
THE COMPLEXITY OF PATTERN MATCHING FOR A RANDOM STRING

bY

Andrew C. Yao

STAN-CS-77-629
OCTOBER 1977

COMPUTER SC IENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UN IVERS ITY

The Complexity of Pattern Matching for a Random String

Andrew Chi-Chih Yao

Computer Science Department
Stanford University

Stanford, California 94305

Abstract.

We study the average-case complexity of finding all occurrences of a

given pattern CX in an input text string. Over an alphabet of q symbols,

let c&n) be the minimum average number of characters that need to be

exa-mined in a-random text string of length n . We prove that, for large

m , almost all patterns a of length m satisfy

c&n) = Q(rlogq(E+2)1) if msnl2m, and

c@,n) = 8 nm if n>2m. This in particular confirms

a conjecture raised in a recent paper by Knuth, Morris, and Pratt [&I.

Keywords: algorithm, average-case complexity, complexity, decision tree,

pattern matching, random string, string, weighted q-ary tree.

This research was supported in part by National Science Foundation grant
MCS 72-03752 A03.

1

Introduction.

A basic string pattern matching problem is to find all occurrences

given string (called pattern) as a contiguous block in an input

string (called text string). Thus, for the pattern 00100 , there are._

three occurrences of it to be located in the text string

1000100100000100011.
1 4 I '

Several efficient algorithms have been

devised to solve this problem [1,3,4]. For example, Knuth, Morris, and

Pratt [4] constructed an algorithm that has a worse-case running time

of O(m+n) , where m and n are the lengths of the pattern and the

text string, respectively.

The optimality question of algorithms for the above problem was
--.

investigated in Knuth, Morris, and Pratt [4] and in Rivest [6]. In their

model, an algorithm is a decision tree that examines the text string one

character at a time, and the cost is measured in terms of the number of

characters examined. (For a similar model in a related problem, see

Aho, Hirshberg, and Ullman [2].) Rives-t [6] proved that, for any pattern,

an algorithm has to inspect n-m+1 characters for some text string. This

means that, when n >> m , almost the entire text string has to be

examined in the worst case. A different situation exists for the average--

case complexity. Let c(a,n) be the minimum average number of characters

that need to be examined in a random text string of length n , in order

to locate all occurrences of a . Knuth described an algorithm [4, Section 81

to show that, for any given pattern Q! , c(a,n) 5 o(nriOgq ml/m) for =

alphaset of size q l Thus, for large m , only a small fraction of the

characters in the text string need to be looked at, Such "sublinear" algorithms

are particularly attractive in situations when a text string is input only once,

but will be updated and searched for patterns many times. Krnrth conjectured

that the algorithm is optimal in the following sense: there exist patterns

2

a of arbitrarily large length m such thai $.,n) > n(diOgq ml/m) for-

all sufficiently large n. This conjecture is interesting since, as

shown in [4], there are patterns such as 0m for which only O(n/m)

characters need to be tested on the average.

In this paper, we study the average-case complexity of pattern

matching in the model of [4]. We'prove that, for large m , &no&, all

patterns a of length m satisfy c@,n) =

if m < n < 2n, and c(a,n) = 0 if n >2m.- - m

Moreover, all lower bounds actually apply to the best-case performance

of any algorithms, not just their average case. These results in

particular confirm the above-mentioned conjecture when n 2 2m . Note

also a point of interest. In Knuth's algorithm, the text string is

examined in a predetermined sequence of positions independent of the

pattern (except its length m); whereas for m 5 n 5 2m, we can show

that any algorithm with a fixed sequence of probing positions have to

examine n(rlogq(n-m+2)1) characters, even in the best case, for some

patterns. Thus, "non-adaptive" pattern matching algorithms cannot be

optimal when n is close to m, e.g. when n-m- (ln m)(ELn m).

Definitions and precise statements of the main results are given in

Section 2. In Section 3, we familiarize ourselves with some useful

concepts by analyzing the algorithm in [4] for m < n 5 2m . In the course

of analysis, we shall also develop insight into the design of a faster

algorithm. An improved algorithm is then described and analyzed in

Section 4 to establish the upper bounds. In Section 5, we define the

complexity notion of a "certificate". Our lower bounds then follow

from strange,r results that we can prove about the length of a minimum

certificate. Certain properties of a type of optimal digital search trees

(cf. Knuth [53) are needed in the paper; their derivations are given in the

appendices.

3

2. Definitions and Main Results.

An Flrlphabet is a finite, nonempty set of symbols. Throughout our

discussions 3 we will assume a unique underlying alphabet c of

size q . A string 6 of length I is aconcatenation of & symbols

from C , i.e., 5 = ala2 . . . aa where 1 > 0 and each aieC . We use-

C[i] to denote a. ,
1

the i-th symbol of 5 , and 11611 to denote 1 ,

thz length of 5 . The collection of all strings of length E is denoted

by z' . Given two strings CXC~ and BE$ with m < n , cx is said

to be a subs-king of p if a = /3[i] p[i+l] . . . p[i+m-l] for some i ,

1 < i < n-m+1 . Alternatively, we say a occurs in /3 , or !3 contains- -

an occurrence of a-; etc.; the index i is called the (leftmost) position

of the occurrence. The substring p[i] B[i+l] . . . p[j] of @exn ,

where l<i<j<n, till be denoted by @[i:j] .- - -

A pattern is a distinguished string of positive length. Given a

pattern Q! of length m and an integer n > m , we shall be interested

in locating all occurrences of a in any input string 6~ xn (5 is called

the text string). Let us refer to this as the pattern-matching problem with

respec5 to c and n . From now on, the notations Q , c and m , n will

be used exclusively for the pattern, the text string, and their respective

length in a pattern-matching problem. Since the problem is trivial when

c,= ;lcl = 1 , we shall assume q 2 2 .

As our computation model, we consider algorithms that proceed by

asking a series of questions 6[i,l = ? y c[i,] = 3 , . . . , where the choice

of each position ir may depend on answers to al!, previous probes at

6[i,L @,I, * ‘ 6, @r,nl c When the algorithm halts, it must have enough

Information to determine AbY cl 3 the set of all leftmost positions of a's

4

e4;

occurrences in 6 . Formally, A@& = {i 1 c[i:i+m-l] = a-3 . We

shall assume that no question is repeated twice in a series

;Ci,] = ? , 6[i2] = ? , . . . , so that an algorithm may be represented

by a decision tree with q-ary branchings at each query. (For basic

definitions regarding q-ary trees, see Knuth [5].) An example of such

a decision tree is shown in Figure 1, with c = {a,b,c) , CX = bb and

n=3. The queries are enclosed in circles, and an answer A(a,c) is

attached to each leaf of the ternary tree.

