THE COMPLEXITY OF PATTERN MATCHING FOR A RANDOM STRING

by

Andrew C. Yao

STAN-CS-77-629
OCTOBER 1977

COMPUTER SC IENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

The Conplexity of Pattern Matching for a Random String

Andrew Chi-Chih Yao

Conput er Sci ence Departnent
Stanford University

Stanford, California 94305

Abstract.

W study the average-case conplexity of finding all occurrences of a
given pattern o in an input text string. Over an al phabet of g synbols,
| et c(a,n) be the mni mum average nunber of characters that need to be
examined in a-random text string of length n . W prove that, for large

m, alnmost all patterns o of length msatisfy

c(ayn) = e([—-lqu(lI:nrlr1+2)—l) if m<n<om, and
[[Log_ m] _
c(,n) = GKT“‘n if n>2m . This in particular confirms

a conjecture raised in a recent paper by Kauth, Morris, and Pratt [L4].

Keywor ds: al gorithm average-case conplexity, conplexity, decision tree,
pattern matching, random string, string, weighted g-ary tree.

This research was supported in part by National Science Foundation grant
MCS 72-03752 AO3.

[ntroduction.

A basic string pattern matching problemis to find all occurrences
given string (called pattern) as a contiguous block in an input
string (called text string). Thus, for the pattern 00100 , there are

three occurrences of it to be located in the text string
1000100100000100011. Several efficient algorithns have been
devised to solve this problem([1,3,4]. For exanple, Knuth, Morris, and
Pratt [4]) constructed an algorithm that has a worse-case running tinme

of O(mtn) , where m and n are the lengths of the pattern and the
text string, respectively.

The optimality c_]uestion of algorithms for the above problem was
investigated in Knuth, Mrris, and Pratt [4] and in Rivest [6]. In their
model, an algorithmis a decision tree that examnes the text string one
character at a tine, and the cost is neasured in terms of the nunber of
characters examned. (For a sinmilar nodel in a related problem see
Aho, Hirshberg, and Ullman [2].) Rivest [6] proved that, for any pattern,
an algorithm has to inspect n-m+l characters for some text string. This
means that, when n >> m, alnost the entire text string has to be
examned in the worst case. A different situation exists for the average-
case conplexity. Let c(an) be the mnimum average nunber of characters
that need to be examned in a randomtext string of length n, in order
to locate all occurrences of a . Knuth described an algorithm [%, Section 8]
to show that, for any given pattern o, c(a,n) So(nrlogq m]/m) for an
alphabet of size g . Thus, for large m, only a small fraction of the
characters in the text string need to be looked at, Such "sublinear" al gorithmns
are particularly attractive in situations when a text string is input only once,
but will be updated and searched for patterns nmany times. Knuth conjectured

that the algorithmis optimal in the follow ng sense: there exist patterns

2

a of arbitrarily large length msuch thau ,n) ZQ(nrlogq m/m tor
all sufficiently large n. This conjecture is interesting since, as

shown in [k], there are patterns such as o™

for which only 0(n/m)
characters need to be tested on the average.
In this paper, we study the average-case complexity of pattern

mat ching in the nodel of [4]. W' prove that, for large m, almost all

patterns a of length msatisfy c(an) = 9(rlogq(ll_ln-liln"L 2)—|)

Mg, 5] \
if m<n<o2n,and c(tn) = f —F—n if n>om.

Mreover, all [ower bounds actually apply to the best-case performance
of any algorithms, not just their average case. These results in
particul ar confirm the above-nentioned conjecture when n > 2m. Note
also a point of interest. In Knuth's algorithm the text string is
examned in a predetermned sequence of positions independent of the
pattern (except its length m); whereas for m< n < 2m, we can show
that any algorithmwth a fixed sequence of probing positions have to
exani ne Q(Flogq (n-m+2) 1) characters, even in the best case, for sone
patterns. Thus, "non-adaptive" pattern matching algorithns cannot be
optimal when n is close to m e.g. when n-m~ (1In m)(Inln nj.

Definitions and precise statements of the main results are given in
Section 2. In Section 3, we faniliarize ourselves with sone useful
concepts by analyzing the algorithmin [4] for m<n<2m. In the course
of analysis, we shall also develop insight into the design of a faster
algorithm An inproved algorithmis then described and analyzed in
Section 4 to establish the upper bounds. In Section 5 we define the
conplexity notion of a "certificate". Qur lower bounds then follow
from stronger results that we can prove about the Iength of a mninum
certificate. Certain properties of a type of optimal digital search trees
(cf. Knuth [5]) are needed in the paper; their derivations are given in the

appendi ces.

2. Definitions and Main Results.

An glphabet is a finite, nonempty set of synbols. Throughout our
di scussions, we will assune a unique underlying al phabet g of

size g. Astring ¢of length ¢is a concatenation of y symbols

fromz, i.e., (=88 .. .8 where ¢ > 0 and each a, e . V@ use

¢li] to denote a. , the i-th symbol of ¢, and |¢[to denote ¢,

the length of ¢ . The collection of all strings of length ¢ is denoted
by zz . Gven two strings aey and Beznw'th m<n, ais sad
to be a subs-king of g if a=p8[i]g[i+l]. . . B[i+m-1] for some i ,

1<i <n-ml . Aternatively, we say a occurs in g, or g contains
an occurrence of a7y etc.; the index i is called the (leftnmost) position
of the occurrence. The substring gli] g[i+1] . . . B[j] of Bes |
where 1 <i<J<n, will be denoted by p[i:j] .
A pattern is a distinguished string of positive length. Gven a
pattern o of length mand an integer n > m, we shall be interested
n

in locating all occurrences of a in any input string ez (¢ is called

the text string). Let us refer to this as the pattern-matching problemwith

respect to ¢ and n . Fromnow on, the notations a«, ¢and m, n wll
be used exclusively for the pattern, the text string, and their respective
length in a pattern-matching problem Since the problemis trivial when
¢=Jzl=1, we shall assume q > 2 .

As our conputation model, we consider algorithns that proceed by
asking a series of questions g[il] =7, Q[ie] =?, . . . , where the choice
of each position i, may depend on answers to al!, previous probes at
¢li Lglislovegiin 1 < Wen the algorithmhalts, it nust bhave enough

information to determne A(a, {) , the set of all |eftnost positions of a's

occurrences ing¢. Formally, A(®¢) = {i] ¢li:itm-1] = a} . W
shal | assume that no question is repeated twice in a series

;[il] =?, g[ig] =?, . . ., so that an algorithm may be represented
by a decision tree with g-ary branchings at each query. (For basic
definitions regarding g-ary trees, see Knuth [5].) An exanple of such
a decision tree is shown in Figure 1, with ¢ = {a,b,e}, @ = bb and

n=3. The queries are enclosed in circles, and an answer A(a,¢) isS

attached to each leaf of the ternary tree.

