
A FASTMERGINGALGORITHM

bY

Mark R. Brown and Robert E. Tarjan

--

STAN-CS-77-625
AUGUST 1977

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

A Fast Merging Algorithm

-I*Mark R. Brown Robert E. Tarjan
Deputment of Cmputer Science Computer Science Department
Yale University Stanford University
New Haven, Connecticut 06520 Stanford, California 94305

-.

Abstract.

We give an algorithm which merges sorted lists represented as

balanced binary trees. If the lists have lengths m and n (m < n)

then the merging procedure runs in 0(m log ff> steps, which is the

same order as the lower bound on all comparison-based algorithms for
-=

this problem.

Keywords and phrases: AVL tree, balanced tree, 2-3 tree, linear list,

merging.

J* This research was supported in part by National Science Foundation
grant MCS-75-22870 and by the Office of Naval Research contract
~ooo14-76-c-0688.

Reproduction in whole or in part is permitted for any purpose of
the United States government.

1

0. Introduction.

Suppose we are given two linear lists A and B , each of whose

elements contains a key from a linearly-ordered set, such that each list

is arranged in ascending order according to key value. The problem

is to merge A and B , i.e., to combine the two lists into a single

linear list whose elements are in sorted order.

This problem can be studied on different levels. One approach is

to ask how many comparisons between keys in the two lists are sufficient

to determine the ordering in the combined list. This is an attractive

problem because it is relatively easy to prove lower bounds on the number

of comparisons as a function of the list sizes, using an "information-

theoretic" argument. If the lists A and B have m and n elements,

respectively, then there are m+n(>n possible placements of the

elements of B in the combined list; it follows that

comparisons are necessary to distinguish these possible orderings.

If we take m < n then pg(mF)] = +n log g) .g The best

merging procedure presently known within this framework is the

"binary merging" algorithm of Hwang and Lin [4,5], which requires fewer

than pg(mnn)l+ min(m,n) comparisons to combine sets of size m

A different approach is to study the actual running time of merging

algorithms on real computers or on more abstract models such as

pointer machines [g]. If we assume that comparisons are the

only way of gaining information about key values then the Q m log
(3

f-x- That is, thelefthand side has order exactly m log i ; see [7] for

a precise definition of the 8 and Q notations.

2

IT

lower bound still applies to the running time of merging algorithms,

but i-t is not clear how to achieve this bound using the Hwang-Lin

procedure. The problem lies in implementing this algorithm

to run in time proportional to the number of comparisons it uses.

In this paper we give a merging procedure which runs in O(m log i)

time on a real computer or a pointer machine. The algorithm uses balanced

binary (AVL) trees [5] to represent the linear lists; 'Z-3 trees [l] could

also be used.

In Section 1 we present the binary merging procedure of Hwang and

Lin, and note why it seems difficult to give an efficient implementation

of this algorithm. We develop a merging procedure for balanced trees

in Section 2,= and in Section 3 we prove that the procedure runs in

O(rn log i) time. Section 4 gives the results of experiments comparing

our algorithm with three straightforward merging methods. A high:level

language implementation of the fast merging algorithm is contained in the

Appendix.

3

1. Binary Merging.

We begin with an informal description of the Hwang-Lin binary

merging algorithm. Let A and B be lists containing distinct elements,

of respective lengths m and n with m < n , such that

al<a <.,.<a , and .,
2 m

bl < b2 < . . . < bn .

The merging method is most easily described recursively. When m = 0

(i.e., the shorter list is empty) there is no merging to be done and

the procedure terminates. Otherwise we attempt to insert al, the

smallest element in the shorter list A , into its proper position in

the longer list B . To do this, let t = Llg(n/m)J-=. and compare

al: b2t (2 is the largest power of two not exceeding n/m). See

Figure 1.

[Figure l]

If al<b
2t

., then al

in Figure 1. By using binary

bl,b2,.."bgt 1 can be found with exactly t more comparisons. The

belongs somewhere to the left of b
2t

search the proper location of al among

result of this search is a position k such that bk 1 < t < bk ;

- this information allows us to reduce the problem to the situation

illustrated in Figure 2(a). To complete the merge it is sufficient

to-perform binary merging on the lists Af and B' .

[Figure 21

If, on the other hand,
"1) b2t) then a1 belongs somewhere to

the right of b
2t

in Figure 1, and the problem immediately reduces to

the situation illustrated in Figure 2(b). We can finish the merge by

4

applying the binary merging procedure to the lists A' and B' . Note

that A' may be longer than B' , so that in the recursive calls to the

binary merging procedure the roles of A and B may become reversed;

this may also happen in the first reduction above.

This algorithm uses comparisons very efficiently, as evidenced by

the small gap between the upper bound of rb(y)j + minbw-4

comparisons required for binary merging [4] and the lower bound of

PgGnlj
comparisons for any merging method based on comparisons,

But representing the lists A and B as arrays, which is the obvious

way of making the individual comparisons take constant time, forces

insertions to be expensive: they involve moving items over to make--

room for the inserted items. Hwang and Lin [4] were

application in which A and B are read from tapes

result is written onto a tape; in this situation the

concerned with

and the merged

merge requires

an

linear time (since the entire result must be written), and binary

merging can only improve on the traditional tape merging algorithm by

a constant factor. We would like to be able to merge list structures

A and B and produce a result list of the same type in O(m log E)

e total operations.

‘3
L. Balanced Tree Merging.-a--- - -- - . . - - - -

B&:ta I :' ?I binary trees [2, 5] are good data structures for representing

Linear lists when both ~i:?q!*::hc:; a;l3. I-:lricrtions must be performed.

