A BLOCK LANCZOS METHOD TO COMPUTE THE SINGULAR VALUES AND CORRESPONDING SINGULAR VECTORS OF A MATRIX

by

Gene H. Golub, Franklin T. Luk, and Michael L. Overton

STAN-CS-77-635
OCTOBER 1977

COMPUTER SCIENCE DEPARTMENT
 School of Humanities and Sciences
 STANFORD UNIVERSITY

A BLOCK LANCZOS METHOD TO COMPUTE THE SINGULAR VALUES AND CORRESPONDING SINGULAR VECTORS OF A MATRIX
 Gene H. Golub, Franklin T. Iuk, and Michael L. Overton* Stanford University

Abstract

We present a block Lanczos method to compute the largest singular values and corresponding left and right singular vectors of a large sparse matrix. Our algorithm does not transform the matrix A but accesses it only through a user-supplied routine which computes AX or $A^{t} X$ for a given matrix X. - This paper also includes a thorough discussion of the various ways to compute the singular value decomposition of a banded upper triangular matrix; this problem arises as a subproblem to be solved during the block Lanczos procedure.

Key Words and Phrases: Block Lanczos method, singular values, singular vectors, large sparse matrix, singular value decomposition, banded upper triangular matrix.

CR Categories: $5 \mathbf{5 . 1 4}$

[^0]In many applications, we wish to solve the following problem:
Compute accurate approximations to the g largest singular values and corresponding left and right singular vectors of a large sparse $\mathrm{m} \times \mathrm{n}$ real matrix A, where g is much less than both m and n. Problems of this type frequently occur in factor analysis, regression, and image processing (see Golub and Luk [5]).

The matrix A is too large to be stored in core as an $m \times n$ array, but since it is sparse it can be stored in packed form, e.g. by storing only the row index, column index and value of each non-zero element. When A is stored in this way it is not practical to apply transformations to A but matrix products $A X$ or $A^{t} X$ for a given matrix X of much smaller dimension than A can be performed very efficiently. Thus the usual algorithm for computing singular values by transforming A (Golub and Reinsch [6]) is not practical for large sparse matrices. We propose a block Lanczos algorithm for solving such problems. Our algorithm does not transform A. It accesses A only through a user-supplied routine that computes $A X$ or $A^{t} X$ for a given matrix X .

2. Algorithm

We restate our problem: we have an $m \times n$ matrix A, where $m \geq n$, and we wish to compute the g largest singular values and corresponding vectors of A, assuming that the $h(h<g)$ largest singular values and corresponding vectors have already been computed to some known accuracy.

We discuss an idea of Lanczos [7]; the matrix $\left(\begin{array}{ll}0 & A \\ A & 0\end{array}\right)$ has for its non-zero eigenvalues the positive singular values of A, each appearing with both a positive and a negative sign. If ${\underset{\sim}{\sim}}_{\mathbf{i}}$ and ${\underset{\sim}{\mathbf{v}}}_{\mathbf{i}}$ are the left and right singular vectors corresponding to the positive singular value σ_{i} of A, then $\binom{u_{i}}{v_{i}}$ and $\binom{u_{i}}{-v .}_{\sim}$ will be the eigenvectors corresponding to the eigenvalues ${ }_{1} \sigma$. and $-\sigma_{1}$, resp., of $\left(\begin{array}{ll}0 & A \\ A & \\ & 0\end{array}\right)$.

Our problem can therefore be regarded as computing the g largest eigenvalues and eigenvectors of $\left(\begin{array}{cc}0 & A \\ A & 0\end{array}\right)$, when the h largest eigenvalues and eigenvectors are known to some good accuracy.

We shall use the Euclidean norm for vectors and the Frobenius norm for matrices, viz.

$$
\begin{aligned}
& \|\underset{\sim}{x}\|=\|\underset{\sim}{x}\|_{2}=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2} \quad \text { for } \underset{\sim}{x}=\left(x_{1}, \ldots, x_{n}\right)^{t} \\
& \|A\|=\|A\|_{F}=\left(\begin{array}{cc}
\sum_{i=1}^{n} & \sum_{j=1}^{n} a_{i j}^{2}
\end{array}\right)^{1 / 2} \text { for } A=\left(a_{i j}\right) .
\end{aligned}
$$

2.1 Restricting A to a Subspace of Interest

Let $\sigma_{1} \geq \sigma_{2} \geq$.me $\geq \sigma_{h}$ be the h largest computed singular values of A and let X_{0} and Y_{0} be matrices whose columns are the computed left and right singular vectors, resp., such that $X_{0}^{t_{0}} X_{0}=I$ and
$Y_{0}^{t} Y_{0}=I$. We desire accurate approximations to the ($g-h$) largest singular values and vectors of \bar{A}, defined by $\bar{A}=\left(I_{-} X_{0} X_{0}^{t}\right){ }^{t} A\left(I_{-} Y_{0} Y_{0}^{t}\right)$ so that the left singular vectors of \bar{A} are orthogonal to the columns of X_{o} and the right singular vectors of \bar{A} are orthogonal to the columns of Y_{0}. This restriction is necessary because our algorithm, if applied to A without taking the already computed singular vectors into account, will recompute the same largest singular values of A. We can exploit Lanczos's idea and examine $\left(\begin{array}{cc}0 & \bar{A} \\ \bar{A} & 0\end{array}\right)$. We can show that $\left(\begin{array}{ll}0 & \bar{A} \\ \bar{A}^{t} & 0\end{array}\right)$ is the restriction of $\left(\begin{array}{ll}0 & A \\ A^{t} & 0\end{array}\right)$ to a subspace that is orthogonal to the space spanned by the columns of $\left(\begin{array}{cc}X_{0} & X_{0} \\ Y_{0} & -Y_{0}\end{array}\right)$.

Let X_{I} and Y_{I} be the matrices consisting of the orthonormal vectors that are orthogonal to the subspace spanned by the columns of X_{0} and Y_{0}, resp. . Define

$$
Q=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
X_{0} & X_{0} & X_{1} \\
Y_{0} & -Y_{0} & Y_{1}
\end{array}\right)
$$

Note

$$
Q^{t_{Q}}=\frac{1}{2}\left(\begin{array}{lll}
2 I & & \\
& 21 & \\
& & 2 I
\end{array}\right)=I .
$$

Consider

$$
\begin{aligned}
B & =Q^{t}\left(\begin{array}{ll}
0 & A \\
A & 0
\end{array}\right) \mathbf{Q} \\
& \equiv C+\Delta
\end{aligned}
$$

where

$$
\begin{aligned}
& c=\left(\begin{array}{cc}
\Lambda & 0 \\
0 & \frac{1}{2}\left(Y_{1}^{t_{A}}{ }^{t_{X_{I}}}+X_{\perp}^{t} A Y_{I}\right.
\end{array}\right), \\
& \Lambda=\frac{1}{2}\left(\begin{array}{cc}
Y O_{A}^{t} X 0+X O_{A Y O} & Y O A X_{0}^{t}-X_{0}^{t} A Y_{0} \\
-Y_{0}^{t} A^{t} X_{0}+X_{0}^{t} A Y_{0} & -Y_{0}^{t_{A} A_{0}}-X_{0}^{t} A Y_{0}
\end{array}\right),
\end{aligned}
$$

and

Note

$$
\Lambda=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
X_{0}^{t} & Y_{0}^{t} \\
X_{0}^{t} & -Y_{0}^{t}
\end{array}\right)\left(\begin{array}{cc}
0 & A \\
A & 0
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
X_{0} & X_{0} \\
Y_{0} & -Y_{0}
\end{array}\right)
$$

and

$$
\frac{1}{2}\left(Y_{1}^{t_{A}} A_{1}+X_{1}^{t} A Y_{1}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
X_{1} & Y_{1}^{t}
\end{array}\right)\left(\begin{array}{cc}
0 & A \\
A & 0
\end{array}\right) \frac{1}{\sqrt{2}}\binom{X_{1}}{Y_{1}}
$$

Since B is similar to A, they have equal eigenvalues. By the perturbation theory for symmetric matrices [14, Chap. 2], the eigenvalues of C differ from those of B (and hence A) by amounts that are bounded by $\|\Delta\|$.

Assume

$$
\left(\begin{array}{ll}
0 & A \\
A & 0
\end{array}\right)\left(\begin{array}{cc}
X_{0} & X_{0} \\
Y_{0} & -Y_{0}
\end{array}\right)=\left(\begin{array}{cc}
X_{0} & X_{0} \\
Y_{0} & -Y_{0}
\end{array}\right) \Sigma_{1}+R
$$

where

and

$$
R=\left(\begin{array}{cccccc}
\xi_{I} & \cdots & \xi_{n} & \xi_{I} & \cdots & \xi_{\mathrm{h}} \\
\eta_{I} & \cdots & \eta_{\mathrm{h}} & -\eta_{I} & \cdots & -\eta_{\mathrm{h}}
\end{array}\right) .
$$

Then

$$
\begin{aligned}
& \left(\begin{array}{ll}
X_{1}^{t} & Y_{1}^{t}
\end{array}\right)\left(\begin{array}{cc}
0 & A \\
A & 0
\end{array}\right)\left(\begin{array}{cc}
X_{0} & X_{0} \\
Y_{0} & -Y_{0}
\end{array}\right) \\
= & \left(\begin{array}{ll}
X_{1}^{t} & Y_{1}^{t}
\end{array}\right)\left\{\left(\begin{array}{cc}
X_{0} & X_{0} \\
Y_{0} & -Y_{0}
\end{array}\right) \Sigma_{I}+R\right\} \\
= & \left(\begin{array}{ll}
X_{1}^{t} & Y_{1}^{t}
\end{array}\right) R .
\end{aligned}
$$

Now

$$
\left.\begin{array}{rl}
\|\Delta\| & =\frac{1}{2}\left\|\left(Y_{1}^{t} A^{t} X_{0}+X_{1}^{t} A Y_{0} \quad Y_{1}^{t} A^{t} X_{0}-X_{1}^{t} A Y_{0}\right)\right\| \\
& =\frac{1}{2} \|\left(X_{1}^{t}\right. \\
Y_{1}^{t}
\end{array}\right)\left(\begin{array}{ll}
0 & A \\
\dot{A} & 0
\end{array}\right)\left(\begin{array}{cc}
X_{0} & X_{0} \\
Y_{0} & -Y_{0}
\end{array}\right) \|
$$

If all the $\left\|{\underset{\sim}{j}}_{i}\right\|$ and $\left\|\eta_{i}\right\|$ were small, then $\|\Delta\|$ would be small also. For example, if

$$
\left\|\underline{k}_{i}\right\|=\epsilon_{i}
$$

and

$$
\left\|\eta_{i}\right\|=\delta_{i}
$$

then

$$
\|R\|=\sqrt{2}\left(\sum_{i=1}^{h} \epsilon_{i}^{2}+\sum_{i=1}^{h} \delta_{i}^{2}\right) \equiv \sqrt{2} \epsilon
$$

and

$$
\|\Delta\| \leq \frac{1}{\sqrt{2}} \cdot \sqrt{2} \epsilon=\epsilon ;
$$

thus the eigenvalues of C will differ from those of B, and hence A, by quantities that are less in modulus than ϵ.

We see, therefore, that the ($g-h$) largest eigenvalues of
$\left(\begin{array}{ll}0 & \bar{A} \\ \bar{A} & 0\end{array}\right)$ approximate the $(h+1),(h+2), \ldots, g$ eigenvalues of $\left(\begin{array}{ll}0 & A \\ A & 0\end{array}\right)$ by errors less than ϵ.

2.2 Block Bidiagonalization

Let us describe a block Lanczos algorithm that computes a block bidiagonal matrix. We shall call this matrix $J(s)$, where s is the number of blocks and each block is of order p. Then $J^{(s)}$ has order ps (where we assume $\mathrm{ps} \leq \mathrm{n}$). We shall show in section 2.3 that the p largest singular value of $J^{(s)}$ are usually good approximotions to those of $\overline{\mathrm{A}}$.

We start with an arbitrary $n \times p$ matrix Q_{1} such that $Q_{1}^{-t} Q_{I}=I$, and perform a $Q R$ factorization of the product $\bar{A}_{Q_{1}}$:

$$
P_{1} A_{1}:=\bar{A} Q_{1},
$$

where P_{1} is an $m \times p$ matrix such that $P_{1}^{t} P_{1}=I$, and A_{1} is a $\mathrm{p} \times \mathrm{p}$ upper triangular matrix. Our algorithm continues with
and

$$
\left.\begin{array}{l}
Q_{i} B_{i-1}:=\bar{A}^{t} P_{i-1}-Q_{i-1} A_{i-1}^{t}, \\
P_{i} A_{i}:=\bar{A}_{i} \quad-P_{i-1} B_{i-1}^{t},
\end{array}\right\}
$$

'where $\mathbb{Q}_{\mathbf{i}} B_{i} 1$ and $P_{i} A_{i}$ are the $Q R$ factorizations of the respective right hand sides, ie.

$$
\begin{aligned}
& Q_{i} \text { is an } n \times p \text { matrix such that } Q_{i}^{t} Q_{i}=I, \\
& P_{i} \text { is an } m \times p \text { matrix such that } P_{i}^{t} P_{i}=I,
\end{aligned}
$$

and both B_{i-1} and A_{i} are $p \times p$ upper triangular matrices.
Thus,

provided that $P_{i}{ }^{t} P_{j}=0$ for if j. In order to show this we first note that

$\left(\begin{array}{ccc}0 & Q_{1}^{t} \\ P_{1}^{t} & 0 \\ 0 & Q_{2}^{t} \\ -P_{2}^{t} & 0 \\ \vdots & \vdots \\ 0 & Q_{s}^{t} \\ P_{s}^{t} & 0\end{array}\right)\left(\begin{array}{llllll}0 & \bar{A} \\ \bar{A}^{t} & 0\end{array}\right)\left(\begin{array}{llllll}0 & P_{1} & 0 & P_{2} & \cdots & 0 \\ \\ Q_{1} & 0 & Q_{2} & 0 & \cdots & Q_{s} \\ Q_{1}\end{array}\right)=$

So our algorithm to generate the block bidiagonalmatrix ()$_{S}$ from \bar{A} is equivalent to the Lanczos algorithm (Underwood [12]) to generate a block tridiagonal matrix from the symmetric matrix $\left(\begin{array}{cc}0 & \bar{A} \\ \bar{A} & 0\end{array}\right)$. From [12, pp. 47-51], it follows that
$\binom{0}{Q_{1}},\binom{P_{1}}{0},\binom{0}{Q_{2}},\binom{P_{2}}{0}, \ldots,\binom{0}{Q_{S}},\binom{P_{s}}{0}$ form a sequence of
orthonormalmatrices. Therefore $\left\{P_{i}\right\}$ and $\left\{Q_{i}\right\}$ are two sequences of orthonormal matrices.

