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ABSTRACT

We present a block Lanczos method to compute the largest singular

values and corresponding left and right singular vectors of a large

sparse matrix. Our algorithm does not transform the matrix A but

accesses it only through a user-supplied routine which computes AX

tor A X for a given matrix X.

* This paper also includes a thorough discussion of the various ways

to compute the singular value decomposition  of a banded upper triangular

matrix; this problem arises as a subproblem to be solved during the

block Lanczos procedure.
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/ - transformations to A but matrix products AX or AtX for a given

matrix X of much smaller dimension than A can be performed very

efficiently. Thus the usual algorithm for computing singular values

by transforming A (Golub and Reinsch [61) is not practical for large

sparse matrices. We propose a block Lanczos algorithm for solving such

problems. Our algorithm does not transform A. It accesses A only

through a user-supplied routine that cmputes AX or AtX for a

given matrix X.

1. Introduction

In many applications, we wish to solve the following problem:

Compute accurate approximations to the g largest singular values

and corresponding left and right singular vectors of a large sparse

mXn real matrix A, where g is much less than both m and n.

Problems of this type frequently occur in factor analysis, regression,

and image processing (see Golub and Luk [5]).

The matrix A is too large to be stored in core as an m x n

array, but since it is sparse it can be stored in packed form, e.g.

by storing only the row index, column index and value of each non-zero

element. When A is stored in this way it is not practical to apply



2. Algorithm

We restate our problem: we have an mX n matrix A, where m > n,-

and we wish to compute the g largest singular values and corresponding

vectors of A, assuming that the h (h<g) largest singular values and

corresponding vectors have already been computed to some known accuracy.
o A

We discuss an idea of Lanczos [7]; the matrix
( )At

has for
0

its non-zero eigenvalues the positive singular values of A, each

appearing with both a positive and a negative sign. If ti and xi are

the left and right singular vectors corresponding to the positive singu-

lar value 0.1
of A, then (:) and (-:) will be the eigenvectors

4 -1

corresponding to the eigenvalues o. and -CT.> resp., of .
1 1

Our problem can therefore be regarded as computing  the g largest

eigenvalues and eigenvectors of f when the h largest eigen-

values and eigenvectors are known to some good accuracy.

We shall use the Euclidean norm for vectors and the Frobenius norm

for matrices, viz.

11511  = II?& = (jl xf2
l -

for 5 = (xlj~~~9xnP Y

Ib’II  = IbIIF =( jl jl aFjj’2 for A = (aij) .

2.1 Restricting A to a Subspace of Interest

Let o1 2 o2 > l me 2 oh- be the h largest computed singular values

of A and let X and Y
0

o be matrices whose columns are the computed

left and right singular vectors, resp., such that XtoXo = I and
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YiYo = I. We desire accurate approximations to the (g-h) largest

singular values and vectors of A, defined by A = (I X Xt?A(I- 0 0 Y Yt)- 0 0

so that the left singular vectors of 2 are orthogonal to the columns

of x0 and the right singular vectors of A are orthogonal to the

columns of Yo. This restriction is necessary because our algorithm,

if applied to A without taking the already computed singular vectors

into account, will recompute the same largest singular values of A.

We can exploit Lanczosfs idea and examine We can show

that is the restriction of to a subspace  that is

orthogonal to the space spanned by the columns of .

Let Xl and Yl be the matrices consisting of the orthonormal

vectors that are orthogonal to the subspace spanned by the columns of

xO
and Yo, res'p. . Define

Q=1 ( xo xo xl

7r >
l

2 Y. -Y. Yl

Note

QtQ=$(*I 21 ,,)=I .

Consider

B = Qt Q

where

3



A 0
c =

0 $(Y~~x~  + i&,

YtAtX + XtAY0 0 0 0 YtAtX -0 0 XzAYo

-YtAtX + -0 0
XtAY
0 0

-YtAtX
0 0

XtAY
0 0

and

Note

and

/ 0

i

0

YtAtXl o + tAY
FL 0

0

0

YtAtXl o - X;AYo

YtAtX1

-YEAt,0 1

;(Y;At% + <AYl) = 1
-f--l2

Since B is similar to A, they have equal eigenvalues. By the

perturbation theory for symmetric matrices [lb, Chap. 21, the eigen-

values of C differ from those of B (and hence A) by amounts that

are bounded by Ilnll.

Assume
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If all the l~ill and lIzill were small, then llnll would be

small also. For example, if

and

then

lljill = ‘i 9

and

thus the eigenvalues of C will differ from those of B, and hence

A, by quantities that are less in modulus than e.

We see, therefore, that the (g-h) largest eigenvalues of

approximate the (h+l),(h+2),...,g eigenvalues of

by errors less than e.

2.2 Block Bidiagonalization

Let us describe a block Lanczos algorithm that computes a block

bidiagonal matrix. We shall call this matrix J ' , where s is( >

the number of blocks and each block is of order p. Then J '( > has

order ps (where we assume Ps < n). We shall show in section 2.3

that the p largest singular value of J '( > are usually good approxi-

mations to those of A.

t
We start with an arbitrary n x p matrix Q, such that QlQ, = I,

and perform a &R factorization of the product ZQl:
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plAl := $Q, ,

where Pl is an m x p matrix such that Pip1 = I, and Al is a

p x p upper triangular matrix. Our algorithm continues with

and

QiBi-l := ~tPi-l - Qi-l'~-l ,

i

i = 2,3 ,..., s ,

PiAi := ~Qi - Pi_lB~_l ,

'where QiBi 1 and PiAi are the QR factorizations of the respective

right hand sides, i.e.

Qi
is an n x p matrix such that QiQi = I ,

'i
t

is an rnx p matrix such that PiPi = I ,

and both Biml and Ai are p x p upper triangular matrices.

Thus  ’

t
Al Bl

ji(Ql,Q2,-,Qs) = (5P29-~,pB)
A2

and t
pl( \t
p2 I.

-
..

l iPt
S

0

t
Al Bl

3i(QQ,,.-,Q,) =
A2

0

n
.

.
.

.
A

l t

s-l Bs

t 0
B2

t 0
B2

.
A ' Bts-l s-l

AS

’

EJs ,( )



p r o v i d e d  t h a t P:Pi = 0 for if j. In order to show this we first

note that

t
p2.
.
.

Pt
S

0

0

0

0
.
..

0 0

t
&l b-t

i \

0 Q;

P; 0

p2
. ..Ps 0 0

0 0.*.
&1&2

0

,P;
.
..

0

Pt
S

0

..p

( )
So our algorithm to generate the block bidiagonalmatrix J ' from fi

is equivalent to the Ianczos algorithm (Underwood [I..z]) to generate a

block tridiagonal matrix from the symmetric matrix
l

From

[l2, pp. 4‘i'-511,  it follows that

orthonormalmatrices. Therefore (Pi] and [Q.} are two sequences of

orthonormal matrices.

The restricted matrix A is not readily available. We wish
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to work with the original matrix A. Consider

all belong to theand the fact that
(g)ck~ (4",)(z)

Krylov space* generated by (it i) and (;)* We

may replace A by A in our algorithm if we ort

l<i<s, with respect to X- - o and the Qj%, 2

to Yo:

conclude that we

hogonalize the Pi's,

5 j 5 s, with respect

Algorithm

t
Start with an arbitrary n x p matrix Ql such that QIQl = I.

Compute

$1 := A&1

and h
pl := (I-xox;);l l

Factorize Pl such that

*
The Krylov space generated by A and X is the space spanned by

{x,Ax,A~x,A~x...].



PIAl := $1,
t

where PIPl = I and Al = CA? .

For i = 2,3,...,s

(1) Compute

and

Factorize Qi such that

QiBi-l := Qi , where QiQi = I and Bil= 17) .

(2) Compute

Gi := AQi - Pi-lB;-l

and Gi := (I-xox~)~i l

Factorize Pi such that

PiAi := 9, , where P~Pi = I and Ai = {A) l

2-3 Error Bounds

We give a theorem to show that the singular values of J '( > are

usually accurate approximations to those of i.

Theorem

Let "12 D2 > l em > ~~20 be the singular values of the mx n_

( 1 ( >restricted matrix x and let al' 2 02' > l .* 20
( 1
s > 0 be the

Ps -

singular values of the psx ps matrix J( >S generated by the block

t
Lanczos algorithm. Let 7 be the smallest singular value of QIVl,
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i

where Ql is an n x p starting matrix for the Lanczos algorithm

t
such that QIQl = I and Vl is an n x p matrix consisting of the

right singular vectors corresponding to the p largest singular values

of Ii. We assume 7 > 0 and we see
t

T 5 1 since VIVl = I. Then

for k = 1,2,...,p, we obtain

where

2
ek = bl+"k>

-ban2 e

T2 (
'+r, '

2s-1I'rk >

9 = cos-l 7 >

and T2s l is the (2s~l)-th Chebyshev polynomial of the first kind.

Proof

Since the largest singular values of a matrix B are minus the

smallest eigenvalues of , we obtain the desired result by

applying Underwood's theorem [E,pg. 371 to
l

We consider an example that shows how a proper choice of the block

( >
size p reduces the error bounds, and how uis , 15 i 5 p, generally

approximates aiY l-5 i 5 PI well even for a small s.

Let u-1 = 1.0, a2 = 0.9, o3 = 0.5, and? = COS 0.1. Let

ps 5 10. We shall see in section 3 how the available computer storage

places an upper bound on the value ps. If we choose p = 1, s = 10,

then
11



l-0.12tan2 e = ,. = 99 >
.

1.0,0.9
Yl = 2(1. = 0*05 Y

l-i.Yl
I’rl E 1.105 ,

Tlg(l.105)  I2.8 x Id ,

and 5 2; 2 x99 5
(2.8 x 10~)~

2.5 x 10-5 ;

whereas if p = 2, s = 5, then

1.0
Yl =

- 0.5
1.0 + 1.0 = o*25 '

Y2 =
0.9 - 0.5 & 0 21
0.9 + 1.0 l '

l+r,

I'rl
=%?.&167
0.75 l �

l+r, l 1.21 l

I�r2

=-=1.53 ,
o-79

~~(1.67) 5 lo4 ,

Tg(l.53) L 3.7 x ld ,

and

2 2 x 99 ; 2 0 x 10-6
?=y$J- l

Y

c; "a : 1.4x 10-5 .

We see that for the block method, we can expect a more accurate

12



approximation to 0
1 and we note that o2 is computed to t.he same

accuracy as
o1

when p = 1.

2.4 Reorthogonalization

We have shown that the (Pi] and {Qi) are two sequences of

orthogonal matrices. But the property holds only in exact arithmetic.

In practice, the two sequences lose orthogonality very rapidly due to

cancellation errors in the Lanczos steps:

:= AtPig

< 2<i<s .c - -
Fi := A&i 9 'i,l'~-l )

A remedy is to reorthogonalize Pi(Qi) with respect to Pj(Qj), j < i,

as soon as Pi(Qi> is computed.

The loss of orthogonality does not have adverse effects on the

accuracy of the computed singular values (Paige [8]). Rut their multipli-

cities are questionable because once orthogonality is lost, the Lanczos

method essentially restarts and recomputes the singular values that it

has already computed. Reorthogonalization apparently stabilizes the

Lanczos process but its cost in machine time is high. The cost in

storage may even be prohibitive, for all the (Pj] and {Qj] must

now be stored in core. The Lanczos method without reorthogonalization

allows us to keep only the most recently computed Pi and Qi in

memory and store the others on disk or magnetic tape.

Partial reorthogonalization, i.e. reorthogonalization of Pi(Qi)

with respect to only some of the previously computed Pj's (&j's),

looks promising too. It appears that just reorthogonalizing Pi(Qi)

13



with respect to Pi-1(&i-l)
may reduce the effects of cancellation

errors present in the computation of Pi(Qi> and help preserve

orthogonality at a very low cost in machine time and storage.

We have tacitly assumed that we can carry out the Lanczos iterations

for s steps. Clearly this may not always be the case. We decide

to check the length of each column of Pi(Qi) as soon as it has been

generated in the &R factorization. If a column has a Euclidean

length less than some tolerance, chosen in the program as the square

root of the machine precision, it is set equal to the zero vector. We

thus eliminate the errors caused by normalizing vectors consisting of

numerical roundoffs to unit Euclidean length.

Before a Lanczos iteration begins, our program checks the starting

matrix Ql for columns of all zeros. It first replaces any such

columns with columns of random numbers and then orthonormalizes the re-

sultant matrix. In this way, our program can restart itself even after

linear independence has been lost. Since the work to check for columns

of all zeros is prohibitive, we check for zero singular values computed

in the previous iteration instead, assuming that they are caused only

by columns of all zeros. Since our problem is to compute the few

(usually < 10) largest singular values of a matrix of large order

(usually > lOOO), it is extremely unlikely that a desired singular value

is zero.

2.5 Computation of Singular Values and Vectors of J '( >

We now wish to compute the singular values and vectors of the

ps x ps block bidiagonal matrix J ' :( >

Xb)C(s)y(s)t  = Jb)
l
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In the rest of this section we shall omit the superscript s. from

JS( > and denote its order by t = ps. Since the p x p blocks which

form the block diagonal of J are upper triangular and the p x p

blocks which form the block superdiagonal are lower triangular, we see

that the blocks all fit together to form an upper triangular band

matrix , dense within the band and with bandwidth (number of super-

diagonals) equal to p. The rest of this section treats the problem

of computing the singular values and vectors of an upper triangular

band matrix J. The case where the vectors are not required is also

c,lnsidered since this section may be useful outside the block Lanczos context.

The method consists of two phases. The first phase reduces

J to bidiagonal form by a finite sequence of orthogonal transformations.

The problem of doing this efficiently is the main subject of this

section. The singular values of A are preserved under the trans-

formations. The second phase reduces the bidiagonal form to diagonal

form by a modified version of the QR algorithm. This process is described

in detail in Goiub and Reinsch [ 6] and will not be discussed any further

here. The singular values of J are the final diagonal elements, and

the matrices of left and right singular vectors are the products of

all the left and right transformations jresp.) used in the two phases

of the reduction.

We are left with the first phase, reducing J to bidiagonal form.

The methods of Givens and Householder for reducing a full symmetric

matrix to tridiagonal form preserving eigenvalues are well known and

described for example in Wilkinson [lb]. In order to preserve eigen-

values, the same elementary transformations (either Givens or Householder)

are applied to both the left and right sides of J to reduce it to

15



tridiagonal form. A similar method for reducing a nonsymmetric matrix

to bidiagonal form preserving singular values (but not of course eigenvalues)

is described in Golub and Reinsch [5]. Singular values are preserved

when different elementary transformations are applied to the left and right

sides of A. Golub and Reinsch use Householder transformations, but Givens

transformations could easily be used instead. For the reduction of a full

matrix to bidiagonal or tridiagonal form the method of Householder is about

twice as fast as the method of Givens. However in 1972 Gentleman [3] showed

how "fast Givens" transformations can be implemented. These are also described

in Van Loan [13], and it appears that there is now little difference in the

speed or effectiveness of the two methods.