A binary tree is called balanced if the height of the left subtree

of every node never differs by no inore than +l from the heighi; If its-

right subtree. (The height of a tree is the length of the longest pat:,?1- - -

frxn t-l,? c);,i; tl-) attll t?,cl?-rnaJ node.) When representing a list by a

balanced binary tree, the i-t?! e.le:~crlt of a list becomes the i-th node

visited during a symmetric order trav:~ ,C of the balrance'-l tree; if the

list is sorted, as in Figure 3, then its Keys appear in incrzas-L:lg xder

during such a traversal. When a sorted list of lengt'n n is nai:ltal:~ed

in t'l!-;; -gay, wz can locate the proper position in the list for a new

el131erlt i q-- o(.LIog n) s ii .'>-ps, using ordinary binary tree search. To

insert this eleme:1% into th'c list fn,ay ~~.zq!rire O(log n) additional

steps for rebalancing the tree. W3 shall as:;z2c r~:xder familiarity

with Algorithm 6.2.3& the balanced tree scar--1.,,I axi i-1,; ??-t i. cxl aLg.xi thm

IO,f [5].

[Figure 31

An obvious method of merging two sorted lists rt;lprl?s;:n‘ted a.2

balanced trees is to insert the elements of the smaLLer list into the

Luger list one by one. The result of merging the two lists of Figure 3

using this scheme is shown in Figure 4. If the smaller list contains

m elements and the larger has n elements then this algorithm performs

2 insertions of O(log n> steps each, for a total cost of 3(.m .L3g ~1) .

But we axe seeking a method which runs in O(m log i) time.

[Figure 43

6

To see why there is some hope of improving this simple merging

procedure we refer again to Figure 4, which shows the search paths traced

out during the insertions. An interesting property of these paths is

that they share many nodes near the_.top of the tree. The root is visited

on all of the searches, and its two offspring are each visited on roughly

half of the searches; we must descend at least lg m levels into the tree

before all of the search paths become disjoint. It appears that our

simple merging strategy spends lg m steps on each insertion, or

O(m lg m) steps total, examining nodes in the top lg m levels of

the tree. Since there are only O(m) nodes contained in these levels,

eliminating duplicate visits should make our algorithm run in--

O(m log n - m log m + m) = O(m log i) time.

We can eliminate extra visits since the items being inserted are

themselves already sorted; by simply inserting these items in order we

can ensure that once an item has been inserted, no smaller item will be

inserted later. Figure 5, which shows the situation after a node x has

been inserted, indicates how this can help. If node y > x is now-

inserted, then y must lie somewhere to the right of x in the tree.

- To determine where y belongs it is sufficient to climb back up the

search path, comparing y to nodes on the path which are greater than

x until a node is found which is greater than y ; then y can be

inserted into the right subtree of the previous node examined during

the climb. (For this purpose it is convenient to think of the root as

having a parent with key +a .) In Figure 5, if y > y but y < p-

then y should be inserted into the right subtree of node y ; if y < y

then y becomes the right offspring of x .

[Figure 51

7

An algorithm based on this idea is easy to state informally. As in

our description of binary merging, let A and B be sorted lists of

length m and n , with m 5 n , and assume that these lists are

represented as balanced trees. In the first step of our algorithm we

insert al ' the smallest element of A , into the tree B . At the

start of a general step, elements al�a2j l *�9ak have been inserted

into B , and we have a record of the search path to ak (Figure 6(a)).

This path acts as a "finger" into the tree B during the algorithm,

moving from left to right through B as elements fram A are inserted;

the finger is useful because only nodes to the right of it can be visited

during later insertions.

[Figure 63

The general step has two parts. First the finger is retracted

toward the root, just far enough so that the position of element ak+l

lies within the sub-tree rooted at the end of the finger (Figure 6(b)).

Then ak+l is inserted into this subtree, and the finger is extended to

follow the path of this insertion (Figure 6(c)). After m-l executions

of this general step the merge is complete.

e This scheme is complicated by the fact that rebalancing may be

necessary during insertions into a balanced. tree. When rebalancing

takes place, it may remove a node from the finger path traced

out by the search. It is possible to update the recorded path to be

consistent with this rearrangement, but it seems easier just to "forget"

about the part of the path which is corrupted, i.e., to retract the

finger path back to the point of rebalancing. The algorithm then takes

the form shown in Figure 7. At the start of a general step we now have

8

3

recorded only part of the search path to the last element inserted.T h e

general step proceeds as before, but after the insertion a part of the

search path may be discarded. There is no need to treat the first

insertion specially in this algorithm; we simply initialize the finger

path to be the root of B (which is certainly on the path to the first

insertion), and execute the general step m times.

[FM.= 71

In an implementation of this scheme it is useful to maintain a

record of those nodes on the finger path at which the path turns left

(i.e., nodes on the path whose left offspring is also on the path).

It is easy to-see that these are precisely the nodes on the path

(excluding the last node) which are larger than the most recently

inserted item; according to Figure 5, only those nodes must be examined

while climbing upward in the tree in the first part of the general step.

Bad cases may occur if we don't record these nodes and must examine

small nodes on the finger path, as illustrated in Figure 8. If a node

y > x is inserted in the situation shown, the entire path up to the-

root must be climbed to see if y > a . If it turns out that y < a ,

then y becomes the right offspring of x and the same situation can

be repeated.