{1} (L2} {1} p {21 ¢

Figure 1. A pattern-matching algorithm for

£ = {aybc}, a=bb and n=3.

For given @ and n, let 7(a,n) be the set of all decision trees

for the pattern-matching problem For any TeT(a,n), |et hT(g) be the

nunber of queries asked by T for the input text string ces" . In
Figure 1, we have for exanple hT(g) = 3 if { = abc . The average (or

expected) nunber of queries asked of a random text string by T is

fp = 5 I om0 . (1)
q (,ezn

Since the nunber of text strings that reach the same leaf as ¢ does is

n-hm(g) . .
a , an alternative formof (1) is
5 G :
= T 2
T | eaf v da M)

wher e dT(v) I S the distance (path length) fromthe root to node v .

The average-case conplexity c(a,n) of the pattern-natching problem

with respect to o and n, then, is the nininum expected nunber of

queries asked by any algorithm That is,

(O!,n) = m n h .
° T ¢ 7(0yn) T 2

In [4] it was shown that, for any pattern ae s
n/m< c(an) < constant @ .D.D;)O (m1)7 /m . (L)

.It was al so conjectured in [4] that, for infinitely many m, there exists
aes such that c(a,n) > anrlogq(mlﬂ/m for some constant a when

n is sufficiently large. The main results of the present paper are the
followi ng theorens. The first theorem strengthens the upper bound given by
formula (4) in the range m< n < 2m. The second theorem proves the
conjecture nentioned above in a somewhat stronger form |n fact, Theorem 2
as stated below follows froma result (Theorem 4) proved in Section 5, which

implies that the |ower bound in Theorem 2 actually holds even for the

"pbest-case" conplexity. (See Section 5.1 for precise formulations.)

Definition. For n>m> 0, let
fl(m,n) = Flogq((n—m)/ln(m—#l)+ 2)1 , and
fe(m,n) =N \'logq(nﬁ-l)‘l / em
Define
fl(m,n) if m<n<om,
f(m,n) =
fz(m,n) if n>2m.

Theorem 1. There exists a constant a, such that, for any q > 2,
adey” , and n >m >0, we have c(o,n) < alf(m,n) .

Theorem 2. There exists a constant 8, such that, for any q > 2 and

m >0, there exists a set of strings L gzm satisfying

(1)] > (l-—]—'é-)qm , and

m

(ii) for each aeL , ec(a,n) > aef(m,n) for all n>m .

In the definition of fi(m,n) above, the constants +1 and +2 , as
well as the ceiling function [7 are just to insure that f(mn) is
wel | -defined and bounded away fromzero. Indeed, as we have defined it,
f(mn) > 1 for all n > m. Notice also that, when n =~ 2m, we have
fl(m,n) ~ fg(m,n) ~ |’1ogq (m+1)7. Figure 2 shows the qualitative
behavi or of f(m,n) as a function of n when mis fixed.
Remark Al the constants inplied in the "o", "q", and "e" notations, as
wel | as other constants used in the paper (e.g. al, a, above), are absolute

constants (independent of g, n, m etc.).

7

oo

l(m’ n)

m,n)

Figure 2.

The behavior of f(m,n)

2m

for a fixed m .

B\Jr

3. Analysis of a Sinple A gorithm

In (4 Section 8], a sinple algorithm for pattern-matching was
described and shown to have an average running time of o(nrlogq(mlﬂ /m) .
Thi s establishes the desired up-per bound of Theorem 1 for n>2m. In
fact, since %(m,n) = O(fl(m,n)) for (I+e)m < n < 2m where ¢ s any
positive constant, Theorem 1 is true as long as n-mis at least a
positive fraction of m. Therefore, in our discussions of upper bounds
in Sections 3 and 4, we shall only be concerned with the case when n-m
is less than some fraction of m, say n-m< m2 .

In Section 3.1, we first show that the above-nentioned al gorithm

of [4] (which-we shall refer to as the Basic Al gorithm fromnow on) has

a tight bound of o([log(n-m+2)7) for the present range n-m<m2 .
Note that this performance is still weaker than the o(fl(m,n)) bound
we wish to establish. In Section 3.2 we then introduce an alternative,
and perhaps |ess obvious way for |ooking at the behavior of the Basic

Algorithm This new analysis will shed light on how a better algorithm
may be devised. In Section 4 we then present, an inproved al gorithm and

show that it achieves the time bound O(fl(m,n)) :

3.1 The Basic Algorithmand Its Analysis.

Ve begin with a description of the Basic Al gorithmfrom (4], slightly

modified to fit our purpose.

The Basic A gorithm Let aes™ be the pattern. For any input text

string ¢ e s5 ., the al gorithm exam nes ¢ character by character, in
the order ¢[ml,¢[m-11,...,¢(1], ¢[m+1], ¢[m+2],...,¢[n] . The al gorithm
halts as soon as enough information is known to deternmine A(a,¢), the

set of all (leftnmost) positions of a's occurrences in g .

9

Ve will show that for the case n-m< m2 , the Basic Al gorithm
only looks at 0(rlogq(n-ma) 7) characters on the average. This
analysis is a refinenent of the approach used in [4] to prove the
gener al o(nrlogq(m+l)1 /m) bound for fhe same algorithm The idea
Is that, for a randomtext string, it is unlikely that any occurrence
of @ will happen, and the Basic Algorithm can rule out that possibility

after examning O rlogq(n-m+2) 1) characters on the average.

Definition. Let d=n-m For any Ccyx , write { = B C'B, Wwhere
lIeLll = lIeoll = ¢ . The substring ¢' of ¢ will be called the prime
substring of ¢, denoted always by ¢'. Let n' be the length of ¢'.
Note that n'=n-2d = md >nm2 as d <m2.

