J,I) = X (J,I) = SUN*X(J,K)
CONTINUE
CONTINUE
CCHTINUE
IVV = IVV + H*P
Ir (IORTHG.BQ.0) GO TO 300
IF (L.BQ.H) GO TO 300
11 = MAXO( L-P*IOETHG+1, H+1 )
DC 230 | = LP1,LPE

DO 220x = 11,1
CALL INPROD (N,X(1,I),X(1,K),SUN)

DO 210 J = 1,N
X(J,I) = X(J,I) - SUN*X(J,K)
CONTINUER
CCNTINUE
CCHTINUE
IVY = IVV + (L-L1+41)*P

CCNTINUE



DC 400 | =1p
son = O DO

DO 310 0 = 1,¥
sun = SOM + X (J,I)**2
310 CGNTI NUE

1,LPE

INL = I-1
| F (sum.GT.mCEBEPS) GO TO 330

WRITE (LOUT,6010)
6010 FORMAT (5X,478 *** \WARNI NG ¢ LINEAR INDEEENDENCENAY BE LOST,
1 24H. VECTOR SET TO ZEERC #%x%)
R (IML,INL) = 0.DO
DO 320 3 = 1,N
X(,I) = 0.00
320 CCNTI NUE
@0 TO 400

330 SUM = DSQRT (SUR)
R (INL,INL) = SOM
sun = 1. D0/SUN
DO 340 aJ =1,N
X(J,I) = SUE*X (J,I)
340 CCNTI NUE

350 |F1 = I+1
I P (IzP1.6T.LPP) GO TO 400

DO 370 k = IP1,LPP
CALL INPROD (N,X(1,I),X (1,K),SUM)
KBL = K-L
R(INL,KNML) = SUONM

DO 360 J = 1,N
X(J,K) = X(J,K) - SUN*X(J,I)
360 CONTINUE
330 CONTINUE
400 CCHNTINUE
IVY = IVV + (P=1)%*p/2

EETUER
END
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SUBROUTI NE 1NPEOD (N,U,V,SUN)
INTEGER N
DOUBLE PRECI SI ON U (N),V(N),SUN

INPROD COMPUTES THE | NNER PRODUCT OF 2 VECTORS U AND ¥V,
EACH OF LENGTH K, AND STORES TEE RESULT 1k s.

INTEGER |
sgM = 0.D0

DC 110 | =1,¥
SUN = SUM ¢+ U ({I)=*V(I)
110 CCRTINUE

RETURN
END
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200

SUBRCUTI NE BOTATE (N,Q,H,PS,1,0,X,T)
| NTEGER N,Q,H,PS,1
DOUBLE PRECI SI ON ©B(C,L) ,X (N,Q) ,T(Q)

RCTATE CONPUTES TEE PI RST L CCLUENS OF THE MATEIX
Xs*Qs, WHERE XS 1s AN N-BY-PS ORTHCROEMAL MATRIXY STORED
| N ccLumNs H+1 THROUGH H+Ps OP TEE N BY- Q ARRAY x AND
Qs | S A PS-BY-PS CRTHORORMAL MATRIX WHOSE FI RST 1 COLUWNS
ARE STORED IN coLUMNS 1 TBROUGH I CP TEE aBRFAY U. TRB
RESULT IS STORED | N CCLUKNS H+1 THFCUGH H+L OF X
CVERWRITING PART OF XS.

| NTEGER 1,J,JPH,K,KPH
DOUBLE PRECI SI ON sou

DC 200 | = 1,N
CCHMPUTE TEE |1-TH FOW OF XS*CS
DO 110 K

T(K) = SuUN
CCNTINUE

DO 120K = 1,L
KPH = K+H
X(I,KPH) = T(K)

| NUE
CCNTI NUB

EBTUFN
END
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SUBROUTINE CEVISTI(M,N,Q,H,G,ERRBND,FEPRC,0F,C,X,Y,NCCNV,
Lour,T)

| NTEGER ®,N,Q,H,G,NCCNV,LOUT

DOUBLB PRECISION ERRBND,ERRC

DOUBLE PBECISION C (Q,2) ,X(M,Q),Y (N,Q),T (M)

CRVTST DETEBMINES V\HI CH or TEE P ccmPuTED S| NGULAR
VALUES STORED IN TBE SECOND corumy OF C HAVE CCNVERGED.
THE RESI DUAL resipu OF THE (H+I)-TH SI NGULAR VALUE

| S ccupuTED BY
RBSI DU = DSQRT( 2NOBM( A*Y (H+I) - X (H+I)*C (I,2)) **2

+ 2NORM( A'S$X(H4I) - Y(H4I)*C(I,2) ) *%2 ),

BRRC IS A MEASURE OF THE ACCUMULATED ERROR I N THE
H FREVIOUSLY COMPUTED S| NGULAR VALUES AND LEFT AND RI GHT
SINGULAR VECTORS.
' WE DECIDE TEE (H+I)-1B SI NGULAR VALUE HAS CCNVERGBD

RBSIDU .LE. E*ERRBND + ERRC,

WEERE B EQUALS c(1,2) | F T8E LATTER | S GREATER THAN 1,

AND 1 OTBRERWISE. HENCE WE DO ARELATIVE ERROR TEST 1fF THE
CCBPUTBD siwGcoLaR VALUE | S GREATER 1HAN 1, AND AN ABSOLUTE
ERROR TEST CTHBRU SB.

TEE CONVERGENCE TEST |S PERFORMEL | N ORDER CN TEE (H+1)-TH,
(H+2)-TH, . . . COVWPUTED SI NGULAR VALUES. AS SOON AS A CCMPUTED
VALUE FAILS THE TEST, RETURN |S RACE TO TEE CALLI NG ROUTI NE.