The restricted matrix \bar{A} is not readily available. We wish
to work with the original matrix A. Consider

$$
\begin{aligned}
& \left(\begin{array}{ll}
0 & \bar{A} \\
\bar{A} & 0
\end{array}\right) \\
& =\left\{I-\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
X_{0} & X_{0} \\
Y_{0} & -Y_{0}
\end{array}\right) \frac{I}{\sqrt{2}}\left(\begin{array}{cc}
X_{0}^{t} & Y_{0}^{t} \\
X_{0}^{t} & -Y_{0}^{t}
\end{array}\right)\right\}\left(\begin{array}{cc}
0 & A \\
A & 0
\end{array}\right)\left\{I-\frac{I}{\sqrt{2}}\left(\begin{array}{cc}
X_{0} & X_{0} \\
Y_{0} & -Y_{0}
\end{array}\right) \frac{I}{\sqrt{2}}\left(\begin{array}{cc}
X_{0}^{t} & Y_{0}^{t} \\
X_{0}^{t} & -Y_{0}^{t}
\end{array}\right)\right\} \\
& =\left(\begin{array}{cc}
\left(I-X_{0} X_{0}^{t}\right) & 0 \\
0 & \left(I-Y_{0} Y_{0}^{t}\right)
\end{array}\right)\left(\begin{array}{ll}
0 & A \\
A^{t} & 0
\end{array}\right)\left(\begin{array}{cc}
\left(I-X_{0} X_{0}^{t}\right) & 0 \\
0 & \left(I-Y_{0} Y_{0}^{t}\right)
\end{array}\right),
\end{aligned}
$$

and the fact that $\binom{0}{Q_{I}},\binom{P_{I}}{0}, \ldots,\binom{0}{Q_{S}},\binom{P_{S}}{0}$ all belong to the Krylov space* generated by $\left(\begin{array}{ll}0 & \bar{A} \\ \bar{A}^{t} & 0\end{array}\right)$ and $\binom{0}{Q_{1}}$. We conclude that we may replace \bar{A} by A in our algorithm if we orthogonalize the P_{i} 's, $I \leq i \leq s$, with respect to X_{0} and the $Q_{j} ' s, 2 \leq j \leq s$, with respect to Y_{0} :

Algorithm

Start with an arbitrary $n \times p$ matrix Q_{1} such that $Q_{1}{ }_{1}^{+} Q_{1}=I$.
Compute

$$
\hat{P}_{1}:=\mathrm{AQ}_{1}
$$

and

$$
\hat{P}_{1}:=\left(I-X_{0} X_{0}^{t}\right) \hat{P}_{1}
$$

Factorize \hat{P}_{1} such that

[^1]$$
P_{1} A_{1}:=\hat{P}_{1} \text {, where } P_{1}^{t} P_{1}=I \text { and } A_{1}=\{\nabla\}
$$

For $\mathrm{i}=2,3, \ldots, \mathrm{~s}$
(1) Compute

$$
\begin{aligned}
& \hat{Q}_{i}:=A^{t} P_{i-1}-Q_{i-1} A_{i-1}^{t} \\
& \hat{Q}_{i}:=\left(I-Y_{o} Y_{0}^{t}\right) \hat{Q}_{i}
\end{aligned}
$$

and

Factorize $\hat{Q}_{\mathbf{i}}$ such that

$$
Q_{i} B_{i-1}:=\hat{Q}_{i} \text {, where } Q_{i}^{t} Q_{i}=I \text { and } B_{i-1}=\{\nabla\} .
$$

(2) Compute
and

$$
\begin{aligned}
& \hat{P}_{i}:=A Q_{i}-P_{i-1} B_{i-1}^{t} \\
& \hat{P}_{i}:=\left(I-X_{o} X_{o}^{t}\right) \hat{P}_{i}
\end{aligned}
$$

Factorize \hat{P}_{i} such that

$$
P_{i} A_{i}:=\hat{P}_{i} \text {, where } P_{i}^{t} P_{i}=I \text { and } A_{i}=\{\nabla\}
$$

2.3 Error Bounds

We give a theorem to show that the singular values of $J^{(s)}$ are usually accurate approximations to those of \bar{A}.

Theorem
Let $\sigma_{1} \geq \sigma_{2}>\cdot e m \geq \sigma_{n} \geq 0$ be the singular values of the $m \times n$ restricted matrix \bar{A} and let $\sigma_{1}^{(s)} \geq \hat{\sigma}_{2}^{(s)}>\cdot \geq \sigma_{p s}^{(s)} \geq 0$ be the singular values of the ps \times ps matrix $J^{(s)}$ generated by the block Lanczos algorithm. Let $\boldsymbol{\tau}$ be the smallest singular value of $Q_{1}^{t} V_{1}$,
where Q_{1} is an $n \times p$ starting matrix for the Lanczos algorithm such that ${ }_{\square}^{+} Q_{I}=I$ and V_{1} is an $n \times p$ matrix consisting of the right singular vectors corresponding to the p largest singular values of \bar{A}. We assume $\tau>0$ and we see $\tau \leq 1$ since $V_{\mathcal{L}}^{\dagger} V_{\mathcal{I}}=I$. Then for $k=1,2, \ldots, p$, we obtain

$$
\sigma_{k}-\epsilon_{k}^{2} \leq \sigma_{k}^{(s)} \leq \sigma_{k}
$$

where

$$
\begin{aligned}
& \epsilon_{\mathrm{k}}^{2}=\left(\sigma_{1}+\sigma_{\mathrm{k}}\right) \frac{\tan ^{2} e}{\mathrm{~T}_{2 \mathrm{~s}-1}^{2}\left(\frac{1+\gamma_{k}}{1-\gamma_{k}}\right)} \\
& \theta=\cos ^{-1} \tau \\
& \gamma_{k}=\frac{\sigma_{k}-\sigma_{\mathrm{p}+1}}{\sigma_{k}+\sigma_{1}}
\end{aligned}
$$

and $T_{2 s} l$ is the (2s-l)-th Chebyshev polynomial of the first kind.

Proof

Since the largest singular values of a matrix B are minus the smallest eigenvalues of $\left(\begin{array}{ll}0 & B \\ B & 0\end{array}\right)$, we obtain the desired result by applying Underwood's theorem [12, pg. 37] to $\left(\begin{array}{cc}0 & \bar{A} \\ \bar{A}^{t} & 0\end{array}\right)$.

We consider an example that shows how a proper choice of the block size p reduces the error bounds, and how $\sigma_{i}^{(s)}, l \leq i \leq p$, generally approximates $\sigma_{i}, l \leq i \leq p$, well even for a small s.

Let $\sigma_{1}=1.0, \sigma_{2}=0.9, \sigma_{3}=0.5$, and? $=\cos 0.1$. Let
ps ≤ 10. We shall see in section 3 how the available computer storage places an upper bound on the value ps. If we choose $\mathrm{p}=1$, $\mathrm{s}=10$, then

$$
\begin{aligned}
\tan ^{2} \mathbf{e} & =\frac{1-0.1^{2}}{0.1^{2}}=99, \\
\gamma_{1} & =\frac{1.0-0.9}{2(1.0)}=0.05,
\end{aligned}
$$

$$
\frac{1+\gamma_{-}}{1-\gamma_{1}} \doteq 1.105
$$

$$
\mathrm{T}_{19}(1.105) \doteq 2.8 \times 10^{3}
$$

and

$$
\left.\epsilon_{1} 2 \doteq \frac{2}{(2.8 \times 99}=2.5 \times 10^{-5}\right)^{-5} ;
$$

whereas if $p=2, s=5$, then

$$
\begin{aligned}
& \gamma_{1}=\frac{1.0-0.5}{1.0+1.0}=0.25, \\
& Y 2=\frac{0.9-0.5}{0.9+} \dot{\overline{1}} .0^{21}, \\
& \frac{1+\gamma_{1}}{1-\gamma_{1}}=\frac{1.25}{0.77} \doteq 1.67 . \\
& \frac{1+\gamma_{2}}{1-\gamma_{2}}=\frac{1.21}{0.79}=1.53, \\
& T_{9}(1.67) \doteq 10^{4}, \\
& T_{9}(1.53) \doteq 3.7 \times 10^{3},
\end{aligned}
$$

and

$$
\begin{aligned}
& \epsilon_{1}^{2}=\frac{2 \times 99}{10^{8}} \doteq 20 \times 10^{-6}, \\
& \epsilon_{2}^{2} \doteq \frac{1.9 \times 99}{\left(3.7 \times 10^{3}\right)^{2}} \doteq 1.4 \times 10-5 .
\end{aligned}
$$

We see that for the block method, we can expect a more accurate
approximation to σ_{1} and we note that σ_{2} is computed to the same accuracy as σ_{1} when $p=1$.

2.4 Reorthogonalization

We have shown that the $\left\{P_{i}\right\}$ and $\left\{Q_{i}\right\}$ are two sequences of orthogonal matrices. But the property holds only in exact arithmetic. In practice, the two sequences lose orthogonality very rapidly due to cancellation errors in the Lanczos steps:

$$
\left\{\begin{array}{l}
\hat{Q}_{i}:=A^{t} P_{i-1}-Q_{i-1} A_{i-1}^{t}, \\
\hat{P}_{i}:=A Q_{i} \quad-P_{i-1} B_{i-1}^{t},
\end{array}\right.
$$

A remedy is to reorthogonalize $P_{i}\left(Q_{i}\right)$ with respect to $P_{j}\left(Q_{j}\right), j<i$, as soon as $P_{i}\left(Q_{i}\right)$ is computed.

The loss of orthogonality does not have adverse effects on the accuracy of the computed singular values (Paige [8]). Rut their multiplicities are questionable because once orthogonality is lost, the Lanczos method essentially restarts and recomputes the singular values that it has already computed. Reorthogonalization apparently stabilizes the Lanczos process but its cost in machine time is high. The cost in storage may even be prohibitive, for all the $\left\{P_{j}\right\}$ and $\left\{Q_{j}\right\}$ must now be stored in core. The Lanczos method without reorthogonalization allows us to keep only the most recently computed P_{i} and Q_{i} in memory and store the others on disk or magnetic tape.

Partial reorthogonalization, i.e. reorthogonalization of $P_{i}\left(Q_{i}\right)$ with respect to only some of the previously computed P_{j} 's (Q_{j} 's), looks promising too. It appears that just reorthogonalizing $P_{i}\left(Q_{i}\right)$
with respect to $\mathrm{P}_{1-1}\left(\mathrm{Q}_{\mathrm{i}-1}\right)$ may reduce the effects of cancellation errors present in the computation of $\mathbf{P}_{\mathbf{i}}\left(\mathbf{Q}_{\mathbf{i}}\right)$ and help preserve orthogonality at a very low cost in machine time and storage.

We have tacitly assumed that we can carry out the Lanczos iterations for s steps. Clearly this may not always be the case. We decide to check the length of each column of $P_{i}\left(Q_{i}\right)$ as soon as it has been generated in the $Q R$ factorization. If a column has a Euclidean length less than some tolerance, chosen in the program as the square root of the machine precision, it is set equal to the zero vector. We thus eliminate the errors caused by normalizing vectors consisting of numerical roundoffs to unit Euclidean length.

Before a Lanczos iteration begins, our program checks the starting matrix Q_{1} for columns of all zeros. It first replaces any such columns with columns of random numbers and then orthonormalizes the resultant matrix. In this way, our program can restart itself even after linear independence has been lost. Since the work to check for columns of all zeros is prohibitive, we check for zero singular values computed in the previous iteration instead, assuming that they are caused only by columns of all zeros. Since our problem is to compute the few (usually < 10) largest singular values of a matrix of large order (usually > 1000), it is extremely unlikely that a desired singular value is zero.
2.5 Computation of Singular Values and Vectors of $J(s)$

We now wish to compute the singular values and vectors of the ps \times ps block bidiagonal matrix $\mathrm{J}^{(\mathrm{s})}$:

In the rest of this section we shall omit the superscript s. from $J^{(s)}$ and denote its order by $t=p s$. Since the $p \times p$ blocks which form the block diagonal of J are upper triangular and the $p \times p$ blocks which form the block superdiagonal are lower triangular, we see that the blocks all fit together to form an upper triangular band matrix , dense within the band and with bandwidth (number of superdiagonals) equal to p. The rest of this section treats the problem of computing the singular values and vectors of an upper triangular band matrix J. The case where the vectors are not required is also considered since this section may be useful outside the block Lanczos context. The method consists of two phases. The first phase reduces J to bidiagonal form by a finite sequence of orthogonal transformations. The problem of doing this efficiently is the main subject of this section. The singular values of A are preserved under the transformations. The second phase reduces the bidiagonal form to diagonal form by a modified version of the $Q R$ algorithm. This process is described in detail in Goiub and Reinsch [6] and will not be discussed any further here. The singular values of J are the final diagonal elements, and the matrices of left and right singular vectors are the products of all the left and right transformations (resp.) used in the two phases of the reduction.

We are left with the first phase, reducing J to bidiagonal form. The methods of Givens and Householder for reducing a full symmetric matrix to tridiagonal form preserving eigenvalues are well known and described for example in Wilkinson [14]. In order to preserve eigenvalues, the same elementary transformations (either Givens or Householder) are applied to both the left and right sides of J to reduce it to
tridiagonal form. A similar method for reducing a nonsymmetric matrix to bidiagonal form preserving singular values (but not of course eigenvalues) is described in Golub and Reinsch [5]. Singular values are preserved when different elementary transformations are applied to the left and right sides of A. Golub and Reinsch use Householder transformations, but Givens transformations could easily be used instead. For the reduction of a full matrix to bidiagonal or tridiagonal form the method of Householder is about twice as fast as the method of Givens. However in 1972 Gentleman [3] showed how "fast Givens" transformations can be implemented. These are also described in Van Loan [13], and it appears that there is now little difference in the speed or effectiveness of the two methods.

Reducing a symmetric band matrix to tridiagonal form in a straightforward manner immediately fills in the zeros off the band. Rutishauser [9] shows how this may be avoided and the reduction completed while preserving the band structure, using either Givens or Householder transformations. Here we describe how to generalize this to the reduction of an upper triangular band matrix to bidiagonal form (in general a similar process would apply to any nonsymmetric band matrix).

Recall that a Givens transformation matrix $P(i, j)$ is given by

that if it is applied to J on the left then the resulting matrix $J^{\prime}=P^{(i, j)} J$ has elements different from J only in rows i and j,
with zeros in both rows in those columns where there were zeros in both before, and, if c and d are chosen appropriately, with its (i,j) element equal to zero. Let us write $J=\left(\gamma_{i j}\right), J^{\prime}=\left(\gamma_{i j}^{\prime}\right)$. Then in particular we have

$$
\begin{array}{ll}
\gamma_{i k}^{\prime}=c y_{i k}+d y_{j k} \\
\gamma_{j k}^{\prime}=-d \gamma_{i k}+c y_{j k} & (1 \leq k \leq t)
\end{array}
$$

so $\gamma_{j i}^{\prime}=0$ if $c=\gamma_{i i} / \sqrt{\gamma_{i i}^{2}+\gamma_{j i}^{2}}, d=\gamma_{j i} / \sqrt{\gamma_{i i}^{2}+\gamma_{j i}^{2}}$. The price paid for the annihilation is that a new nonzero element appears in one row wherever there was one already in the other. We say that row j is rotated against row i by the transformation. Similarly if $p(i, j)$ is applied on the right only columns i and j of J are changed with $\gamma_{i j}^{\prime}=0$ if c and d are chosen correctly.

To describe the reduction process let us suppose that J is an upper triangular band matrix with order $t=11$ and $p=4$ superdiagonals. Then the first thing the algorithm does is to zero $\boldsymbol{\gamma}_{15}$ by multiplying J on the right by $P^{(4,5)}$ with c and d chosen correctly, or in other words by rotating column 5 against column 4. This introduces one new non-zero element $\boldsymbol{\gamma}_{54^{\prime}}^{\cdot}$. This new element is annihilated by multiplying J^{\prime} on the left by $P(4,5)$, that is by rotating row 5 against row 4. This in turn introduces a new non-zero element $\gamma_{49^{\prime}}{ }^{\circ}$ Two more transformations, one from the left and one from the right, are now required to completely "chase the element off the matrix". At this point the resulting matrix has the same zero pattern as the original matrix J except that $\boldsymbol{\gamma}_{15}$ has been annihilated. Now the process is repeated for γ_{14} and then for γ_{13}, and then the first row has the desired bidiagonal form.

Finally, the entire process is repeated for every row until the matrix becomes bidiagonal. The method is illustrated in Figure 1. Let us call this method Band Givens I.

Reducing the matrix to bidiagonal form in this way requires approximately $4 \mathrm{pt}^{2}$ multiplications using ordinary Givens transformations, or $2 p t^{2}$ using "fast Givens", assuming $1 \ll \mathrm{p} \ll \mathrm{t}$. This compares with a count of approximately $4 t^{3} / 3$ multiplications required to do the reduction by the standard Golub-Reinsch algorithm using Householder transformations and ignoring the band structure, filling in the zeros off the band. This is of course a big savings if $p \ll t$ as assumed, and furthermore only pt storage locations are required to store the band matrix while t^{2} storage locations are required for the standard GolubReinsch reduction. If left and right singular vectors are required however, the rotations used in Band Givens I must be accumulated as the computation proceeds. This requires $4 t^{3}$ multiplications using ordinary Givens transformations or $2 \mathbf{t}^{3}$ using "fast Givens", as opposed to $\mathbf{8} \mathbf{t}^{3} / \mathbf{3}$ multiplications for the Golub-Reinsch reduction, so that if the vectors are required, Band Givens I still requires less multiplications than Golub-Reinsch if the fast Givens transformations are used. Both methods require approximately $2 t^{\mathbf{2}}$ storage locations.

There are several other possible methods to reduce J to bidiagonal form. The method we shall call Band Givens II applies a sequence of rotations to J as before, but instead of reducing each row in turn to two elements, it systematically reduces the bandwidth by zeroing each superdiagonal in turn. In other words, in the example presented in Figure 1, after zeroing γ_{15} and chasing it off the matrix, it next turns to $\boldsymbol{\gamma}_{26}$ instead of $\boldsymbol{\gamma}_{14^{*}}$. This method requires more rotations, since the

FIGURE 1.