Figure 1. A pattern-matching algorithm for

c= (a,b,c) , cz = bb and n=3.

For given a! and n , let g(a,n) be the set of all decision trees

for the pattern-matching problem. For any Ter(CX,n) , let hT(6) be the

number of

F&me 1,

expected)

Since the

n-h&)

number of text strings that reach the same leaf as 6 does is

CIA 3 an alternative form of (1) is

queries asked by T for the

we have for example h&) =

number of queries asked of a

input text string 5~ cn . In

3 if 5 = abc . The average (or

random text string by T is

. .

0)

%
‘Tbd= c

leaf v dT(V)
q

where 56)
V is the.distance (path length) from the root to node v .

The average-case complexity c(CX,n) of the pattern-matching problem

with respect to a and n , then, is the minimum expected number of

queries asked by any algorithm. That is,

c&n) = min -
T E s(%n>

hT '

(2)

, (3)

In [4] it was shown that, for any pattern CXE xrn ,

n/m < c(a,n) < constant l nrlog (m+l)l /m .
q (4)

It was also conjectured in [4] that, for infinitely many m , there exists

aexrn such that c&n) > anrlogq(m+l)l/m for some constant a when

n is sufficiently large. The main results of the present paper are the

following theorems. The first theorem strengthens the upper bound given by

formula (4) in the range m < n < 2m .- - The second theorem proves the

conjecture mentioned above in a somewhat stronger form. In fact, Theorem 2

as stated below follows from a result (Theorem 4) proved in Section 5, which

implies that the lower bound in Theorem 2 actually holds even for the

6

"best-case" complexity. (See Section 5.1 for precise formulations.)

Definition. For n > m > 0 , let-

fib-b n> = rlogq((n-m)/ln(m+l)+ 2)1 , and

r,(m,n) = n rlOgq(mtl)l /2m .

Define

I
fib? l-4 if m<n<2m,- -

f(m,n) =

I f&-w) if n>2m.

Theorem 1. There exists a constant a1 such that, for any q > 2 ,-

a~~~,and n>m>O- , we have c(a,n) s alf(m,n) .

Theorem 2. There exists a constant a2 such that, for any q > 2 and-

m>O, there exists a set of strings L 5 Em satisfying

(>ii for each %L , c&n) 2 a2f(m,n) for all n >m .-

In the definition of fi(m,n) above, the constants +l and +2 , as

well as the ceiling function rl are just to insure that f(m,n) is

. well-defined and bounded away from zero. Indeed, as we have defined it,

f(m,n) > 1 for all n > m . Notice also that, when n M 2m , we have

fJm,n) w f2(m,n) w riogq(m+l)l l Figure 2 shows the qualitative

behavior of f(m,n) as a function of n when m is fixed.

Remark All the constants implied in the "O", Q", and "CP notations, as

well as other constants used in the paper (e.g. al, a2 above), are absolute

constants (independent of q, n, m, etc.).

7

.

I

3. Analysis of a Simple Algorithm.

In [4, Section 81, a simple algorithm for pattern-matching was

described and shown to have an average running time of O(nrlogq(mt-l)l /m) .

This establishes the desired up-per bound of Theorem 1 for n > 2m . In-

fact, since fo(m,n) = O(fl(m,n)) for (l+s)m < n < 2m where E- - is any
L

positive constant,

positive fraction

in Sections 3 and

is less than sOme

Theorem 1 is true as long as n-m is at least a

of m . Therefore, in our discussions of upper bounds

43 we shall only be concerned with the case when n-m

fraction of m , say n-m < m/2 .

In Section 3.1, we first show that the above-mentioned algorithm

of [4] (which-we shall refer to as the Basic Algorithm from now on) has

a tight bound of o(Wgb-m+2)1) for the present range n-m < m/2 .-

Note that this performance is still weaker than the O(f,(m,n)) bound

we wish to establish. In Section 3.2 we then introduce an alternative,

and perhaps less obvious way for looking at the behavior of the Basic

Algorithm. This new analysis will shed light on how a better algorithm

may be devised. In Section 4 we then present, an improved algorithm and

show that it achieves the time bound O(f,(m,n)) .

3.1 The Basic Algorithm and Its Analysis.

We begin with a description of the Basic Algorithm from [4], slightly

modified to fit our purpose.

The Basic Algorithm. Let aecrn be the pattern. For any input text

string 5 E xn , the algorithm examines 6 character by character, in

the order 6Cm1, cb-11,. . ., ~[l],~[m+l],~[mt2],...,~[n] . The algorithm

halts as soon as enough information is known to determine A(cx,~) , the

set of all (leftmost) positions of a!+ occurrences in 6 .

9

We will show that for the case n-m < m/2 , the Basic Algorithm-

only looks at o(rwqb--+2) 1) characters on the average. This

analysis is a refinement of the approach used in [4] to prove the
. .

general O(nrlogq(m+l)l /m) bound for the same algorithm. The idea

is that, for a random text string, it is unlikely that any occurrence

of a will happen, and the Basic Algorithm can rule out that possibility

after examining 0(rlogq(n-m+2) 1) characters on the average.

Definition. Let d=n-m. Forany &,write 6=@16fp2 where

Ila,l\ = l\p21/ = d . The substring 6' of 5 will be called the grime

substring of 5 , denoted always by 5' . Let n, be the length of 5' .

Note that n, = n-2d = m-d 2 m/2 as d 5 m/2 .

