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Abstract .

The follow ng graph addressing problem was studied by Gaham and
Pollak in devising a routing scheme for Pierce's Loop Switching Network.
Let G be a graph with n vertices. It is desired to assign to each
vertex v. an address in {0,1, *}l » such that the Hamm ng distance
between the addresses of any two vertices agrees with their distance
in G Let N(G be the minimumlength ¢ for which an assignment
is possible. It was shown by Gahamand Pollak that N(Q < my(n-1),
wher e My is the diameter of G. In the present paper, we shall prove
that N(G < 1.09(1g nGn+ 8nby an explicit construction. This shows

in particular that any graph has an addressing schene of length

Qn log n) .

- Keywor ds: addressing schenme, binary tree, graph, Hamming di stance,
| oop switching network.
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1. [ ntroduction.

An interesting routing schene to Pierce's Loop Switching Network
[7] was proposed by Graham and Pollak([3,4] (see also [1]). m this
scheme, Pierce’s network i s represented by & graph where vertices stand
for the | oops, and edges stand for the contacts between loops in the
network.  The scheme calls for assigning a sequence of ternary synbols
to each vertex such that the distances between vertices in the graph
are faithfully represented. The cambinatorial problemis described
bel ow, for a detailed discussion of the connection between Pierce's
network and this combinatorial problem as well as further information
on the subject, see references [1,3,L,7].

Throughout our discussion, ¢ = (V,E) will be a connected graph with
a set V of vertices, and a set E of undirected edges. A path of

i to a vertex v. is a sequence of
length t in G from a vertex v 3 q

Vertices vy »Viy 5. . oV such that v, = v, , v v, , and
ko kl kt ko i k'b _d
{vks l,vk }eE for s = 1,2,...,t . The distance dG(vi’Vj) bet ween

vertices v; and Vs is the mninumlength t for which a path of
length t from v; to vy exi sts. The dianmeter of G, denoted by me s
is the largest distance between any two vertices in G. That is,
m, = ma.x{d.G(vi,vj) \vi,v'j evy .

Let ¢ be the ternary synbol set {0,1,*} . (The character " %"

is a "don't-care" synbol.) The Hanmi ng distance H between elenents in g

is defined by H(1,0) = H(0,1) = 1 , and H(a,b) = 0 for all other pairs
of a,b in ¢ . For tw sequences Q=8)85... 8 and B = blbe“‘bt

in zl, where £ >0, their Hamming distance is given by

H(a,B) = 2. H(a,,b.). .
4 1<i<y i R R )




An addressing schene for a graph ¢ = (V,E) with n vertices is

an assignment of a sequence c(vi) € zz to each vertex v, such that
H(c(vi),c(vj)) = dG(vi,vJ.) for all Vs v.J in V . The positive
integer ¢ is called the length of the addressing scheme, and the
sequence c(v;) the address of vertex v;. It is desired to find
addressing schemes with small length. Let N(G be the mnimm g for
whi ch an addressing scheme of length ¢ exists for G. In [3], it was
proved that an addressing schene always exists (i.e., NG < « ), and
furthermore, NG < mG(n-l) . W shall inprove this bound by explicitly

constructing an addressing scheme. The main results are as follows:

(W shall use 7 to denote the constant (-31— 1g 3+ % lg -32-)'1 ~ 1.09 .)

Theoreml. For a graph G with n vertices,

NG <Anlgn+ 2n.

Theorem 2. For a graph G with n vertices,

N(e) < M n(lg m,) + 8n.

o

Note : lg means logarithmto the base 2.




2. Definitions and Prelimnaries.

Let G=(V,E) be a (connected, undirected) graph. A path

in Gis sinmple if all the vertices v for 0 <s <t

Voo oV s ..V
kg K K k

are distinct, except possibly for v, = vk.t . A graph g¢' = (V',E")
O ¥

is called a subgraph of Gif V < Vand E < E. A subgraph
G = (V',B') is saidto be atreein g if G is connected and there
is no sinple path of length > 0 in g fromany vertex vev' 10 itself.