[Figure 81

Using these ideas we can express the balanced tree merging algorithm

in an Algol-like notation. (The control constructs used in this notation

are adapted from Knuth [6].) We keep pointers to nodes on the finger

path in a stack path, and pointers to the "large" path nodes (in the

sense of the previous paragraph) in a successor stack. The nodes of

9

the balanced tree are taken to have fields Key , 1Link , rLink , and B

(balance factor), as in Algorithm 6.2.3A [5]. The balance factor may

take on the values leftTaller, balanced, and rightTaller, which have

obvious interpretations; the rebalancing step depends on the relation

leftTaller = -rightTaller which is assumed to hold,

begin (Fast balanced tree merge)

initialize path to contain the root of the larger tree, and

height to be the height of the larger tree

initialize successor to be empty

a z each node in the smaller tree:

x + next node from the smaller tree, in symmetric order, initialized

so that lLink[$ = rLink[$ = Nil and B[x] = 0- -

a (climb up]

successor is empty,% ~[x] < Key[top of successor]:

a until top of path = top of successor:

remove top fram path

e

remove top from successor

repeat
w5=Mw
P + top of path

10

(search

_loop

if
+-se+

down and i.nsert]

Keyby -= I(ey[pl -the2
if lLink[p]- - - = Nil then goto leftNil

hfw=e--
c*p,,onto successor

P

else

if rLink[p] = Nil then goto rightNil- - - -*--
else p + rLink[p] endif- - MW

endif

push p onto path
W-W

repeat

ftNil* l.Link[E] + x

rightNi1~ rLink[p] + 5

endloop =

(adjust balance factors)

loop

pop path into s
.%4-W - -

until B[s] # balanced or path is empty:

-B;s; + (Lf Key[d < ~ey[~l theth leftTaLler- - WN - -
else rightTaller)

if successor is
- not empty azop of path = top of successor

then remove top from zcessor endifww-
repeat

Key[x] < Key[s] then- w- leftTaller else rightTaller)

[rebalance the subtree rooted at s; this part of the program is

essentially a translation of steps 7-10 of Algorithm 6.2.3A [5]]

2 I+1 C: balanced :I {entire tree has increased in height)

B[s] + a; height + height+1- -
else if B[s] =-t?da+w'W - - -a then (subtree has--mm become more balanced]

B[s] + balanced- -
else (rotation is necessary to restore balance)

r + (if Key[x] < Key[s] then lLink[s] else rLink[s])- - - - - - - - -
g I3[rl = a, %z (single rotation)

if a =rclw - rightTaller then rLink[s] + lLink[r]; ILinkM ---- - e-
29 lLink[s] + rLink[r]; rLink- - - - -

B[s] + B[r] + balanced- - - I
S +r

elsz idouble rotation)-
if av- = rightTaller then

jr] + s

[r] + s endif-"-

p + lLink[r]; lLink[r] + rLink[p]; rT,ink[p] t r- - - - - - - - -
rLink[s] + lLink[lj]; lLink(p] + s- - - - W-B

else-d-
p + .rLinkirl; rLink[r] + ll,ink[j:]; lLink[p] c- r- - --- - - -
lLj_nk[s] + rLink[p]; rLink[p] + H- - - - Y -

endif
ew-#e --d
gs1 + (if B[p] = +a then -a else balanced)

B[r] + (7; ;[;I = -a +a z balanced)- - w-0 - - - -
B[p] + balanced- -
s+p

endif

endif

:: onto path
- -

{The root of the result t'ree is on the bottom of path, and it; height is height]- -

,cx-& {Fast balanced tree merge}

12

3. Running Time.

In order to analyze the running time of the balanced tree merging

algorithm, it is necessary to look at the details of the rebalancing

procedure (steps 6 -10 of Algorithm 6.2.3A [5]). For the purpose of

this discussion we shall adopt a concise notation for balance factors:

the balance factor of any node is either 0 (left and right subtrees

of equal height), + (right subtree of height one greater than left

subtree), or - (right subtree of height one less than left subtree).

A node with balance factor 0 is called balanced, and the other nodes

are unbalanced.

When a node x is inserted in place of an external node in a

balanced tree, this may cause ancestors of x in the tree to increase in

height. To rebalance the tree we examine successiveancestors of x ,

moving up toward the root. During this climb we change the balance

factor of each balanced node to + or - as appropriate until an

unbalanced node, say z , is found. (If we reach the root without

finding an unbalanced node then the entire tree has increased in height

and the insertion is complete.) Insertion of x causes node z to

become either balanced or doubly heavy on one side. If z becomes

balanced we simply change its balance factor to 0 ; otherwise we

locally modify the subtree rooted at z to restore balance while

leaving its height the same as it was before node x was inserted. The

- two local transformations shown in Figure 9 will rebalance the subtree

in all cases. Since the subtree rooted at 'z does not change in height,

no nodes above z need be examined during the insertion.

[Figure 91

Call a node "handled" if it is manipulated by the balanced tree

merging algorithm. We shall obtain an O(m log(n/m)) bound on the

13

running time of the algorithm by showing that

(i) the time required by the algorithm is proportional to the number

of handled nodes (where a node is counted only once even if it is

handled many times), and . .

(ii) the total number of handled nodes is O(m log(n/m)) .

We proceed by means of a sequence of lemmas.

Lemma 1. The time required by the binary tree merging algorithm is

bounded by a constant times m plus a constant times the number of

additions to and deletions from the path and successor stacks.

Proof. An inspection of the program shows that the algorithm requires

a bounded amount of time per insertion plus a bounded amount of time

per addition to or deletion from a stack. •I

Lemma 2. The total number of additions to a stack is bounded by

the total number of deletions plus the number of handled nodes.

Proof. The number of stack additions exceeds the number of deletions

by the number of elements in the stack when the algorithm terminates.

B'ut each node in the stack has been handled, so the result follows.

(The maximum stack depth is actually O(log(n+m)) , which is generally

much smaller than the number of handled nodes.) 0

Nodes are deleted from stacks at two points in the program: while

adjusting balance factors during rebalancing, and while climbing up the

path during insertions. We now analyze each case in turn.