It is easy to see that any occurrence of a in 5 must cover the

prime substring 5' (see Figure 2(a)). Thus, for A(&~) to be nonempty,

C' must be a substring of a . In fact, if we write cf = a a1 2*'*anf 3

then for A(a,c) to be nonempty, any segment c'[i:j] z aiai+l... aj

of 5' must be a substring of a[i,j+d] (see Figure 2(b)). Based on

this observation, let us divide 5' into consecutive sewents of length r ,

such that 5' = 6 &.6t_l... cl where /(Sk\/ = r for 1~ k it and

II II6 <r. Then, in order for 6 to contain any occurrence of cx , each

ck for 1 < k < t must occur in a certain substring ak- -

\k$l\ = Il&i\+d = r+d ’ The probability that this condition

the 6k ,s of a randam text string 5 is _([(d+l)/qrlt .

of a with

is met by all

Now, what

the Basic Algorithm does is to examine the substrings ~1,~2,...,~t in

sequence, hence the probability Pk that it will ever look beyond Gk

is 5 [(d+l)/qrlk for 1 5 k 5 t . It follows that the average number

of characters g examined by the Basic Algorithm is

10

+dd 6' -d-

a! I

a

(>a

ct [i: jl t
c --.

I //// .I. .
Q

d- i I

Figure 2. The prime substring Ct of 6 relative to CL

< 5 r(l+P1+P2+...+Pt $ + m.Pt . (5)

we now choose r = 2rlogq(d+2) 1 9 so that Pk < [(d+l)/(d+2)21k < [l/(d+2)lk .

Then,

fi 5 2r + m*(d+2) - Ln'/rJ

= 2r + O(1)

= o(ru3q~~+2)l > l

We now show that this bound is tight to within a constant factor,

i.e., there exist patterns a for which n(rlogq(d+2)1) characters

on the average are examined by the Basic Algorithm. Again let

r = 2rlogq(d+2)1 . We can assUme that d 2 4q2 and r > 4 . Consider-

a pattern a~ xrn
-.e.

which contains as a suffix the concatenation of all

possible strings of length Lr/bJ . That is, a = r\cp , where

-0 = cp,'pu,l*-'pl' u= qL++J and fcpl,~2,...,~u~ contains every

possible string of length Lr/4 J . Note that such Q! exists since,

with Lr/&J < rlogq(d+2)l/2, the total length of cp is

Ml = p/4 J l qLri4

rw2 (d+2)1
< 2

<d

J

d114
- (d+2)li2
J2

(7)

for d > 4qc 2 16 . For such an M , the Basic Algorithm cannot halt

after examining the first block of Lr/4 J characters

~[m3,~~m-11,...r~~m-L1"/4J+13 . The reason is the following: if j is

the index such that 'pj = c[m-Lr/bJ+l :m] , then it is still possible

I2

for 5 to contain an occurrence of a exactly where c[m-Lr/4 J+l : m]

matches with cp.
3

(see Figure 3). Note that the fact II~III < d is used

here. We have thus shown that for such a pattern cx , the algorithm

must look at more than L++J chaiacters.

Figure 3. 6 may contain a between the dotted lines.

We have demonstrated that, for any pattern aexrn , and a random

text string CE$ t the Basic Algorithm examines an average of

o(rlogq(n-ti2) 1 characters assuming n-m 5 m/2 . Furthermore, there

mexists a E C such that Q(rlogq(n-mt2)l characters are examined evene

in the best case for the Basic Algorithm. Thus, to achieve the better

time bound of O(fl(m,n)) , the algorithm has to be improved even beyond
.
its best-case performance.

3.2 A Closer Look at the Basic Algorithm.

In this subsection we give an alternative proof that the Basic

Algorithm examines at most 0(rlog (d+2)1)
q

characters on the average.

This analysis may seem less straightforward than the previous one. However,

13

it will provide new insight into the pattern-matching process, and help

motivate the improved algorithm to be presented in the next section.

Let us refer to the decision tree corresponding to the Basic Algorithm.

We will be interested in those nodes where a character of the prime

substring x* is examined, i.e., those nodes at distance t < n' from

the root. Initially, before any query is asked, an occurrence of a may

begin at any of the positions 1,2,...,d+l in 6 . After the first

character c[m] = a is extined, the feasible positions for a's occurrences

in 5 is reduced from D I {1,2,..., d+l} to DnR(m,a) where we use R(i,a)

for the set (j 1 a[i-j+l] = al . In general, for a node v at distance

t < r-P from the root3. if c[m] = ao9 c[rn-l] = al, c[m-t+l] E atwl

is the sequence

defines the set

of

of

t-1
probes that led to v , then Dn n Rb-k, %)

k=O

positions in 5 where an occurrence of a! is still

feasible when camputation reaches this point. We shall call

t-1
Dn n Rb-b t)

>
the feasible set at v , and denote it by F(v) .

. I

k=O

(For t=O, F(root) E

of v, denoted by w(v)

node v is equal to the

character examined by v

D.) The sizeof F(v) is called the weight

. We first show that the weight of an interna

total weights of v's sons, provided that the

is located inside the prime substring c' .

Definition. For an internal node v with query c[i] P ? 9 let sona

where sex denote the succeeding node corresponding to the outcome

C[i] = a .

3 . 1 .Lesrma If v examines a character inside C' , then

F(v) = u (F(sona(v)) and F(sona(v))nF(sonb(v)) = 15 for a # b l

=c

14

Proof. Let c[i] = ? be the query raised at v . It is easy to see

that the family of subsets R(i,a) 5: (j 1 a(i-j+l) = a] , for aeC ,

forms a partition of the set (1,2,...,i) . It follows that, for any

subset B of (1,2,...,i) , (BnR(i,a) 1 ae C} forms a partition

of B . Since i 2 d+l by assumption, we have F(v) s (1,2,...,d+l) 5

Cl 2, ,...,i] . Therefore the subsets F(v) nR(i,a) = F(sona(v)) , for

acx , form a partition of F(v) . U

Lemma 3.2. If v examines a character inside C' , then

w(v) = C w(sona(W .
acz --.

Proof. This follows immediately from Lemma 3.1. 0

Note that Lemmas 3 .l and 3.2 may not be true if v probes outside

of 5' , since we may have F(sona(v)) nF(sonJv)l # b l

NOW, the probability that c will be examined outside of 5' by

the Basic Algorithm is quite small. In fact, it happens only if 5' is

a substring of cx , which has probability less than (d+l)/$.