Atrze @ =(V',E'") in Gis a spanning tree for ¢if V =V . For

any subset of vertices V' <V, the dianeter of v/, witten diamg(‘\f‘) ,

is max{dG(vi,vj) | ViV ev'} . In particular, diamG(V) = m, - The

di_stance dG(vi, v') between a vertex v.eVv and a subset V' c Vis

defined as d,(v;,V') = min{dG(vi,vj) | VeV 3.

o
We saall make Use of binary trees in our design process. (See for

exam;le Knuth [5] for basic definitions regarding binary trees.) Let T
be a binary tree with n leaves. Assunme the nodes of T are nunbered
arbitrarily from 1 to 2n-1 . The node with number k will be denoted
by 1, . Ve will also use the notation for a leaf nunbered i |,
and @ for an internal node nunbered j . For a node e let R(Kk)

the subset of leaves in T which are descendants of Iy - The size

(D4

b
of R(k) is called the weight of r. denoted by w(k) . For exanple,
we have R(1) = {r8,r6,r9} , R(2) ={r;}, and W1) = 3, w(2) = 1 in

igure 1. The external path length P(T) is defined by the follow ng equation

)

P(T) = Z w(k) . (1)

internal node .

The quantity P(T) can alternatively be described as the sum of t he
di stances fromthe |eaves to the root [5]. If r; and ryare respectively

the leftson aand the rightson of r we shall wite i = leftson(k) ,

k 1

h



Fi gurel

rightson(k)); k = father(i) = father(j) ; and j = brother(i) ,

brother(j) . As a shorthand, we shall use k for father(k) and

]
]

J

k' for brother(k) . A binary tree T is said to be weight-bal anced

if for each internal node T

W
4
Z

% w(k) < w(leftson(k)) <
(2)

2 w(k) < w(rightson(k)) < £ w(k)

The following result is from[6, Theorem 2].

Lemma 1 [Nievergelt and Wong]. If T is a weight-balanced binary tree

with n |leaves, then the external path length of T satisfies

P(T) <A nlgn=11.09nlgn.

In a binary tree T, if a |eaf CiI precedes anot her IeafciI

in post-order [5], we shall say that [i| is to the left of j (or
is to the right of D ), and wite <~ D (or equivalently
> Y. W further extend the relation so that




[E < T i f EJ < for all descendants of =,
[i] 3-r, i f > for all descendants of r, .

Oearly, for any |eaf and node r, ; either [I] <1 , J| >r1,

or D is a descendant of T

holds. In Figure 1, we have @<-, @6@,&1(1 '>®.

and exactly one of the three relations



3, The Construction of a Length Q(n 1g n) Addressing Schene.

3.1 The Design Tree.

The key to obtaining an Qn 1g n) scheme is by using a hierarchical
design. A design tree Mis a pair (T,f) where T is a binary tree
with n leaves, and f is a one-to-one mapping fromthe |eaves of T
to the vertices of G, For notational convenience, we shall number the
nodes of T in such a way that the |eaves receive nunbers 1 to n and
leaf 1 is associated with vertex v, under f . The root of T will
be |abeled with 2n-1 ; and the remaining internal nodes with n+l through
en-2 (their actual nunbering will be uninportant for M).

V% now describe an addressing scheme Z(M corresponding to a
given design tree M. Every address c(v;) in Z(M will consist of
2n-2 bl ocks of code, where the k-th block has Iength £, (to be defined
later) and is conceptual |y associated with the node r, of T. (Note
that rk cannot be the root since k # 2n-1.) Thus we shall wite,
for 1<i<n,

c(vi') = C471%0 e % oo

where c . l= e - (3)

By definition, the Hemming di stance between two addresses c(vi) and
c(vj) Is equal to the sumof the Heming distances between corresponding

. blocks. That is,

2n-2
H(C(Vi),C(VJ.)) = 21 H<cik’cjk) ’ (h‘)

=

W shal | design the code in such a way that in (4), only a fewternms will
contribute to the sum other terns being zero. For exanple, consider the

design tree M shown in Figure 2. \ shall in fact have



\Ji

Figure 2. A design tree M with a marked path.

Al VY
H(c (V5), e{vy)) = H(CB,lO’ c2,10) + H‘(C?,ll’_CE,ll) + H(CB,E,’ Cy, 0! (5

~

and H(c o) = 0 for k¢ (10,11,2} . The trick to achieve

3,k C
H(c(vB),c(vg)) = dG(VB,Ve) is as follows. Define S(k) = {f(rj) \ r, e R(i)]

i.e., s(k) is the set of vertices associated with the |eaf descendants
of r, . Ve shall require that,
\
. Hleg yo0cp 1) dG(V5’S(lO)> ’
H(CB,l‘J’ cg’lo) + H(c§ ll’ c? ll) - dG<V5’S(ll)) s

1 - — N
H<°§,l€’°2,10> + H(CB,ll’CQ,ll) ; H(CB,Q’C2,2> —dG(VB,S(Q))_ (6)