Bidiagonalizing a Pentadiagonal Upper Triangular Matrix of Order 11

Using Givens Rotations by the Method Band Givens I

STEP 1:
(i) Zero $\boldsymbol{\gamma}_{15}$ and chase it a a off the matrix:

Rotate col. 5 against col. 4 to zero $\boldsymbol{\gamma}_{\mathbf{1 5}}$ and introduce γ_{54}^{\prime}.
Rotate row 5 against row 4 to zero γ_{54}^{\prime} and introduce γ_{49}^{\prime} Rotate col. 9 against col. 8 to zero γ_{49}^{\prime} and introduce γ_{98}^{\prime} Rotate row 9 against row 8 to zero γ_{98}^{\prime}

- chased off
(ii) Zero $\boldsymbol{\gamma}_{14}$ and chase it $b \mathrm{~b}$ b off the matrix similarly.
(iii) Zero γ_{13} and chase it cc c also.

STEP 2: Repeat for the second row - etc.
decreasing bandwidth causes more nonzero elements to be introduced before a certain element is chased off the matrix, but for the same reason each rotation is less work if the vectors are not required. The two considerations cancel each other out so that Rand Givens I and II require about the same number of multiplications if vectors are not required, but the latter is slower by a factor of about $\ln p$ if vectors are required.

Let us consider now a method we shall call Rand Householder. This follows an idea suggested in Rutishauser [9] for the corresponding eigenvalue tridiagonal reduction problem. Recall that a Householder transformation matrix $Q^{(i, j, p)}$ can be chosen to have the property that when applied to A on the left the resulting matrix $A^{\prime}=Q^{(i, j, p)} A$ has zeros in positions i+l,...,j of column p but is different from A only in rows i,...,j and has zeros in all rows in those columns where there were zeros in all before. As before the role of rows and columns is reversed when the transformation is applied on the right. Let us describe the algorithm for the $t=11, p=4$ case again. The first step is to zero all of $\mathbf{a}_{12}, a_{13}, " 14$ simultaneously by applying a Householder transformation $Q^{(2,4,1)}$ to A on the right. Instead of introducing one new non-zero element as in the first step of the algorithm using Givens transformation, this introduces a whole lower triangle (of order 3) of non-zero elements. This is annihilated by a sequence of 3 Householder transformations (the last a degenerate one) which introduces another upper triangle on the other side of the band. The triangle is chased off the matrix, as the single element was before, after another two repetitions of this. However a little thought will make it clear that the extra triangle of elements
at every step makes the method much less efficient than Band Givens I indeed, it introduces an extra factor of p in the number of multiplications required, whether or not vectors are needed.

There is yet another possible approach, which we call the triangle Givens method -- it does not attempt to preserve the band structure, but does preserve the upper triangle structure. It is considered in Chan [2] for finding the singular values of an upper triangular matrix. In this method elements are eliminated row by row in the upper triangle using column rotations, and after each column rotation one row rotation is applied to move the nonzero element introduced in the lower triangle back up to the upper triangle. Since the upper triangle is filled in,this method requires more multiplications than Band Givens I. If fast Givens transformations are used and no vectors are required the number of multiplications required for Triangle Givens is less than for Golub-Reinsch, but if vectors are required they are the same.

Finally we describe a rather complicated variant of Band Givens I which we call Band Givens III, which requires less multiplications when vectors are required. In the standard Golub-Reinsch algorithm Householder transformations are used to eliminate elements, but instead of accumulating the transformations directly the transformations are stored in place of the elements just annihilated and after the reduction is complete they are then accumulated in reverse order. The reason for this is that when they are accumulated in forward order, the $j^{\text {th }}$ transformation on either the left or the right, having been chosen to annihilate $t-j$ elements of the $j^{\text {th }}$ column or row of J, will affect $(t-j) t$ elements of the $t X t$ matrix of transformations so far accumulated, whereas when they are accumulated in reverse order the same
transformation need only be applied to the $(t-j) \mathbf{x}(t-j)$ matrix of transformations so far accumulated. This eliminates one third of the multiplications needed. This trick is also employed in computing a tridiagonal reduction for eigenvalue problems or the complete $Q \mathrm{R}$ factorization of a matrix using Householder transformations. When Givens transformations are used in the band eigenvalue problem however they are always accumulated in the forward direction as the reduction proceeds although the same savings potential exists if they are accumulated in reverse. Storing all the transformations used in Band Givens I would be a complicated task, but it is by no means impossible. The method requires approximately $t^{2} / 2$ transformations each on the left and the right, and since each transformation can be stored in and recovered from one storage location (see Stewart [11]), all the transformations may be stored in the two $t X t$ arrays in which they are -to be accumulated. Furthermore they can be accumulated one by one in reverse order without disturbing the transformations stored but not yet accumulated, since the number of transformations required to reduce the first j rows to bidiagonal form is approximately $t^{2} / 2-(t-j)^{2} / 2$ on each side which may be stored with room to spare without being disturbed by the two $(t-j) x(t-j)$ submatrices needed to accumulate the transformations operating on rows $j+1$ through $t:$

However the storing and retrieving of these transformations would indeed be an arduous task, and although Band Givens III requires only $8 t^{3} / 3$ multiplications using ordinary Givens transformations and $4 t^{3} / 3$ using fast Givens, the big question is whether it would still be worthwhile with all the extra bookkeeping.

Thus the best method seems to be either Band Givens I or III, but we should make some disclaimers. These results are only valid assuming $1 \ll p \ll t$ which may not be the case. Multiplications are not the whole story, since indexing operations also take time and on modern machines multiplications do not take much more time than indexing. Of course the amount of overhead required by a method is also important. Another thing to note is that the second phase reducing the bidiagonal form to diagonal form to obtain the singular values typically takes $\mathbf{8 t}^{\mathbf{3}}$ multiplications using ordinary Givens transformations or $\mathbf{4 t} \mathbf{}^{\mathbf{3}}$ using fast Givens so that this may dominate any slight savings in the reduction phase. Of course no final conclusion about which method is best can be made without extensive numerical tests.

The multiplication counts for the different methods are summarized in Table I.
Reduction Without Vectors
$\sum_{i=1}^{t-2} 2(2)(t-i)^{2} \sim \frac{4 t^{3}}{3}$
$\sum_{i=1}^{t-2} \sum_{k=2}^{p} \frac{t-(i+k)+1}{P}(2)(4)(p+1) \sim 4 p t^{2}$
$\sum_{k=2}^{p} \sum_{i=1}^{t-2} \frac{t-(i+k)+1}{k}(8)(k+1) \sim 4 p t^{2}$

Band Givens I
Band Givens II

> Method

2. 6 Convergence Tests

Let us examine what we have done so far. We apply the Lanczos method to generate a block bidiagonal matrix $J^{(S)}$ from the matrix \bar{A} :

$$
P^{t} \bar{A} Q=J(s)
$$

where

$$
P=\left(P_{1}, P_{2}, \ldots, P_{S}\right),
$$

and

$$
\mathbf{Q}=\left(Q_{1}, Q_{2}, \ldots, Q_{s}\right) .
$$

Then we compute the singular value decomposition of $\mathrm{J}^{(\mathrm{s})}$:

$$
J_{J}^{(s)}=X^{(s)_{\Sigma}(s)_{Y}(s)_{t} .}
$$

By considering the matrices $\left(\begin{array}{cc}0 & \bar{A} \\ \bar{A}^{t} & 0\end{array}\right)$ and $\left.\begin{array}{lcc}0 & J^{(s)} \\ (s) t & 0\end{array}\right)$, we can verify that

$$
\left(\begin{array}{ll}
P & 0 \\
0 & Q
\end{array}\right)\binom{X^{(s)}}{Y^{(s)}}=\binom{P X^{(s)}}{Q Y^{(s)}}
$$

 spanned by the columns of $\left(\left.\begin{array}{lll}P & 0 & \mid \\ 0 & Q & \|\end{array} \right\rvert\, \begin{array}{ll}\bar{A}^{\tau} & 0\end{array}\right)$
We have seen that the p smallest eigenvalues of $\left(\begin{array}{ll}0 & J \\ J(s) t & 0\end{array}\right)$ are usually accurate approximations to those of $\left(\begin{array}{ll}0 & \bar{A} \\ \bar{A}^{t} & 0\end{array}\right)$, in which case it can be shown that the p corresponding eigenvectors of $\left(\begin{array}{ll}0 & J \\ J & (s) \\ S_{t} & 0\end{array}\right)$, when premultiplied by $\left(\begin{array}{ll}P & 0 \\ 0 & Q\end{array}\right)$, are also good approximations to those of $\left(\begin{array}{cc}0 & \bar{A} \\ \bar{A}^{t} & 0\end{array}\right)$, albeit not to as high an accuracy.

Our convergence test uses Weinstein's inequality [14, pp. 170-171], which states that for a symmetric matrix A and a vector $\underset{\sim}{x}$ of unit length, if

$$
\|A \underset{\sim}{x}-\mu x\|=\delta
$$

for some scalar μ, then there is an eigenvalue λ of A such that

$$
|\lambda-\mu| \leq \delta .
$$

Let $\binom{\underset{\sim}{u}}{\underset{\sim}{v}}$ be the i-th column of $\binom{P^{(s)}}{Q Y^{(s)}}$. Then

$$
\begin{gathered}
\left\|\left(\begin{array}{ll}
0 & A \\
A^{t} & 0
\end{array}\right)\binom{\underset{\sim}{u}}{\underset{\sim}{v}}-\sigma_{i}^{(s)}\binom{\underset{\sim}{u}}{\underset{\sim}{v}}\right\|^{2}=\left\|\binom{A \underset{\sim}{v}}{A^{t} \underset{\sim}{u}}-\sigma_{i}^{(s)}\binom{\underset{\sim}{u}}{\underset{\sim}{v}}\right\|^{2} \\
=\left\|A \underset{\sim}{v}-\sigma_{1}^{(s)} \underset{\sim}{u}\right\|^{2}+\left\|A^{t} \underset{\sim}{u}-\sigma_{i}^{(s)} v_{v}\right\|^{2} .
\end{gathered}
$$

Assume ϵ is the user-supplied error tolerance for the singular values. If

$$
\left(\left\|A v_{i}-\sigma_{i}^{(s)}{\underset{\sim}{u}}_{i}\right\|^{2}+\left\|A{\underset{\sim i}{u}}^{u_{i}}-\sigma_{i}^{(s)}{\underset{\sim}{v}}_{i}\right\|^{2}\right)^{1 / 2} \leq \epsilon \sigma_{i}^{(s)}
$$

then there is a singular value of A within relative error ϵ of $\sigma_{i}^{(s)}$ and we may accept $\sigma_{i}^{(s)}$ as a singular value of A. (If $\sigma_{\dot{I}}^{(s)}$ is less than one we use ϵ as an absolute error tolerance instead.)

We note that in our algorithm the computed singular values and vectors are converging to the singular values and vectors of \bar{A} and not of A. Thus if we compute the residuals with respect to A and not to A, there is a lower bound to their values. We take this error
into account by adding to ϵ the residuals corresponding to the accepted singular values. To avoid an error tolerance that is close to the machine precision, we add to ϵ a third term combining the machine *precision mcheps and the matrix dimensions m and n. Thus, if

$$
\tau_{k}^{2}=\left\|A{\underset{\sim}{v}}-\sigma_{k}^{(s)}{\underset{\sim}{u}}_{k}\right\|^{2}+\left\|A_{\underset{\sim}{u}}^{{\underset{\sim}{k}}}-\sigma_{k}^{(s)}{\underset{\sim}{v}}^{v_{k}}\right\|^{2}, l \leq k<_i-1
$$

then

$$
\hat{\tau}_{i}:=\epsilon+\left(\sum_{k=1}^{i-1} \tau_{k}^{2}\right)^{1 / 2}+10 X(m+n) X \text { mcheps }
$$

where mcheps $=2.20 \times 10^{\mathbf{- 1 6}}$
for double precision arithmetic on the IBM Systems 360 and 370. We shall accept $\sigma_{i}^{(s)}$ as a singular value of A if

$$
\left(\left\|\operatorname{Av}_{\sim}-\sigma_{1}^{(s)} \underset{\sim}{u_{i}}\right\|^{2}+\left\|A^{t}{\underset{\sim}{u}}_{i}-\sigma_{i}^{(s)}{\underset{\sim}{v}}_{i}\right\|^{2} \mid l / 2<\hat{\tau} . \sigma_{i}(s)\right.
$$

2.7 Updating p and s

We shall see in section 3 how the available computer memory places an upper bound on the product ps. We wish to determine optimal values for p and s subject to this constraint. We can see from the error bounds in section 2.3 that such choices are dependent on the singular value spectrum of A and thus are usually not *possible a priori without further information.

We shall discuss initial choices of p and s in section 3. 3. We are concerned here with updating p and s after some singular values and vectors have converged.

We assume that before the current Lanczos iteration the block size
is p_{0}, the step size is s_{0}, and the bound on $p_{0} s_{0}$ is q_{0}. Assume that g singular values are to be computed and $g_{0}\left(1 \leq g_{0}<g\right)$ singular values have been computed and accepted in the current iteration. Our problem is to choose the new block size p_{1} and step size s_{1}. Our strategy is that if $p_{0} \geq g$, then
and

$$
\mathrm{Pl}:=\mathrm{p}_{\mathrm{o}}-\mathrm{g}_{\mathrm{o}},
$$

$$
s_{1}:=\left\lfloor\frac{q_{0}-g_{0}}{p_{1}}\right\rfloor \cdot \quad \begin{aligned}
& \text { (Here }\lfloor a\rfloor \text { denotes the } \\
& \text { integer part of } \alpha . \text {) }
\end{aligned}
$$

The rationale is that if the user chooses a block size greater than the number of singular values desired, he must have a good reason, e.g. he may have chosen the block size to be the number of singular values in the cluster of largest singular values. We wish to preserve the user's choice of block size in this case.

If $p_{0}<g$, then we pick p_{1} to be the smaller of the current block size and the number of singular values remaining to be computed. Thus,

$$
\begin{aligned}
& p_{1}:=\min \left(p_{0}, g-g_{0}\right) \\
& s_{1}:=\left\lfloor\frac{q_{0}-g_{0}}{p_{1}}\right\rfloor
\end{aligned}
$$

We test $\mathbf{s}_{\mathbf{1}}$ to see if $\mathbf{s}_{\mathbf{1}} \geq 2$. If it is not, then we set

$$
\begin{aligned}
& p_{1}:=\left\lfloor\frac{q_{0}-g_{0}}{2}\right\rfloor, \\
& s_{1}:=\left\lfloor\frac{q_{0}-g_{0}}{p_{1}}\right\rfloor .
\end{aligned}
$$

We note that the step size must be at least 2 to carry out the Lanczos method.

2.8 Complete Algorithm

We have described one iteration of the Lanczos method. We do not expect to compute all the desired singular values in one iteration and so we shall iterate the method with improving starting matrices. We saw in section 2.6 that the first p_{0} columns of $Q Y$ are usually better approximations than Q_{l} to the p_{o} right singular vectors corresponding to the p_{0} largest singular values of A. If $g_{o}=0$, then those p_{0} columns of QY will serve as a good starting matrix for another Lanczos iteration. If $g_{0}>0$, then the $\left(g_{0}+1\right), \ldots,\left(g_{0}+p_{1}\right)$-th columns will be chosen as the starting matrix for the next iteration. We have seen that the $\left(g_{0}+1\right), \ldots, p_{0}$-th columns of $Q Y$ are usually good approximations to the $\left(g_{0}+1\right), \ldots, p_{0}$-th right singular vectors of A. Our experimental results show that the other columns are usually rich in the direction of the $\left(p_{0}+1\right), \ldots, p_{1}$-th right singular vectors of A.

We see that the convergence test in section $\mathbf{2 . 6}$ involves multiplications by A and A^{t}; so we wish to avoid performing the test unless we think some of our singular values have converged. A good test is to look at the relative increase of the largest singular value from the previous iteration. We perform the convergence test only if the relative increase is less than the user supplied tolerance ϵ. The criterion is good in that we shall seldom overshoot the desired accuracy, because if the convergence test is satisfied, the computed singular values, as Rayleigh quotients, are likely to have errors proportional to ϵ^{2} unless they are poorly separated.

Our complete block Lanczos algorithm follows:

Algorithm

1. Start with an arbitrary $n X p$ matrix Q_{1}
2. Orthonormalize the columns of Q_{1}.
3. Apply the Lanczos method to compute the block bidiagonal matrix $J^{(s)}$ using Q_{1} as the starting matrix:

$$
P^{t} \bar{A} Q=J^{(s)}
$$

4. Compute the singular value decomposition of $J^{(s)}$:

$$
X^{(s)_{\Sigma}(s)} Y^{(s) t}=J^{(s)}
$$

5. If the relative increase in the largest singular value of $J^{(s)}$
is less than ϵ, then perform the convergence test. Otherwise go to step 8.
6. Stop if all desired singular values have converged.
7. If one or more singular values have converged, update the values of p and s.
8. Take the first p columns of $Q Y$ that have not been accepted as singular vectors as the starting matrix Q_{1} for the next iteration. Go to step 2.