It is easy to see that any occurrence of a in ¢ nust cover the
prinme substring ¢' (see Figure 2(a)). Thus, for A(x¢) to be nonenpty,

¢' nust be a substring of a. Infact, if vvewriteg'=ala2...a ’

nl
then for Af(a,g) to be nonenpty, any segnent ¢'[i:j] = B 85,9 eee By
of ¢' nust be a substring of afi,j+d] (see Figure 2(b)). Based on
this observation, let us divide ¢' into consecutive segments of length r,
such that ¢'=8¢ G .-+ G Where ||l =1 for 1< k <t and

|B|| < r . Then, in order for ¢ to contain any occurrence of a , each

g for 1 < k <_t nust occur in a certain substring o Of a with

nakn = |ig,l*d = r+a . The probability that this condition is met by all

the ¢, 's of a random text string ¢ is < [(d+1)/qr]~t . Now, what

the Basic Al gorithmdoes is to examne the substrings Cy,(pse0sCp i
sequence, hence the probability p_ that it will ever look beyond ¢

is < [(d+l)/qr]k for 1 <k <t. It follows that the average number

of characters h examined by the Basic Algorithmis

10

prm (L —

al | I
al
(a)
¢ [i !
¢l 7/ S/
a I M

——e 5+d

al

i -

. mejmfe o .

(b)

Figure 2. The prime substring ¢' of ¢ relative to a.

B < r(L+P +Py+.ea+Py) +meP (5)

k
We now choose r = 2|'logq (&+2) 1, so that B < [(c1+1)/(d+2)2]k < [1/(a+2)]1 .

Then,

< 2r + me(ar2)” Lo'/x]

WELAS)

<

= 2r +q1)

= of rlogq(d+2)‘l). (6)

V¢ now show that this bound is tight to within a constant factor,
i.e., there exist patterns a for which g rlogq(d+2)‘|) characters
on the average are examned by the Basic Algorithm Again |et
r = 2I'logq (&+2)7 . W can assume that d > hq2 and r >4 . Consider
a pattern ae zm V\,ﬁi ch contains as a suffix the concatenation of all
possible strings of length | r/k) . That is, a =19 , where
P = PPy e Py U= qu/h-' and {cpl,cpg,...,cpu} contai ns every
possible string of length | r/b| . Note that such a exists since,

with |r/k] < rlogq(d+2)'l/2, the total length of ¢ is

Lr/hJ.qu/h-l

lloll =
< rlogqg(d+2ﬂ (a(a+2))™/2
g r 1og22(d+2)1 th (as2) /2
< a (7)

for d > hq2_>_ 16 . For such an a , the Basic A gorithm cannot halt
after examning the first block of Lr/k| characters

¢lml, g[m-11,...,¢[m- /4 +1] . The reason is the following: if j is
t he index such that 9 = glm-Lr/4j+1 :nj , then it is still possible

for ¢ to contain an occurrence of o« exactly where ¢[m-| r/4 |+1:m]
mat ches with ?5 (see Figure 3). Note that the fact |p|| < d is used
here. W have thus shown that for such a pattern o, the algorithm

mist look at more than | r/4] characters.

a
r = ~N

!]

¢ f ®; !

; t

o Pul--- ij wee [P

I\ _

= ~"
loll < @

Figure 3. ¢ may contain o between the dotted |ines.

W have demonstrated that, for any pattern aes™ , and a random
text string gezn , the Basic Al gorithmexanm nes an average of
o(l'logq(n-m+2) 1 characters assuming n-m<m2 . Furthernore, there
exists a e zm such that o rlogq(n-meﬂ characters are examned even
in the best case for the Basic Algorithm Thus, to achieve the better
ti me bound of o(fl(m,n)) , the algorithm has to be inproved even beyond

its best-case performance.

3.2 A Coser Look at the Basic A gorithm

In this subsection we give an alternative proof that the Basic
Al gorithm exam nes at nost 0 rlo@a (@&+2)7) characters on the average.

This analysis may seem |ess straightforward than the previous one. However,

13

it will provide new insight into the pattern-matching process, and help
nmotivate the inproved algorithmto be presented in the next section.

Let us refer to the decision tree corresponding to the Basic A gorithm
VW will be interested in those nodes where & character of the prime
substring ¢' is examned, i.e., those nodes at distance t < n' from
the root. Initially, before any query is asked, an occurrence of a may
begin at any of the positions 1,2,...,d+1 in ¢ . After the first
character ¢[m] = a i s examined, the feasible positions for a's occurrences
in C is reduced fromD = {1,2,...,d+1} to DAR(m,a) where we use R(i,a)
for the set {j|ali-j+1]1 =a}. In general, for a node v at distance

t <n' fromthe rooty if ¢[m] = ay ([m-1} = 815 - - - . (lm-t+1] = a4

t-1
is the sequence of probes that led to v , then Dn(n R(m-k, ak))
k=0

defines the set of positions in ¢ where an occurrence of a is still

f easi bl e when computation reaches this point. W shall call

t-1
Dn(N R(m-k, a.K)) the feasible set at v, and denote it by F(v) .
k=0

(For t =0, F(root) = D.) The size of F(v) is called the weight
of v, denoted by w(v) . W first show that the weight of an internal
ndde v is equal to the total weights of v's sons, provided that the

character examned by v is located inside the prime substring ¢'.

Definition. For an internal node v with query ¢lil = ? , let sona(v)
where aeg denote the succeeding node corresponding to the outcone

¢lil = a .

Tema 1 . |If v examnes a character inside ¢', then

F(v) = U (F(son (v)) and F(son (v)) nF(son (v)) = § for a # b .

acy

14

Proof . Let ¢[i] = 2 be the query raised at v . It is easy to see
that the famly of subsets R(i,a) = (j | a(i-j+1) =a] , for aex,
forms a partition of the set {1,2,...,i} . It follows that, for any
subset B of {1,2,...,i}, {BNR(i,a)|ac g} forms a partition

of B. Since i > a1l by assunption, we have F(v) c {1,2,...,d+1} c
{1, 2,...5i} . Therefore the subsets F(v) nR(i,a) = F(sona(v)) , for

aey , forma partition of F(v) . O

Lema 3.2. If v examnes a character inside ¢', then
w(v) = Z w(son (v)) _

aey ~
Proof . This follows imediately fromLenma 3.1. O

Note that Lemmas 3 .1 and 3.2 may not be true if v probes outside
of ¢', since we may have F(son (v)) NF(son (v)) # B,

Now the probability that ¢ will be exam ned outside of ' by
the Basic Algorithmis quite small. In fact, it happens only if ¢g'is
a substring of a, which has probability |ess than (d+l)/qn' :

Therefore, the cost of the Basic Algorithmis

- da d a
b= 2 d(‘:rj = Z aEy T L L d‘:r) (6)
leaf v q leaf v q leaf v q
a(v) <n' a(v) >n'

where the second term 55 i s bounded by m(d+l)/qn' = Q1) . To study

the first terms, in (8), we shall use the weight function w. Remenber

1
that, when we follow a path in the decision tree fromthe root, as soon as

w(v) = 0 the computation termnates. This fact, together with Lenma 3.2,

15

will allow us to bound the quantity) d(v)/(qd(v)) by

| eaf v
d(v) <n’
1ogq(W(rOO‘G)) + const ant
Definition. Let T be a finite g-ary tree. Assune each node v

(internal or leaf) of T is assigned a non-negative integer w(v) such

t hat

q
(i) wv) = 2 w(soni(v)) for any internal node v |,
i=1

(ii) if wW(v) = 0thenr is a leaf.