W can view (6) in the following way. Starting at the |owest common

ancestor (lca) of and (i.e., the common ancestor qf 3and

farthest fromthe root), which is' r.. , we nove down the path

12

Ty » Tqp 2 L0 the | eaf r, . Each node r, encount ered along the path,



excluding the 1lca, Will add a block of code which creates enough Hanmm ng
di stance to bring the total up to d(vB,S(k)) . An equivalent form of
(6) is

H( = d(v5,8(k)) - a,(vy,8(k) ) (M)

%3, %’ %2, x)

for k = 10,11,2 , and k = father (k)

In general, we want to achieve the following. For < , let
node h, be the | owest common ancestor i andd'| , and

h "ht = ] be the path from node h0 to cjI , then

O}hl). .
H(ci,k’cj,k) = d(Vi, S(k))-d(vl,S(i))

h, , and k = father(k) ;

fOI’ k=hl)h2}--').ta

H(ci,k’cj,k> =0 for all other k . (8)

It is easy to verify that (8), if true for all < [3] » will be
sufficient to guarantee that Z(M = {c(vi) |1 <i <n), as given by (3),
is an addressing schene, That is, dG(v., vj) = H(c(vi),c(vj)) for all

1

1,3 . W now describe a construction of the e, 's that satisfy (8).

Z(M: The Addressing Schene |nduced by M. For each k, 1 <k < 2n-2,

| et

1 = lénzxﬁn [dy(v;r8(k)) - dG(Vi,S(l_i) )1, 9)

The block cgy ,for 1 <i <n, has length ¢ and is given by

000 = = = ... O ifod IS a descendant of r,
cik=ﬂ KX o, ¥ i f ai >y
t ]ij;.j*** ves ¥ with 3 = dG(vi,S(k)) - dG(vi,S(}-:)) s
5 i f At <r .

(10)



Finally, form zZ(M = {c(vi) |1 <i < n} according to (3). The length

of z(M) , denoted by t(M), is

-¢(M = % e - (11)

l§k§2n-2

To see that Z(M is actually an addressing schene, we need only
show that (8)is satisfied, For D <-, we see from (10) that
H(ejpscgy) = O unless m < r,_ and is a descendant of 1, ;
inthe latter case, H(egoepn) = dg(vy,8(K)) - ag(vy,s(k).But this

is exactly as required by (8), q.e.d.

3.2 Qiteria for.s Good Design Tree.

Let us find out what sort of design tree M will generate a short
addressing schenme, Notice that for any 1<i <n, 1<k<®on2, we
have

dG(Vi’ S(k)) - dG(vi’ S (1_{) ) __<_ diamG(S(l-i) ) . (12)

Inequality (12) is valid, since we can concatenate a path from v, 1o the

nearest point in S(k) , with a path of length at nost diam,(S(k)), to

reach a vertex in S(k) . This tells us that

5, < diamG(s(E)) _ (13)

k

A upper bound to (M) is therefore

) _< D ddemy(s(k) = 2 = dian (S(K)) ,  (1h)
1<k<2n-2 n+tl <k<2n-1

every internal node being the father of two nodes. This upper bound will
in general be O(n2) , as the subset S(k) may have diameter Q(n) for

many k. However, if we insist on two conditions

10



(i) no two points in S(k) are far apart conpared to its size |s(x)|,
speci fically, diamG(S(k) ) < | 8(k) |; and

(ii) the binary tree is weight-bal anced,

then (14) would give

(M) < 2 2 |s(k) | = 2.P(T) < 2an 1g n (15)
n+l§k_<_2n-—l

by Lemma 1.

To achieve conditions (i) and (ii), we use the follow ng idea. Let
us think of M= (T,f) as a tree built topdown by successively breaking
Vinto smaller parts. Fromthis viewpoint, the tree in Figure 2is
obtained by first dividing (at node 15) {vi,vz,...,vs} into
{VS’V6’V1} and {vh,VB,v7,v2,v8} - each of the two resulting parts are
further divided into {vs} ' {v6,vl} at node 9 , and {vh, v5} s {v7,v2,v8}
at node 12, respectively. This process is repeated until we have only
the singleton sets {v,} .

W shall see that in building Min this fashion, it is possible to
keep the points in each part close together (condition (i)), and also make
the two parts nore or less equal in size (condition (ii)) on each
deconposition, W shall describe such a method next, and then perform a

finer analysis inproving the bound given by (15).