NCOoNv | S THE NUMBER THAT HAS CCNVEERGED. IF NCONV=0,

TEEN sose HAS CONVBEGBD.

INTEGER I,IPH,K,1,PT
pcoB1R PRBCI SI ON RES1IDU,B,SUM
DOUBLB PRECI S| ON DSCET

SUB = O DO
FT = GH
DO 200 | = 1,pt
K=1
|F (C(I,2).BQ.0.D0) GO TO 300
| PH = I+H
CALL op(M,N,1,7,Y(1,IPH),.TRUE.)
RBSI DU = O DO

DO 110 L = 1,
B=T(L) = €(I,2)*X(L,IPH)
RBSI DU ‘= RESIDU + B#s2
CONTINUE

CALL OP (m,¥,1,X(1,1IPH) ,T,.FALSE.)
DO 120L =1,N
B=T(L) - C(I,2)*Y (L,IPH)
RESIDU = RESILU + B#*%2
CONTIRUE

TEST POR CONVERGENCE



RESIDU = DSQRT(RBSI DU)

B=c(,2

| F (B.LT.1.D0) B = 1.D0

| F (RESIDU.LE.B*EREBND+ERRC) GO 1C 130

WRITE (LOUT,6010) K,RESIDU
6010 FOBMAT (5X,4H K =,14,5X,9H RBSI DU =,1BD15.5,

| 36H e ** COHPUTBD VALUE REJECTED ##*#)
c GO TO 300
130 WRITE (LOUT,6020) K,RESIDU
6020 PORMAT (5X,8H K =,14,5x,98 RBSIDU =,1PD15.5,
2 36H *%%  CCMPUTED VALUE ACCEFTED #*s)

SUNM = SUM + RESIDU**2
| F (I.EQ.PT) K =K+1
c 200 CCNTINUE
300 NCONV = K-1
| F (k.BQ.1) RETURN

BRRC = DSQRT (ERRC*#*2+SUM)
RETUEN
END



OO OOOOOOODOOOOO OOOMOO OO O

(@]

SUERCUTINE ECHCIC(Q,E,G,NCONV,P,S)
IMEGER C,H,G,NCCNV,E,S

BASED ON TEE VALUES CF Q H, G ANC NCCNV,

ECHOIC CHOCSESNEW VALUES FOR P ANL S, THE ELCCK SIZE
ANC NUMEER OF STEES FOR TBE ELCCK 1ANCZCS HETHCD

TEE STRATEGY IS : IF TEE PREVI QUS BL1CCK SIZE | S
GFEATER THAN TEFE BUMEEF CF SINGULAR VALGES 1IC BE
CCH¥PUTED, THEN THE NEW BLOCK SIZE EQUALS '| RE EFEVIQUS
FICCK SIZE mINUS '| RE XUMBER OF S| NGULAR VALUES TEAT
HAVE CCNVEFGED INTHE CUFBENT | TERATICN, CTBEEWISE
TFE NEW BLOCK SIZE |S CRCSBN To EE TEE SMALIEE CF THE
TWC VALUES : 1) THE PREVIOUS EICCK SIZE, ANC 2) THE
SCPRFR OF SI NGULAR VALUES TO BE CCMEUGTEL. S | S CHCSEN
2S LARGE AS PCSSI| ELE SUBJECT TC STORAGE CCNSTERAINT,

FUT ITS VALUE IS ALWAYS AT LEAST :Z.

H IS THE NOMBEF CF SINGULAR VvAaLUES AND LEPT ANE RIGHT
SINGULAR VECTOFS THAT HAVE ALREADY EEEN CCMEUTEL AND G
IS TFE REQUI RED NUBEERE. NCCNV |S TEE NUMEBER CF S| NGULAR
VREIUES AND L2FT AND RI GHT SI NGULAR VECTCRS THAT HAVE
CCNVERGED IN TAB CUFRFENT | TERATI ON.

INTECER HT,PT

H1 = B+ NCCNV
IF (E.LE.G-H) GO 10 110

F =t - NCON\V

$ = (Q-HT)/F

FETUEN
110ET = G- HT

IF (F.GT.ET) P = ET

IF (5.GE.2) RETUEN

E = (¢-HT) /2
£ = (Q-HT) /P
FETUFN

EXC
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SUERQUTI NE RANDCM (N,Q,E,H,X,ISEED)
| NTEGER ®,0,P,H,ISEED
CcUBLE PRECI SI ON X (N,Q)

RANDCM COMPUTES AND STORES ASECUENCE CF E*N PSEODO-
FANDCM | NTEGERS ( VALUE BETWEEN O AND 2147483647 ) IN
CCLUMNS H+1 THBOUGH H+p OF THE N EY-Q ARRAY X
INTREGER I,L,LPH
DC 130L =1,P
LFH = L+n
DO 120 I = 1,N \
| SBBD = ISFED*314159269 + 4538C6245
THE STATEHBNT NUHBBR 110 IS TG PREVENT UNWANTED,
OPTIMIZATICY BY TEE COWPI LER
110 | F (ISEED.LT.0) | SBBD = ISEEL + 2147483647 +1
X(I,LPH) = ISEED
120 CONTI NUE
130 CCNT1 NUB
RETUEN

END
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SUBROUTINE SVBUTM (NDIN, N, M, #P3, C, NO, NV, U, V, NCHEPS, IERR)

CHEEERBAREAAAREEERREERRERAXRER START OF SVBUTH SSESSEEEAE SRS EAEEERRERRN

C
C
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| NTEGER ®DIS, N, M, MP3, NU, NV, IERR
DOUBLB PRECISION C(NDINM,MP3), U{(NDIN,NU), V(NDIN,NV), MCHEPS