W call such a T a weighted g-ary tree. The initial weight of T

is defined to be w(root) , and the termnal weight of Tis

t(m = 2 d(v)/(qd(v)) , Where d(v) is as usual the distance from
leaf v

root to node v .

Definition. Let rq(w) = L.u.b.{t(T)|T is any weighted g-ary tree with

initial weight w} . (Let rq(O):O.)

. W 1

T‘heorem A Tq(W) = |_losq W] +1+ Tog W) &1 for W > 1.
4 q

[Proved in Appendix A]

Corol lary. 'rq(w) < Llogq W +3, for W>1.

(For a related result about optinal digital search trees with n |eaves,

see Knuth [5], Sec. 6.3, exercise 37.)

Cearly now, since w(root) = d+l for the decision tree of the

Basic Algorithm we have

16

a(v
s z <t (8+1) < {log (a+1)] + 3 . 9)
1 leaf v dv) = q =t q]

a(v) <n'

Therefore, h = s;+ s, < Llogq(d+l)_l + 1) = O(Flogq(d““?)'\) , the

sane result as we showed in Section 3.1.

3.3 Discussions.

Wiat have we gained by the nore involved analysis in Section 3.2¢9
Firstly, we notice that the O(Tlogq(d+2)'\) behavior is not restricted
to the Basic Algorithm Lemmas 3.1 and 3.2 are true not only for the
decision tree corresponding to the Basic Algorithm but also for an arbitrary
decision tree, as long as the character examined at v lies inside ¢'.
Therefore, the same analysis that led to (8) and (9) for h applies to
any algorithmwhich first examnes the substring ¢' of ¢, and halts as
soon as A(a, ¢) = ¢ can be decided. Hence, the following famly of

algorithms all have an O(Flogq(d+2)'1), upper bound.

CGeneral i zed Basic A gorithm

G « {d+1,d+2,...,m} .

While G # ¢ do
begi n pick any ieG and exanine ¢[i];
if it is determned that A(a,§) = ¢ then stop;
Ge G(i);
end,

Examine ([i] for ie {1,2,...,d}U {m1,m+2,...,n} in any order.

Secondly, the successful use of F(v) as a neasure of progress for
the conputation hints on the design of a better algorithm explicitly
exploiting the present F(v) to decide where to probe next. An inproved

al gorithm based on this idea will be given in the next section.

17

V¢ conclude this section by discussing the follow ng generalization
of the Basic Algorithm Let A, be the set of all pernutations on
(1,2,...,n) . Let a be any pattern of length m and repn, - e

consi der the followi ng algorithm

Al gorithm - (j,a) . For any input text string gezn , examne the

characters in the order ¢[a(1)1,¢la(2)], .o-5 cla(n)] . Halt as soon

as all occurrences of a in ¢ can be determ ned.

The Basic Algorithmis essentially the use of Algorithm- (,a) , With
a particular permutation j for all a. W have seen that there exists
a for which the Basic Al gorithm exanm nes on the average Q(rlogq(n-m+2ﬂ)
characters. Is it possible to inprove over the Basic Al gorithm sinply by
choosing a different 5 ? The follow ng theorem answers this question in

the negative.

Theorem 3. Let 0 <m< n<2m. For any NEA, there exists an ae zm
such that Algorithm (),a) exam nes an expected Q(rlogq(n-m+2)1)

characters for a random text string in .

The proof of this result follows naturally froma counting technique to
be developed in Section 5. W shall, therefore, delay the proof to
Section 5.4. There we shall actually show a stronger result: for large d ,

nmost aes. have the desired property required by Theorem 3.

18

4. An I nproved A gorithm

W will construct an algorithm whose performance is O(fl(m,n)) for
d=nm<nm2. Wthout loss of generality, we assume m> 16 , The
crucial observation is the following. Suppose we are performing a
Generalized Basic Algorithm After a nunber of characters have been
exam ned, assume we find outselves reaching a node v with wv) = (1ogq m)/2 .
Suppose that at this time the set Gstill has |g| > m/4 = W claim that
it is possible to finish the conputation, examning only Q1) additional
characters on the average, with a different strategy. Notice that in
contrast, the analysis in Section 3.2 (Theorem A) only guarantees a
o(logq wr))-= o(logq JLogq m bound if we don't change strategy. Let
us now prove the claim

Let v be a node as described above, with |F(v)| = w(v) < (1ogqm)/2
and the present \GI >m/h Consider all the positions ie G that we
may choose to exanmne at this node v . By Lemma 3.1, any ieG woul d
induce an (ordered) partition {¥F(v)NR(ija) | aex} of F(v) into q
parts. Denote this partition by n(i) . Note that there are only
() < /m possible partitions of F(v) all together. Let us divide G
into qw(v) equi val ence classes by the induced partitions; that is,

I and j in Gare equivalent if and only if =(i) = n(j) . Since

|| >m/4, few elements are in an equivalent class consisting of a single

elenent. Indeed, if we arrange the equival ence classes as

BBy o . o9 By By eees B w(v) so that |Ek| > 2 if and only if
1<k<s, then we have kél .| >)]im-/m , which is positive
assunming m> 16 . Now the key to a faster algorithmis contained in

the foll owi ng | emm.

19

Lemma 4. 1. Let i and j be two distinct elenents in E, wher e
1<k<s. If ¢li] # ¢[3] , then ¢ does not contain any occurrence

of a.

Proof. Assume ¢[i] # ¢[3] , and ¢ does contain a as a substring.
Let a = ¢[i], b =¢[3], and suppose ¢{t] is a feasible starting
position for pattern a . Since i and j are in G, both ¢[i] and
¢lj] lie within the prine substring ¢' . Therefore, afi-f+1] = a
and a[j-¢+1]1=b . But this inplies that in partition =(i) we have
L e F(v) NR(i,a) , while in partition =(j) we have | e F(v)NR(§,b) .
This contradicts the assumption that =(i) and =(j) are the sane

ordered partition of F(v) . O

As the string ¢ is initially random the probability that
clil =¢ldl for i #j is only I/q . Thus, it is advantageous to

examine ¢[i] and ¢[j] for i,] €E whi ch have probability |-1/q

k 1
to be different, and would thereby termnate the conputation wth answer

A, C) . ¢ . This suggests the follow ng procedure:

Procedure d eanup (G,F);

conment : Gis the set of remaining unprobed positions in {d+l,d+2,...,m} ,
and F is the current feasible set.

