A FAST MERGING ALGOR ITHM

by

Mark R. Brown and Robert E. Tarjan

STAN-CS-77-625
AUGUST 1977

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

LTy
ARV IV DA ¥/
s 100

o~

DN
;.\.\.\
('/ N

N N AN
“ PN
> v TR
. VR
bt - %)
o T~ —
H ,
! ~

A Fast Merging Al gorithm

*
Mark R Brown Robert E. Tarjan-/
Department of Computer Science Conput er Sci ence Depart nent
Yal e University _ Stanford University
New Haven, Connecticut 06520 Stanford, California 94305
Abst ract

W give an algorithm which nerges sorted lists represented as
bal anced binary trees. If the lists have lengths mand n (m< n)
then the nerging procedure runs in 0O(m |og %) steps, which is the

same order as the lower bound on all conparison-based algorithms for

this problem

Keywords and phrases: AVL tree, balanced tree, 2-3 tree, linear list,

mer gi ng

x/ This research was supported in part by National Science Foundation
grant MCS-75-22870 and by the Ofice of Naval Research contract
NOOO1k4-76-C-0688.

Reproduction in whole or in part is permtted for any purpose of
the United States governnent.

1

0. [ntroduction.

Suppose we are given two linear lists A and B, each of whose
el ements contains a key froma linearly-ordered set, such that each |ist
is arranged in ascending order according to key value. The problem
is tonmerge Aand B, i.e., to conbine the two lists into a single
linear |ist whose elenents are in sorted order

This problem can be studied on different |evels. One approach is
to ask how many conparisons between keys in the two lists are sufficient
to determine the ordering in the conbined list. This is an attractive
probl em because it is relatively easy to prove [ower bounds on the number
of conparisons as a function of the list sizes, using an "information-

theoretic" argument. |f the lists A and B have m and n el enents,

mn
n

elements of B in the conbined list; it follows that ,—lg(m;n)-]

conparisons are necessary to distinguish these possible orderings
If we take m < n then ,_1g(m;n)-, = Q(m | og Ir—;) 2 The best

merging procedure presently known within this framework is the

respectively, then there are () possi bl e placenents of the

"binary merging" algorithm of Hwang and Lin [L4,5], which requires fewer

t han ,-lg(m;n)]+ min(m,n) conparisons to conbine sets of size m

and n .
A different approach is to study the actual running tine of nerging

algorithnms on real conputers or on nore abstract nodels such as

pointer machines [9]. |f we assume that conparisons are the

only way of gaining information about key values then the Q(mlog %‘)

£/ That is, thelefthand side has order exactly mlog % ; see [7] for
a precise definition of the e and g notati ons.

| ower bound still applies to the running tinme of nerging algorithms,
but it is not clear how to achieve this bound using the Hwang - Lin
procedure. The problem lies in inplementing this algorithm

to run in time proportional to the nunber of conparisons it uses.

In this paper we give a nerging procedure which runs in Q mlog %)
time on a real conputer or a pointer machine. The algorithm uses bal anced
binary (AVL) trees [5] to represent the linear lists; 2-3 trees [1] could
al so be used.

In Section 1 we present the binary nerging procedure of Hwang and
Lin, and note why it seems difficult to give an efficient inplenentation
of this algorithm W develop a merging procedure for bal anced trees
in Section 2, and in Section 3 we prove that the procedure runs in
()(m | og %) time. Section 4 gives the results of experinents conparing
our algorithmwith three straightforward nerging methods. A high-level
| anguage inplenmentation of the fast merging algorithmis contained in the

Appendi x.

1. Bi nary Merging.

We begin with an informal description of the Hwang-Lin binay
nerging algorithm Let A and B be lists containing distinct elenents,

of respective lengths mand n with m< n , such that

and

1

<a '(ono
a 9 <a.m,

bl<b2<' . <bn

The merging nethod is nost easily described recursively. Wen m =0
(i.e., the shorter list is enpty) there is no nerging to be done and
the procedure termnates. Qherwi se we attenpt to insert 8 t he

smal | est element in the shorter list A, into its proper position in

the longer list B. To do this, let t = L1lg(n/m) | and conpare

ag: b (Pt is the largest power of two not exceeding n/m). See
)
Figure 1.
[Figure 1]
| f a; <b ., then ay bel ongs sonewhere to the left of b 4
2 2

in Figure 1. By using binary search the proper location of a, amng

015bpseeasb o . can be found with exactly t nore conparisons. The
2
result of this search is a position k such that bk 1 < t < bk :

-this information allows us to reduce the problemto the situation
illustrated in Figure 2(a). To conplete the nerge it is sufficient

to-perform binary merging on the lists A" and B' .
[Figure 2]

[f, on the other hand, a. > b , then a

1 2t 1

in Figure 1, and the problem imediately reduces to

bel ongs somewhere to

the right of b
N

the situation illustrated in Figure 2(b). W can finish the nerge by

applying the binary nerging procedure to the lists A' and B . Note
that A nmay be longer than B', so that in the recursive calls to the
bi nary merging procedure the roles of A and B nay become reversed;
this may also happen in the first reduction above.

This algorithm uses conparisons very efficiently, as evidenced by
the small gap between the upper bound of [—lg(m:ln)—l + min(m,n)
comparisons required for binary nmerging [4] and the | ower bound of
I—lg(m;n)_l conparisons for any nerging method based on conparisons,
But representing the lists A and B as arrays, which is the obvious
way of making the individual conparisons take constant time, forces
insertions to _be expensive: they involve noving items over to make
room for the inserted items. Hwang and Lin [4] were concerned with an
application in which A and B are read from tapes and the nerged
result is witten onto a tape; in this situation the merge requires
linear time (since the entire result nust be witten), and binary
merging can only inprove on the traditional tape nerging al gorithm by
a constant factor. W would like to be able to nmerge list structures
A and B and produce a result |ist of the same type in O(m | og %)

total operations.