Reducing a symmetric band matrix to tridiagonal form in a straightforward

manner immediately fills in the zeros off the band. Rutishauser [g] shows how

this may be avoided and the reduction completed while preserving the band

structure, using either Givens or Householder transformations. Here we describe

howto generalize this to the reduction of an upper triangular band matrix to

bidiagonal form (in general a similar process would apply to any nonsymmetric

band matrix).

Recall that a Givens transformation matrix P h,j> is given by

i

PC&J, =l )

3

i 3 -
1 .

. .
1
c d
1

. b
.
1

-d C

1
l

.

.

1

where c2 + d2 = 1 and has the property

that if it is applied to J on the left then the resulting matrix

Jt = &dJ has elements different frcrm J only in rows i and j,

16



with zeros in both rows in those columns where there were zeros in

both before, and, if c and d are chosen appropriately, with its

(i,j) element equal to zero. Let us write J = (yij), J' = (yij).

Then in particular we have

Y& = cy.lk + dy.
Jk

(l<k<t)- -

Y;k = -dyik + cy.
Jk

so 7j, = 0

paid for the

row wherever

if c d = 7ji/~~ The price

annihilation is that a new nonzero element appears in one

there was one already in the other. We say that row j

is rotated against row i by the transformation. Similarly if P(WI

is applied on the right only columns i and j of J are changed with

7!.
1J

= 0 if c and d are chosen correctly.

To describe the reduction process let us suppose that J is an

upper triangular band matrix with order t = 11 and p = 4 superdiagonals.

Then the first thing the algorithm does is to zero r15 by multiplying

J on the right by P(4’5) with c and d chosen correctly, or in

other words by rotating column 5 against column 4. This introduces one

new non-zero element 7;4* This new element is annihilated by multiplying

J' on the left by P(4’5) ' that is by rotating row

This in turn introduces a new non-zero element
7Gg*

formations, one from the left and one from the right,

5 against row 4.

Two more trans-

are now required to

completely "chase the element off the(matrix". At this point the resulting

matrix has the same zero pattern as the original matrix J except that

y15 has been annihilated. Now the process is repeated for y14 and

then for y13, and then the first row has the desired bidiagonal form.

17



Finally, the entire process is repeated for every row until the

matrix becomes bidiaganal. The method is illustrated in Figure 1. Let

us call this method Band Givens I.

Reducing the matrix to bidiagonal form in this way requires approxi-

mately 4pt2 multiplications using ordinary Givens transformations, or

2pt2 using "fast Givens", assuming 1 << p << t. This campares with

a count of approximately 34t /3 multiplications required to do the

reduction by the standard Golub-Reinsch algorithm using Householder

transformations and ignoring the band structure, filling in the zeros off

the band. This is of course a big savings if p << t as assumed, and

furthermore only pt storage locations are required to store the band

matrix while t2 storage locations are required for the standard Golub-

Reinsch reduction. If left and right singular vectors are required

however, the rotations used in Band Givens I must be accumulated as the

computation proceeds. This requires 4-t' multiplications using ordinary

Givens transformations or 2t3 using "fast Givens", as opposed to 38t /3

multiplications for the Golub-Reinsch reduction, so that if the vectors

are required, Band Givens I still requires less multiplications than

Golub-Reinsch if the fast Givens transformations are used. Both methods

require approximately 2t
2

storage locations.

There are several other possible methods to reduce J to bidiagonal

form. The method we shall call Band Givens II applies a sequence of

rotations to J as before, but instead of reducing each row in turn to

two elements, it systematically red&es the bandwidth by zeroing each

superdiagonal in turn. In other words, in the example presented in Figure

1, after zeroing y15 and chasing it off the matrix, it next turns to

726 instead of y,4. This method requires more rotations, since the

18



FIGURE 1.

Bidiagonalizing a Pentadiagonal Upper Triangular Matrix of Order 11

Using Givens Rotations by the Method Band Givens I

/ .

STEP 1:

xxzba

x x x x x c

c x x x x x b

b x x x x x a

a x x x x x

x x x x x c

c x x x x x

b x x x x

a x x x

x x

X

(i) Zero y15 and chase it a a a off the matrix:

Rotate col. 5 against col. 4 to zero y15 and introduce rf4.5
Rotate row 5 against row 4 to zero yc4 and introduce rig.

Rotate col. 9 against col. 8 to zero 71;9 and introduce 7$.

Rotate row 9 against row 8 to zero y&
- chased off

- (ii) Zero y14 and chase it b b b off the matrix similarly.

(iii) Zero y13 and chase it c c c also.

STEP 2: Repeat for the second row - etc.

19



decreasing bandwidth causes more nonzero elements to be introduced before

a certain element is chased off the matrix, but for the same reason

each rotation is less work if the vectors are not required. The two

considerations cancel each other out so that Rand Givens I and II

require about the same number of multiplications if vectors are not

required, but the latter is slower by a factor of about &n p if

vectors are required.

Let us consider now a method we shall call Rand Householder. This

follows an idea suggested in Rutishauser [9 ] for the corresponding

eigenvalue tridiagonal reduction problem. Recall that a Householder

transformation matrix Q(i&P) can be chosen to have the property that,

when applied to A on the left the resulting matrix A' = Q (iJdA

has zeros in positions i+l,...,j of column p but is different from

A only in rows i,...,j and has zeros in all rows in those columns

where there were zeros in all before. As before the role of rows and columns

is reversed when the transformation is applied on the right. Let us describe

the algorithm for the t = 11, p = 4 case again. The first step is to zero

all of a12> "13' "14 simultaneously by applying a Householder transformation

Q(2,4,1) to A on the right. Instead of introducing one new non-zero

element as in the first step of the algorithm using Givens transformation,

this introduces a whole lower triangle (of order 3) of non-zero elements.

This is annihilated by a sequence of 3 Householder transformations (the

last a degenerate one) which introduces another upper triangle on the other

side of the band. The triangle is chased off the matrix, as the single

element was before, after another two repetitions of this. However a

little thought will make it clear that the extra triangle of elements

20



at every step makes the method much less efficient than Band Givens I -

indeed, it introduces an extra factor of p in the number of multi-

plications required, whether or not vectors are needed.

There is yet another possible approach, which we call the

triangle Givens method -- it does not attempt to preserve the band

structure, but does preserve the upper triangle structure. It is con-

sidered in Chan [2 1 for finding the singular values of an upper tri-

angular matrix. In this method elements are eliminated row by row in the

upper triangle using column rotations, and after each column rotation one

row rotation is applied to move the nonzero element introduced in the

lower triangle back up to the upper triangle. Since the upper triangle

is filled in,this method requires more multiplications than Band Givens

I. If fast Givens transformations are used and no vectors are required

the number of multiplications  required for Triangle Givens is less than

for Golub-Reinsch, but if vectors are required they are the same.

Finally we describe a rather complicated variant of Band Givens I

which we call Band Givens III, which requires less multiplications when

vectors are required. In the standard Golub-Reinsch algorithm

Householder transformations are used to eliminate elements, but instead

of accumulating the transformations directly the transformations are

stored in place of the elements just annihilated and after the reduction

is complete they are then accumulated in reverse order. The reason for

this is that when they are accumulated in forward order,the j th trans-

formation on either the left or the right, having been chosen to

annihilate t-j elements of the j th column or row of J, will affect

(t-j >t elements of the t X t matrix of transformations so far

accumulated, whereas when they are accumulated in reverse order the same

21



transformation need only be applied to the (t-j) x (t-j) matrix

of transformations so far accumulated. This eliminates one third of

the multiplications needed. This trick is also employed in computing

a tridiagonal reduction for eigenvalue problems or the complete QR

factorization of a matrix using Householder transformations. When

Givens transformations are used in the band eigenvalue problem however

they are always accumulated in the forward direction as the reduction

proceeds although the same savings potential exists if they are

accumlated  in reverse. Storing aU. the transformations used in Band

Givens I would be a complicated task, but it is by no means impossible.

The method requires approximately t2/2 transformations each on the

left and the right, and since each transformation can be stored in and

recovered from one storage location (see Stewart [ll]), all the trans-

formations may be stored in the two t X t arrays in which they are

-to be accumulated. Furthermore  they can be accumulated one by one

in reverse order without disturbing the transformations stored but not

yet accumulated, since the number of transformations required to reduce

the first j rows to bidiagonal form is approximately t2/2 - (t-j)2/2

on each side which may be stored with room to spare without being

disturbed by the two (t-j) x (t-j) submatrices needed to accumulate

the transformations operating on rows j+l through t:

stored as go along

accumulated
in
reverse

22



However the storing and retrieving of these transformations would

indeed be an arduous task, and although Band Givens III requires

only 8t3/3 multiplications using ordinary Givens transformations and

4t3/3 using fast Givens, the big question is whether it would still

be worthwhile with all the extra bookkeeping.

Thus the best method seems to be either Band Givens I or III,

but we should make some disclaimers. These results are only valid

assuming 1 << p << t which may not be the case. Multiplications

.are not the whole story, since indexing operations also take time and

on modern machines multiplications do not take much more time than

indexing. Of course the amount of overhead required by a method is

also important. Another thing to note is that the second phase

reducing the bidiagonal form to diagonal form to obtain the singular

values typically takes 8t3 multiplications using ordinary Givens

transformations or 4t3 using fast Givens so that this may dominate

any slight savings in the reduction ,phase. Of course no final con-

clusion about which method is best can be made without extensive

numerical tests.

The multiplication counts for the different methods are summarized

in Table I.
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2.6 Convergence Tests

Let us examine what we have done so far. We apply the Lanczos

method to generate a block bidiagonal matrix J ( >S
from the matrix Ai:

Pt li Q =J(')

where P = (P1,P2,..:,P > ,
S

and Q = @+$2>-vQs) .

Then we compute the singular value decomposition of J (s) :

J(d = ,q&),(s)t

l

By considering the matrices (it t) ami ( J(r)t fs') , we can

verify that

are the eigenvectors of the matrix 1 L

/P 0 \ I"" O

restricted to the subspace

spanned by the columns of 1 I .
\O Q/

We have seen that the p smallest eigenvalues of
( )t

are
Js 0

usually accurate approximations to those of > in which case it

can be shown that the p corresponding eigenvectors of >

when premultiplied by > are also good approximations to those

of t albeit not to as high an accuracy.
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Our convergence test uses Weinstein's inequality [14, pp. 170-1711,

which states that for a symmetric matrix A and a vector x of unith

length, if

for some scalar ~1, then there is an eigenvalue h of A such that

be the i-th column of

Ik_ (')= v-0. u II2 + /At%
1 -

(d J12
-oi v l

Assume E is the user-supplied error tolerance for the singular values.

If

IIA~i ,

(s)then there is a singular value of A within relative error e of oi

(s)and we may accept oi as a singular value of A. (If Js) isi

less than one we use E as an absolute error tolerance instead.)

We note that in our algorithm the cmputed singular values and

vectors are converging to the singular values and vectors of A and

not of A. Thus if we compute the residuals with respect to A and

not to A, there is a lower bound to their values. We take this error
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into account by adding to E the residuals corresponding to the

accepted singular values. To avoid an error tolerance that is close

to the machine precision, we add to E a third term combining  the

machine *precision mcheps and the matrix dimensions m and n. Thus,

if

2
'k = IIAxk - Ok(s)gl/2+ IbtEk - $)%112, 15 k < i-l ,-

then

+ 10 X (m+n) X mcheps ,

where mcheps = 2.20 x 10
-16 for double precision arithmetic on the

IBM Systems 360 and 370. We shall accept 63)o
i as a singular value of

A if

IIAv. - o. u.-1 (') 112+ llAtu1 -1 -i
l/2 < $s)

- ii

2.7 Updating p and s

We shall see in section 3 how the available computer memory places

an upper bound on the product ps. We wish to determine optimal values

for p and s subject to this constraint. We can see from the error

bounds in section 2.3 that such choices are dependent on the singular

value spectrum of A and thus are usually not *possible a priori with-

out further information.

We shall discuss initial choices of p and s in section 3.3. We

are concerned here with updating p and s after some singular values

and vectors have converged.

We assume that before the current Lanczos iteration the block size
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is 'p
0’

the step size is so, and the bound on pose is qo.

Assume that g singular values are to be computed and go(l 5 go < g>

singular values have been cmputed and accepted in the current iteration.

Our problem is to choose the new block size pl and step size sl.

Our strategy is that if p. 2 g, then

and

Pl := PO - go

1
q. - go

s1 := pl -

. (Here a
1 J

denotes the

integer part of a.>

The rationale is that if the user chooses a block size greater than

the number of singular values desired, he must have a good reason, e.g.

he may have chosen the block size to be the number of singular values in

the cluster of largest singular values. We wish to preserve the user's

choice of block size in this case.

If PO < g, then we pick pl to be the smaller of the current

block size and the number of singular values remaining to be computed.

Thus,

pl := midpo,g-goI  J

qo-go
s1:= -F l1 1

We test s1 to see if slL 2. If it is not, then we set

qo-go
Pl:= 21 1 >

s1 :=
qo-go

1 J
.

pl
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We note that the step size must be at least 2 to carry out the

Lanczos method.

2.8 Complete Algorithm

We have described one iteration of the Lanczos method. We do not

expect to compute all the desired singular values in one iteration and

so we shall iterate the method with improving starting matrices. We

saw in section 2.6 that the first p, columns of QY are usually better

approximations than Ql to the p, right singular vectors corresponding

to the p, largest singular values of A. If go = 0, then those p,

columns of QY will serve as a good starting matrix for another Lanczos

iteration. If go > 0, then the (go+lL, (go+pl)-th columns will

be chosen as the starting matrix for the next iteration. We have seen

that the (go+lL...,p o-th columns of QY are usually good approximations

to the igo+l),...,p o-th right singular vectors of A. Our experimental

results show that the other columns are usually rich in the direction

of the (Po+lL" JPl -th right singular vectors of A.

We see that the convergence test in section 2.6 involves multipli-

cations by A and At; so we wish to avoid performing the test unless

we think some of our singular values have converged. A good test is to

look at the relative increase of the largest singular value from the

previous iteration. We perform the convergence test only if the relative

increase is less than the user supplied tolerance E. The criterion

is good in that we shall seldom overshoot the desired accuracy, because

if the convergence test is satisfied, the computed singular values,

as Rayleigh quotients, are likely to have errors proportional to

unless they are poorly separated.
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Our complete block Lanczos algorithm follows:

Algorithm

1. Start with an arbitrary n X p matrix Ql

2. Orthonormalize the columns of Ql.

3* Apply the Lanczos method to compute the block bidiagonal matrix

Jw as the starting matrix:using Ql

PiiQ =Js .( >

4: Compute the singular value decomposition of J 63) :

,(s),(s),(s)t  = J(s)
l

5* If the relative increase in the largest singular value of

J(s) is less than E, then perform the convergence test. Otherwise

go to step 8.

6. Stop if all desired singular values have converged.

7. If one or more singular values have converged, update the

values of p and s.

8. Take the first p columns of QY that have not been accepted

as singular vectors as the starting matrix %
for the next iteration.

Go to step 2.

It appears that step 2 is unnecessary after the first iteration

since both Q and Y are matrices consisting of orthonormal columns.