1. Examine characters ¢[i] for ic¢E

, one by one, then for ie E, one

by one , ..., then for ieE, one by one. Halt as soon as it is found that

clil # ¢c[31 with i,jeE, for some k .

8
2. Exam ne ¢[i] for ie(G- U Ek)U{l,2,...,d}u{m+l,m+2,...,n}
k=1 ‘

in any order.

20

Anal ysis of O eanup. Take t elenments i 0y of an equival ence

t-1

l’i2,. .
class E, , the probability that ¢[i,] = g[ie] =.** =¢lilis 1/q

Thus the probability P that in step 1, the t+1 -st el enent of Eil

will be examned is

P = T 1 where s(t) = ‘
) ‘E.‘-k)"'g(t) 0 if t=0.
j=1 9
q
k k
Since 2 By -k > 2 |Bl/2 , and s(t) Xt-1)/2 , we
. J . J -
j=1 J=1
have
1
P< X
{ T |Ei|+t-1)/2
j=1 Y
q
Therefore, the probability that | characters will be read in step 1 is no

nore than |/qf(£-2)/21 . The cost of step 2 is bounded by n < 2m, and

it is executed with probability < /gl (w-1)/21 | ere

S
u= 2 lEkl . Hence the total expected cost of O eanup i s bounded by
k=1
u 1 2m
» - _ 4+ = _
Pl qr (1-2)/271 qr(u 1)/27
2m
< 0(1) += — ,
%(E - /m - l)-l
q
= o(1) . (10)

This proves our claim W can now state our new pattern-matching al gorithm

21

Al gorithm PM
1. G - {d+l)d+2,ooo}m} ;

F- {1,2,...,4+1} ;
2. wnile (|F| > (log m)/2) A (|G| > m/k) do
begin pick any ie G, examne a = g[i];
if a1l occurrences of a can be determned then stop;
G- G-{i}s
F - FNR(i,a);
end;
3. if G<m/k then exanine in any order the renaining characters of ¢
as needed, and halt.

4, if F < (logq m)/2 then call Cleanup(G,F) to finish the conputation.

To analyze the cost of AlgorithmPM |[et P,y Pz Py be the respective

probability that steps 2, 3, 4 will be executed, and |et h, h3 hy, be

the average nunber of characters examned in steps 2, 3, k4 respectively,

once they are executed. Then

hpy = Pohy tpshyi+ Byl . (11)
From the analysis of Ceanup, we know that h = (1) . The probability

that step 3 is reached is bounded by the probability that the follow ng

happens (see Figure 4):

t
(aa)[(o <3< A (kAla(a+ 1) - g'(ik>)] (12)

where f{ij;iy...,ig} is the set of positions in substring ¢' that

were examined in step 2, and t > n' - 11111 > x{% . Therefore
Ps< (a+1)/a® < (a+1)/(*) , and pghs = Q(1) . W shall now show that

By . O(f;(mmn)) . (1)

22

This till prove EPM = o(fl(m,n)) , and hence Theorem 1.

i seeeyi
1’2’ 7T
e
rd N

Vol)

g l**ac**ﬁ*aa**l

—_ —

Q I******ac**b*aa****l

Figure 4. Matching ¢' with o.

Proof of (13). Let u be a positive integer. A weighted g-ary tree

with initial weight Wand cut value uis the sane as in the definition

of a weighted g-ary tree with initial weight W, except that condition (ii)
is replaced by
(i) if wW(v) <u, then v is a leaf.

Thus for u =1, it reduces to the original definition,

Definition. Let Tq(w,u) = L.u.b. {t(T)|T is any weighted g-ary tree with

initial weight Wand cut value u}.
- Theor em B. rq(w,u) = Tq([_W/u_J) .

[Proved in Appendix B.]

Now, suppose we draw a deci sion tree for Al gorithm PM beginning from

the top, but only going as far down as step 2 of the algorithmis done.

23

If we designate these exit points fromstep 2 as "leaves", then clearly

what we have is a weighted g-ary tree with initial weight W= d+l1 and

cut value u = r(logCl m)/27, since condition (ii)'is satisfied.

Therefore, the cost of step 2 satisfies

h, < Tq(d+l, I (log, m)/21)

[f a+l < I'(logqm)/z‘\, t hen h,= 0. Gherwi se, from Theorems A, B,

d+1
logq lnm)+ logc1 In q + o(1)

logq((d+l)/ln m+ 0(1) .

“Thus, in both cases,
h, = O(fl(m,n))

This conpletes the proof of Theorem 1.

2k

5. Lower Bounds to the Conplexity of Pattern-Matching.

W shall prove Theorem 2 by showing the existence of a set of "hard"
patterns for which not only there is not any algorithmwth good average
behavior, but in fact there is not any algorithm with good best-case
behavior. In Section 5.1, we define the concept of a "certificate", and
carry out some prelinnary reductions for the proof of Theorem 2.

Section 52proves a central lemma, and in Section 53we conplete the
argunents for the lower bound. In Section 5.4 we prove Theorem 3using

a simlar argunent.

5.1 Prelinminary D scussions.

For any £, 1<2<n, let s (4) bethe set of strings in
(zu (*)D" with exactly n-y #'s. For each qe 5,(1) . let I(p) be
the set of those strings in £ that agree with ¢ except in positions
where ¢ has * 's, For exanple, let £ = {0,1} and ¢ = *00*1¢ 85(5) :
then I(p) = (00001, 00011, 10001, 10011} .

Let aey” be a pattern. A string oe Sn(z) is a certificate (of

length ¢) for a«, if all elements in I(p) contain « in exactly the

sane set of positions. That is, A(a () = A(G,¢,) for any(y,C,cI(p)

Definition. Let g(on) be the mininumlength of a certificate for o,

l.e.,

g(a,n) = min{s | % ge Sn(l) such that cp is a certificate for a}.

Let T be a decision tree that |ocates all occurrences of a in
text strings from s . It is easy to see that any path in T fromthe

root to a |eaf nust have length at |east g(an) . In fact, let

25

gli;l=a,clil=29,, (li,] =a, be the sequence of characters
exam ned along the path, then ge sn(/z) is a certificate for o where
cp[ik] =a for 1 <k<t, and o[j] = * otherwi se. Thus, no algorithm

can halt before exam ning g(a,n) characters even in the best case.
Lemma 5.1. c(a,n) > g(an) for all @, n.
VW shall prove the follow ng strengthened version of Theorem 2.