©. Balanced Tree Merging.

Bain | »~1 biaary trees [2,5] are good data structures for representing
Linear lists when both searches ani Zasertions nust be perforned.
A binary tree is called balanced if the height of the left subtree
of every node never differs by no more than +1 from the height »f its
right subtree. (The height of a tree is the length of the |ongest path
from th2 roobioaneciernal node.) Wen representing a list by a
bal anced binary tree, the i-ta element of a |ist becomes the i-th node
visited during a symmetric order traver .ul Of the balanced trec; if the
list is sorted, as in Figure 3, then its xeys appear ia increasing order
during such a traversal. Wien a sorted list of length N is naintained
in tais way, we can |ocate the proper position in the list for a new
element it O(log n) steps, using ordinary binary tree search. To
insert this element into the |ist may ~2quire 0(log n) additional
steps for rebalancing the trece. we shall assune resder famliarity
with Algorithm6.2.34, the bal anced tree scarch aad 113 »»t i on alzori thm
of [5].

[Figure 3]

An obvious nethod of merging two sorted |ists vepreseated as
bal anced trees is to insert the elements of the smaller list into the
larger |ist one by one. The result of nerging the two lists of Figure 3
using this scheme is shown in Figure 4. |f the snaller list contains
m elenents and the larger has n elenents then this algorithm perforns
an iassrtions Of 0O(log n) steps each, for a total cost of 9(m log n) .

But we are seeking a method which runs in O(m | og I%) tine.

[Figure 4]

To see why there is sone hope of inproving this sinple nerging
procedure we refer again to Figure & which shows the search paths traced
out during the insertions. An interesting property of these paths is
that they share many nodes near the top of the tree. The root is visited
on all of the searches, and its two offspring are each visited on roughly
hal f of the searches; we nust descend at least 1g mlevels into the tree
before all of the search paths becone disjoint. It appears that our
sinple merging strategy spends 1g m steps on each insertion, or
Qm1lg m) steps total, examning nodes in the top 1lg mlevels of
the tree. Since there are only Q'n) nodes contained in these |evels,
elimnating duplicate visits should make our algorithmrun in
otmlog n - mlog m+m = Qmlog %) tine.

W can elimnate extra visits since the itens being inserted are
thensel ves already sorted; by sinply inserting these itens in order we
can ensure that once an item has been inserted, no smaller itemwll be
inserted later. Figure 5, which shows the situation after a node x has
been inserted, indicates how this can help. If nodey > x is now
inserted, then y nust lie sonewhere to the right of x in the tree.

To determne where y belongs it is sufficient to clinmb back up the
search path, conparing y to nodes on the path which are greater than

x until a node is found which is greater than y ; then y can be
inserted into the right subtree of the previous node exanm ned during

the climb. (For this purpose it is convenient to think of the root as
having a parent With key += .) In Figure 5, if y >y but y <38

then y should be inserted into the right subtree of node v ; if y <y
then y becones the right offspring of x .

[Figure 5]

An algorithm based on this idea is easy to state informally. As in
our description of binary nmerging, let A and B be sorted lists of

length mand n, with m< n , and assume that these lists are
represented as balanced trees. In the first step of our algorithm we

i nsert the snallest element of A, into the tree B. At the

al,

start of a general step, elenents by

into B, and we have a record of the search path to a (Figure 6(a)).

ey 0 H0WSE have been inserted

This path acts as a "finger" into the tree B during the algorithm
moving fromleft to right through B as elenents from A are inserted;
the finger is useful because only nodes to the right of it can be visited
during later insertions.
[Figure 6]

The general step has two parts. First the finger is retracted
toward the root, just far enough so that the position of elenent NI
lies within the sub-tree rooted at the end of the finger (Figure 6(b)).

Then a is inserted into this subtree, and the finger is extended to

k+1
follow the path of this insertion (Figure 6(c)). After ml| executions
of this general step the merge is conplete.

- This scheme is conplicated by the fact that rebalancing nmay be
necessary during insertions into a balanced. tree. Wen rebalancing
takes place, it may renmove a node fromthe finger path traced

out by the search. It is possible to update the recorded path to be
consistent with this rearrangement, but it seens easier just to "forget”
about the part of the path which is corrupted, i.e., to retract the

finger path back to the point of rebalancing. The algorithm then takes

the formshown in Figure 7. At the start of a general step we now have

recorded only Part of the search path to thie last el ement inserted. e
general step proceeds as before, but after the insertion a part of the
search path may be discarded. There is no need to treat the first
insertion specially in this algorithm we sinply initialize the finger
path to be the root of B (which is certainly on the path to the first
insertion), and execute the general step mtines.

[Figure 7]

In an inplenentation of this schene it is useful to maintain a
record of those nodes on the finger path at which the path turns left
(i.e., nodes on the path whose left offspring is also on the path).

It is easy to-see that these are precisely the nodes on the path
(excluding the last node) which are larger than the nost recently
inserted item according to Figure 5 only those nodes nust be exam ned
while clinbing upward in the tree in the first part of the general step.
Bad cases may occur if we don't record these nodes and nust examnne
smal | nodes on the finger path, as illustrated in Figure 8. If a node
y > x is inserted in the situation shown, the entire path up to the
root nmust be clinbed to see if y >a . If it turns out that y < a,
then y becones the right offspring of x and the same situation can
be repeated.