Lemma 3. The number of deletions from stacks during rebalancing cannot

exceed a constant times the number of handled nodes.

14

Proof. All nodes handled during a rebalancing step except at most three

have their balance factor changed from 0 to either + or - . Thus

each path stack deletion except three per rebalancing "uses up" a balanced

node, and each rebalancing creates at most three balanced nodes. Since

the initial pool of balanced nodes Which are handled cannot exceed the

total number of handled nodes, the total numiber of path stack deletions

during rebalancing is no more than the number of handled nodes plus six

times the number of rebalancings. The number of successor stack deletions

during rebalancing cannot exceed the nlunber of path stack deletions during

rebalancing. The lemma follows. U

Lemma 4. The number of deletions from stacks during insertions cannot--

exceed a constant times the number of handled nodes.

Proof. Each node y deleted Ifrom the successor stack during insertion

has a key smaller than the key of the node x currently being inserted;

thus y can never again be added to (or deleted from) the successor

stack. Hence each handled node can be,deleted from the successor stack

during insertion at most once.

Each node y deleted from the path stack during insertion is

either (i) deleted from the successor stack during the same insertion

or (ii) has the property

1 such that Key(y) < Key(z)

being inserted. (Here z

removed from path.)

that y occurs in a subtree with root z

< Key(x) , where x is the node currently

is the node on top of successor when y is

The number of nodes y satisfying (i) cannot exceed the number of

nodes deleted from the successor stack, and hence the number of handled

nodes. Consider a node y satisfying (ii) after it has been deleted

15

from the path stack. Rebalancing may now take place above z , at z ,

or in the right subtree of z , but inspection of Figure 9 shows that in

any case property (ii)

(ii) and is not on the

deleted from) the path

is preserved for y . A node y which satisfies

path stack can never again be added to (or

stack, since the key of the left child of z will

never be compared against the key of a node being inserted. Thus the

number of path stack deletions satisfying (ii) is at most one per handled

node.

In summary, at most three stack deletions per handled node can occur

during insertions. 0

Theorem 1. The total time required by the balanced tree merging

algorithm is bounded by a constant times the number of handled nodes.

?roof.*-

The bound on the number of handled nodes is proved in two steps.

First we show that when the algorithm terminates, most of the handled

Immediate from Lemmas l-4. IJ

nodes constitute a subtree of the balanced tree resulting from the merge,

and this subtree has at most m terminal nodes (nodes having no internal

d node of the subtree as an offspring). Then we bound the number of nodes

that any such a subtree of a balanced tree may have.

Letia 5. After k insertion-rebalancing steps, the set of handled

nodes consists of no more than k nodes plus a subtree of the entire

balanced tree containing no more than k terminal nodes, and containing

all ancestors of the most recently inserted vertex.

16

Proof. We prove the 1-a by induction on k . The lemma is certainly

true for k= 0. Suppose the lemma is true for k-l . Let Tk 1 be

the subset of handled nodes which forms a subtree with k-l or fewer

terminal nodes containing all ancestors of the node inserted at the

k-l -st step. Let I!& be the remaining k-l or fewer handled nodes.

Each node handled during the k-th insertion is an ancestor of either the

node xk 1 inserted at the k-l -st step or of the node
5 inserted .

at the k-th step. Let Tk be formed from Tk 1 by adding all ancestors

of .Fk Then Tk forms a sub-tree with k or fewer terminal nodes.

The k-th rebalancing step does not handle any new nodes but may

alter the shape of the overall tree and thus may rearrange the vertices

in Tk . However, an inspection of Figure 9 reveals that, after

rebalancing, the nodes in Tic still form a subtree having the same

number of terminal nodes as before, except for possibly one additional

"special" terminal node. This special node is a child of a node with

two offspring, so removing it fram Tk does not create a new terminal

node. In Figure 9, node z becomes special if Tk does not enter

either of the sub-trees a or p . If z becomes special after

rebalancing, let Tk = Ti-{z) and Hk I Hk lu {z) ; otherwise let

Tk = Tk and Hk = Hkwl . Then Tk and Hk satisfy the lemma for k .

Lemma 6. Let T be any balanced tree of k nodes. Let Tt be any

* subtree of T with at most 1 terminal nodes. Then T' contains

00 lw(k/~) > nodes.

Proof. By Theorem 6.2.3A of [5], a balanced tree of height

h = 1.4404 lg(k/a + 2). 0.328 must contain at least k/L nodes. If

T has height less than h+2 , then T, can be partitioned into I

paths, each of length less than h+2 , and the lemma is true.

17

On the other hand, suppose the height of T is no less than h+2 .

We shall conceptually subdivide T into smaller trees as follows:

let the set R consist of the root of T , plus all other nodes in T

which have height h+2 or greater. It isnot hard to see that R forms

a subtree of T , as shown in Figure 10, and that the remaining nodes

of T are partitioned into a set of disjoint subtrees {Si) .

[Figure lo]

A balanced binary tree has the property that if v is any node,

the heights of the two children of v differ by at most one. Thus the

difference in height between v and either of its two children is at

most two. It follows, that each subtree Si has height h or h+l ,

since if the height was less than h then the parent (which lies in R)

would have height less than h+2 . By the choice of h this guarantees

that each Si contains at least k/a nodes, so there are at most I

subtrees S. .1 Each of these subtrees is attached to an external node

of the "root" subtree R , so there are at most R-1 nodes in R .

With T subdivided in this way it is easy to bound the nwnber of

nodes in T' . The nodes of T' which do not lie in R can be

partitioned into & paths, each lying completely within a subtree Si .