Theorem 4. There exists a constant a, such that, for any q > 2

and m >0, there exists a set of strings L g):m satisfying

(1) L > (l—«»- —]—'9-)qm , and

m

(11) for each aeL, g(on) > a.2f(m,n) for all n>m.

Before proceeding, we would [ike to make one more reduction.
Lenma 5. 2. Let n > 2m, then g(a,n) > lé—;j g(a,om) .

Proof . For any string gezn , We wite it as

C = G C e Cpnfon) P

wher e I¢5] =2mfor 1<j < |n/2mj . Sinilarly, we wite
P =cpicp2.mo chn/EmJn for any Qe sn(z), If o is a certificate
for ain gn, t hen each P nmust be a certificate for a, in sz.

(Note that the reverse may not be true.) Thus g(a,n) > | n/omjg(e,2m) .

This lemma allows us to reduce condition (I1) of Theoremk to the

fol | ow ng:

26

(I1)" for each aelL, g(on) > agfl(m,n) for m< n < 2m.

This is so because g(a,2m) > a.gfl(m,em) inplies g(on) >
Ln/2m | g(x,2m) > Ln/zm_j-azrlogq(m/(ln(m+l)+2)"l > aéfg(m,n) for
some aé >0 .

The next two subsections are devoted to a proof of Theoremb.

5.2 The Counting Lemnma.

A certificate ¢ for a is called a negative certificate if it

di sproves the containnent of o as a substring, i.e., if A(a,g) =20
for al1 gce I(p). We first observe the fact that any certificate

shorter than the pattern itself nust, be a negative certificate.

Fact . Let ae ¥ be a pattern. |If oge¢ sn(g) is a certificate for a

and £ <m, then ¢ is a negative certificate for a .

Pr oof . Since ¢ does not check as many as mnon-* characters, it
is inpossible for ¢ to certify the occurrence of o at any position

ing¢geI(p). Therefore, it nust be that A(a,g) = ¢ , 0

The next lemm is essential to the proof of Theorem L, |t says that

not many patterns in g can share a comon certificate which is short.

Definition. For any oe¢ Sn(/z) , Where 1<g<n, let Pm(cp) be the

set of all patterns in zm for which ¢ is a certificate. That is,

P, () = {OtloceZm and ¢ is a certificate for a}.

The Counting Lemm, let 1 <z<m<n, and ge Sn(z) . Then

d
2
I, (@) < (l-% o™ whered=n-m.
q

27

Proof . Let 1 <i, <i, <.** <ifz <n be the positions where ¢ has

a non-* character. For 0 < <d, define

B, = {o|be{l2. . m}and j+o = i, for some 1 <t <4} .

(seeFigure 5) Clearly |B;| <2 for 1< 3d<d. Aso for any

a e pm((p) , since ¢ is a negative certificate by Fact, there nust exist
an iij for each j such that a[i] # [jti] . Now we show that we
can find J ¢ {0,1,...,4} , |J| = !’d/z% s such that ?i mgé = p
for 3, #3,1inJ

11 1213 12
7 I L 7 7
* % * ¥
// Y/-x-* /** /' */’(P
9% % AR
A7 L /
] i T T
L ¢ J/
~
B.
dJd

Figure 5. Definition of Bj for the Counting Lemma.

We find J by a "greedy" procedure. Let ;= 0. [nductivel y,
jg 1s obtained by finding the smallest | such that B.J I s disjoint

from B =B UB. U...UB; . VW claimthat this procedure allows
17 2 Js.|
us to find at |east I'd/:2| such sets . In fact, we shall show that

Jg 12(s-1) . The key observation is that B contains at nost f(s-1)

elements. W claimthat at |east one of the sets in & = {BO,Bl,. B,
a (s-1)

is disjoint fromB . If not, for eachr , 0 <r< ze(s-l) , let

28

3

(b’it) be a conflict where beB NB and r+b = i, for some
1<t< . The total nunber of such pairs is no nore than
|B|-2 < 12(s-1) . But we have Ez(s-l)+l sets in the famly %,
a contradiction.
To prove the lemma, consider a randomstring from ' For each

j eJ, the probability that there exists sone ie BJ. with a[i] # o[j+i]

B. |
is 1-1/q J° Since all the sets B.J for j ¢J are disjoint, the
probability that this holds for all j is
I
1 - 1 < 1-]p\IJ|
jed Bl) (a)
q

y IEH
S(l-?> :

Since each ozepm(cp) must satisfy this condition, the lemma follows. O

5.3Proof of Theorem 4.

In this subsection we conplete the proof of Theorem k4, Roughly, the
idea is to use the Counting Lemma to bound the number of patterns in v

that have any "short" certificate.

Definition. Let x be a positive number such that (i) x >256and

(i) y>(gy)Zforalys>x.

4 1 -
Lemma 5.3. Let m+xq ln(m-l-l) <n< 2m , f = ,_-5 logq(i—%)—] . and

_1
P= U P9 . Tenlp| <=7 ".
pes (1) m
n
Not e. The assunption in the | enmma ensures m>5, thus In m> 1 .

29

Proof . Clearly f <m. By the Counting Lemma, we have for each g« sn(g) ,

d
1 12 m
e, (@) < (1 -g) *q
Therefore,
a4
2
1 ! m
Pl < Is,D]-(1-5 q
a
d
2
_ n z. 1 1 £ m
= I} q -—l e q
a
4. (1
£ 12 qz m
< (n g .e q (1k)
Since n < 2m, and In(1- q—l) < -q_f » (1%) leads to
P < (2m)t exp -—Qd—; e q
£ q
m d \
= q - ex.:p(-(_'é—"i' - I-]_n(2m q))) . (15)
. fq
a
Fact. 4 -l?qT > 2£-ln(2m q) . (16)

[Proved in Appendix c.]
Formula (15) then inplies,

Pl < < @ exp(44nm =-17qm.
m

This proves the lemma. O

30

W now finish the proof of Theoremlk. As discussed in Section 5.1,

20
We can assume that n < 2m. V& can assume that m> xq 1n(wtl).

Otherwise, f(mn) = l_logq(fn_?l;:;l)_ + 2)1 — 0(1) , and we can choose

L=s" to satisfy the conditions in Theoremk,
For each n , mxg”" In(mtl) < n <2m, let
P(n> - U Pm(q)) ., Wwhere |n =’- log)—l > 10 . (17)
9 e85, (1)

By Lemma 5.2, we have

R I e T (18)

W define L as foll ows.

