
Stanford Artificial Intelligence Laboratory
Memo AIM-.30 1

June 1977

Computer Science Department
Report No. STAN-CS-77-624

Recent Research in Computer Science

bY

John McCarthy, Professor of Computer Science
Principal Investigator

Associate Investigators:
Thomas Binford, Research Associate in Computer Science
Cordell Green, Assistant Professor of Computer Science

David Luckham, Senior Research Associate in Computer Science
Zohar Manna, Research Associate in Computer Science

Terry Winograd, Assistant Professor of Computer Science

Edited by
Lester Earnest, Research Computer Scientist

Research sponsored by

Advanced Research Projects Agency

COMPUTER SCIENCE DEPARTMENT
Stanford University

Stanford Artificial Intelligence Laboratory
Memo AIM-30 1

June 1977

Computer Science Department
Report No. STAN-CS-77-624

Recent Research in Computer Science

bY

John McCarthy, Professor of Computer Science
Principal Investigator

Associate Investigators:
Thomas Binford, Research Associate in Computer Science
Cordell Green, Assistant Professor of Computer Science

David Luckham, Senior Research Associate in Computer Science
Zohar Manna, Research Associate in Computer Science

Terry Winograd, Assistant Professor of Computer Science

Edited by
Lester Earnest, Research Computer Scientist

ABSTRACT

This report summarizes recent accomplishments in six related areas: (1) basic AI research and
formal reasoning, (2) image understanding, (3) mathematical theory of computation, (4) program
verification, (5) natural language understanding, and (6) knowledge based programming.

This research zuas supported by the Advanced Research Projects Agency of the Department of
Defense under ARPA Order No. 2494, Contract MDA903-76-C-0206. The views and conclusions
co?jtai?zcd in this document are those of the author(s) and should not be interpreted as necessarily
representing the oficial policies, either expressed or implied, of Stanford University or any agency
of Zhe V. S. Government.

Reproduced in the U.S.A. Available from the National Technical information Service, Spring_field,
Virgini 22161.

TABLE OF CONTENTS

Section Page

1. Introduction

2. Basic Research in Artificial Intelligence
and Formal Reasoning 2

2.1 Formal reasoning related to AI
questions 2

2.2 Formal reasoning related to MTC
questions 2

2.3 A reas of work and specific
accomplishments 3

2.4 The FOL proof checker 4
2.5 References 5

3. Image Understanding 7
3.1 Achievements 7

3.1.1 Vehicle Location 7
3.1.2 Locating Buildings and

Change Monitoring 9
3.1.3 System Description 9

3.2 References 16

4.. Mathematical Theory of Computation 17
4.1 Motivation 17
4.2 The Goals 17
4.3 Current Research 18
4.4 References 22

5. Program Verification
5.1 Overview
5.2 The Stanford Interactive Verifier
5.3 Summary of Recent Work

5.3.1 Stanford Pascal Verifier
- 5.3.2 Applications of Verifiers

5.3.3 Operating Systems Verification
5.4 Proposal

5.4.1 Stanford Pascal Verifier
5.42 Verification Experiments
5.4.3 Design of a Concurrent

Programming Language and
Verifier

5.5 References

24
24
24
25
25
27
28
29
29
30

31
32

Section

6. Natural Language Understanding
6.1 Building the KRL-0 System

*. 6.2 Experiments using KRL-0
6.3 The Problems
6.4 Current Directions .
6.5 References

7. Knowledge Based Programming
7.1 Introduction
7.2 Research Objectives
7.3 A Sample Session with PSI
7.4
7.5

System Organization
Conclusions

7.6
7.7

Acknowledgements
References

Appendices

A. Theses

B. Film Reports

C. External Publications

D. Abstracts of Recent Reports

Page

34
36
38
46
54
57

59
59
60
61
64
72
72
72

74

38

80

88

1. Introduction

This report summarizes six related research
projects, with both basic and applied research
objectives.

0 Basic research in artipial intelligence and
formal reasoning addresses fundamental
problems in the representation of
knowledge and reasoning processes applied
to this knowledge. Solution of these
problems will make possible the
development of analytical applications of
computers with large and complex data
bases, where current systems can handle
only a very restricted set of data structures
and queries.

8 Image understanding is--aimed at
mechanizing visual perception of three-
dimensional objects either from
photographs or from passive imaging
sensors. Advances in this field are

. expected to lead to much more efficient
photointerpretation capabilities as well as
automatic visual guidance systems.

Q Mathematical theory of computation studies
the properties of computer programs and
digital logic. The goal is to provide a
sound theoretical basis for proving
correctness or equivalence of designs.

0 Program veri.ation is a closely related
- project whose goal is to improve the

reliability of important classes of programs
such as compilers, operating systems and
realtime control systems, and to
standardize techniques for program
construction, documentation and
main ten ante.

0 Natural Language Understanding research
is developing a knowledge representation
language (called KRL) that is expected to
support sophisticated systems and theories
of language understanding.

a new interactive approach to
programming in which the computer
assists the user in formulating the

. . specification of his problem and in
designing the procedures needed to solve
it.

Readers who wish to dig deeper should see
the references at the end of each section.
Appendices list dissertations, films, and other
recent reports as well as external publications
by the staff.

l Knowledge based programming is developing

2

2. Basic Research in Artificial Intelligence
and Formal Reasoning

Personnel: John McCarthy,
Richard Weyhrauch, Martin Davis,
Student Research Assistants:
Juan Bulnes, Robert Filman,
Robert Moore, Andrew Robinson,
David Wilkins.

The long range goals of work in basic AI and
formal reasoning are to make computers carry
out the reasoning required to solve problems.
We believe that our recent work has made it
substantially clearer how the more formal
approach to AI can be used not only i n
traditional AI areas but also applied to
proving programs correct and hardware
verification. This brings applications nearer
and has changed the direction of some of our
research.

The research we do is primarily technical in
. nature. When dealing with questions about

the basic adequacy o f systems of
representations of .data it is the technical
details that are most important. The next two
short sections describe the context in which we
view formal reasoning to be applicable. We
then will describe in detail our recent results.

2.1 Formal reasoning related to AI questions

We feel that for data bases to include many
a types of information that decision makers
really need will require major advances in
representation theory. In order for programs
to use this information effectively will also
require new modes of reasoning. Current data
base technology at best allows simple relations
to be represented - e.g. “Smith is the
supervisor of Jones.” Additions from current
AI techniques would allow simple
generalizations of relations (“Every employee
has a supervisor except the director.“), but this
leaves a tremendous range of representation
problems untreated:

1. Mental states - what a person believes,
knows, wants, fears, etc.

2. Modalities - what may happen, what must
happen, what ought to be done, what can
be done, etc.

3. Counterfactual conditionals - if something
were true what else would be the case.

4. Causality - how does one event follow
because of another.

5. Actions and their modifiers.
6. Self reference - how can I be aware of

myself and think about what I am
thinking.

None of these concepts can be satisfactorily
handled at present, and there are undoubtedly
other phenomena which are yet to be
discovered. What we are working on is an
integrated system in which these kinds of
notions can be represented.

2.2 Formal reasoning related to MTC
questions

Here we are interested in how to verify to
properties of computer programs. The
problem, as above, is that there are many
interesting questions about programs that
existing verification schemes were not designed
to answer. There are two main styles o f
program verification at present, the Hoare-
Floyd type, and the the approach of Dana
Scott, et al. Although both of these have
advantages, neither will comfortably treat the
range of problems below. Each example is
followed by a typical question we would like to
ask the verification system about the programs
and specification language it admits.

1. Parsing - is p a well formed program; is s
an acceptable specification?

2. Correctness - does a program, p, satisfy
some specification, s?

3. Equivalence - do two programs do the
same thing, i.e. meet the same specs?

4. Collections of programs - can we mention
set of programs which only contain
assignment statements.

5. Properties of such sets - can we state in
the language that equivalence of any two
of the above programs is decidable.

2.2 Formal reasoning related to MTC questions

6. Lemmas - can the system specialize the
above fact to specific programs?

7. Resources - how much storage does this
program use?

We believe that it is possible to handle these
questions in a unified system. Recent progress
in our ability to represent the correctness of
recursive programs in first order logic has
been very encouraging.

2.3 Areas of work and specific
accomplishments

The above remarks sets the context of our
work. It briefly relates some of the questions
we think are important. The sections below
give some details of the work we have actually
done together with some further remarks
about questions above.

Representing general facts

The most developed logical system which
deals with general facts is first order logic.
Statements like “For all programs . ..‘I are
represented by using quantifiers. But even
within first order logic, there are many
possible ways of representing a particular kind
of fact, and much further study is required.
The FOL system has the ability to enter these
general facts into its data base. A different
kind of general statement is about facts
themselves. For example, we want to be able
t6 say, “Unbelievable statements cannot be
true” or “The algorithm a, when applied to a
number, generates a true sentence”. The latter
example is what is usually called an axiom
schema. It is an example of a
metamathematical sentence. R. Weyhrauch is
interested in the problem of how to
incorporate general statements into deductions
and how to use metamathematics to reason
about these facts rather than with them. His
work has been primarily in designing and
integrating the specific code described below.

Knowledge and belief

The notion X thinks Y will soon know 2 ir not
.unusually complex when adversaries try to
outwit each other, but it presents problems for
machine representation that haven’t been
conclusively solved but on which we have
made recent progress. A good artificial
intelligence program must be able to prove or
conjecture it under appropriate circumstances
and it must be able to draw c o r r e c t
conclusions from it - and not draw incorrect
conclusions. The latter is the the more
immediate problem. Let us use a simpler
example. Suppose we have the sentences Pat
knows Mike’s telephone number and Mike’s
telephone number is the same as Mary’s, A
computerized deduction system that uses the
rule that equals may be substituted for equals
might conclude Pat knows Mary’s telephone
number. This is not a legitimate deduction,
even though it would be legitimate to deduce
that Pat dialed Mary’s telephone number from
the fact that he dialed Mike’s number and the
fact that the numbers are the same.

Recently McCarthy has discovered how to
represent such facts in unmodified first order
logic and the solution works no matter how
many mental qualities must be treated. The
work is described in (McCarthy 3977b) and
will be further developed in the next year and
a half.

Partial iriformatiorl

Robert Moore has found some new results on
representing partial information about
knowledge and belief. He has shown that
some of the “multiple data base“ approaches
of previous AI work cannot represent partial
knowledge - e.g. they cannot represent the
assertion that the Russians know how many
divisions the Chinese have, unless t h e
program knows this also, so it can include the
information in the data base representing the
Russians’ model of the world. Moore has
shown how this and related difficulties can be
avoided by talking not about beliefs

4 Basic Research in Artificial Intelligence and Formal Reasonillg

themselves, but rather the possible worlds in
which the beliefs are true or false. A very
elegant theory has been developed based on
this approach.

Minhal irlfererlce

It has long been recognized that standard logic
d o e s n o t represent the m a n y k i n d s o f
reasoning that p e o p l e use in forming
conjectures. This reasoning requires the
abihty to conjecture that the known facts
about a phenomenon are all the relevant facts.

J. McCarthy has recently found a partial
solution to this problem. An axiom schema of
first order logic called a minimization schema
can be used to represent in a flexible way the
conjecture that the entities that can be shown
to exist on the basis of the information in a
certain data base are all the relevant entities
that exist. The flexibility comes from the fact
that the set of information conjectured to be

*all t h e relevant information is readily
changed. Martin Davis has helped in the
mathematical formulation of this method.

Reasoning with observation

R. Filman has demonstrated that the chain of
reasoning involved in a complex chess
problem requires programs that observe a
chess board as well as perform deductions if
the solution is to be considered feasible. The

-point of his research was not to solve chess
problems, but to explore how the ability to
make direct observations of the world, in this
case a chessboard, can be interspersed with
deduction to better solve problems. A human
play& doesn’t usually prove that his king is in
check by reasoning from the rules. He simply
looks at the board and sees that the rook can
capture his king (or even more likely is that
me hear’s his opponent say check). The
abihty of a person to look at the real world is
facilitated by what we have called t h e
semantic attachment feature of FOL, which
was designed by R. Weyhrauch. Filman’s
experience with observational reasoning shows
that we still have only begun to understand it.

Facts about olle’s OWJI knowledge

For a system to explain how it arrived at its
conclusions it must be able to reason about its. . own program. This problem has two parts.
One is how to reason about programs, which
meshes with our interest in mathematical
theory of computation. The aspect directly
related to the formal reasoning project
involves the question of how can you write a
program that can reason about itself.
Weyhrauch has designed a system that has
some ability to reason about itself. It also can
reason some about what it knows. This is a
special but particularly tricky case of
reasoning about knowledge mentioned above.
This system requires several pieces of software
the implement which are presently being
coded.

Correctness of programs

One of the most important results is
McCarthy’s ideas for using axiom schemas to
embed parts of Scott’s style of doing program
verification in first order logic. This work is a
outgrowth of a thesis by Cartwright which
puts in usable form some of the earlier ideas
of Kleene. This work has made it possible for
us to prove the correctness and termination of
several programs and we hope to use these
ideas to develop this new style of verification.

2.4 The FOL proof checker

Our main software tool for making a
computer follow reasoning is a proof checker.
Ours is called FOL (for First Or&r Logic)
and checks proof in a system of first order
logic that has been enhanced in many ways.
We use this tool to formulate the facts
involved in an intellectual problem and check
that our representation is adequate to solve
the problem. As stated above the facts we are
studying are general facts about situations and
events and actions and goals, the effects of
actions that manipulate physical objects, and
the facts about sources of information such as
books, computer files, people and observation

-

2.4 The FOL proof checker

that are necessary in order for a program to
obtain the information required to solve
problems.

The building of FOL as a test ground for
theoretical ideas is one way we keep from
presenting ivory tower solutions to problems.
We actually use FOL to implement our ideas
about representation theory. We are
interested in theories whose details can
actually be realized as a computer program.
Over the past year FOL has been improved
in many ways.

It should be noted that three of the tasks
described below: the semantic attachment code,
the monadic predicate calculus decision
procedure and the syntactic simplifier were
each programming tasks %mparable in scope
to * lisp interpreters, and this represents an
enormous amount of work.

0 A decision procedure for the monadic
piedicate calculus has been added to FOL to
decide first-order statements about sorts.

0 Semantic attachment has been completely
rewritten and is now compatible with the full
many sorted logic of FOL.

8 A syntactic simplifier has been written.
This program allows a user to do the symbolic
evaluation various terms and well formed
formulas of FOL.

0 Several axiomatizations of set theory have
been expressed in FOL in order to study their
suitability for practical proof-checking. The
work with Kelly set theory is a kind of
bench&ark for this work.

0 The McCarthy-Painter compiler has been
proved correct in FOL.

0 FOL languages have been extended to
include conditional terms and function
parameters. Introduction and elimination
rules corresponding to these notions have been
added.

0 Two new rules for manipulating quantifiers
have been added to FOL.

t A new axiomatization of a theory of
knowledge suitable for implementation in
FOL haa been developed.

2.5 References

[Kelley 19551 John Kelley, General Topology,
D. van Nostrand Company, Inc., 1955.

[McCarthy 19591 John McCarthy, Programs
with Common Sense, Proc. ht. Conf. on
Mechanisation of Thought Processes,
Teddington, England, National Physical
Laboratory, 1959.

[McCarthy 19611 John McCarthy, A Basis for
a Mathematical Theory of Computatioa,
Proc, of the Western joint Computer Con&
New York, Spartan Books Inc., 1961,

[McCarthy 1963al John McCarthy, A Basis
for a Mathematical Theory of
Computation, in Braffort, P. and
Herschberg, D. (eds.), Computer
Programming and Formal Systems, North-
Holland, Amsterdam, 1963.

[McCarthy 1963bl John McCarthy, Towards
a Mathematical Science of Computation,
in Popplewell, C.M. (ed.), Information
processing: Proceedings of lFIP Congress
62, North Holland, Amsterdam, 1963.