[Figure 8]

Using these ideas we can express the bal anced tree merging al gorithm
in an Algol-like notation. (The control constructs used in this notation
are adapted from Knuth [6].) W keep pointers to nodes on the finger
path in a stack path, and pointers to the "large" path nodes (in the

sense of the previous paragraph) in a successor stack. The nodes of

the bal anced tree are taken to have fields Key , 1Link , rLink , and B

(balance factor), as in Algorithm6.2.3A[5]. The bal ance factor may

take on the val ues_leftraller, bal anced, and rightTaller, whi ch have

obvious interpretations; the rebalancing step depends on the relation

leftTaller = -rightTaller which is assuned to hold,

begin (Fast balanced tree nerge)

PSR

initialize path to contain the root of the larger tree, and
height to be the height of the larger tree
initialize successor to be enpty

1oop .1;9‘1; each node in the smaller tree:

X « next node fromthe snaller tree, in symetric order, initialized
so that 1Link[x] = rlink{x] = Nil and B[x] = 0
(clinb up]
loop until successor is empty or Key[x] < Key[top of successor]:
logp until top of path = top of successor:
remove top from path

Iepeat

renove top from successor

[0 o ~weRs
repeat

RS Y

p ~ top of path

10

(search down and insert}

loQE
if Key[x] < Keyl[p] then
if 1link[p] = I then goto leftNil
DRI NS
else Eu;h P onto successor
P « 1lLink[p] endif
- = APPSR
el se
DR
if rLink[p] = NIl then goto rightNil
= = BRSPSy O T
el se p ~ rLink[p] endif
R - - AR
endif
[ar ot ot g
push p onto path
regeat
then leftNil = 1Link[p] « x
R -
rightNil = rLink[p] « x
endloop ~

(adj ust bal ance factors)

Loop
RSP

pop path into s
until B[s] # balanced or path is enpty:
Bls] « (if Key[x] < Key[s] then leftTaller

— -

el se rightTaller)
i f successor iz not empty and top of path = top of successor

s

then renove top from successor endif
PN PPN -

~—m—

r epeat

A

a « (if Key[x] < Key[s] then leftTaller el se rightTaller)
ey - I, AL T— e ————

11

[rebal ance the subtree rooted at s; this part of the programis
essentially a translation of steps 7-10 of Algorithm 6.2,34[5]}

Af B[s] = bal anced ‘then {entire tree has increased in height)
B[s] - a; height « height+l
else if B[s]=-a then {subtree has becone more bal anced]

B[s] - bal anced
gelse (rotation is necessary to restore bal ance)
r « (if Key[x] < Key[s] then 1luink[s] el se rLink[s])
if B[r] = a then (single rotation)
if a= rightTaller then xLink[s] « 1Link[r]; lLink[r] « s
else 1Link[s] « rLink[r]; rLink[r] « s endif
A —_— AT)

1o

B[s] « B[r] ~ bal anced

‘S -r
else {double rotation)
if a = rightTaller then
~ - —_— e
p -~ lLink[;]; 1lLink{r] < rLink{p]; rLink[p] « 1

rLink[s] « lLink[L]; lLink[p] « s

el se

p < rlink{r]; rLink[r] «_1lnink[p]l; 1lLink[p] « r

Mink(s] - rLink[p]; rLinkp] - s
endif
1_3[§]N'— (if Blpl=+a then -a else bal anced)
Blr] « (if Blpl = -a th_e'n +a elsc bal anced)
B[p] « bal anced

1l

S‘—p
gndif
endif

W S

puch ¢ onto path

repeaﬁ
{The root of the result tree is on the bottomof path, and itc height is height}

cnd {Fact bal anced tree merge}

12

3. Running Tine.

In order to analyze the running time of the balanced tree nerging
algorithm it is necessary to look at the details of the rebal ancing
procedure (steps 6 -10 of Algorithm6.2.3A[5]). For the purpose of
this discussion we shall adopt a concise notation for balance factors
t he bal ance factor of any node is“either O (left and right subtrees
of equal height), + (right subtree of height one greater than |eft
subtree), or - (right subtree of height one less than left subtree).
A node with balance factor 0 is called bal anced, and the other nodes

are unbal anced.

When a node x is inserted in place of an external node in a
bal anced tree, this may cause ancestors of x in the tree to increase in
height. To rebalance the tree we exam ne successiveancestors of x ,
moving up toward the root. During this climb we change the bal ance
factor of each bal anced node to + or - as appropriate until an
unbal anced node, say z , is found. (If we reach the root without
finding an unbal anced node then the entire tree has increased in height
and the insertion is conplete.) Insertion of x causes node z to
becone either balanced or doubly heavy on one side. If 2z bvecomes
bal anced we sinply change its balance factor to 0 ; otherw se we
locally modify the subtree rooted at z to restore balance while
l eaving its height the same as it was before node x was inserted. The

- two local transformations shown in Figure 9 will rebalance the subtree
inall cases. Since the subtree rooted at 'z does not change in height,
no nodes above z need be examined during the insertion,
[Figure 9]
Call a node "handled" if it is manipulated by the bal anced tree

nerging algorithm W shall obtain an Qm log(n/m)) bound on the

13

running time of the algorithm by show ng that

() the time required by the algorithmis proportional to the nunber
of handl ed nodes (where a node is counted only once even if it is
handl ed nany tines), and

(ii) the total nunber of handl ed nodes is Q'm log(n/m)) .
W proceed by nmeans of a sequence of |emmas
Lenma 1. The time required by the binary tree merging algorithmis

bounded by a constant times m plus a constant tines the number of

additions to and deletions from the path and successor stacks

Proof . An inspection of the program shows that the algorithm requires

a bounded amount of time per insertion plus a bounded amount of time

per addition to or deletion froma stack. J

Lemma 2. The total number of additions to a stack is bounded by

the total nunber of deletions plus the nunber of handled nodes.