Since each such path has length not exceeding h+l , the total number

of nodes in T' cannot exceed 1-l+ a(l.4404 lg(k/m + 2)+ .672) =

o(e iog(k/a)) . Ll

Theorem 2. The total number of nodes handled by the balanced tree

merging algorithm is
ob lo&$4 > l

Proof. The total number of nodes in the tree resulting frcrln the merge

is m+n . Thus by Lemmas 5 and 6 the total number of handled nodes is no

18

more than m+ O(m log((m+n)/m)) = O(m log(n/m)) 4 0

Theorem 3. The balanced tree merging algorithm requires O(m log(n/m))

time to merge lists of sizes m and n with m < n .
-.

Proof. Immediate from Theorems 1 and 2. 0

One may wonder why the proof of Theorem 3 is so complicated, while

the informal motivation given for this bound in Section 2 was so simple.

Perhaps the reason is that each insertion changes the structure of the

tree; thus it seems necessary to analyze the stack operations directly.

4. Im73lementation.

It is possible for an algorithm to be very fast asymptotically, but

to be terribly slow when applied to problems of a practical size for

present-day computers. Therefore it is worthwhile for us to compare

our balanced tree merging algorithm with other merging procedures to

determine when the new method is actually "fast". In the discussion

below we shall refer to our balanced tree merging algorithm as Algorithm F.

One straightforward merging procedure for linear lists represented

as balanced trees has already been described in Section 2: that of

inserting the elements of the smaller tree one by one into the larger

tree. We shall call this method Algorithm I. Since this procedure

requires Q(m log n) time, we expect it to be most useful when m is

very small campared to n .

Another simple merging procedure for balanced trees is to scan

entirely through both trees in increasing order and perform a standard

two-way merge of the lists. This method, which we call Algorithm T,

divides nicely into three stages of coroutines. The first stage routines

dismantle the input trees and send their nodes in increasing order to

the next stage. (Identical routines are also needed to dismantle the

smaller tree in Algorithms F and I.) The second stage compares the

smallest elements remaining in the two lists, and sends the smaller of

the two elements to the third stage. The final routine accepts nodes in

increasing order and creates a balanced tree from them. Given that the

total number of nodes is known in advance, a simple way to construct this

tree in linear time is to divide the nodes as evenly as possible between

the left and right sub-trees of the root, building these subtrees

recursively by the same method if they are nonempty, A more elaborate

20

construction which works even if the number of nodes is not known in

advance is given in [5, Exercise 6.2.3-211. Algorithm T requires

O(m+n) time, so it may be a good method when m is almost as large

as n . -.

A final method which should be part of our comparison is Algorithm L,

standard two-way merging of singly-linked linear lists. The running

time of this procedure is Q(m+n) , like Algorithm T, but we expect

Algorithm L to be more efficient because the first and third stages of

Algorithm T become much simpler when

of balanced trees.

singly-linked lists are used instead

For the purposes of comparison, each of these algorithms was

implemented in the assembly language of a mothetical multiregister

computer [6]. Each instruction executed is assumed to cost one unit

of time, plus another unit if it references memory for data. By inspecting

the programs, we can write expressions for their running time as a function

of how often certain statements are executed. The average values of

these execution frequencies are then determined either mathematically

(in the case of Algorithms T and L) or experimentally (in the case of

some factors in Algorithms F and I). The experimental averages are

determined by executing high-level language versions of the algorithms

- under a system which automatically records how often each statement is

executed [8, Appendix F].

The results of this evaluation are summarized in Figure 11, which

gives formulas for the average running time of each of the four algorithms.

Figure 12 compares the three balanced tree merging algorithms by showing

the values of the list sizes m and n for which each of the three

21

algorithms is faster than the other two. It turns out that Algorithm F

beats Algorithm I when m > 4.04n 0253
f and Algorithm F is faster than

Algorithm T when m <, .355n . Furthermore, Algorithm F is never more

about 33% slower than Algorithm I, or 54% slower than Algorithm T. Thus

Algorithm F seems to be a practical merging procedure for balanced trees.

[Figures 11 and 121

In some situations the flexibility of balanced trees may not be

needed, and the simpler singly-linked list representation might seem

preferable. Our comparison shows that from the standpoint of merging,

balanced trees are worthwhile whenever the lists being merged differ

in size by a factor of 16.5 or more. So in order to derive a benefit

from the simpler representation we must keep the merges fairly well

balanced.

It now seems appropriate to make some general remarks about Algorithm F

and its implementation. Our first observation is that the general

scheme of the algorithm and its running time proof apply directly to

2-3 trees (or general B-trees). For example, the argument of Lemma 3

concerning the number of balanced nodes handled during rebalancing

translates into an argument about the number of full nodes (nodes

containing two keys) handled during splitting in the 2-3 tree case.

The algorithm

of 2-3 trees,

for 2-3 trees

might be easier to state in an abstract way in terms

rather than balanced trees, but as soon as a representation

is specified the algorithm becomes just as complex. One

possible advantage if 2-3 trees is that when they are represented as

binary search trees [5 , p. 4691 they use only one bit per node as a

balance factor.

22

I

The merging algorithm could be implemented to operate on triply-linked

balanced trees [2], which contain a pointer in each node to its parent.

In this case the path stack would be unnecessary, since the upward

links provide the information. If the tree were also threaded in an

appropriate way then the successor stack could be eliminated.

The program given in Section 2 uses only conventional stack operations

on the path and successor stacks; hence it is clear that this program can

run on a pointer machine within our time bound. On a conventional

camputer we would implement the stacks as arrays, with an integer stack

pointer. Then rather than keeping pointers to nodes as entries in the

successor stack, we can keep pointers to the path stack entries for these

nodes. This allows us to delete all path entries up to the top node of

successor by simply assigning the top element of successor to the Path

stack pointer, which makes the climbing-up phase of each insertion

considerably faster and hence reduces the coefficient of m lg(n/m)

in the running time. The implementation given in the Appendix uses

this stack technique, and also retracts the stacks during rebalancing

only if rebalancing invalidates some of the path; the latter change in

the algorithm has little effect on its running time since rebalancing

seldom occurs high in the tree.