[McCarthy 19641 John McCarthy, A Formal
Description of a Subset of ALGOL, in
Steel, T.B., Jr. (ed.), Formal Language
Description Languages for Computer
Programming, North Holland, Amsterdam,
1966.

[McCarthy 19651 John McCarthy, A Proof-
Checker for the Predicate Calculus,
Stanford AI Memo AIM-27, March 1965.

[McCarthy and Hayes 19691 John McCarthy
and Patrick Hayes, Some Philosophical

6 Basic Research it1 Artificial Intelligence rrrld Formal Reasmillg

Problem from the Stamdpoillt of
Artificial Intelligence, Stanford AI Memo
AIM-73, November 1968; also in D.
Michie (ed.), Machine Intelligence,
A merican Elsevier, New York, 1969.

[McCarthy and Painter 19671 John McCarthy
and James Painter, Correctness of a
Compiler for Arithmetic Expressions, in
Schwartz, J.T. (ed.), Proc. of a Symposium
in Applied Mathematics, Vol. 19 -
Mathematical Aspects of Computer Science,
American Mathematical Society,
Providence, Rhode Island, 1967.

[McCarthy 19771 First Order Theories of
Illdividual Concepts and Propositiom,
forthcoming.

[McCarthy 19’771 Mitlimal Infereme - A way
of jumpirlg to comlusions, forthcoming.

[Prawitz 19651 Dag Prawitz, Natural
Deduction, A lmqvist & Wiksell, Stockholm,
1965.

[Weyhrauch 19771 Proofs using FOL,
forthcoming.

7

3. Image Utlderstanding

Personnel: Thomas Binford, Student
Research Assistants: Reginald Arnold,
Donald Gennery.

The objective of this research in Image
Understanding is to build computer systems
which locate and monitor buildings, airfields,
aircraft and vehicles in aerial imagery. A
scientific objective is to accomplish these tasks
by building spatial structural models of
observed scenes, and matching spatial models,
as contrasted with image matching. This
approach is taken in order to lead to systems
which can use images taken from various
viewpoints, sun angles, weather conditions,
different sensors, and different seasons of the
year. --.

3.1 Achievements

This research has demonstrated high potential
for the use of passive ranging techniques for
high resolution depth measurement. Aircraft
flying at low altitude using terrain following
radar are endangered if ‘they use active
ranging, which broadcasts their presence.
Passive ranging has the advantage of
covertness in hostile environments.

Sequences of images from a moving aircraft
have been used to find the ground plane and
separate objects from ground. The accuracy
artained has been demonstrated to be 2”
height error for 3” horizontal pixel size on the
ground. The system should be effective with
camouflaged surfaces. On a general purpose
computer, the process requires about 8 seconds
with no guidance information. That can
likely be reduced at least a factor of 2. With
accurate guidance information, the time
required is estimated to be about 250
mrlliseconds (most missions probably fall in
this class). The system is self-calibrating and
highly reliable. Other groups in image
understanding have begun using these
algorithms and the code.

The system includes a promising solution to a
problem in terminal guidance, guiding a
vehicle to a target. This is solved by
determining the Observer Model. Imagine an
aircraft approaching a runway. As it moves,
objects on both sides appear to move radially
outward from a center, the fixed point. The
center is the instantaneous direction of motion.
The pilot knows that the point which does not
appear to move is where he will touch down,
unless he changes direction. The Observer
Model contains the information necessary to
calculate the distance of each point from the
observer and from the vehicle path. The
touchdown point can be calculated from the
trajectory of instantaneous directions of
motion. The system determines the transform
from one view to another in a sequence of
views from a moving observer.

3.1.1 Vefricle Location

The objective of this research is to locate cars
in an aerial stereo pair of a suburban scene,
using stereo. The goal was 80% recognition
with 20 hours of processing.

Status: the system successfully separates
vehicles from ground and has succeeded in
describing the projection of a car as a
rectangle of approximately the right size and
orientation. The length and width of the car
are accurate to about 5% in this example. The
system is very near to labeling objects as cars.
Cars have been isolated in both aerial and
ground level images. Both feature-based and
area-based depth mapping have achieved that
level of performance. Feature-based stereo is
based on edge fragments from the Hueckel
operator [Hueckell; a new technique of linking
edge fragments in depth has been developed.

A sequence of steps ending in description of a
car by the rectangular outline is shown in the
figures which follow. It is not yet possible to
estimate its recognition rate. The program
finds a coarse depth map and finds the ground
plane in about 8 seconds. Then it must make
a denser depth map for describing the car.

Image Understandihg

Figure 1. SegmeN of aerial photo

Figure 2. Features of Merest

9

No evaluation has been made of the time
required for making the denser depth map
and for describing and matching the car, but
a crude guess is that potentially about ten
seconds is required.

3.1.2 Locating Buildillgs ajld Change
Moliitoring

The same stereo techniques are being applied
to build models of buildings in aerial photos
of suburban scenes. Because buildings are
larger than cars and because they are more
likely to have plane sides and box-like
sections, the techniques are expected to work
even better than for cars. The programs have
been developed and preliminary results have
been obtained which support this expectation.--_

3.1.3 System Descriptioll

0 bserver Model

The program first orients itself in the scene
and finds an Observer Model, a model for the
transform between the two views. This step
takes 60% of the time required for finding the
ground plane. If two views are an accurately
calibrated stereo pair, this operation is not
necessary. If accurate guidance information is
available, this operation can be speeded up
enormously. In any case, this process makes
up for any inaccuracies in calibration,
maintains a continuous self-calibration, and in
the worst case, works even if no calibration or
guidance information is available. The
program finds a camera transform model by
finding-a sample of features of interest in one
image . and matching them with their
corresponding view in the other image. It
needs only to know pairs of corresponding
points in the two views; it does not need to
know where the points are.

The system automatically selects points of
interest. Figure 1 shows a portion of a stereo
pair of a parking lot. Figure 2 shows features
of interest selected by the program. The
Interest ODerator rea uires about 75

milliseconds for a 256x256 frame. Interesting
features are areas (typically 8x8) which can be
localized in two dimensions without a camera
transform. The operator chooses those areas
with large variance along all grid directions.
That is roughly equivalent to a large drop in
autocorrelation along all grid directions, which
means that the area can be localized closely.
Points on a line will match anywhere along
the line, which means that lines are not useful
features at this stage, but corners are useful.

PIX

Figure 3
Observer Modeling System

The correlator matches the features in the
other image by a coarse to fine strategy: It has
versions of the picture at resolutions. of
256~256,128~ 128,64x64, 32x32, and 16x 16.

Figure 4 shows the neighborhoods at each of
those resolutions, centered around a pair of
matching features in the stereo pair. It first
matches by a small search on a very coarse
version (16x16) of the image. It then
performs a search in the next finer version of
the image (32x32), in the neighborhood of the
best match in the previous image. That step
is repeated until the full resolution is reached.
The matching process requires only 50
milliseconds for a match of a single feature no
matter where it is in the image.

10 Image Understanding

Figure 4. Neighborhoods at various resolutiom

Figure 5. Ground plane estimates

11

Once the camera transform is known, search is
necessary only along a line in the image. In
this case, search is about a factor of seven
faster. If the depth of neighboring points is
used as a starting point for the search, the
match is another factor of seven faster. It is
planned to incorporate those speedups; neither
is now used. The matcher makes about 10%
errors. Both the camera transform solver and
the ground surface solver reject the points
with erroneous matches. It encounters fewer
ambiguities than brute force matching, since
not only must the feature match, but the
surrounding context must also match. The
procedure should not work for parts of scenes
where the background of objects (context)
changes drastically from one view to another.
This is true only in parts of images at wide
angles and close range. This is also a problem
for matching images from very different
sensors. The problem will be less important
where guidance information is available, since
matching breaks down at the coarse phase of
coarse-to-fine matching.

Aerial views are mostly planar, so failure of
matching should not be a problem, nor has it
been in practice. The process requires about
50k of 36 bit words now. It is possible to
implement the coarse-to-fine search strategy in
a raster scan and keep only a portion of each
image in core. This would cut memory size by
a large amount, but it has not been done. A
version is being designed using this strategy.

The program automatically determines the
transform between the twb views. Given
corresponding views of five points which are
non-degenerate (i.e. no colinear and planar
degetieracies) the relative transform of the two
views can be found. It is not’ necessary to
know the position of these points, only two
views that correspond. The transform is
determined except for a scale factor, the length
of the stereo baseline. That does not affect
subsequent matching of two views using the
transform, and the scale factor can often be
determined from known scene distances or
guidance information.

If the scene is nearly flat, then certain
parameters are ill-determined. However, that
does not affect the accuracy of measuring
heights using the transform. If the scene is
nearly flat, then a special simplified form of
the solver can be used. The special case
version has been used on some images. It is
much faster than the full transform solver. In
the present form of the camera transform
solver, it sometimes encounters stability
problems in degenerate cases. It will be
investigated to examine when it is limited by
data, in which case more data are required,
and when it is subject to difficulties in the
numerical solution.

Part of the job of the transform solver is to
deal with mistaken matches. The procedure
calculates an error matrix for each point and
iterates by throwing out wild points. It
calculates an error matrix from which errors
in depths of point pairs are calculated. The
solver. uses typically 12 points and requires
about 300 milliseconds per point. It requires
about 20k of memory. About 601. of the time
for finding the ground plane is spent in the
camera solver.

With accurate guidance information, this
operation would not be necessary. However, it
can be used directly to find the instantaneous
direction of the vehicle. As mentioned above,
as the vehicle moves, points in the image
appear to move radially away from the center
which is the instantaneous direction of the
vehicle. Three angles relate the coordinate
system of one view with the other, and two
angles specify the direction of the
instantaneous direction of motion.

Ground Plane

The approach to discriminating objects is to
find the local ground surface and then
describe objects above the ground. Finding
the ground requires a more dense depth
sample. The camera transform model makes
it economical to make a denser depth map. A
point in one view corresponds to a ray in

12 Image Understanding

space which corresponds to a line in the other
view. The search is limited to this line, and
in addition, nearby points usually have about
the same disparity as their neighbors. Thus,
search is limited to a small interval on a line.
A high resolution correlator has been
developed which interpolates to the best
match, and which calculates the precision of
the match based on statistics of the area.

The system then finds a best ground plane or
ground parabola to the depth points, in the
least squares sense. Figure 5 shows the
distribution of points and the best ground
plane fit for the parking lot scene of figure 1.
The ground surface finder gives no weight to
points above the ground plane; it expects
many of those. It includes points below the
ground plane and near. the ground plane.
Since points below the ground plane may be
wild points, they are edited out in an iterative
procedure. Of course, there may be holes. If
they are small, there is no problem. If the
hole is big, it becomes the ground plane. The
ground plane finder requires 5 milliseconds
per point.

Edge-Based Stereo

Feature-based stereo using edges is interesting,
since it increases the accuracy with which
boundaries of depth discontinuities can be
found by about a factor of 25. That accuracy
allows making accurate measurements of
dimensions of objects, an important part of
our approach. It also provides additional
information about surface markings which are
not available in stereo based on area
correlation. Feature-based stereo is also
potentially very fast, although now area-based
techniques are considerably faster. Edge-
based techniques have not been developed
very far, and would benefit from “smart
sensor” technology. Figure 6 shows the images
from the parking lot scene transformed into
the canonical stereo coordinate system, with
stereo axis along the x axis. Figure 7 shows
edges from the Hueckel operator [Hueckel] in
the stereo coordinate system.

A new technique has been developed to use
edge features in stereo. Edges are linked
along smooth curves in 3d (in the image
coordinates and in depth). The new technique
is used in the object modeling and recognition
modules of the system. Those edges out of the
ground plane delimit bodies, if isolated.
Figure 8 shows linked edges superimposed on
one picture from the pair of images. The left
image shows edges near the ground. The
right image shows edges above ground level.
A vertical rectangular parallelepiped fit to
edges gives approximately the right size and
direction for car examples. A first crude
identification of cars is near. Figure 9 shows
the rectangle superimposed on one of the
images.

The photos were taken with a wide angle lens
at an altitude of about 1500 feet and about
1500 feet apart. They subtend an angle of
about sixty degrees. Several areas were
digitized to resolutions of about 3” on the
ground (courtesy the Image Processing
Laboratory, USC). TV images from a
parking lot were also used as examples of
ground level images.

The limiting accuracy obtainable from a pair
of images can be calculated accurately.
Consider the vector connecting the two camera
centers. Its length will be called b. The angle
from this baseline to a point p will be called a.
The angle shift of the two views on the unit
sphere of the viewer is the same as the angle
subtended by the baseline from the point p.
That angle is:

theta - b*sin(a)/s.
Here s is the distance of p from the observer.
Solve for s:

s = b*sin(a)ltheta.
The distance of p from the instantaneous
direction of motion is the target error, t.

t=s*sin(a).
The error in the range has two components.
The first is a global scale error from errors in
b. This affects all distances in the same way.
The other is the error in angle measurements.

13

Figure 6. Stereo pair

Figure 7, Edges from Hueckel operator

14 Image Understanding

Figure 8. Linked edges near ground (left) and above ground (right).

Figure 9. Rectangular parallelepiped fit

Relative distances can be determined to the
accuracy with which angles can be measured.
Relative distance errors are thus determined
by dtheta. Differentiate the above equation
for s and substitute for theta:

ds = -(b>icsin(a)/thetatZ)*dtheta
ds = -(sW/(b*sin(a))*dtheta.

The range error thus increases as the square
of s. Consider:

dsls= dthetaltheta.
Relative ranging error is constant for constant
theta. In the case of the above photos, this
corresponds to errors of about l/2 pixel in
registration. Previous experience has been
about a factor of 3 better than that.

Image Matching System

A system has been built %hich assists a user to
program image matching tasks in about 20
minutes [Belles]. The system is effective for
tasks for which test images are nearly the
same as training images; i.e. for which
i%atching can be done in the image. It is more
general than 2d since objects and features can
move relative to one another. It has shape
matching capability, but strictly 2d. It has no
3d models and only point features.

The system suggests features to the user, who
chooses among them. Features are chosen by
the Interest Operator, mentioned above. The
system evaluates the expected cost and utility
of each operator. Utility is defined as the
c-ontribution to the probability of a decision or
as the contribution to positional accuracy. At
training time, the system gathers statistics
about the effectiveness of the operators. At
planning time, it ranks operators according to
their expected utility and estimates the total
cost of the task by a simple best first strategy.
At execution time, the system applies operators
in a pre-ordered sequence, combines their
results by least squares into confidence and
precision, and stops when it reaches a desired
confidence or positional accuracy or when it
exceeds its cost limit.

system was implemented. That system
provided the user with a way to reference all
pictures which covered a specified area. That

-picture retrieval system could be used with
depth maps and other feature descriptors.
This would make possible picture retrieval on
con tent and location.

There has been progress in other areas. New
results have been obtained in quantifying
behavior of the Hueckel operator: an
automatic determination has been obtained of
sensor noise for sensors with square-root noise
characteristic (USC digitizer); a sensitivity
analysis has been performed for line features;
theoretical estimates for errors in position and
angle have been made which are in agreement
with experimental error distributions; a
degeneracy has been found in the edge
solution. An improved program to link edges
has been implemented. It is not yet operating
adequately. However, a stereo version,
described above, is operating. That version
links edge fragments by both colinearity and
depth continuity.

A previous achievement of the program was
the formulation of the “generalized
translational invariance” representation for
complex volume shapes [Binford]. That
representation and a laser triangulation system
developed here were part of a research
program which led to recognition of a doll, a
toy horse, and objects of similar complexity
[Agin], [Nevatial. Now, the representation is
being widely accepted. Marr has 0btaine.d an
interesting result that the most reasonable
simple assumptions about interpretation of 2d
boundaries as 3d objects are equivalent to
interpretation in terms of “generalized cones”
[Marrl.

