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Abstract.

The following graph addressing problem was studied by Graham and

Pollak in devising a routing scheme for Pierce's Loop Switching Network.

Let G be a graph with n vertices. It is desired to assign to each

vertex v. an address in
1 -- p,1, *I1 J such that the Hamming distance

between the addresses of any two vertices agrees with their distance

in G. Let N(G) be the minimum length 1 for which an assignment

is possible. It was shown by Graham and Pollak that N(G) 5 mG(n-1) ,

where m
G

is the diameter of G . In the present paper, we shall prove

that N(G) < l.O9(lg mG)n+ 8n by an explicit construction. This shows

in particular that any graph has an addressing scheme of length

O(n log n) .

- Keywords: addressing scheme, binary tree, graph, Hming distance,

loop switching network.
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1. Introduction.

AIrI interesting  routing scheme to Pierce's Loop Switching N&work

[71 was proposed by Grahm and Pollak [3,4] (see also [l]). DI this

scheme, Pierce’s network is represented by"a graph where vertices stand

for the loops, and edges stand for the contacts between loops in the

network. The scheme calls for assigning a sequence of ternary symbols

to each vertex such that the distances between vertices in the graph

are faithfully represented. The combinatorial problem is described

below; for a detailed discussion of the connection between Pierce's

network and this conibinatorial  problem, as well as further information

on the subject, see references [1,3,4,7].

Throughout our discussion, G =

a set V of vertices, and a set E

length t in G frm a vertex vi

vertices . . ..vvko'vkly kt such that

cvks cvks ]EE for s = 1,2, ..a) t .

(V,E) will be a connected graph with

of undirected edges.

to a vertex v. is a
3

vkO
EV

i ’ vkt = vj

A path of

sequence of

t and

The distance dG(vi,vj) between

vertices Vi and vj is the minimum length t for which a path of

Length t frcnn vi to vj exists. The diameter of G ) denoted by mG I

is the largest distance between any two vertices in G . That is,

-Let C be the ternary symbol set {O,l,*j . (The character Ii *'I

is a "don't-care" symbol.) The Hamming distance H between elements in c

is defined by H&O) = H(O,l) = 1 1 and H(a,b) = 0 for all other pairs

of a,b in c . For two sequences a! = ala2.., aI and f3 = blb2,.,b1

in c' , where 1>0, their Hamming distance is given by

H&M) = x H(ai,b.) .
l<i<1 1
- -
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An addressing scheme for a graph G = (V,E) with n vertices is

an assignment of a sequence c(vi) ' cl to each vertex vi such that

H(C(Vi),C(Vj)) = dG(vi,vj) for all vi, v. in V .
J

The positive

integer 1 is called the length of the addressing scheme, and the

sequence c(vi) the address of vertex vi , It is desired to find

addressing schemes with small length. Let N(G) be the minimum 1 for

which sn addressing scheme of length I exists for G . In [3], it was

proved that an addressing scheme always exists (i.e., N(G) < 03 ), and

furthermore, N(G) 5 mG(n-1) . We shall improve this bound by explicitly

constructing an addressing scheme. The main results are as follows:

(We shall use =i to denote the constant $ lg 3 + f lg $-
>
-' = 1.09 .)

Theorem 1, For a graph G with n vertices,

N(G) 5 A n lg n + 2n .

Theorem 2. For a graph G with n vertices,

N(G) 5 A n(lg mG) + 8n .

e Note : lg means logarithm to the base 2.



2. Definitions and Preliminaries.

Let G = (V,E) be a (connected, undirected) graph. A path

Vk ☺Vk Y l l .,Vk
in G is simple if all the vertices vk for 9 < s < t- -- -

9 1 t S

are distinct, except possibly for vk A graph G' = (V',E')
0

= vk. .
til

is called a subgraph of G if V' c V and E' c, E . A subgraph

G' = (V',E') is said to be a tree in G if G' is connected and there---

is no simple path of length > 0 in G' from any vertex VEV' to itselS.