Numerical experiments have shown, however, that the columns of QY

are not necessarily orthonormal and we need to perform step 2 to

maintain numerical stability.
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3* Implementation

We have written a set of subroutines implementing our algorithm.

We use the Bell Laboratory PFORT language, a subset of the ANS FORTRAN

language.

Our routines use integer and double precision arithmetic. We have

a subroutine that caputes the inner product of two vectors. We would

have obtained better numerical results had we accumulated inner products

in higher precision. We recommend the usage of extended precision

arithmetic to compute inner products if the work is done by the computer

hardware. The additional cost is small and the results are more

accurate. We have not incorporated the extended precision computations

into our routines to provide program portability. Experiments show that

the numerical results are still satisfactory without recourse to higher

precision arithmetic.

Our routines usually need a large core to store the matrices X

and Y. On an IBM System 360 or 370, the requirement is

(m+n> X q X 8 bytes, which forces q to be small for large m and n;

e.g. if m = n = 1000, then an available core of size 200K bytes would

force q to be less than or equal to 12.

MAXVAL is our main routine that calls all the other subroutines.

3.1 Formal Parameters

(a) Quantities to be given to MAXVAL:

m,n :

9 :

the dimensions of the matrix A; 2 <, n 5 m 5 1000.

the number of vectors of length m contained in the

array X; also the number of vectors of length n

contained in array Y; qs26 and q in.
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pinit : the initial block size; if pinit < 0, then -pinit

becomes the block size and columns h+l,...,h+(-pinit)

of Y are assumed to be initialized to a matrix to be used

g :

ItlIE3X:

eps,:

op :

h:

to start the Lanczos method.

the number of singular values and left and right singular

vectors desired; 1g3vb

the maximum number of matrix-vector products AJJ and

At5 allowed.

the relative precision to which singular values and

vectors will be computed; eps becomes an absolute

tolerance if the singular value is less than one.

subroutine op (m,n,p,u,v,orig) computes U = AV when

orig is true, and V = A% when orig is false; U

is an mX p matrix and V is an n X p matrix; the

input matrix must not be altered by the subroutine call.

the number of singular values and vectors already computed;

if h > 0, then columns 1 through h of X(Y) must

contain the left (right) singular vectors of A.

D : an array of length at least q.

x : an array of length at least m X q.

Y : an array of length at least n X q.

iorthg : the number of immediately preceding blocks of vectors

with respect to which reorthogonalization of the present

block of vectors is to be carried out.

lout : output unit number.

mcheps : machine precision, equals 2.2 x 10
-16 for double

precision arithmetic.
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(b) Quantities produced by MAXVAL:

h :

D:

x :

the total number of singular values and vectors computed

including any already computed when MAXVAL was entered.

elements 1 to h of D contain the computed singular

values.

the first m X h elements contain the left singular

vector approximations--the first vector in the first m

elements, the second in the next m elements, and so on.

the first n X h elements contain the right singular

vector approximations--the first vector in the first n

elements, the second in the next n elements, and so on.

the error message;

= o : successful termination.

=l: n < 2.

=2 :n>m.

=3: m > 1000.

=4 :g<l.

=5 : S<_&

= 6 : q>26.

=7:q>n.

=8:mmax is exceeded before g singular values and

vectors have been computed.

Y :

iecode :

3.2- Program Organization

MAXVAL is the main routine that calls all the other subroutines.

It also checks the input data for inconsistencies. The main body of

the subroutine begins by filling the appropriate columns of Y with
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random vectors if a starting matrix is not provided. The random vectors

are orthonormalized in a call to the subroutine ORTHOG. MAXVAL then

calls BKLANC to carry out the block bidiagonalization of A and then

SVBUTM to solve the singular value problem of the resulting block

(s)bidiagonal matrix J l Two calls to the subroutine ROTATE compute

the matrices PX and QY. A test is then made of the relative increase

in the largest singular value of Jw to determine if it is necessary

to call the convergence test routine CNVTST. If some but not all the

desired singular values have converged, then the subroutine PCHOIC

is called to choose new values for p and s for the next iteration,

which begins with the first p columns of QY that have not been

accepted as singular vectors as the starting matrix.

ORTHOG always reorthogonalizes the input vectors with respect to

the vectors in the first h columns of the input matrix. Reortho-

- gonalization is also carried out with respect

blocks of vectors. The resulting vectors are

using a modified Gram-Schmidt method [l].

to the previous IORTHG

then orthormalized

ORTHOG calls INPROD to compute inner products in the reortho-

gonalization process.

BKLANC implements the block Lanczos reduction. The banded upper

triangular matrix J kd is stored in columns 2 through p + 2 of the

matrix C, the main diagonal being stored in the first ps elements

of column 2, the upper diagonal being stored in the first ps - 1

elements of column 3, and so on.

SVBUTM is designed to solve the singular value problem of a banded

upper triangular matrix. The matrix J '( 1 has been stored in the

correct form-in BKLANC for input into this routine. SVBUTM first calls
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BIBAND to bidiagonalize J (s) using the algorithm Band Givens I

described in section 2.5, and then SVDBI to apply the QR method

to compute the singular values of the bidiagonal matrix. The routines

ROTROW and ROTCOL implement Givens transformations to rotate rows

and columns of J '( ) to reduce it to a bidiagonal form--note however

that an improvement here would be to implement fast Givens trans-

formations instead. SVDBI calls DROTAT to compute the singular vectors

of JF

ROTATE cmputes PX and QY, the left and right singular

vectors of li.

CNVTST tests the computed singular values and vectors for con-

vergence. It tests first the largest singular value, then the second

largest singular value, and so on until it finds either non-convergence

or all the desired singular values.

PCHOIC computes new values for p and s if some but not all

desired singular values have converged.

3.3 Numerical Properties

The user can easily modify the bounds on m and q by changing

the storage allocation for the arrays C, U, V, R and T at the

beginning of MAXVAL. The tests of the values of m and q must then

be appropriately modified.

Our program has proved to be very efficient for large and sparse

- singular value problems. The convergence is very fast if the largest

singular values are fairly well separated. Even in cases when the

largest singular values are clustered, our program appears to be able

to compute them accurately.
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We have seen that the optimal choice of the block size depends on

the singular value spectrum and is therefore not possible a priori. A

" safe" choice appears to be choosing the block size as the number of

desired singular values. The singular values thus computed are usually

fairly accurate. A drawback is that sometimes this choice produces a

very slow convergence rate.

We cannot overemphasize the importance of s. Storage limitations

place a bound on the product ps. The two matrices X and Y require

(m+n> X q storage locations, a significant amount for large m and n.

Since q bounds ps + h, we see that the value of p uniquely

determines the maximal value of s. Since s must be at least 2,

the block size p will be reduced to give s the value of 2 or 3.

Experiments have shown that s = 2 often produces intolerably slow

convergence. It appears that we should always give s a value of at

least 3. In fact, for

the best choice appears

gonalization.

a problem with a dense singular value spectrum,

to be p = 1, s = q - h and no reortho-

Reorthogonalization appears to be unnecessary if the singular

value spectrum is dense. If the largest singular values are

well separated from the rest, then complete reorthogonalization

is required to keep multiple images of these singular values from

appearing. Partial reorthogonalization, e.g. with iorthg = 1, is

insufficient although it does produce better results than no reortho-

gonalization at all.

From the theorem in section 2.3, we can see that a good choice

of the block size is the number of the dominating singular values.

Experiments confirm the theory and we see also that it is better to
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overestimate the number of dominating singular values than tounder-

estimate.

The use of extended precision arithmetic to accumulate inner

products produces much more accurate results at an average cost of about

20s more computing time. We have, however, found its use to be

unnecessary for a large value of eps; we have obtained satisfactory

results from 1000 X 9% matrices with eps = 10 -3 using only double

precision arithmetic.
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4. Test Examples

We have chosen rectangular diagonal matrices in all but one test

examples. We feel diagonal matrices are sufficiently general because

we do not transform the given matrix; we obtain information about the

given matrix only through the subroutine that computes the product of the

matrix (or its transpose) with an input matrix. Diagonal matrices

are convenient in that we know the singular value spectrum and so

can study the behavior of our algorithm as a function of the block and

step sizes.

We have run our program on an IBM 370/168 computer using the

EXTENDED FORTRAN H compiler. Our program takes 6.95 seconds to compile.

In the examples below the following rotation is used:

m&n) = m X 10Bn

iter = total number of iterations

imm = total number of matrix-vector multiplications

i w = total number of vector inner products in the

orthogonalization process

exec time = execution time in seconds on the machine

Example 1

A is a 1000 X 9% matrix with

o.oo6,-o.oo7,o.oo8,-o.oo9,~e~,l~ooo,
7

diagonal elements

and 2,2,2 and -10. With

g = 4, q = 12, eps = 10m3 and iorthg = 0, we obtain the following

results.
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o1

O2
10 -l&15> 2

a3
2 - 6(-15) 2 -8(-15)

O4 2 -3(-Y)

iter

imm

5

x05

iw 224

exec time program fails 6.06
to terminate

2+4(-d 2 4-269) 2- 3(-8) 2- ~(-8)

2 -0-Y) 2- 3(-11) 2 - l(-7) 2- 6(-E)

2 -1(-8) 2 -4(-10) 2- Y(-7) 2- 6(-7)

3

67

114

3.81

3

62

108

3.71

5 5

85 100

200 300

5.33 7.34

We see the advantage of a block algorithm in this example. The

point algorithm gives a double image for the

then fails to terminate because it converges

the fastest convergence using p=4, aswe

singular value 10 and

to a value 2.738. We obtain

expect. Note the high
2

accuracy in the solution values with eps = lo-'.

&ample 2

A isa 1000 X YYY matrix with diagonal elements

-o.oo~,o.oo~,-o.o~~,o.oo~,...,~~ooo,  and 2,-2 and 2. We choose

g = 3, q = 22, eps = low3 and iorthg = 0.
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9

O2

“3

iter

imm

i w

exec time

p=l

2

2

2-1x10 -15

5

115

l-24 132

52

48

2-4x10 -11

2-6x10 -11

2-5x10 -10

3

70

108

6.52 5.24 3.18 4.70

P =2

2-2 xl0 -15

2-1x10 -9

2-2x10 -8

4

89

P =3

2-2x10-11

2-3x 10 -EL

2-3~ 10 -10

2

p=4

In this example, we see again the advantage of a properly chosen

block size. Note also the better results obtained by overestimating

rather than underestimating the number of dominating singular values.

-Example 3

A is a 1000 X 999 matrix with diagonal elements

0.006,-0.007,0.008,-O.Oo9J...,l.OOO,  and 2, 10, -10 and 10. We

choose g = 3, q = 6, eps = 10B3 and iorthg = 0.

P =l P =2

o1

=2

a3

iter-

imm

10-2x10 -15

10-3x 10 -15

2-5x10-7

10-3x 10 -15

10-2x10 -9

10-2x10 -7

p=3

10-4x lo-l2

10-2x lo-l1

10-2x 10 -8

i w

exec time

4 6 3

42 56 37

48 82 36

1.85 2.46 1.76
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3

We see the failure of the point algorithm to obtain the third

singular value 10. This example also shows how fast our algorithm can

be even with very limited storage (q = 6) as long as the separation

of the singular values is good.

Example 4

A is the same matrix as in Example 1. But we choose g = 3,

q = l-2, eps = 10 -3 and p=l. We run our program with no, partial,

and complete reorthogonalization.

iorthg = 0 iorthg = 1 iorthg = 12

10+1x10
-14

Ol

10-1x10 -15
O2

2-6~10 -15
a3
iter 1

imm 31

i w 0

exec time 1.69

10 10

1o-2xlo-12 2-2 x 10 -15

2-4x10 -15 2-4x10 -15

1 3

31 71

22 3%

1.77 5.27

We see only canrplete reorthogonalization gives the correct solution.

We also see that the block algorithm (Example 1) with p = 3 and 4

and no reorthogonalization computes four singular values correctly in

25s less machine time.

We also run the first case (iorthg

arithmetic to accumulate inner products.

unchanged.

= 0) using extended precision

The results are unfortunately
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Example 5

A isa 1000 X 999 matrix with diagonal elements

0.002,-0.003,0.004,-0.005,...,1.000.  We choose g = 3, q = 12, eps = 10 -3

and iorthg = 0.

o1

o2

O3
iter

imm

i w

exec time

p=l p=2

0.499992 0  l  9 9 9 9 9 5

o.YY896o o- 998951

0.998036 o. 998005

13 33

305 711

190 784

17.59 41.20

p=3

o. 949986

0 l 948999

0 l 997480

27

609

676

38.09

This is an example where a point algorithm is a good choice. The

denseness of the singular value spectrum takes away the virtues of a

block algorithm; the best choice is therefore to maximize s.

Example 6

A isa 314 X 80 matrix obtained from earthquake research and

is of the following special form:

A = (AltA2) ,

where Al is 314 X 24 and block diagonal,

and A2 is 314 x 56 and randomly sparse.

Al consists of six diagonal blocks, whose dimensions are 53 x 4,

51 X 4, 46 x 4, 58 x 4, 55 X 4 and 51 x 4. There are about 4 non-zero
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elements per row in
A2 and a total of 2509 non-zero elements in A.

We store only the non-zero elements of A. We use three one-

dimensional arrays IINDEX, JINDEX and A, each of length 2509, to

store L 3 and a...
iJ

This compact storage scheme also enables us to

compute the matrix-vector products kti and Atx efficiently.

Assume A is m x n and has NDATA non-zero elements. Then

the following FORTRAN statements compute x, = Ax:

DO 10 K = l,M
X(K) = O-DO

10 CONTINUE
DO 20 K = 1,NDATA

= IINDEX
: = JINDEX(K)
x(1) = x(1) + A(K) * Y(J)

20 CONTINUE

The following statements compute JC = Atx_:

DO ll0 K = 1,N
Y(K) = O.DO

110 CONTINUE
DO I20 K = 1,NDATA

I = IINDEX
J = JINDEX(K)
Y(J) = Y(J) f A(K) * X(1)

120 CONTINUE

A full singular value decomposition of A was computed using the

subroutine SVD in EISPACK [lo]. The demand on storage is excessive,

for we need to supply at least 2 X m x n x 8 bytes (k 393 K bytes)

if we want the singular vectors. The execution time was 23.18 seconds.

The main disadvantage of SVD is its inflexibility: we always have

to compute all the singular values whether or not we need all of them.

Our Lanczos program, on the other hand, requires only (m+n) x q x 8

bytes (G 31 K bytes for q = 10) if we give it q vectors of
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storage to compute the singular vectors. It can then compute up to

(9 - 1) singular values and corresponding vectors. We need

2509 x (4 f 4 + 8) bytes (4 40 K bytes) to store A using our

compact scheme.