Previously, an automated picture retrieval

16 Image Understanding

3.2 References

[Agin] G.J.Agin and T.O.Binford;
Representation and Description of
Curved Objects; IEEE Transactions on
Computers; Vol C-25, 440, April 1976;

[Binford] T.O.Binford; Visual Perceptiorl by
Con1 pu ters; Invited Paper IEEE Systems
Science and Cybernetics; Miami Fla; Dee
1971.

[Bollesl R.C.Bolles; Verificatioll Vision;
submitted to 5th IJCAI, Boston, 1977;

[Gennery] D.B.Gennery; A Stereo Vision
System for Autonomous Vehicles;
submitted to 5th IJCAI, 1977;

[Hue&e11 M.H. Hueckel, A Local Visual
Operator which Recognizes Edges and
Lines, J. ACM, October 1973.

. [IV- 11, T.O.Binford; Presentation to first
Image Understanding Workshop; USC;
April 19’76;

[IU-21, T.O.Binford; Presentation to second
Image Understanding Workshop; Univ of
Md; October 1976;

[Mar-r-l, D.Marr; Analysis of Occluding
Contour; MIT AI Memo 372; October
1976;

[Nevatial R.Nevatia and T.O.Binford;
Structured Descriptiolls of Complex
0 b jects; Artificial Intelligence forthcoming;

- and Proc 3rd Int Joint Conf on AI (1973).

[Shortliffe], E.H.Shortliffe, R-Davis,
S.C.Axline, B.G.Buchanan, CCCreen,
and S.N.Cohen; Computer-Based
Consultatiolls in Clinical Therapeutics:
Explanation and Rule Acquisition
Capabilities of the MYCIN system,;
Computers and Biomedical Research,
Volume 8, June 1975;

4. Mathematical Theory of Computation

Unified Framework for Program Verification

Personnel: Zohar Manna, John McCarthy,
Student Research Assistants: Martin
Brooks, Nachum Dershowitz, Chris
Goad, Todd Wagner.

4.1 Motivation

In the past decade there has been intense
research into the problem of proving the
correctness of computer programs. As a result,
a variety of different program verification
techniques have appeared. These methods
have different realms of application: some
show partial correctness and others s h o w
termination, total corrcdilcss or equivalence;
some apply to recursive and others to iterative
programs; some apply to the program itself,
but others require that the program b e
documented or altered.

Here are some of the principle program
verification methods and their applications:

0 Invariant-assertion method: partial
correctness of iterative programs
(Floyd[19673, Hoarel19691)

@ Well-founded ordering met3od: termination
of iterative programs (Floydr 19671)

6 Structural-induction method total
correctness and equivalence of recursive
programs (BurstallE 19691)

0 Subgoal-assertion method: partial correctness
of iterative and recursive programs
(MannaLl9711, Morris and
Wegbreit[19771)

l Counters method: termination of iterative
programs (Elspas et a1.[19731, Katz and
Manna[19751)

43 Intermittent-assertion method: total
correctness of iterative programs

(Burstall[19741, Manna and
Waldinger[19761).

“Most current verification systems employ only
the invariant-assertion method for proving
partial correctness and the counters method
for proving termination, even though for some
situations another of the techniques may be
decidedly superior. For instance, these two
techniques cannot be applied to verify certain
classes of programs, such as recursive
programs, or to prove certain properties, such
as the equivalence of two programs.
Furthermore, for some verification problems
another of the techniques may yield
significantly simpler proofs than those - .
required by the two most commonly used
methods.

Most verification methods require some form
of documentation, in which the user expresses
his intuition about how he expects the
program to work. However, different
techniques require very different sorts of
documentation; that which is most natural and
easy to provide varies in form from program
to program.

4.2 The Coals

We are therefore conducting an investigation
with the following goals.

(A) Comparing methods:

0 We hope to discover which methods are
equivalent in power and which methods are
strictly stronger than others, and to determine
situations in which a given method may yield
simpler proofs than another.

l We want to compare the documentation
requirements of the different methods in a
rigorous way. Ideally, we wish the user of a
verification system to be able to document his
intuitions in whatever way he finds most
convenient, and have the system select the
technique that best matches the program and

18 Ma~hcmatical Theory of Computatforl

documentation supplied and the property to
be proved.

4.3 Current Research

Unified Framework
(B) Strengthening methods:

@ We need to make the existing methods less
dependent on the documentation supplied by
the user. Thus, we will devise new ways of
generating documentation automatically, and
of altering and extending the documentation
supplied by the user.

0 We would like to extend the realm of
application of some of the methods, e.g. find
how to apply the intermittent-assertion
method to show the equivalence of two
iterative programs or the correctness of
nondeterministic or parallel programs.

--
@ We hope to develop more general
techniques that will be able to draw on the
advantages of all the existing techniques, and
compensate for weaknesses in the existing
methodology.

(C) Finding new applications:

We intend to apply methods devised for
program verification to other problems such
as:

0 Development: constructing a program to
meet given specifications.

0 Transformation: altering a given program to
compute the same output in a different way,
generally in order to optimize the program.

@ Modifiation: altering a given program to
debug it, to adapt it to meet r ev i sed
specifications, or to extend its capabilities.

A unified survey of verification techniques
and various applications appears in Manna
and Waldinger [July 19771.

In his Stanford PhD thesis, supported by this
project, Robert Cartwrightll9771 proposed a
way of representing the functional equation of
a Lisp program entirely within first order
logic. Using this and some earlier results,
McCarthy El9771 showed that Lisp and other
recursive programs can be completely
characterized within first order logic by the
functional equation and a minimization axiom
schema. It had been previously thought that
such characterization required second order
logic which is much more difficult to compute
with. McCarthy further showed that the well
known proof methods of invariant assertions
and subgoal assertions were expressible as
axiom schemata in first order logic. This
unexpected result makes all first order methods
of verification and proof-checking more
valuable than expected, and it also permits
postponing the expression of the full Scott
fixed-point theory in first order logic.

John McCarthy plans to exploit this
breakthrough by verifying more complex
programs directly within first order logic.
Because the breakthrough is very new
(February 1977), it is not possible to say how
far the new methods will go and whether it
will still be necessary to develop the
extensional form theory. Most likely, the
extensional form theory will still be needed,
but we will be able to distinguish programs of
simple structure that don’t require it for their
verification.

.

Wolfgang Polak has an indication that the
subgoal-assertion method ’ exactly
McCarthy’s minimization schema’Sextended to
relations. If this is true, the list of methods
for inductively proving programs correct will
be greatly shortened by showing that most of
the existing methods are subcases of more
general methods. This will make it much
easier to write verifying programs, both the
automatic kind and those that use human
help.

-

I

4.3 Current Research 19

McCarthy has investigated continuous
functionals that don’t arise from simple
recursive programs. Some of them require
parallel evaluation, and the work may lead to
a treatment of program correctness that unifies
parallel programs wirh the more u s u a l
sequential programs.

Program Annotation

Zohar Manna is investigating techniques by
which an Algol-like program, given together
with its input-output specifications, may be
documented automatically, This
documentation expresses invariant
relationships that hold between program
variables at intermediate points in t h e
program, and explains the acutal workings of
t h e p r o g r a m regardlesS. of whether t h e
program is correct. Thus this documentation
can be used for proving the correctness of the
program, or may serve as an aid in the
debugging of an incorrect program.

He recently succeeded in unifying existing
approaches to this problem, and improving
most of the known methods. The techniques
are expressed as rules which derive invariants
from the assignment statements and from the
control structure of the program, and as
heuristics which propose relationships whose
invariance must be verified. The
implementation of this system is in progress.

Results along this line have beein reported in
Katz and Manna L19761 and Dershowitz and
Manna [19771.

Program Modification

Nachum Dershowitz (graduate student) is
attempting to formulate techniques of program
modification whereby a program that achieves
one result can be transformed into a new
program that uses the same principles to
achieve a different goal. For example, a
program that uses the binary search paradigm
to calculate the square-root of a number may
be modified to divide two numbers in a
similar manner, or vice versa.

The essence of the approach lies in the ability
to formulate an an&loo between two sets of
specifications, those of a program that has
already been constructed and those of the
program that we desire to construct. The
analogy is then used as the basis for
transforming the existing program to meet the
new specifications.

Program debugging is considered as an
important special case of program
modification: the properties of an incorrect
program are compared with the specifications,
and a modification (correction) sought that
transforms the incorrect program into a correct
one.

This approach has been embedded in an
experimental implementation and appears in
Dcrshowitz and Manna [19761.

Program SyJlthesis

Manna and Waldinger are developing
deductive techniqes f o r t h e a u t o m a t i c
construction of recursive programs to meet
given input-output specifications. These
specifications express what conditions the
output of the desired program is expected to
satisfy. The deductive techniques involve
transforming the specifications by a collection
of rules, summoned by pattern-directed
function invocation. Some of these
transformation rules express the semantics of
the subject domain; others represent more
general programming techniques. The rules
that introduce conditional expressions and
recursive calls into the program are being
investigated in detail.

The deductive techniques were embedded in a
running system called SYNSYS. This system
accepts specifications expressed in high-level
descriptive language a n dattempts to
transform them into a corresponding LISP
program. The transformation rules are
expressed in *the QLISP programming
language. The synthesis of several programs
performed by the system are presented in
Manna and Waldinger [Aug. 19771.

20 Mathematical Theory of Computation

The Illtermittent-Assertion Method

Zohar Manna explored a new technique for
proving the correctness and termination of
programs simultaneously. This approach,
which he calls the intermittent-assertion
method, involves documenting the program
with assertions that must be true at some time
when control e passes through the
corresponding point, but that need not be true
every time. The method, introduced by
Burstall [19741, promises to provide a
valuable complement to the more conventional
methods.

on all the examples attempted, the
intermittent-assertion proofs turned out to be
simpler than their conventional counterparts.
On the other hand, he showed that a proof of
correctness or termination by any of the
conventional techniques can be rephrased
directly as a proof using intermittent-
assertions. The intermittent-assertin method
can also be applied to prove the validity of
program transformations and the correctness
of continuously operating programs.

This work is described in a recent paper by
Manna and Waldinger [19761. Manna and
W aldinger believe that the intermittent-
assertion method will have practical impact
because it often allows one to incorporate his
intuitive understanding about the’ way a
program works directly into a proof of its
correctness.

prove that the set of interconnected
components correctly satisfy the specifications
for the overall system.

The process of hardware verification uses the
basic boolean identities derived from
switching theory along with some techniques
for determining the possible effects of clock
transitions as they move through a circuit.
Methods for detecting timing anomalies such
as races, hazards, and oscillations have also
been studied.

A major goal of this research is to be able
deal with fairly complex large scale integrated
components without having to reduce their
descriptions to the gate level. For example, if
a designer requires several complex operations
and uses a microprocessor in his circuit, it
should only be necessary to demonstrate that
the required operations are included in the
microprocessor instruction set and that the
timing and control logic are correct. Current
methods would require a gate level model of
the microprocessor and fairly exhaustive
simulation. As components become more
complex it will become increasingly
advantageous to prove circuit correctness
algebraically and at a fairly high level.

Preliminary results were presented at the
Symposium on Design Automation and
Microprocessors (Palo Alto, Ca., February
1977).

Automatic Debugging
Hardware Verificatiorl

The research of Todd Wagner (graduate
student) involves developing methods for
detecting logical errors in hardware designs
using symbolic manipulation techniques
instead of simulation. A very simple register
transfer language has been proposed which
can be used to specify the desired behaviour
of a digital system. The same language can
also be used to describe the individual
components used in the design. A series of
logical transformations can then be used to

Martin Brooks (graduate student) is currently
developing methods for specifying and
analyzing LISP programs, considering both
the theoretical and practical aspects. One goal
of this research is the design and
implementation of an automatic LISP
debugging system.

The automatic debugger is initially supplied
with an undebugged program. The system
then analyzes the program by symbolic
evaluation and automatically generates a

c 4.3 Current Research 21

sufficient fPlite set of test inputs for which the
user supplies the intended outputs. The system
extracts the structure of the undebugged
program and then use the input-output pairs
to fill out the missing details, yielding a new
debugged program.

The main advantage of this approach is that
it does not require the user to give a formal
specification, usually a difficult and error-
prone task.

The emphasis of Brooks’ research will be to
develop a general theory for finding a finite set
of input-output pairs which represent a
complete specification of a program, depending
on the structure of the program.

Generalizing--Proofs

Reasoning by example is a technique
frequently used in human problem solving.
For this reasonif one regards automatic
theorem proving as a mechanical incarnation
of human problem solving, the topic of the
automatic generalization of proofs from
special cases is important. Even if one has no
faith in analogies between theorem provers
and people, this topic has practical interest
since generalizing proofs is likely to be a
practically important tool in theorem proving.
The effectiveness of a mechanical procedure
for generalizing proofs depends on the degree
to- which it takes advantage of such systematic
relationship as may exist between proofs of
instances of theorems and proofs of the
theorems themselves.

Chris IGoad (graduate student) is currently
working on a class of technical questions
which are relevant to understanding this
relationship. These technical questions arise
from looking at pairs of formal systems, such
that one system is a weak subsystem of the
other. Specifically, let T and T’ be two such
systems, where T’ is a weak subsystem of T,
that is to say, every proposition provable in T’
is also provable in T, but not the other way
around. The idea here is that T’ be a system

within which proofs can be mechanically
found ,with comparative ease, and T is a more
general system whose theorems we wish to
reduce by instantiation to theorems in T’.
Then we may ask for (1) conditions under
which the instances of a theorem in T are
provable within T’, and (2) a uniform method
for obtaining proofs in T’ of instances of a
theorem in T from a proof of the theorem in
T.

Goad has obtained solutions to the problems
posed above for arithmetic and one of its
weak subsystems,
arithmetic.

namely “proposition al”
By “propositional” arithmetic is

meant, roughly, the subtheory whose formulas
contain no unbounded quantifiers (so each
formula only concerns a finite collection of
numbers), and where the proofs involve only
“propositional” methods (e.g. induction is not
allowed). The plan for future work includes
the extension of the results on arithmetic, and
the study of the same type of problem for
other theories of inductively constructed ’
objects, such as the theory of lists. An
ultimate goal of this reasearch is the
application of these results to program
synthesis. That such applications exist is
apparent, since mechanical methods are
known for extracting programs from
constructive proofs of the existence of the
functions they compute. Thus any method for
generalizing proofs extends immediately to a
method for generalizing programs.

Fixedpoint Theory

The classical method for constructing the least
fixedpoint of a recursive definition is to
generate a sequence of functions whose initial
element is the totally undefined function and
which converges to the desired least
fixedpoint. This method, due to Kleene,
cannot be generalized to allow the construction
of other fixedpoin ts.

Manna and Shami r [1997] have been
investigating an alternate definition of
convergence and a new “fixedpoint access”

22 Mathematical Theory of Computation

method of generating sequences of functions
for a given recursive definition. The initial
function of the sequence can be an arbitrary
function, and the sequence will always
converge to a fixedpoint that is “close” to the
initial function. This defines a monotonic
mapping from the set of partial functions onto
the set of all fixedpoints of the given recursive
definition.

They have also suggested a new approach
which replaces the classical least fixedpoint
with an “optimal” fixedpoint. An informal
exposition of this approach appears in Manna
and Shamir [19751 and a formal presentation
in Manna and Shamir [1976].

4.4 References

I Burstall, R. M. [Feb. 19691, Proving
properties of programs by structural
induction, Computing J., Vol. 12, No. 1,

. pp. 4 1 - 4 8 .

2 Burstall, R. M. [Aug. 19741, Program
proving as hand simulation with a little
induction, Information Processing 1974,
North Holland, Amsterdam, pp. 308-312.

3 Cartwright, Robert [Jan. 19771, A practical
formal semantic defozition system for typed
Lisp, Ph.D. Thesis, Stanford University,
Stanford, Ca.