Pr oof . The nunber of stack additions exceeds the nunber of deletions

by the nunmber or el enents in the stack when the al gorithmterni nates.
But each node in the stack has been handled, so the result follows.
(The maximum stack depth is actually 0(log(ntm)) , which is generally

much smaller than the number of handled nodes.) O

Nodes are deleted from stacks at two points in the program while

adjusting balance factors during rebalancing, and while clinbing up the

path during insertions. \ now analyze each case in turn

Lenma 3. The nunber of deletions from stacks during rebalancing cannot

exceed a constant tines the nunber of handl ed nodes

14

Proof . Al nodes handled during a rebalancing step except at nost three

have their bal ance factor changed fromO to either + or - . Thus
each path stack del etion except three per rebal ancing "uses up" a bal anced
node, and each rebal ancing creates at nost three balanced nodes. Since
the initial pool of balanced nodes which are handl ed cannot exceed the
total nunber of handled nodes, the total number of path stack deletions
during rebalancing is no more than the number of handled nodes plus six
times the nunber of rebalancings. The nunmber of successor stack deletions
during rebal ancing cannot exceed the mmber of path stack deletions during

rebalancing. The lemma follows. O

Lemma 4. The nunber of deletions from stacks during insertions cannot

exceed a constant tinmes the nunber of handl ed nodes.

Proof. Each node y deleted from the successor stack during insertion
has a key smaller than the key of the node x currently being inserted;
thus y can never again be added to (or deleted from the successor
stack. Hence each handl ed node can be deleted from the successor stack
during insertion at nost once.

Each node y deleted from the path stack during insertion is
either (i) deleted fromthe successor stack during the sane insertion
or (ii) has the property that y occurs in a subtree with root z
. such that Key(y) < Key(z) < Key(x) , where x is the node currently
being inserted. (Here z is the node on top of successor wheny is
renoved from path.)

The nunber of nodes vy satisfying (i) cannot exceed the nunber of
nodes deleted from the successor stack, and hence the nunber of handled

nodes. Consider a node y satisfying (ii) after it has been deleted

15

fromthe path stack. Rebal ancing may now take place above z , at =z,
or in the right subtree of z , but inspection of Figure 9 shows that in
any case property (ii) is preserved for y . A node y which satisfies
(ii) and is not on the path stack can never again be added to (or
deleted from the path stack, since the key of the left child of z wll
never be conpared against the key of a node being inserted. Thus the
number of path stack deletions satisfying (ii) is at nost one per handl ed
node.

In summary, at nost three stack deletions per handl ed node can occur

during insertions. (O

Theorem 1. The total time required by the balanced tree nerging

algorithmis bounded by a constant times the nunber of handled nodes.
~Proof. |Immediate fromLemmas |-4. O

The bound on the nunber of handled nodes is proved in two steps.
First we show that when the algorithm terninates, most of the handl ed
nodes constitute a subtree of the bal anced tree resulting fromthe nerge,
and this subtree has at nmost mtermnal nodes (nodes having no internal
node of the subtree as an offspring). Then we bound the nunber of nodes

that any such a subtree of a bal anced tree may have.

Lemma 5. After k insertion-rebalancing steps, the set of handled
nodes consists of no nore than k nodes plus a subtree of the entire
bal anced tree containing no nore than k termnal nodes, and containing

all ancestors of the nost recently inserted vertex.

16

Proof . W prove the lemma by induction on k . The lemma is certainly
true for k= 0. Suppose the lemma is true for k-1 . Let Ty 1 be

t he subset of handl ed nodes which forms a subtree With k-1 or fewer
term nal nodes containing all ancestors of the node inserted at the

k-1 -st step. Let H 4 be the remaining k-1 or fewer handl ed nodes.
Each node handled during the k-th insertion is an ancestor of either the
node X 1
at the k-th step. Let Ty be fornmed from Tk 1 by adding all ancestors

inserted at the k-1 -st step or of the node X, inserted .

of X . Then T, fornms a sub-tree with k or fewer termnal nodes.

The k-th rebalancing step does not handle any new nodes but nay
alter the shape of the overall tree and thus may rearrange the vertices
in T, . However, an inspection of Figure 9 reveals that, after

rebal ancing, the nodes in T

M still form a subtree having the same

nunber of terminal nodes as before, except for possibly one additional
"special" termnal node. This special node is a child of a node with
two offspring, so removing it from Ty does not create a new terninal
node. In Figure 9, node z becones special if Ty does not enter
either of the sub-trees a or g. If z becomes special after
rebal ancing, let T, = T;-{z} and H_=H_,U {z} ; otherwise let

= ! =
T, =T, and H =H . .

Then T\ and Hy satisfy the lemma for k .
Lemma 6. Let T be any bal anced tree of k nodes. Let T' be any
- subtree Oof T with at nost ¢ ternminal nodes. Then T' contains

o(t log(k/t)) nodes.

Proof . By Theorem 6.2.3A of [5], a bal anced tree of height
h = 1.4Lk0k 1g(k/¢ + 2)-0.328 nust contain at |east k/¢z nodes. If
T has height less than ht2 , then T' can be partitioned into ¢

paths, each of length less than h+2 , and the lemma is true.

17

On the other hand, suppose the height of T is no less than h+2 .
VW shall conceptually subdivide T into snaller treesas follows:
let the set R consist of the root of T, plus all other nodes in T
whi ch have height h+2 or greater. It is.not hard to see that R forns
a subtree of T , as shown in Figure 10, and that the renaining nodes
of T are partitioned into a set of disjoint subtrees {s;1 .

[Figure 10]

A bal anced binary tree has the property that if v is any node,
the heights of the two children of v differ by at nost one. Thus the
difference in height between v and either of its two children is at
nost two. It follows, that each subtree 85 has height h or n+1 ,
since if the height was less than h then the parent (which lies in R)
woul d have height less than ht2 . By the choice of h this guarantees
that each s, cont ains at least k/f nodes, so there are at nost ¢
subtrees S‘l' Each of these subtrees is attached to an external node
of the "root" subtree R, so there are at nost (-1 nodes in R .

Wth T subdivided in this way it is easy to bound the number of
nodes in T . The nodes of T which do not lie in R can be
partitioned into ¢ paths, each lying conpletely within a subtree S; -
Since each such path has length not exceeding h+tl , the total nunmber
of nodes in T' cannot exceed z-1+ a(l.4404 1g(k/2 + 2)+.672) =

o(2 log(k/e2)) . O

Theorem 2. The total nunber of nodes handl ed by the balanced tree

nerging algorithmis O(m log(n/m)) .