The following table summarizes our results when we apply our

program on A with p = 1, q = 10, eps = 10 -3 and iorthg = 0:

Q 1 2

iter 1 2

imm 23 44

i w 0 18

exec time 1.66 2.21

3 4 5 6 7 8 9

3 5 7 9 12 18 23

63 93 119 141 166 206 229

50 134 230 330 474 726 886

2.73 3.61 4.38 5.08 5.9 7.23 7.9%

All our computed results agree to at least 6 significant digits with the

values from SVD, agreeing with the expectation that the accuracy is

O(eps2L

The 80 non-trivial singular values of A are (to 3 significant

digits) 12.6, 9.53, 8.87, 8.06, 7.77, 7.59, 6.42, 5.54, 5.16,

4.49 ,...,1.28~ ioB2, 4.45 x lo -7 , 1.91x lo -7 , 5.93 x lo -8 and
--

2.48 x lo-? Although the largest singular values of A are quite

uniformly distributed, we observe a uniform improvement in program

speed when we choose the block size equal to 2, i.e. p = 2, q = 10,

eps = 10-3 and iorthg = 0:

44



. g 1 2 3 4 5 6 7 8 9

iter 1 2 3 5 7 8 10 18 24

imm 22 43 59 88 10% 121 136 190 214

i w 10 28 66 158 248 304 3Y4 798 9%

exec time 1.62 2.13 2.49 3.34 3.83 4.16 4.62 6.28 7.15

The effect of storage space on program speed is examined using both

I.2 and 15 vectors of storage to determine 9 singular values. The results

with p=l,eps=lO -3 and iorthg = 0 are:

10 I2 15

iter 23 9 5

imm 229 129 123

i w 886 530 530

exec time 7.YY 5.21 4.99

The trade-offs between space and time are obvious.
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SUBROUTIUB BAXVAL(K,E,Q,PIUIT,G,UHAX,BPS,OP,R,D,X,Y,IORTHG,
1 LOUT,RCEEPS ,IECODB)
INTEGER B,R,Q,PIRIT,G,HUAX,H,IORTH6,LOUT,IBCODB
DOUBLE PRECISIOU BPS,D(Q),X(M,Q),Y(B,Q),BCEEPS
EXTERNAL OP

C
C
C

CALCULATE TEE LARGEST SINGULAR VALUES OF A LARGE SPARSE HATRIX

URITTBB BY : FRAEKLIB LUK
CORPUTBR SCIBBCE DEPARTKENT
STARPORD UUXVBRSITY
SBPTBRBER 1976

LAST UPDATE : APRIL 1 9 7 7

L

C TBIS SBT OP ROUTIIES USES INTEGER AMD DOUBLB PRECISION ARITHMETICS

4”Y-cPL.P
c
C
C
c
C
C
C
C
C
C
C
C
C
C
C
C
C
c -
C
C
C
C
C
C
C
C

TEIS SBT OP ROUTIRES IMCLUDBS : MAXVAL, BKLARC, ORTHOG, IRPROF,
ROTATB, CRVTST, PCEOIC, RARDOH,
A.ID SVBUT8( PLUS BIBAMD, ROTROU,
ROTCOL, SVDBI, AED DROTAP ).

TRTS SUBROUTIYB IS TEB BAIB SUBROUTIRE IBPLEEERTING
TUB ITBRATIVB BLOCE LAMCBOS BBTEOD ?OR CO8PUTIUG THE LARGEST
SIUGULAR VALUES AID CORRESPORDIUG LB?T AND RIGET SIRGULAR VECTORS
OF AI ll-BY-ll RATRIX.

DESCRIPTIOR  OP PARAMETERS :

?I,N : IRTB6BR VARIABLES. TEE RUBBBR OF ROWS AHD COLUtlUS
OP TEB 8ATRIX A UHOSB SIR6ULAR VALUES ABD VBCTORS
ARE BEING COI'SPUTED. IT IS ASSUtiED TRAT 2 .LB. I .LB. E.

0 : IUTBGBR VARIABLE. TEE NUHBBR OF VBCTORS  OP LBRGTH l!!
CORTAIDTGD II TEE ARRAY X, AltD THE UURBER OF VBCTORS
OI LERGTE 1 CORTAIBBD 110 Tiit ARRAY I. THE VALUB OP Q
SHOULD BE LESS TEAB OR BQUAL TO 26, AT LBAST OUE GRBATBR
TEAM TEE VALUE O? 6 AHD LBSS TEAR OR EQUAL TO I.

PINIT : IRTBGBR VARIABLB. TEB IRITIAL BLOCK SI%B TO BE USBD
IR THB BLOCK LARCBOS RBTHOD. I? PIRIT IS UBGATIVB,
TEBR -PIRIT IS USED ?OR TEB BLOCK SIZE AID COLUBMS
Ed, . . . l H+(-PIRIT) OF THB ARRAYS Y ARB ASSURBD
TO BE IRITIALIZED TO A RATRfX USBD TO START TEB BLOCK
LARCZOS HBTHOD. IF THE StJBROUtfUE TERMIUATBS KITE
A VALUB OF 11 LBSS THAI 6, THBR PIRIT IS ASSIGRED
A VALUE -P, UHBRB P IS THB BIBAL BLOCK SIBB CEOSBR.
II THIS CIRCURSTABCB, COLULIRS 841, . . . , H+P OF Y
UILL CORTAIR THB HOST RBCklT SET O? RIGET SIUGULAR
VICTOR APPROXIHATIOUS UEICH CAN BE USED TO RESTART



THE SUBROUTINE IP DESIRED.

c
C
C

C
c
c
C
. .”
c
C
C
C
C
c
c
CT
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

G : IRTEGER VARIABLE. TEB UUHBBR OR SIRGULAR VALUBS AND
SIUGULAR VECTORS BBIU6 COHPUTBD. THAT IS, HAXVAL
ATTBMPTS TO COHPUTB ACCURATB APPROXIRATIORS TO TEE
6 LARCBST SIRGULAR VALUES ARD TEEXR CORRBSPONDIUG
LBPT AID RIGET SIUGULAR VBCTORS OF TEE KATRIX A. TEE
THE VALUB OP G SEOULD BE POSITIVE ARD LESS TEAR Q.

EL’!AX : IUTEGBR VARIABLB. TEB HAXIHUR RUHBBR OP HATRIX-VBCTOR
PRODUCTS A*X ARD TRAUSPOSB(A)*X, WERE X IS AN APPRO-
PRIATE VBCTOR, TEAT ARB ALLOUBD DUDIRG ONE CALL OF
TEIS SUBROUTIRE TO COLIPLBTB ITS TASK OP COEPUTIUG
G SIU6ULAR VALUES ARD VBCTORS. URLBSS THE PROBLER
IUDICATES OTEERUISE, HMAX SEOULD BB GIVEI A VERY
LARGE VALUB.

EPS : DOUBLE PRBCISIOU VARIABLB. BPS SHOULD COUTAIU
A VALUE IRDICATIRG THE RBLATIVE PRECISIOY TO UHICR
RAXVAL UILL ATTERPT TO COHPUTB TEB SIRGULAR VALUBS
AND VECTORS OP A. ?OR SIB6ULAR VALUES LESS IN RODULUS
TEA1 1, BPS UILL BE AU ABSOLUTB TOLBRAUCE.

OP : SUBROUTIPB MAtlE. TEE ACTUAL ARGUUBUT CORRESPOUDIMG
TO OP SEOULD BB TEB NALIE O? A SUBROUTIRB USED TO
DBPIRB TEB MATRIX A. THIS SUBROUTIRB  SHOULD EAVE
SIX ARGUEBUTS B, II, P, 0, V, AUD ORIG, SAY, UEBRB
A IS AU ti-BY-R ARRAY, U IS AU X-BY-P ARRAY,
V IS AU U-BY-P ARRAY, AUD BRIG IS A LOGICAL VARIABLE.
TEB STATBEBRT

CALL OP (H,R,P,U,V,.TRUB,)
SEOULD RBSULT Ill THB ARRAY A*V BEING COHPUTBD AND
STORED IR 0. TEE STATEMBUT

CALL OP (H.R,P,U,V,.?ALSB.)
SEOULD RESULT IR THB ARRAY TRARSPOSE(A)  *U BBIRG
COHPUTED AID STORBD 119 V.

ti : IHTE6BR VARIABLE. H GIVES THB UUHBBR OF SIRGULAR
VALUES AID LBl'T AID RIGET SIBGULAR VBCTORS ALRBADY
COMPUTED. TEUS, IUITIALLY, H SHOULD BB ZERO.
IF E IS 6RBATBR THAU ZERO, THBU ELBRBRTS OUB TEROUGE
E OR THB VICTOR D COUTAIU APPROXIHATIOUS  TO THE E
LAR6BST SIGULAR VALUBS O? A, COLUMNS ORB THROUGE H
O? THB ARRAYS X ABD Y COETAIR APPROXIMATIORS TO TEE
CORRBSPORDIRG  LE?T ABD RI6HT SIRGULAR VBCTORS,
AT BXIT, E COUTAIUS  A VALUB BQUAL TO THE TOTAL UUUBBR
O? SIB6ULAR VALUBS ARD LBIT ARD RI6ET SIRGULAR VBCTORS
COIPUTBD IRCLUDIBG  AIIY ALRBADY COHPUTBD UHBJI RAIlAL
UAS EYTBRBD. THUS, AT EXIT, TE1 FIRST H ELBHBISTS  O? D
AID TSIB ?IRST H COLUMNS 01 X ABD Y UILL COUTAIN
APPROXIHATIOHS  TO THB H LAR6BST.SIUGULAR  VALUES OF A ARD
TEEIR CORRBSPOMDIUG LBPT AR0 RI6ET SIUGULAR VECTORS.

D : DOUBLE PRBCISIOR ARRAY. D CORTAIBS THB COHPUTBD SIBGULAR
VALUES. D SHOULD BB AU ORB-DIHBBSIOBAL  ARRAY UITH AT
LBAST 6 BLBHERTS.

x : DOUBLE PRBCISIOR ARRAY. X CORTAIES THB COEPUTBD LB?T
SIRGULAR VECTORS. X SEOULD BE All ARRAY CORTAIRING AT
LBAST R*Q BLEBBUTS. X IS USED ROT OBLY TO STORB THE LEPT



C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
c
C
C
C
C
C
”

G
C
C
C
c

- C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

SIUGULAR VECTORS COMPUTED BY UAXVAL, BUT ALSO AS
UORKING STORAGB ?OR TEE BLOCK LAUCJOS LIETHOD. AT EXIT,
THB PIRST tl*E BLBf'lBUTS  O? X COMTAIU THE LB?? SIU6ULAR
VECTOR APPROXIHATIOBS -- THE ?IRST VECTOR IN TEB ?IRST
II BLBEBIITS, THB SBCOUD IN THB SBCOUD a BLEBBRTS, ETC.

Y : DOUBLE PRBCISIOU ARRAY. Y COUTAIUS THB COEPUTBD RIGET
SIUGULAR VECTORS. Y SHOULD BE AI ARRAY COuTAIUIUG AT
LBAST U+Q BLEBBUTS. Y IS USED HOT ONLY TO STORE THE
RI6ET SINGULAR VECTORS COBPUTBD BY BAXVAL, BUT ALSO AS
UORKIUG ST08161 FOR TEB BLOCK LAUCBOS HETHOD. AT EXIT,
TEE ?fRST U*H BLBMBUTS O? Y COETAIU TEB RIGHT SINGULAR
VBCTOR APPROXIHATIOUS  -- THB ?IRST VECTOR IN THE PIRST
u BLEEIBUTS, TEE SBCOMD 111 THB SBCOUD U tLBUBUTS, ETC.

IORTEG : IUTBGBR VARIABLE. ITS VALUB IS THB NUHBBR 01 fI¶UBDIATBLY
PRBCEDIUG BLOCKS O? VECTORS QITE RBSPBCT TO UHICH
RBORTH0G0UALIZATIOU  OP THB PRBSBUT BLOCK O? VBCTORS
IS CARRIBD OUT.

LOUT : IUTEGBR VARIABLE. OUTPUT UNIT NUMBBR.

RCEEPS : DOUBLE PRECISION VARIABLB. THE MACHINE PRBCISIOU.

IECODE : IUTEGER VARIABLB. TEE VALUE OF IBCODE IUDICATBS
WHETHER HAXVAL TBREIUATBD SUCCBSWULLY,  AND I? HOT,
TEB RBASOU VET.

IBCODB=O : SUCCBSSlUL TBRHIBATIOU.
IBCODB=l : THE VALUB O? U IS LBSS THAE TPO.
YBCODBTZ : TEE VALUB O? U IS GRBATBR TEAM TEB VALUE

or El.
ItCODE= : THE VALUE OF II IS GRBATBR THAI 1000.
IBCODB*4 : THE VALUB O? G IS LBSS THAN ORB.
IBCODB=S : TEE VALUE O? Q IS LBSS THAN OR EQUAL TO G.
IBCODB=6 : TEE VALUB OP Q IS GREATER THAN 26.
fBCODB=7 : TEB VALUE O? Q BXCBBDS I.
XBCODB=8 : THB VALUB 01 BHAX WAS BXCBBDBD BB?ORB

6 SIUGULAR VALUES AMD LB?T AMD RIGET
SIBGULAR VECTORS UBRB COMPUTED.

UOTB TEAT TRB SUBROUTIBB HAS BBBU DBSIGUED TO ALLOU IUITIAL
APPROXIEATIOUS TO THB RI6ET SINGULAR VECTORS CORRBS-
POUDIM6 TO THB LARGEST SIUGWLAR VALUES TO BE UTILIBBD
( IF THEY UBRB KU091 ) BY STORIUG  THBH II Y AND ASSIGUIM6
PIUIT UIUUS TEE VALUE O? THBIR UUERBR. ?URTHBRHORB, IT
EAS ALSO BEEN DESIGNED TO ALLOU RBSTARTIU6 I? IT STOPS WITS
IECODE=8. TEUS, TEB USER O? THIS PROOMH CAll' RBSTART IT AlTBR
EXAl!lIUIU6 ANY PARTIAL RSSULTS UITHOUT LOSS OF PREVIOUS WORK.

IUTB6BR I,IBRR,IUB,IPE,IPQ.~SBED,ITBR,IVV,UCOUV,P,PHI,PS,PP3
IUTBGBR QPPS,QPl,S
REAL ?LOAT
DOUBLE PRBCISIOU BRRBUD,BRRC

THE EIUIHUH LBBCTHS O? TEE LOCAL ARRAYS ARE AS ?OLLOUS, THBSB
COULD BB CHAMGBD BY THB USBR I? BBCBSSARY BY CHAWIR6 TEB EAXIMUE
VALUBS O? Q OR H UHICH AT PRBSBUT ARE 26 AHD 1000 ( TEB TESTS
BBLOU SHOULD ALSO BE MODIPIBD ).

