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Abstract.

Let G be any n-vertex planar graph. W& prove that the vertices
of G can be partitioned into three sets A B, C such that no edge
joins a vertex in A with a vertex in B, neither A nor B contains
nore than 2n/3 vertices, and C contains no nmore than 2/24/n verti ces.
We exhi bit an al gorithmwhich finds such a partition A, B, Cin Qn)

tinme.
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1. [ ntroduction.

A useful method for solving many kinds of conbinatorial problens is
"divi de-and-conquer™ [l]. In this method the problem of interest is
divided into two or more smaller problens. The subproblens are sol ved
by applying the method recursively, and the subproblem solutions are
combined to give the solution to the original problem Three things are
necessary for the success and efficiency of di vi de- and- conquer :

(i) the subproblems nmust be of the sane type as the original and

i ndependent of each other (in a suitable sense); (ii) the cost of
solving the original problem given the solutions to the subproblens nust
be small; and (iii) the subproblens nust be significantly smaller than
the original. One way to guarantee that the subproblems are small is to
make them all roughly the same size [1].

VW wish to study general conditions under which the divide-and-conquer
approach is useful. Consider problens which are defined on graphs. Let
s be a class of graphsy closed under the subgraph relation (i.e., if

G, € 8 and G, IS a subgraph of Gy, then Gye8 ). An f(n) -separator

theorem for S is a theoremof the following form
There exist constants a <1, B >0 suchthatif G is any
n-vertex graph in S, the vertices of G can be partitioned
into three sets A, B, C such that no edge joins a vertex in A
with a vertex in B, neither A nor B contains nore than an

vertices, and C contains no nore than @(n) vertices.

If such a theoremholds for the class of graphs S, and if the appropriate
vertex partitions A B, Ccan be found fast, then a n-unber of problens
defined on graphs in S can be solved efficiently using divide-and-conquer.
For a given graph ¢ in S, the sets A and B define the subproblens.

The cost of conbining the subproblem solutions is a function of the size

of C (and thus of f(n) ).
Y The appendi x contains the graph-theoretic definitions used in this paper.




Previously known separator theorens inciude the fol | ow ng:

(A) Any n-vertex binary tree can be separated into two subtrees, each with
no nore than 2n/3 vertices, by removing a single edge. For an
application of this theorem see [13].

(B) Anyn-vertextree can be divided into two parts, each with no nore
than 2n/3 vertices, by renmoving a single vertex.

(O Agrid graph is any subgraph of the infinite two-dinensional square grid
illustrated in Figure 1. A & separator theorem holds for the class
of grid graphs. For an application, see [5].

(D) A one-tape Turing machine graph [16] is a graph representing the

conputation of a one-tape Turing machine. A & separator theorem

hol ds for such graphs. For an application, see [15].
[Figure 1]

One mght conjecture that the class of all suitably sparse graphs has
an f(n) -separator theorem for some f(n) = o(n) . However, the follow ng

result of Erdss, G aham and Szemerédi [L] shows that this is not the case,

Theorem C. For every e > 0 there is a positive constant ¢ = c(e) such
that al nost a_‘Lly graphs Gwith n = (2+e)k vertices and ck edges
have the property that after the omission of any k vertices, a connected

conponent of at least k vertices renmains.

*/ By "al nbst all" we mean that the fraction of graphs possessing the
property tends with increasing n to one.



Al'though sparsity by itself is not enough to give a useful separator
theorem planarity is. In Section 2 of this paper we prove that a
\n -separator theorem holds for all planar graphs. In Section 3 we provide
a linear-time algorithm for finding a vertex partition satisfying the
theorem This algorithm and the divide-and-conquer approach combine to
give efficient algorithms for a wide range of problens on planar graphs
Section 4 nmentions some of these applications, which we shall discuss nore

fully in a subsequent paper



2. Separ at or Theor ens.

To prove our results we need to use three facts about planarity.

Theorem 1 (Jordan Curve Theorem [6]). Let C be any closed curve in
the plane. Renoval of C divides the plane into exactly two connected

regions, the "inside" and the "outside" of c.

Theorem 2 [7]. Any n-vertex planar graph with n > 3 contains no nore

than 3n-6 edges.

Theorem 3 (Kuratowski's Theorem[12]). A graph is planar if and only if
it contains neither a conplete graph on five vertices (Figure 2(a)) nor
a conplete bipartite graph on two sets of three vertices (Figure 2(h))

as a generalized subgraph.