Proof . The total nunber of nodes in the tree resulting from the nerge

is mn . Thus by Lemmas 5 and 6 the total number of handled nodes is no

18

more than mt Q(m log((mtn)/m)) = Q(m log(n/m)) . [

Theorem 3. The balanced tree nerging algorithm requires Q(m log(n/m))

time to nerge lists of sizes mand n with m< n .
Proof . | medi ate from Theorens 1 and 2. |

One may wonder why the proof of Theorem 3 is SO camplicated, while
the informal notivation given for this bound in Section 2 was so sinple.
Perhaps the reason is that each insertion changes the structure of the

tree; thus it seems necessary to analyze the stack operations directly.

19

L, Implementation.

It is possible for an algorithmto be very fast asynptotically, but
to be terribly slow when applied to problens of a practical size for
present-day conputers. Therefore it is worthwhile for us to conpare
our balanced tree nerging algorithm with other nerging procedures to
determne when the new nethod is actually "fast". In the discussion
bel ow we shall refer to our balanced tree nerging algorithmas AlgorithmF

One straightforward nmerging procedure for linear lists represented
as balanced trees has already been described in Section 2. that of
inserting the elements of the smaller tree one by one into the |arger
tree. W shall call this nmethod Algorithm . Since this procedure
requires o(m log n) time, we expect it to be nost useful when mis
very small compared to n .

Anot her sinple nerging procedure for balanced trees is to scan
entirely through both trees in increasing order and perform a standard
two-way nmerge of the lists. This nmethod, which we call AlgorithmT,
divides nicely into three stages of coroutines. The first stage routines
dismantle the input trees and send their nodes in increasing order to
the next stage. (ldentical routines are also needed to dismantle the
smaller tree in Algorithns F and |.) The second stage conpares the
smal | est elenents remaining in the two lists, and sends the snaller of
the two elenents to the third stage. The final routine accepts nodes in
increasing order and creates a balanced tree fromthem Gven that the
total nunber of nodes is known in advance, a sinple way to construct this
tree in linear tinme is to divide the nodes as evenly as possible between
the left and right sub-trees of the root, building these subtrees

recursively by the same nethod if they are nonenpty, A nore elaborate

20

construction which works even if the number of nodes is not known in
advance is given in {5, Exercise 6.2,3-21], Algorithm T requires
Qmtn) tinme, so it may be a good method when m is alnmost as |arge
as n .

A final nmethod which should be part of our conparison is AlgorithmlL,
standard two-way nerging of singly-linked linear lists. The running
time of this procedure is o(mn), like Algorithm T, but we expect
AlgorithmL to be nore efficient because the first and third stages of
Algorithm T become nuch sinpler when singly-linked lists are used instead
of bal anced trees.

For the purposes of comparison, each of these algorithns was
inplemented in the assenbly |anguage of a hypothetical multiregister
conputer [6]. Each instruction executed is assumed to cost one unit
of time, plus another unit if it references nenory for data. By inspecting
the prograns, we can wite expressions for their running time as a function
of how often certain statements are executed. The average val ues of
these execution frequencies are then determined either mathematically
(in the case of Algorithms T and L) or experinentally (in the case of
sone factors in Algorithns F and 1). The experinental averages are
determned by executing high-level |anguage versions of the algorithns
-under a system whi ch automatically records how often each statement is
executed [8, Appendix F].

The results of this evaluation are summarized in Figure 11, which
gives formulas for the average running time of each of the four algorithms.
Figure 12 conpares the three balanced tree nerging algorithnms by show ng

the values of the list sizes m and n for which each of the three

21

algorithms is faster than the other two. It turns out that Algorithmep

+253 , and Algorithm F is faster than

beats Algorithm| when m > L.0kn

Algorithm T when m< .355n . Furthermore, Al gorithm F is never nore

about 33% slower than Algorithml, or 544 slower than AlgorithmT. Thus

Algorithm F seens to be a practical nerging procedure for balanced trees.
[Figures 11 and 12]

In sonme situations the flexibility of balanced trees may not be
needed, and the sinpler singly-linked |ist representation mght seem
preferable. Qur conparison shows that from the standpoint of nerging,
bal anced trees are worthwhile whenever the lists being merged differ
in size by a factor of 1650r nore. So in order to derive a benefit
fromthe sinpler representation we nust keep the nerges fairly well
bal anced.

It now seens appropriate to nmake sonme general remarks about Algorithm F
and its inplementation. Qur first observation is that the general
schene of the algorithmand its running tinme proof apply directly to
2-3 trees (or general B-trees). For exanple, the argument of Lema 3
concerning the number of balanced nodes handled during rebal ancing
translates into an argunent about the nunber of full nodes (nodes
containing two keys) handled during splitting in the 2-3 tree case.

The algorithmmght be easier to state in an abstract way in terms

of 2-3trees, rather than balanced trees, but as soon as a representation
for 2-3trees is specified the algorithm becones just as conplex. One
possi bl e advantage if 2-3 trees is that when they are represented as

bi nary search trees [5, p. 49] they use only one bit per node as a

bal ance factor.

22

The nerging algorithm could be inplemented to operate on triply-linked
bal anced trees [2], which contain a pointer in each node to its parent.
In this case the path stack woul d be unnecessary, since the upward
links provide the information. |If the tree were also threaded in an
appropriate way then the successor stack could be elimnated.

The program given in Section 2 uses only conventional stack operations

on the path and successor stacks; hence it is clear that this program can

run on a pointer machine within our time bound. On a conventional
computer we woul d i nplenent the stacks as arrays, with an integer stack
pointer. Then rather than keeping pointers to nodes as entries in the
successor stack, we can keep pointers to the path stack entries for these
nodes. This allows us to delete all path entries up to the top node of
successor by sinply assigning the top el enent of successor to the _path
stack pointer, which makes the clinbing-up phase of each insertion
consi derably faster and hence reduces the coefficient of m lg(n/m)

in the running time. The inplementation given in the Appendix uses
this stack technique, and also retracts the stacks during rebal ancing
only if rebalancing invalidates sone of the path; the latter change in
the algorithm has little effect on its running time since rebal ancing
seldom occurs high in the tree.