LBT 92 DBUOTB TEB IMTBGBR PART O? Q/2, THEN



C
C 2 (Q+ US+31  1, U (Q*Q)  ,V (Q’Q) ,a (Q2*92) ,T WI
C

DOUBLE PRBCISIOM c(~16),U(676),V(676),R(l69)  ,T(lOOO)
DOUBLE PRECISIOB DBLE

C
C ISEED IS SBBD FOR RAMDOH UUHBBR GBMBRATOR
C

DATA ISBED/99991/
C
C CHECK THAT THE IBITIAL VALUBS OT THB SUBROUTIUB PARA-
C UETERS ARB II RAUGB.
C

I? (U.LT.2) 60 TO 901
IF (l!l.LT.M) GO TO 902
IF (M.GT.1000)  60 TO 903
IF (6.LT.l) 60 TO 908
IF (Q.LB.6) 60 TO 905
IF (Q.GT.26) GO TO 906

IF (Q.GT.M) GO TO 907
c
C IUITIALIZB  THE SINGULAR VALUBS  TO VBRY LARGE UBGATIVB MUHBBRS.
C

DO 110 I = 1.6
D(I) - -1.010

110 COUTINUE
C
C CEOOSB INITIAL VALUES FOR THB BLOCK SIZB P, TEE UUUBER S
C OF STBPS TEAT TUB BLOCK LAUCZOS HBTEOD IS CARRIED OUT, AID
P CEOOSB AH IMITIAL II-BY-P ORTHOUORHAL HATRIX 11 TO START
z TEE BLOCR LAMCZOS EBTHOD.
t

P = PIUIT
I? (P.LT.0) P = -P

= (Q-W/P
:F (S.GB.2) GO TO 120
s - 2
P = w-m  12

C
120 I? (PIUIT.LT.0) GO TO 200

C
C IMSERT RABDOH VECTORS IUTO COLUMMS E+l THROUGE  E+P Ot TEE ARRAY 1.
C

CALL RAMDOH(B,Q,PJi,Y,fSBBD)
C
C SET COUSTAUTS  FOR LATER COBVBRGBICB TBSTS,
C
200 BRRBUD = BPS + lO.D0*DBLB(PLOAT  (HW) )+HCHBPS

ERRC = &DO
ITBR = 0

~Iell!! = 0
IVV = 0

C
C THE EAIB BODY OF THE SUBROUTIUB STARTS HBRB. IHH
C COUNTS TEB MUHBBR 01 UATRIX-VBCTOR PRODUCTS CORPUTBD.
C IVV COUMTS THE MUl!lBBR OF VECTOR IMMER PRODUCTS PBRFORHBD
C II TEE ORTEOCOMALIZATIOM ROUTIMB. BRRC HBASURBS THB
C ACCUHULATED BRROR IM THE SIMGULAR VA1013 ABD VBCTORS.
C



300

6010
C
C
C
C

310
C
c
C

320
C
C
C
C
C
C
C
C

6020
330

6030
C
C
C
C
c

C
C
c
C

IF (H.GB,G) GO TO 900
IF (IMR.GT.BBAX) GO TO 908
ITER = ITBR+l
PS = p+s
PP3 = P+3
URITE (LOUT,6010)ITBR,P.S
PORf!AT(lIE l ** ITBRATIOU,I4/SX,UE  P =,13,SX,QH S -,X3)

USE RARDOR VECTORS TO RESTART THE LAUCZOS ALGORITELI IF
LINEAR IBDEPEUDEUCE HAS BEBP LOST.

DO 310 I = l,P
IPE = x+E
IF (D(IPE).GT.O.DO)  GO TO 310
PM1 = P-I
CALL RABDOH(U,Q,PIII+1,IPH-l,Y,ISBBD)
GO TO 320

CONTINUE

ORTBOUORRALIZB COLUHUS H+l THROUGH H+P O? TEB ARRAY 1.

CALL ORTE06(B,Q,H,H,P,R,Y,IORTEG.IVV,LOUT,MCEBPS)

BKLAUC CARRIBS OUT TEE BLOCK LABCBOS EBTEOD AND
RETURNS TEE RBSULTIBG BAUDBD UPPBR TRIANGULAR EATRIX l!!S
IN C, TEE tl-BY-PS ORTHOUORHAL  8ATRIX XS I# X AND THB
N-BY-PS ORTHOUOREAL HATBIX IS IB Y. THB IBITIAL
N-BY-P ORTEOUORRAL BATRIX Yl IS ASSUfiBD TO BE STORED
IN COLURUS Et1 TUROUGE H+P OF I.

CALL BXLAUC(R,UrQ,PP3,H,P,S,OP,C,X,Y,R,IORTEG,IVV,LOUT,HCHBPS)
IXH - xaa + r*(2*s-l)

SVBUTU SOLVES THE SIBGULAR VALUE PROBLBH FOR THE PS-BY-PS
ARRAY ES, RBTURUIBG THB SINGULAR VALUES I# THE SBCOBD COLUBB
O? C AID THB RIGHT SINGULAR VECTORS I# THB fIRST P*S COLUEBS
OP U, ARD TEB P LEFT SIBGULAR VECTORS CORRBSPOBDIBG  TO THB
P LARGBST SIBCULAR VALUES IN TEE FIRST P COLUBUS O? V.

CALL SVBUTE(Q,PS,P,PP3,C,P!3.PS,U.V,HCEBPS,fBRR)
I? (IBRR.BQ.0)  60 TO 330
URfTB(LOUT,6020) IBRR
?ORHAT(SX,39E  *** BRROR I# SUBROUTIBB SVBUTR. IERR =,13,4H ***)
QPl = Q+l
QPPS - Q+PS
URITB(LOUT,6030) (C(I),I=QPl,QPPS)
l'ORI¶AT (5X,208 SIB6ULAR VALUBS . ...6 (/SX,lPSD24.15))

ROTATB COHPUTBS THE LBFT AID RI6ET SIB6ULAR VECTORS
OF THB RBSTRICTED HATRIX USING XS STORED I# X, AND IS
STORED IN Y.

CALL ROTATB(B,Q,H,PS,PS,U,X,T)
CALL ROTATB(U.Q,H,PS,PS,V,Y,T)

TEST I? RBLATIVB IMCRBASB OF COMPUTBD SINGULAR VALUBS BXCBBDS
TEE USER-SET PRRCISIOB BOUBD.

ucouv - 0
I? (ITBR.BQ.  1) GO TO 340



IF ( (C(Q+l)-D(H+l))/C(Q+l) .GT. BPS ) GO TO 400
c
C CRPTST DETBBHIRBS HO% BABY OF THB SIRGULAR VALUBS
C AWD LEPT ALYD RIGHT SXRGULAR VBCTORS RAVB COUVBRGBD.
C TBE WU!¶BEB THAT HAVB COMVBR6BD IS STORED IN ICOBIV.
C IF NCOPV=O, TEBR RORE EAS CORVRRG~.
C

340 CALL CVVTST(E,P,Q,E,G,BRRBRD,BRRC,OP,C,X,Y,RCORV,LOUT,T)
Il¶H = Il!ll!l + (licoltv+1)+2

4 0 0  CONTILOUG
C

DO 410 I = l,PS
IPH = I+E
IPQ = I+Q
D (IPB) = C(IPQ)

410 CONTINUE
2
.-. PCHOIC CHOOSES UBU VALUBS FOR P AID S, THE BLOCK
i SIZE AID THE YUMBBR O? STEPS FOR TEB BLOCU LAMCZOS
C 'SUBPROGBAti, RBSP..
C

IP ( tKOMV.BQ.0 .OR. MCOBt.BQ.G-6  ) GO TO 420
CALL PCHOIC(Q,E,6,RCOlfV,P,S)

420 WRITE (L0UT,6040)IMR,IVV,ECORV
6040 POR?!AT(SX,6H  IBR =,IS,SX,6R  XIV =,15,5f,8R  1ICOIV  =,13)

ii = Ei+YCOMV
C

GO TO 300
C
c THIS IS TEE BBD OP TEB l!AII BODY O? TflB SUBROUTIRB.
C NOY SET THE VALUB OP THB IBCODB AND BXIT.
C-
900 IECODE = 0

RBTURR
901 IECODE = 1

RBTURI
902 IECODE = 2

RETURN
903 IECODB * 3

RSTURR
904 IBCODE * 4

RETURU
905 IBCODB = 5

RBTURU
906 IBCODB = 6

RBTURR
907 IBCODB = 7

RBTURU
908 IBCODB = 8

PIUIT = -P
RBTURB

c -
EMD



C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
C

C
C
C

C
C
C

C
C
C

C

SUBROUTINE BKLANC(!!,N,Q,PP3,E,P,S,OF,C,X,Y,R,IORTBG;IVV,
1 LOUT,l¶CHEPS)
IRTEGER E,N,Q,PP3,Fi,P,S,IORTHG,IVV,ICUT
DCUBLB PRECISION C(Q,PP3),X(R,Q),Y(N,Q) ,R(P,P),KBEFS

THIS SUBEOUTIBB IRPLEHBNTS TBE BLOCK LANCEOS
RETHOD WITH EEORTHOGONALIEATIOE.  BKLAUC CCilFUTES
A PS-BY-PS ( PS=P*S ) BANDED UPPER 'IRIAEGULAR
HATRIX MS YBICE IY STORES IE COLtlEES 2 TBROUGH P+2
OF THE Q-BY-PM HATRIX C ( TRE DIAGCNAL BBIRG STOBED
II0 TBE FIRST PS LOCATIONS 01' COLUUN 2, TEE PEXT
SUPERDIAGONAL BEXNG STORED IN TBE FIRST PS-1 LOCATIONS
C P  COLUMR 3, AND SO ON ), AND A PS-BY-PS ORTROGCNAL
!'lATBIX XS Ul'iICE IT STORES 18 COLUENS  841 THBOUGE E+PS
OF THE E-BY-Q ARRAY X, ARD A PS-BY-F5 ORTEOGCNAL
RATRIX YS YHICH IT STORES 18 COLUflUS H+l THROUGH H+PS
OP TBB N-BY-Q ARRAY I.

RS CAN ALSO BE REGARDED AS A BLOCK UFEER BIAGCRAL
MATRIX UITE P-BY-F UPPER TRIANGULAR BATEICES R(l), . . . .
R(S) ON ITS DIAGOUAL ABD P-BY-F LOUEB TRIANGULAR
?lATRICES T(2)', . . . . T(S)' ALONG ITS UPPBR CIAGOBAL.

XS IS CORPOSED OF S PS-BY-P ORTRONORMAL EATRICES
X(1) 0 rem, X(S).

IS IS COEPOSED OF S PS-BY-P OR?BONOBl¶AL flATRICES
Y(1) 8 l **, Y(S) 8 UEERE Y(l) IS GIVEN AND SHOULD BE
STORED Ill COLUWNS H+l THEOUGH E+P OF I.

OP IS Tflt NAFIR OP AN EXTERNAL SUBBCUTINE  USED 10
DLFIEB TEE UATRIX A.

IRTE6ER I,I1,I2,3,JMP,J1,J2,K,Kl,L,L~,LLEP,IU
DOUBLE PRECISION !I

L 1I

IL = fi+l
LO = A+P

CCRPUTE  X ( 1 )  = A+Y(l)

CALL OP(E,E,P,X(1,LL),Y(l,LL),.TPUE.)

PACTORIZE X(1) := X(l)*R(l)

CALL ORTHOG(l,Q,H,Ii,P,R,X,IORTEG,IVV,LOUT,HCBEFS)

STCRE R(1) IN C

DO 120 .I * l,P

DO 110 I = 1,J
Jl = J-I+2
c (LW = B (184

1 1 0 CCRTINUE
C

1 2 0  CCNTIIUB
C
C L .GB. 2
C

IP (S.LT.2) GO TO 900



DO 600 L = 2,s
LL = H+(L-l)*P+l
LO = H+L+P
11 = (L-2) *P
I2 = Il+P

COHPUTB A'*X(f-1)

LLHP = LL-P
CALL OP(!!l,N,P,X(1,LLHP),Y(l,LL),.FALSB.)

DO 230 K = LL,LU

COBPUTE Y(L-l)*R(L-1)'

Kl = K-LL+l

DO 220 I = 1,N
T = O.DO

DO 210 3 = A,LU
JHP = J-P
Jl = J-LL+l
T = T + Y(I,3HP)*R(Kl,Jl)

COBTIIOUB

COHPUTB Y(L) = A'+X(L-1) - Y(L-1) l B(L-1)'

Y(I,K) = Y (f,K)-T
CONTINUE

COIITIRUE

l'ACTORIZE Y(L) := T(L)+T(L)

CALL OBTEOG (N,Q,E,LL-l,P,R,Y,f0R~EG,IVV,IOUT,RCHEPS)

STORB T(L)' IN C

DC 320 J = 1,P
Jl = J+Il

DO 310 I = 1,J
32 = P-J+I+2
C(J1.32) = B(I,J)

COBTIBUB

COBTIBUE

CCBPUTE A*Y(L)

CALL OP(CI,U,P,X(1,LL),Y(1,LL),.TBUE.)

DO 430 A = LL,LU

COI!lPUVE X (L-l)*T(L)'

a1 = I(-LL+l

DO 420 I = 1,H

C
C
C

C

C
C
C

C

c

2 1 0
C
C
C

2 2 0
C

2 3 0
C
C
C

C
C
C

C

3 1 0
C

3 2 0
C
C
C

c -



C

4 1 0
C
C
C

4 2 0
C

430
C
C
C

C
C
c

C

5 1 0
C

5 2 0
C

T = O.DO

DO 410 3 = K,LU
JHP = J-P
31 = J-1141
T = T + X(f,J~P)*B(K1,31)

CONTINUE

COHPUTE X(L) = A*Y(L) - X (L-l)*T(L)'

X tI,W = X(I,K)-T
COllTInuE

CCNTINUE

PACTORIZE X(L) := X(L)*R(L)

CALL ORTHOG (t!,Q,A,LL-1,P,R,X,IOR?RG,IVV,LOUT,RCREES)

STORE R(L) IN C

DO 520 J = 1,P

DO 510 I = 1,J
11 = 1412
Jl = J-142
C(Il,Jl) = R(I,J)

CONTINUE

CCNTIRUE

600 CCllTIBUE
- c

900 CCNTfUUE
RETURN
END



C
C
C
C
C
C
C
C
C
C
C

C

C

C

C

SUEROUTIUE OR?AOG(N,Q,R,L,P,R,X,IOBTRG,IVV,LOUT,KCHEFS)
IBTEGER N,Q,H,f,P,IOET!iG,IVV,LOUT
DCUBLB PRECISION R (P,P),X(N,Q)  ,BCBEES

OBTEOG REOBTEOGONALIZBS TEE N-BY-P BATBIX 2 STORED 1111
CCLUKBS L+l TEROUGE L+P Oh TEE N-BY-Q AEBAY X MITE
RESPECT TO TRE VECTORS STORED IN COLUHNS 1 PEBGUGE B
AND COLUKBS (L-IOETEG*P+l) THROU68 L OP TEE RATBIX X
USING GRAB-SCBBIDT  ORTHOGONALIZATION.  TEE tlODIPIED
GRAK-SCHHIDT HETROD IS USED TO PACTOfiIEB TEE RESULTING
KATRIX INTO TEE PRODUCT OF AN N-BY-F ORTEONOBMAL  BATRIX
XOBTH STOBED IN COLUHNS L+l THEOUGE L+P OP X, AND
A P-BY-P UPPER TRIANGULAB ARRAY R.