G h r  ER S U N M R EL S M UL GP WP W @ N A T DS W WP WD WS G TR N S TR D AP WD P TR YD AP S NS WD A U WD G S W S LD AR B D R NN WS @R R WS AP R e T

CALCULATE THE SINGULAR VALUE DECONMPOSITION OF A BANDED uppER
TRIANGULAR MATRI X

YRI TTBN BY: M. L. OVERTON
COMPUTER SCIBNCE DEPARTHENT
STAMFORD UNIVERSITY
JANUARY 1976

LAST UPDATB: JANUARY 1976

B S WD S N S EN S vm " D P e I S I A CEGR W UL UD TP W GD D D P D W YD M WD e E TP P b B We P ol s Y D W AP S W 4B W U W P WD W AP W W W

TH'S ROUTINE CONMPUTES TEE SINGULAR VALUE DECOMPOSITIONOF A REAL
N*N MATRIX A |. E |T conpurEs MATRI CES u, s AND V SUCH TEAT

A=0%s = VT |

WHERE
U 1S AN x+«§ NATRIX AND UT * 0 = |, (UT = TRAUSPOSB
oOF Uy ,
V IS aun*y MATRI X A¥D VT #*Vv= |, (VT = TRANSPOSE
orvy,

AND S IS AN ¥*§ Dl AGOUAL MATRIX.
THE CALCULATION |S PERPORMED IN TWO STEPS:

1. RBEDUCE THE BANDED UPPER TRIANGULAR MATRIX TO AU UPPBR
Bl DI AGONAL MATRIX USING GIVENS TRANSPORMATIONS. THIS IS
DONE BY SUBROUTINE BIBAND.

THE merdop USBD |'S sIsrLAr TO THE seTHOD USED FOR

TRIDIAGONALIZING ASYNMETRIC BANDED NATRIX, DESCRI BED | N
H. RUTISHAUSER,ON JACOB|I BOTATION PATTBRYS, PROC. OF SYAP.
In APPLI ED mata., VOL. XV, BXPERIMENTAL ARITH., H GH SPBBD
COMPUTING, AND MATH. (1963). FOR PURTHER DBTAILS SEE
CONNBNTS AT BEcINNING OP THB SUBRCOUTI NE

2. DI AGORALI ZB THE BIDIAGONAL MATRIX TO OBTAI U THE SINGULAR
VALUBS. TH'S IS pome BY SUBROUTINE SVDBI
TEE METHOD USED | S A VARIAENT OF THE QR ALGORITHA,
DESCRI BED 1Im: GOLUB AUD RRINSCH,SINGULAR VALUE DECOMPOSITION
AND LBAST SQUARES SOLUTION, NUMER. BATH 14, 803-420(1970),
SECTION 1 .3 .

P W M W D G S G S D N S I YR D AN D P ORGP R R D T G D D YR D TR R W D Uk MG AR R M WS W b R AR W e b R G WR s D WD SR e B S W m

TEE ROUTINE | S 18 DOUBLE PRECISION

- L D D SN I G MNP ER B ED S W A GNP GN D D WS SR R D SR R WD D U WGP YD WD D S e R T Y Wk AP ED ND GRS I WD W S G S W AR S e W

THE SPEED orTHIS ROUTINE CCULD BB | MPROVED BY INPLEMENTING
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PAST cIvexs TRANSPORVATI OUS
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ADDITIOIAL SUBROUTINES REQUI RED: Bl BAUD, wITH ROTROW AMD ROTCOL

SVDBl, wrtA DROTAT

B e s D s TR R SR R A W S ERER e S ED R R S D TR WD D WD WD WS e P L D VS D D D R P D Wk U U G e R TS A SR M MR D A EE A W WD GRS Y = e

THE FORVAL PARAMETERS ABE:

NDI M -

e 3
[}

MP3 -

C -

NU, wv-

TEB QUANTITY USED 17O DECLARE THE FI RST pIMEmsioN OF TEE
ARRAYS ¢C,U,v (NDIN .GE.N)

TEE ORDER or THE BAUDBD uPPER TRIANGULAR MATRI X A

THE UUVBBR OF SUPERDIAGONALS IN TEB MATRI X A:
A(I,3) =0 FORJ .6T. I+n AIDJ .LT. 1

THE womBER or COLUMUS 18 TRB ARRAY C MUST BB SET TO ue+3.

AUNDIM e EP3 ARRAY WHICH HOLDS THE NONZERO ELEMENTS OF

or A
THE DI AGONAL |S STORBD 1» TEE FI RST ® BLBMBNTS COF
COLUMJ 2, TEE wex?T SUPBRDI AGOUAL I8 THB rIRSsT U-|
ELEBRNTS OF COLUMJ 3, AUD SO o UP TO TEB LAST
NONZERD SUPERDI AGOUAL BRING STORED 1 THB FI RST UM
BLENENTS OF COLUMU m+2. COLUMUS 1AUD n+3 ARE ARBI TRARY.
THUS:
A(I,J)=C(I,J-I+2), | .LE.J .LB. TIen,

TEI B ROUTINE RETURNS TEE DIAGONAL OF TEE MATRI X S,
|. B. THE siwcuLAR VALUES OF A, 1IN DESCENDING
ORDER, IN COLUMNZ20F C -~ THUS THE
SINGULAR VALUES WILL BE:

c(1.,2) .GE. C(2,2) .GE. . .GE. C(¥,2)

INTEGER VARI ABLES. TEE UUVBBR or COLUMUS 1m TEE

ARRAYS o AUD V. SET w0 TON IP TEE MATRI X 8 IS DESI RED,
OR SET wo TO 11? 0 IS UOT DESIRED.SETHY TO N

IF THE MATRI X vIS DBSIRBD, OR SBT ®vTOt |? Vv

'S ROT DESI RED,

REAL NDIN * RO ARRAY. IFr xy = ¥, TEB MATRI X o | S COVPUTED
A¥D STORED 1w THRE ARRAY U.