A tr?c I~’ = (V’, E’ ) in G is a spanning tree for G if V' = V . For

aajr subset of vertices V'CV, the diameter of V' , written diam,(V') ,u

is max{dG(vi,vj)  1 viyvj EV'~ . In particular, diamG(V) = mG . The

distance dG(Yi, V' ) between a vertex vieV and a subset V' c V is---- -

defined as dG(vi,V') = min(dG('vi,vj)  1 Vj~V') l

WZ s:lall make use of binary trees in our design process. (See for

example Knuth [5] for .basic definitions regarding binary trees.) Let T

be a binary tree with n leaves. Ass'&me the nodes of T are numbered

arbitrarily from 1 to 2n-1 . The node with n'lmber k will be denoted

by $ l
We will also use the

and 0J for an internal node

b< the subset of leaves in T

of R(k) is called the weight

notation icl for a leaf numbered i ,

numbered j . For a node rk , let R(k)

which are descendants of rk . The size

of rk' denoted by w(k) . For ex=Aple,

W'S have R(1) = (r8,'Qrg) , R(2) = (r2) , and W(1) = 3 , w(2) = 1 in

Figure 1. The external path length P(T) is defined by the following equation

P(T) = c w(k) l (1)

internal node rk

The quantity P(T) can alternatively be described as the sum of the

distances from the leaves to the root [5]. If ri and rj are respectively

the leftson aad the rightson of rk , we shall write i = leftson ,



Figure1

j= rightson ; k = father(i) = father(j) ; and j = brother(i

i = brother(j) . As a shorthand, we shall use E for father(k)

> Y

and

k' for brother(k) . A binary tree T is said to be weight-balanced

if for each internal node r
k'

$ w(k) 5 w(lef'tson(k))  < $ w(k) ,

$ w(k) 5 w(rightson(k)) 5 F w(k) .

(2)

The following result is from [6, Theorem 21.

Lemma 1 [Nievergelt and Won@;]. If T is a weight-balanced binary tree

with n leaves, then the external path length of T satisfies

P(T) 5 h n lg n m 1.09 n lg n .

In a binary tree T , if a leaf c li precedes another leaf j
c l

in post-order [5], we shall say that IIIi is to the left of j (or
a

a is to the right of q ), and write !il + q (or equivalently

LjlqTJ ). We further extend the relation so that



u'i brk i f  a<.a for a3l descendants j
I3

of rk'

wi 3 - rk if a+-ljl for all descendants jcl of rk'

Clearly, for any leaf and node rk 4 rk , ic l -> rk ,

or iq is a descendant of rk ; and exactly one of the three relations

holds. In Figure 1, we have ~.~,~~@,and@>@.



3a TheConstruction  of a Length O(n I& n) Addressing Scheme.

3.1 The Design Tree.

The key to obtaining an O(n lg n) scheme is by using a hierarchical

design. A design tree M is a pair (T,f) where T is a binary tree

with n leaves, and f is a one-to-one mapping from the leaves of T

to the vertices of G , For notational convenience, we shall nurriber the

nodes of T in such a way that the leaves receive numbers 1 to n and

leaf ia is associated with vertex vi under f . The root of T will

be labeled with 2n-1 ; and the remaining internal nodes tith n+l through

2n-2 (their actual numbering will be unimportant for M ).

We now describe an addressing scheme Z(M) corresponding to a

given design tree M . Every address c(vj) in Z(M) wiJl consist of*

2n-2 blocks of code, where the k-th block has length pk (to be defined

later) and is conceptually associated with the node rk of T . (N to e

that rk cannot be the root since k f 2n-1 .) Thus we shall write,

for lzisn,

where cik = ik l
I I (3 >

By definition, the Hasrming distance between two addresses c(vi) and

‘Cvj)
is equal to the sum of the Haznming d&stances between corresponding

. blocks. That is,
2n-2

H(c(vi),c(vj)) = C H(cik,cJk) '
k=l

(4)

We shall design the code in such a way that in (4), only a few terms will

contribute to the sum, other terms being zero. For example, consider the

design tree M showninFigure2. We shaU in fact have
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Figure 2. A design tree 1.1 with a marked path.

--_

and H(c3 k,~2 k) = 0 for k+ {10,11,2] . The trick to achieve
Y ?

H(43),4v2)  \ = dG(v3,v2) is as follows. Define S(k) = {f(ri> 1 ri ~3(j:\i

i.e., SW is the set of vertices associated with the leaf descendants

of rk . We shall require that,

H(c
e 3112 ) c*,lo!

= $p3’s(~W  Y

H(cj  l,J,‘C, lo)  + NC3  -J-y c2  11)  = qy0~)) Y

Y L.Y Y Y

+Q,c2,10 ) + H(~~,~~,5-4  -+ H(c3,2~C2,2) = dG(V3,s(2)) l (6�!