INTEGER I,IBL,IP1,J,K,KHL,L1,LPl,LPP
IBTEGBB I!lAXO
DOUBLE PRECISIOU SUK
DOUBLE PRBCISIOH DSQRT
IP (P.EQ.0) RETURN
LPl = L41
LPP = L+P

IP (E.EQ.0) GO TO 2 0 0

DC 130 I = LPl,LPP

DO 120 K = 1,E '
CALL INPBOD(N,X (1,1),X (l,K),SUK)

DO 110 J = l,N
X(3,1) = X (J,I) - SUfl*X(J,K)

1 1 0 CONTIRUE
C

1 2 0 COBTINUE
C

130 CCBTIBUE
C

xvv = IVV 4 RIP
C

200 IP (IORTRG.BQ.0)  GO TO 300
IP (L.BQ.H) GO TO 300
x.1 = !lAXO( L-P*IOBTHG+l, H+l )

C
DC 230 I = LPl,LPE

C
DO 220 K = Ll,L

CALL IIYPROD(N,X(l,I),X(1,K),SUB)
C

DO 210 J = 1,N
x (J,f) = X(3,1) - SUK*X(J,A)

21Q CONTIUUB
C

2 2 0 CCBTINUB
C
230 CCNTIIIUB

C
IVV = IVV 4 (L-Ll+l)*P

C
300 CCUTIUUB



C

C

3 1 0
C

C

6 0 1 0
1

320

C
330

340
C

350

C

C

360
C

330
C

DC 400 I = LPl,LPE
SUI! = O.DO

DO 310 3 = 1,N
sun = SOW + X(J,I)**cZ

CGNTINUE

Ir!lL = I-L
IF (SU!¶.GT.HCEEPS)  GO TO 330

URITE(LOUT,6010)
FORBAT(5X,47H *** WARNING l LIHEAR INDEEENDENCE  ?lAY BE LOST,

24E. VECTOR SET TO ZEBC -8)
R(IflL,IML) = O-DO
DO 320 J = 1,N

X (JAI = O.DO
CCNTINUE
GO TO 400

surl = DSQRT(SUB)
R(IML,IUL) = SU8
sun = 1.  DO/SU&l
DO 340 J = 1,N

X (J4 = SUM*X(J,I)
CCNTINUE

IF1 = I+1
IP (IPl.GT.LPP)  GO TO 400

DO 370 K = IPl,LPP
CALL IUPBOD(N,X(l,I),X (l,K),SUf'l)
Kl¶L = K-L
R(XHL,KClL) = SUN

DO 360 3 = 1.1
X (J,W = X(&K) - SUWX(J,I)

CONTIUUE

COITIBUE

400 CCDTIBUB
C

111 = IVV + (P-l)*P/2
BPTUIFN
EUD



SUBROUTINE fNPBOD(N,U.V,SUH)
IBTEGBR N
DOUBLE PRECISION U(N),V(N),SUR

C
C INPROD COHPUTBS TEE INNER PRODUCT OF 2 VECTORS U AND V,
C EACH OF LENGTF! II, AND STORES TEE RESULT IB S.
C

IBTEGER I
SUt¶ = O,DO

C
DC 110 I = l,ls

SUH = sum + u(I)*v(I)
1 1 0  CCETINUB

C
RETURN
END



SUBRCUTINE ROTATE(N,Q,H,PS,L,U,X,T)
INTEGER N,Q,H,PS,L
DOUBLE PRECISION U(Q,L),X(N,Q)  ,T(Q) 1

RCTATE COKPUTBS TEE PIRST L COLUBNS OF TRE HATBIX
XS*QS, UHERE XS XS AN N-BY-PS OB?HCNORHAL WATRIX STORED
IN CCLUKNS H+l THROUGH H+PS OP TEE N-BY-Q ARRAY X AND
QS IS A PS-BY-PS CRTHONORKAL IYATRIX UROSE FIRST I. COLUMNS
ARE STORED IN COLUKNS 1 TEROUGH L CP TEE ABEAT 11. TRB
RESULT IS STORED IN CCLUKNS H*l 'IHECUGH H+L OF X
CVERURITING PART OF XS.

INTEGER I,J,JPH,K,KPR
DOUBLE PRECISION SUM

C
DC 200 I = 1,N

C
C
C

CGKPUTE TEE II-TH EOU 01, XS*QS

DO 110 K = 1,L
SUU = O.DO

C

105
C

1 1 0
C

1 2 0
C

2 0 0
C

DO 105 J = 1,PS
JPB = J+H
sun = SUM + X(I,JPH)*U(J,K)

CONTINUE

T W = sun
CCNTINUE

DO 120 K = 1,L
KPH = K+H
X(I,KPH) = T(K)

CONTINUE

CCNTINUB

EBTUFN
EZID



SOIEROUTIISB  CIVTST(H,N,Q,ii,G,BRRBND,ERRC,OF,C,X,Y,~CCNi,
1 LOUT,T)
INTEGER B,N,Q,H,G,NCGBV,LOUT
DOUBLB PRBCISIOU BBRBND,PRRC
DOUBLE PRBCISION C (Q,2),X(H,Q),?(I,Q),T(H)

CRVTST DBTBBHIUBS WHICH OF TEE P CCI'lPUTBD SINGULAR
VALUES STORED IN TUB SECOND COLU!lN OF C HAVE CCNVERGED.

TEE RESIDUAL RESIDU OF THE (WI)-TH SINGULAR VALUE
IS CCUPUTBD BY

RBSIDU = DSQRT( 2NORH( A*Y(H+I) - X(H+I)*C (1,2) ) **2

+ 2NORH( A'*X(H+I) - Y(H+I)*C(I,2) ) **2 ).

BRRC IS A I'lEASURB OE THE ACCUHULATED ERROR IN THE
H FRBVIOUSLY COflPUTED SINGULAR VALUES AND LEFT AND RIGHT
SINGULAR VECTORS.

UB DBCIDL TEE (H+I)-TH SINGULAR VALUE HAS CCNVERGBD
IF

RBSIDU .LB. E*ERRBND + BRRC,

UEBRB B EQUALS C(I,2) IF TRB LATTER IS GREA'IER THAN 1,
AND 1 OTEBRUISB. BBNCB UB DO A RELAIIVB ERROR TEST IF THE
CCBPUTBD SIRGULAR VALUE IS GREATER YRAN 1, AND AN ABSOLUTE
ERROR TEST CTHBRUISB.

TEE CONVERGENCE TEST IS PERFOR?lEC IN ORDER CN TEE (H+l)-TH,
(H+2)-TH, . . . COMPUTED SINGULAR VALUES. AS SOON AS A CCUPUTBD
VALUE FAILS THE TEST, RETURN IS RACE TO TEE CALLING ROUTINE.

NCONV IS THE NUMBER THAT HAS CCUVEBGED. IF NCONV=O,
TEEN lOIB HAS CONVBEGBD.

11TB6BR I,IPH,K,L,PT
DCUBLB PRBCISION RBSIDU,B,SUE
DOUBLB PRECISION DSQRT

SUB = O.DO
FT = G-H

DO 200 I = 1,PT
K=I
IF (C(I,2).BQ.O.D0) GO TO 300
IPH = I+H
CALL OP(?'l,N,1,T,Y(1,IPH),.TRUB.)

RBSIDU = O.DO
DO 110 L = l,b

B = T(L) - C(I,2)*X(L,IPH)
RBSIDU = RBSXDU + B+*2

CONTIRUB

CALL OP (E,N,l,X(l,IPH) ,T,rPALSE.)

DO 120 L = 1,ll
B = T (U - C (1,2)*Y (L,IPH)
RBSIDO = RBSICU + B*+2

CORTINUB

TEST ?OR CONVBRGBRCB

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C

C

C

110
C

C

1 2 0
C
C
C



C

6 0 1 0
1

C
1 3 0

6 0 2 0
2

RESIDU = DSQRT(RBSIDU)
B = C(I,2)
IF (B.LT.l.DO)  B = l.DO
IF (RBSIDU,LE.B*ERRBND+BRRC) GO TC 130

URITB(LOUT,6O10)K,RBSIDU
POR!lAT(SX,4H  It =,14,511,9H RBSIDU tJPDlS.5,

368 l ** COHPUTBD VALUE REJECTED *S+)
GO TO 300

URITB(LOUT,6020)K,RBSIDU
PORHAT(SX,QH  I( =,14,5X,98 RBSIDU =,lPDlS.S,

36H *** CGHPUTED VALUB ACCEFTED ***)
SUH = SUH + RBSIDU**2
IF (I.BQ.PT) K = K+l

200 CGNTIKUB
C

300 NCONV = K-1
IF (K.BQ.1) RETURN

C
BRRC = DSQRT(BRRC**2+SUH)
RE'IUFB
END



C
C
C
C
C
c
C
C
C
c
C
C
C
C
C
C
C
C
C
C

C

C

C

C

SCERCUTINE FCHCIC(Q,E,G,NCONV,P,S)
Ib?EGEli c,H,G,NCCNV,F,S

EASED ON TRE VALUES CF Q, H, G AND NCCNV,
FCHOIC CHOCS75S NEW VALUES FOR P ANC S, THE ELCCK SIZE
AKC NUMEER OF' STEES FOR IRE ELCCK IANCZCS HETHCD.

TEE STRATEGY IS : IF IEB PREVIOUS ELCCE SIZE IS
GFEATER THAN TEE BUI'!EEF CF SINGULAR VALGES IC BE
CCBPUTED, THEN THE NEW ELOCK SIZE EgUALS 'IRE EFBVIOUS
ELCCK SIZE f4INUS 'IRE LUHEBA OF SINGULAR VALUES TBAT
HAVS CCNVEFGED IN THE CUFBENT ITERATICN, C'IHBRYISE
'IL-E h'EW BLOCK SIZE IS CRCSBN TC) EE TEE SBALIER CF 'IRE
TWC VALUES : 1) THE PfiEVIOUS EZCCK SIZE, ANC 2) 'IHE
A;C?E!ER OF SINGULAR VALUES TO BE CCBEUIEC. S IS CHCSEN
p.S LARGE AS PCSSIELE SUEJECT 'XC STORAGE CCNSTRAINT,
EUT ITS VALUE IS ALWAYS AT LEAST 4.

H IS THE NUBBEF CF SINGULAR VALVES AND LEPT ANE RIGHT
Slh'GULAR VECTOFS THAT HAVE ALREADY EEEN CC?lEUTEC ANI; G
is TfE REQUIRED NURPEB. NCCNV IS 'IRE EUBEER CP SINGULAR
VALUES AND LSPT AND RIGHT SINGULAR VECTCRS THAT HAVE
CCNVERGED IN TAB CUFFENT ITERATION.

Th?ECER HT,PT

H3 = H + NCCNV
IF (E.LE.G-H) GO 10 110

F F= - NCONV
s = VW-W/F
FEIUEN

110 E’I = G - HT
IF (F.GT.PT) P = FT
2 = K-W /P
IF (S.GE.2) RETURN
E = ((;aHT)/2
$ = (Q-W /P

FElrJfiN
E6C



SUEROUTINE RANDC??(N,Q,F,H,X,ISEED)
INTEGER N,Q,P,H,ISBED
CCUBLB PRECISION X(N,Q)

RAND08 COf'lPUTES AND STORES A SE(1UENCE CF F*N PSEUDO-
EiANDCH INTEGERS ( VALUE BETUBBN 0 AND 2147483647 ) IN
CCLUHNS fit1 THBOUGH H+P OF THE N-EY-Q ARRAY X.

IN'LBGER I,L,LPH
DC 130 L = l,P

LFH = L+H

DO 120 I = 1,N
ISBBD = ISEED* + 4538C624i

THE STATEHBNT NUHBBR 110 IS TG PREVENT UNWANTED,
OPTIUIZATICN BY TEE COMPILER.

1 1 0 IF (1SBBD.LT.O) ISBBD = ISEEC + 21474ie3647 t 1
X(I,LPH) = ISEED

1 2 0 CONTINUE
C

130 CCNTINUB
RETUFN
END



SUBE?OUTINE SVBUTN (NDIa, I, B, t¶P3, C, NO, NV, 0, V, KEEPS, MRR)
c
CSt*SStfS*StSS**S+S*********** START OF SVBUTH S*t+***tC+**S*S+SSSS*****
c
C

C
C
C
c
C
C
C
”

:
C
C
,-b
P

E
C
C
C
C
C
C
c
C
C
C
C
C
C
C
m

i
C
C
C
C
C
c
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

INTEGER IIDICI, 1, a, RP3, NU, UV, IEBR
DOUBLB PRBCISIOP C(NDIM,UP3), U(RDIB,EU), V(NDIB,UV), l!CEBPS

u .* .~*~-~*~***-.***~-~***-**************************~-*******"***-*

CALCULATE TEE SIRGULAR VALUB DBCOEPOSfTIOIf  OP A BANDED UPPBR
TRIARGULAB MATRIX

YRITTBN BY: M. L. OVERTOB
COMPUTBR SCIEUCE DBPARTBBUT
STAMFORD UIIVBRSITY
JAUUARY 1976

LAST UPDATB: JA1oUARY 1976

- . . A I~~******-~***~*~**~***"*-**-****"~-*****~*--*-*-*************

THIS WUTIYE COtI!lPUTES TEE SIRGULAR VALUE DBCOfiPOSITION  OF A REAL
N*N ?lATRIX A, I. E. IT COHPUTES MATRICES 0, S AUD V SUCH TEAT

A = u * s + VT ,
UHERB

LJ IS AN 11+1 BATRIX AllD UT * 0 = I, (UT = TRAUSPOSB
OF w v

V IS AU U+U MATRIX AID VT + V = I, (VT = TRAUSPOSE
or VI 8

ARD S IS AN U*U DIAGOUAL BATRIX.

THE CALCULATION IS PERFOBBED 119 '1110 STEPS:

1 . RBDUCE THE BANDED UPPER TRIAUGULAR EATRIX TO AU UPPBR
BIDIAGONAL LJATRIX USIUG GIVEUS TRARSFORBATIONS. THIS IS
DOUE BY SUBROUTIRE BIBARD.

THE EETBOD USBD IS SI8ILAR TO THE l¶BTEOD USBD FOR
TRIDIAGONALIZIUG A SYEMETRIC BAMDBD BATRIX, DESCRIBED IN
H. RUTISHAUSER, 011 JACOBI ROTATIOU PATTBRYS, PROC. OF SY?IP.
11 APPLIED MATE., VOL.XV, BXPBRIMEUTAL ARITE., HIGH SPBBD
COBPUTIEG, ARD IlATE. (1963). FOR ?URTBBR DBTAILS SEE
COBBBUTS AT BEGIMBIRG 01) THB SUBROUTINE.