Therefore, the cost of the Basic Algorithm is

(8)

d(v)sn' d(v)>n'

where the second term s2 is bounded by m(d+l)/qn' = O(1) . To study

the first term s1 in (8), we shall use the weight Action w . Remember

that, when we follow a path in the decision tree from the root, as soon as

w(v) = 0 the cmputation terminates. This fact, together with Lemma 3.2,

15

will allow us to bound the quantity c d(v)/(qdCV)J bY
leaf v

d(v)<rP

logq(w(root))+ constant .

Definition. Let T be a finite q-ary tree. Assume each node v

(internal or leaf) of T is assigned a non-negative integer w(v) such

that

q
(>i w(v) = c w(soni(v)) for any internal node v ,

i=l

(>ii if w(v) 5 0 then r is a leaf.

We call such a T a weighted q-ary tree. The initial weight of T-=_

is defined to be w(root) , and the terminal weight of T is

t(T) = c w/(sd("4 , where d(v) is as usual the distance from
leaf v

root to node v .

Definition. Let Tq(W) = l.u.b.{t(T)(T is any weighted q-ary tree with

initial weight WI . (Let ~~(0) = 0.)

Theorem A. Tq(w = Ll"gqwJ +l+ ~1~; WJ & , forW >l.-a
4 q

[Proved in Appendix A.]

Corollary. T,(W) 5 Llogq WJ +3 , for W 11.

(For a related result about optimal digital search trees with n leaves,

see Knuth [5], Sec. 6.3, exercise 37.)

Clearly now, since w(root) = d+l for the decision tree of the

Basic Algorithm, we have

16

% = 5 Tq(d+l) 5 L%',(d+l)J + 3 . ()9

d(v)srP

Therefore, h = sl+ s2 5 Llog,(d+l)J + O(1) = O(rlogq(d+2)l) , the

same result as we showed in Sectton. 3.1.

3.3 Discussions. -

What have we gained by the more involved analysis in Section 3.2?

Firstly, we notice that the O(rlogq(d+2)J) behavior is not restricted

to the Basic Algorithm. Lemmas 3.1 and 3.2 are true not only for the

decision tree corresponding to the Basic Algorithm, but also for an arbitrary

decision tree, as long as the character examined at v lies inside 5' .

Therefore, the ssme analysis that led to (8) and (9) for i applies to

any algorithm which first examines the substring 5' of 5 , and halts as

soon as A(% 5) = 9 can be decided. Hence, the following family of

algorithms all have an O(rlogq(d+2)l) , upper bound.

Generalized Basic Algorithm.

G + (d+l,d+2,...,m) .

begin pick any ieG and examine c[i];

if it is determined that A@& = $ then stop;

G + G-(i);

end;

Examine c[i] for ie (1,2,...,d)u(m+l,m+2,...,n~ in any order.

Secondly, the successful use of F(v) as a measure of progress for

the computation hints on the design of a better algorithm, explicitly

eqloiting the present F(v) to decide where to probe next. An improved

algorithm based on this idea will be given in the next section.

17

We conclude this section by discussing the

of the Basic Algorithm. Let & be the set of

(1 2t ,...,n) . Let a be any pattern of length
. .

consider the following algorithm.

Algorithm - (Ata) . For any input text string 6Es ., examine the

characters in the order 5hWl9 Sh@)l t l b. 9 5hb)l l Halt as soon

following generalization

all permutations on

m and AC hn . We

as all occurrences of a in c can be determined.

The Basic Algorithm is essentially the use of Algorithm- (~,a) , with

a particular permutation h for all a . We have seen that there exists

a for which the Basic Algorithm examines on the average n(rlogq(n-m+2)1)

characters. Is it possible to improve over the Basic Algorithm simply by

choosing a different h ? The following theorem answers this question in

the negative.

Theorem 3. Let 0 < m < n < 2m . For any heb , there exists an a~ xrn- -

such that Algorithm- (~,a) examines an expected n(rlogq(n-m+2)1)

characters for a randcun text string in xn .

The proof of this result follows naturally from a counting technique to

be developed in Section 5. We shall, therefore, delay the proof to

Section 5.4. There we shall actually show a stronger result: for large d ,

most CXexrn have the desired property required by Theorem 3.

18

4. An Improved Algorithm.

We will construct an algorithm whose performance is O(f,(m,n)) for

d= n-m 5 m/2 . Without loss of generality, we assume m > 16 , The

crucial observation is the following. Suppose we are performing a

Generalized Basic Algorithm. After a number of characters have been

examined, assume we find outselves reaching a node v with w(v) m (logq m)/2 .

Suppose that at this time the set G still has ICI L 44 l
We claim that

it is possible to finish the computation, examining only O(1) additional

characters on the average, with a different strategy. Notice that in

contrast, the analysis in Section 3.2 (Theorem A) only guarantees a

O(logq w(r))-= O(logq logq m) bound if we don't change strategy. Let

us now prove the claim.

Let v be a node as described above, with (F(v) 1 = w(v) 5 (logq 42

and the present
ICI Lm/4 l

Consider all the positions iE G that we

may choose to examine at this node v . By Lemma 3.1, any i.eG would

induce an (ordered) partition (F(v)flR(i,a) 1 ad) of F(V) into q

parts. Denote this partition by n(i) . Note that there are only

,ww 5 /rn possible partitions of F(v) all together. Let us divide G

winto q equivalence classes by the induced partitions; that is,

i and j in G are equivalent if and only if x(i) = n(j) . Since

- ICI ?mh few elements are in an equivalent class consisting of a single

element. Indeed, if we arrange the equivalence classes as

El, E2, . . .P Es, Es+l, ...fEqw(v) , so that lEkl > 2 if and only if_

l<k<s, then we have- - ' lEkl , which is positive
k=l

assuming m > 16 . NOW, the key to a faster algorithm is contained in

the following lemma.

19

Lemma 4.1. Let i and j be two distinct elements in E!k , where

l<k<s. If C[il # c[jl 9 then 5 does not contain any occurrence- -

of a .

Proof. Assum Lb-1 # &jl p and 6 does contain a as a substring.

Let a = c[i] , b = c[j] , and suppose @] is a feasible starting

position for pattern a! . Since i and j are in G , both ~[i] and

c[j] lie within the prime substring 6' . Therefore, a[i-l+l] = a

and a[j-r+l] = b . But this implies that in partition rc(i) we have

I E F(v) nR(i,a) 9 while in partition n(j) we have I E F(v)nR(j,b) .