4 Dershowitz N. and 2. Manna [Dec. 19761,
The evolution of programs: automatic
program modi,fcation, IEEE Software
Engineering (to appear).

S Dekhowitz, N. and 2. Manna [July 19771,
Derivation rules for program annotation,
Acta Informatica (submitted).

G Elspas, B., K. N. Levitt and R. J. Waldinger
[Sept. 19731, An interactive system for the
verijzation of computer programs, technical
report, Stanford Research Institute, Menlo
Park, Ca.

7 Floyd, R. W. 5 19671, Assigning meaning to
programs, Proc, Symp. in Applied
Mathematics, Vol. 19 (JAY Schwartz, cd.),. . American Mathematical Society,
Providence, R. I., pp. 19-32.

8 Katz, S. M. and 2. Manna [19751, A closer
look at termination, Acta Informatica, Vol.
5, No. 4, pp. 333-352.

9 Katz, S. M. and 2. Manna [Apr. 19761,
Logical analysis of programs, CACM, Vol.
19, No. 4, pp. 188-206.

10 Hoare, C. A. R. [Oct. 19691, An axiomatic
basis of computer programming, CACM,
Vol. 12, No. 10, pp. 576-580, 583.

II Manna, 2. [June 19711, Mathematical theory
of partial correctness, JCSS, Vol. 5, No. 3,
pp. 239-253.

12 Manna, 2. and A. Shamir [Dec. 19751, A
new approach to recursive programs,
CACM (to appear).

13 Manna, 2. and A. Shamir [Sept. 19761 The
theoretical aspects of the optimal jixedpoint,
SIAM Journal of Computing, Vol. 5, No.
3, pp. 4 14-426.

14 Manna, Z. and A. Shamir [May 19771, The
convergence of functions to firedpoints of
recursive dejhitions, Theoretical Computer
Science (submitted).

25 Manna, 2. and R. Waldinger [Oct. 19761,
Is ‘sometime’ sometimes better than ‘always’?
intermittent assertions in proving program
correctness, CACM (to appear).

lb Manna, 2. and R. Waldinger [July 19771,
The logic of computer programming,
Computing Surveys (to appear).

17 Manna, 2. and R. Waldinger [Aug. 19771,
The automatic synthests of recursive
programs, Fifth Intl. Joint Conf. on
Artificial Intelligence, Cambridge, Ma.

* 4.4 References

. IS McCarthy, J. [Feb. 19771, Representation of
recursive programs in jirst order logic, draft
of a technical report, Artificial Intelligence
Lab., Stanford University. . .

19 Morris, J. H. and B. Wegbreit [19761,
Subgoal induction, CACM (to appear).

23

24

5. Program Verification

Persormel: David C. Luckham,
Derek C. Oppen, Student Research
Assistmts: R.A. Karp, S. German,
W. Scherlis, R. Drysdale, C.G. Nelson,
W. Polak.

5.1 Overview

The work of the Verification Group is
directed towards the development of new
programming tools and techniques. Our goal
is to improve the reliability of important
classes of programs such as compilers,
operating systems and realtime control systems,
and to standardize techniques for program
construction, documentation and maintenance.

Our major effort is in three research areas:

A. Design and implementation of on-line
interactive program verifiers.

B. Applications of verifiers in the design,
documentation, debugging and
maintenance of programs.

C. Design of a high level specification and
programming language for implementing
and verifying multiprocessing and realtime
systems.

Within each of these three main research
areas we have pursued specific tasks as
follows.
A. 1 Specification and implementation of an

extended parser and verification condition
generator for the verifier.

A.2 Design and implementation af fast, special
purpose theorem provers to improve the
capability of verifiers.

A.3 Design and implementation of a user-
oriented interface to the verifier. This
includes specification languages for
programs and documentation, and a
command language for the verifier.

A .4 Development of special-purpose verifiers
for completely automatic detection of
common runtime errors in some programs.

B.l Standardization of techniques for
documenting and verifying important
clasoes of programs, based on our
experience in verifying these classes of
programs.

B.2 Extension of the use of verifiers to the
design, documentation, debugging and
maintenance of programs.

C.1 Specification and verification of
components of the Solo operating system.

5.2 The Stanford Interactive Verifier

The Stanford Interactive Verifier is a
verification system for proving properties of
programs written in Pascal. The verifier
accepts as input a documented Pascal
program, and tries to prove either
automatically or with interactive guidance that
the program satisfies its documentation. The
choice of Pascal is not crucial and the verifier
can be changed to accept programs written in
other “Algol-like” languages.

The verifier constructs its proofs within the
Floyd-Hoare logic of programs. It requires as
input a Pascal program together with
documentation in the form of Entry and Exit
assertions and inductive assertions at crucial
points in the program. Fig. 1 shows what
happens when the programmer gives this
input to the verifier. The input goes first to a
verification condition generator which gives as
output a set of purely logical conditions called
Verification Conditions (VC’s). There is a
VC for each path in the program. If all of
the VC’s can be proved, the program satisfies
its specification. The next step is to try to
prove the VC’s using various simplification
and proof methods. Those VC’s that are not
proved are displayed for analysis by the
programmer. If the VC’s are incorrect, this
may reveal a bug in the program or
insufficient documentation at some point. A
modification is made to the input and the
problem is rerun. If the unproven VC’s are
all correct this merely indicates that the proof
procedures need more mathematical facts
(called lemmas). The time for a complete cycle

5.2 The Stanford Interactive Verifier 25

(Fig. 1) in the AI Lab. interactive computing
environment is on the order of a minute for a
one page program.

Lemma8
(proof ru I es)

Input i-1 V e r i f . 1-1
Program ---, 1 VCG 1-1 PROVER 1

and u C o n d . -
Documentation J

T Simplified

I VCS

r 1
I Modified IANALYSIS OFI

--. I OUTPUT I
Problem

Figure 1.

The first Stanford verifier was written during
the period 1972 - 1975. It was successfully
used to verify about two hundred programs
including about fifty programs involving
pointer manipulation [1, 8, 11, 12, 131.

In the autumn of 1975, a comprehensive
review of the verifier was made and it was
decided to design and implement a more
powerful version for general distribution. This
was prompted by the successful initial
experiments in verification and in the use of
the verifier as a programming aid.

Version 2 was planned to include: (i) a flexible
and tiobust interactive user interface, (ii) a
m o r e extensive assertion language for
specifying properties of programs, (iii) a
language for defining rules (lemmas), (iv)
extensive syntactic and semantic error
checking for both documented programs and
rules, (v) more powerful theorem provers. It
was planned to be extensible and modular so
that it could be easily modified for other
programming languages, including
multiprocessing languages like Concurrent
Pascal.

5.3 Summary of Recent Work

5.3.1 Stanford Pascal Verifier

Parser and Verification COJlditiOJl Generator

The parser has been written and debugged. It
parses both programs with inductive
assertions and rulefiles containing lemmas
necessary for verification. It gives e r ro r
messages concerning syntax errors in Pascal
code, ‘assertions, and rules. Its diagnostic
capability for finding both syntactic and
semantic errors in programs exceeds that of
most of the Pascal compilers presently
available. To accomplish this, it requires
certain additional information (such as
GLOBAL declarations) which improves the
readability and reliability of programs in the
language. It permits certain extensions of
Pascal (e.g. dynamic arrays). It can be
modified to accept other programming
languages and other input character sets.

A new verification condition generator (VCC)
has been written and is operational. It is a
great deal more comprehensive and powerful
than any other such generator we know of.
The major effect is to substantially reduce the
amount of documentation the programmer has
to include in his program. Thus the VCG
helps remove one of the major problems of
using program verifiers.

Prover

The prover takes as input a verification
condition and outputs either a proof of the
verification condition or else whatever
simplification of the verification condition is
possible.

The design and construction of provers is the
main research battleground in the construction
of practical verifiers, simply because it is their
deficiencies which have thus far been the
main stumbling block to the general
acceptance of program verifiers. We have

26 Program Verificatioll

made, substantial progress in this area, and
believe that further major progress is’feasible.

A completely new prover has been written. It
consists of a top level driving routine which
interacts with a series of fast, special purpose
theorem provers over various useful types of
data (integers, pointers, arrays, reference
classes, records [13]). The top level driving
routine and several special purpose provers
have been implemented. Forthcoming reports
on this work are [16, 171.

Because we feel it essential that all our built-
in provers be efficient and not waste the user’s
time with fruitless searches for proofs, we
have not tried to make these special purpose
provers too powerful or -general. Instead, we
have programmed into them only the facts
that are common to all programs. In this way,
we are assured that they are always useful
without being unnecessarily time-consuming.
The problem with this approach is of course
that many programs will involve concepts
(such as orderedness in sorting programs, or
fairness in operating systems) about which the
prover has no built-in knowledge. We have
solved this problem by designing the prover to
be “extendible” in that the user may extend its
power in a consistent fashion by interactively
adding more useful knowledge.

To accomplish this, we have designed a new
rnle language for interactively adding
information to the prover. The rule language
effectively allows the user to write his own
special purpose prover and to attempt to
optimize its performance by specifying for
each rule the amount of effort that should be
expended in trying to apply it.

The top level driving routine of the prover
stores these rules, and applies them when
necessary to obtain a proof of a verification
condition. A great deal of effort and empirical
study has gone into designing the top level
routine so that it applies these rules as
efficiently as possible. The present top level
routine appears to be very successful at

minimizing search time for proofs, mainly by
avoiding following long and fruitless paths in
trying to find a proof. This part of the prover
seems to be surprisingly good, and we feel it is
substantially better than previous efforts.

How to write rules is an interesting study in
itself, and we return to it later,

On-line User Interface

This has reached a semi-stable design. That
is, we are willing to release a version with the
present interface. It is intended to permit the
user to alternate between fully automatic
verification and user assisted verification. The
latter is important in debugging and analysis
of the verification BASIS.

The top level routine in the prover has been
extensively redesigned to permit effective
interaction with the user. The user may now
interactively guide the proof by specifying
which rule is to be applied next with what
instantiation of variables, by cutting off lines
of proof search that he knows will be fruitless,
by interactively adding a rule to prove a
lemma which cannot otherwise be proved and
so on. The major effort in this has been to
minimize the amount of unnecessary
interaction required. The goal has been t o
have the prover ask the user for guidance
only if it is trying to prove a particular atomic
formula and is unable to find a proof quickly
by itself. The user is thus spared having to
give trivial commands such as “see if you
have proved this lemma already” or provide
trivial information such as “yes, 1 = 0 is false”,
which is an unfortunate deficiency of many
totally interactive provers. We feel that we
have found a good compromise between no
interaction and total interaction.

Runtime Error Checking

Experimentation has started with a special
version of the verifier which is intended to
check programs for common runtime errors
(e.g. array indices out of bounds, dereferencing

5.3 Sutntnary of Recent Work 27

a NIL pointer, accessing an uninitialized
variable, division by 0, numerical overflow).
This is intended to require as little as possible
documentation from the programmer.
Theoretical principles of modifying verifiers to
check automatically for runtime errors are
given in 161. About 20 programs have been
checked so fa.r including Bubble Sor t ,
Quicksort, Matrix Multiplication, Wirth’s
version of the Eight Queens, and several
programs operating on lists and queues by
means of pointer manipulation. It was found,
for example, that a Pascal version of the
Schorr-Waite marking algorithm for garbage
collection, the standard specifications of which
had already been verified, could generate a
runtime error by dereferencing a NIL pointer.

This is a highly expgrimental area and
includes the automatic construction of
inductive assertions for limited kinds of
verification. It has a potentially high payoff in
making compiled code more efficient by
eliminating the need for code to check for
runtime errors. The basic theory [6] has been
implemented for these experiments. We make
no claims about how “automatic” this kind of
error checking can become. The results so far
are interesting, and show some problems to be
harder than was thought. Even “semi-
automatic” checking for runtime errors may be
really useful.

Distributable Versiott

The verifier is implemented in various
versions of LISP (Mlisp, Lisp 1.6, Maclisp).
Translators between these lisps have been
written; and debugged by the group. Two
thirds of the verifier has been compiled into
Hear-n’s Rlisp as an experiment. Rlisp is a
standard Lisp available for a wide variety of
machines (the Rlisp compiler is very good).
Currently the Lisp 1.6 version of the complete
verifier including workspace occupies about
80k PDP- 10 core. Documented source code
listings are available. There is a plan t o
separate the parser-vcgen and the prover into
segments for greater efficiency in timeshared
environments.

We are preparing an Rlisp version of the
verifier for distribution to selected users. We
are also preparing a user manual and an
implementation guide on the verifier to help
other institutions to use our verifier, and to
modify and extend it to meet their own needs.

Comparison with Previous Version

We have repeated all the correct previous
experiments to make comparison of efficiency
and power with the old verifier. In all cases
the verification was faster and used fewer
lemmas. The speed-up varies with the
problem, and is usually better on the harder
problems; some that used to take about 2
hours. of elapsed time at the console now take
about 10 minutes. Only the parser is slower,
the reason being that it is doing a lot more
work.

As a result of user complaints and suggestions,
the verifier has gone through over 40 versions
since the system became operational in
September 76. These reflect changes mainly to
the Parser to handle new features of the Rule
and assertion languages, and to the prover
and user interface.

15Jh2 Applications of Verifiers

(i) MATHEMATICAL ALGORITHMS.
This includes Sorting and various tricky
programs. Verification experiments in this
area have been directed towards
standardization of techniques, and use of the
verifier for debugging and documentation.
New algorithms have been verified by
beginning students (e.g. Knuth’s In-Situ
permutation [14J). The writing and
verification of sorting programs on-line in
realtime is now very close to being a routine
task (a report is forthcoming [2J).

(ii) PROGRAMS WITH POINTERS. We
are attempting to formulate standard methods
for verifying programs that manipulate
pointers based on extending our previous
work [131. Current experiments being

28 Program Verificatiorl

attempted in this area include the balanced
tree insertion and deletion program (a deep
algorithm of about 3 pages of Pascal code),
and cyclic list structure copying programs [31.

(iii) JUSTIFICATION OF VERIFICATION
BASES. The drive towards standardizing the
verification of classes of programs is based on
producing the concepts that lie behind the
programs, and are adequate for specifying
them, and the necessary lemmas defining those
concepts. We need justify the BASIS of
lemmas once and for all. Most of the time the
Bases are obviously correct. But this can get
quite tricky when one starts dealing with
pointer manipulations.

The Resolution Prover that was developed at
Stanford some years ag6’has been run recently
in an attempt to prove some verification Bases
(e.g. the Basis for the In-Situ program which
depends on some quite sophisticated
mathematics about disjoint cycles within

. permutations). The results were surprisingly
good although not overwhelming [14]; it
shows that if justification becomes a problem,
this line might be worth a little effort.

(iv> VERIFICATION ORIENTED
PROGRAMMING. This concerns using the
verifier as a programming aid. We have
contmued experiments reported in 111, 21 to
develop methods of using the verifier to plan
a program with some combination of

-specifications and code, and to test the plan at
each step as more and more of its details are
coded. The methods are based on the analysis
of verification conditions to discover bugs and
incomplete documentation. The verifier is
now: being used by one student to do some
examination assignments in advanced
programming courses at Stanford.

53.3 Operating Systems Verification

We have been studying the Solo operating
system for the PDP-11. This is a working
s;lstem, about 22 pages of source code. Solo is
w:-ltten in Concurrent Pascal and widely

distributed as an experimental single user
operating system. The claim has been made
that such operating systems, written in a high
level language which has the Moni tor. .
construct available to modularize (or package)
the code, are easy to write, debug, and verify. -
The figures quoted for writing time is 3
man/months, and for debugging, 2 days. It is
known that Solo is a slow system. But it is the
first working system in such a language, and it
is claimed that anyone can understand the
whole system. We might view part of our
work in this area as investigating these claims.