It appears that step 2 is unnecessary after the first iteration since both Q and Y are matrices consisting of orthonormal columns. Numerical experiments have shown, however, that the columns of QY are not necessarily orthonormal and we need to perform step 2 to maintain numerical stability.

3. Implementation

We have written a set of subroutines implementing our algorithm. We use the Bell Laboratory PFORT language, a subset of the ANS FORTRAN language.

Our routines use integer and double precision arithmetic. We have a subroutine that computes the inner product of two vectors. We would have obtained better numerical results had we accumulated inner products in higher precision. We recommend the usage of extended precision arithmetic to compute inner products if the work is done by the computer hardware. The additional cost is small and the results are more accurate. We have not incorporated the extended precision computations into our routines to provide program portability. Experiments show that the numerical results are still satisfactory without recourse to higher precision arithmetic.

Our routines usually need a large core to store the matrices X and Y. On an IBM System 360 or 370 , the requirement is
$(m+n) X q \times 8$ bytes, which forces q to be small for large m and n; e.g. if $m=n=1000$, then an available core of size 200 K bytes would force q to be less than or equal to 12.

MAXVAL is our main routine that calls all the other subroutines.

3.1 Formal Parameters

(a) Quantities to be given to MAXVAL:
$m, n: \quad$ the dimensions of the matrix $A ; 2 \leq n \leq m \leq 1000$.
q: the number of vectors of length m contained in the array X; also the number of vectors of length n contained in array $Y ; q \leq 26$ and $q \leq n$.
pinit : the initial block size; if pinit < 0, then -pinit becomes the block size and columns $h+l, \ldots, h+(-$ pinit $)$ of Y are assumed to be initialized to a matrix to be used to start the Lanczos method.
$\mathrm{g}: \quad$ the number of singular values and left and right singular vectors desired; $\quad \mathrm{l} \leq \mathrm{g}<\mathrm{q}$.
$\operatorname{mmax}: \quad$ the maximum number of matrix-vector products $\underset{\sim}{\operatorname{Ax}}$ and $A^{t} \underset{\sim}{x}$ allowed.
eps: the relative precision to which singular values and vectors will be computed; eps becomes an absolute tolerance if the singular value is less than one.
op: subroutine op ($\mathrm{m}, \mathrm{n}, \mathrm{p}, \mathrm{u}, \mathrm{v}$,orig) computes $\mathrm{U}=\mathrm{AV}$ when orig is true, and $V=A^{t} U$ when orig is false; U is an $m \times p$ matrix and V is an $n \times p$ matrix; the input matrix must not be altered by the subroutine call. the number of singular values and vectors already computed; if $h>0$, then columns 1 through h of $X(Y)$ must contain the left (right) singular vectors of A.

D : an array of length at least q.
$x: \quad a n$ array of length at least m X .
Y: an array of length at least $\mathrm{n} \times \mathrm{q}$.
iorthg : the number of immediately preceding blocks of vectors with respect to which reorthogonalization of the present block of vectors is to be carried out.
lout : output unit number.
mcheps : machine precision, equals $2.2 \times 10^{\mathbf{- 1 6}}$ for double precision arithmetic.
(b) Quantities produced by MAXVAL:
h: the total number of singular values and vectors computed including any already computed when MAXVAL was entered.

D: elements 1 to h of D contain the computed singular values.
$x: \quad$ the first $m \times h$ elements contain the left singular vector approximations--the first vector in the first m elements, the second in the next m elements, and so on.

Y: the first n xh elements contain the right singular vector approximations--the first vector in the first n elements, the second in the next n elements, and so on.
iecode : the error message;

```
    = O : successful termination.
```

 \(=1: n<2\).
 \(=2: n>m\).
 \(=3: m>1000\).
 \(=4: g<1\).
 \(=5: q \leq g\).
 \(=6: q>26\).
 \(=7: q>n\).
 \(=8: \operatorname{mmax}\) is exceeded before \(g\) singular values and
 vectors have been computed.
 3.2. Program Organization

MAXVAL is the main routine that calls all the other subroutines. It also checks the input data for inconsistencies. The main body of the subroutine begins by filling the appropriate columns of Y with
random vectors if a starting matrix is not provided. The random vectors are orthonormalized in a call to the subroutine ORTHOG. MAXVAL then calls BKLANC to carry out the block bidiagonalization of \bar{A} and then SVBUTM to solve the singular value problem of the resulting block bidiagonal matrix (s). Two calls to the subroutine ROTATE compute the matrices $P X$ and QY. A test is then made of the relative increase in the largest singular value of $J(s)$ to determine if it is necessary to call the convergence test routine CNVTST. If some but not all the desired singular values have converged, then the subroutine PCHOIC is called to choose new values for p and s for the next iteration, which begins with the first p columns of $Q Y$ that have not been accepted as singular vectors as the starting matrix.

ORTHOG always reorthogonalizes the input vectors with respect to the vectors in the first h columns of the input matrix. Reorthogonalization is also carried out with respect to the previous IORTHG blocks of vectors. The resulting vectors are then orthormalized using a modified Gram-Schmidt method [l].

ORTHOG calls INPROD to compute inner products in the reorthogonalization process.

BKLANC implements the block Lanczos reduction. The banded upper triangular matrix $J^{(s)}$ is stored in columns 2 through $p+2$ of the matrix C, the main diagonal being stored in the first ps elements of column 2, the upper diagonal being stored in the first ps - 1 elements of column 3, and so on.

SVBUTM is designed to solve the singular value problem of a banded upper triangular matrix. The matrix $J^{(s)}$ has been stored in the correct form in BKLANC for input into this routine. SVBUTM first calls

BIBAND to bidiagonalize $J^{(s)}$ using the algorithm Band Givens I described in section 2.5, and then SVDBI to apply the QR method to compute the singular values of the bidiagonal matrix. The routines ROTROW and ROTCOL implement Givens transformations to rotate rows and columns of $J^{(S)}$ to reduce it to a bidiagonal form--note however that an improvement here would be to implement fast Givens transformations instead. SVDBI calls DROTAT to compute the singular vectors of $J^{(s)}$.

ROTATE computes $P X$ and $Q Y$, the left and right singular vectors of \bar{A}.

CNVTST tests the computed singular values and vectors for convergence. It tests first the largest singular value, then the second largest singular value, and so on until it finds either non-convergence or all the desired singular values.

PCHOIC computes new values for p and s if some but not all desired singular values have converged.

3. 3 Numerical Properties

The user can easily modify the bounds on m and q by changing the storage allocation for the arrays C, U, V, R and T at the beginning of MAXVAL. The tests of the values of m and q must then be appropriately modified.

Our program has proved to be very efficient for large and sparse singular value problems. The convergence is very fast if the largest singular values are fairly well separated. Even in cases when the largest singular values are clustered, our program appears to be able to compute them accurately.

We have seen that the optimal choice of the block size depends on the singular value spectrum and is therefore not possible a priori. A " safe" choice appears to be choosing the block size as the number of desired singular values. The singular values thus computed are usually fairly accurate. A drawback is that sometimes this choice produces a very slow convergence rate.

We cannot overemphasize the importance of s. Storage limitations place a bound on the product ps. The two matrices X and Y require
 Since q bounds $p s+h$, we see that the value of p uniquely determines the maximal value of s. Since s must be at least 2 , the block size p will be reduced to give s the value of 2 or 3 . Experiments have shown that $s=2$ often produces intolerably slow convergence. It appears that we should always give s a value of at least 3. In fact, for a problem with a dense singular value spectrum, the best choice appears to be $\mathbf{p}=1, s=\mathbf{q}-\mathrm{h}$ and no reorthogonalization.

Reorthogonalization appears to be unnecessary if the singular value spectrum is dense. If the largest singular values are well separated from the rest, then complete reorthogonalization is required to keep multiple images of these singular values from appearing. Partial reorthogonalization, e.g. with iorthg $=1$, is insufficient although it does produce better results than no reorthogonalization at all.

From the theorem in section 2.3, we can see that a good choice of the block size is the number of the dominating singular values. Experiments confirm the theory and we see also that it is better to
overestimate the number of dominating singular values than to underestimate.

The use of extended precision arithmetic to accumulate inner products produces much more accurate results at an average cost of about 20% more computing time. We have, however, found its use to be unnecessary for a large value of eps; we have obtained satisfactory results from 1000×999 matrices with eps $=10^{\mathbf{- 3}}$ using only double precision arithmetic.

4. Test Examples

We have chosen rectangular diagonal matrices in all but one test examples. We feel diagonal matrices are sufficiently general because we do not transform the given matrix; we obtain information about the given matrix only through the subroutine that computes the product of the matrix (or its transpose) with an input matrix. Diagonal matrices are convenient in that we know the singular value spectrum and so can study the behavior of our algorithm as a function of the block and step sizes.

We have run our program on an IBM $370 / 168$ computer using the EXTENDED FORTRAN H compiler. Our program takes 6.95 seconds to compile. In the examples below the following rotation is used:

```
m(-n)}=m\times1\mp@subsup{0}{}{-n
    iter = total number of iterations
    imm = total number of matrix-vector multiplications
    i w = total number of vector inner products in the
                        orthogonalization process
    exec time = execution time in seconds on the machine
```

Example 1

A is a 1000 X 999 matrix with diagonal elements 0.006,-0.007,0.008,-0.009,...,1.000, and 2,2,2 and -10. With $\mathbf{g}=4, \mathrm{q}=12, \mathrm{eps}=10^{-3}$ and iorthg $=0$, we obtain the following results.

	$\mathrm{p}=\mathrm{l}$	$p=2$	$\mathrm{p}=3$	$p=4$	$p=5$	$p=6$
σ_{1}	$10+1(-15)$	10-4(-15)	10-1(-10)	10-2(-7)	10-5(-12)	10-4(-12)
σ_{2}	10-1(-15)	2	$2+4(-12)$	$2+2(-9)$	2-3(-8)	$2-\Sigma(-8)$
σ_{3}	2-6(-15)	$2-8(-15)$	$2-1(-9)$	2-3(-11)	$2-1(-7)$	2-6(-8)
σ_{4}		$2-3(-9)$	$2-1(-8)$	$2-4(-10)$	2-9(-7)	2-6(-7)
iter		5	3	3	5	5
i mm		105	67	62	85	100
ivv		224	114	108	200	300
exec time	program fail to terminate	s 6.06	3. 81	3.71	5. 33	7.34

We see the advantage of a block algorithm in this example. The point algorithm gives a double image for the singular value 10 and then fails to terminate because it converges to a value 2.738. We obtain the fastest convergence using $p=4$, as we expect. Note the high accuracy in the solution values with eps $=10^{-3}$.

Example 2
A is a 1000 X YYY matrix with diagonal elements
$-0.005,0.006,-0.007,0.008, \ldots, 1.000$, and $2,-2$ and 2 . We choose $g=3, q=12, \mathrm{eps}=10^{-3}$ and iorthg $=0$.

	$\mathrm{p}=1$	$\mathrm{P}=2$	$\mathrm{P}=3$	$\mathrm{p}=4$
σ_{1}	2	$2-2 \times 10^{-15}$	$2-2 \times 10^{-11}$	$2-4 \times 10^{-11}$
σ_{2}	2	$2-1 \times 10^{-9}$	$2-3 \times 10^{-11}$	$2-6 \times 10^{-11}$
σ_{3}	$2-1 \times 10^{-15}$	$2-2 \times 10^{-8}$	$2-3 \times 10^{-10}$	$2-5 \times 10^{-10}$
iter	5	4	2	3
imm	115	89	52	70
iw	124	132	48	108
exec time	6.52	5.24	3.18	4.70

In this example, we see again the advantage of a properly chosen block size. Note also the better results obtained by overestimating rather than underestimating the number of dominating singular values.
-Example 3
A is a 1000 X 999 matrix with diagonal elements $0.006,-0.007,0.008,-0.009, \ldots, 1.000$, and $2,10,-10$ and 10 . We choose $\mathrm{g}=3, \mathrm{q}=6, \mathrm{eps}=10^{-3}$ and iorthg $=0$.

$$
P=1 \quad P=2 \quad p=3
$$

σ_{1}	$10-2 \times 10^{-15}$	$10-3 \times 10^{-15}$	$10-4 \times 10^{-12}$
σ_{2}	$10-3 \times 10^{-15}$	$10-2 \times 10^{-9}$	$10-2 \times 10^{-11}$
σ_{3}	$2-5 \times 10^{-7}$	$10-2 \times 10^{-7}$	$10-2 \times 10^{-8}$
iter	4	6	3
imm	42	56	37
i w	48	82	36
exec time	1.85	2.46	1.76

We see the failure of the point algorithm to obtain the third singular value 10. This example also shows how fast our algorithm can be even with very limited storage ($q=6$) as long as the separation of the singular values is good.

Example 4
A is the same matrix as in Example 1. But we choose $g=3$, $q=12, \mathrm{eps}=10^{-3}$ and $p=1$. We run our program with no, partial, and complete reorthogonalization.

	iorthg $=0$	iorthg $=1$	iorthg $=12$
σ_{1}	$10+1 \times 10^{-14}$	10	10
σ_{2}	$10-1 \times 10^{-15}$	$10-2 \times 10^{-12}$	$2-2 \times 10^{-15}$
σ_{3}	$2-6 \times 10^{-15}$	$2-4 \times 10^{-15}$	$2-4 \times 10^{-15}$
iter	1	1	3
imm	31	31	71
i w	0	22	392
exec time	1.69	1.77	5.27

We see only complete reorthogonalization gives the correct solution. We also see that the block algorithm (Example l) with $\mathrm{p}=3$ and 4 and no reorthogonalization computes four singular values correctly in 25% less machine time.

We also run the first case (iorthg $=0$) using extended precision arithmetic to accumulate inner products. The results are unfortunately unchanged.

Example 5

A is a 1000×999 matrix with diagonal elements $0.002,-0.003,0.004,-0.005, \ldots, 1.000$. We choose $g=3, q=12$, eps $=10^{-3}$ and iorthg $=0$.

	$\mathrm{p}=1$	$\mathrm{p}=2$	$\mathrm{p}=3$
σ_{1}	0.999992	$\ldots \ldots .$.	0.999986
σ_{2}	0.998960	0.998951	.998999
σ_{3}	0.998036	0.998005	0.997980
iter	13	33	27
imm	305	711	609
iw	190	784	676
exec time	17.59	41.20	38.09

This is an example where a point algorithm is a good choice. The denseness of the singular value spectrum takes away the virtues of a block algorithm; the best choice is therefore to maximize s.

Example 6
A is a 314×80 matrix obtained from earthquake research and is of the following special form:

$$
A=\left(A_{1} \mid A_{2}\right),
$$

where $\quad A_{1}$ is 314×24 and block diagonal,
and $\quad A_{2}$ is 314×56 and randomly sparse.
A_{1} consists of six diagonal blocks, whose dimensions are 53×4, $51 \times 4,46 \times 4,58 \times 4,55 \times 4$ and 51×4. There are about 4 non-zero
elements per row in A_{2} and a total of 2509 non-zero elements in A.
We store only the non-zero elements of A. We use three onedimensional arrays IINDEX, JINDEX and A, each of length 2509, to store i, j and a... This compact storage scheme also enables us to compute the matrix-vector products $A \underset{\sim}{x}$ and $A^{t} \mathbb{X}$ efficiently.