This contradicts the asswnption that n(i) and x(j) are the same
--.

ordered partition of F(v) . 0

As the string c is initiaUy random, the probability that

c[i] = c[j] for i # j is only l/q . Thus, it is advantageous to

examine C[il and ($jl for i,j e Ek , which have probability l-l/q

to be different, and would thereby terminate the computation with answer

A@, 6) = $ l This suggests

Procedure Cleanup (G,F);
-

comment: G is the set of

the following procedure:

remaining unprobed positions in (d+l,d+2,...,m} ,

and F is the current feasible set.

8 1. EXamine characters c[i] for ieEl one by one, then for ie E2 one

by one , l e. 9 then for ieEs one by one. Halt as soon as it is found that

C[il # &d with i,jeEk for some k .

2. Examine c[i] for ie(G-k%l ~)u(l,2,~~~,d]u(mtl,m+2,...,n)

in any order.

20

Analysis of Cleanup. Take t elements il,i2, . . ., it of a31 equivalence

class E, 9 the probability that c[i.,] = c[i,] = l ** = c[it] is l/qt-' .
AZ J

Thus the probability P that in step 1, the t+l -st element of
Ek+l

will be examined is

Since

have

P = 1

Y

k

jcl IEjlmk 2 ~ IEj= j=l

--
-I

I/ 2

where s(t) =
0

t and s(t) > -('t 1)I2

P < I

- K

k .

c
j=l

cl

if t>l

if t=O,

Therefore, the probability that I characters will be read in step 1 is no

more than l/q r(1-2)/21 . The cost of step 2 is bounded by n 5 2m , and

it is executed with probability 5 l/q r (uv1)/21 , where

u= s: lE,I . Hence the total expected cost of Cleanup is bounded by
k=l

U

ix1 qT (m-i),21 + p?),2,=

= o(1) . (10)

This proves our claim. We can now state our new pattern-matching algorithm.

21

1.

Algorithm PM.

1. G + (d+l,d+2,...,m) ;

F- (1,2,...,d+l] ;

2. while (IFI > (logqm)/2h((Cr(zm/4) do

begin pick any i.e G, examine a = ~[i];

if ELL occurrences of Q can be determined then stop;

G + G-(i};

F + FnR(i,a);

end;

3. if G <m/4 then examine in any order the remaining characters of 5

as needed, and halt.

4. if F < (logq m)'/2 then call Cleanup(G,F) to finish the computation.-

To analyze the cost of Algorithm PM, let p2 , 3 ’ p4 be the respective

probability that steps 2, 3, 4 will be executed, and let h2 , 4 , h4 be

the average number of characters examined in steps 2, 3, 4, respectively,

once they are executed. Then

%M = p2h2+p3%+ ~4h4 l (W

From the analysis of Cleanup, we know that IJ+ s O(1) . The probability

that step 3 is reached is bounded by the probability that the following

happens (see Figure 4):

I

t
(Sj> (O<j cd) A- - A a(j+ ik> = 6'(ik) 0-a

k=l

where (il,i2,...,it) is the set of positions in substring c' that

wereexsminedinstep2,and t >n*-trt. Therefore

P35 (d+l)/qt 5 (d+l)/(qm14) 3 and p3h3 = O(1) . We shall now show that

h2 = o(fi(m,n>) l 03 1

22

This till prove hpM = O(f,(m,n)) , and hence Theorem 1.

il,i2,...,it

I \
1 i 5 c 4

5’ I **ac**b*aa** I

a I
+JtJt-3tJt*ac**bbaa****

I

Figure 4. Matching 5' with a.

-=.

Proof of (131. Let u be a positive integer. A weighted q-ary tree

with initial weight W and cut value u is the same as in the definition

of a weighted q-ary tree with initial weight W , except that condition (ii)

is replaced by

(1ii t if w(v) < u , then v is a leaf.

Thus for u = 1, it reduces to the original definition.

Definition. Let Tq(W,u) = l.u.b.{t(T)(T is any weighted q-ary tree with

initial weight W and cut value u].

- Theorem B. ~,(W,U) = T,(LW/uJ) l

[Proved in Appendix B.]

Now, suppose we draw a decision tree for Algorithm PM beginning from

the top, but only going as far down as step 2 of the algorithm is done.

23

p

If we designate these exit points from step 2 as "leaves", then clearly

what we have is a weighted q-ary tree with initial weight W = d+l and

cut value u = r (lOgq d/21 9 since condition (ii)' is satisfied.

Therefore, the cost of step 2 satisfies
. .

h2 5 zq(d+L r (logg d/21 >

If d+l < r(logqm)/21, then h2= 0. Otherwise, from Theorems A, B,

h2 5 lotis q(7iqiJjT) + O(Q

= logq + logq ln q + o(1)

= logq((d+l)/ln m)+ O(1) .

-Thus, in both cases,

This completes the proof of Theorem 1.

5. Lower Bounds to the Complexity of Pattern-Matching.

We shall prove Theorem 2 by showing the existence of a set of "hard"'

patterns for which not only there is not any algorithm with good average

behavior, but in fact there is not -any algorithm with good best-case

behavior. In Section 5.1, we define the concept of a "certificate", and

carry out some preliminary reductions for the proof of Theorem 2.

Section 5.2 proves a central lemma, and in Section 5.3 we complete the

arguments for the lower bound. In Section 5.4 we prove Theorem 3 using

a similar argument.

5.1 Preliminary Discussions.

For any I , lLa<n, let Sri(i) be the set of strings in

hu (*IF with exactly n-l * 's. For each cp~ S,(R) , let I(q) be

the set of those strings in zn that agree with cp except in positions

where cp has * 's. For example, let C = {OJ) and cp = would S,(3) ,

then I(q) = (00001, 00011,10001,100ll] .

Let CY.eXrn be a pattern. A string cpe Sn(l) is a certificate (of

length 1) for M , if all elements in I(cp) contain a in exactly the

same set of positions. That is, A@> L-1) = A(a,62) for =Y 51952 c Ik/4 .

Definition. Let g(ar,n) be the minimum length of a certificate for a ,

i.e.,

gcw-d = min(e 13 cp~ s&) such that cp is a certificate for CX) .