REAL ¥DIm *=¥v ARRAY. Ir §v = ¥, THE MATRI X vI S COWUTED
A¥D STORED 1mtHE ARRAY V.

ERROR PLA6. TEE ERROR CODES meruRNED HAVE THE POLLOWING
MEANINGS:

IBRR = 0 HOBRNAL RETURN

IERR = 2: EBRBOR - EP3 DOBS uoT BQUAL M+3.
IEBR = 3: ERROR = MJ IS UOT SET TO ¥ OR 1.
IERR = 4: ERROR - ¥v | S uoT SET TO N OR 1.
IERR = 5 BRROR ~ ¥ | S GREATER THAN ¥DIA.

LOG CAL wiTHU, WITHY
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| NTECER 1,881,881

CHECK INPUT PARANMETERS

IERR = O

| F (sp3.5B.8¢3) 60 TO 102

| F (sU.NE.1.AND. NU.NE.¥) GO TO 103
IF (UU.BQ|) WITHU = .PALSE.

| F (NU.BQ.¥) WNITHU = .TRUE.

IP (SV.NE.Y .AND. WY .NE.N) 60 TO 104
| F (Wv.BQ.1) WITHY = ,PALSE.

| F (vv.BQ.¥) U TEV = .TRUB.

IF (n.cr.MDIN)G60 TO 105

TURN OFPF UNDERFLOW
CALL EBRBSET (208,256,-1,1,1,0)

Bl DI AGOUALI ZB
CALL BIBARD (NDIN,X,H,MP3,C,NU,NV,WITHU,WITHV,U,V)

THE SUPERDIAGOMNAL COLUNN MUST BESHIFTEDDOWN CORE ELENENT IN C
BBPORE CALLING SUBROUTINE SVDBI
NM1=N-1
DO 20 I=1,HN1
NaI = m-1
20 C(NNI+1,3) = C(WAI,3)
cC (1,3)=0.DO

DI AGOUALI ZB
CR)é_ll__bRLSJ'DBI (¥DIN, ¥,C (1,2) ,C(1,3) ,WO,NV,UITHU,WITHV,U,V,NCHEPS)

SET ERROR PLAGS
102 IBRR = 2
RETURU
103 IBRR = 3
RETURU
104 IRRR = 4
RETURN
105 IBRR = S
RETURN
BUD
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SUERCUTINE BIBANC (NDIN,N,M,MP3,C,NU,NV,WITHUG,®RITHV,U,V)

CHEIABRRRERERRERIRAERAESRAXEXE START OF BIRAND #8423 500 shhhbedkn

C
C

'
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INTEGER NDIM N, ¥, #p3, NU, NV
LOG CAL WITHU, WITHV
LCUBLE PRBCI SI CN C (NCIM,MP3), U(NDIN,NU), V(NDIN,NV)

FICUCEA BANDED UPPER TRI ANGULAR MatrIX T¢ A Bl Cl AGCNAL MATRI X
BY cIvENs TRANSFORVATI ONS, PRESERVI NG THE SIRGuLAaE VALUES.

WRITTEN BY: M. L. OVEFTCN
COMPUTER SC| ENCE DEFARTMENT
STANFORD UNI VERSI TY
JANUARY 1976

LAST UPDATE: JANUARY 1976

el R R R R X R N L ot T —

ADDI TI OUAL SUBBOUTINES REQU RED: EGTRECW AND FOTCOL

TBIS SUBROUTI NE compu1es TEE MATRI CES u,3 AND V SUCH THAT
A=1u=*J=*yvT,
U 1S AN N*N MATRIX AND UT * v = |, (0T = TRANSPOSE
OF 0),
VIS AN n#x MATRIX AND VT = V = |, (VT = TRANSPOSE
OF V),
ADD J IS AN ¥*Nx UPPER EI DIl AGGNAL MATRIX.
Te2 METHOD USED IS SIM LAR TO TRE mEr1sCE USBD FCOR
TRIDIAGONALIZING A SYMVETRI C EANDED raTEIX, DESCRI BED I N
BH. RUTISHAUSER, CN JaccBI ROTATI ON PATTERNS, prcc. OF STEP.

IN AFPLI BD MATH., wor.xv, EXPERI MENTAL AEITH., HIGH SPEED
CCEPUTING, AND MATH.  (1963).

WHERE

- - - DD DR G AP D TS R S D WS D WP D D S D R D 6P W G W AR S D T e W O

TRE PORVAL PARANRIEES ARE:

#pINM - THE QUANTI TY useEp TO DECLARE 1THE FI RST DIMENSICN OF THE
ARRAY C (NDIM .GE. N)

| - THE ORDER OF THE RAI DED UPPER TRI ANGULAR MATRI X A

» - TEE wumBer OF SUPERDI AGONALS IN TEE MATRI X A
A(I,Jd) =0 FORJ .67. I+8 ANDJ .1T. |

#p3 - THE NumBER OF COLUWNS I N TRE ARRAY c. BUST BE SET TO m+3.
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C - AN NDIM * HP3 ARRAY WHICH HCLLCS THE NCN2ERO ELEMENTS COF

COF A
TAB DI AGONAL |'S STORED IN TRE FI RST NELEMENTS OF
COLUHN 2, THE NEXT SUPERDIAGCNAL [N THE PIRST N-|
ELEMENTS CP COLUHN 3, AND SO cNnOE TO THE LAST
BCNZEBRO SUPERDI AGONAL BBI N6 STORED NTHE FI RST N-H
BLBHBNTS OF COLUHN M+2., ccrumNs 1 AND M+3 ARE ARBI TRARY.
THUS:

A(I,J)=C (I,3-I+2), | .LE. J .LE.I+#M,
THE ROUTI NE RETURNS TEE BIDIAGCKEAL EATEIX J WTH THE
DIAGONAL IN THE FIRST N ELEMENTS OF CCLUMN 2 OF C AND
THE SUPERDI AGONAL IN TRB FI RST N-1 ELBWENTS cF
COLUW 3 CF C

NU,NV- | NTEGER VARIABLES. THE BUMBER OF COLUMNS | N THE
ARRAYS o AND V. SBT ¥o TO N 1IF U THU = .TRUE., OR SET
NO TO 1 cTHEEWISE. SIH LARLY SET NWTC N OR 1.