Assume A is $m x n$ and has NDATA non-zero elements. Then the following FORTRAN statements compute $\underset{\sim}{X}=A \mathbb{X}$:

$$
\begin{aligned}
& \text { DO } 10 \mathrm{~K}=1, \mathrm{M} \\
& \mathrm{X}(\mathrm{~K})=0 . \text { DO } \\
& \text { CONTINUE } \\
& \text { DO } 20 \mathrm{~K}=\mathrm{I}, \text { NDATA } \\
& \mathrm{I}=\operatorname{IINDEX(K)} \\
& \mathrm{J}=\mathrm{JINDEX}(\mathrm{~K}) \\
& \mathrm{X}(\mathrm{I})=\mathrm{X}(\mathrm{I})+A(\mathrm{~K}) * Y(\mathrm{~J})
\end{aligned}
$$

The following statements compute $\mathbb{X}=A^{t} \underset{\sim}{x}$:

DO $110 \mathrm{~K}=1, \mathbb{N}$
$Y(K)=0 . D O$
110

120
CONTINUE
DO $120 \mathrm{~K}=1, N D A T A$
$I=\operatorname{IINDEX}(K)$
$J=J I N D E X(K)$
$Y(J)=Y(J)+A(K) * X(I)$
CONTINUE

A full singular value decomposition of A was computed using the subroutine SVD in EISPACK [10]. The demand on storage is excessive, for we need to supply at least $2 \times m \times n \times 8$ bytes ($\doteq 393 \mathrm{~K}$ bytes) if we want the singular vectors. The execution time was 23.18 seconds. The main disadvantage of $S V D$ is its inflexibility: we always have to compute all the singular values whether or not we need all of them. Our Lanczos program, on the other hand, requires only $(m+n) \times q \times 8$ bytes $(\dot{\equiv} 31 \mathrm{~K}$ bytes for $q=10)$ if we give it q vectors of
storage to compute the singular vectors. It can then compute up to ($q-1$) singular values and corresponding vectors. We need $2509 \mathrm{x}(4+4+8)$ bytes ($(\ddagger 40 \mathrm{~K}$ bytes) to store A using our compact scheme.

The following table summarizes our results when we apply our program on A with $\mathrm{p}=1, \mathrm{q}=10$, eps $=10^{-3}$ and iorthg $=0$:

g	1	2	3	4	5	6	7	8	9
iter	1	2	3	5	7	9	12	18	23
imm	23	44	63	93	119	141	166	206	229
iw	0	18	50	134	230	330	474	726	886
exec time	1.66	2.21	2.73	3.61	4.38	5.08	5.92	7.23	7.9%

All our computed results agree to at least 6 significant digits with the values from SVD, agreeing with the expectation that the accuracy is $O\left(e p s^{2}\right)$.

The 80 non-trivial singular values of A are (to 3 significant digits) 12.6, 9.53, 8.87, 8.06, 7.77, 7.59, 6.42, 5.54, 5.16, $4.49, \ldots, 1.28 \times 10^{-2}, 4.45 \times 10^{-7}, 1.91 \times 10-7,5.93 \times 10^{-8}$ and 2.48×10^{-15}. Although the largest singular values of A are quite uniformly distributed, we observe a uniform improvement in program speed when we choose the block size equal to 2 , i.e. $p=2, q=10$, eps $=10^{-3}$ and iorthg $=0$:

g	1	2	3	4	5	6	7	8	9
iter	1	2	3	5	7	8	10	18	24
imm	22	43	59	88	109	121	136	190	214
iw	10	28	66	158	248	304	394	798	990
exec time	1.62	2.13	2.49	3.34	3.83	4.16	4.62	6.28	7.15

The effect of storage space on program speed is examined using both 12 and 15 vectors of storage to determine 9 singular values. The results with $p=1$, eps $=10^{-3}$ and iorthg $=0$ are:

q	10	12	15
iter	23	9	5
imm	229	129	123
iw	886	530	530
exec time	7.99	5.21	4.99

The trade-offs between space and time are obvious.

References

[I] Björck, A., 'Solving Least Squares Problems by Gram-Schmidt Orthogonalization," BIT 7(1967), l-21.
[2] Chan, T. F. C., "On Computing the Singular Value Decomposition," Report STAN-CS-77-588, Stanford University (1977).
[3] Gentleman, W. M, "Least Squares Computations by Givens Transformations Without Square Roots," JIMA 12 (1973), 329-336.
[4] Golub, G., and Kahan, W., 'Calculating the Singular Values and Pseudo-Inverse of a Matrix,' J. SIAM Numer. Anal. 2(1965), 205-224.
[5] Golub, G., and Luk, F., "Singular Value Decomposition: Applications and Computations," ARO Report 77-1, Transactions of the 22nd Conference of Army Mathematicians (1977).
[6] Golub, G., and Reinsch, C., (1970, HACLA/I/10), "Singular Value Decomposition and Least Squares Solutions," Numer. Math. 14 (1970), 403-420.
[7] Lanczos, C., Linear Differential Operators, Van Nostrand, London (1961).
[8] Paige, C., 'The Computation of Eigenvalues and Eigenvectors of Very Large Sparse Matrices," Ph.D. Thesis, University of London (1971).
[9] Rutishauser, H., 'On Jacobi Rotation Patterns," Proc. Sym. Applied Math. 15 (1963), 219-239.
[10] Garbow, B. S., and Dongarra, J. J., Path Chart and Documentation for the EISPACK Package of Matrix Eigensystem Routines, Technical Memorandum No. 250, Argonne National Laboratory (August 1975).
[11] Stewart, G. W., "The Economical Storage of Plane Rotations," Numer. Math. 25 (1976), 137-138.
[12] Underwood, R., "An Iterative Block Lanczos Method for the Solution of Large Sparse Symmetric Eigenproblems," Ph.D. Thesis, Report STAN-CS-75-496, Stanford University (1975).
[13] Van Loan, C., "Generalized Singular Values with Algorithms and Applications," Ph.D. Thesis, University of Michigan (1973).
[14] Wilkinson, J. H., The Algebraic Eigenvalue Problem, Clarendon Press, Oxford (1965).

```
SUBROUTIME GAXVAL(G,G,Q,PINIT,G,HMAX,BPS,OP,H,D,X,Y,IORTHG,
1 LOUT,GCHEPS ,IECODE)
INTEGER H,M,Q,PIMIT,G,HAAX,H,IORTEG, LOUT,IECODE
DOUBLE PRECISION EPS,D(Q),X(M,Q),Y(N,Q), MCHEPS
EXTERNAL OP
```

CALCULATE TEE LARGEST SINGULAR VALUES OF A LARGE SPARSE MATRIX
qRITTEM BY：FRAMRLI胃 LUR COMPUTBR SCIBBCE DEPABTMENT STAYFORD UNIVERSITY
SBPTBRBER 1976
LAST UPDATE ：APRIL 1977

TBIS SBT OPROUTIIES USES INTEGER AYD DOUBLB PRECISION ARITHMETICS

THIS SBT OP ROOTIHES IHCLUDES ：MAXVAL，BKLABC，ORTHOG，IMPROD． ROTATB，CAVTST，PCEOIC，RAMDOM． AHD SVBOTA（ PLUS BIBAND，ROTROM． ROTCOL，SVDBI，Ali्id DROTAT ）．

```
THIS SOBROUTIME IS THE HAIA SUBROUTIME IMPLEMEETMG THE ITERATIVE BLOCE LAMCZOS HETBOD FOR COBPUTIMG THE LARGEST SIMGOLAR VALUES AHD CORRESPORDIMG LEFT AND RIGHT SIMGOLAR VECTORS OP AI A－BY－MATRIX．
DESCRIPTIOI OP PARAMETERS：
M．N：IMTEGER VARIABLES．TEE MOABER OF ROWS ARD COLOMAS OP TEB Batrix A MHOSE SIMGULAR VALUES AMD TECTORS ARE BEING COMPOTED．IT IS ASSUMED TRAT 2 ．LE．．LB．H．
Q：IHTEGER VARIABLE THE MOABER OF VECTORSOPLENGTA COMTAIMED II TEE ARRAY X，AMD THE MUHBER OF VBCTORS OF LEMGTE COMTAIMBD IM THE ARRAY I．THE VALUB OP \(\mathbf{Q}\) SHOULD BE LESS T日an OR BqUAL TO 26，AT LBAST OMe GRBATBR TEAM TEE VALUE OF 6 AND LBSS TEAR OR EQUAL TO
PIAIT：IMTEGER VARIABLE．TAE IUITIAL BLOCK SIZE TO BE OSED In THB BLOCK LAMCZOS HETHOD．I？PIMIT IS HEGATIVE． TAEM－PIMIT IS USED FOR TEB BLOCK SIZE ADD COLUMMS H＋1．© \(\boldsymbol{H}+(-\mathrm{PIMIT})\) OF THE ARRAYS Y ARE ASSOMED TO BE IXITIALIEED TO A MATRIヌ USED TO START TEB BLOCK LAMCzOS HBTHOD．IF THE SUBROUTIEE TERMIHATES UITH A valos OF h LBSS THAI 6，ThEM PIMIT IS ASSIGEED A VALUE－P，凹HEREPIS THB FIMAL BLOCK SIzE CEOSBR． II THIS CIRCOMSTAMCE，COLOMBS 日 +1 ．．．．， \(\boldsymbol{H}+\mathrm{P} O F Y\)日ILL COMTAIM THB HOST RECEVT SET OF RIGET SIMGULAR VICTOR APPROXIBATIOIS WHICE CAN BE USED TO RESTART
```



```
SIUGULAR VECTORS COMPUTED BY 日AXVAL，BUT ALSO AS
HORKING STORAGE FOR TEE BLOCK LAMCEOS EETHOD．ATEXIT，
VECTOR APPROXIMATIO甘S－－THE PIRST VECTOR IM TEB PIRST
日 ELEHEETS，THE SBCOUD IV THE SECOMD \(A\) ELEHEMTS，ETC．
\(Y: \quad D O U B L E\) PRBCISIOU ARRAY．Y COMrAIMS THB COMPUTED RIGHT SIIGOLAR VECTORS．I SHOULD BE AI ARRAY COHTAIMIMG AT LBAST \＆＊Q ELEarats．Y IS USED HOT ONLY TO STORE THE RIG日T SINGULAR VECTORS COHPOTED BY HAYTAL，BUT ALSO AS MORKIMG STORAG害 FOR TEB BLOCK LAMCZOS 日ETBOD．AT EXIT， TEE FIRST H＊日 ELE日E日TS OF Y COETAIM TEB RIGHT SINGULAR VECTOR APPROXIMATIOMS－－THB FIRST VECTOR IM THB PIRST
```



``` PRECEDIHG BLOCKS O？VECTORS UITA RBSPBCT TO पHICH REORTHOGOMALIzATIOM OP THB PRBSBUT BLOCK O？VBCTORS IS CareIEd OUT．
LOUT ：Integer VARIABLE．OUTPUT UNIT nOABER．
MCHEPS ：DOUBLE PRECISION VARIABLB．THE MACHINE PRBCISIOU．
IECODE ：IITBGER VARIABLB．TEE VALUE OF IBCODE IUDICATBS WHETHER MAXVAL TERAIMATED SUCCESSPOLLy，AND I？HOT， TEB REASOI UHY． IECODE＝0 ：SUCCESSFOL TERMIMATIOM． IECOD 1 ： 1 ：THE VALUB O？IS LESS THA！TPO． IECODE＝2 ：TEE VALUB O？IS GRBATBR THAM TEB VALUE OF 日．
IECODE＝3：THE VALUE OF \(\boldsymbol{m}\) IS GRBATBR THA⿴ 1000.
IECODE＝4 ：THE VALUB O？G IS LBSS THAN ORB．
IRCODE＝5 ：TH\＆VALUE O？Q IS LBSS THAN OR EQUAL TO G．
IECODE＝6：TEE VALUB OPQ IS GREATER THAN 26.
IECODE＝7 ：TEE VALUE O？ \(\mathbf{Q}\) BXCBBDS \(\mathbf{1}\) ．
IECODE＝8 ：THE VALUB OF Mat WAS BXCBBDBD BEFORE
```



``` SI⿴gular VECTORS UBRB COMPUTED．
UOTB TEAT THE SUBROUTIME HAS BEEM DESIGED TO ALLOR IMITIAL APPROIIMATIOMS TO THB RIGET SINGULAR VECTORS CORRBS－ POIDIMGTO THB LARGEST SIMGULAR VALUES TO BE UTILIZED
```



``` PIMIT GIMOS TEE VALUE O？TAEIR MOHEER．FORTHEREORE．IT日AS ALSO BEEM DESIGNED TOALLOM RESTARTIMG I？IT STOPS \＃ITH IECODE＝8．TEOS，TEB USEAOF THIS PROGRAM CAR RESTART IT AFTER EXABIIIIG AHY PARTIAL RESULTS MITHOUT LOSS OF PREVIOUS WORK．
IMTEGER I，IERR，IHM，IPA，IPQ，ISEED，ITER，IVV，MCOKV，P，PAI，PS，RP3 I TREGER QPRS．QP1，S
REAL FLOAT
DOUBLE PRBCISIOU ERRBED．BRRC
THE 日IMIMOM LEMGTHS O？TAE LOCAL ARRAYS ARE AS FOLLOMS．THESE
```



``` VALOES O？Q OR 日 MAIC日 AT PRBSBUT ARE 26 A베 1000 （ TEB TESTS BBLOU SHOULD ALSO BE HODIPIED）．
LBT \(\mathbf{Q 2}\) DBUOTB TEB IMTEGER PART O？Q／2．THEN
```

$$
こ(Q *(Q 2+3)), \sigma(Q * Q), V(Q * Q), B(Q 2 * Q 2), T(H)
$$

DOUBLE PRECISIO：C（416），O（676），V（676），R（169），T（1000）
DOUBLE PRECISIOM DBLE

ERRC $=0$. DO
ITBR $=0$
IH: $=0$
$\boldsymbol{I V}=0$

THE 日aIM BODY OF THE SUBROUTIUB STARTS 日ERE．IMB COUNTS pas mobber of hatait－vector pRODUCTS COMpOTED． IV COUMS THE MOBBER OF VECTOR THER PRODUCTS PEIPORHED IM tas orthocomalization houtime．erac hensurss tas accomolated error in the simgolar valozs ald vbctors．

```
    300 IF (H.GB.G) GO TO 900
    IF (IMA.GT.&BAX) GO TO 908
    ITER = ITRR+1
    PS = P*S
    PP3 = P+3
    #RITE (LOUT,6010)ITBR,P,S
    6010 FORAAT(14日 - ** ITERATIOM,I4/5X,4& P =.I3,5X.4H S =.I3)
    USE RAMDO# VECTORS TO RESTART THE LAMCZOS AlGORITMM IF
    LINEAR IMDEPE#DENCE HAS BEBP LOST.
    DO 310 I= l,P
    IPH = I+H
    IF (D(IPG).GF.0.DO) GO TO 310
    PMI = P-I
    CALL RAEDOR(N,Q,PHI+1,IPH-1,Y,ISEBD)
    GO TO 320
    310 CONTINUE
C

```

 CALL ORTHOG(M,Q,G,B,P,R,I,IORTGG,IVV,LOUT,MCBEPS)
 BKLAMC CARRIES OUT TEE BLOCK LAMCZOS mETHOD AND RETURNS TEE RESULTIYG BAUDBD ©PPER TRIANGULAR HATRIX 日S IN C ，THE B－BI－RS ORTHOBOR日AL HATRIX IS IT X AND THB N－BY－PS ORTHONOR日AL HATRIX IS IM Y．THB IMITIAL N－BY－P ORthomoranl gataIXYl IS assoned TO BE STORED IN COLOAIS $\mathrm{H}+1$ THROOGB $\mathrm{H}+\mathrm{P}$ OF I．

```

``` IHE \(=\) IHA \(+P *(2 * S \cdot 1)\)
SVBOT：SOLVES THE SIMGULAR VALUE PROBLBH FOR THE PS－BY－PS ARRAY 日S，RETORYIMG THB SINGULAR VALUES II THE SBCOBD COLUMY OF \(C\) IID THB RIGRI SINGULAR VECTORS IITHB PIRST P＊S COLOHIS
```



``` \(P\) LaRGEST SIMGULAR VALUES IN TEE FIRST P COLOMIS OP V．
CALL SVBUTA（Q，PS，R，PP3，C，PS，PS，D，V，HCEEPS，IERR）
IF（IERR．EQ．O） 60 TO 330
URITE（IOUT．6020）IERR
```


QP1 $=Q+1$
QPPS＝ $\mathbf{Q + P S}$
URITE（LOOT，6030）（C（I），I＝QP1，QPPS）
6030 FOPMAT（5X，20H SIMGOLAR VALOES ．．．．6（／5I．1P5D24．15））
gotate COHPUTBS THE LEFt apd RIG日t sifgular VECTORS
OF THB RESTRICTED HatiII USING IS STORED IM 又．AND IS STORED IE Y．
CALL ROTATE（H，Q，B，RS，PS，O，I，T）
CALL ROTATE（M，Q，H，PS，PS，V，I，T）
TEST I？EELATIVE IMCREASE OF CO月POTED SINGULAR VALOES EXCEEDS TEE USER－SET PRBCISIOM BOUID．
MCOMV＝ 0
I？（ITER．EQ．1）GO TO 340