[Figure 2]

From Kuratowski's Theorem we can easily obtain the follow ng |enmm

and its corollary.

Lenma 1. Let G be any planar graph. Shrinking any edge of Gto a

single vertex preserves planarity.

Proof. Let G be the shrunken graph, |et (Xi’x2> be the edge shrunk,
and let x be the vertex corresponding to ¥, and X9 in G . If &
“is not planar then G* contains a Kuratowski graph as a generalized
subgraph. But this subgraph corresponds to a Kuratowski graph which is

a generalized subgraph of G. Figure 3 illustrates the possibilities. O

[Figure 3]



Corol lary 1. Let G be any planar graph. Shrinking any connected

subgraph of G to a single vertex preserves planarity.

Proof . I mrediate from Lemma 1 by induction on the nunber of vertices

in the subgraph to be shrunk. O

In sone applications it is useful to have a result nore general than
the kind of separator theorem described in the introduction, W shall
therefore consider planar graphs which have non-negative costs on the
vertices. W shall prove that any such graph can be separated into two
parts, each with cost no nmore than two-thirds of the total cost, by
renovi ng o(«/ﬁ) vertices. The desired separator theoremis the special

case of equal -cost vertices.

Lemma 2. Let G be any planar graph with non-negative vertex costs
summing to no nore than one. Suppose G has a spanning tree of radius r .
Then the vertices of G can be partitioned into three sets A, B, C,

such that no edge joins a vertex in Awith a vertex in B, neither A
nor B has total cost exceeding 2/3 , and C contains no nore than

2r+l vertices, one the rootof the tree.

proof,  Assume no vertex has cost exceeding 1/3 ; otherwise the lemm is
true. Embed G in the plane. Mke each face a triangle by adding a
suitable nunber of additional edges. Any non-tree edge (including each

of the added edges) forms a sinple cycle with sone of the tree edges. This
cycle is of length at nost 2r+tl if it contains the root of the tree, at
nmost 2r-1 otherwi se. The cycle divides the plane (and the graph) into
two parts, the inside and the outside of the cycle. W claimthat at

| east one such cycle separates the graph so that neither the inside nor



the outside contains vertices whose total cosc exceeds 2/3, This

proves the |emm.

Proof of claim Let (x,z) be the non-tree edge whose cycle mninizes

the maxi mum cost either inside or outside the cycle. Break ties by
choosing the non-tree edge whose cycle has the smallest nunber of faces
on the sane side as the maxinmumcost. |f ties remain, choose arbitrarily.
Suppose wi thout |oss of generality that the graph is enbedded so
that the cost inside the (x,z) cycle is at |east as great as the cost
outside the cycle. If the vertices inside the cycle have total cost not
exceeding 2/3 , the claimis true. Suppose the vertices inside the cycle
have total cost exceeding 2/3 . W show by case analysis that this
contradicts the choice of (x,z) . Consider the face which has (x,z)
as a boundary edge and lies inside the cycle. This face is a triangle;
let y be its third vertex. The properties of (x,y) and (y,z)
determne which of the follow ng cases applies. Figure 4 illustrates the
cases

[Figure 4]

(1) Both (x,y) )and (y,z) lie on the cycle. Then the face (x,y,2)
is the cycle, which is inpossible since vertices lie inside the
cycle.

(2) One of (x,y) and (y,z) (say (x,y) ) lies on the cycle. Then
(y;z) is a non-tree edge defining a cycle which contains within it
the same vertices as the original cycle but one less face. This

contradicts the choice of (x,z) .



(3) Neither (x,y) nor (y,z) lies on the cycle.

(a) Both (x,y) and (y,z) are tree edges. This is inpossible
since the tree itself contains no cycles.

(b) One of (xy) and (y,z) (say (x,y) ) is a tree edge. Then
(y;z) is a non-tree edge defining a cycle which contains one
less vertex (namely y ) within it than the original cycle.

The inside of the (y,z) cycle contains no nore cost and one
less face than the inside of the (x,z) cycle. Thus if the
cost inside the (y,z) cycle is greater than the cost outside
the cycle, (y,z) would have been chosen in place of (x,z) .