A further improvement in the algorithm comes from considering the

relationship between OUT method and the Hwang-Lin binary merging

procedure presented in Section 2. A principal distinction between the

two is that binary merging always probes near to where the item being

inserted is expected to fall; with balanced trees we climb up the search

path during insertions and examine nodes which are very unlikely to be

23

larger than the item being inserted. Using an array stack implementation

we can avoid many useless comparisons by jumping directly to a node on

the path where the next comparison will be less biased. The proof of

Lemma 6 indicates that a possible stratea is to jump to a node of

height h where h is chosen to guarantee that a subtree of this

height contains at least n/m nodes. Since computing this height during

the search is expensive, it seems preferable to jump to a fixed depth

in the tree, such as log
P
m , instead; this operation is extremely

fast using an array stack implementation. Jumping back to a depth

near lg m improves the average case, since random balanced trees

are so well balancedY but it makes the worst case greater than

ob h3b/m)) l

Another possible scheme for fast merging is to use the linear list

representation developed in [3]. This structure allows a finger into

the list to be maintained such that all accesses in the neighborhood

of the finger are guaranteed to be efficient. The algorithms of [3]

can be extended to show that for the purposes of merging, the finger

can also be moved efficiently with each access, giving an ob lo&+4 >

merging algorithm. This list representation is very complicated, however,

so the associated merging procedure is not "fast" in a practical sense.

24

I

Appendix. A Sail Implementation.

The following is a Sail implementation of the fast balanced tree merging
algorithm . A complete description of the Sail programming language is given in
[83, but the reader who is familiar with AlgolW or Pascal should have little
difficulty understanding the Sail constructs used below. The following points
are worth noting:

1) A string constant preceding a statement is treated as a comment.
2) 'The statement 'DONE "blockName" causes an exit from the loop on the block

named tUblockNameH.
3) RECORD POINTER parameters are passed by value.
4) The logical operations A (and) and v (or) are executed conditionally when

evaluating an IF predicate, as in LISP but unlike Algol68.
the construct 'a A p' means 'IF a THEN p ELSE FALSE'.

For example,

RECORD-CLASS Node (RECORD-POINTER(Node) lLink1, rLink!; INTEGER B!; INTEGER Key!);
COMMENT
Format of tree nodes: pointers 1Link and rLink to the left and right subtrees,
an integer key, and a balance factor which is the height of the right subtree
minus the height of the left subtree, i.e.,

DCPI = -1 P node p is unbalanced to the left (left subtree is taller), '
BCPI = 8 H node p is balanced,
B[p-J = +l E node p is unbalanced to the right.

We use the names leftTaller, balanced, and rightTaller respectively for these
values. The only relation between them which is significant to the program is
that leftTaller = -rightTaller.;

RECORD-CLASS ListHeader (RECORD-POINTER(Node) Root!; INTEGER Height!, Sfze!);
COMMENT
Format of list header: pointer to the root of the balanced tree, plus an
integer giving the height of tree, and an integer giving the number of nodes in
the tree.;

COMMENT Abbreviations for Node and ListHeader fields;
DEFINE 1Link = {Node:lLink!};
DEFINE rLink = {Node:rLink!);

a DEFINE B = {Node:B!};
DEFINE Key = {Node:Key!};
DEFINE Root = {ListHeader:Root!};
DEFINE Height = {ListHeader:Height!);
DEFINE Size = {ListHeader:Size!};

COMMENT Manifest constants;
DEFINE balanced = (0);
DEFINE leftTaller = (-1);
DEFINE rightTaller = {+l};
DEFINE maxDepth = (24);

25

PROCEDURE FastMerge(RECORD-POINTER(ListHeader) src, dst);
BEGIN "FastMerge"
COMMENT
The FastMerge procedure performs merging of sorted lists represented as balanced
binary trees. The two lists are passed to FastMerge by passing the two pointers
src and dst to their respective list header nodes: the src list is empty on
return from FastMerge, and the dst list contains the result of merging the two
lists.

The merging algorithm is best viewed as containing two relatively independent
processes, the dismantling process and the insertion process. (In fact, the
most natural program structure for the FastMerge procedure would use coroutines
for these processes.) The dismantling process operates on the smaller of the
two lists, which contains m nodes. It performs a symmetric-order traversal of
the binary tree representing this list, lopping off the nodes in order of
increasing key size, and supplies these nodes to the insertion process upon
demand. The dismantling process runs in O(m) steps.

The insertion process inserts these nodes successively into their proper
position in the larger list, which contains n nodes. The details of the
insertion algorithm are complicated, but the idea is simple. The first
insertion is performed using the normal tree search and insertion algorithm.
The subsequent insertions are not independent from one another, since the
insertions are done in increasing order. So the algorithm performs these
insertions by first searching upward from the site of the previous insertion for
the root of a subtreg which can be guaranteed to contain the node being
inserted. Then the insertion is completed by the usual procedure. The
insertion process runs in O(m log(n/m)) steps, so the running time of the entire
merging algorithm is also O(m log(n/m)).;

.RECORD-POINTER(Node) ARRAY dStk[1 :maxDepthJ; INTEGER dPtr;
COMMENT
The dStk array is used as a stack, containing nodes not yet output during the
dismantling process, and the integer dPtr is its stack pointer. This
structure is used by the procedures InitDismantle and GetNext below.;