```
```

    IF ((C(Q+1)-D(H+1))/C(Q+1).GT. BPS) GO TO 400
    C
C CHVTST DETERMIEES HOM BABY OF THB SIMGOLAR VALOES
C AND LEPT AND RIGHT SINGOLAR VECTORS HAVE COEVERGED.
C THE NOMBER THAT HAVE COMVERGED IS STORED IMMCOMV.
C IF NCOMV=0, TAEY HOVE GAS COMVERGED.
340 CALL CMVTST (H,H,Q,H,G,ERRBHD,ERRC,OP,C,I,Y,NCOMV,LOUT,T)
IHM = IHM + (MCOMV +1) =2
4OO CONTINUE
C
DO 410 I= l,PS
IPH}=I+
IPQ = I+Q
D(IPH) = C(IPQ)
410 CONTINUE
2
~ PCHOIC CHOOSES NED VALUBS FOR P IMD S. THE BLOCK
C SIZE AID THE yOABER OF STEPS FOR THE BLOCR LAMCZOS
C SUBPROGRAB, RBSP..
C
IP ( MCOMV. SQ.O .OR. MCOMT.SQ.G-R ) GO TO 42O
CALL PCHOIC(Q,H,G,MCONV,P,S)
4 2 0 ~ W R I T E ~ ( L O O T , 6 0 4 0 ) I H H , I V V , ~ M C O M V ~
6040 PORMAT(5X,6H IHM =,I5,5X,6HIVV =,I5,5X,8H MCOMV =,I3)
= H+MCOMV
C
GO TO 300
C
c THIS IS TEE EMDOPTGR日AIM BODY OF TRE SUBROUTIME.
C_ HOW SET THE VALOE OP THB IBCODB ANDEXIT.
C
900 IECODE = 0
RBTURR
901 IECODE =1
BETURN
902 IECODE =2
RETURA
903 IECODB = 3
RBTORA
904 IECODE = 4
RETORN
905 IBCODB = 5
RSTORA
906 IBCODB = 6
RBTORM
907 IBCODB = 7
RETORM
908 IBCODB = 8
PIMIT =-P
BETOR\#
C
EMD

```

\title{

} LOUT，HCEEPS）
INTEGER \(H, N, Q, P P 3, H, P, S, I O R T H G, I \nabla V, I C O T\)
DCOBLE PRECISION C \((\mathbb{Q}, \mathrm{PP} 3), \mathrm{X}(\mathrm{M}, \mathrm{Q}), Y(\mathrm{~N}, \mathrm{Q}), \mathrm{R}(\mathrm{P}, \mathrm{P})\) ，HCBEPS
THIS SUB \(O\) OUTAE IMPLEBERTS THE BLOCK LAHCZOS HETHOD WITH GEORTHOGONALIZATIOM．BRIABC CCMFUTES A \(P S-B Y-P S\)（ \(\mathbf{P S}=\mathbf{P} * \mathbf{S}\) ）BANDED UPPER TRIAMGOLAR Matrix MS Which It STORES I\＃COLOHIS 2 t日ECOGH P＋2 OF THE Q－BY－P＋1 HATRIX C（ THE DIAGCHAL BEIXG STOBED In tae first PS LOCATIONS Of COLOM日 2，TEE IEXT SUPERDIAGONAL BEIMG STORED IN TBE FIRST PS－1 LOCATIONS CPCCLOMA 3，AND SO ON）．AND A PS－BY－PS ORTHOGCRAL MATRIX XS 日日IC日 IT STORES In COLO日BSH＋1 THEOUGB B＋PS OF THE E－BY－Q ARRAY X，AMD A PS－BY－ES ORTHOGCMAL MATRIX YS WEICH IT STORES IA COLOMAS H＋1 THROUGH H＋PS OP TBB N－BY－Q ARRAY \(\mathbf{Y}\) ．

MS CAN ALSO BE REGARDED ASABLOCK UEEER BIAGCHAL MATRIX \＃ITH P－BY－F UPPER TRIANGULAR 日ateICES R（l），
 matrices \(T(2)^{\prime}\) ，．．．．\(T(S)\)＇ALONG ITS opesi ciagonal．

XS IS CORPOSED OF \(S\) PS－BY－P ORThONOR日al yatarces
\(\boldsymbol{X}(1), \ldots, X(S)\).
YS IS COMPOSED OF \(S\) PS－BY－P ORTHONORMAL BATEICES
 STORED II COLOHNS H＋1 THBOOGB H＋P OF I．

OP IS the hame OP AN EXTERNAL SOBECOTIME USED IO dffing TEE matrix A．

IHTBGER I，I1，I2，J，JBP，J1，J2，K，K1，I，IL，ILHP，IU
DOUBLE PRECISION I
\(\mathbf{L}=1\)
\(I L=B+1\)
\(\mathbf{L O}=\mathrm{H}+\mathrm{P}\)
CCMPOTEX（1）＝A＊Y（1）

FACTORIZE \(X(1):=\mathbf{Z}(1) * R(1)\)
CALL ORTHOG（B，Q，H，H，P，R，X，IORTHG，IVV，LOUT，BCGEES）
STCRE R（1）IN C
DO \(120 \mathrm{~J}=1, P\)
DO \(110 \mathrm{I}=\mathbf{1 , \mathbf { J }}\)
\(J 1=J-I+2\)
\(C(I, J 1)=B(I, J)\)
CCATIROE
C
120 CCATIMOE
L ．GE． 2
IP（S．LT．2）GO TO 900
```

    DO 600 L = 2.S
    LL = H+(I-1)*P+1
    LO = H+L*P
    I1 = (L-2)*P
    I2 = I1+P
    compime

```
 CALL OBTHOG (N,Q,H,LL-1,P,R,Y,IOFTHG,IVV,IOUT,GCHEFS)
 STORB T(L)' IN C
 DC 320 J = 1,P
 J1= J+I1
C
CCMTIMOE
COHPUTB 1'* \(\mathbf{X (I - 1)}\)
LIMP \(=\mathrm{LL}-\mathrm{P}\)
CALL \(O P(H, N, P, X(1, L L A P), Y(1, I L), \ldots F A S B\).
DO 230 K = LL, LU
COMPOTE Y(I-1)*R(L-1)'
\(\mathrm{K} 1=\mathrm{K}-\mathrm{LL}+1\)
DO \(220 \mathrm{I}=\mathbf{1 . N}\)
\(T=0 . D O\)
DO \(210 \mathbf{J}=\mathbf{R}_{\mathbf{\prime}} \mathbf{I 0}\)
\(J M P=J-P\)
\(\mathrm{J} 1=\mathrm{J}-\mathrm{LL}+1\)
\(T=T+Y(I, J H P) * B(R 1, J 1)\)
COATINOB
COHPUTB \(Y(L)=\mathbf{A}^{\prime}: \mathbf{X (L - 1)} \mathbf{- 1}(\mathbf{L}-\mathbf{1}) \ominus B(L-1)^{\prime}\)
\(\mathbf{Y}(\mathbf{I}, \mathrm{K})=\mathrm{Y}(\mathbf{I}, \mathrm{K})-\mathrm{T}\) CONTINUE
CALL OBTHOG (H,Q.H,LL-1,P,R,Y,IORTHG,IVV,IOUT, HCHEFS)
STORB T(L)' IN C
DC \(320 \mathbf{J}=\mathbf{1 , p}\) \(\mathbf{J 1}=\mathbf{J}+\mathbf{I I}\)
DO 310 I = 1,J
\(32=\mathbf{P}-\mathbf{J}+\mathbf{I}+2\)
\(C(J 1, J 2)=B(I, J)\)
COMTIMOB
CCMPOTE A*I(L)
```



```
DO 430 A \(=\) LL, 10
COMPOTE (L-1) FT (L)'
\(\mathrm{K} 1=\mathrm{R}-\mathrm{LL}+1\)
DO 420 I =1. \(\boldsymbol{n}\)
```

c
900 EETOER
END

```
 SUEROUTIUE ORTHOG (N,Q,H,L,P,R,X,IORTHG,IVV,IOUT,HCHEFS)
 I#TEGBR N,Q,H,I,P,IOFTGG,IVV,LOUT
 DCUBLB PRECISION E (P,P),X(M,O), (HCBEES
 OBTEOG RBORTHOGONALIZES TEE N-BY-P mATBIX Z STORED IA
```



```
 RESPECT TO The VECTORS STORED IN COLOM&S 1 fHECOG日 H
 AND COLOHRS (L-IORTHG*P+1) THROUGB I OP TEE BATRIX X
 USING GRAM-SCHMIDT ORTHOGONALIZATIOR. TGE HODIFIED
 GRAM-SCHAIDT HETHOD IS USED TO FACTOGIZB TBE RESULTING
 MatrI又 INTO TEE PRODUCT OF AN N-BY-F ORTHONOEMAL MatrI又
 IORT日 STOBED IN COLUHNS L+1 TBRODGB I&P OP X, AND
 AP-BY-P UPPER TRIAMGOLAB ARRAY R.
 INTEGER I,IHI,IP1,J,K,KML,L1,IP1,LPP
 I#TEGER HAXO
 DOUBLE PRECISIOM SUM
 DOUBLE PRECISICN DSQRT
 IP(F.EQ.0) RETURN
 LP1 = L+1
 LPP=L+P
 IP(B.BQ.O) GO TO 200
 DC 130 I = LP1,LPP
 DO 120 K = 1.日
 CALL IAPBOD (N, X(1,I),X (1,K),SOH)
 DO 110 J = l,N
 X(J,I) = X (J,I) = SUB*X (J,R)
 COBTIMOE
C
 120 COMTIHOE
C
C
C
 200 IF (IORTHG.BQ.0) GO TO 300
 IF (L.EQ.G) GO TO 300
 I1 = MAXO(I-P*IOSTHG+1, H+1)
230 CCMTIMOE
\(I \nabla \nabla=I \nabla \nabla+(L-L 1+1) * P\)

C

C

DC 400 I＝IP1，LPE SOH \(=0 . D O\)

DO \(310 \mathbf{J}=\mathbf{1} \boldsymbol{N}\) \(\operatorname{sun}=S O M+\mathbf{X}(J, I) * * 2\)
CGNTINUE
\(\mathbf{I B L}=\mathbf{I}-\mathbf{I}\)
IF（SUM．GT．MCEEPS）GO TO 330
WRITE（LOUT，6010）
FORAAT（5X，47日＊＊＊WARNING－IIMEAR INDEFEMDENCEHAY BE LOST， 24H．VECTOR SET TO ZE日C＊＊＊）
\(R(I M L, I M L)=0 . D O\)
DO \(320 \mathbf{J}=\mathbf{1}\) ， \(\mathbf{N}\) \(X(J, I)=0 . D O\)
CCNTINUE
GO TO 400
SOM＝DSQRT（SU日）
R（IHL，IBL）＝SOM
sun＝1．DO／SU日
DO \(340 \mathbf{J}=\mathbf{1} \boldsymbol{N}\)
\(\mathbf{X}(\mathbf{J}, I)=S O B \# \mathbf{X}(J, I)\)
CCNTINUE
IF1 \(=\mathbf{I}+\mathbf{1}\)
IP（IP1．GT．LPP）GO TO 400
DO \(370 \mathbf{R}=\mathbf{I P} \mathbf{1 . L P P}\)
CALL IAPROD（ \(\mathrm{A}, \mathrm{X}(1, I), X(1, K), S O M)\)
K Mr．\(=\mathrm{K}-\mathrm{L}\)
R（IML，KML）\(=S O M\)
DO \(360 \mathbf{J}=\mathbf{1}, \mathbf{N}\)
\(\mathbf{X}(\mathbf{J}, \mathrm{K})=X(J, K)-\operatorname{SUM} \# \bar{X}(J, I)\)
COHTIMOE
COMTINOE
CCHTIMOE
\(I \nabla V=I \nabla \nabla+(P-1) * P / 2\)
ESTUFA
EID
```

        SUBROUTINE IMPBOD(N,0,V,SUM)
        IMTEGER N
        DOUBLE PRECISION O(N),V(N),SOM
            INPROD COMPOTBS T日E INNER PRODUCT OF 2 VECTORS 0 AND V.
    EACH OF L&NGT& ⿴. AND STORES TEE RESULT In S.
    INTEGER I
    SUM = O.DO
    C
DC 110 I =1,M
SOM = SOH + O(I) \#V(I)
110 CCMTIROB
C
RETURN
END

```
```

    SUBRCUTINE ROTATE(N,Q,H,PS,I,O,X,T)
    INTEGER N,Q,H,PS,I
    DOUBLE PRECISION O(C,L), X(N,Q),T(Q)
    C
C RCTATE COHPOTES TEE PIRST l COLOMNS OF the mateIx
C XS*QS, MEERE XS IS AN N-BY-PS ORTHCNOEMAL MATRIX STORED
C IN CCLOMMS H+1 THROUGH H+PS OP TEE N-BY-Q ARRAY 又 AND
C QS IS A PS-BY-PS CRTHONORAAL MATRIX HhOSE FIRST L COLUMNS
C ARE STORED IN COLOHNS 1 THROOGH I CP TEE ABEAY D. TRB
C RESULT IS STORED IN CCLUKNS H+1 THECUGH H+I OF X
C CVERQRITING PART OF XS.
C
INTEGER I,J,JPH,K,KP\&
DOUBLE PRECISION SOM
DC 200 I = 1.N
CCBPOTE TEE II-TH FOM OF XS*QS
DO 110 K=1,I
SOB = O.DO
DO 105 J = 1,PS
JP\& = J+H
sun = SOM + X(I,JPG) *O (J,K)
CONTINUE
C
C
CONTINUE
200 CCNTINUB
EBTUFN
ERD

```
```

SOEROUTIME CIVTST(H,H,Q,H,G,ERRBND,EPRC,OF,C,X,Y,YCCNV,
LOOT,T)
INTEGER B,H,Q,H,G,MCCMV,LOUT
DOUBLB PRECISION ERBBND,FRRC
DOUBLE PRECISIOM C (Q,2), X (H,Q), I (H,Q),T(M)

```
```

CRVTST DETERMIMES WHICH Of TEE P CCMpoted SINGULAR
VALUES STORED IN the SECOND COLOMn OF C HAVE CCNVERGED.
tar ReSIDUAL hrsidu OF THE ( $\mathbf{H}+\mathbf{I}$ )-TH SINGULAR VALUE
IS CChpoted By

```


```

BRRC IS A measore of the accumolated ERROR IN THE
a freviodsiy compoted SINGULAR VALUES AND LEFT AND RIGHT
SINGULAR VECTORS.