A further inprovement in the algorithm comes from considering the
rel ati onship between our method and the Hwang-Lin binary nerging
procedure presented in Section 2. A principal distinction between the
two is that binary nerging always probes near to where the item being
inserted is expected to fall; with balanced trees we clinb up the search

path during insertions and exam ne nodes which are very unlikely to be

23

larger than the item being inserted. Using an array stack inplenentation
we can avoid many usel ess conparisons by jumping directly to a node on
the path where the next conparison will be |ess biased. The proof of
Lemma 61indicates that a possible strategy is to junp to a node of
hei ght h where h is chosen to guarantee that a subtree of this
hei ght contains at |east n/mnodes. Since conputing this height during
the search is expensive, it seems preferable to junp to a fixed depth
in the tree, such as Iogp m, instead; this operation is extrenely
fast using an array stack inplenentation. Junping back to a depth
near | g minproves the average case, since random bal anced trees
are so well bvalanced, but it makes the worst case greater than
o(m log(n/m)) .

Anot her possible scheme for fast merging is to use the linear |ist
representation developed in [3]. This structure allows a finger into
the list to be maintained such that all accesses in the nei ghborhood
of the finger are guaranteed to be efficient. The algorithms of [3]
can be extended to show that for the purposes of merging, the finger
can also be noved efficiently with each access, giving an 0(m log(n/m))
nmerging algorithm This list representation is very conplicated, however,

so the associated merging procedure is not "fast" in a practical sense.

24

Appendix. A Sail |Inplenentation.

The following is a Sail implementation of the fast balanced tree merging
algorithm . A complete description of the Sail programming language is given in
[8], but the reader who is familiar with AlgolW or Pascal should have little
difficulty understanding the Sail constructs used below. The following points
are worth noting:
1) A string constant preceding a statement is treated as a comment.
2) "The statement "DONE "blockName"' causes an exit from the loop on the block
named "blockName".
3) RECORD POINTER parameters are passed by value.
4) The logical operations a (and) and v (or) are executed conditionally when
evaluating an IF predicate, as in LISP but unlike Algol68. For example,
the construct 'a A ' means "IF « THEN B ELSE FALSE'.

RECORD-CLASS Node (RECORD-POINTER(Node) iLink!, rLink!; INTEGERB!; INTEGER Key!);
COMMENT
Format of tree nodes: pointers 1lLink and rlink to the left and right subtrees,
an integer key, and abalance factor which is the height of the right subtree
minus the height of the left subtree, i.e., .
B[pl = -1 & node p is unbalanced to the left (left subtree is taller),
B{p]l] = 8 & node p is balanced,
B[p] = +1& node p is unbalanced to the right.
We use the names 1leftTaller, balanced, and rightTaller respectively for these
values. The only relation between them which is significant to the program is
that leftTaller = -rightTaller.;

RECORD-CLASS ListHeader (RECORD-POINTER(Node) Root!; INTEGER Height!, Sizel);
COMMENT

Format of list header: pointer to the root of the balanced tree, plus an
integer giving the height of tree, and an integer giving the number of nodes in
the tree.;

COMMENT Abbreviations for Node and ListHeader fields;
DEFINE 1Link = {Node:1Link!};
DEFINE rLink = {Node:rLink!);

DEFINE B = {Node:B!};
DEFINE Key = {Node:Key!};
DEFINE Root = {ListHeader:Root!};

DEFINE Height = {ListHeader:Height!};
DEFINE Size = {ListHeader:Size!};

COMMENT Manifest constants;
DEFINE balanced = {8};
DEFINE leftTaller ={-1};
DEFINE rightTaller = {+1};
DEFINE maxDepth = (24);

25

PROCEDURE FastMerge(RECORD_POINTER(ListHeader) src, dst);

BEGIN "FastMerge"

COMMENT

The FastMerge procedure performs merging of sorted lists represented as balanced
binary trees. The two lists are passed to FastMerge by passing the two pointers
src and dst to their respective list header nodes: the src list is empty on
return from FastMerge, and the dst list contains the result of merging the two
lists.

The merging algorithm is best viewed as containing two relatively independent
processes, the dismantling process and the insertion process. (In fact, the
most natural program structure for the FastMerge procedure would use coroutines
for these processes.) The dismantling process operates on the smaller of the
two lists, which contains m nodes. It performs a symmetric-order traversal of
the binary tree representing this list, Jlopping off the nodes in order of
increasing key size, and supplies these nodes to the insertion process upon
demand. The dismantling process runs in 0(m) steps.

The insertion process inserts these nodes successively into their proper
position in the larger list, which contains n nodes. The details of the
insertion algorithm are complicated, but the idea is simple. The TFirst
insertion is performed using the normal tree search and insertion algorithm.
The subsequent 1insertions are not independent from one another, since the
insertions are done in increasing order. So the algorithm performs these
insertions by Tfirst searching upward from the site of the previous insertion for
the root of a subtre& which can be guaranteed to contain the node being
inserted. Then the insertion is completed by the usual procedure. The
insertion process runs in O(m log(n/m)) steps, so the running time of the entire
merging algorithm is also O(m log(n/m)).;

RECORD_POINTER(Node) ARRAY dStk[1:maxDepth]; INTEGER dPtr;

COMMENT
The dStk array is used as a stack, containing nodes not yet output during the
dismantling process, and the integer dPtr is 1its stack pointer. This

structure is used by the procedures InitDismantle and GetNext below.;