On the other hand, suppose the cost inside the (v, z)
cycle is no greater than the cost outside. The cost outside
the (y,z) cycle is equal to the cost outside the (x,z)
cycle plus the cost of y . Since both the cost outside the
(x,z) cycle and the cost of y are less than 1/3 , the cost
outside the (y,z) cycle is less than 2/3, and (y,z) woul d
have been chosen in place of (x,z) .

(C) Neither (x,y) nor (y,z) is a tree edge. Then each of (x,y)
and (y,z) defines a cycle, and every vertex inside the (x,z)
cycle is either inside the (x,y) cycle, inside the (y,z)
cycle, or on the boundary of bhoth. O the (x,y) and (y,z)
cycles, choose the one (say (x,y) ) which has inside it nore
total cost. The (x,y) cycle has no nore cost and strictly
fewer faces inside it than the (x,z) cycle. Thus if the cost
inside the (x,y) cycle is greater than the cost outside,

(x,y) woul d have been chosen in place of (x,z) .



On the other hand, suppose the cost inside the (¥, y)
cycle is no greater than the cost outside. Since the incide
of’ the (x,z) cycle has cost exceeding 2/3 , the (x,v)

cycle and its inside together have cost exceeding 1/5 ; and

the outside of the (X,y) cycle has cost less than 2/5 .

Thuc (x,y) would have been chosen in place of (x,z) .

Thus all cascs are impossible, and the (x,z) cycle satisfies the claim. [

Lemma 3. Let G be any n-vertex conmnected planar graph having non-negative
vertex costs suming to no more than one. Suppose that the vertices of

G are partitioned into levels according to their distance from come

vertex v , and that L(/) denotes the number of vertices on level g ,

If r is the maximum distance of any vertex from v , let r+l1 be an

and [{

additional level containing no vertices. Given any two levels 2 5

such that levels O through lzl—l have total cost not exceeding 2/3 and

levels .+l through r+l have total cost not exceeding 2/3 , it is

2
possible to find a partition A, B, C of the wvertices of G such that
no edge joins a vertex in A with a vertex in B , neither A nor B

has total cost exceeding 2/3 , and C contains no more than

L(ty) + L(t,) +max{0, 2(4,-£7-1)} vertices.

- Prooft. i /21 > l2 , let A be 8ll vertices on levels O through JZl-l ,

B all verticec on levels ll+l through r , and C all vertices on

< {, . Delete the

level £y - Then the lemma is true, Thus suppose { o

1

and £

vertices in levels £q o

from G . This separates the remaining
vertices of G into three parts (all of which may be empty): vertices

on levels O through £,-1 , vertices on levels £l+l through 22—1 ;



and vertices on levels I5+1 and above. The only part which can have
cost exceeding 2/%3 is the middle part,

If the mddle part does not have cost exceeding 2/3 , let A be the
nost costly part of the three, let B be the renmaining two parts, and |et
C be the set of vertices on levels £ and 12 . Then the lemma is
true.

Suppose the niddle part has cost exceeding 2/3 . Delete all vertices
on levels ¢, and above and shrink all vertices on levels f and bel ow
to a single vertex of cost zero. These operations preserve planarity by
Corollary 1. The new graph has a spanning tree of radius 1y-04-1 whose

root corresponds to vertices on levels Iy and below in the original

graph.
Apply Lemma 2 to the new graph. Let A*, B¥, ¢* be the resulting

vertex partition. Let A be the set anong A* and B* having greater

cost, let C consist of the vertices on levels N and L, in the original

graph plus the vertices in C* mnus the root of the tree, and let B

contain the remaining vertices inG. By Lenma 2, A has total cost

not exceeding 2/3 . But AycC* has total cost at least 1/3, so B

al so has total cost not exceeding 2/3. Furthermore C contains no

nore than L(£7) + L(4p) +2(to-47-1) vertices. Thus the lemm is true. O

Theorem 4., Let G be any n-vertex planar graph having non-negative
vertex costs sunming to no nore than one. Then the vertices of ¢ can
be partitioned into three sets A B, C such that no edge joins a vertex

in Awith a vertex in B, neither Anor B has total cost exceeding

2/3 , and C contains no nore than 2\/5\/;1 vertices.

10



Proof.  Assunme G is connected. Partition the vertices into levels
according to their distance fromsome vertex v. Let L(1) be the
nunber of vertices on level ¢ . If r is the maxi mum distance of any
vertex fromv , define additional levels -1 and r+1 containing no

vertices.