Let T be a decision tree that locates all occurrences of a in

text strings from xn . It is easy to see that any path in T from the

root to a leaf must have length at least g(a,n) . In fact, let

25

s[il] = al, c[i2] = a2, c[i,] = a1 be the sequence of characters

examined along the path, then cpe Sn(l) is a certificate for a where

qb,] = y for 1 < k 5 I , and cp[j] = * otherwise. Thus, no algorithm

can halt before examining g&n) characters even in the best case.

Lemma 5.1. c(a,n) > g&n) for all a9 n l
-

We shall prove the following strengthened version of Theorem 2.

Theorem 4. There exists a constant a2 such that, for any q 2 2

and m>O, there exists a set of strings L 5 xrn satisfying

(1)

01)

q” 9 and

for each MEL , g&n) 2 a2f(m,n) for all n 2 m .

Before proceeding, we would like to make one more reduction.

Lemma 5.2. Let n > 2m , then g&n) 2

Proof. For any string cecn , we write it as

where 2m for l< j 5 Ln/2mJ_ 15 3 I =.
. Similarly, we write

cp = ‘Pl’P2 l m0 (PLn/aJ 7\ f o r a n y cpc Sri(l) . If cp is a certificate

for a in xn , then each cpj must be a certificate for aj in
2mc .

(Note that the reverse may not be true.) Thus g(a,n) > Ln/2mJg(CX,2m) . 0

This lemma allows us to reduce condition (II) of Theorem 4 to the

following:

26

(II)' for each &zL , g(a,n) 2 a2fl(m,n) for m < n < 2m .- -

This is so because g(a,2m) 2 a2fl(m,2m) implies g&n) 2

Ln/~JdWd > Ln/2mJ”a2rlogq(m/(~(~l)-

some s>o. -.

The next two subsections are devoted to

+2)1 2 a$f,(m,n) for

a proof of Theorem 4.

5.2 The Counting Lemma.

A certificate Q, for a is called a negative certificate if it

disproves the containment of a as a substring, i.e., if A&c) = ~8

for all 5~ I(v) . We first observe the fact that any certificate

shorter than t-he pattern itself must, be a negative certificate.

Fact. Let a~ xrn be a pattern. If cpe Sn(l) is a certificate for a

and I <m, then cp is a negative certificate for a .

Proof. Since cp does not check as many as m non-* characters, it

is impossible for cp to certify the occurrence of a at any position

in 5 E I(q) . Therefore, it must be that A(a,c) = fi , 0

The next lemma is essential to the proof of Theorem 4. It says that
e

not many patterns in mc can share a common certificate which is short.

Definition. For any cpe Sn(l) , where 154 5 n , let 63,((p) be the

set of all patterns in Em for which cp is a certificate. That is,

PmkP) = (a pa? and cp is a certificate for a } .

The Counting Lemma, Let 1 < 1 < m < n , and cpe Sn(.e) . Then

where d = n-m .

Proof.

a non-*

Let 1zil<i2< l ** <ii <n be

character. For 0 5 j < d , define-

B. =
J

{b 1 b E (12,m) and j+b E
-.

(See Figure 5.) Clearly 1~~1 5 L for 11 jsd. Also, for any

the positions where cp has

it for some 1 L-tSi).

a E 63,((p) j since Q, is a negative certificate by Fact, there must exist

an iEB.
J

for each j such that a[i] # cp[j+i] . Now we show that we

can find J 5 (O,l,...,d) 9 \J\ = rd/L2(t such that B. nB. = fl
Jl J2

for j, # j, in J .

il i2 i3
.
5I t

5/‘”/0 ** / **
/, / //*/:‘p0

Figure 5. Definition of Bj for the Counting Lemma.

We find J by a "greedy" procedure. Let j, = 0 . Inductively,

jS is obtained by finding the smallest j such that B. is disjoint
3

from - B = B. uB. U...UBj .
Jl J2

We claim that this procedure allows
s-l

us to find at least rq8-I such sets . In fact, we shall show that

js 5 12(s-1) . The key observation is that B contains at most m(s-1)

elements. We claim that at least one of the sets in gF = (Bo,Bl, . . .) B 2
a (s-l)

3

is disjoint from B . If not, for each r , 0 < r 5 12(s-l) , let

28

3

(bit) be a conflict where beBrnB and r+b E it for some

l<tJ<R.- - The total number of such pairs is no more than

(B)d 5 P2(s-1) . But we have p2(s-l)+l sets in the family 3,

a contradiction. -.

To prove the lemma,
m

consider a random string from C . For each

j E. J , the probability that there exists some ie Bj with a[i] # cp[j+i]

I I
is l- l/q j . Since all the sets B. for

3
j E J are disjoint, the

probability that this holds for all j is

jiJ[
1-L lJ

I I
< 1-p

B. -
q J

) ()

I I
cl

Since each aepm(cp) must satisfy this condition, the lemma follows. 0

5.3 Proof of Theorem 4.

In this subsection we complete the proof of Theorem 4. Roughly, the

idea is to use the Counting Lerrnna to bound the nwnber of patterns in zrn

that have any "short" certificate.

Definition. Let x be a positive nuznber such that (i) x 2 256 and

(ii) y > (lg y)12 for all y 2 x .

Lemma 5.3.
4

Let m+Xq ln(m+l)<n<2m, 1 =~~lOgq(f!$~ , and

Q= u
lm

Cp "nCrn)
Qmkd l Then IQ\ 5-q .

ml

Note. The assumption in the lemma ensures m > 5 t thus In m > 1 .

29

Proof. Clearly f <ma By the Counting Lemma, we have for each TE S$) ,

d

Therefore,

(>
F

IQ1 <- Is,<r,l* 1 - + l q�

9

d

= (;)“.(‘--)-)cqm
-=.

+ll-+

5 (n q)'.e' (>q
l s� .

Since n < 2m , and J.n(l- q-l) L -q-l , (14) leads to

Fact.-_ -& 2 214n(2m q) .
1 q

[Proved in Appendix c!.]

FoMnula (15) then implies,

I IF’ -< s”l exp(44nm) = $qm .

This proves the lemma. 0

30

(14)

(15)

We now finish the proof of Theorem 4. As discussed in Section 5.1,

we can assume that n 5 2m . We can assume that m 2 xq2o ln(m+1) .

Otherwise, f(m,n) = = O(l) t and we can choose

L = c" to satisfy the conditions in Theorem 4.