3.3 Constructing M from a Spanning Tree.

W shall construct a design tree Mwith the properties (i) and
(ii) given in Section 3,2, Choose any spanning tree with edge set A

for the graph G, Let us create a new vertex o and a new edge {vo,vl}.



VW now define a one-to-one mapping o between the edge set of the
augnented spanning tree A° = AU {{v,,v;}} and the vertex set V

(wi t hout 4 ). The mapping ¢ is obtained by regarding (VLJ{VO},A')
as a rooted tree with root Vo | and mapping each edge onto its "lower"
end point. W shall then nunber the edges ey in A so that

@(ei) =v; . An exanple of this process is shown in Figure 3.

Vg v5
Vo
3
(a) (b)

Figure 3. (a) A spanning tree on V = (Vl’v2’v5’vh’v5} and

(b) the labelling of its edges after augmentation

Qur plan is to construct a binary tree Q by "suitably" splitting
the edge set A into two disjoint subsets, and repeat the process until
only one edge remains in each subset. Figure 4(a) shows the binary
tree Qthat may result fromthis process when applied to the spanning
tree in Figure 3(b). Although the tree Q so constructed is not a design

tree on the vertex set, we can easily obtain such a design tree MQ from

12



(a) {el,ee,eB,eh,eS}

{el’eS} {ez,eB,

{ez,eh}

e} {es)

{eg} {eh}

eh}

O

(b) 8(9) = {Vl,V2,V5,V)+,V5}
5(8) = {vy,v5) (8) 8(6) = {Vprv5™y)
1 3
{Vi vs}

{v.1 ]2 b v}

Figure 4. (a) A binary tree Q , and

(b) its associated M, .

Q

15



Qin a natural way via the mapping o , W shall transform Q into
MQ simply by identifying e W th Vo inthe tree Q. The design
tree MQ obtained fromthe Qin Figure 4(a) is shown in Figure 4(b).

W can now conplete our task in two steps, (1) describe the
topdown construction of a Q for which I\/b woul d satisfy

conditions (i) and (ii), and (2) analyze the addressing scheme induced

by such an M

Q.
(1) Constructing Q . A set of edges Bin Gis called a
{ree set if Bis the edge set of some tree ing. Two tree sets By

and B, is said to--forma deconposition of the tree set B if B;NB, = g
and B,UB, = B . Note that, in such a deconposition, there is a unique
vertex v, that is incident to both By and B, . For exanple, in
~F:Lg-ure 3(b), B = {eg,eh,e5} is atree set. W can deconpose B into
{e;} and f{ey,e} with vy being the unique vertex v_ .

A deconposition of B into B, and B, is balanced if

1
% B < B < % |B| for i=1,2. The following lenma is inplicit
in [2]
Lemma 2 [Chung and G ahanj. Any tree set B with |B| > 2 has a

bal anced deconposition into two tree sets.

Let us now construct Q by breaking the augmented spanning tree A
into parts successively, using a balanced deconposition at each step. For
exanple, the tree Q shown in Figure 4(a) can be obtained this way from
A in Figure 3(b). Once Qis constructed, we transformit into a

design tree M, for the vertex set as described previously. It renains

Q

14



to analyze the address | ength obtained fram this tree MQ . To avoid
confusion, we use S(k) for the set of vertices associated with node

r, in |\/lQ , and use B(k) to denote the tree set at the corresponding

node in Q. Cearly, if S(k) = {vi 3V seeesVy }, then
1 72 t
B( k) = {eil’ eig, o 0N mf‘Jt gD

(2) Analysis. There are two sinple properties of the design
tree l\/'Q . Firstly, MQ i's weight-balanced by construction, Secondly,

at any node Iy of I\/'Q , diamG(S(k)) < |s(x)| . This is true since
any two vertices in S(k) can be connected through at nost |S(k)|

edges in the tree set B(k) . Thus, the two conditions (i) and (ii) in
Section 3.2 a;e satisfied, which inplies T(M) < 2xn 1g n . A stronger

bound can be obtained, however, by using the follow ng |emma.

Lemma 3. For each node r, in MQ and 1 <i <n,

a,(v;, 8(K)) - dG(vi,s(ii)) <1+ |s(k')|. where k' = brother(k) . (16)

Proof . Let v.J be a vertex in S(k) closest to v, i.e.,
dG(vi,vj) = dG(vi,s(l':)) . (a7)

| f vjeS(k) , then dG(vi’S(k)) = dG(vi,S(l-c)) , and (16) is true. So
~we can assume that vy € s(k') .
Let v, be the unique vertex that is incident to both an edge in

B(k') and an edge in B(k) . This inplies that

dy(vyvy) < B[ = |G| . (18)

Now, let {v,v,} be an edge in B(k) incident with v_ (see Figure 5).