We can view (6) in the following way. Starting at the lowest common

ancestor (lea) of a and B (i.e., the common ancestor of 3 andc l

q2 farthest from the root), which is' rl? , we move down the path
i

50 ’ k. ’ to the leaf r2 . Each node rk encountered along the path,
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excluding the lea, will add a block of code which creates enough Hamming

distance to bring the total up to d(v3,S(k)) . An equivalent form of

NC3,kyc2,k) = dG(V7’S(k)  ) - dG(V3’S(Q  >

for k =: 10,11,2 , and c t: father(k) .

In general, we want to achieve the following. For a e m , let

node h, be the lowest common ancestor of i and j , andcl cl

node h0 to c l
j , then

"

ho+, . . 'Y ht
= j be the path fram

H(c.i,kJCj,k =) d(viY 'Ck ) - d(viY ‘(‘) )

for k = hl,h2, . . 0, ht , and i = father(k) ;

NCi-&Y’j,k) = O
for all other k . (8)

It is easy to verify that (8), if true for all BGa,wiUbe

sufficient to guarantee that Z(M) = {c(vi) 11 5 i 5 n) , as given by (3),

is an addressing scheme, That is, dG(ViY v j > = H(c(vi),c(vj)) for all

i,j. We now describe a construction of the cik's that satisfy (8).

Z(M): The Addressing Scheme Induced by M . For each k, 1 < k < 2n-2 ,- -

let

lk = ma⌧

l<i<n
☯dG(vi,S(k))  - dG(Vi,S(�) > I l

- -

. The block Cik J for 15 i 5 n , has length Ik and is given by

Cik =
*** c - - . . , *

(9)

if ic l is a descendant of rk ,

if ai *rk,

with 6 5 dG(Vi,S(k))  - dG(Vi,S(')) Y

if c li4rk'
(10)



Finally, form Z(M) = {c(vi) 11 < i < n] according to (3). The length- -

of Z(M) Y denoted by T(M) , is

-c(M) = c
l<k<2n-2

'k '
- - -.

To see that Z(M) is actually an addressing scheme, we need only

show that (8) is satisfied, For q + a , we see from (10) that

H(cik,Cjk) = 0 unless ni -uk and ljl is a descendant of r
k;

in the latter case, 0ik'cjk) E: dG(vi,S(k)) - dG(Vi,S(k)J l But this

is exactly as required by (8), q.e,d.

(11)

3.2 Criteria for-a Good Design Tree.

Let us find out what sort of design tree M will generate a short

addressing scheme, Notice that for any 15 i < n , 1 < k < 2n-2 , we- -

have

dG(vi,S(k))  -d(-~(Vi9S(it)☺  < di~,(s(3! l
02)

-

Inequality (12) is valid, since we can concatenate a path from vi to the

nearest point in s(k) , with a path of length at most diamC(S(k)) , to

reach a vertex in SW l
This tells us that

-

Pk s diamC(S(K)) . (13)

An upper bound to T(M) is therefore

7 04 < c- diamC(S(k)) = 2 c dim(;
l<k<2n-2 n+l<k<2n-1- -

(S(k)) , (14)
- -

every internal node being the father of two nodes. This upper bound will

in general be O(n2 Y as the subset S(k) may have diameter O(n) for

many k. However, if we insist on two conditions
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( >i no two points in S(k) are far apart compared to its size p<k>l Y

specifically, dam > 5 1 SW 1 ; and

(ii) the binary tree is weight-balanced,

then (14) would give
. .

T(M) < 2 lx- )S(k) 1 = 2.P(T) 5 2hn lg n
n+l<k<2n-1- -

by Lemma 1.

(15 >

To achieve conditions (i) and (ii), we use the following idea. Let

us think of M = (T,f) as a tree built topdown by successively breaking

V into smaller parts. From this viewpoint, the tree in Figure 2 is

obtained by first dividing (at node 15 )

b5,v@v13 and {~~YV~YV~~~~Y~~]  ; each

further divided into Iv5 3 , &j,vll at

at node 12, respectively. This process

the singleton sets {vi) .

of the two resulting parts are

node 9 Y and (V4, V33 I {V,Y”~Y~~)

is repeated until we have only

We shall see that in building M in this fashion, it is possible to

keep the points in

the two parts more
e

decomposition, We

each part close together (condition (i)), and also make

or less equal in size (condition (ii)) on each

shall describe such a method next, and then perform a

finer analysis improving the bound given by (15).