Let 1y be the level such that the sum of costs in levels 0 through

1
is at least 1/2. (If no such ¢ exists, the total cost of all vertices

-1 is less than 1/2, but the sumof costs in levels 0 through ¢

is less than 1/2, and B = C = § satisfies the theorem) Let k be
t he nunber of vertices on levels 0 through 2 - Find a | evel Ly such
and |L(/zo)| +2(zl-zO) < 2k . Find a | evel L, such
and |L(£2)| 4—2(22-21-1) < 24n-k , If two such levels

that 2, < ¢

0 1
that g,+1 < 1,
exist, then by Lemma 3 the vertices of G can be partitioned into three
sets A, B, C such that no edge joins a vertex in Awith a vertex in B
neither A nor C has cost exceeding 2/3, and C contains no nore than
o(WEk + «/I-T{) vertices. But 2(Wk + \/H_-T:) < 2(«/}-175+ '\/-rvg) = 224 .
Thus the theoremholds if suitable levels ¢, and ¢, exist.

Suppose a suitable |evel gz, does not exist. Then, for i < Iy

L(i) > 2k -2(44-1) . Since L(0) =1, this means 1 > 2»\/5:'-211 ,

and g+1/2 > vk . Thus g, = Lig+1/2 > k], and
N .

k= © L) > I ik ~2(a-1) > (WE -21E)) (|VE)+1)/2 >
i=0 i=1,- k)

'\/_k'(l_'\/.lz_]+l)> k . This is a contradiction. A simlar contradiction

arises if a suitable level 4, does not exist. This conpletes the

proof for connected graphs.

11



Now suppose G is not connected. Let G 3Gps e Gy be the connected
conponents of G, with vertex sets Vs Vos ooy Vi s respectively. If no
connected conmponent has total vertex cost exceeding 1/3 , let i be the
m ni num index such that the total cost of-. v;UV,U... UV, exceeds 1/3 .
Let A= V,UV,U...UV; ;let B=V;,{UV,,,U...UV , and let C=p.
Since i is minimun and the cost of V, does not exceed 1/3 , the cost
of A does not exceed 2/3 . Thus the theoremis true.

| f sone connected conponent (say Gi) has total vertex cost between
1/3 and 2/3 ,let A=Vi ,B="V;U... UV; jUV;,qU... UV , and
C=4@ . Then the theoremis true.

Finally, if some connected conmponent (say Gi) has total vertex
cost exceeding 2/3 , apply the above argunent to G, . Let A, B¥,CX
be the resulting partition. Let A be the set anobng A* and B* with
greater cost, let C=C*, and let B be the remaining vertices of G.
Then A and B have cost not exceeding 2/3 and the theoremis true,

This proves the theorem for all planar graphs. In all cases the
separator Cis either enpty or contained in only one connected conponent

of G O

Corollary 2 (&Y-Separator Theoren). Let G be any n-vertex planar
graph. The vertices of G can be partitioned into three sets A B, C
such that no edge joins a vertex in A wth a vertex in B, neither
A nor B contains nore than 2n/3 vertices, and C contains no nore

t han 2«/5«/}1- verti ces.

Pr oof . Assign to each vertex of G a cost of I/n . The corollary

follows from Theorem 4., O



It is natural to ask whether the constant factor of 2/5 in
Theorem 1 can be reduced to 1/2 if the constant factor of 2\,5 is

allowed to increase. The answer is yes.

Corollary 3. Let G be any n-vertex planar graph having non-negative
vertex costs summing to no more than one. Then the vertices of G can
be partitioned into three sets A, B, C such that no edge joins a wvertex in

A with a vertex in B , neither A nor B has total cost exceeding 1/2 ’
_2V2yn
1-+2/3

and C contains no more than vertices.

Proof. Let ¢ = (V,E) be an n-vertex planar graph. We shall define

sequences of sets (Ai) s (Bi) s (Ci) , (Di) such  that

(i) A, » B, , C; , D; partition V

(ii) No edge Jjoins A; with B, , A, with D, , or B; with D; -
(iii) The cost of Ai is no greater than the cost of Bi and the cost

of Bi is no greater than the cost of AiUCiUDi .

(iv)  |p,

s 122Dyl /3.