PROCEDURE InitDismantle(RECORD_POINTER(ListHeader) Head);
BEGIN "InitDismantlen
COMMENT
This procedure initializes a 'stream' which produces the nodes of the list
headed by Head. The nodes come from the stream in increasing order of Key
value, one node per call to GetNext. The list is destroyed in this process,
so InitDismantle sets all fields of Head to a null state.;
- IF Size[HeadJ = 8 THEN dPtr + 8

ELSE dStk[dPtr + l] + Root[Head);
Root[HeadJ + NULL-RECORD; SizerHead] + HeightCHead) + 0

END VnitDismantle";

RECORD POINTER(Node) PROCEDURE GetNext;
BEGIN "GetNext"
COMMENT
A call to this procedure returns the next node in the list given to
InitDismantle, with 1Link = rLlnk t NULL-RECORD and B = 8. If no nodes remain
in the list, the value NULL-RECORD is returned.;
RECORD-POINTER(Node) Nxt, Nxtl;
IF dPtr = 8 THEN RETURN(NULL-RECORD);
Nxt + dStk[dPtr); dPtr + dPtr-1;
WHILE lLink[Nxt] # NULL RECORD DO BEGIN

Nxtl + lLink[NxtJ; liink[Nxt) + NULL-RECORD;
dPtr + dPtr+l; dStk[dPtr] + Nxt;
Nxt + Nxtl

END;

IF rLink[NxtJ f NULL-RECORD THEN BEGIN
dPtr + dPtr+l; dStk[dPtrJ + rLink[NxtJ;
rLink[NxtJ + NULL-RECORD

END;
B[NxtJ + balanced;
RETURN(Nxt)

END @@GetNext";

RECORD-POINTER(Node) ARRAY pathStk [l:maxDepth); INTEGER pathPtr;
INTEGER ARRAY succStk [1 :maxDepthJ; INTE6ER succPtr;

nInvariant ' PathProp' :

The pathStk contains an initial segment of the path from the root of 1gLst
(as modified by the insertions so far from smlst) to the position which some
node z (specified when this invariant is applied below) from smLst has, or
will have after an insertion, in IgLst.
The succStk contains the indices of all pathStk entries whose 1Links are
also in pathStk, i.e. all nodes on the path (excluding the last) which are
greater than the last node inserted.a

PROCEDURE InitInsertion(RECORD_POINTER(ListHeader) Head);
BEGIN "InitInsertioV
COMMENT
This procedure initializes the insertion process on the list headed by Head,
and sets all of the fields of Head to a null state.;

pathPtr + 1 ;--. pathStk[pathPtr J @ RoottHead];
succPtr + 8;
Root[HeadJ + NULL-RECORD; Site[HeadJ l HeighttHeadJ + 8

END VnitInsertioV;

RECORD-POINTER(ListHeader) smlst, 1gLst;
RECORD-POINTER(Node) p, q, r, s, t, x;
INTEGER m, n, ht, inscount, sPtr, a, k;

"Initializations."

IF Size[dstJ 2 Size[srcJ THEN BEGIN 1gLst l dst; smLst + src END
ELSE BEGIN smLst + dst; 1gLst + src END;

m + Size[smLst); n + Size[lgLst]; ht + Helght[lgLstJ;
InitDismantle(smLst); InitInsertion(lgLst);

"The insertion process."

FOR insCount + 1 STEP 1 UNTIL m DO BEGIN Ynsertloop”
x + GetNext;
k + Key[xJ;

"Now x is the next node from smLst to be inserted into IgLst, with lLink[x)=
rLink[x]=NULL-RECORD, B[xJ=balanced, and k=Key[x J. PathProp holds with z =
the previous node inserted into 1gLst; on the first insertion PathProp does
not hold, but succStk is empty so UpLoop below is never executed. The
purpose of UpLoop is to make PathProp hold with z = x, by retracting the
path as little as possible toward the root."

WHILE succPtr # 8 DO BEGIN VpLoopn
IF k < Key[pathStk[succStk[succPtrJJJ THEN DONE YJpLoopn;
pathPtr + succStk[succPtr]; succPtr + succPtr-1

END "UpLoop';
p + pathStk[pathPtr];

"Now x and k are as before, and p is on top of pathstk. Also, PathProp
holds with z = x. The purpose of SearchLoop is to maintain this property
while extending the path to a leaf of IgLst, and then to add x to 1gLst and
to the path."

WHILE TRUE DO BEGIN 'SearchLoop"
IF k < Key[p] THEN BEGIN "Move left"

succPtr + succPtr+l; succStk[succPtr] + pathPtr;
q + lLink[p];
IF q = NULL-RECORD THEN BEGIN lLink[pJ + x; DONE 5earchLoop" END

END
ELSE BEGIN @'Move right"
q + rLink[pJ;
IF q = NULL-RECORD THEN BEGIN rLink[p] + x; DONE 9earchLoop" END

END;
P + q;
pathPtr + pathPtr+l; pathStk[pathPtr] + p

END "SearchLoopml;
pathPtr + pathPtr+l; pathStk[pathPtrJ + x;

"Now PathProp holds with z = x, and in fact x is on top of pathstk. The
purpose of AdjustLoop is to adjust all of the balance factors on the path
between x and s, which is defined to be the first unbalanced node on the
path:above x (the root if there are no unbalanced nodes on the path..)
AdjustLoop does not alter the path."

sPtr + pathPtr-1;
WHILE TRUE DO BEGIN "AdjustLoop"

s + pathStk[sPtr);
IF B[s] # balanced v sPtr4 THEN DONE "AdjustLoopN;
B[sJ + (IF k < Key[s] THEN leftTaller ELSE rightTaller);
sPtr + sPtr-1

END "AdjustLoop";
a + (IF k < Key[sJ THEN leftTaller ELSE rightTaller);

28

"The purpose of the following is to maintain balance in the subtree rooted
at s. In two cases this is trivial, and the path is not affected. In t h e
third case rebalancing must take place, which invalidates a portion of the
path; this portion is discarded, and the root of the rebalanced subtree
becomes the final node on the path. In any case, PathProp will still hold
with z = x."