15



B(k)

B(k")
|
|
|
|
[} Vi
Figure 5
Then,
d6(vs ve) € dglvyyvy) rdglvssry) < dglvg, s+ [sten] ,  (19)
a,(vi, v,) <a(v,v ) +1 < df,(vi,s(};)) F1r s . (o)

jize {‘fs,<f_t} ¢ B(k) , either v, or v, nust be in S(k) . Therefore,

(21)

d:}(v.i" o= w0 :_< max{‘\i;}(vi"gs)’d,}(vi’vt>} .

wyrauia (15) follows from (19), (20), and (21). O

Lemaa? inplies that,

f = ma {d,(vy,8(x)) - d(}(vi,s(l_{))} < 1+ |s(x) | .

erafore

16



(M) = )2 f < z (1 +|s(x")|)
1<k<2n-2 1<k<2n-2
= 2n-2+ z |s(x)| . (22)
1<k<2n-2

Making use of the fact that M, is weight-balanced and Lenma 1, we

Q
obtain after sinplification,

(M) < Anlogn + 2n .

Thi s proves Theorem 1.

3.4 Proof of Theorem 2.

When n the diameter of ¢, is substantially smaller than n-I

G’
the addressing schene we have constructed is better than the bound in

Theorem 1 indicates. The key observation is that b is always no greater

than m, , because 1, < max d In the analysis of

" | vi,s(k)) <m

G( G’

=Y
T(MQ) L4, We can thus use m, to bound 4, ,
for sone of the nodes r

instead of 1+ |s(k")|,

-

Let X be the set of nodes r,in I\/IQ such that |s(k)| < m.

and |s(k)| > m For each r ex, let J = {r; | r i's a descendant

o -

of r,, rjérk}. Let J UJ - InFigure 6, assune m, = L,
€

= G
rkX

the set X then consists of the nodes marked by arrows, and J is the
. set of shaded nodes. W shall use inequality g < 1+ |s(k')| for the

nodes r,eJ, and use ¢, <m, for the remining nodes in deriving a

G
bound for T(MQ) .

The following facts will be used in the calculation.

Fact 1. Let q be the nunmber of nodes not inJ , then q < I%fl
_— G

17




— «—
»» l/: % //; 5/
4 Z] 7 E
Figure 6. The set of shaded nodes is J .

N\
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Pr oof . Hr

T (er|sx)| -2) - 2( )2 |S(k)|)-2|x[ - 2n-2|x]| .

rkex rkeX

Hence q = 2n-1-|J] = 2|X|] -1 . Since |s(k)| > % |s@)| > Im, for rex,

G k

N

6n
e

we have |4 < —— . Ths, g < 2)x%| < a
m

G

N

Fact 2. Let r eX , then Z [8(3")] < als(k)|1g|s(k)]
J.

I‘J.Ek

Proof . Z|s(3")| = £ |s(3)] . Fact 2 then follows from the
J

r,je k I'J.EJk

fact that the subtree of l\/b rooted at r i's weight-bal anced. O

V& can now prove the desired bound as fol | ows:

M) = T ot T < T omer T+ [sx) )

r £J r e - r £J r ed
= qmyt |J|+ T T |s@in)|
r eX r.ed
k J k
< 1%1' -metent ) T |8(k)| 1g [S(k) | (24)
G r.eX

k

where we have used Facts 1 and 2 in the last step.

Equation (24) leads to, by using |s(k)| < m,

‘L’(MQ) < 8n+ A(lg my) Z |s(k) |
Iy € X

8n+ )\(18 mG)n i

This conpletes the proof of Theorem2. QO

19



4. Remarks.

In this paper we have given an algorithmwhich, for a graph with n
vertices, constructs an addressing scheme of length Q(n log n) . The
al gorithm can be inplemented straightforwardly, and has a 0(a”) runni ng
time on a random access machine.

Sone slight inprovements on our bounds can be obtained by mnor

modi fi cations of the construction. For exanple, the 8n term in
Theorem 2 can be lowered to kn , However, We have not found a construction

that is guaranteed to give an address of length less than o(n [ 0g n)
The very attractive conjecture NG < n-I of Gahamand Pollak [3,4] thus

still remains an open problem

Acknowl edgenent s. | wish to thank Ronald L. Gaham for introducing this

problemto me in a stinulating conversation on this subject.
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