WITHO,WITHV - LOG CAL VARI ABLES. 1F U THU = .TRUE., THEN
THE HATRI X o IS COHPUTBD A¥p STORED | N THE ARRAY U.
| P WITHV = .TRUE., THEN THE MATRIXV|S COHPUTED AND
STORED IN THE ARRAY V.

0 - REAL NDIH * NO ARRAY.

v - REAL NDIH * NV ARRAY.

| NTEGCER ¥®2,1,J,K,J0,J0FF,KK

INITIALIZE U,V
|V g NOT. wITHU) GO TO 81
DC 80 I=I, N

DO 70 J=1,%

70 U(I,3)=0.D0
U(I,I)=1.D0

80 CONTI NUE

81 CONTINUE
| F (.HOT. WITHV) GO TO 101
DO 100 1I=1,N
DO 90 J=1,%
90 v(1,J)=0.D0
V(I,1)=.D0
100 CONTI NUB
101 CCNTI NUB

HANDLB DBGBNBBATB cAsE
IV (M.LT.2.0R.N.LT.3) BETURN
NM2=R-2

ZEEQC WORKING SPACE ON LEFT AND RIGHT SIDES OF C
DC 120 I=1,¥
C(I,1)=0.D0
C(I,NP3)=0.D0
120 CONTINUE

PASS CowN THE ROWS OF A
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z
200
201
300
400

DC 400 I=1,NM2
LOOK AT TXE ELEHENTS QUTSI DE THE BICIAGCNAL PART
FOR K PROH M STEP -1UNTIL 2...
DO 300 kk=2,M
K=M+2-KK
THE POLLQOUI NG LOOP PI RST ANNIHILATES TBE CHOSEN ELEMENT
BY A corumMy ROTATION Ul TH Jofrr=Kk. TH S CREATES A NEW
BLBHBNT TO BE ZEROCED BY A BOW BROTATICN WHICH CREATES A
NBU ORE TO BE ZERCED EY A coLus¥ ROTATI ON WITH JOFF=M+1
AND SO ON UNTIL THE erLeMEnT | S CHASED OFF THE MATRIX.
JO=T+K
JOFF=K
| F (30.G61.N) GO TO 201
DO 200 J=30,N,M
ROTATE coLuoMrs TO ANNI HI LATE ELEMENT
CALL BCTCOL (NDIM,N,N,NP3,C,NU,NV,WITHO,WITRV,U,V
¢J ¢ JCFF)
JOFF=M+1
ELEMENT CREATED BELcw DI AGONAL - ZERO I T AND
CREATE ANOTNER ABOVE EY FOTATING RCRS
CALL ROTROW (NDIM,N,®,MP3,C,NU,NV,WITHU,WITHV,U0,V
eJ)
CONTI NUE
CONTI NUE
CONTI NUE
CONTI NUE
FETUFN
END
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200

SUERCUTI NE ROTEOW (NDIM,N,N,MP3,C,NO,NV,WITHU,WITHV,0,V,I)
APE1Y TO HATRI X A ON THE LBPT SIDE AQ VENS TRANSFORMATION
TO ROTATE rows | AND | -1 SUCH TEAT TEE sUBLCIAGCNAL ELEMENT A (I,I-1)
| S ANNI H LATED

RECALL THAT A 1S STORED IN C U TH
A(I,J)=C(I,J-I+2) | .LE. J .LE. I+HM

| NTEGER WDI®,N,M,MP3,NU,NV,I

DCUBLE PRECI SI ON C (NDIM,NP3) ,U (NDIN,R0),V(NDIN,NV)
LCG CAL WITHU,WITHV

INTEGRR K,ME1

LCuUBLE PRECISION %,Y,2,C0ST,SINT,TENE,S,CABS,CSQRT

X=C(I-1,2)
Y=C(1,1)
IP Y IS ZERO THEN THERE IS NOTH NG TC DO
1F(Y.EQ.0.D0) RETURN
EEEPORNM Z=SQRT (X#X+Y*Y) ; COSTT=X/Z; SINT=Y/Z W TH SCALI NG TO
PREVENT UNDERFLOW
S=DAES (X) +DABS (Y)
CCST=X/S
SINT=Y/S
Z=DSQRT (COST*COST+SINI*SINT)
CCST=COST/2
SINT=SINT/Z
C(I-1,2)=2%S
€ (1,1)=0.D0
EE1=N+1
DO 100 k=1,MP1
IP (I-1+K.G1.N)GO TO 100
TEMP=C (I=1,K+2)
C(I-1,K+2) =COST®TEMP + S| NT *C(I,K+1)
C(I,K+1)==SINT*TEMP + COST*C (I,K+ 1)
CCNTI NUE

UPLATE U (ACCUMULATE TRANSFORMATIONS) - BUST UPCATE o ON THE
Rl GHT BECAUSE u | S wANTED, NOT 0 TRANSFOSEC
| F (.¥0T. U THU) RETURN
DC 200 k=1,Rn
TENP=U (K,I-1)
U(K,I=1) =CCST*TEMP + SINT*U (K,I)
U (K,I) ==SINT®TEMP ¢ COST#*U (K,I)
CONTI NUE
BETUEN
END