PROCEDURE InitDismant1e(RECORD_POINTER(ListHeader) Head);
BEGIN "InitDismantle"
COMMENT
This procedure initializes a “stream®™ which produces the nodes of the list
headed by Head. The nodes come from the stream in increasing order of Key
value, one node per call to GetNext. The list is destroyed in this process,
so InitDismantle sets all fields of Head to & null state.;
- IF Size[Head] = 8 THEN dPtr « 8
ELSE dStk[dPtr «1] « Root[Head];

Root[Head] « NULL-RECORD; Size[Head] « Height[Head] « O

END "InitDismantle";

RECORD _POINTER(Node) PROCEDURE GetNext;
BEGIN "GetNext"
COMMENT
A call to this procedure returns the next node in the list given to
InitDismantle, with 1lLink = rLink = NULL-RECORD and B = 8. If no nodes remain
in the list, the value NULL-RECORD is returned.;
RECORD-POINTER(Node) Nxt, Nxtl;
IF dPtr = 8 THEN RETURN(NULL_RECORD);
Nxt e« dStk[dPtr]; dPtr « dPtr-1;
WHILE TLink[Nxt] # NULL RECORD DO BEGIN
Nxtl « 1Link[Nxt]; 1Link[Nxt] ¢« NULL-RECORD;
dPtr « dPtr+l; dStk[dPtr] « Nxt;
Nxt « Nxtl
END;

26

IF rLink[Nxt] # NULL-RECORD THEN BEGIN
dPtr « dPtr+l; dStk[dPtr] « rLink[Nxt];
rLink[Nxt] + NULL-RECORD

END;

B[Nxt] « balanced;

RETURN(Nxt)

END "GetNext";

RECORD-POINTER(Node) ARRAY pathStk [1:maxDepth]; INTEGER pathPtr;
INTEGER ARRAY succStk [1:maxDepth]; INTEGER succPtr;

"Invariant ' PathProp’ :

The pathStk contains an initial segment of the path from the root of 1gLst
(as modified by the insertions so far from smist) to the position which some
node 2z (specified when this invariant is applied below) from smLst has, or
will have after an insertion, in lgLst.

The succStk contains the indices of all pathStk entries whose 1Links are
also in pathStk, i.e. all nodes on the path (excluding the last) which are
greater than the last node inserted."

PROCEDURE InitInsertion(RECORD_POINTER(ListHeader) Head);
BEGIN "InitInsertion"

COMMENT
This procedure initializes the insertion process on the 1ist headed by Head,

and sets all of the fields of Head to a null state.;
pathPtr « 1;_ pathStk[pathPtr] « Root[Head];
succPtr « 8;
Root[Head] « NULL-RECORD; Size[Head] . Height[Head] ~ 8
END "InitInsertion";

RECORD-POINTER(ListHeader) smLst, 1gLst;

RECORD-POINTER(Node) p, 9, r, s, t, X;
INTEGER m, n, ht, insCount, sPtr, a, k;

27

“"Initializations."”

IF Size[dst] 2 Size[src] THEN BEGIN lgLst « dst; smLst « src END

ELSE BEGIN smLst « dst; lgLst ¢« src END;
m « Size[smLst]; n + Size[1gLst]; ht « Height[lgLst];
InitDismantle(smLst); Initlnsertion(lgLst);

"The 1insertion process."

FOR insCount «1STEP 1 UNTIL m DO BEGIN "InsertLoop"
X « GetNext;
k « Key[x];

"Now X is the next node from smLst to be inserted into lgLst, with 1Link[x])=
rLink[x]J=NULL_RECORD, B[x])=balanced, and k=Key[x]. PathProp holds with z =
the previous node inserted into lgLst; on the first insertion PathProp does
not hold, but succStk is empty so UplLoop below is never executed. The
purpose of UpLoop is to make PathProp hold with 2z = x, by retracting the
path as little as possible toward the root."

WHILE succPtr # 8 DO BEGIN "UpLoop"
IF k < Key[pathStk[succStk[succPtr]]] THEN DONE "Upl.oop";
pathPtr « succStk[succPtr]; succPtr « succPtr-1

END "UpLoop";

p +« pathStk[pathPtr];

“"Now x and k are as before, and p is on top of pathStk. Also, PathProp
holds with z = x. The purpose of SearchLoop is to maintain this property
while extending the path to a leaf of lglst, and then to add x to 1gLst and
to the path.”

WHILE TRUE DO BEGIN "SearchlLoop"
IF k < Key[p] THEN BEGIN "Move left"
succPtr « succPtr+l; succStk[succPtr] « pathPtr;
q_« 1Link[p];
IF g = NULL-RECORD THEN BEGIN 1Link[p] + x; DONE "SearchLoop® END
END
ELSE BEGIN "Move right"
g _« rLink[p];
IF g = NULL-RECORD THEN BEGIN rlLink[p] « x; DONE "SearchLoop® END
END;
P «<q;
pathPtr « pathPtr+l; pathStk[pathPtr] « p
END "SearchlLoop";
pathPtr « pathPtr+l; pathStk[pathPtr] « x;

"Now PathProp holds with z = x, and in fact x is on top of pathStk. The
purpose of Adjustloop is to adjust all of the balance factors on the path
between x and s, which is defined to be the first unbalanced node on the
path-above x (the root if there are no unbalanced nodes on the path..)
AdjustLoop does not alter the path."

sPtr « pathPtr-1;

WHILE TRUE DO BEGIN "AdjustlLoop"
s + pathStk[sPtr];
IF B[s] # balanced v sPtr=l THEN DONE "AdjustLoop";
B[s] « (IF k < Key[s] THEN leftTaller ELSE rightTaller);
sPtr « sPtr-1

END "AdjustlLoop";

a « (IF k < Key[s] THEN leftTaller ELSE rightTaller);

28

"The purpose of the following is to maintain balance in the subtree rooted
at s. In two cases this is trivial, and the path is not affected. In the
third case rebalancing must take place, which invalidates a portion of the
path; this portion is discarded, and the root of the rebalanced subtree
becomes the final node on the path. Inany case, PathProp will still hold
with z = x."