2. DIAGORALIZB TEB BIDIAGOUAL LIATRIX TO OBTAIU THE SIUGULAR
VALUBS. THIS IS DOBB BY SUBROUTIUB SVDBI.

TEE HBTEOD OSBD IS A VARIART OF THE QR ALGORITEB,
DESCRIBED Ill: GOLUB AUD REIUSCH,SIUGULAR  VALUE DECOl!lPOSITION
AYD LBAST SQUARES SOLUTIOR, MUMBR. BATH. 14, 403-420  (197(l),
SECTIOU  1 . 3 .

me..1 r.~**~*****-***-**********-*-*****~***-*****-*****-*******-*-*-

TEE ROUTIME IS III DOUBLE PRBCISIOU

a.m --************r****-********~****-*******************"~***"*-*

THE SPEED OP TEIS ROUTIlE COULD BB IMPROVED BY IMPLBI!lENTItfG



.L
c
c
C
C
C
C
C
C
2
C
c
C
C
c
C

;:
C
C
C
C
*

:
C
C
c
C
C
C
C
,!
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

PAST GIVENS TRANSPORMATIOUS

- . . L.I*******II***I-***********~*****-***************~***********
ADDITIOUAL SUBROUTIUES REQUIRED: BIBAUD, VITA ROTROU AID ROTCOL

SVDBI, UITH DROTAT

m-e -.~******CII***********************************~******~*******

THE FORMAL PARAMETERS ABE:

NDIM - TEB QUANTXTY USED TO DECLARE TEiB FIRST DIMBUSION OF TEE
A R R A Y S  C,U,V (UDIM .6B. Ii)

111 - TEE ORDER O? THE BAUDBD UPPBR TBIAUGULAR MATRIX A

8 - THE UUMBBR OF SUPBRDIAGOUALS IU TEB MATRIX A:
A(I.3) = 0 FOR J .6T. I+M AID J .LT. I

HP3 - THE UUMBER O? COLUMUS IU TRB ARRAY C. MUST BB SET TO 8+3.

C - AU UDIM l BP3 ARRAY UHICE HOLDS THB UOUZERO ELEMEUTS OF
O? A.
THE DIAGONAL IS STORBD III TEE FIRST U BLBMBNTS OF
COLUMU 2, TEE UEXT SUPBRDIAGOUAL III THB ?IRST U-l
ELEUENTS OF COLUMU 3, AUD SO 01 UP TO TEB LAST
UORZBR3 SUPERDIAGOUAL BE116 STORED II THB FIRST U-M
ELBMBBTS OF COLUMU B+2. COLUMUS 1 AUD M43 ARE ARBITRARY.
TEUS:

A(I,J)=C(I.J-1+2), I .LE. J .LB. I+M.
TEIB ROUTIUB RBTURRS TEE DIAGOMAL OF TEE MATRIX S,
I. E, THE SIUGULAR VALUES OF A, 110 DESCBUDIUG
ORDBR, II COLUMB 2 OP C - THUS TBE
SIUGULAR VALUBS UILL BE:

c (b2) .GB. c (&2) .GE. l ** .GE. c W,2)

NU, NV- IUTIGER VARIABLES. TEE UUMBBR OF COLUMUS IU TEE
ARRAYS U AUD V. SET NU TO U IP TEE MATRIX 0 IS DESIRED,
OR SET RU TO 1 I? 0 IS UOT DBSIRED, SET UV TO U
IF THE MATRIX V IS DBSIRBD, OR SBT IV TO I I? V
IS ROT DESIRED,

U - DIAL UDIM * HO ARRAY. 1r UU = 1, TEB MATRIX U IS COMPUTED
ABD STORED II TEB ARRAY U.

V - RBAL ID10 * UV ARRAY. Il! uv * 1, THB MATRIX V IS COMPUTED
ARD STORED II TEE ARRAY V.

IERR - ERROR PLA6. TEE ERROR CODES RETURUED HAVE TBE POLLOUIRG
MBARIRGS:

IBRR - 0: UORMAL RETURH
IERR * 2: BRROR - UP3 DOBS UOT BQUAL M+3.
IERR - 3: ERROR - MU IS UOT SET TO U OR 1.
IBRR = 4: ERROR - IV IS UOT SET TO N OR 1.
IERR - 5: BRROR - U IS GREATER TEAU UDIM.

w aa .'~~***~******~********~*******1)~~****I***********1****~******

LOGICAL UITEU, UITEV



C
C

C
C
C
C
C

C
C
C

C
C

P

INTEGER I,UMl,UMI

CHECK IUPUT PARAMBTERS
IERR = 0
IF (MP3.UB.H+3)  60 TO 102
IF (UU.UB.1 .AUD. lfU.UE.U) GO TO 103
IF (UU.BQ.l) UITEU = .?ALSB.
IF (UU.EQ.U) UITEU = .TRUE.
IF (UV.UE. 1 .AUD. UV.UE.1) 60 TO 104
IF (UV.BQ.1)  UITEV = .?ALSB.
IF (UV.BQ.lt)  UITEV = .TRUB.
IF (U.61.UDIH) 60 TO 105

TURN OFF URDBRPLOU
CALL BRRSBT(208,256,-1,1,1,0)

BIDIAGOUALIZB
CALL BIBABD (RDIM,R,B,MP3,C,RU,BV,UITEU,WITEV,U,V)

TH'E SUPRRDIAGORAL  COLUER MUST BE SEIPTBD  DOUU ORE ELBMERT II C
BBPORE CALL106 SUBROUTIRB SIDBI

YE l=U- 1
DO 20 I=l,RMl

UIII = U-I
20 C(UBI+1.3) = C(UMI,3)

C (1,3) = O . D O

DIAGOUALIZB
CALL SVDBX(RDIM,R,C (1,2),C(1,3),UU,UV,UITHU,UITEV,U,V,MCEEPS)
RETURU

b

C- SET ERROR ?LA6S
1 0 2 IBRR - 2

RETURU
1 0 3 IBRR = 3

RETURU
104 IERR = 4

RETURl
105 IERR = 5

RBTURU
BUD



SUERCUTINE BIBANC(NDfM,N,M,MP3,C,NU,NV,UI?HU,UITHV,U;V)
C

C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
c
C
C
C
C
C
C
C
C
C

- c
C
C
@
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

INTEGER NDIM, N, 8, MP3, NU, NV
LOGICAL UITHU, UITHV
CCUBLE PRBCISICN C(NCIM,MP3), U(NDI?¶,NU), V(NDIM,NV)

EfCUCE A BANDED UPPER TRIANGULAR HAIRIX TO A BICIAGCNAL MATRIX
BY GIVENS TRANSFORMATIONS, PRESERVING TBE SIUGULAR VALUES.

URITTEN BY: 8. L. OVEFTCN
CONPUTER SCIENCE DEFAR'LHENT
STANFORD UNIVERSITY
JANUARY 1976

LAST UPDATE: JANUARY 1976

*********LI**-*I*III-~~***--**************~*************~*********

IRE EOUTIUE IS IN DOUBLE PRBCISICN

ADDITIOUAL SUEBOUTINES REQUIRED: ROTRGU AND ROTCOL

**~II**********III***~~****************-*~*************~~*~*****

TEIS SUBROUTINE COMPUlPS TEE MATRICES U,J AND V SUCH TRAT

A =U *J*VT,
YEERE

U IS AN N*N HATRIX AND UT * U = I, (UT = TRANSPOSE
OF w,

V IS AN N*N MATRIX AND VT * V = I, (VT = TRANSPOSE
OF 8) 8

ADD J IS AN I*:# UPPER EIDIAGGNAL HATRIX,

'iEE METEOD USED IS SIMILAR TO TRE MEIHOD USBD FOR
TRIDIAGOUALIZING  A SYMMETRIC EANDED MATEIX, DESCRIBED IN
H. RUTISHAUSER,  CN JACCBI ROTATION PATTERNS, FRCC, OF STEP.
IN AFPLIBD MATH., VOL.XV,  EXPERIMENTAL ABITR., EIIGH SPEED
CCMPUTIUG, AND MATH. (1963).

TEE PORMAL PARAMEIEBS ARE:

ED18 - THE QUANTITY USBD TO DEClARE 'ItBE FIRST DIWENSIGN OF TRE
ARRAY C (UDIM .GE. U)

1 - THE ORDER OF THE RAIDED UPPER TRIANGULAR MATRIX A

8 - TEE UUMBEP OF SUPERDIAGONALS IN TEE MATRIX A:
A (1, J) = 0 FOR 3 .GI. I+8 AND J .LT. I

HP3 - THE NUMBBR O? COLUMNS IN TBE ARRAY C, BUST BE SET TO 8+3.
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C
C
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C
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C
C
C
C

C
C
C

c - AN NDI?! * HP3 ARRAY WUICR BCLCS TBE NCNZERO ELEriENTS OF
OF A.
TAB DIAGONAL IS STORED IN TRE FIRST N ELEUENTS OF
COLUHN 2, TRE NEXT SUPERDIACCNAL IN THE PIRST N-l
ELBRBNTS CP COLUHN 3, AND SO CN UF TO THE LAST
NCNZBRO SUPERDIAGONAL BBIN6 STORED IN THE FIRST N-H
BLBHBNTS OF COLUHN H+2. CCLUHNS 1 AND H+3 ARE ARBITRARY.
THUS:

A(I,J)=C (I,+1+2), I .LE. J .LE. I+H.
THE ROUTINE RETURNS TEE BIDIAGCNAL BATRIX J WITH THE
DIAGONAL IN THE FIRST N ELPHERTS OF COLURN 2 OF C AND
THE SUPERDIAGONAL IN TRB FIRST N-l ELBWENTS CP
COLUMN 3 OF C.

NU,NV- INTEGER VARIARLRS. TBE NUMBER OF COLUHNS IN TBE
ARRAYS U AND V. SBT NU TO N IF UITHU = .TRUE., OR SET
NO TO 1 CTEBBUISE. SIHILARLY SET NW TC N OR 1.

,UITHU,UITHV - LOGICAL VARIABLES. fP UITHU = .TRUE., THEN
THE HATRIX U IS COHPUTBD AflD STORED IN THE ARRAY U.
IP UITBV = .TRUB., TBEN TEE HATRIX V IS COHPUTED AND
STORED IN THE ARRAY V.

u - REAL NDIH * NU ARRAY.

V - REAL NDIH * NV ARRAY.

INTEGER Nf!2,I,J,R,30,JOPP,KA

C
C

C
C

C
r
b PASS COPN TRB ROUS OF A

INIIIIALIZB U,V
IV (.NOT. UITUU) GO TO 81
DC 80 I=l,N

DO 70 J=l,N
70 U(I,J)=O.DO

U(I,I)=l.DO
80 CONTINUE
81 CONTIEUB

IF (.NOT. UITEV) GO TO 101
DO 100 I=l,N

DO 90 J=l,N
90 V(I,J)=O.DO

V(I,I)=l.DO
100 CONTINUB
101 CCNTINUB

HANDLB DBGBNBBATB CASE
IV (a.LT.2.oR.R.Ll.3) RBTURN
NU2=N-2

ZBRO UORAING SPACE ON LEFT AND RIGHT SIDES OF C
DC 120  I=l,N

C(I,l)=O.DO
C(I,BP3)=O,DO

120 CONTIIIUB



D C  4 0 0  I=l,NH2
C LOOK AT TXE ELEHENTS OUTSIDE ?HE BICIAGCNAL PART
C FOR K PROH H STEP -1 UNTIL 2...

DO 300 KK=2,H
K=H+2-KK

THE POLLOUING LOOP PIRST AINIHILATES 'IRE CHOSEN ELEHENT
BY A COLUl!N ROTATION UITH JOFP=K. THIS CREATES A NEW
BLBHBNT TO BE ZEROED BY A BOU EOTATICN UHICE CREATES A
NBU ORE TO BE ZEROED EY A COLUHN ROTATION UITE JOFF=M+l
AND SO ON UNTIL THE BLERENT IS CHASED OFF THE l¶ATRIX.

JO=I+K
JOPP=K
IF (JO.G?.N) GO TO 201
DO 200 J=JO,N,H

C ROTATE COLUBNS TO ANNIHILATE ELEHBNT
CALL ROTCOL(NDIH,N,H,HP3,C,NU,NV,UITHU,UITHV,U,V

2 ,J,JOFF)
JOPP=B+l

C ELEMENT CREATED BELCU DIAGONAL - ZERO IT AND
C CREATE ANOTNER AROVE EY FOTATIRG RCUS

CALL ROTROU(NDID,N,f.!,HP3,C,NU,NV,UITHU,UITHV,U,V
2 NJ)

200 CONTINUE
201 CONTINUE
300 CONTINUE
400 CONTINUE

FETUFN
END



SUERCUTINE ROTBOU(NDII!!,N,R,HP3,C,NU,NV,UITRU,UXTHV,U,V,~)
APELY TO HATRIX A ON THE LBPT SIDE A GIVENS TRANSFORHATION
TO ROTATE ROUS I AND I-l SUCH TEAT TEE SUBCIAGGNAL  ELEMENT A(I,I-1)
IS ANNIHILATED

RECALL THAT A IS STORED IN C UITH
A(I,J)=C(I,J-1+2) I .LB. J .LE. I+R

INTEGER NDIE,N,M,KP3,NU,NV,I
DCUBLE PRECISION C(NDII'l,HP3),U(NDIM,NU),V(NDIH,NV)
LCGICAL UITHU,UITHV
INSEGER K,HPl
CCURLB PRECISION X,Y,Z,COST,SINT,TEKF,S,DARS,DSQRT

X=C(I-1,2)
Y=C(I,l)

XIP Y IS ZERO THEN THERE IS NOTHING TC DO
IF(Y.EQ.O.DO) RETURN
EBbFOE Z=SQRT(X*X+Y*Y):  COSTT=X/Z; S?NT=Y/Z WITH SCALING TO
PREVEBT Ul!JDBRFLOU
S=DAES(X) +DABS(Y)
CCST=X/S
SINT=Y/S
Z=DSQRT(COST*COST+SINT*SINT)
CCST=COST/Z
SINT=SINT/Z
C(I-1,2)=z*s
C(I,l)=O.DO
I!Fl=H+l
DO 100 K=l,HPl

IP(I-l+K.GT.N)GO TO 100
TBHP=C (I-t,K+2)
C(I-l,K+2)=COST*TBHP + SINT *C(I,K+l)
C(I,K+l)---SINT+TBHP + COST*C(I,K+ 1)

1GC CCNTINUE
C
C UPCATE U (ACCUHULATB  TRANSPORHATIONS) - BUST UPCATE U ON THE
C RIGHT BECAUSE U IS IANTED, NOT U TRANSFOSEC

IF (.EOT. UITHU) RETURN
DC 200 K=l,N

TBUP=U(K,I-lj
U(K,I-1) =COST*TBHP + SINT*U(K,I)
u VW) =-SIllT*TBUP  + COST*U(K,I)

2 0 0 CONTINUE
EETUFN
END

C



C

C
C

SUERCUTINE R3TCOL (NDIH,N,H,HP3,C,NU,NV,UI'XHU,UXTHV,U,V,J,JOFF)
AFFLY TO HATRIX A CN THE RIGHT SIDE A GIVENS TRANSFORHATION TO
RCTATE COLUHNS 3 AND J-1 SUCH THAT THE ELEHENT A(J-JOFP,J) (IN THE
UPFER TRIANGLE) IS ANNIHILATED.