SUERCUTI NE ROTCOL (NDIM,N,M,MP3,C,NU,NV,WITHO,WITHY,0,V,Jd,JOFF)
APFLY TO MATRIX A CNTHE RIGHT SIDE AGIVENS TRANSFORMATION TO

(o
C ECTATE COLUMNS J AND J-1 SUCH THAT THE ELEMENT A (J-JOFF,J) (I N THE
C UPEER TRIANGLE) IS ANNI HI LATED
C
C RECALL THAT A IS STORED IN C WTH
c A(1,J)=C(1,J-I+42) I ,LE. J .LE.I+NM
C
| NTEGER NDIM,N,N,MP3,NU,NV,J,J0FF
DOUBLE PRECI SI ON C (NDIM,MP3) ,U (NDIN,N0) , V(ND H, NV)
LCA CAL WITEHU,WITRV
| NTEGER 1,1IFK,K,JMIE1,JN1IP2,JK1,JK2
DCUBLB PRECI SION %,Y,2,C0ST,SINT,TENP,S,CABS,DSQRT
C
I=J-JOFF
JRIP1=J-I+1
JNIP2=J~I42
X=C(1,JMIP1)
Y=C(I,JINIP2)
C IF Y IS ZERO THERE | S NOTH NG TO CO
IF(Y.EQ.0.D0) RETURN
C PERPORM Z=SQRT (X*X+Y*Y); COSTT=X/Z; SINT=Y,Z U TH SCALI NG TO
C PREVENT UNDERPLOW
S=LCAES (X) +DABS (Y)
CCST=X/S
SINRT=Y/S
Z=DSQRT (COST*COST+SINTI*SINT)
CCST=COST/Z
SINT=SINT/Z
C(I,IMIP1)=2%S
C(I,Jn1IP2)=0.D0
DO 100 K=1,J0FF
JK1=JNIP1-K
JK2=JMIP2-K
| PK = I+K
TEMP=C (IPK,JK1)
C (IPK,JK1) =COST*TEMP + SINT*C (IFK,JK2)
C (IPK,JK2) ==SINT*TEMP + COST*C (IPK,JK2)
c 100 CONTI NUE

C UFECATE V (ACCUMULATE TRANSPORMATICNS)
C  mosT UPDATE V ON THE RIGHT SINCE V |'S DESI RED, NOT V TRANSPOSED
P (.80T. WTHY) RETURN
DO 200 K=1,N
TBHP=V(K, J- 1)
V(K,J=1)=COST*TEMP + SINT#*V (R,J)
V(K,J)==SINT*TEMP + COST*V (K,J)
200 CCHNTINUE
c FETUEFN

CHI2288 3202 RERARRRE 288022202k END OF BIEAND S#22%ARS25 42 E R RN RRRNRER
- END



SUERCUTINE SVDElI (NDINM, N, S, T, NO, NV, wITHU, U THvV, u, V, ETA)

C
CHREXAEAASESRARARAARSREESRAARSS START OF SVLRT S350 0000000 bk hkhikk
C

INTEGER NDIM, N, NU, NV

CCUBLE PRECISICN S(N), T({N), U(NCIM,NU), V(NDIM,NV), ETA

ICGICAL WITHU, WITHV

TH' S |'S ESSENTI ALLY THE SECOND HALF CF SUERCUTINE DSVD,
A SI NGULAR VALUE CECCMPOSITIOR ROUTINE IN TEE CSD LI ERBRY.

TEE EQUTINE IS IN pcuoBLE PRECI S| ON.
CSVD ORI G NAL FRCGRAHHER: R C. SI NGLETCN

DSVD 360 VERSI ON BY: 3. G LEWS
rsvD LAST REVI S| CN: JANUARY 1874
SVCBI EXTRACTED EY: H L. OVERTICN
SVCBI EXTRACTED I N: AUGUST 1§75
SVCBlI LAST REVISION: SEFTEMBER 1975

- —— - —— - - D W = A Y - A G D WD A S S D D G S N I A R S S . . - T M . —— v -

ACDITIONAL SUBROUTINE NEEDED: DECTIAT

THI'S SUBROUTI NE cCMPUTES TRE SI NGULAR VALUE DECCMPOSITION
CF A REAL BIDIAGONAL N#N HATRIX 3, |.E |T COHPUTES MATRICES
P, S AND Q SUCH TEAT

J=F #*ss=*qQT,

WEERE
P 1S AN N*§ MATEIX AND FT # P = |, (PT = TRANSPOSE
OF P) .
QIS AN NN HATRIX AND QT * Q = |, (T = TRANSPOSE
OF Q) »

AND S IS AN N*N DI AGCNAL MATFIX.

THE METHOD us®D | S A VARIANT CF ?HE QR ALGOFRITHAM.

REFERENCE: GOLUB AND BREIKSCH,SINGUL2R VALUE DECOHPOSI Tl ON
AND LEAST SQUARES SOLUTI ON, NUMER. MATH. 14, 403-420 (1970),
SECTION 1. 3.

DESCRI PTI ON OF PARAHBTBRS:

S = REAL w*1 ARRAY. ON ENTRY S CONTAINS THE NMAI'N DIAGCNAL OF 3.
-THE ROUTINE REPLACES TH S BY TEE DI AGCNAL GP THE MATRIX S,
|.E., TAE SINGULAR VALUES CP J I N DESCENDI NG CORDER

T = REAL N*1 ARRAY. ON ENTRY T CONTAINS THE SUPBRDI AGCNAL OF J
IN ELEMENTS 2,...,N, THE FIRST ELEMENT |S ARBI TRARY.
THE ARRAY | S DESTROYED BY THE FECUTINE.