For each n , m+xq2o ln(m+l) < n 5 2m , let

pn =(> U 63,((P) , where I 07)
cp E q$J

By Lemma 5.2, we have

n16()I < 1 lm- -pm 5 -
n

m1o q l

--. m

(18)

We define L as follows.

L = c" -UC Y(1 where the union is taken over
n

20m+xq ln(m+1) < n < 2m . OS)- -

Now we need only check that L has the properties specified in Theorem4,

(I) I I
lm

L = qm- Upn 2 qm-me-
(>

1 In
m1o q =

(J

l-5 .s" l

m

01)

t We shall prove, for each ae L , g&n) 2 a2f(m,n) for all

m<n<2m,- - and an absolute constant a2 .

There are two cases:

20
(a) If m+xq ln(m?-l)<n<2m, then a{p"(> by definition of L .- -

Thus,

for some absolute constant a; .

31

(II\ If m<n<m+xq2o ln(m+1) , then

f(m,n) = r (1063 n-m
q,In(mt-l)+2 = O(1) , and

g(a,n) > al.f(m,n)- for some absolute constant a: .
. .

Thms, in both cases, we have verified property (2)'.

Therefore, the set L defined by (19) satisfies the conditions (I)

and (II)' set in Theorem 4, This completes the proof of Theorem 4.

Remark. In the condition I; > qmI I of Theorem 4, the choice of the-

factor 1 - _l_
rf?

is somewhat arbitrary. In fact, we can replace it by

1 --.
any factor !- - -

mb
where b is any fixed positive number. Then, in

the proof, we need to divide cases according to whether n is greater

2 (b+l)
than or less than m+ xq ln(m+l) . The resulting constant a2 in

the theorem will be different.

5.4 Proor' of Theorem 3.

4We can assume that d = n-m > max{q ,x) , where x is defined as in

Section 5.3. Otherwise the bound a(rlogq(d+2)l) = n(l) , and any

pattern ae En will meet the conditions in Theorem 3.

By assumption, m < n < 2m , and he
%l . Let I = r (1063 (n-m-+2))/21 +- - cl

Recall that Sn(l) is the set of strings of length n over cu(*}

with B non- * characters. Let H 5 S,(1) be defined by

H = [rp Jqx Sn(t); cp[h(i)] E c for l< i < 1, and cp[j] =;: * for all other j) ,- - (19j

Clearly, there are exactly q' elements in H , i.e., IHI = ql .

32

Now, let pf be the set of patterns ae xrn such that Algorithm-(h,a)

halts for some text string in less than or equal to 1 steps. For any

a# , clearly there must be a QEH such that ae63,((~) , Thus,

By the Counting Lemma, we have

I ('rn rp

Therefore,

(0)2

d d
2 2

I IP’ 5 \H*(l- q-l) ' . qm = q'. (l-q-') ' l qm . (21)

-=.
Since every a in xrn-pl meets the conditions set in Theorem 3, we

d

need only show that q9. (l- q . Now,

d

qa*(l-q-+ 1
2

5 qL l e⌧p - - . P-2)

4
By using the definition of 1 and the condition d > q , we obtain after

sac algebraic manipulations

d
2

ql*(l-q-l) & _< (d+2)3/4 (23)

: The right hand side of (23) can be shown to be less than 1 when d > x ,-

This proves Theorem 3.

Remark. The right hand side of (23) is O(exp(-d'15)) for large d .

We have in fact shown that, for any fixed h ehn , Algorithm-(A,@ has to

examine SZ(r wq@+2) 1) characters in the best case for all but a

O(exp(-dli5)) fraction of the patterns CxEcm.

33

An open question: Is the following statement true?

Let 0 < m < n < !2m . For any accrn , there exists a AE & such- -

that Algorithm-(A,@ examines O(fl(m,n)) characters on the average for

a random text string of length n .
. .

34

References

[ll A* Ve Aho and M. J. Corasick, "Fast Pattern Matching: An Aid to.

Bibliographic Search," Communications ACM 18 (1975), 333-340.

[2] A. V. Aho, D. S. Hirschberg, and J. D. Ullman, "Bounds on the

Complexity of the Longest Gammon Subsequence Problem,"

23 (15~76)~ i-12.

[3] R. Se Bayer and J. S. Moore, "A Fast String Searching

Stanford Research Institute Technical Report 3 (March

Algorithm,"

1976) l

[43 D. E. muth,

in Strings,"
--.

[51 D. E. Knuth,

J. H. M rris, and V. R. Pratt, "Fast Pattern Matching

SIAM J. on Computing 6 (1977), 323-350.

The Art of Computer Programming, Vol. 3, Sorting and

Searching, Addison-Wesley (1973).

[6] R. L. Fives-t, "On the Worst-Case Behavior of String-Searching

Algorithms," Information Processing Letters, to appear.

35

Appendix A: Proof of Theorem A.

In this appendix, we shall prove the following theorem used in

Section 3.2 in the paper. For definitions and notations, see Section 3.2.
. .

Theorem A. Let q 12 be an integer. Then

Tq(w = LlOg
cl
WJ +l + LloI w, & , for W > 1 , (Al)

q q

We first derive same properties of the function f defined below.

Definition. Let q 2 2 be an integer, we define a fknction f by

f(0) = 0 --. (W
f(W) =

W 1
LIOgq WJ +1 + Llogq wJ g-1 , for W 2 1 .

q

Let g(W) = f(W+l) -f(W) , for aJl integers W > 0 .

Property 1.

Property 2.

Property

Property 3.

f(O)

f(W)

dw> = & 1

ri0g (w+l)i-1
for W 2 0 .

Q q

P(W) 2 dW’> if O<W<W'.- a

2 follows from property 1, which can be verified directly,

The function f satisfies the following recurrence relation:

r= 0 Y cm

(Ah)

Proof of Property 3. Equation (A3) is true by definition. To prove

(A& let

36

w= tq+ s Y with Oss<q, (W

Thus, we need only prove

f(tq+s) E l+ $ ((q-s)*f(t) + sef(t+l)) , i.e.,

f(tq+ s) = l+ f(t) + ; g(t) l

From the explicit forms of f and g are given in (A2) and Property 1,

it is not difficult to verify (A6). This implies Property 3. a
--.