By = Cy = o, Dy = V. Then (1)-(iv) hold. If A_g o

Let AO

Bi_12 C;_1 » D;_; have been defined and D, ; # # , let G* Dbe the
subgraph of G induced by the wvertex set Di-l . Let A¥ , B¥ , C¥ be
a vertex partition satisfying Corollary 2 on G* . Without loss of
generality, suppose A* has no more cost than B*¥ . Let Ai be the set
among Ai-l U A* E B 1 with less cost, let Bi be the set among

*
A, _{UA* , B,

io1 with greater cost, let C.1= Ci_lUC* , and let Di = B¥ ,

Then (i), (i1), (iii), and (iv) hold for A; , B, , C; , D; .

Let k¥ be the largest index for which Ak ’ Bk ) Ck B Dk are defined.
Then D, = § . Let A =A ,B=B ,C=0C. By (i), A, B, ¢C

13



partition V.. By (ii), no edge joins a vertex in Awith a vertex in B,

By (iii), neither A nor B has cost exceeding 1/2 . By (iv), the total

_2if2in . O

nunber of vertices in Cis bounded by Z 2v/2vn (2/5)i/2 = >
i=0 1-42/3

Anot her natural question is whether graphs which are "alnost" planar
have a J; -separator theorem The finite element nethod of nunerical
analysis gives rise to one interesting class of alnost-planar graphs
W shall extend Theorem 4 to apply to such graphs

A finite element graph is any graph forned from a planar enbedding

of a planar graph by adding all possible diagonals to each face. (The
finite element graph has a clique corresponding to each face of the
enbedded planar graph.) The enbedded planar graph is called the skeleton
of the finite element graph and each of its faces is an elenment of the

finite el ement graph.

Theorem 5. Let G be an n-vertex finite elenment graph with non-negative
vertex costs summing to no nore than one. Suppose no elenent of G has
more than k boundary vertices. Then the vertices of G can be
partitioned into three sets A B, C such that no edge joins a vertex

‘in Awith a vertex in B, neither A nor B has total cost exceeding

2/3 , and C contains no nore than th/EJNG; vertices.

Proof. Let G be the skeleton of G . Forma** fromaG* by inserting

one new vertex into each face of G* containing four or nore vertices
and connecting the new vertex to each vertex on the boundary of the face
Then G* is planar. Apply Theoremk to G* . Let A**, Bxx, C'* be
the resulting vertex partition. This partition satisfies the theorem

except that certain edges in G but not in G* may join A** and B**

1k



These edges are diagonals of certain faces of G*x; call these bad faces.
Each bad face nust contain one of the new vertices added to Gx to form
G* , and this vertex nust be in C* .

Form G from C** by deleting all new vertices and adding to G** ,
for each bad face, either the set of vertices in A** on the boundary of
the bad face, or the set of vertices in B** on the boundary of the bad
face, whichever is smaller. Let A be theremainingold vertices in A**
and let B** be the remaining old vertices in B** . Then no edge in G
joins A and B, neither A nor B contains nore than 2n/3 verti ces,
and C contains no nore than 242 Lk/EJ«@vertices, where a is
the number of faces of G containing four or nore vertices. Using
Euler's theorem it is not hard to show that the nunber of faces of a*
containing four or more vertices is at nmost n-2 . Thus |C| < Lk/EJ«fr-l- >

and the theoremis true. O

Corollary 4. Let G be any n-vertex finite element graph. Suppose no
element of G has nore than k boundary vertices. The vertices of G
can be partitioned into three sets A B, C such that no edge joins a
vertex in A with a vertex in B, neither A nor B contains nore

than 2n/3 vertices, and C contains no nore than th/EJ«[r:vertices.

The last result of this section shows that Theorem 4 and its
corollaries are tight to within a constant factor; that is, if

f(n) = o(«/ﬂ), no f(n) -separator theorem holds for planar graphs.

15



Theorem 6. For any k, let G = (V,E) be a kxk square grid graph

(a kxk square section of the infinite grid graph in Figure 1). Let

2
A be any subset of V such that on < |Al < n/2 , where n =k
and o is a positive constant less than 1/2 . Then the nunber of
vertices in V-A adjacent to some vertex in Ais at |east
kemin{l/2 , Va} .
Proof . Wthout |oss of generality, suppose that the nunber r of rows

of G which contain vertices in Ais no |less than the nunber c of
col ums of G which contain vertices in A. Then an < |A| < re < r
and r>~Nok .