3.3 Constructing M fram a Spanning Tree.

We shall construct a design tree M with the properties (i) and

(ii) given in Section 3.2. Choose any spanning tree with edge set A

for the graph G , Let us create a new vertex v. and a new edge (vo,vl) .



We now define a one-to-one mapping cp between the edge set of the

augmented spanning tree A' = AU ({vo,vl')] and the vertex set V

(without v. ). The mapping cp is obtained by regarding (vu Cv,]YA')

as a rooted tree with root v0 ,
and mapping each edge onto its "lower"

end point. We shall then number the edges ei in A' so that

(p(y)  = vj, l
An example of this process is shown in Figure 3.

() G4

. v3

( >a

v3

04

Figure 3. (a) A spanning tree on V = (v1’Yp V3Y V4’“s ] , and

(b) the labelling of its edges after augmentation.

Our plan is to construct a binary tree Q by "suitably" splitting

the edge set A' into two disjoint subsets, and repeat the process until

only one edge remains in each subset. Figure 4(a) shows the binary

tree Q that may result from this process when applied to the spanning

tree in Figure 3(b). Although the tree Q so constructed is not a design

tree on the vertex set, we can easily obtain such a design tree MQ
from

12
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Q in a natural way via the mapping cp , We shall transform Q into

MQ
simply by identifying ei with v.1

in the tree Q . The design

tree M, obtained from the Q in Figure &(a) is shown in Figure 4(b).

We can now complete our task

topdown construction of a Q for

conditions (i) and (ii), and (2)

by such an
MQ l

in two steps, (1) describe the

which M
Q

would satisfy

analyze the addressing scheme induced

(1) Constructing Q . A set of edges B in G is called a

-Lree set if B is the edge set of some tree in G . Two tree sets Bl

and B2 is said to--form a decomposition of the tree set B if BlnB2=$

and B+B, = B . Note that, in such a decomposition, there is a uniqueL

vertex vs that is incident to both Bl and B2 , For example, in

&ure 3(b), B = (e2,e4,e5] is a tree set. We can decompose B into

c 3e2 and Ce4ye53 with v1 being the unique vertex vs .

A decomposition of B into Bl and B2 is balanced if

$ _ 12BI IB <Bi. 3 11
for i=1,2 . The following lemma is implicit

in [2].

a

Lermna 2 [Chung and Graham]. Any tree set B with 1~1 2 2 has a

balanced decomposition into two tree sets.

Let us now construct Q by breaking the augmented spanning tree A'

into parts successively, using a balanced decomposition at each step. For

example, the tree Q shown in Figure 4(a) can be obtained this way from

A' in Figure 3(b). Once Q is constructed, we transform it into a

design tree
MQ

for the vertex set as described previously. It remains

14



to analyze the address length obtained frcrlJl this tree M
Q.

To avoid

confusion, we use S(k) for the set of vertices associated with node

rk in MQ'
and use B(k) to denote the tree set at the corresponding

node in Q . Clearly, if S(k) = {vi ,vi ,...,vi ) , then
1 2 t

B(k) = {e. ,e.
5 l2

Y l o*, e. .

%
3

(2) Analysis. There are two simple properties of the design

tree M
Q*

Firstly,
MQ

is weight-balanced by construction, Secondly,

at any node rk of M
Q'

diamG(S(k)) 5 IS(k)1 . This is true since

any two vertices in S(k) can be connected through at most pw 1

edges in the tree set B(k) ' Thus, the two conditions (i) and (ii) in

Section 3.2 are satisfied, which implies T(M) 5 2)n lg n . A stronger

bound can be obtained, however, by using the following lemma.

Lemma 3. For each node rk in M
Q
, and 1 < i < n ,- -

dG(vi, S(k)) - dG(Vi' S(c)) < l+ IS( , where kt = brother(k) . (16)

Proof. Let v.
3

be a vertex in S(k) closest to vi , i.e.,

dG(Vi,Vj) = dG(vi,S(i;)) . (17)

If vj&(k) , then dG(vi,S(k)) = dG(vi,S(k)) , and (16) is true. So

_ we can assume that vj E S(k') .