We are experimenting with the automation of
the verification of Solo using the present
verifier. We are redesigning Concurrent
Pascal to improve runtime efficiency, and
verifiability, and to extend the class of realtime
systems that can be written in it.

RESULTS SO FAR: We have verified the
correctness (including Fairness) of a queuing
system for the implementation of Monitors [8J.
We have verified two fundamental
components of Solo-Fifo which controls
queuing stategy of Solo, and Resource (a
monitor with synchronization) wllich is used
to protect other components of Solo [91. The
proof rules for Concurrent Pascal were
applied by hand (very simple) and the
resulting sequential Pascal problems (much
longer) were given to the verifier. The
verification of FIFO turned out to depend on
a simple but unstated assumption about Solo,
but was otherwise an easy verification. The
proof that Resource enforces mutual exclusion
(i.e. any process having access to a component
that is protected by Resource has exclusive
access) is interesting; it depends on a theory of
how to state such properties of a continuously
running multiprocessing environment as
mutual exclusion, fairness, and freedom from
deadlock. This theory depends on the use of
virtual data structures.

Some other components of Solo, such as
Terminal, are going to be difficult to verify in
their present form. We have rewri t ten

-

a 5.3 Summary of Recent Work

c Terminal so that it is more efficient and is
verifiable.

We have also begun a study of lnaguage
features for concurrent systems that facilitate
verification [181. Theoretical developments,
proof rule design, and other initial research
has been completed.

We draw some conclusions from this work.
(a) The verifier can be used to automate the

checking of important properties of high
level language operating systems.

(b) We can extend Concurrent Pascal with
some simple and natural programming
constructs which would make the checking
of protection in such systems easy,
eliminate bugs due to, misuse of protector
components, and speed up Solo.

(c) Techniques for writing specialized
operating system components need to be
refined, and versions of new language
constructs already studied should be added
for this purpose (this would eliminate
problems with Terminal for example).

5.4 Proposal

In this section proposed research tasks are
presented together with estimated dates for
achieving planned milestones towards the
completion of each task. Dates in parentheses
refer to the expected duration of each task.

5.4.1 Stanford Pascal Verifier

Work in this area attempts to define standards
for program documentation and certification,
to introduce the use of verifiers as a
programming aid, and to develop new
methods of programming and program
maintenance. Experience shows that ideas in
this area must be sub jetted to testing by
people other than the system implementors.

We propose to attempt this by very limited
and cautious distribution of the verifier. The
first distribution will begin in September 1977
to selected sophisticated users. Feedback will

29

almost certainly require expansion of the user
interface, and the theorem proving
capabilities.

Our plans for improving the verifier are as
follows:

(i) Typed Rule Language (7/77-g/78). Many
errors in verification bases can be caught at
parse time if the rule language contains the
same type compatibility conventions as Pascal.
Such type information can also be used by the
theorem prover to select the correct special
purpose prover and will speed the proof
search on some complex data structure
programs by a factor of 5. Furthermore
programmers are already used to type
declarations and will find this extension of the
rule language natural; the type declarations of
the program will simply be appended to the
basis of lemmas.

(ii) Design Specification of Prover (7/77-
12/77), Our concern here is to give a
specification of the Prover which contains
clear and uniform specifications for all sub-
provers. This will enable a user to add his
own special provers. A critical point is the
specification of the interface between the
controlling prover and any sub-prover; this
must depend on limiting the interactions
between the sub-provers. (W e h a v e
theoretical studies showing that almost all such
interactions are unnecessary). We are working
on this now but the final specification will
depend on introducing types into the rule
language.

(iii) Special Purpose Provers (7/77-7/79). The
success or failure of verifiers in the long run
will depend largely on their proof capabilities.
Much work needs to be done to find efficient
provers for the sorts of data that appear in
programs and in verification. We need to
investigate the advantages of different special
purpose provers. This involves experimental
comparison of different methods as well as the
design of new methods. We also need to
design and implement special provers for new

30 Program Verification

kinds of data structures (e.g. trees which
appear in compilers).

(iv) Analyser (7/77-7179); first version (7/78).
This is a proposed new module of the verifier
to aid in analysis of verification conditions as
they relate to the program code. This is
intended to aid debugging and documentation.

(v) Code Generator (12/77). We propose to
add a code generator to the verifier to enable
the user to alternate between verification and
compilation. This will be for a subset o f
Pascal types, including Boolean, Itdeger,
Scalar, Array, Record, but not Real. The
amount of effort to do this with the current
system is not large and should broaden the
base of users. The compiler can be extended
for the concurrent language (below).

(vi) R u ncheck Version (first version 12/78).
As mentioned previously this includes
automating the construction of inductive
assertions for runtime error problems.
Experiments towards the construction of such
a version are already in progress. It is not
clear which runtime errors in which kinds of
program can be caught by fully automatic
verification (no assertion required), and which
errors will always require some user supplied
information in order to be detected.

The runcheck version will be able to detect
fide-effects in procedure and function calls.
Some languages have disallowed this feature
because it can lead to unexpected errors even
though the feature is useful. We propose
leaving in this feature, but locating bad side-
effects with our runcheck verifier before
compilation.

Milestones
0 Limited distribution of the verifier with

documentation (5/t?).
0 Redesign of the rule language (12177).
8 Preliminary experimental version of

Runcheck (12177).
0 Modification of Parser for the new rule

language (3/78).

@ Implementation and testing of new special
provers (7177-6178).

Q Completion of new proof system with
I. extended rule language (S/78).

5.4.2 Verification Experiments

Proposed experiments in verifying programs
are aimed at extending the classes of programs
which can be verified and improving the
verifier to achieve this. In particular, we will
go beyond sorting programs, and develop
standard techniques for operations on complex
data structures by means of pointer
manipulation. Programs with pointers have
already been verified with this system
(previous reports), but the meth.ods are not yet
standard. Here we mention tasks aimed at
extending the kinds of programs that can be
handled by verifiers. There are two categories
of experiments.

Milestones

ii) Deep Properties (i.e. depending o n
mathematics) of Small Complex Programs:
0 Balanced tree insertion and deletion (first

results, 6/77; finished 12177). (this program
combines both sorting and pointer
operations).

0 Cyclic list structure copying algorithms (first
results, 9/77; finished 6178).

* Average running time estimates of
mathematical algorithms (typical of
properties depending on probabilistic
analysis). (First results, 9/77, complete
analysis of the problem, 9178).

(ii) Shallow properties of large programs:
0 Pascal compiler. This requires theory of

segmentation into verifiable passes, and
specification of each pass. We have
started on the segmentation theory, and on
verification of the lexical scanner pass.
(First results, 6/77; finished 9/78).

0 Operating Systems. We will investigate the
verification of protection and deadlock
problems for entire operating systems
derived from Solo and other sources. See
the next section.

5.4 Proposal

5.4.3 Design of a Concurrent
Program In iJig Laliguage alid
Verifier

We propose to design a concurrent
programming language and implement a
verifier for it. The reasons for this are:

1. A verifier for Concurrent Pascal will
require simple changes to that language
(below). So some redesigning has to be done
anyway.

2. With the changes, the verification of some
operating system specifications for the whole of
Solo is not difficult. So the concurrent systems
verifier should be useful. --

3. We wish to extend verification techniques to
systems that cannot be written in Concurrent
Pascal, e.g. realtime systems involving, for
example, interrupt handling, memory
allocation, and dynamic process invocation.

Implementation of the new language itself may
be undertaken at a later time.

Some of the changes we propose making to
Concurrent Pascal should make systems within
the new language more efficient than Solo.
This may be a step towards making high-level
language operating systems more practical. So
the extension of the present verifier to a
concurrent systems verifier with a compilc-
and-run option is an interesting possibility.

Next we make some comments about changes
to Concurrent Pascal.

Our study of Solo has led us to formulate
extensions to Concurrent Pascal which express
both the specifications of some Solo
components and the programming discipline
that has been used in Solo . Unless the
specifications and discipline are expressed in
the syntax of the language (in a f o r m
somewhat analogous to assertions and type
declarations in sequential languages) the
problem of verifying Solo is horrendous. This

31

is not because the problems are hard, but
because necessary information is never stated
explicitly. Of course, some properties of single
components (written as single Concurrent
Pascal monitors) can be verified, but this is
much different from verifying that the whole
system possesses a certain simple but crucial
property (e.g. all data structures that require
protection are in fact protected).

For example, component classes and monitors
in Solo perform specialized tasks such as
scheduling, protection and buffering. None of
these specialized tasks is declared, so there no
explicit assertion to be checked about the
function of the component. Also components
that must be bound together (e.g. a scheduler
and the component to be scheduled) are done
so by means of a single general mechanism,
binding of accessrights at initialization, which
is not only uninformative for verification, but
also leads to inefficient blocks of components.
Scheduling is one of the bottlenecks in Solo,
and protection works correctly only because
the programmer bound the accessrights of
Solo correctly in the initialization process (one
slip there, and the system would never work).
The monitor construct alone does not write
correct operating systems, nor does it specify
them.

Also note that some important parts of the
Solo operating system (interrupt handling,
memory allocation, process suspension and
resumption) are handled by an invisible,
unverifiable assembly language kernal. We
propose to develop high level, verifiable
language constructs, where possible, to make
these aspects of operating systems visible. The
work in [181 is a very small portion of this.

Examples of proposed extensions are to
in traduce:

(i) Declarations of the specialized function of
certain components (from which we can tell
what needs to be verified about them in the
context of the whole system).

32 Program Verification

(ii) Composition of components which must
always be invoked together in a particular
order (this will make scheduling more efficient
and eliminate some possible errors due to
scheduling in a wrong order).

5.5 References

[ll P. Brinch H ansen, The Solo Operating
System, Software-Practice and Experience
6,2 April-June 1976, 141-205.

(iii) Statements of the protection requirements
of a type at the type declaration, and
declarations of protection guarantees (a
protector component which is an accessright of
a type, may be declared to guarantee
protection for parameters of that type). These
are to aid the verification of correct protection
over the whole system.

[21 R.L..Drysdale, A Starldard Basis for
Automatic Verification of Sortillg
Algorithms, Stanford A.I. Lab. Memo,
Stanford University, forthcoming.

[31 D.A. Fisher, Copying Cyclic List
Structures in Lhear Time Using
Bounded Workspace, CACM, 18,5, May
1975,25 l-252.

Such extensions are natural in the sense that
they permit the programmer to state very
simple in ten tions; they are similar to type
declarations in Pascal. They are crucial
information for the verification of some
standard operating system’ specifications.

. Other natural extensions will become evident
as the verification of Solo progresses.

C41 S.M. German, B. Wegbreit, A Synthesizer
of Inductive Assertions, IEEE Trans. on
Software Engineering, Vol 1. pp.68-75.,
March, 1975.

Milestones

151 C.A.R. Hoare, and N. Wirth, An
Axiomatic Definition of the
Program m illg Language Pascal, Acta
lnformatica, Vol. 2, 1973, pp.335-355.

l Verification of more Solo components:
Buffers and Processes (6177).

0 Verification of correct protection for whole
of Solo (12177).

0 Preliminary verifier for a concurrent
extension to Pascal (12/77).

@ Implementation of components of operatinge
systems within the extended language and
their automatic verification using the
preliminary version (917%6178).

0 Design of concurrent systems language
-(6/ 78).

[61 G. Huet, D.C. Luckham, DC. Oppen,
Proving the Absence of Corn tnol1
Runtirne Errors, Stanford A.I. Lab.
Memo, Stanford University, forthcoming.

171 S. Igarashi, R.L.London, D.C. Luckham,
Automatic Program Verification I:
Logical Basis and Its Implementation,
Acta Informatica, Vo1.4, 1975, pp. 145-182.

0 First version of concurrent systems verifier
(6178). .

0 Verification of a small realtime system
(9178).

181 R.A. Karp, D.C. Luckham, Verification of
Fairness in an Ilnplementation of
Monitors, PYOC. lntnl. Conf. on Software
Engineering, San Francisco, pp. 40-46,
Oct. 1976.

0 Pilot studies in implementation of the
concurrent systems language (l/78-6/79). [91 R.A. Karp, D.C. Luckham, Autornating

the verification of operating systems: A
case study - the Solo operating system,
Preliminary internal report, Stanford
Verification Group, Jan. 1977.

Cl01 D.C. Knuth. The Art of Combuter

5.5 References 33

Programming, Vol. 111 - Sorting and
Searching, Addison Wesley, Reading,
Mass. 1973.

. .

Ill J F.W. v.Henke, DC. Luckham, A
Methodology for Verifyillg Programs,
Proc. lntnl. Conf. on Reliable Software, Los
A ngeles, California, pp. 156- 164, April 20-
24, 1975.

[12] D.C. Luckh am, N. Suzuki, Automatic
Program Verificatiori IV: Proof of
Termination within a Weak Logic of
Programs, Stanford AI Memo AIM-269,
Stanford University, 1975, to appear in
Acta lnformatica. --

[131 D.C. Luckham, N. Suzuki, Verification
Oriented Proof Rules for Arrays,
Records, and Pointers, Stanford AI Memo
AIM-278, Stanford University, April 1976.

[143 W. Polak, Verification of the In-Situ
Permutat!orr Program, Stanford A.I. Lab.
Verification Project Report, forthcoming.

[151 R. S. Cartwright, D. C. Oppen,
Generalized Procedure Calls in Hoare’r
Logic, forthcoming.

[163 C. C. Nelson and D. C. Oppen, AJI
Efficient Decision Algorithm for the

- Extended Theory of Equality,
forthcoming.

[l 71 C. G. Nelson, D. C. Oppen, A Theory of
Independently Illteractilrg Theorem
Prdvers, forthcoming.

[181 R. A. Karp, The Scheduled Class as an
Operating Systems Structuring Concept,
submitted for publication, 1977.

34

6. Natural Language Understanding

A joint project with the Xerox Palo Alto
Research Center.

EXPERJENCE WITH KRL-0
ONE CYCLE OF A KNOWLEDGE REPRESENTATION

LANGUAGE

Daniel C. Bobrow, Terry Winograd,
and the KRL research group’

‘The projects and implementation described in this paper were done at
Xerox Palo Alto Research t$enter, Palo Alto, California by Dan Bobrow,
Ron Kaplan, and Martin Kay from Xerox PARC; Jonathan King, David
Levy, Paul Martin, Mitch Model, and Terry Winograd from Stanford;
Wendy Lehnert from Yale; Donald A. Norman from U.C. San Diego; Brian
Smith from M.1.T; and Henry Thompson from UC Berkeley.

35

The goal of the KRL research group is to develop a knowledge
representation language with which to build sophisticated
systems and theories of language understanding. This is a
difficult goal to reach, one that will require a number of
years. We are using an iterative strategy with repeated cycles
of design, implementation and testing. An initial design is
described in an overview of KRL (Bobrow & Winograd,
1977). The system created in the first cycle is called KRL-0,
and this paper describes its implementation, an analysis of
what was learned from our experiments in using KRL-0, and a
brief summary of plans for the second iteration of the cycle
(the KRL-1 system). In writing this paper, we have
emphasized our difficulties and disappointments more than
our successes, because” the major lessons learned from the
iterative cycle were in the form of problems. We mention
only briefly in the summary of experiments those features of
KRL-o that we found most satisfactory and useful.

In order to put our experiments in some perspective, we
summarize here the major intuitions we were testing in the
design of KRL-O:

1. Knowledge should- be organized around conceptual
entities with associated descriptions and procedures.

2. A description must be able to represent partial
knowledge about an entity and accommodate multiple
descriptors which can describe the associated entity
from different viewpoints.

3. An important method of description is comparison
with a known entity, with further specification of the
described instance with respect to the prototype.

4. Reasoning is dominated by a process of recognition in
which new objects and events are compared to stored
sets of expected prototypes, and in which specialized
reasoning strategies are keyed to these prototypes.

5. Intelligent programs will require multiple activea processes with explicit user-provided scheduling and
resource allocation heuristics.