```

```

IF
RBSIDU .LR. E*ERRBN + ERRC.
日arez b equals C(1.2) If tar LAtter is gbeater than 1,

```

``` CCBPUTBD SIMgolar VALUE IS GREATER than 1, AND AN ABSOLUTE ERROR TEST CTHBRUISB.
TEE CONVERGENCE TEST IS PBRFORMRE IN ORDER CN TEE (H+1)-TH,
( \(\mathbf{B + 2 ) - T H , ~ . ~ . ~ C O M P U T E D ~ S I N G U L A R ~ V A L U E S . ~ A S ~ S O O N ~ A S ~ A ~ C O M P U T R D ~}\) VALUE FAILS THE TEST, RETURN IS RACE TO TEE CALLING ROUTINE. nCONV IS THE NOMBER THAT HAS CC日VEGED. If NCONy=0, TEEN MOIE HAS CONVBEGBD.
```

```
IMTEGER I,IPH,R,I,PT
```

IMTEGER I,IPH,R,I,PT
DCOBIE PRBCISION EESIDO,B,SUM
DOUBLB PRECISION DSCET
SUB = O.DO
FT=G-H
DO 200 I = 1.PT
K = I
IF (C(I,2).EQ.O.DO) GO TO 300
IPH = I+H
CALL OP(H,N,1,T,Y(1,IPG)..TROE.)
RBSIDU = O.DO
DO 110 L = 1, M
B=T(L)-C(I,2)*X(L,IPH)
RBSIDU = ERSIDO + B**2
COMTIMOE
CALL OP (B,M,1,X(1,IPH).T..PALSE.)
DO 120 L =1,|
B=T(L) - C (I, 2)*Y (L,IPH)
RESIDO = RBSIIO + B**2
COMTIMOE
TEST FOR COMVERGEMCE

```
```

 RESIDU = DSQRT(RBSIDU)
 B=C(I, 2)
 IF (B.LT.1.DO) B = 1.DO
 IF (RESIDU.IE.B*ERRBND+ERRC) GO IC 130
 C
\#RITE (LOUT,6010) R,RESIDO
6010 FORMAT (5X,4HK=,I4,5X,9H RBSIDU =,1FD15.5.
1 36\& - ** COHPUTBD VALUE REJECTED ***)
GO TO 300
C
130 WBITE(LOUT,6020)R,RESIDU
6020 PORGAT(5X.4HK=.I4.5X,9H RBSIDU =.1PD15.5.
2 36H *** CCMPOTED VALOE ACCEFTED ***)
SOH = SOM + RESIDU**2
IF (I.EQ.PT) K =K+1
200 CONTIMUE
C
300 NCONV = K-1
IF (R.EQ.1) RETURN
C
BRRC = DSQRT (ERRC**2+SUM)
RETOEA
EMD

```
```

 SUEFCUTINE ECHCIC(Q,F,G,NCONV,P,S)
 IATEGEF C,H,G,NCCNV,F,S
    ```
110ET = G- ..... HT
IF (E.GT.ET) \(P=E T\)
\(S=(C-H T) / P\)
IF (S.GE.2) ..... RETUFN
\(E=(C-B T) / 2\)
\(\leq=(0-H T) / P\)

FETOFN

ENC
```

 SUEROUTINE RANDCM(N,Q,F,H,X,ISEED)
 INTEGER N,Q,P,H,ISEED
 [CUBIE PRECISION \(N.Q)
 C
C RANDCM COMPOTES AND STORES ASECOENCE CF f*N PSEODO-
C FANDCM INTEGERS (VALUE BETMEEN O AND 2147483647) IN
C CCLUMNS H+1 THBOUGH H+P OF THE N-EY-Q ARRAY X.
C
INIEGER I,L,LPH
DC 130L = l,P
LFH = L+H
DO 120 I = 1.N
ISBBD = ISFFD*З14159269 + 453806245
C
C THE STATEHBNT NUHBBR 110 IS TG PREVENT UNWANTED,
C
110 IF (ISEED.IT.O) ISBBD = ISEED + 2147483647 +1
X(I,LPH) = ISEED
120 CONTINUE
C
130 CCNTINUB
RETUFN
END

```
```

INTEGER MDIA, N, H, MP3, NO, WV, IRRR
DOUBLB PRECISIOM C(NDIM,MP3), O(MDIA,MO), V(NDIM,NV), MCHEPS
CALCULATE the simgolar valur decomposition of A BANDED upper
trialgolar MATRIX
YRITTBN BY: B. L. overtor
COMPUTER SCIEMCE DBPARTMEMT
STAMFORD OMIVERSITY
Jamo^RY 1976
LAST UPDATB: Javoary 1976
THIS ROUTIME COMPUTES TEE SIMGULAR VALUE DECOMPOSITIONOFA REAL
N*N matrix A, I. E. IT COMputes MATRICES 0, s and V SUCH TEAT
A = 0 * s * VT
MHERE
u IS AN m*⿴matrix amd UT * 0 = I, (UT = TRAUSPOSB
OF J.
V IS AU\#*M MATRIX ABD VT *V= I, (VT = TRAMSPOSE
OFV).
avd S IS AN 乡*\# DIAGOUAL natrix.
THE CALCULATION IS PERPORard I\# two STEPS:
1. rbduce the banded UPPER triamgolar matrim to AU UPPbR
BIDIAGONAL hatrix osimg giveMS trayspormations. THIS IS
DOME BY SOBROUTIME BIBAID.
THE AETHOD USBD IS SIMILAR TO THE METHOD OSED FOR
tridIAgonalizimga SyHabteic bayded matrix, DESCRIBED IN
H. ROTISHAOSER,OM JACOBI HOTATIOM PATTBRYS, PROC. OF SYMP.
I| APPLIED Bata., VOL.XV, ExpErineytal arita., HIGH SPBBD
COMpOTIMG, AED Math. (1963). FOR PortaEz DBTAILS SEE
COBaBMTS AT bBGIM|IMG of THB SUBROUTINE.
2. DIAGORALIZB tab bidiagomal maraix to OBTAIU THE SImgular
VALUBS. THIS IS DOIE BY SUBROUTIME SVDBI.
TEE hBTHOD USED IS A variayt OF THE QR Algoritar.
DESCRIBED IM: GOLUB AUD REIMSCH,SIMGOLAR VALUE DBCOMPOSITION
AvD LBAST SQUARES SOLOTIO\&, MOMER. BATH. 14, 403-420(1970),
SECTIOM1.3.

```
TEE ROUTIME IS I: DOUBLE PRECISIO\#
THE SPEED OP THIS ROUTIME COULD BB IMPROVED BY I日PLEMENTIMG
                    SVDBI, \(⿴ 囗 十\) ITE DROTAT
THE FORMAL PARAMETERS ABE:
    NDIM - TEB quartity USED TO DECLARE The FIRST diamsion OF TEE
        ARRAYS C,O.V (MDIG .GE.V)
    - - TEE ORDER of THE BAUDBD opper triaygular MATRIX A
    M - THE UUMBBR OF SUPBrDIAgonals In TEB MATRIX A:
                        \(\mathbf{A}(\mathbf{I}, \mathbf{J})=\mathbf{O}\) FOR J .GT. I+B AID J .LT. I
mp3 - THE Homber of COLUMUS IM TRB ARRAY C. MUST BB SET TO a+3.
C - AU \#DIM - hP3 ARRAY MHICE HOLDS ths monzero elemeyts of
        OF A.
        THE DIAGONAL IS STORBD I! TEE FIRST BLBMBNTS OF
        COLUMU 2, TEE yEXT SUPBRDIAGOUAL II THB FIBST U-l
        Eleasers OF COLUMU 3, AUD SO OR UP TO TEB LAST
        yonzero SUPERDIAGOUAL BEIMG STORED I: THB FIRST U-M
        elbarits OF COLUMU \(\boldsymbol{n + 2}\). COLUMUS \(\mathbf{1 A U D} \mathbf{n + 3}\) ARE ARBITRARY.
        thus:
            \(\mathbf{A}(\mathbf{I}, \mathbf{J})=\mathbf{C}(\mathbf{I}, \mathbf{J}-\mathrm{I}+2)\), I.LE. J .LB. I H .
        TEIB Routime returns TEE diagomal of tee matrix \(S\),
        I. B. THE SIMgolar VALUES OF A, in descemdimg
        ORDER, II COLOHIZ 2 OF - THUS the
        simgolar values mill be:
            \(C(1,2)\).GE. \(C(2,2)\).GE. . .GE. \(C(1,2)\)
NU, wi- Ifrzgbr VARIABLES. TEE UUMBBR of COLUMUS In TEE
        ARRAYS \(\boldsymbol{0}\) AUD V. SET \(\mathbf{N O}\) TO IP TEE MATRIX \(\boldsymbol{0}\) IS DESIRED,
        OR SET Mo TO 1I? 0 IS UOT DESIRED.SETMV TO
        IF THE MATRIX VIS DBSIRBD, OR SBT MVTO1 I? V
        IS ROT DESIRED,

        AMD STORED II fis ARRAY 0.

        A\#D STORED I\|THE ARRAY V.
IERR - ERROR PLA6. TEE ERROR CODES RETOBMED HAVE TrE FOLLOMIMG
        asarimgs:
        IBRR = 0: MORMAL RETURM
        IERR \(=2\) : ERBOR - EP3 DOBS UOT BQUAL H+3.
        IERR \(=3: \quad\) ERROR - MU IS UOT SET TO OR 1.
        IERR = 4: ERROR - UV IS UOT SET TO N OR 1.
        IERR = 5: BRROR - IS GREATER THAM IDIM.

\section*{}
            IERR \(=0\)
            IF (HP3.IE. 日t 3) 60 TO 102
            IF (MO.ME.1.AMD. MO.ME.M) GO TO 103
            IF (UU.BQ.l) UITEO =.FALSE.
            IF (NO.BQ.E) MITEU \(=\).TROE.
            IF (WV.HE.1., AMD. MV.IE.E) 60 TO 104
            IF (MV.EQ.1) UITBV = .PALSE.
            IF (MV. BQ.M) UITEV = . TRUE.
            IF (M.GT. UDIH) 60 TO 105
C TURN OPF © IndERFIOQ
C CALL ERRSET \((208,256, \mathbf{- 1}, \mathbf{1}, \mathbf{1}, 0)\)
c BIDIAGOUALIZB

C
C THE SUPERDIAGOMAL COLUEY HUSEBESGIFTEDDORH ORE ELEGEET IE C
C BBPORE CALLIIG SUBROUTIME SVDBI
        M \(\boldsymbol{H}_{1=\mathrm{y}}^{\mathrm{y}}-1\)
        DO 20 I=1. \(\mathbf{1 4} 1\)
            MaI \(=\) M-I
        \(20 \quad C(M \& I+1,3)=C(W H I, 3)\)
            \(C(1,3)=0 . D O\)
C
C DIAGOUALIZB

        RETURU
C
C \({ }^{-}\)SET ERROR FLAGS
    102 IBRR \(=2\)
    RETURU
    103 IBRR = 3
    RETURU
    104 IRRR \(=4\)
        RETURI
    105 IERR = 5
        RETURA
        BUD
```

 SUERCUTINE BIEANL(NDIM,N,M,MP 3,C,NO,NV,MITHO,RITHV,O;V)
 C
    ```

```

C
C
INTEGER NDIM, N, M, MP3. NU, NV
LOGICAL MITHU, MITHV
LCOBIE PRBCISICN C(NDIM,MP3), O(NDIM,NU), V(NDIM,NV)
FEDUCEABANDED UPPER TRIANGULAR MATRIX TC A BICIAGCNAL MATRIX BY GIVEnS TRANSFORMATIONS，PRESERVING TBE SIMGULá VALUES．
MRITTEA BY：M．L．OVEFTCN

```COMpOTER SCIENCE DEFARTAEATSTANFORD UNIVERSITYJANUARY 1976
```

LAST UPDATE： JANUARY 1976
I日E hOOTIME IS IN DOUBLE PRBCISICN
ADDITIOUAL SURBOOTINES REQUIRED：FOTECD AND FOTCOL
this SUBROUTINE COMPOTES TEE MATRICES $\mathbf{0}, \mathbf{J}$ AND V SUCH That
$A=\mathbf{0} * \mathbf{J} * \boldsymbol{\nabla} \mathbf{T}$
WRERE

```U IS AN \(\mathbf{M} \boldsymbol{\sim} \boldsymbol{N}\) Matrix AND UT＊ \(\mathbf{0}=\mathrm{I}\) ，（OI＝TRANSPOSE\(\boldsymbol{\nabla}\) IS AN \(\mathbf{N} * \mathbf{y}\) MATRIX AND \(\mathrm{VT} * \mathrm{~V}=\mathrm{I}\) ，（VT \(\stackrel{\text { OF }}{=} \underset{\text { TRÁNSPOSE }}{\text { TRA }}\)OF \(\nabla\) ）。
    ADD J IS AN N*& UPPER EIDIAGGNAL MATRIX.
TEE nethod USED IS SIMILAR TO TRE METHOD USBD FOR
TBIDIAGOMALIZING A SYMMETRIC EANDED BATEIX. DESCRIBED IN
H. ROTISHAOSER, CN JACCBI ROTATION PATTERNS, PBCC. OF STEP.
IN AFPLIBD MATH., VOL.又V, EXPERIMENTAL AEITH.. HIGH SPEED
CC#POTI&G, AND MATH. (1963).
TGE PORMAL PARAMETEES ARE:
    IDIM - THE QUANTITY USED TO DECIARE TAE FIRST DIMENSICN OF THE
        ARRAY C (NDIM .GE. N)
    | - THE ORDER OF THE RAIDED UPPER TRIANGULAR MATRIX A
    | - TEE vonber OF SUPERDIAGONALS IN TEE MATRIX A:
        M(I,J)=0 FOR J .GI. I+M AND J .IT. I
    mp3 - THE nogber of COLUMNS IN the ARRAY C. BUST BE SET TOM+3.
```

```
        C - AN NDI| * HP3 ARRAY WhICH HCLES THE NCNZERO ELEAPATS OF
                OF A.
                        TAB DIAGONAL IS STORED IN TRE FIRST NELEMENTS OF
                        COLUHN 2, T日E NEXT SUPERDIAGCNAL IN THE PIRST N-l
                        ELBMBNTS CP COLUHN 3, AND SO CNOF TO THE LAST
                HCNZERO SUPERDIAGONAL BBIN6 STORED INTHE FIRST N-H
                BLBHBNTS OF COLUHN M+2. CCLOMNS 1 AND M+3 ARE ARBITRARY.
                THUS:
                    A(I,J)=C (I,J-I+2), I .LE.J .IE.I+M.
                THE ROUTINE RETURNS TEE EIDIAGCMAI MatrIX J WITH THE
                    DIAGONAL IN THE FIRST N ELEMEMIS OF CCLUMN 2 OF C AND
                    THE SUPERDIAGONAL IN TRB FIRST N-l ELBWENTS CP
                        COLUMN 3 OF C.
        NO,NT- INTEGER VARIABLBS. TGE NOMBEB OF COLOMNS IN THE
            ARRAYS 0 AND V. SBT MO TO N IF UITHU = .TROE..OR SET
            NO TO 1 CTHEENISE. SIHILARLY SET NW TC N OR 1.
```



```
            THE HATRIX 0 IS COHPUTBD AMD STORED IN THE ARRAY 0.
            IP |ITHV = .TROE., THEN THE MATHIXVIS COHPUTED AND
            STORED IN THE ARRAY V.
        0 - REAL NDIH * NO ARRAY.
            V - REAL NDIH * NV ARRAY.
    INTEGER NH2,I,J,R,JO,JOPF,KK
C
C
C INITIALIZE U,V
    IV (.NOT. MITHD) GO TO 81
    DC }80\mathrm{ I=l,N
            DO 70 J=1,|
                                O(I,J)=0.DO
            O(I,I)=1.DO
        CONTINUE
    81 COMTIMOE
    IF (.HOT. MITHV) GO TO 101
    DO 100 I=1.N
            DO 90 J=1.|
                V(I,J)=0.DO
            V(I,I)=l.DO
            CONTINUB
    100
101 CCNTINUB
C
C HANDLB DBGBNBBATB CASE
    IV (B.LT.2.OR.M.IT.3) ERTURM
        NH2=N-2
    ZEEO MORRIMG SPACE ON LEFT AND RIGHT SIDES OF C
    DC 120I=1,#
                C(I, 1)=0.DO
                C(I,HP3)=0.DO
120
        COMTIMOB
C
C PASS DOWH THE RONS OF A
```

```
    DC 400 I=1,NM2
C LOOK AT TXE ELEHENTS OUTSIDE T日E BILIAGONAL PART
C POR K PROH M STEP -1 UNTIL 2...
                DO 300 KK=2,M
                    K=M+2-KK
                        THE POLLOUING LOOP PIRST ANAIHILATES THE CHOSEN ELEMENT
                        BY A COLOMN ROTATION UITH JOFF=K. THIS CREATES A NEW
                BLBHBNT TO BE ZEROED BY A BO# BOTATICN WHICE CREATES A
                                NBU ORE TO BE ZEROED EY A COLONN ROTATION HITH JOFF=M+1
                                AND SO ON UNTIL THE Blement IS CHASED OFF THE Matrix.
                                J0=I+K
                JOPF=R
                IF (JO.GT.N) GO TO 201
                DO 200 J=J0,N,M
                    ROTATE COLO&NS TO ANNIHILATE ELEMBNT
                    CALL ROTCOL (NDIM,N,M, BP3,C,NO,NV,WITHD,NITHV,O,V
                    .J,JOFF)
                    JOFF=M+1
                    ELEMENT CREATED BELCN DIAGONAL - ZERO IT AND
                    CREATE ANOTNER ABOVE EY GOTATIRG RCOS
                                    CALL ROTRON(NDIM,N,E,MP3,C,NO,ND,DITHO,HITHV,O,V
    2
200
201
300
400
    2
                    ,J)
                    CONTINUE
                CONTINUE
                CONTINUE
        CONTINUE
            FETUFN
    END
```

SUERCUTINE FOTBOR(NDIM, Y, M, MP3,C,NO,NV,HITHO,HITHV,O,V,I)
C APEIY TO HATRIX A ON THE LBPT SIDE AGIVENS transformation
C TO ROTATE ROMS I AND I-l SUCH TEAT TEE SOBCIAGCNAL ELEMENT A(I, I-1)
c IS ANNIHILATED
C RECALL THAT A IS STORED IN C UITH