IF B[s] = balanced THEN BEGIN
B[s] « a; ht ¢ ht+l
END
ELSE IFB[s] = -a THEN BEGIN
B[s] « balanced
END
ELSE BEGIN '"'Rebalance"
r « pathStk[sPtr+l J;
IFB[r] = a THEN BEGIN "SingleRotation"
p «r;
IF a = rightTaller THEN BEGIN rLink[s] « 1Link[r]; 1Link[r] + s END
ELSE BEGIN 1Link[s] + rLink[r J; rLink[r J « S END;
B[s] « B[r] « balanced;
END "SingleRotation®
ELSE BEGIN "DoubleRotation"
IF a = rightTaller THEN BEGIN
p « 1Link[r]; 1Link[r] « rLink[p]; rLink[p] *« r;
rLink[s] + 1Link[p]; 1Link[p] ¢ s

END
ELSE BEGIN,
p « rLink[r]; rLink[r] « 1Link[p]; 1Link[p] ¢ r;
TLink[s] + rLink[p]; rLink[p] + s
END;
B[s] « (IF B[p] = +a THEN -a ELSE balanced);
B[r] « (IF B[p] = -a THEN +a ELSE balanced);
B[p] « balanced;
END "DoubleRotation";
IF sPtr >1 THEN BEGIN
t « pathStk[sPtr-1];
IF s = rLink[t] THEN rLink[t] «p
ELSE 1Link[t]« p
END;
"Thest:ee is rebalanced; delete the invalidated section from pathStk and
succStk."
pathPtr « sPtr; pathStk[pathPtrJe« p;
WHILE succPtr>8 a succStk[succPtr]2pathPtr DO
succPtr « succPtr-1;
END "Rebalance';

“"Now PathProp holds with z = x."
END "InsertLoop" ;
‘Root[dst] « pathStk[1J; Height[dst] e+ ht;Size[dst]« m + n

END "FastMerge";

29

(1]

[2]

Ref er ences

Alfred V. aho, John E. Hopcroft, and Jeffrey D. Ullman, The Design
and Analysis of Conputer Al gorithns, Addison-Wesley, Reading, Mass.,

1974.
Cark A Crane, "Linear lists and priority queues as balanced binary

trees," Ph.D. thesis, Conputer Science Dept., Stanford University,
STAN- CS-72- 259, (February 1972), 131 pp.

Leo J. Guibas, Edward M McCreight, M chael F. Pl ass, and

Janet R Roberts, 'A new representation for linear lists,'
Proceedings of the Ninth Annual ACM Synposium on Theory of
Conputing, Boul der, Colorado, (1977),49-60.

Frank K. Haang and Shen Lin, "A sinple algorithm for nerging two
disjoint linearly ordered sets," sIaM J. Comput. 1, 1 (March 1972),
31-39.

Donal d E. Knuth, The Art of Conputer Programming, Vol. 3,Sorting
and Searching, Addison-Wsley, Reading, Mss., 1973.

Donald E. Knuth, "Structured programmi ng V\Athﬁg statenents,"
Conputing Surveys 6,4 (Decenmber 1974),261-301. ‘

Donald E. Knuth, "Big omicron and big onega and big theta,"

SI GACT News 8,2 (April 1976), 18-24.

John F. Reiser, ed., "SAIL," Stanford Conputer Science Departnent
Report STAN-CS-76-575, (August 1976), 173 pp.

Robert E Tarjan, "Reference nachines require non-linear tine to
maintain disjoint sets," Proceedings of the N nth Annual ACM
Symposi um on Theory of Conputing, Boul der, Colorado, (1977), 19-29.

30

al a2 cee am
® BN
b, b, .. . | v b
1 le ot oty
Figure 1. First conparison during a binary nerge.

31

%o
merged result
b er | &
BI
b b
k ot
(a)
AI
el m
merged result
b b ces b
1 2 ot
BI
b
ot
(b)
Figure 2. Qutcones after first part of a binary merge
(a) a; <b
(v) a, > b

32

Figure 3. Sorted lists represented as bal anced binary trees.

33

Figure 4, An exanple of merging by independent insertions

(square nodes have been inserted).

3L

Figure 5. |nserting an itemlarger than x .

(Subtrees are
| abel ed with the range of key values which may be

inserted.)

35

(a)

‘ r-A 1
& [l % 1PR+10 s =01 %
Lo Lad
" \,
A= g - rlg
I 1
—1 L ra*t
& By S| - '

Fi gure 6.

!
[

Insertion using the finger path.

36

37

4
r'>
I ‘ nm | T I
r.=" ;0
1 i T WA BRI ™) T R ™S B S 1 P
T] I 1 i
r-A r*1
k|l |Pxn1 'Y T A I N NS '
.-J L~
Figure 7. Retracting the path for rebal ancing.

Figure 8, A bad insertion.

38

——
]
L

w
(——-—D"._..._)
=

=g
+
—
e —

(a)

e
l S }T JO‘ p Y 8
b1l ’ J. 1U L-i

&—

—F—

(b)

Figure 9. Rebalancing after an insertion.
(a) Case 1. Sub-tree y contains inserted node x .
(b) Case 2. Either x = wand g and y gare emty,
Oor subtree Y contains x .

59

Figure 10. Subdivision of a balanced tree.

Lo

average running time to nerge lists
of sizes m and n, With nxn

Al gorithm F 15.0 m 1lg(n/m) + 118.5m + L43.5
Al gorithm | 11.2m 1g n + 88.3m + 21
Algorithm T 35.9(mtn) + 4m + 59.2
Algorithm L 10(m+n) + 4m + 32

Figure 11. Conparison of nethods.

41

1g(m)

16
14
12
10
Algorithm T >
g | » /
- 4 yd
Algorithm F
6
| //
Al gorithm |
2
2 L 6 8 10 12 14 16
1g(n)
Figure 12. Zones of best performance for bal anced tree merging
al gorit hns.

Lo