L = 5@ - up(n) , Where the union is taken over
n

mexg2 In(mwl) < n < 2m. (19)

Now we need only check that L has the properties specified in Theorem,

4o q = (1-;];';)

(I1)' Ve shall prove, for each ae L, g(on) > agf(m,n) for all

(n)

B
bt

g -m °

(o |z = I ue

m<n<2m, and an absolute constant a, .
There are two cases:

20

(a) If mexa?® n(ml) <n <eom, then agp™ by definition of L .

Thus,

g(@,n) > [%logq)-I > a I—log ()_I = &) 'of(m,n)

for some absolute constant aé)

31

() If m<n< m+Xq20 In(m+l) , then

rlogq(lnnr'!f'l + 2)—1 = (1) , and

g(a,n) > Ot'g'.f(m,n) for sone absol ute constant ag.

f(mn)

il

Thus, in both cases, we have verified property (2)'.
Therefore, the set L defined by (19) satisfies the conditions (I)

and (I1)" set in Theoremk, This conpletes the proof of Theoremkl.

Remar k. In the conditiongl; > qm(l - _15) of Theorem k4, the choice of the
m
factor 1 - —3-‘5 s sonewhat arbitrary. In fact, we can replace it by
m

any factor where b is any fixed positive nunber. Then, in

1
T b
m
the proof, we need to divide cases according to whether n is greater

(b+1) In(m+l) . The resulting constant a_, in

than or | ess than mt+ xq2 D

the theoremw Il be different.

5.4 Proor of Theorem 3.

Ve can assune that d = n-m> ma.:‘c{ql*,x} , Where x is defined as in
Section 5.3. Qherw se the bound q(rlogq(d+2)1) = Q(1) , and any
pattern ae z“ will meet the conditions in Theorem 3,

By assunption, m<n < 2m, and rep, Let 1= r(logq(n-m+2))/21
Recal | that Sn(z) is the set of strings of length n overzy {*}

with ¢ non- x characters. Let H c s (¢) be defined by
H={yp |q)esn(z); ela(i)l ez for 1<i <y, and 9[jl = * for all other j) , (19)

Clearly, there are exactly ¢! elements in H, i.e., 1| =q .

22

Now, |et p' be the set of patterns ae 5" such that Algorithm-(),c)

halts for sone text string in less than or equal to 2 steps. For any

aep', clearly there must be a 9e¢H such that ozepm(cp) . Thus,
S U Ryl . (20)
®eH

By the Counting Lenma, we have

k)] < a-ahH* .4

Therefore,
d d
2 2
Pl < jEl-a-aht. & =dh (-gr) A (21)

Since every ain gt-p' meets the conditions set in Theorem 3, e

d
T2
need only show t hat q! . (1- q_") PR Now,
d
1 -1 K 4 d -
q(l-q") < aq 'M(%) : (22)
q

By using the definition of 2 and the condition d > qh, we obtain after

some al gebrai ¢ mani pul ations

d
2 1/4
-0t t o< (d+2)3/h-exp(-4&—2L/—g> . (23)
2(1g(da+2)) .

" The right hand side of (23) can be shown to be less than 1 when d > x ,

This proves Theorem 3.

Renar k. The right hand side of (23) is o(exjp(-dl/5)) for large d .

W have in fact shown that, for any fixed x en | Algorithm-(),2) has to
exan ne Q(rlogq(d+2)'|) characters in the best case for all but a

O(exp(-dl/s)) fraction of the patterns aes .

33

An open question: Is the followng statement true?
Let 0 <m<n <em. For any aes" , there exists a re A, such
t hat Algorithm-(),a) exam nes O(fl(m,n)) characters on the average for

a randomtext string of length n .

3L

Ref er ences

[1] A, V. sho and M. J. Corasick, "Fast Pattern Matching: An Aid to

Bi bl i ographic Search," Conmmuni gati ons Aov 18 (1975), 333-3k0.

(2] A V. mho, D. S. Hirschberg, and J. D. Ullman, "Bounds on the
Compl exi ty of the Longest Common Subsequence Problem”
23 (1976), 1-12.

[3] R. S. Boyer and J. S. More, "A Fast String Searching A gorithm"
Stanford Research Institute Technical Report 3 (March 1976),

[4L] D. E. Knuth, J. H Mrris, and V. R Pratt, "Fast Pattern Matching

in Strings," SIAM J. on Conputing 6 (1977), 323-350,

[5] D. E. Knuth, The Art of Conputer Programming, Vol. 3, Sorting and

Searching, Addison-\Wesley (1973).
[6] R L. Fives-t, "On the Wrst-Case Behavior of String-Searching

Al gorithms," Information Processing Letters, to appear.

35

Appendi x_A: Proof of Theorem A

In this appendix, we shall prove the follow ng theorem used in

Section 3.2 in the paper. For definitions and notations, see Section 3.2.

Theorem A Let g >2 be an integer. Then

W 1
Llog W] g-1
a q

for W> 1 (A1)

Tq(w) = Llog, W) +1 +

W first derive sanme properties of the function f defined bel ow

Definition. Let g > 2 be an integer, we define a function f Dby

(a2)
f(W = |Llog W) +1 S |
= q W + Llogq W g-1 , for W> 1 .
q

Let g(W) = f(wl) -£(w) , for all integers W> 0 .

1 1
Property 1. g(W) = T for W> 0 .

rlogq(w+1) 1-1

q
Property 2. g(W) > g(W') if o<w<w .
Property 2 follows from property 1, which can be verified directly,

Property 3. The function f satisfies the follow ng recurrence relation:

£(0)

i

0 (83)

104 Wri-1
1+3 1§1f(L 2 _J) for W>1 . (Ak)

Proof of Property 3. Equation (A3) is true by definition. To prove
(Ak), |et

£(w)

36

(45)

W = tq+ s, with 0<s<gq
Then
LW+1—1_J) t if 1<i<g-s ,
q t+1 If g-st1<i<gq .