If r* is the number of rows of G which contain only vertices
in A then kr* <|al<n/2, and r* < k/2 . If r* =0, then
|A] >y >Aak. If r* #0, thenr =k and |A| > r-r* = k-r*

>k/2 . O

It is an open problemto determne the smallest constant factor

whi ch can repl ace 242 in Theorem b.

16



3. An Algorithmfor Finding a Good Partition.

The proof of Theoremk |eads to an algorithmfor finding a vertex
partition satisfying the theorem To make this algorithm efficient, we
need a good representation of a planar enbedding of a graph. For this
purpose we use a list structure whose elenments correspond to the edges
of the graph. Stored with each edge are its endpoints and four pointers,
designating the edges immediately clockw se and counter-clockw se around
each of the endpoints of the edge. Stored with each vertexis sone
incident edge. Figure 5 gives an exanple of such a data structure.

[Figure5 1

Partitioning Al gorithm

Step 1 Find a planar enbedding of G and construct a representation
for it of the kind described above.

Time: 0(n) , using the algorithm of [10].

Step : Find the connected conponents of G and determne the cost of
each one. If none has cost exceeding 2/3 , construct the
partition as described in the proof of Theoremk. |f sone
conponent has cost exceeding 2/3, go to Step 3.

Tire: o(n) [9].

Step 3:  Find a breadth-first spanning tree of the nost costly conponent.
Conpute the level of each vertex and the nunber of vertices
L{(z) in each level 1.

Tine: O(n) .

17



Step 5:

St ep 6:

Find the |evel £ such that the total cost of levels O
t hr ough £;-1 does not exceed 1/2 , but the total cost
of levels O through ¢, does exceed 1/2 . Let k be
the nunmber of vertices in levels 0 through ¢, .

Time:  o(n) |
Fi nd the highest |evel 1o <4 such that L(zo)+2(/zl—/z
ok | Find the | owest |evel ¢

o) <

o 2 49*1 such that

L(2,) +2(y-27-1) <2ynk

Tine:  o(n) .
Delete all vertices on |evel L, and above. Construct a new
vertex x to represent all vertices on levels 0 through Iy
Construct a Boolean table with one entry per vertex. Initialize
to true the entry for each vertex on levels 0 through N and

PRI

initialize to false the entry for each vertex on levels 2,+1
through £,-1 . The vertices on levels 0 through ¢,
correspond to a subtree of the breadth-first spanning tree
generated in Step 3. scan the edges incident to this tree

clockwi se around the tree. Wen scanning an edge (v,w) with

V in the tree, check the table entry for w. If it is true,
del ete edge (v,w) . If it is fal»se, change it to true,
construct an edge (x,w) , and delete edge (v,w) . The result

of this step is a planar representation of the shrunken graph
to which Lemma 2 is to be applied. See Figure 6.
Tine: 0(n) .

[Figure 6]

18



Step 8:

St ep

Construct a breadth-first spanning tree rooted at x in the
new graph. (This can be done by nodifying the breadth-first
spanning tree constructed in Step 3.) Record, for each vertex
v, the parent of v in the tree, and the total cost of all
descendants of v including v itself. Make all faces of the
new graph into triangles by scanning the boundary of each face
and adding (non-tree) edges as necessary.

Time:  o(n) .
Choose any non-tree edge (vl,wl) . Locate the corresponding

cycle by following parent pointers from v, and W Conput e

1
the cost on each side of this cycle by scanning the tree edges
incident on either side of the cycle and summing their associated
costs. If (v,w)is atree edge with v on the cycle and w
not on the cycle, the cost associated with (v,w) is the

descendant cost of wif v is the parent of w, and the

cost of all vertices mnus the descendant cost of v if wis

the parent of v . Determne which side of the cycle has greater
cost and call it the "inside". See Figure 7.
Time: o(n) .
[Figure 7]

Let (vi,wi) be the non--tree edge whose cycle is the current
candidate to conplete the separator. If the cost inside the
cycle exceeds 2/3 , find a better cycle by the follow ng nethod.
Locate the triangle (Vi’y’wi) whi ch has (vi,wi) as a
boundary edge and lies inside the (vi, wi) cycle. If either
(vi¥) or (y,w;) isa tree edge, let (vy,1,W; ;) be the

non-tree edge anong (vi,y) and (y,wi) . Conpute the cost

19



Step 10:

i nside the (Vi+1’ Wi+l) cycle from the cost inside the (vi,wi)
cycle and the cost of V;» v, and w, . See Figure k.