RECALL THAT A IS STORED IN C WITH
A(I,J)=C(I,J-I+2) I .LE. J .LE. I+H

INTEGER NDII!,N,H,HP3,NU,NV,J,JOF'F
DOUBLE PRECISION C(NDIH,HP3)  ,U (NDIH,NU) ,V(NDIH,NV)
LCGICAL UITHU,UITHV
INTEGER I,IPK,K,JHIE1,JHIP2,JKl,JK2
DCUBLB PRECISION X,Y,Z,COST,SINT,TEHP,S,DABS,DSQRT

I=J-JOFF
JRIPl=J-I+1
JHIP2=J-I+2
X=C(I,JHIPl)
Y=C(I,JHIP2)
IF Y IS ZERO THERE IS NOTHING TO CO
IP(Y.BQ.O.DO) RETURN

FERFORH Z=SQRT(X*X+Y+Y); COSTT=X/Z; SINT=Y/Z UITH SCALING TO
PREVENT UNDERPLOU
S=CAES(X) +DABS(Y)
CCST=X/S
SINT=Y/S
Z=DSQRT(COST*COS!t+SINI*SINT)
CCST=COST/Z
SINT=SINT/Z
C(I,JHIPl)=Z+S
C(I,JHIP2)=O.D0
DO 100 K=l,JOPP

JKl=JHIPl-K
JK2=JHfP2-K
IPK = I+K
TEKP=C(IPK,JKl)
C(IPK,JKl)=COST*TBWP  + SINT*C(IFR,JK2)
C(IPK,JK2) =-SINT*TERP + COS!C*C(IPK,JK2)

100 CONTINUE
C
C UFfATE V (ACCUHULATB TRANSFORHATIONS)
C HUST UPDATE V ON THE RIGHT SINCE V IS DESIRED, NOT V ?RANSPOSED

IP (.NOT. WITHV) RETURN
DO 200 K=l,N

TBHP=V(K,J-1)
V(K,J-l)=COST*TBHP  + SINT*V(R,J)
V VLJ) =-SINT*TBHP + COST*V(K,J)

200 CCUTINUE
RETUFN

C
CSS+S~S~SSS~S+S*S+SS***********  BNJ) OF BIEANI) $*$*$$$$$$$****$**$$**~***

- END



SOERCUTINE  SVDEI (NDIH, N, S, T, NO, NV, UI'XHU, UITHV, Uti V, ETA )
C
CS+S*S+StSSS+SSSSSSSSSSSSSStS+  START OF SJCBI $~*$$*$*$$$*$*$$$$$$******

;:
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THIS IS ESSENTIALLY THE SECOND HALF CF SUERCUTINE DSVD,
A SINGULAR VALUE CECCtlPOSITION ROUTINE IN TEE CSD LIERBRY.

TEE EOUTINE IS IN DCUBLE PRECISION.

CSVD ORIGINAL FRCGRAHHER: R. C. SINGLETCN
DSVD 360 VERSION BY: 3. G. LEWIS
rSVD LAST REVISICN: JANUARY 1974
SVCBI EXTRACTED EY: H. L. OVEETCN
SVCBI EXTRACTED IN: AUGUST 19'75
SVCBI LAST FEVISIGN: SEFTEBBER 1 9 7 5

-----....-..-...--.-1-............................-..--....-----.

THIS SUBROUTINE CCHFU'IES TRE SINGULAR VALUE DECCflPOSITION
CF A REAL BIDIAGONAL N*N HATRIX 3, I.E. IT COHPUTES HATRICES
P, S AND Q SUCH TAAT

3 = F *S *QT,
EEERE

P IS AN N*B HATBIX AND FT * P = I, (PT = TRANSPOSE
OF PI l

Q IS AN N*N HATRIX AND QT * Q = I, (QT = TRANSPOSE
OF Q) l

AND S IS AN N*N DIAGCNAL HASEIX.

'LEE METHOD USZD IS A VARIANT CF ?HE QR ALGORITHH.
REFERENCE: GOLUB AND RBINSCH,SINGULAR  VALUE DECOHPOSITION
AND LEAST SQUARES SOLUTION, NUHEIi. HASH.. 14, 403-420 (197(l),
SECTION 1.3.

DESCRIPTION OF PARAHBTBRS:

S = REAL N*l ARRAY. ON ENTRY S CONTAINS THE MAIN DIAGCNAL OF 3.
-THE ROUTINE REPLACES THIS BY TEE DIAGCNAL GP THE HATRIX S,
I.E., TAE SINGULAR VALUES CP 3 IN DESCENDING ORDER.

T = REAL N*l ARRAY. ON ENTRY T CONTAINS THE SUPBRDIAGCNAL OF J
IN ELEMENTS 2,..., N; THE FIRST ELEMENT IS ARBITRARY.
THE ARRAY IS DESTROYED BY THE ECUTINE.

N = INTEGER VARIAELE. TEE NU9BEB OF ELBHENTS IN ARRAYS S AND T,
I.E. THE ORDER OF THE BIDIAGONAL LIATRIX J.
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NO, NV = INTEGER VARIABLES. TBB NUHBER OF CCLUBNS IN TRB
ARRAYS 0 AND V. SET NU TO N IF UITHU = .TRUB., '1 OTRBRUISB.
SIMILARIY SET NV TC 19 OR 1.

UITHU, UITHV = LOGICAL VARIABLBS. IF UITBU = .TRUB., THEN
THE MATRIX U SUPPLIED IN TRB ARRAY 0 IS POSTl¶ULTIPLIBD
BY TBB 4ATRIX P.
IF UITEiV = .TEUE., TRBN TRB RATRIX V SUEELIBD IN TEE
ARRAY V IS POSTtlULTIFLIED BY IRE MATRIX Q.

U = BBAL NDIH * NU ARRAY.

V = REAL NDIH * NV ARRAY.

SUBROUTINR DSVD fS A RBAL VERSION OF A FORTRAN SUEROUTINE
BY BUSINGBR AIID GOLUB, ALGORITEH 358: SINGOLAR VALUB
DECOMPOSITION OF A CClPLBX MATRIX, COMH:'.  ACM, 9. 12,
NO. 10, PP. 564 - 365 (OCT. 1969).
UITH RBVISIONS BY RC SINGLBTOU, HAY 1972.
----.--*----~**-*-*--*-~.**.~~..-~.--**~**....~~--.-...-.-*.~....

DOUBLB PRBCISION 8, U, CS, SN, F, X, BPS, 6, Y
DCUBLB PRBCISIOK 8, Q
DOUB1B PRECISION DSQET, DABS, DHAXl
INTB6BR I, J, K, L, Ll

S(1) =O.DO

THIS CALCULATION O? EPS IS TAKEN FROH TEE RIDDLE OF TEiB FIRST HALF
OF DSVD

EES * O.DO
DO 50 K=l,N

50 EFS = D8AXl(BPS,CABS(S(K)) + cABS(T(K)))
TCLBEANCB FOR NBGfIGIBLB BLBlSBNTS

100 BPS = BPS * ETA

TRB REST OF THE PROGEAK IS TEE SECOND RAW OF DSVD

QE DIAGOBALIZATICR
K = II

TEST FOR SPLIT
230 L = K
240 I? (DABS(T(t)) .tE. tPS) GOT0 290

L=L-1
IF (DABS(S(L)) .GT. BPS) GOT0 240

C
C CAICELLATION

CS - O.ODO
SB = l.ODO
Ll* L
L=L+1
DO 280 I = 1,K I

* SN * T(1)
LI, = CS l T(1)
IF (DABS(F) .LB. EPS) GOT0 290



H = S(1)
u = DSQRT (F*P + H*H)
S(X) = w
cs = H / u
SN = -P / Y
IF (UITHO) CALL DBOTAT (0(1&l), tI(f,f), CS, SN, R)

28C CONTINUE
C
C ?EST FOR CCNVERGENCE

290 Ii = S(K)
IF (L .EQ. K) GOTC 360

/ C ORIGIN SHIFT
x = S(L)
Y = S(K-1)
G = T(K-1)
H = T(K)
F = ((Y - up (Y + W) + (G - H)*((G + H)) / (2,ODO*H*Y)
G = IiSQRT (P*P + l.ODO)
IF (I? .LT. O.OCO) G = -G

F = ( (X - ii) * (X + W) + (Y / (P + G)- H) *H) /X
C
C QR STEP

cs = l.ODO
SN = l.ODO
Ll =I,#+1
DC 350 I = Ll,K

G = T(I)
Y = S(I)
H = SN * G
G = CS * G
la = DSQRT (E*H + P*F)
T (I-l) = U
cs = p / u
SN = H/U
F = x*cs + e*srs
G = GWS - X*SN
El = Y * SN

tF=&;HS,S CALL DROTAT (V(l,f-1) l V(l,U,  CS, SN, W

U = DSQRT (E*H + l-F)
s (I-1) = u
cs = p/u
SW = H/U
P = CS*G + SN+Y
X = CS*Y - SN*G
I? (UITHU) CALL DRCTAl! (8(1,1-l), U(l,f), CS, SN, N)

350 CONTINUE
C

T (L) = O.ODO
T(K) = P

- S (K) = X
GCTO 230

C
C CCNVERGENCE

36C IF (ii .GE,  O . O D O )  GUT0 3 8 0
S(K) = -U
IF (,NOI.YITHV)  GOT0 380
DO 370 3 = 1,N

370 V(J,K) = -V&K)



380 K = K - 1
IF (K . NE. 0) GO TO 230

C
C SORT SINGULAR VALUES

DO 450 K = l,N
6 = -1,ODO
DO 390 I = K,N

IF (S (1) .LT. G) GOTO 390
G = s (1)
J= I

390 CONTINUE
IF (3 .EQ. K) GO?0 450
S (3) = S(K)
S(K) = G
IF (.NOT.UfTHV)  GOT0 410
DO 400 I = l,N

Q = V (LJ)
v U:,J) = V(I,K)

4 0 0 V&K) = Q
410 IF (.NOT.UITHU)  GOT0 430

DC 420 I = l,N
Q= U V,Jl
u (1, J) = U(I,K)

420 W*,K) = Q
430 COlllTIllUE
450 CCNTINUE

C
RETUI;N
END



SUBROUTINE DROTAT (X, P, CS, SN, N)
INTEGER N
COUBLE PRECISICN CS, SN, X(B), Y(N)

C
C

DCUBLE PRECISICN XX
INTEGER J

C
C

DC 10 J = l,N
= X(J)

::J, = XX*CS + Y(J)*SN
10 Y 13) = Y(J)*CS - XX*SN

RETUFN
C
CS~SS*S*S**S*~StSS*t***********  END CF SVrBI +**~~SSSSSS~SS**SSSf*******
C
CS~**S*SS**SS~SSS*SS***;*******  END OF SVBu]TW S~S~SSStSSSSS*SS*S********
C

E I,D



FICPEF LENGTHS OF !lA'IFICES :

D ((;),X(fi*Q)  ,YtK*C)

CCUBLE PRECISICN D(20),X(8000),Y(2OGO),EPS
1E;IEGER I,IECOCE,IORTHG,H,M~AX,~,N,G,FIKIY,~
EB'XEFNAL AX

C
CCKMCN A(3000),IINDEX(3000)  ,JINDEX(3000),NCATA
LCUBLE PRECISIGN A
16TEGEB IINDEX,JIRDEX,KDATA
IhTECER K,KFl,KPS,KPJ,NCARD,NLATA

C
C
C
C

C
C
C

501c
C

5020

1 0
C
C
C
C

1 5
C

1 7

ICUT IS CUTPUT UNIT NU?lBER
tiCtEES IS MACHIIE PRECISICN

IF;!iEGER LOUT
DCUBLE PRECISICN ECBEPS
IA’IA LOUT/6/
CATA WCEEFS/2,22C-16/

&CARE XS NUHBEF OF CATA CARDS TO EE READ

FEAD (5,501O) I¶,N,KCARD
PcEnaT(3I5)

K=O
CC 1C I = 1,NCARC

KEl = K+l
KF5 = K+5
READ (5,502O) (IINDEX (L) ,JINDEX (L),A(I),L=KEl,KPS)
POE?u4'I(5(213,P10.6))
K = K+S

CCNTINUE

NfATA IS NUKBER CF IiCN-ZE3C ELEMENIS IN A
IINDEX = 0 SIGNIFIES END OP DATA IIEUT

BCATA = K
K = K-5
DC 15 J = 1,5

KEJ = K+J
IF (IINDEX(KPJ).G'1.0)  GO TO 15
NfATA = KFJ-1
GC TO 17

CCNTINUE

CCNTINUE
c = 10
EINIT = 2
G = 9
C!!AX =  2 0 0 0
EES = l.D-3
H 0
ICiTRG = 0



C
WFITE(LCUT,6O1O)f!l,N,Q,FINIT,G,!dHAX,EPS,R,IOFTHG

6Olc) FCEHAT(24H INITIAI EARAHETEES . . . /fL
1 4H ?! =,14,tX,4H N =,14,5X,4H Q =,14,5X,
2 8H PINIT =,14,5X,(lR  G =,14/5X,'iH WMAX =,15,5X,
3 6H EPS =, lEDlO,J,SX,4H  R =,14,5X,9B IORTRG =,X4)

C
CALL HAXVAL(R,N,(~,PIVIT,G,!~RAX,EPS,AX,H,~,X,Y.IOFITHG,

1 LOUT,t!CREPS,fECCDE)
C

UFITE(LOUT,6020)
604C FCFHAT (35H ***** USING ELOCK LANCPCS *a*** )

W6ITE(L0UT,603O)H,IECOCE
6030 FCFHAT(8H *a R =,X4,13)1. ** IECODE =,14)

IF (R.EQ.0) STOP
UbITE(LOUT,6040) (L(I),I=l,H)

6040 FCFMAT(20H SINGULAR VALUES . ../5H *+ ,6(1P~D25,15/5X))
SlCP
END



C
c
C
C

LSCEFCUTINE AX(M,N,P,U,V,CRIG)
ThIEC-ER M,N,P
ECUBLE PBECISICN U(f!,P),V(N,P)
LCCICAL OEIG

AX COHFUTES X = A*Y IF CPIG IS IFOE, AND Y = A'*X
IF OIiIG IS FALSE. X IS STORED IN U ANC Y IS STOEED IN V.

CCEHCN A(3000),IINDEX(3000),JINDEX(~0OO),NI:ATA
LCUEZE PBECISICN A
IE'IEGER IIND3X,JINDEX,NCATA

16TECER I,J,K,L

IF (.NCx.OFIG) GO TO 100

CCMPUIE X = A*Y
C

DC 2C K = l,P
C

DC 10 L = 1,M
IJ U,K) = o.co

1 0 CCNTINUE
C

2 0  CCfiTINUE
C

CC 40 L = 1,NCATA
x = *INDEX(L)
J = JINDEX(L)

C
DC 30 K = 1,P

U U,K) = U(1.K) + A(L)*V(J,K)
3C CCNTINUE

C
4 0  CCbTINUE

C
FE'IUFN

C
C CCEPUTE Y = A'*X
C

100 CCNTINUE
C

DC 120 K = l,P
C

DC 110 L = 1,N
V UA = o.co

110 CCNTINUB
C

120 CCNTTNUE
C

CC 140 L = 1,NLATA
I = *INDEX(I)
J= JINDEX(L)

C
DC 130 K = l,P

V IJ,K) = V&K) + A(L)*U(I,K)
1 3 0 CCNTINUE

C
1 4 0  CChTfNUE
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