Let vs be the unique vertex that is incident to both an edge in

B(k') and an edge in B(k) . This implies that

dG(Vj�Vs)  < l~(k~)I = Is( l (18)

Now, let (v,,v+.) be an edge in B(k) incident with vs (see Figure 5).

15
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Then,

dG(Vi, vs

” --I ‘L ’ I 3 e

Figure fi

> '= 'G(Vi,Vj)  '-'iG("j,",)  i dG(Vi,S(lr

viY vf ) ’ d,~(viYv,~) + ’., - ,-> : d,m(vi,S(k))+l+ (S(k')\ . ( 20)'LX

c 7rs7~ft) cB(k) , either v or vt must be in S(k) . Therefore,S

d,(V.i, S ( k ) )  � ma⌧Cd,(.viyV~)yd,.,(vi,vt))  lJ - \I I3 'J (21)

(15) follows from (lg), (20), and (21). U

Lemma  3 implies that,

'k = max (dG(.iri,S(k)) - d7(viyS(k))] < l+ )S(k') I .
i
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Q!lQ) = lL lk< c
l<k<2n-2 - l<k<2n-2

(1 + ISW 1)
- - a -

= 2n-2+ c pcq l (�2)

l<k<2n-2c -

Making use of the fact that MQ is weight-balanced and Lemma 1, we

obtain after simplification,

m LK Anlog n + 2n .

This proves Theorem 1,

3.4 Proof of Theorem 2.

When mG, the diameter of G , is substantially smaller than n-l ,
-=

the addressing scheme we have constructed is better than the bound in

Theorem 1 indicates. The key observation is that lk is always no greater

than mG , because lk 5 InaX dG(vi,S(k)) 5 mG . In the analysis of
i

T(MQ, = xa, , we can thus use mG tobound lk, instead of l+ IS(k)\ ,

for some of the nodes rk .

Let X be the set of nodes rk in M
Q

such that ls(k)l 5 mG 9

and IS(k)/ > mG . For each rkeX , let Jk = (rj I rj is a descendant

- of rkj rj d rk) . Let J = ~j Jk . In Figure 6, assume m 4 ,

rk E X G=

the set X then consists of the nodes marked by arrows, and J is the

I set of shaded nodes. We shall use inequality lk < l+ IS( for the

nodes rkEJ 9 and use lk 2 mG for the remaining nodes in deriving a

bound for -r(MQ) .

The following facts will be used in the calculation.

Fact 1. Let q be the number of nodes not in J , then q < * ,
mG

17



Figure 6. The set of shaded nodes is J .
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Proof. J =I I c (2+(k)l -2) = 2 -21X[ = 2n-21X( .
rk E x

Hence q = 2n-l- 1~1 = 21x1 -1 . Since \S(k)l 2 $ IS(~)) 2 $mG for rkEX , *

we have X <I I n
-1' Thus,

F mG

Fact 2. Let rkeX , then c IfW)l 5 hlS(k)llg1S(k)l  .
rj E Jk

Proof. c \S(j')( = 2 IS(j)\ . Fact 2 then follows from the

2 ' Jk 7 ' Jk
fact that the subtree of M

Q
rooted at r

k
is weight-balanced. IJ

We can now prove the desired bound as follows:

‘c”Q) = y $+
‘kbJ

r lk” r
rkE J - rkiJ

mG+ c (l+ IS&‘) 1:)
rkEJ .

= qmG+ IJ\+ r C )W)
rkEx rjEJk

l mG+2n+h
rk c x

where we have used Facts 1 and 2 in the last step.

Equation (24) leads to, by using IS(k)) < mG ,

T(M~) 5 an+ h(lg mG) c IS(k) \
rk E x

= 8n+ A(lg mG)'l '

(24)

This completes the proof of Theorem 2. IJ
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4. Remarks.

In this paper we have given an algorithm which, for a graph with n

vertices, constructs an addressing scheme of length O(n log n) . The

algorithm can be implemented straightforwardly, and has a O(J) running

time on a random access machine.

Some slight improvements on our bounds can be obtained by minor

modifications of the construction. For example, the 8n term in

Theorem 2 can be lowered to 4n , However, we have not found a construction

that is guaranteed to give an address of length less than O(n log n) .

The very attractive conjecture N(G) 5 n-l of Graham and Pollak [3,4] thus

still remains an open problem.

Acknowledgements. I wish to thank Ronald L. Graham for introducing this

problem to me in a stimulating conversation on this subject.
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