6. Information should be clustered to reflect use in
-processes whose results are affected by resource
limitation and differences in information accessibility.

7. A knowledge representation language must provide a
flexible set of underlying tools, rather than embody
specific commitments about either processing strategies
or the representation of specific areas of knowledge.

Some of these intuitions were explored in GUS (Bobrow, et al,
1977). a dialog system for making airline reservations. GUS
used ideas of procedural attachment (Winograd, 1975), and

36

context dependent description (Bobrow & Norman, 1975).
Experience with GUS led to some changes to our ideas for
KRL-0, although GUS and KRL-o were basically concurrent
projects; we started programming GUS just prior to intensive
design on KRL-O. The GUS system was primarily an attempt to
explore the integration of already existing programming
technology for a performance demonstration, while KRL-o was
a first attempt at outlining a new basis for representation.

1. Building the KRL-o System

KRL-o was implemented in INTERLISP (Teitelman, 1975), along
the lines described in Bobrow and Winograd (1977). The
design was specified mostly during the summer of 1975. The
initial KRL-o implementation was programmed primarily by
Bobrow, Levy, Thompson, and Winograd during December
and January, with parts of the development being done by the
rest of the KRL g r o u p . It included basic structure
manipulating facilities, a reader and printer for K R L

structures, a simple agenda manager and scheduler, a
procedure directory mechanism, and a matcher which handled
only the most elementary cases. Many more pieces were built
into this system by people working on the test projects over
the following 6 months. The system was first implemented
on the MAXC computer at Xerox PARC and later transferred
to the SUMEX PDP-IO, (where one of the projects was done
as an AIM Pilot project), and to the IMSSS PDP-10 at
Stanford. When the test projects were complete, the system
was retired from active duty.

As an experimental system, there was no commitment to
continue support after the initial purposes were satisfied.
Despite its avowed experimental nature, however, building
KRL-0 was a major system programming effort; programming
any “new AI language” for users is larger task than just trying
out the new ideas. Having the many facilities of INTERLISP to
build on eased our programming burden, but a number ofm new facilities were built for the project:

) Ron Kaplan developed a set of utilities, including special
data structure manipulation and formatted printing
routines, as a base for much of the implementation.
The entire utility package (called USYS) was interfaced
so smoothly that the user could think of it as simply an
extended INTERLISP. This package will be used in the
development of KRL-I.

) An on-line cross-reference and documentation system
(called the NAMES system) was used to coordinate the
efforts of the people doing interactive debugging of a
shared set of programs. The facility was designed and
built by Ron Kaplan and Martin Kay. It
communicated with the editor and file package
facilities in INTERLISP so that the programmer was
prompted for a comment whenever programs or record

37

declarations were created or edited. The information
available to the system (e.g. procedure name, variable
names, etc.) was combined with user supplied comments
in a standardized data base which could be interrogated
on line. The programmer was automatically warned of
potential naming conflicts with anything avywhere else
in the system. It also provided facilities for entering
comments associated with global variable names and
file names. The file of names grew to contain over
1000 entries during the course of implementing KRL-O.
For the KRL-1 implementation we are extending the
interface to work with Masterscope, the INTERLISP
cross-reference and program analysis package written
by Larry Masinter.

) A simulated match interface was built by Paul Martin,
which enabled the programmer to intercept calls to the .
matcher and gather data on what kinds of problems
came up before programming the necessary’ extensions.
The user returned an answer for the match, and on
future identical matches the same answer was used.

) A tracing facility for the matcher was implemented by
Jonathan King, to facilitate debugging of programs
which were organized around matching

. As problems came up in using KRL-0, they were handled in
several ways. Those which seemed general and could be
handled within the existing framework were set up as tasks
for the KRL-o programming effort. Usually design discussions
were shared by everyone, and the implementation done by the
person whose program faced the problem. Those problems
which were either too specialized or obviously beyond the
scope of our current design were programmed around by the
problem-finder. Most of these cases led to changes in the
KRL-I design to accomodate solutions more naturally.
Because KRL-o was embedded in INTERLISP, “patching” was

a usually straightforward in that it was the same as what would
have been involved in trying to write the program in a bare
INTERLISP in the first place. Of course, sometimes these
“patches” interacted with other parts of the KRL code in
unpredicted and confusing ways. Those problems for which
there was no acceptable way to escape were chalked up to
experience, and the goals of the program reduced accordingly.
Usually this was in cases where there had been an unresolved
question as to how much the program should be expected to
handle. Issues raised by these problems were a major driving
force in the KRL-I design.

A very rough draft of a manual was distributed, but became
rapidly obsolete as the system evolved. It was highly
incomplete (for example, the section on the matcher consisted
of a single paragraph describing why the section was going to
be difficult to write). It was never completed or re-edited,
and those doing the programming had to rely on discussion

with the implementers and on the source code of the
interpreter for up to date information. It worked reasonably
well, with some frustration, but not enough so that anyone
ever felt moved to volunteer the time to do the writing
needed to produce a real manual and keep it current. We
were somewhere around the upper bound of the size of
project (number of people, amount of programming) where so
informal an approach was feasible.

2. Experiments using KRL-o

KRL-o notation and programs were tested in nine different
small projects. Each of these projects was intended to test
some aspect of the KRL-o language or system. They took from
3 to 15 person-weeks of effort each. In most cases, the goal
was to produce an actual running program which could
handle enough examples to convince us that it did what the
original program was intended to. In no case was an effort
made to do the kind of final debugging and polishing which
would make the program robust or usable by anyone but the
original author. We will describe three of these in detail: a
cryptarithemetic problem solver; a story analysis program; and
a medical diagnosis system. We list below the other projects
that were done to give a flavor of the range of projects tried:

) LEGAL -- done by Jonathan King -- a n
implementation of a portion of a legal reasoning
system sketched by Jeffery Meldman (1975) in his
doctoral dissertation. This program f arced
consideration of matching in which both patterns and
data could specify bindings that were needed.

) ARCHES -- done by Paul Martin -- a concept learning
progam based on Patrick Winston’s (1975) program for
recognizing visual scenes. Matching sets of
descriptions, and the use of instances as patterns were
the interesting parts of this project

b COIL -- done by Wendy Lehnert -- a new program for
drawing inferences about objects, based on methods
related to those of conceptual dependency. This
program used the contingent description mechanism to
select knowledge to be used in a particular context, and
the agenda to interweave syntactic and semantic
processing of input English.

) FLOW -- done by Dan Bobrow and Don Norman -- a
program sketch which simulated a person’s access to
long term memory while using a recently learned
simple computer language. The indexing mechanism of
KRL was used to simulate properties of human
associative retrieval (including errors of various kinds).

) PHYSIOLOGY -- done by Brian Smith -- a program
sketch which explored the problems of using KRL-o for
a system which could reason about physiological
processes. This project forced consideration of the gaps

in K R L-o with respect to specifying temporal and
causal structures, and the need for stronger structuring
to factor information in units by viewpoints, e.g.,
information about the heart as viewed as a mechanism,
versus information when viewing it from an anatomical
perspective. . .

) KINSHlP - - done by Henry Thompson -- a theoretical
paper, using the K R L-o notation as a basis for
comparing kinship terms in English and Sherpa. The
attempt to communicate results of encoding to
non-computer scientists led to a simplified notation
which has contributed to the syntax for KRL-1.

Cryptarithmetic

The initial test program was a simple cryptarithmetic problem
solver (see Newell and Simon, 1972 for a description of the
domain) written by Terry Winograd and debugged and
extended by Paul Martin. it exercised the basic data
structures, agenda, and triggering facilities, and was
successfully tested on several problems (including DONALD
+ GERALD = ROBERT with D=5). No attempt was made to
provide complete coverage of the class of problems handled
by humans. lnteresting aspects of the design included:

) Use of triggers to combine goal directed and data
directed processing

) Use of “patterns” to suggest strategies

) Use of levels on the agenda to control ordering of
strategies

) Use of multiple descriptors to accumulate information
about the value of a letter

) Use of contingencies to handle hypothetical assignments

) Use of the signal table to control work within
hypothetical worlds

Much’ of the processing was associated with procedures
attached to the units for Column (a vertical column in the
addition problem) and Letter. The Unit for Column is given
below. lt gives some idea of the use of procedural attachment
to propagate information, search for patterns such as a
column with TwoBlanks and trigger arithmetic processing
(using the LISP function ProcessColumn).

[COI,UMN UNIT Basic
<SEI,F ()>
<IcCtNcighhor (a Column)>
<rightNcighbor (a Column)>
< toplxtter (a Letter)>

.

40

<bottomLetter (a Letter)
(triggers (WhenKnown

(DoWhenKnown (toplrtter) Column
(TryToFurtherSpecify UNIT

‘(TwoBlanks OneBlank TwinAddend)
‘AddendType]>

<sumLetter (a Letter)
(triggers (WhenKnown

(DoWhenKnown (topLetter botomletter) Column
(CheckSumEqualAddend UNIT]>

<topDigit (a Digit)
(triggers (WhenKnown (Assign ‘topLetter)(ProcessColumn)))>

< bot tomDigit (a Digit)
(triggers (WhenKnown (Assign ‘bottomLetter)(ProcessColumn)))>

<sumDigit (a Digit)
(triggers (WhenKnown (Assign ‘sumLetter)(ProcessColumn)))>

<sum ((an Integer)
(which IsSumOf

(AllItems (the carryln) (the topDigit)(the bottomDigit))))
(triggers (WhenKnown (ProcessColumn)))>

<carryln ((an Integer)
(XOR 0 I)
(the carryout from Column(the rightNeighbor))(; CARRYOUT))

(triggers (WhenKnown (GoFill ‘CARRYOUT)(ProcessColumn)))>
<carryOut {(an Integer)

(XOR 0 1)
(the carryln from Column (the leftNeighbor)) (; CARRYIN))

(triggers (WhenKnown (GoFill ‘CARRYIN) (ProcessColumn)))>]

There was a set of recognized patterns for columns (for
example, a column with the sum letter identical to one of the
addends) and a set of pattern driven strategies was associated
with each. Each strategy was a LISP procedure which used the
KRL-o structures only as a data base. Some of the strategies
caused values to be computed. Whenever a new value was
filled into a column, triggers caused data driven strategies to
be suggested, such as trying to bound the possible value of
other letters based on this information. Constraints on values
were added in the form of new descriptions for the value ofa the letter, for example specifying that the value must be an
even or odd integer. Each such description was added to the
existing description of the value of that letter, so that at any
.point in the computation, some letters had a value described
-as a specific digit, while others had complex desciptions, such
:as “Greater than 3 and odd”. Each time a new description
was added, a trigger in the unit for Letter caused a procedure
to be run which matched each still-unassigned digit against
the accumulated description, and if only one matched, it was
assigned.

When new strategies were suggested by a new value being
filled in, or by the match of one of the patterns describing
columns, all of the triggered strategies were put onto the
agenda. They were assigned priority levels on the basis of a
fixed scheme: Level 1 was immediate propagation of
information (e.g. if the value of a letter is determined, then
that value gets entered into all of the places where the letter

appears). Level 2 was for straightforward arithmetic
computations, Level 3 for the strategy being worked on
currently, Level 4 for other simple strategies, Level 5 for
more complex and less likely strategies, Level 6 for last-ditch
strategies (brute force trial and error) and Level 7 contained a
single entry which caused the problem to be abandoned.. .

This rather ad hoc use of agenda levels achieved a number of
goals. The use of Level 1 for simple propagation served as a
kind of data locking scheme to maintain consistency. As long
as there were more results to be propagated, no other part of
the program would run. This meant, for example, that if
some letter were assigned to a digit, no other letter could be
assigned to the same digit before the result had been properly
recorded. The use of a separate level for the current strategy
allowed it to trigger sub-strategies without getting put aside
for work on a different strategy. This meant that each
strategy could run to completion. The use of levels t o
distinguish how promising different strategies were allowed
the system to focus its effort on whatever were the most
likely things at the moment. Placing last-ditch strategies on
lower levels when they were thought of made it easy for the
program to fall back on them -- they automatically ran if
nothing at any higher priority was scheduled. This provided a
weak global structuring in what was inherently a data-driven

, process.

The mechanisms for multiple worlds and contingent
descriptors made it possible to deal with hypothesized values
while using the normal mechanisms. When all but two
possible values had been eliminated for some letter, and no
other strategies were pending, the program chose one of them,
and created a hypothetical world, in which the letter had that
value. Descri bi ng the letter as having that value
hypothetically caused all of the same triggering as would
noncontingent assignment of the value, leading to propagation
of new information, computations, strategies, etc. However,
by modifying the signal table, all derived information was
asserted as contingent on that hypothetical world. This
special signai table also affected the processing in two other
ways:- First, only simple strategies were allowed to be placed
on the agenda. Second, if a contradiction occurred, the
hypothesis was rejected instead of the problem being declared
impossible. If a hypothesis was rejected, the contingent
descriptors were not removed, but would not be accessed by
programs looking for descriptions in other hypothetical
worlds, or in the world of actually inferred facts.

Sam

David Levy implemented and tested a program which
reproduced the simple text analysis and questioning aspects of
the SAM program (Schank et. al, 1975) which uses scripts in
analyzing short “stories” containing stylized sequences of

42

events. It used Ron Kaplan’s GSP parser(Kaplan, 1973), and a
grammar writtenby Henry Thompson for the initial input of
the stories. It processed two stories (Schank, p. 12),
summarized them and answered a number of simple
questions. It was a full fledged language-processor in that it
took its input in English and generated English output.
Questions were entered in an internal representation. Its
main features were:

Jnterfacing an existing parser (Kaplan’s GSP) with a
KRL-o program which used the results of the parsing for
further analysis

Using slots to represent the basic elements (both events
and participants) of scripts, and perspectives to
represent instances of the scripts.

Using the notion of “focus lists” as the basis for
determining definite reference, including reference to
objects not explicitly mentioned in the input text. It
used the index= mechanism to speed up search through
the focus lists.

Using the matcher in a complex way to compare story
events to prototypical script events, with side effects
such as identifiying objects for future reference

Using units describing lexical items and English
grammatical structures as the basis for analysis and
generation, using signals and procedural attachment

SAM’s basic processing loop consisted of parsing, construction
of conceptual entities followed by script lookup:

Parsing. A sentence from the story was fed to GSP, which
- produced as output a surface syntactic parse identifying

clauses, noun phrases, etc. as a KRL declarative structure. For
example, for the sentence “John went to a restaurant” GSP
produced the following rather shallow syntactic structure:

(ii Declare with clause :

(a Clause witb
surfaceForm = ‘John went to a restaurant”

verb = GO

subject = (a NounPhrase with

head = JOHN)

prepPI = (a PrepositionalPhrase with

preposition = TO

object = (a NounPhrase with

hcsd = RESTAURANT

determiner = A))))

43

Construction of conceptual entities. The next step was to map
this syntactic object into a set of conceptual objects with the
help of declarative and procedural information stored in the
prototypical syntactic units (Clause, NounPhrase, etc.) and in
the lexical units. For example, the Clause unit specified that
the filler of the verb slot would guide the mapping process
for the entire clause, and the lexical representation of each
verb included a case frame mapping from syntactic to
conceptual structures. Following is a partial description of
SAM’S representation of the verb “go”:

[GO UNIT fndividual

<self ((a Verb with
.root = “go”

past = “went”)
(which IsAConstituentOf

(a Clause with
referent =

(a Go with
goer = (the referent from NounPhrase

-=. (the subject from Clause (a Clause)))

source = (the referent from NounPhrase

(the object from PrepositionalPhrase
(a PrepositionalPhrase with

preposition = FROM)))
destination = (the referent from NounPhrase

(the object from PrepositionalPhrase
(a PrepositionalPhrase with

preposition = TO))))))} > J

As a description was created for each conceptual object (e.g.
as it was determined that the appropriate filler for the goer
slot in the above example was (a Person with name = “John”)),
this description was matched against a list of units in a focus
lisr which contained the conceptual objects thus far created.
If the description matched one of these objects, the slot was
filled with a pointer to this object, and this object was moved
to the front of the focus list. In order to make the search
through the focus list faster, the index facility was used to
find good potential matches from the list. If the description
matched no object, a new object (a KRL unit) was created, the
description was attached to it, and this object was pushed onto
the front of the focus list. In this way referents were
established and maintained.