INTEGER NDIM,N,M, MP3,NO,NT,I
DCOBLE PRECISION C (NDIM,MP3), O (HDIM,NO), V (NDIM,NV)
LCGICAL MITHO,WITHV
IATEGRR K,MP1
LCOBLB PRECISION X, Y,Z,COST,SINT,TEME,S,DAES,DSQRT

$$
X=C(I-1,2)
$$

$$
Y=C(I, 1)
$$

C If Y IS ZERO THEN THERE IS NOTHING TC DO
IF (Y.EQ.O.DO) RETURN
C FEEPORM $\mathbf{Z}=\operatorname{SQRT}(\mathbf{X} \boldsymbol{X} \mathbf{X}+\mathbf{Y} \boldsymbol{Y})$; $\operatorname{COSTT}=\mathbf{X} / \mathbf{Z}$; SIHT=Y/Z WITH SCALING TO
C PREVEIT UADEBFIOH
$s=\operatorname{DAES}(\mathrm{X})+\operatorname{DABS}(\mathrm{X})$
CCST $=1 / 5$
SINT=1/S
Z=DSQRT (COST*COST+SIRT*SIRT)
CCST $=\operatorname{COST} / 2$
SIHT=SIRT/Z
C (I-1,2) $=2 * S$
$C(I, 1)=0 . D 0$
ME1= $\mathrm{H}+1$
DO $100 \mathrm{~K}=1, \mathrm{MP} 1$
IP(I-1+K.GT.N) GO TO 100
TEMP $=C(I-1, K+2)$
$\mathrm{C}(\mathrm{I}-1, \mathrm{~K}+2)=\operatorname{COST} * \mathrm{TEMP}+\operatorname{SINT} * \mathrm{C}(\mathrm{I}, \mathrm{K}+1)$ $C(I, K+1)=-S I M T * T E M P+\operatorname{CCST} * C(I, K+1)$
100 CCNTINUE
oplate d (accomolate trahspormations) - bust upcate o on the
RIGHT BECAUSE 0 IS ganted. NOT $\mathbf{0}$ TRANSFOSEC
IF (.MOT. UITHU) RETURN
DC $200 \mathrm{k}=\mathbf{1 , n}$
TEMP $=0(\mathrm{~K}, \mathrm{I}-1)$
$0(K, I-1)=\operatorname{COST} * T B M P+S I R T * O(R, I)$
$0(R, I)=-S I M T * T E M P+\operatorname{COST} \#(R, I)$
200 CONTINUE
betufn
END
C

SUERCUTINE ROTCOI (NDIM,N,M,MP3,C,NU,NV, HITHO, NITHV, D, V, J, JOPP)

```
C FCTATE COLUMNS J AND J-1 SUCH THAT THE ELEMENT A(J-JOFP,J) (IN THE
C OPFER TRIANGLE) IS ANNIHILATED.
C
C RECALL THAT A IS STORED IN C WITH
C
C
    A(I,J)=C(I,J-I+2) I .LE. J .LE.I+M
    INTEGER NDIM,N,N,MP3,NO,NV,J,JOFF
    DOUBLE PRECISION C(NDIM,HP3),0 (NDIM,NO) ,V(NDIH,NV)
    LCGICAL WITHO,WITHV
    INTEGER I,IFR,K,JMIE1,JMIP2,JK1,JK2
    DCUBLB PRECISION X,Y,Z,COST,SINT,TEMP,S,CABS,DSQBT
C
    I=J-JOFF
    JBIP1=J-I+1
    JMIP2=J-I+2
    |=C(I,JHIP1)
    Y=C(I,JMIP2)
C IF Y IS ZERO THERE IS NOTHING TO CO
    IF(Y.EQ.O.DO) RETURN
    FERFORH Z=SQRT (X*X+Y*Y): COSTT=X/Z; SINT=Y/Z UITH SCALING TO
    PREVENT ONDERPLON
    S=CAES (X) +DABS (Y)
    CCST=X/S
    SINT=Y/S
    Z=DSORT(COST*COST+SINT*SINT)
    CCST=COST/Z
    SINT=SINT/Z
    C(I,JMIP1)=Z*S
    C(I,JMIP2) = O.DO
    DO 100 K=1,JOPF
                JK1=JBIP1-K
                JK2=JMIP2-K
                IPK=I+K
                TEMP=C (IPK,JK 1)
                C(IPK,JK1)=COST*TEMP + SINT*C(IEK,JK2)
                C(IPR,JK2) =-SINT*TEMP + COST*C(IPR,JK2)
    100
                        CONTINUE
C
C
(ACCUMOLAIE TAANSFORHATICNS)
    MOST UPDATE V ON T日E RIGHT SINCE V IS DESIRED, NOT V TRANSPOSED
    IP (.NOT. WITHV) RETURN
    DO 200 K=1.N
                TBHP=V (K,J-1)
                \nabla(R,J-1)=COST*TEMP + SINT*V (R,J)
                \nabla(R,J)=-SINT*TEMP + COST*V(R,J)
    200 CCuTINOE
    EETOFN
C
C****************################ BND CP BIEAND
```

END

```
INTEGER NDIM. N.NO, NV
```

INTEGER NDIM. N.NO, NV
dCUBLE PRECISICN S(N), T(N), U(NIIM,NU), V(NDIM,NV), ETA
dCUBLE PRECISICN S(N), T(N), U(NIIM,NU), V(NDIM,NV), ETA
LCGICAL WITHO, WITHV

```
LCGICAL WITHO, WITHV
```

THIS IS ESSENTIALLY THE SECOND HALF CF SOEfCOTINE DSVD,
A SINGULAR VALUE LECCMPOSITION ROUTINE IN TEE CSD LIERBRY.
TEE EOUTINE IS IN DCUBLE PRECISION.
CSVD ORIGINAL FRCGRAHHER: R. C. SINGLETCN
DSVD 360 VERSION BY: 3. G. LEWIS
ISVD LAST REVISICN: JANUARY 1974
SVCBI EXTRACTED EY: H. L. Overtcn
SVCBI EXTRACTED IN: AUGOSI 1975
SVCBI LAST REVISICN: SEFTEABER 1975

ALDITIONAL SUBFOOTINE NEEDED: DECTAT

THIS SUBROUTINE CCMFOTES TRE SINGULAR VALUE DECCMPOSITION CF A REAL BIDIAGONAL $N * N$ HATRIX 3, I.E. IT COHPUTES Matrices P, S AND Q SUCh that

$$
J=F * S * Q T \text {. }
$$

GBEFE
P IS AN \&*॥ MateIx AND FT * $\mathrm{P}=\mathrm{I}$, ($\mathrm{PT}=\mathrm{TRANSPOSE}$
OF P) •
Q IS AN $\mathbb{N * N}$ HATRIX AND $Q T * Q=I, \quad(Q T=$ TRANSPOSE
OFQ).
AND S IS AN $N^{*} N$ DIAGCNAL MATFIX.
the method osed is A Variant cF ? he Qr algorithm. REFERENCE: GOLUB AND BEIRSCH,SINGOLAR VALUE DECOHPOSITION AND LEAST SQUARES SOLUTION, NOMEF. MATH. 14, 403-420 (1970). SECTION 1.3.

DESCRIPTION OF PARAHBTBRS:
 I.E., TAE SINGULAR VALUES CP J IN DESCENDING ORDER.
$\mathbf{T}=$ REAL $\mathbf{N} \boldsymbol{*} \mathbf{1}$ ARRAY. ON ENTRY \mathbf{T} CONTAINS THE SUPBRDIAGCNAL OP J IN ELEMENTS 2,.....N; THE FIRST ELEMENT IS ARBITRARY. THE ARRAY IS DESTROYED BY THE fCOTINE.
$\mathrm{N}=$ INTEGER VARIAELE. ter nombef OF flemenis IN ARRAYS S AND T, I.E. THE ORDER OF THE BIDIAGONAL MATRIX J.

```
    efs = O.DO
```

 efs = O.DO
 DO 50 K=1,N
 50 EFS = DHAX1(BPS,IABS(S (K)) + LABS(T (R)))
TCLBEANCB FOR NEGIIGIbIE ELBhents
100 BPS = BPS * ETA
ta\& REST OF THE p\&OgbaM IS TEE SECOND GAlpOF DSVD
QR DIAGO|ALIZATICM
R = \
TEST FORSPLIT
230 L = K
240 I? (DABS(T(t)) .LE. EPS) GOTO 290
I = L - 1
IF (DABS(S(L)) .GT. BPS) GOTO 240
CAmCELlation
CS = O.ODO
SB =1.000
L1 = L
L=L+1
DO 280 I =I.\&
P=SN * T(1)
T(I) = | | T (1)
IF (DABS(F) .LE. EPS) GOTO 290

```
```

 H=S(1)
 S(X) = W
 CS = H/W
 SN = - F / W
 IF (OITHO) CALI DBOTAT (O(1,L1),0(1,I).CS, SN, N)
 280
 CONTINUE
 C
C TEST FOR CCNVERGENCE
290 \ = S(K)
IF (L .EQ. K) GOTC }36
C
OFIGIN SHIFT
x = S (L)
Y = S(K-1)
G=T(K-1)
H}=\textrm{T}(\textrm{K}
F=((Y-G)* (Y + W) +(G - H)*(G + H)) / (2.ODO*H*Y)
G = DSQRT (F*F + 1.0DO)
IF (F.IT. O.ODO) G = -G
F}=(\mathbf{X}-\mathbf{X})*(X+W)+(Y/(F+G)-H)*H)/X,
C
C QF STEP
CS = 1.0D0
SN = 1.ODO
L 1 = L + 1
DC 350 I = I1,R
G = I (I)
Y = S(I)
H=SN*G
G = CS * G
| = DSQRT (目:日 + F*F)
T (I-l) = |
CS = F/|
SN = 目 / N
F=X*CS + G*SN
G = G*CS - X*SN
H=Y * SN
I=I*CS
IP (MITRV) CALL DROTAT (V (1,I-1) | V(1,I), CS,SN,N)
| = DSQRT (目\#\#+P*F)
S (I-1) = \
CS = P/|
SW = H/,
P=CS*G + SN*Y
X = CS*Y - SN*G
I? (HITBO) CALL DRCTAT (O(1.I-1).U(1.I),CS, SN, N)
CONTINUE
T(L)=O.ODO
T(K) = P
-S (R) = X
GCTO 230
C
CCNVERGENCE
36C IP(M.GE.O.ODO)GOTO 380
S(K) = - |
IF (.HOT.WITHV) GOTO 380
DO 370 3 = 1.|
3 7 0
\nabla(J,K)=-\nabla(J,K)

```
        \(K=K-1\)
    IF (K . NE. O) GO TO 230
    SORT SINGULAR VALUES
    DO \(450 \mathrm{~K}=1, N\)
        \(\mathbf{G}=-1, \mathrm{ODO}\)
        DO \(390 \mathrm{I}=\mathbf{R}, \mathbf{N}\)
            IF (S (I).IT. G) GOTO 390
        \(\mathbf{G}=\mathbf{S}(\mathbf{I})\)
        \(J=I\)
        CONTINUE
        IF (3.EQ.K) GOTO 450
        \(\mathbf{S}(\boldsymbol{J})=S(K)\)
        \(S(K)=\mathbf{G}\)
        IF (.NOT. WITRV) GOTO 410
        DO \(400 \mathrm{I}=1, \mathrm{~N}\)
            \(Q=\nabla(I, J)\)
            \(\boldsymbol{V}(I, J)=V(I, K)\)
            \(\nabla(I, K)=Q\)
        IF (.HOT.WITHO) GOTO 430
        DC \(420 \mathrm{I}=\mathrm{l}, \mathrm{N}\)
        \(Q=O(I, J)\)
        \(0(I, J)=0(I, K)\)
        \(0(I, K)=Q\)
        COHTIMUE
        CCRTINOE
C

\section*{FETOFN}

END
```

 SUBROUTINE DROTAT (X, Y, CS, SN, N)
 INTEGER
 N
 CODBIE PRECISICN CS, SN, X(N),Y(N)
 C
C
DCUBIE PRECISICN XX
INTEGER J
C
C
DC 10 J = l,N
XX=X(J)
X(J) = XX*CS + Y(J)*SN
10 Y(J)=I(J)*CS - XX*SN
FETOFN
C
C******************************* BND CF SVIBI ****************************
C
C*\# END OF SVEUTM ***\#**********************
C
END

```
```

C +------------------------
C + SAMFLE MAIN FFOGRAM +
C +------------------------
C fFCPEF LENGTHS OF Matfices :
c
D (C), X(M*Q),Y(N*G)
C
ICOBIE PRECISICN D(20),X(8000),Y(2000),FPS
INTEGER I,IECOLE,IORTHG,H,MMAX,B,N,G,FIKIT,C
Extefnal AX
C
CCMMCN A(3000),IINDEX(3000) ,JINDEX(3000),NLATA
LCUBLE PRECISIGN A
INTEGEF IINDEX,JINDEX,NDATA
INTEGER R,KF1,RP5,RPJ,NCARD,MIATA
C
C ICUT IS CUTPOT UNIT NOMBER
C mCEEFS IS Machine PRECISICN
C
Ifteger LOUT
DCOBIE PRECISICN ECAEPS
IATA LOOT/6/
[ATA MCEEFS/2.22L-16/
C
C nCari Is nombef of rata CARDS to Ee REAd
O1C FCFMAT(3I5)
C
K = 0
CC1C I = 1,NCARD
KF1 = K+1
RE5 = R+5
READ (5,5020) (IINDEX (L) ,JINDEX (I),A(I),L=RE1,RP5)
5020 FOBMAT(5(2I3,F10.6))
K = K+5
10 CCNTINUE
C
C Nlata IS nombeg CF ycy-zebc elemfris IN A
C IINDEX = O SIGNIFIES END OP DATA INEOT
C
*IATM = K
K = K-5
DC 15 J = 1.5
KEJ = K+J
IF (IINDEX(RPJ).GI.O) GO TO 15
N[ATM = KFJ-1
GC TO 17
15 CCNTINUE
C
17 CCNTINUE
C = 10
EINIT = 2
G = 9
MPAX = 2000
EES = 1.D-3
H=0
ICFTGG = 0

```
```

 WFITE(LCUT,6010)M,N,Q,FINIT,G,MMAX,EPS,H,IOFTHG
 6010 FCEMAT(24H INITIAI EARAMETEFS ..., EX.
 1 4HM=.I4,5X,4HN=.I4,5X,4HQ =.I4,5X.
 2 8H PINIT =,I4,5X,4HGG=,I4/5X,7H MMAX=,I5,5X,
 3 6H EPS =,1ED10.3.5X,4H H=,I4,5X,9H IORTHG=.I4)
    ```
C
C
 1 LOUT,ECEEPS,IECCDE)
C
WEITE (LOUT, 6020)
602C FCFHAT (35H ***** USING ELOCK LANC2CS *****)
WEITE (LOUT, 6030) H, IECODE
6030 FCFMAT (8H \(* * \mathbf{H}=, \mathbf{I} 4,13 \mathbf{H} * * \quad\) IECODE \(=\), I4)
IF (H.EC.O) STOP
WEITE (LOUT, 6040) ([ (I), I=1, H)
6040 FCFMAT (20H SINGULAR VALUES .../5H** .6(1PED25.15/5X)) STCP
ENE
```

 SIEECUTINE AX(M,N,P,U,V,CRIG)
 INTEGER M.N.P
 LCUBIE PBECISICN U(N,P),V(N,P)
 LCCICAL OFIG
 DC 120 K = l,P
 DC 110 L = 1,N
 \nabla(I,K) = O.LO
 CCNTINUB
 C
120 CCNTINUE
C
CC 140 L = 1.NLATA
I = IINDEX(I)
J = JINDEX(I)
DC 130 K = l, P
V(J,K)=V(J,K) + A(L)*O(I,K)
CCNTINUE
140CCNTINOE

```

FETUEN
ENT

\title{
A BL_OCK LANCZOS METHOD TO COMPUTE THE SINGULAR VALUES AND \\ CORRESPONDING SINGULAR VECTORS OF A MATRIX \\ Gene H. Golub, Franklin T. Luk, and Michael L. Overton \({ }^{*}\) Stanford University
}
```

Key Words and Phrases: Block Lanczos method, singular values, singular
vectors, large sparse matrix.
CR Categories: 5.14

```
Language: FORTRAN

Description: This algorithm is complement to [1], where we describe the theory and development of the block Lanczos algorithm.

\section*{References:}
[I] Golub, G., Luk, F., and Over-ton, M., "A Block Lanczos Method to Compute the Singular Values and Corresponding Singular Vectors of a Matrix," submitted to ACM Trans. Math. Software.

Algorithm

\footnotetext{
Research supported in part under Army Research Grant DAHCO4-75-G-0195 and in part under National Science Foundation Grant MSC75-13497-A01.
}```


[^0]:    *Research supported in part under Army Research Grant DAHCO4-75-G-0195 and in part under National Science Foundation Grant MCS75-13497-A01.

[^1]:    * The Krylov space generated by $A$ and $X$ is the space spanned by $\left\{X, A X, A^{2} X, A^{3} X \ldots\right\}$.