N = INTEGER VARI AELE. TEE NUMBEF O ELEMENTIS | N ARRAYS S AND T,
|.E. THE ORDER OF THE BI DI AGONAL MATRIX J.

eNeoNeoNeNeNesEeEeEeReReRe oo ReoRo o N Eo Ne e N Es s e o e oo Es oo No o No N NoNoNoNoNoNoNoNoNoNoNoNeoNe NN ]
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0000 0O

o0 OO0 O

ole

¥0, NV = | NTEGER VARI ABLES. @ TBB NUMBER OF CCLUMKS IN THE
ARRAYS o AND v. SET 0 TON IF UTHU = .TRUE., '1 OTRBRU SB.
SINILARIY SET NV TC § OR 1.

U THU, witevV = LOG CAL VARI ABLBS. | F WITHU = .,TROE., THEN
THE MATRI X 8 SUPPLIED IN TBE ARRAY 0 | S POSTMULTIPLIED
BY THE MATRIX P.
| F WITHV = ,TEUE., TRBN TBE MATRIXVSUEELIED |N TEE
ARRAY V | S POSTMULTIELIED BY THE MATRI X Q.

BBAL NDI H * No ARRAY.

0

Vv REAL NDIH * NV ARRAY.

SUBBROUTINE DSVD 1Is A REAL VERSI ON OF A FORTRAN SUERCUTI NE
BY BUSINGER AED GOLUB, ALGORITHE 358: SINGULAR VALUP
DECOMPCSI TI ON oF A CCEMPLEX MATRI X, comm. ACM V. 12,

NO. 10, PP. 564 - 365 (OCT. 1969).

WITH BREVISIONS BY RC SINGLETON, HAY 1972.

DOUBLE PRECISION B,W,CS, SN, F, X BPS, 6, Y
DCUBLE PRECISION H, Q

DouB1E PRECI SI ON DSQRT, DABS, DHAX1

INTEGER I, d, K, L, 11

S(1) =0.D0

THIS CALCULATI ON or EPs | S TAKEN FROH 18 RIDDLE OF TRE FI RST HALF

OF DSVD

EEs = O DO
DO 50 Kk=1,N

50 EFS = DHMAX1(EPS,CABS(S(K)) ¢ LABS(T (K)))

100

230
280

TCLBEANCB FOR NEGLIGIBLE ELENMENTS
BPS = BPS = ETA

THE REST OF THE PROGEAM | S TEE SECOND BALF OF DSVD

QR DIAGOBNALIZATICHR
K =1

TESE FOR SPLI T

= K
| ? (DABS(T(t)) .LE. EPS) 6OTG 290
L=91-1
IF (DABS(S(L)) .GT. BPS) GOTO 240

CANCELLATION
CS = O CDO
SB = 1.000
L1=1
L=L +1
DO 280 | =L,K
P = SN+ T(1)
T(I) = ¢o o T(1)
|F (DABS(F) .LE. EPS) GOTO 290
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280

290 w

350

36C

370

H = 51

W= éB&RT (F*F + H*H)
S(X) =®

CS = H /¥

SN = =-F / W

| F (¥ITHO) call DBOTAT (o(1,LM, 8(1,1), CS, SN, M
CONTI NUE

TEST FOR CCNVERGENCE

= (K
IF (L .EQ. K) GOTC 360

OFIGIN SH FT

F

X S(L)

S (K=1)

T (K=1)

T(K)

((Y =0)* (Y +8) + (6 -H*(G+ H) / (2.0D0%H*Y)
DSQRT (F*F + 1,0D0)

F (F .1T. 0.000) G = ~G

((X-®*(x+W+ (Y y(F+6)=-H *H) /X

Y
G
H
F
G
I

QF STEP

cS = 1.0D0

SN = 1.0D0

L1 =1 + 1

DC 350 | = L1,k
T (1)
S(1)
SN =
CS=*agG

DSQRT (E*H + F#*F)
- |

®

o 1=2Q T <&

Zwn

)

F/ W
B/ W
X*CS + G*SHN

G*CS = X#*SK

Y * SN

Y * CS

P (witAv) CALL DROTAT (v(1,I-1). V(1,I), CS, SN, N)
DSQRT (H*H + F*F)

1

R ]

OwVmkH~e@O™

wn

2

)
F
H
CS*G + SN*Y

CS*Y - SN®G

| 7 (WITHU) CALL DRCTAT (U(1,I-1), U(1,I), CS, SN, N
CONTI NUE

(ON0D0)
i 4

wu

> T

T (L)
T(K)

nwon

- S (K) = X

GCTO 230

CCNVERGENCE

IF(W.GE.0.0D0)GOTO 380
S(K) = =
| F (+ROT.WITHV) GOTO 380
DO 370 3 = 1,N

V(J,K) = -V (J,K)



PSR AT TR

380 K=K=1
IF (K. NE.O) GO TO 230

SORT SI NGULAR VALUES
DO 450 K=1,N
6 = -1,0DO
DO 390 | = K,N
IF (S (I) .11. G) G60TO 390
G = S (I)
J = |
390 CONTI NUE
3 .EQ. K} GOTO 450

S(K)

G
OT.WITHYV) GOTO 410
I =1,N
= V({I,Jd)
v, = V(I,K
400 V(I,K) = Q
410 | F (.NOT.WITHU) 6O0TO 430
DC 420 1 =1I|,N
Q = 0(1,J9)
0(I,Jd) = U(1,K)
420 U(I,K) = (
430 CONTINUE
450 CCNTINUE

- —
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€y

-b—.a""—\
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3
O
| O

RETUEN
END



SUBROUTI NE DROTAT (X, ¥, CS, SN, N)
| NTEGER N

COUBLE PRECISICN CS, SN, X (N), Y(N)