If neither (vi, y) nor (y, wi) is a tree edge, determne
the tree path fromy to the (vi’wi) cycle by follow ng parent
pointers fromy . Let z be the vertex on the (Vi’ Wi) cycle
reached during this search. Compute the total cost of all
vertices except z on this tree path. Scan the tree edges
inside the (y, w; ) cycle, alternately scanning an edge in one
cycle and an edge in the other cycle. Stop scanning when all
edges inside one of the cycles have been scanned. Conpute the
cost inside this cycle by suming the associated costs of all
scanned edges. Use this cost, the cost inside the (Vi’ wi)
cycle, and the cost on the tree path fromy to z to conpute
the cost inside the other cycle. Let (V*rﬂiwﬁﬂﬁ be the edge
among (vi, Yy) and (y,wi) whose cycle has nore cost inside it.

Repeat Step 9 until finding a cycle whose inside has cost
not exceeding 2/3 .

Tine: Q(n) (see proof below).

Use the cycle found in Step 9 and the levels found in Step X

to construct a satisfactory vertex partition as described in
the proof of Lemma 3. Extend this partition from the connected
conponent chosen in Step 2 to the entire graph as described in
the proof of Theorem 4.

Tite:  o(n)

This conpletes our presentation of the algorithm Al steps except

Step 9 obviously run in Q(n) tinme. W urge readers to fill in the

details of this algorithm we content ourselves here with proving that

Step 9 requires Q(n) tine.
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Proof of Step 9 Time Bound. Each iteration of Step 9 deletes at |east

one face fromthe inside of the current cycle. Thus Step 9 terminates
after Q(n) iterations. The total running time of one iteration of
Step 9is Q1) plus tinme proportional to the length of the tree path
fromy to z plus time proportional to the nunber of edges scanned
inside the (Vi’ y) and (y,wi) cycles. Each vertex on the tree path
from y to z (except z )is inside the current cycle but on the
boundary oroutside of all subsequent cycles. For every two edges
scanned during an iteration of Step 9, at |east one edge is inside the
current cycle but outside all subsequent cycles. |t follows that the
total tinme spent traversing tree paths and scanning edges, during all

iterations of étep 9 is 0o(n) . Thus the total tinme spent in Step 9

is Qn) . O

By making mnor nodifications to this algorithm one can construct
an Qn) -tine algorithmto find a vertex partition satisfying Theorem 5,
and Q(n) -time algorithns to find vertex partitions satisfying

Corollary 2 and Corollary b,
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4, Appl i cati ons.

The separator theorem proved in Section 2 allows us to obtain many
new conplexity results since it opens the way for efficient application
of divide-and-conquer on planar graphs. W nention a few such applications

here; we shall present the details in a subsequent paper.

General i zed nested dissection. Any system of |inear equations whose

sparsity structure corresponds to a planar or finite element graph can
be solved in o(n5/2) time and Q(n log n) space. This result

general i zes the nested dissection nethod of George [5].

Pebbl i ng. Any n-vertex planar acyclic directed graph with maxi mum
i n-degree k can e pebbl ed using o(«/-rz +k log n) pebbles. See

[8,16] for a description of the pebble gane.

.The Post Office Problem Knuth's "post office" problem[Il] can be

solved in 0((log n)2) time and Q' n) space. See [3,17] for previous

results.

Data Structure Enbeddi ng Probl ens. Any planar data structure can be

efficiently enbedded into a balanced binary tree. See [2,14] for a

-description of the problem and sone related results.

Lower Bounds on Boolean Gircuits. Any planar circuit for conputing

: . 2 L
Boolean convolution contains at least en gates for some positive

constant c .
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Appendi x: G aph-Theoretic Definitions

A gragh G = (V,E) consists of a set V of vertices and a set E
of edges. Each edge is an unordered pair (v,w) of distinct vertices.
If (v,w) is an edge, V and w are adjacent and (v,w) i s incident

to both v and w. Abpatéh of g t h k with endpoints v, wis a

sequence of vertices v = Vs VsV . - +» Ve =W such that (vi_l,vi) is

an edge for 1 <i <k . If all the vertices VpViseeesVy 4 are di stinct,
the path is sinple. If v =w, the path is a cycle. The distance from

v towis the length of the shortest path fromv to w. (The
distance is infinite if v and w are not joined by a path.)The

level of a vertex v in a graph G with respect to a fixed root r is
the distance fromr to v .