Thus, we need only prove
£(tg+s) = 1+ %((q-s).f(t) + os.£(t+1)) , i.e.,

£(tq+ s) = 1 + £(¢) + % g(t) (46)

From the explicit forms of f and g are given in (A2) and Property 1,

it isnot difficult to verify (A6). This implies Property 3. O

-~

Renar k. W shall interpret (A4) as follows. Let us wite

W= W+, e @Mgoq such that \wi-wJ.L§1 for all i, j . Then

(W) = 1+% f) W

W are now ready to prove Theorem A. Let T be any weighted g-ary

tree, and T; be the sub-tree rooted at son, (root) , 1 <i<q. Then

t he terminal wei ght of T satisfies

)

Q-

t(T) = 1+ _Z) t(T.

i=1 +
This leads to the follow ng equations:

'rq(o) =0
(&7)

q q
1 .
T W = _— W. . > . =
q() 1+ qmax{iz;l Tq(1)‘I nt eger Wl_ 0 ,iZ:;LWl VV}

for W> 1 .

37

O early (A7) determines Tq(W) uni quely, Therefore, in order to prove
(Al), we need only prove that f(W satisfies (A7). Because of

Property 3, it suffices to prove

) 1 Wri-1
W120,§W1=W}=i§lf(l- q J) . (a8)

That is, the sum Z £ (Wi) achi eves a maxi mumval ue when all the W
i

ma.x{ % f(Wi)
i=1

differ fromeach other by at nost 1 . This can be denonstrated as
follows. If, for some i and | |, wiZWj+2 , We nake the changes

W, - Wi-l and WJ«- W,j+l . The val ue of iZ:t‘(wi) i's increased by

an anount f(wj+l) + g‘(Wi-l) -f(wi) - (W) = g(Wj) -g(wi-l) , which is
non-negative because of Property 1. It can be shown that the value of

z |Wi-wj| is decreased by at least 2 by such a transformation.
iy]

Therefore, by a finite nunber of such transfornations, all the W
will be within 1 to each other. The value of Zf(wi) is at |east
as great as the initial value before the transformations, This proves

(A8), and hence Theorem A

38

Y

Appendi x_B: Proof of Theorem B.

[See Section & for notations.]

TheoremB, Let g > 2 and u > I. .. Then

Tq(w, u) = ‘rq([_W/u_]), for a11 W> 1 . (B1) |

By definition, a g-ary tree with initial weight W< u and cutoff u
can only consist of a single leaf. Therefore,
Tq(w,u) =0 for o<w<u . (B2)

The followng facts can be established by deriving a recurrence relation on

Tq(w, u) sinilar to (A7), and perform ng sone sinple reductions.

T (Whu) = E'(-li for u < W 2u . (B3)

1 J .
Tq(W,u)=l+an'&X{12 'rq(w.l,u)(< W, < Wfor 1<i <aq,

i =1

q
and 2 Wi=w} for W> u . (BY4)
i=1

W shall now use (B4) in an inductive proof of formula (BL).

Consider q , u as fixed, and the induction is on var’iable W.
By (B2) and (B3), the formula (BL) is true for 0 < W< 2u . Now,
-gssume W > 2u , and we have proved (Bl) for all smaller values of W.
W shall prove that it is also true for W.

By (B4), we have

q q
T(W,u):1+—1ma.x ZT(W.,u)})<w.<Wforl<i<q,andZW=-J'
4 4 i=1 7 -t -7 i=1

39

By inductive hypot hesis, Tq(Wi:u) = Tq(LWi/uJ) for 1<i<q.

Therefore,

1 3 .
Tq(W,u) =1 + il {igl 'rql([_Wi/u_{) |MO_<_Wi < W, i}_—,‘Wi = } . (85)

V& conplete the proof in two steps:

() T < T(Lwal) (36)

Proof. It is not difficult to verify that , IS a non-decreasing

function of its argunment. Noting that lz‘ LW;/uj <LWuj. Then

q
J_Jr%1 i?]ﬁqu(LWi/uj) < rq(? LWi/u_j) < Tt (Lwag)

where we have used (AL)in the first step. This proves (B6) because of

(B5). O
(i) T W) > T (LWag) . (37)
Pr oof . Let W= tu+v, where 0 <v < u . Define
(.
ﬁ+z'l for 1<i<aqgl ,
' W, = 4 (88)
1
Bad lysv for 1=gq
L--. ! -
Then
LWi/u_l = I_ti‘l_J for 1<i<aq. (39)

From (B5), we have

40

q
2ot (LW /u))

i=1

iél TQ(L‘c+(il-lJ) ' (B10)

In Appendi x A, we have shown that the right-hand side of B(10) is equal

’L‘q(W,u) > 1 +

Q-

1
|_J
+

Q-

to Tq(t) . (see (Ak); renmenber that Tq(w) = f(W .) Therefore,

(B10) leads to

'rq(w,u) > Tq(t) = Tq(LW/u_l) . @

V¢ have now proved that © (W,u) = = (| W/u]) . This conpletes the

i nductive step in the proof of Theorem B.

L1

Appendi x C. Proof of Formula (16).

Ve shall prove formula (16) used in Section 5.3. For easy reference,

we repeat all the notations and assunptions.

, 1 n-m .
Not at i ons. d=n-m, | = I.E log(l m).l . The nunber xis a
positive nunber such that (i) x>256, and (ii) for all y>x,

12
Y >(gy) .

Assunpt i ons. qg>2, and mdexqu In(m+l) >0 .

V¢ wish to prove:
d
—— > 2f+1n(2mq) . (c1)

#qt

Proof . W shall prove

- d > Y (c2)
q - In(2mq)

1 d
Now £ < l+§1ogq(m), hence
1/2
!
< Q(m) . (c3)
A so mzdzqh‘ Thus, m>2q because q>2 .

In(emq) < In(m®) = 2 1o m . (cl)
From (C3) and (ck), we have

d d 17 a /2
= —_— . (c5)
q! . 1n(emq) 2 @/ m)”2 .o m 2q\ nm)

Therefore, (C2) will be proved, if we can show

—}-—‘1—1/2>2z3 i.e
2q\ 1In m =

ho

a 26
: : a L h 1 4 .
Notice that, by assunption, Tnm 24 » hence log \ Tgp) 2%
Therefore
£<1+-:Llo - L log 4 (c7)
= 5 1°8q Anm ¢ Inm .
Because of (CT), we can prove (c6) if the following is true.
6
d 2 a
= > 164 (1°€q(m)) . (08)
Ve shall now prove (¢8) to conplete the proof of (d).
: d n
By assun@mn, T > X .
(i) Since x > 256 , we have
1 L 1/2 2
(E@—m) /2 > (xq /, > 1l6q . (¢9)
(i) Since leﬁ?_x , the following inequality is true. W have
a ! 12 : : .
mz(lg(m)> , Which inplies that
1/2
4 d 6
(55) 2 ((s5)) -

It follows from (C9) and (C10) that

d 2 d
mw 2 160 (10, mi5))

This proves (€8), and hence (d).

13