C
C
DcUBLE PRECI SI CN XX
| NTEGER J
C
C
DC 10 J=1,N
= X(J)
X(J) = XX#*CS + Y (J) #SN
10 Y(J) = Y (J)*CS = XX*SN
KETUEN
C

CHEE302 R0 ARRTRSRARARRSRRRRRREE END CF SVLBI $545850205Xk Rtk kb kekks

C

CH+323 222222 RRRNR X052 S0k RkE END OF SVRUTHN %323 %2305 50kkxkhkrkkrrk

C
E ¥
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+ SAMELE MAIN PFOCGRAM +
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FFCPEFr LENGIHS OF MATFICES :
D (C) ,X (M*Q) ,Y (N*()

sNeoNeoNeNeNeEeNea]

CCUBLE PRECI SICN D (20) ,X(8000),Y(20G0) ,EPS
INTEGER I,IFCOLE,IORTHG,H,MMAX ,M,N,G,EINIT,C
EYTEFNAL AX

CCHMCN A (3000) ,IINDEX (2000) ,JINDEX (2000) ,NCATA
LCUBLE PRECI SI GN A

INTEGEE IINDEX,JINDEX,NDATA

INTEGER K,KE1,KPS,KPJ,NCARD,NCATA

1cuT |S cuTruT UNIT NUMBER
MCEEES | S MACHINE PREC SI CN

OO0

IFIEGER LOUT

DCUBLE PRECI SI CN ECHEPRS
CTATA LCUT/6/

CATA MCEEFS/2.22C-16/

NCARE IS NUMBEF OF tATA CARDS TO EE READ

OO0

FEAD (5,5010) M,N,NCARD
S01C FCEMAT (315)

C
K =0
ccCic | = 1,NCARL
KE1 = K+1
RKES = K+5

READ (5,5020) (IINCEX (L) +JINDEX (1) ,A (1) ,L=KE1,KP5)
5020 FORMAT (5 (213,F10.6))
K = K+5
10 CCNTI NUE

NCATA | S NOMBEF CF NCN-ZEBC ELEMERTS IN A
IINDEX = O SIGNIFIES END OP DATA INEUT

OO0OO0

NCATA = K

K = K-5

DC 15 3 = 1,5
KEJ = K+J
| F (IINDEX (KPJ) .G1.0) GO TO 15
NLATA = KFJ-1
GC TO 17

15 CCNTI NUE

17 CONTI NUE

¢ = 10
EINNT = 2
¢c=9
FFAX = 2000
EES = 1.p-3
#H =20
ICFTEG = O



C
WFITE (LCUT,6010)M4,N,Q,FINIT,G,MNAX,EPS,H,I0OFTHG

€010 FCEMAT (24H INITTAI EARAMETEES ... /%X,
1 4H ¥ =,I4,X, 44 N =,I4,5X,40 Q =,I4,°5X,
2 8H PINIT =,I4,5X,4H G =,I4/5X,7H MEAX =,15,5X,
c 3 6 EPS =,1D10.3,5X,44 F =,14,5X,98 IORTIBG =,14)

CALL MAXVAL (M,N,C,PINIT,G,MMAX,EPS,2X,H,L,X,Y,I0OBIHG,
1 LOUT,¥CBEPS,IECCDE)

C
WEITE (LOUT,6020)
602C FCFHAT (35H ###** USI NG ELOCK LANC2CS #%%%s )
WEITE (LOUT,6030) H,IECODE
6030 FCEMAT(8H ** BH =,I4,12H #¢ | ECODE =,1I4)
| F (B.EC.0) STOP
WFITE (LOUT,6040) (L (I),1=1,H)
6040 FCFMAT (20H S| NGULAR VALUES . ../5H *#*+ ,6(1PSD25.15/5X))
s1CP
ENT
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(@I e OO0 O O

SUEFCUTINE AX (M,N,P,U,V,CERIG)
INTEGER M,N,P

LcuBLE PBECI SICN U (¥,B),V (N,P)
LCCl CAL 0F16

AX COHFUTES X = A#*Y |F CRIG |S 1FUE, AND Y = A'%X
IF or16 |S FALSE. X IS STORED INu ANC Y IS STCFED IN V.

CCEHCN A (3000) ,TINDEX (3000) ,JINDEX (30C0),NCATA

LCORLE PBECI SICN A

INIEGER IINDEX,JINDEX,NCATA

INTEGER I1,J,K,1L

IF (.8CT.0FIG) GO TO 100

CCMPUTE X = A#Y

DC2ck=1,P
DC 10L =1

U (L,K)
10 CCNTI NUE

M
0.CO

2 0CCNTINDE
CC 40 L = 1,NCATA

I = TINDEX(I)
J = JINDRX (L)

DC 30 K = 1,p
U(I,K) = O(I,K) ¢+ A(L)*V(J,K)
ac CCNTI NUE
4 0 CCNTINUE
FETOEN
CCFPUTE Y = A'eX
100 CCNTI NUE
DC 120K = I, P
DC 10L = 1,¥N
v (L,K) = 0.LO
110 CCNTI NUB
120 CCNTINUE
CC 140L = 1,NLATA
| = IINDEX (1)
J JINDEX (L)
DC 130 K=1,P

V(J,E) = V(J,K) + A(L)*0(I,K)
130 CCNTI NUE

140 CCANTINRUE



FETUEN
ENL
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Ref erences:
(1] Golub, G., Luk, F., and Over-ton, M, "A Block Lanczos Method to
Conpute the Singular Values and Corresponding Singular Vectors

of a Matrix," submitted to ACM Trans. Math. Software.

A gorithm

*Research supported in part under Arny Research G ant DAHCO4-T75-G-0195
and in part under National Science Foundation Gant MSC75-13497-A0L.