Remark. We shaJ.2. interpret (A4) as follows. Let us write

w= w1+w2+ l **+w such that
q I Wi- WjLzl for all i,j . Then

f(W) =1+; 3 wi .
i=l

We are now ready to prove Theorem A. Let T be any weighted q-ary

tree, and Ti be the sub-tree rooted at soni(root > , l<,iLq. Then

the terminal weight of T satisfies

w =1+; C t(Ti) l

i=l

This leads to the following equations:

q (A7)

Tqw =l+&nax
q

I, integer Wi > 0 , C Wi = W
I

-
i.=l

for W > 1 .

37

Clearly (A7) detemnines TV uniquely, Therefore, in order to prove

(Al), we need only prove that f(W) satisfies (A7). Because of

Property 3, it suffices to prove

m81{i~lf(Wi)ly~o, ,,;,> = iYlf(lyj) l CA8)

That is, the sum C f <'i> achieves a maximum
i

value when all the Wi

differ from each other by at most 1 . This can be demonstrated as

follows. If, for sOme i and j , Wi _>Wj+2 , we make the changes

wi
+ Wi-1 and W. + Wj+l . The value of

3 C f(Wi) is increased by
i

an amount f(Wj+l) + f(Wi-1) -f(Wi) - f(Wj) c g(Wj) -g(Wi-1) , Which is--.

non-negative because of Property 1. It can be shown that the value of

C \‘i-‘jl
is decreased by at least 2 by such a transformation.

i? 3

Therefore, by a finite number of such transformations, all the Wi

will be within 1 to each other. The value of Z f Cw,> is at least

as great as the initial value before the transformations, This proves

W) , and hence Theorem A.

38

Appendix B: Proof of Theorem B.

[See Section 4 for notations.]

Theorem B. Let q > 2 and u > I. .- Then

‘,oJY 4 = 5q(Lw/uJ > Y for all W > 1 .- w ,

By definition, a q-ary tree with initial weight W < u and cutoff u

can only consist of a single leaf. Therefore,

',(W,U) = 0 for O<W<u . (B2)

The following facts can be established by deriving a recurrence relation on

T,(W, 4 similar to (A7), and performing some simple reductions.

'Fq(w,u) = L
q-1

for u < W< 2u . (B3)

1

{

q
T~(W,U) = 1 + 4 max z

i=
'I (W.,u) 0 < Wi < W for 1 < i 5 q,
lq= I

wand 3W=W
>

for W > u .
i= li

We shall now use (B4) in an inductive proof of formula (Bl).
8

a Consider q , u as fixed, and the induction is on variable W .

By (B2) and (B3), the formula (Bl) is true for 0 5 W < 2u . Now,

-assume W > 2u, and we have proved (Bl) for all smaller vaJ,ues of W .

We shall prove that it is also true for W .

By (B4), we have

1 ?I q
T,(W,U) = 1 + - max C l

q i=l
T~(W~,U) 0 5 Wi < W for 1 < i 5 Q and E Wi = \rJ

I i=l >

39

By inductive hypothesis, ‘qtWiY u> =Tq(CWi/uJ) for lgLq*

Therefore,

1

c

cl
Tq(W,U) = 1 + 4 max C T(LWi/UJ)I"~wi'w, rwizW '

i= lq I. i 1

We complete the proof in two steps:

(1i ~~(w,u) 5 T,(LW/uJ) l

Proof. It is not difficult to verify that T q
is a non-decreasing

function of its argument. Noting that r LWJu; 2 Lw/UJ . Then
i

IL 51+- =.'qCLWi/UJ) 5 ' q(T; LWi/UJ) 5 ‘q(LW/uJ))
y i=l

where we have used(A4

@5) . cl

)in the first step. This proves (~6) because of

(1ii Tq(w,u) 2 Tq(LW/uJ) l

Proof. Let WI tu+v, where 0 5 v < u . Define

CL Jt+i-1u
q

for lzi 5 q-l y

.
wi = {

$+q+II J9
u+v for i=q .

Then

t+i-1
LWi/UJ = Q1 1 for llilq e

037)

W

From (B5), we have

40

1 qT,(W,U) > 1 + 5 . xl ‘q(LWi/UJ)
12:

= l+:l icl 5q(i?☺ 1
l

. .

(BlO)

In Appendix A, we have shown that the right-hand side of B(10) is equal

to T,(t) . (See (Ah); remember that .I~(W) = f(W) .) Therefore,

(BlO) leads to

Tq(W) 2 Tq(t) = Tq(LW/UJ > l 0

We have now proved that z (W,u) = T (L W/uJ) . This completes the

inductive stef'in the proof of Theorem B.

41

Appendix C. Proof of Formula (16).

We shall prove formula (16) used in Section 5.3. For easy reference,

we repeat all the notations and assumptions.

Notations. d = n-m , I = r; 10gq(&)l . The number x is a

positive number such that (i) x ~256, and (ii) for all y>x,-

Y 1 og Y>12 l

Assumptions. 922, and m_>d_>xq4 In(m+l)>O.

We wish to prove:

Proof. We shaLL prove

d 3

se
>21 .

*l-d-l) -

Now , hence

Also d
4

m 2 2 q . Thus, m 2 2q because q 2 2 .
a

ln(2mq) < l.n(m2) = 2 ln m .

(Cl)

0-w

(c3)

(c4)

From- ((3) and (C4), we have

d

2
(c5)

l m-d

Therefore, (C2) will be proved, if we can show

3 , i.e.,

42

26
+-11691 . (W

Notice that, by assumption, & 2 q4 , hence logq

Therefore

R 5 l+$log A - L 1%
d

q lnm qInm l

Because of (C'& we can prove (~6) if the following is true.

d
5 2 16,'(logq(i&i) >" .

(c7)

(c8>

We shall now prove (~8) to complete the proof of (Cl).

By assumption,
4

&l�s l

-=.

(>i Since x > 256 , we have

112 L cxq) _
4 l/2 > 16q2 . NY>

(ii) Since the following inequality is true. We have

& 2 (lg(&))12 , which implies that

(&)yg L (logq(&))6
It follows fram (Cy) and (ClO) that

d- > 16q2(logq(&))lnm-

.

.

(ClO)

This proves (cS), and hence (Cl).

43