IF B[sJ = balanced THEN BEGIN
B[sJ + a; ht + ht+l
END

ELSE IF B[sJ = -a THEN BEGIN
B[sJ + balanced

END
ELSE BEGIN "Rebalance"

r + pathStk[sPtr+l J;
IF B[rJ 0: a THEN BEGIN 9ingleRotatiotV

P + r;
IF a = rightTaller THEN BEGIN rLink[sJ + lLink[rJ; lLink[rJ + s END

ELSE BEGIN lLink[sJ + rLink[r J; rLink[r J + s END;
B[sJ + B[rJ + balanced;

END 'SingleRotation"
ELSE BEGIN "DoubleRotation"

IF a = rightTaller THEN BEGIN
p + lLink[rJ; lLink[rJ + rLink[pJ; rLink[p] + r;
rLink[s) + lLink[pJ; lLink[pJ + s

END
ELSE BEGIN,
p + rLink[r); rLink[r) + lLink[pJ; lLink[pJ + r;
lLink[sl + rLink[p]; rLlnk[p] + s

END;
B[s] + (IF S[p] =
B[rJ + (IF B[pJ =

+a THEN -a ELSE balanced);
-a THEN +a ELSE balanced);

B[p] + balanced;
END "DoubleRotation";
IF sPtr > 1 THEN BEGIN

;F+spathStk[sPtr-l];
= rLink[tJ THEN rLink[t] + p

ELSE lLink[tJ + p
END;
"The tree is rebalanced;
succstk."

delete the invalidated section from pathStk and

pathPtr + sPtr; pathStk[pathPtr J + p;
WHILE succPtr98 A succStk[succPtrJrpathPtr DO

succPtr + succPtr-1;
END "Rebalance";

"Now PathProp holds with z = x/

END VnsertLoop” ;

:Root[dst] + pathStk[1 J; Height[dst] + ht; Size[dstJ + m + n

END "FastMerge";

29

Dl

El

[31

[41

II51

El

F-71

ca

[91

-

References

Alfred V. Aho, John E. Hopcroft, and

and Analysis of Computer Algorithms,

1974.

Jeffrey D. Ullman, The Design

Addison-Wesley, Reading, Mass.,

Clark A. Crane, "Linear lists and priority queues as balanced binary

trees," Ph.D. thesis, Computer Science Dept., Stanford University,

STAN-CS-72-259, (February 1972), 131 pp.

Leo J. Guibas, Edward M. McCreight, Michael F. Plass, and

Janet R. Roberts, 'A new representation for linear lists,'

Proceedings of the Ninth Annual ACM Symposium on Theory of

Computing, Boulder, Colorado, (1977), 49-60.

Frank K. Hwang and Shen Lin, "A simple algorithm for merging two

disjoint linearly ordered sets," SIAM J. Cornput. 1, 1 (March 1972),

31-39.

Donald E. Knuth,,The Art of Computer Programming, Vol. 3, Sorting

and Searching, Addison-Wesley, Reading, Mass., 1973.

Donald E. Knuth, "Structured programming with goto statements,"

Computing Surveys 6, 4 (December 19'74), 261-301.

Donald E. Knuth, "Big aMicron and big omega and big theta,"

SIGACT News 8, 2 (April 1976), 18-24.

John F. Reiser, ed., "SAIL," Stanford Computer Science Department

Report SIAN-CS-~~-~~~, (August 1976), 173 pp.

Robert E. Tarjan, "Reference machines require non-linear time to

maintain disjoint sets," Proceedings of the Ninth Annual ACM

Symposium on Theory of Computing, Boulder, Colorado, (1977), 19-29.

30

1b
B

,
bl b2 . . .

b2t b2t+l l * l bn
b

Figure 1. First comparison during a binary merge.

31

merged result
,
bl . . . b

k-l al

merged result

I bl b2 .a*
b2t

B'

bk . . .
b2t

b2t+l . � l l bn
,

(>a

A'
.

al "2 . . . a
m

B'

b2t+l l ** bn

Figure 2. Outcomes after first part of a binary merge.

(>a "1<b2t l

04 a1 > b
2t l

32

vE
v

H
v
M

Figure 3. Sorted lists represented as balanced binary trees.

33

Figure 4, An example of merging by independent insertions

- (square nodes have been inserted).

34

I
Figure 5. Inserting an item larger than x .

(Subtrees are
labeled with the range of key values which may be

inserted.)

35

(>a

(>b

.
c(>

Figure 6. Insertion using the finger path.

L-JI

Figure 7. Retracting the path for rebalancing.

37

I

Figure 8. A bad insertion.

38

(>a

f-2

.
Figure 3.

(w

7’
ha B Y 5

1

-

U L-i I

Rebalancing after an insertion.

(a) Case 1. Sub-tree y contains inserted node x .

(b) Case 2. Either x = w and @ and y are empty,
or subtree y contains x .

39

\

\

Algorithm F

Algorithm I

&Lgorithq T

&Lgorithm L

average running time to merge lists

of sizes m and n, with m<n

15.0 m lg(n/m) + 118.5m + 43.5

11.2~ lg n + 88.3m + 21

35.9(m+n) + 4m + 59.2

lO(m+n) + 4m + 32

Figure 11. Comparison of methods.

L

41

16

14

12

6

4

2

e

Algorithm I

2 6 8 10 12 14 16

Figure 12. Zones of best performance for

algorithms.

balanced tree merging