This scheme handled pronominal as well as definite
reference. From the word “she”, for example, the conceptual
description (a Femalel’erson) was constructed, a description
which wouid match the last mentioned reference (if any) to a
female person (e.g. “the waitress”).

Script lookup. Next the program tried to identify the
conceptual event just created as a step in an active script. It
did this by stepping’ through the script from the last event

44

identified, and matching the description of this prototypical
event to the event just created from the input sentence. This
process exercised the KRL matcher rather heavily. Once the
step in the script (represented as a slot) was identified, this
slot was filled with the new conceptual event. In addition,
any previous steps not explicitly filled by story inputs were
then filled by creating conceptual events from the
prototypical descriptions contained in the script. These
events too were added to the focus list. The program also
dealt with what-ifs or predictable error conditions, but these
will not be discussed here.

The result of this iterative process was therefore the
construction of a representation for the story consisting of:

) a set of syntactic units representing the surface syntactic
*form of the input sentences

) a set of conceptual units representing story objects:
people, events (including inferred events), physical
objects =.

a focus list containing these objects

) a (partially) instantiated script, whose event slots were
filled with the conceptual events in the focus list

Having analyzed a story, SAM could then summarize,
paraphrase, and answer questions.

The different stages of processing in the analysis of inputs
were controlled through the use of special signai tables.
These tables provided special responses to the addition of
descriptions to units. For example, the search for a referent
was keyed by a signal set off by the addition of a perspective,
of type NounPhrase. The generation process used a different-
set of signal tables to direct the inverse process of building a
surface syntactic construction from a conceptual object. SAM
was an interesting exercise in system construction, useful
mainly as a tool for understanding problems in representation
and debugging KRL-O. When finished, it did not, and was not
intended to, rival the power of the Yale group’s original
program.

Medical

Mitch Model implemented and tested a program for medical
diagnosis based on a model for diagnosis which had not been
directly implemented before (Rubin, 1975). In writing the
program, it was necessary to fill in a number of details, and
correct some minor inconsistencies in the original. The
program successfully duplicated, with some minor exceptions,
the performance described for Rubin’s hypothesized system.
Part of the reason for the exceptions was incomplete

.
specifications in Rubin’s thesis, but there was also a major
problem in that the implementation LISP code and data base
completely filled the storage available in the KRL system.
(This program, SAM, and COIL were the most extensive tests,
and all ran into space problems discussed below). Some of
the major features of the implementation were: -.

) The use of the abstraction hierarchy to represent the set
of disease types and finding types, with information
and procedures attached at different levels of
generality.

b The use of KRL-o triggers to implement the conceptual
“triggering’* of potential diagnoses on the basis of
having relevant symptoms described

) The use of signals to provide run-time monitoring of
what the system was doing as it generated new
hypotheses and evaluated them

) A direct encoding of the declarative “slices” of Rubin’s
version into the declarative forms of KRL-O. This
included extensive use of the “Using” descriptor (a
declarative conditional) to explicitly represent the
decision trees in the units for diagnosing different
conditions

. There were four major kinds of representational objects in the
system.

b *‘Elementary hypotheses” which corresponded to the
“slices” of Rubin’s thesis; these were named after the
disease [e.g. Glomerulitis or RenalInfarction] the data
structure was intended to represent. Elementary
hypotheses had descriptions in slots to indicate such
things as likely symptoms, links to other elementary
hypotheses that might be related, and how to evaluate
how well the patients symptoms would be accounted for

d by a diagnosis of this disease.

b “Elementary hypothesis instances” were data structures
created for each diagnosis the system decided might

. account for the presented symptoms; these contained
_ pointers to the findings that suggested the diagnosis,
- and a pointer to the elementary hypothesis representing

the disease of the diagnosis. It also contained values
for how well the diagnosis accounted for the symptoms,
obtained by applying the evaluation information
represented in the elementary hypothesis to the specific
details of the elementary hypothesis instance.

b “Findings” were units for specific symptoms, facts,
historical information, physical examination data, or
lab data (e.g. Fever, Hematuria, or h’iopsy); a finding
was mostly a hook on which to hang procedural
information about what to do when the patient
exhibited something abnormal with respect to the

46

particular kind of finding.

) Finding instances were the input to the system, having
a structure similar to that Rubin suggested in her thesis,
having slots for such things as finding, duration,
severity, and normality. There were also further
specified finding instances such as symptom instance.

The system worked essentially as follows. A unit might be
described by:

(a Symptominstance with
mainconcept = Hematutia
presence = “present”
severity = “gross”
time = (a TimePoint with .

direction = “past”
magnitude = (a Quantity with

unit = “days”
number = 3)))

A WhenKnown t r i g g e r o n t h e p r e s e n c e s l o t o f t h e
Symptomlnstance prototype would be set off; examination of
the specific description caused this entity to be described also
as: (a SymptomInstance with normality = “abnormal”) Further
triggers and traps might result in the creation of new
elementary hypothesis instances, according to the information
found in the description. After all the information
propagation activity, each of the currently active elementary
hypothesis instances would be evaluated based on information
found in the corresponding elementary hypotheses. Based on
the evaluation, the status of the elementary hypothesis
instances might be changed to reflect possible dispositions of
the hypothesis such as acceptance, rejection, or alteration.

The indexing facility was used to facilitate operations such as
obtaining a list of all the hypotheses activated by a finding.
Functionals and ToMatch triggers on prototypes were defined

e to handle special time-related matches to enable the system to
tell, for example, that “3 days ago” is more recent than “1
year ago” or that “48 hours” is the same as “2 days”. Signal
tables were used locally to govern the handling of error-like
occurrences and globally to effect trace and printout
different degrees of detail were specified by use of several
signal tables, and it was thus quite simple to change modes by
pushing or popping a table. The agenda was used for
organizing the flow of control in a manner similar to that
described for the Cryptarithmatic program. The built-in
triggering mechanisms provided the means for a very natural
modeling of the kind of medical reasoning discussed in
R ubin’s thesis.

47

3. The problems

As we had hoped, these projects pointed out many ways in
which KRL-o was deficient or awkward. People were able to
complete the programs, but at times they were forced into ad
hoc solutions to problems which the language should have
dealt with. The problems can be grouped as: .,

) Basic representation problems -- ways in which it was
difficult to express intuitions about the semantic and
logical structure of the domain

) Difficulties in manipulating descriptions explicitly

) Shortcomings in the matcher

) The awkwardness of the LISP-KRL interface

) Facilities which should have been available as
standardized packages

) Infelicitous syntax

) Cramped address space-=

Due to the embedding of KRL-o in INTERLISP, none of these
problems were fatal. Even with the difficulties, we found it
possible to write complex programs rapidly, and to
experiment with interesting representation and processing
‘strategies. This list also does not include the social and
organizational problems which are bound to infect any effort
of this nature. Everyone on the project exhibited heroism
and stoicism, persisting in their programming without a
manual and in a rapidly evolving language which kept
slipping out from under the programs almost as fast as they
could be modified.

Basic representation problems

KRL-o embodied a number of commitments as to how the
‘world should be represented. Some of these seemed
intuitively justifiable, but did not work out in practice.
Others were too vague to implement in a way which seemed
satisfactory.

The kategorization of units: Each unit bad a category type
(as described in Bobrow and Winograd (1977, pp 10-12)) of
Individual, Manifestation, Basic, Specialization, or Abstract
Category. This was based on a number of intuitions and
experiments about human reasoning, and on the belief that it
would facilitate mechanisms such as the quick rejection of a
match if there was a basic category disagreement. In practice,
these distinctions turned out to be too limiting. In many of
the hierarchies for specialized domains (such as medicine)
there was no obvious way to assign Basic, Specialization, and
Abstract. In dealing with units describing events, the notion
of Manifestation was not precise enough to be useful. It was

48

generally felt that although the concepts involved were useful,
they had been embedded at too low a level in the language.

Viewpoints: One of the major issues in developing KRL was
the desire to have facilities for “chunking” knowledge into
relevant units. This proved to work out well in fnost cases, but
there was an additional dimension of organization which was
lacking. For many purposes, it is useful to combine in a
single unit information which will be used in several contexts,
and to associate with each piece of the description some
identifier of the context (or viewpoint) in which it will be
used. In the natural language programs, it seemed natural to
classify descriptions associated with words and phrases
according to whether they related to the structure of syntactic
phrases, or to meaning. In the physiology sketch, there were
clear places where different viewpoints (e.g. looking at the
form of an organ or looking at its function) called for using
different information. There were two primitive mechanisms
for doing this factoring in KRL-o -- attaching features to
descriptors, and embedding information in contingencies.
Both were used, butproved clumsy and felt ad hoc.

The relation between prototype and concept: KRL is built on
the assumption that most of the information a system has
about classes of objects is stored in the form of “prototypes”
rather than in quantified formulas. In general, this proved to
be a useful organizational principle. However, there were
cases of complex interactions between instance and
prototype. In the medical domain, for example, a disease
such as AcuteRenalFailure could be thought of as an instance
of the prototype for Disease but could also be thought of as a
prototype for specific cases of this disease. There are a
number of issues which arise in trying to represent these
connections, and although KRL-o did not make obviously
wrong choices, it also did not make obviously right ones. In
general, we seem to have been hoping that too many

- consequences would just naturally fall out of the notation,
when in fact they take more explicit mechanisms.

Further specification hierarchies: In simple network or
frame systems (see, for example Goldstein and Roberts, 1977)
there is a natural notion of hierarchy, in which each
descendant inherits all of the slots (or cases) from its parent.
Thus, if a Give is a further specified Act then it has a slot for
actor as well as its own slots for object and recipient. In a
system based on multiple description, the inheritance of slots
is not as straightforward. This is especially true when there is
an attempt to do Merlin-like reasoning and use perspectives
to “view an x as a y”. The basic inheritance mechanism in
KRL-o does not include automatic inheritance of slots. This is
vital for cases in which there are multiple descriptions using
the same prototype units. However, it makes it awkward
(though possible) to program the cases where the slots are to
be inherited simply. Therefore, we included a mechanism for

49

“further specification” which allowed a unit to inherit slots
(along with their attached procedures) from a single parent.
This was not fully implemented into the system, and was a
dangling end in the implementation.

The factoring of context-dependent descriptions: One major
design decision in KRL was the use of an object-factored data
base, rather than a context-factored one. The unit for a
particular object contained all of the different contingencies
representing the facts about it in different worlds. This
proved quite successful; however, when combined with the
kind of descriptions provided by mappings, another issue
arises. Using the example of the cryptarithmetic units given
earlier, consider the problem of representing what is known
about a column in the addition problem if worlds are used to
represent hypothetical assignments. Imagine that we know
that in the unmarked global world, Column1 is an instance of
Column, with values for topletter, bottomletter, etc. If in a
hypothetical World1 (in which some value is assumed for a
letter) we infer that its sum is 17, we want to add a contingent
descriptor. This could b.e done in two ways:

[Column I UNIT Individual
< s e l f ((a C o l u m n w i t h

topletter = A
. . .)

(dur ing World1 then (a Column with sum = 17))}>]

[Column I UNIT Individual
< s e l f { (a C o l u m n w i t h

topLetter = A
sum = (during World1 then 17)

.-WI

These are equivalent at the semantic level, and the first was
chosen in the initial implementation -- all factoring into
contexts was done at the top level of slots. However this
proved to be tremendously clumsy in practice, since it meant
that much of the information was duplicated, especially in
cases of recursive embedding. This was exacerbated by the
fact that features (See Bobrow and Winograd, p. 14)
demanded factoring as well, and were used for a variety of
purposes, such as the viewpoints mentioned above. There was
a reimplementation midway in the life of KRL-o in which the
basic data structures were changed to make it possible to
merge as much of the shared information as possible. There
are a number of difficult tradeoffs between storage
redundancy, running efficiency, and readability when
debugging, and we never found a fully satisfactory solution
wi th in K R L-O .

Data structure manipulation

KKL-0 was not a fully declaratively recursive language in the
sense that machine language and pure LISP are. It was not

50

possible to write KRL-o descriptions of the KRL-o structures
(e.g. units, slots, descriptions) themselves, and use the
descriptive mechanisms to operate on them. Instead, there
were a number of LISP primitives which accessed the data
structures directly. People ran into a number of problems
which could be solved by explicit surgery (i.e..,using the LISP
functions for accessing KRL data structures, and RPLACA and
RPLACD) but which gave the programs a taint of ad hocery
and overcomplexity. As an exercise in using K R L

representational structures, Brian Smith tried to describe the
KRL data structures themselves in KRL-O. A brief sketch was
completed, and in doing it we were made much more aware of
the ways in which the language was inconsistent and
irregular. This initial sketch was the basis for much of the
development in KRL-I.

Deletion of information: One of the consequences of seeing
KRL-structures as descriptions, rather than uninterpreted
relational structures was a bias against removing or replacing
structures. Descriptions are by nature partial, and can be
expanded, but the most natural style is to think of them as
always applicable. Thus, for example, if a slot was to contain
a list (say, the list of digits known to have been assigned in a
cryptarithmetic problem), the descriptor used in an instance
was the Items descriptor, which is interpreted as enumerating
some (but not necessarily all) items in a set. I f the
description of some object changed over time, then it was
most naturally expressed explicitly as being a time-dependent
value, using the Contingency descriptor. There are some deep
representational issues at stake, and the intuition of thinking
of descriptions as additive was (and still is) important.
However, it led to an implementation which made it
impossible to delete descriptions (or remove items from lists)
without dropping to the level of LISP manipulations on the
descriptor forms. This caused problems both in cases where
values changed over time, and in cases where the programmer

e wanted the program to delete unnecessary or redundant
descriptors in order to gain efficiency. Although deletion and
replacement were doable (and often done), they went outside
of the KRL semantics in a rather unstructured way.

Explicit manipulation of descriptions: For some of the
programs, it was useful to have parts of the code which dealt
with the descriptions themselves as objects. For example, in
the cryptari thmetic program, the set of descriptions being
added to the value slot of an individual Digit could be
thought of as a set of “constraints”, and used in reasoning.
One might ask “What unused digits match all of the
descriptors accumulated for the value of the letter A”. This is
quite different from asking “Which unused digits match the
description ‘the value of letter A”‘. Similarly, in the
implementation of Winston’s program, the descriptions
themselves needed to be thought of and manipulated as
relational networks. The ability to use descriptions in this

style gave power in writing the programs, but it had to be
done through LISP access of the descriptor forms, rather than
through the standard match and seek mechanisms.

Problems with the matcher

Specifying the match strategies: The matcher in KRL-0 took
a KRL-o description as a pattern, and matched” it against
another description viewed as a datum. For each potential
descriptor form in the pattern, there were a set of strategies
for finding potentially matching descriptions in the datum.
The ordering of these named strategies, and the interposition
of special user-defined strategies was controlled by use of the
signal mechanism. This was designed to give complete
flexibility in how the match was carried out, and succeeded in
doing so. Many specialized match proceses were designed for
the different projects. However, the level at which they had
to be constructed was too detailed, and made it difficult to
write strategies which handled wide ranges of cases. The
strategies were mostly reflections of the possible structures in
the datum, and did not deal directly with the meaning of the
descriptors. This led to-having to consider all of the possible
combinations of forms, and to programs which did not
function as expected when the descriptions contained
different (even though semantically equivalent) forms from
those anticipated.