If G = (V,E,) and G, = (V»E,) are graphs, G iS a subgraph

of G, if V,cV, and B, cE, . G is a generalized subgraph of Gy
i f v, €V, and there is a mapping f from By into the set of paths of
G, such that, for each edge (v,w) €Ey 5 f((v,w)) has endpoints v and

2
v , and no two paths f((vl,wl)) and f((vg,wg)) share a vertex except

possibly an endpoint of both paths. |f G = (Vl,El) is a graph and

V; €V, the graph ¢ = (Vl,El) where E; = E,N {(v,w) | v,weV}is

the subgraph of G, induced by the vertex set Vv If G = (v ,El) is

1.

- a subgraph of Gy = (v, ,EE) , then shrinking Gy to a single vertex in G,
means formng a new graph G, from G, by del eting fromG2 all vertices
in vy and all their incident edges, adding a new vertex x to G, , and
adding a new edge (x,w) to G, for each edge (v,w) €E, such that

VeV, and wgvy .
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A graph is connected if any two vertices in it are joined by a path.

The connected conponents of a graph are its maximal connected subgraphs.

A clique is a graph such that any two vertices are joined by an edge.

A tree is a connected graph containing no cycles. W shall generally

assune that a tree has a distinguished vertex, called a root. If T is
a trec with root r and v is on the (unique) sinple path fromr to w,
V is an ancestor of w and wis a descendant of v . If in addition
(v,w) isanedgeof T, then v is the parent of wand W is achild

of v . The radius of a tree is the maxi num di stance of any vertex from

the root. A spanning tree T of a graph Gis a subgraph of G which

iS a tree and which contains all tae vertices of G. T is a breadth-first

spanning tree with respect to a root r if, for any vertex v , the
distance from r to v in T is equal to tae distance fromr to
v in G

A graph G = (V,E) is planar if there is a one-to-one nmap £y
fromv into points in the plane and a map £, fromE into sinple
curves in the plane such that, for each edge (v,w) €E ,fg((v,w))
has endpoints fl(v) and fg(w) , and no two curves fQ((Vl’wl)) ,

f‘a((vp,wg)) share a point except possibly a conmon endpoint. Such a

f

» 1s a planar enbedding of G. The connected

pair of maps f; ,

planar regions formed when the ranges of f; and f, are del eted from
tne planz are called the faces of the enbedding. Each face is bounded
by a curve corresponding to a cycle of G, called the boundary of the
face. W shall sometimes not distinguish between a face and its
boundary. A diagonal of a face is an edge (v,w) such that v and w

are non-adj acent vertices on the boundary of the face.
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Figure 1. Infinite two-dimensional square grid.
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Figure 2.  Kuratowski subgraphs.

(a) KS ¢ (b) K3)3 .
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% Xy ¥y x

Figure 3.  Shrinking an edge to form a Kuratowski graph.
Oiginal graph nust contain a Kuratowski graph
as a generalized subgraph.
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(1) x z (2)

(3a) (3b)

or

Figure 4, Cases for proof of Lemma 2, Solid edges are tree

edges; dotted edges are non-tree edges
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Vert ex incidences Edges and nei ghbors
e, ey ¢, ce,
1 e ¢y 1 2 e e, e, e
2 elﬁ -- e, 1 3 ey es eg e
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)it 65 &) 2 3 e5 el e2 e
eg 2 L ey e, e e
eg 3 L e, €, e e

Figure 5. Representation of an enmbedded planar graph.

(c = clockwi se, cc = counter-clockw se.)
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©) W), BT, 26), G515 BT, 56T, 6,505 BT

Figure 6, Shrinking a subtree of a planar graph.
(a) Original graph. subtree denoted by wvttuams .
(b) Edges scanned around subtree. Those formng |oops

and multiple edges in shrunken graph are crossed out.

(c) Shrunken graph. Vertex 0 replaces sub-tree.
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Figure 7. Cycle constructed in Step 8. Al vertices have cost o2
Nunbers on vertices are descendant costs. The total cost

inside the cycle is .48, outside the cycle is 34, and
on the cycle is .18 .
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