Returning bindings: Since patterns for the matcher were
simply KRL-o descriptors, and there was no coherent
meta-description language to define procedural side effects, it
was very difficult to extract the bindings from a match. This
was handled in the legal example, which most needed it, by
providing special signal tables for these matches, again
leading to a feeling of ad hocery to get around a basic
problem in matching.

Control of circularities: In using matching as a control
structure for reasoning, it is often useful to expand the match
by looking at the descriptions contained in the units being
compared. Consider the units:

52

[Give UNIT Basic
<self (A Receive with

received+ (the given)
receiver = (the . receiver)
giver = (the giver))>

<giver (A Person)>
<receiver (A Person)>
<given (A PhysicalObject)>]

[Receive UNIT Basic
<self (A Give with

given= (the received)
receiver = (the receiver)
giver = (the giver))>

<giver (A Person)>
<receiver (A Person)>
<received (A PhysicalObject)>]

[Event I7 UNIT Individual
<self (A Give with

giver = Jane
receiver = Joan
_@ven = (A Hammer))>

If asked whether the pattern (A Receive with received = (A
Hammer)) matches Event17, the matcher needs to look in the
unit for Give in order to see that every Give is indeed a
Receive, and to match up the slots appropriately. However,
this can lead to problems since descriptions in units could
easily be self-referential, and mutually cross-referential. In a
slightly more complex case, the matcher could try to match a
Give by looking at its definition as a Receive, and then
transform that to a Give, and so on. Some of the early match
strategies we developed fell into this trap and looped. The
simple solution that was adopted to limit such circular
expansion was to adopt a depth first expansion policy, and to
limit the total depth of expansion (recursion through
definition). This obviously works both in this case, and to
limit arbitrarily large non-circular searches. In the limited

- data bases we used, it never caused a match to be missed when
the programmer expected it to be found. But it is a crude
device which does not provide adequate control over search.

Inefficiencies due to generality: Since the matcher was
designed to allow a wide range of strategies, a fairly large
amount of processing was invoked for each call. Often, the
programmer wanted to check for the direct presence of a
certain descriptor, and to avoid the overhead, dived into
LISP. Thus, instead of writing: .

(Match ‘Event 17
‘(A Give with giver = Jane)
‘SimpleStructureMatchTable)

it was possible to write:

(EQ 'Jane
(Getitem (GetFiller ‘giver

(Get Perspective ‘Give
(GetSlot ‘self ‘Event 17)))))

Given that the SimpleStructureMatchTable caused the matcher
to look only at direct structural matches, the two forms were
equivalent, and the second avoided much of the overhead.
Many problems arose, however, in cases where later decisions
caused the description form to be different (for example,
embedded in a contingency) but to reflect equivalent
information.

Problems in the interface between KRL and LISP

One of the major design decisions in KRL-o was the use of
LISP for writing procedures, rather than having a KRL
programming language. This was viewed as a temporary
measure, allowing us to quickly build the first version, and
work out more of the declarative aspects before trying to
formulate a complete procedural language in the following
versions. A number of awkward constructs resulted from the
need to interface LISP procedures and variables to the KRL
environment.

Limited procedural attachment modes: Only the simplest
forms of procedural attachment were implemented. Thus, for
example, there was no direct way to state that a procedure
should be invoked when some combination of slots was filled
into an instance. Procedures had to be associated with a
single condition on a single slot. It was possible to build
more complex forms out of this by having a trigger establish
further triggers and traps (there are examples of this in the
unit for Column given above), but this led to some rather
baroque programming.

Communication of context: When a trap or trigger was
_ invoked, the code associated with it needed to make use of

contextual information about what units were involved in the
invocation and what state the interpreter was in (for example
in the use of hypothetical worlds). This was done simply by
adopting a set of LISP free variables which were accessible by
any piece of code. and were set to appropriate values by the
interpreter when procedures were invoked. This approach was
adequate in power, but weak in structure, and a number of the
detailed problems which arose in the projects grew out of
insufficient documentation and stability of what the variables
were, and what they were expected to contain when.

Unstructuredness of procedure directories: The notion of
having a “signal table” containing procedural variables was a
first step towards breaking out of the normal hierarchical
definition scheme of LISP. The intention in developing a KRL
procedural language- is to develop a set of structured control

54

notions which make it unnecessary for the programmer to fill
in the detailed responses to each possible invocation. In the
absence of this, KRL-o signal tables had much the flavor of
machine code. A clever programmer could do some striking
things with them (as in their use in SAM for controlling
language analysis and generation), but in general they were
hard to manage and understand.

Underdeveloped Facilities

The KRL overall design (see Bobrow and Winograd, p. 3)
involved a series of “layers” beginning with the primitive
underlying system and working out towards more
knowledge-specific domains. Part of the ability to implement
and test the language so quickly came from deferring a
number of problems to higher layers, and letting users build
their own specialized versions of pieces of these layers as they
needed them. In most cases this worked well, but there were
some areas in which a certain amount of effort was wasted,
and people felt hampered by not having more general
facilities. -v.

Sets and sequences: KRL-o provided only three primitive
descriptors (Items, Allltems, and Sequence) for representing
sets and sequences. Notions such as subset, position in
sequence, member of set, etc. all had to be built by the user
out of the primitives. Everyone needed some of them, and it
became clear that a well thought out layer of standard units
and procedures would have greatly simplified the use of the
language.

Indexing schemes: The index mechanism built into KRL-o was
based on simple collections of key words. It was assumed
from the beginning that this was to be viewed not as a theory
of memory access, but as a minimal primitive for building
real istic access schemes. One of the projects (FLOW) attacked

- this directly, but the rest stuck to simple uses of indexing, and
did not explore its potential in the way they might have if a
more developed set of facilities had been provided initially.

Scheduler regimes: As with indexing, the scheduler
mechanism of KRL-o was intended primarily as a primitive
with which to build interesting control structures which
explored uses of parallelism, asynchronous multi-processing,
etc. The only structuring was provided by the use of a
multi-layer queue Like the category types discussed above, it
was an attempt to embed some much more specific
representation decisions into a system which in most places
tried for generality. It was not restrictive, since the system
made it possible to ignore it totally, allowing for arbitrary
manipulation of agenda items. However, because it (and no
other scheme) was built in, it tended to be used for problems
where other regimes would have been interesting to explore.

Notation

c

T h e K R L- o n o t a t i o n w a s s t r o n g l y Lisp-based, u s i n g
parenthesization as the primary means of marking structure.
This made it easy to parse and manipulate, but led to forms
which were at times cumbersome. This was especially true
because of the use of different bracketing characters (“()“,
“()“, ‘*<>“) for descriptors, descriptions and slots. At times a
unit would end with a sequence such as “})})}>)“. There was
one simplification made during the course of the
implementation, allowing the description brackets “0” to be
omitted around a description containing a single descriptor.
The examples in this paper use this convention. In addition,
better notations were needed for expressing sets and
sequences, and were explored in the KINSHIP project.

Limited address space

One of the shortcomings which most strongly limited the
projects was in the implementation, not the basic design.
INTERLISP is a paged system, based on a virtual memory which
uses the full 18 bits of the PDP-10 address space. The
philosophy has always been that with some care to separate
working sets, system facilities could grow to large sizes
without placing extra overhead on the running of the program
when they were not being used. This has led to the wealth of
user aids and facilities which differentiate INTERLISP from
other LISP systems.

As a result, more than half of the address space is used by the
INTERLISP system itself. The KRL-o system added another
quarter to this, so only a quarter of the space was available
for user programs (including program storage, data structure
storage, and working space). Both of the extended systems
(SAM and Medical) quickly reached this limit. This resulted
in cutting back the goals (in terms of the number of stories
and questions handled by SAM, and the amount of the sample
diagnosis protocol handled by Medical), and also led the
programmers to put a good deal of effort into squeezing out
maximal use of their dwindling space. Some designs were
sketched for providing a separate virtual memory space for
KRL data structures, but their implementation was put off for
later versions, since the lessons learned in using KRL-o within
the space limitation were quite sufficient to give us direction
for KRL-1.

4. Current Directions

The projects described above were completed by the end of
summer 1976. Since that time, we have been primarily
engaged in the design of KRL-I, and as of this writing (June
1977) are in the midst of implementing it. The development
has involved a substantial shift of emphasis towards semantic
regularity in the language, and a formal understanding of the

56

kinds of reasoning processes which were described at an
intuitive level i.n the earlier paper. Much of this has been the
result of collaboration with Brian Smith at M.l.T, who is
developing a semantic theory (called KRS for Knowledge
Representation Semantics) which grew out of attempts to
systematize and understand the principles underlying systems-.
like KRL.

The new aspects of KRL-i include:

) A uniform notion of meta-description which uses the
descriptive forms of KRL-1 to represent a number of
things which were in different ad hoc forms in KRL-O.
The old notions which are covered include features,
traps and triggers, index terms, and a variety of other
detailed mechanisms. The emphasis has been on
providing a clear and systematic notion of how one
description can describe another, and how its meaning
can be used by the interpreter. A number of the
problems related to the manipulation of description
forms are salved by this approach.

b A more structured notion of the access and inference
steps done by the interpreter. The interpreter is written
in a style which involves operating on the meaning of
the forms, rather than the details of the forms
themselves. This makes possible a more uniform
framework for describing matching and searching
procedures, and the results they produce. It allows the
language to be described in terms of a clear semantics
(see Hayes, 1977 for a discussion of why this is
important). We expect it to make the development of
complex Match and Seek processes much easier.

) A notion of data compaction which makes it possible to
use simple data record structures to stand for complex
descriptor structures, according to a set of declarations
about how they are to be interpreted. This enables the
system to encode all of the internal structures (e.g. the
structure which represents a unit) in a form which can
be manipulated as though it were a full-fledged
description.

-) A compiler which converts simple Match, Seek, and
Describe expressions into corresponding INTERLISP
record structure manipulations, reducing the overhead
on those instances of these processes in which only
simple operations are to be done. This should make it
possible to preserve efficiency while writing much more
uniform code, with no need to use explicit L I S P
manipulations of the structures. Use of the notions of
compiling and compaction allows the conceptually
correct but notationally expensive use of uniform
metadescription to be supported without excessive
running cost in the common cases.

57

) A uniform notion of system events which allows more
general ki.nds of procedural attachment, and includes
traps, triggers, and signals. Also, by including much of
the INTERLISP interface in description form, it has
become more uniform and understandable as well.

) A simplified syntax, in which indentation is used to
express bracketing, eliminating the need’ for most
paren theses. It also uses “footnotes” for attaching
meta-descriptions, and has simple set and sequence
notations.

) Simplified notions of categories, inheritance chains,
and agendas, which avoid some of the specific
commitments made in KRL-O.

) Expanded facilities for sets, sequences, scheduling,
time-dependent values, category hierarchies, matching
information and multiple-worlds. These are all built
up out of the simpler, uniform facilities provided in
the kernel, but they represent a substantial body of
standardized facilities available to the user.

We are currently exploring a number of different solutions to
the address space problem. Until LISP systems with a larger
address space are available, some sort of swapping mechanism
will be necessary, but we see this as a temporary rather than

. long- term problem.

The cycle of testing on KRL-i will be similar to the one
described in this paper, but with an emphasis on a smaller
number of larger systems, instead of the multiple
mini-projects described above. We feel that with KRL-o we
explored a number of important representation issues, but
were unable to deal with the emergent problems of large
systems. Jssues such as associative indexing, viewpoints,
concurrent processing, and large-scale factoring of knowledge
can only be explored in systems large enough to frustrate
simplistic solutions. Several programs will be written in
KRL-I, on the order of magnitude of a doctoral dissertation
project. Current possibilities include: a system for
comprehension of narratives; a system which reasons about
the dynamic state of a complex multi-process program, and
interacts with the user about that state; and a travel
arrangement system related to GUS (Bobrow et. al., 1977).
Current plans include much more extensive description and
documentation of the system than was the case with KRL-O.

We do not view KRL-1 as the final step, or even the
next-to-last step in our project. In Bobrow and Winograd,
1977 (pp. 34-36) we discussed the importance of being able to
describe procedures in KRL structures. Our plan at that time
was to design a comprehensive programming formalism as
part of KRL-I. In light of the shift of emphasis towards
better understanding the aspects which we had already

58

implemented, we have postponed this effort for later versions,
still considering.it one of the major foundations needed for a
full KRL system. There remains .the large and only vaguely
understood task of dealing in a coherent descriptive way with
programs and processes. It is likely that to develop this aspect
will take at least two more cycles of experience, and as we
learned so well with KRL-0, there is always much much more
to be done.

References

Bobrow, D.G., Kaplan, R.M., Kay, M., Norman, D . A . ,
Thompson, H., and Winograd, T., GUS, a frame driven
dialog system. Artificial Intelligence, 1977 V 8. No. 2.

Bobrow, D.G. and Norman D.A., Some principles of memory
schemata, in D.G. Bobrow and A.M. Collins (Eds.),
Representation and Understanding, New York: Academic
Press, 1975, 131-150.

Bobrow, D.G. and Winograd, T., An overview of KRL-0, a
knowledge representation language. Cognitive Science, V. 1,
No. 1, 1977

Hayes, P., In defense of logic, (Draft paper) 1977

Kaplan, R. A general syntactic processor. In R. Rustin (Ed.),
Natural language processing. New York: Algori thmics
Press, 1973.

Lehnert, W., Question Answering in a story understanding
system, Yale University Computer Science Research Report
#57, 1975.

Meldman, J.A., A preliminary study in computer-aided legal
analysis, MIT project MAC TR 157, 1975.

Minsky, M., A framework for representing knowledge, In
m Winston, P. (Ed.), The psychology of computer vision,

McGraw-Hill, 1975.

Newell, A., and Simon, H.A., Human Problem Solving,
Prentice Hall, 1972.

:Norman, D . A . , & Bobrow, D . G . On data-limited and
resource-limited processes. Cognitive Psychology, 1975, 7,
44-64.

Rubin, A.D., Hypothesis formation and evaluation in medical
diagnosis (MIT-AI Technical Report 316). Cambridge:
Massachusetts Institute of Technology, 1975.

Schank, R.C. (Ed.), Conceptual information processing,
Amsterdam: North-Holland, 1975.

Schank, R., and the Yale Al Project, SAM -- A story
understander, Yale University Computer Science Research
Report #43, August, 1975.

58a

.

Tei tel man, W., INTERLISP reference manual. Xerox Palo
Alto Research Center, December, 1975.

Thompson, H., “A Frame Semantics approach to Kinship”,
ms. Univ. of California, Berkeley. 1976

W i nograd, T., Frame representations and the declarative
procedural controversy. In Bobrow, D.G. and Collins, A.
(Eds.), Representation and Understanding, New York:
Academic Press. 1975.

Winston, P., Learning structural descriptions from examples.
in P. Winston (Ed.), The psychology of computer vision
New York: McGraw-Hill, 1975.

.

7. Knowledge Based Programming
THE DESIGN OF

THE PSI PROGRAM Si’NTEI’ESIS S Y S T E M

59

Cordell Green
.

Artificial intelligence Laboratory,Computer Science Departmcnt,Stanford University

Keywords: automatic programming, program understanding,
knowledge-based systems, natural language, program
Inference, algorithm analysis, automatic coding, program
synthesis, program modeiling

Abstract

This paper presents an overview of the current state of the
PSI automatic program synthesis system and dicusses the
design considerations. The PSI system allows a user to
specify a desired program in a dialogue using natural language
and traces. PSI then synthesizes a program meeting these
specifications. The target programs are simple symbolic
computation programs in LISP.

PSI may be described as a knowledge-based program
understanding system. It is organized as a collection of
closely interacting modules, or experts in the areas of natural
langu:7ge, discourse, traces, application domain, high-level
program modelling, coding, and efficiency. An implementation
effort is underway and several modules are now working.

1. Introduction

This paper describes the research goals and system design of
a knowledge-based automatic programming system, PSI
(sometimes referred to as JI). The PSI program allows a
user to interactively describe in natural langusgc a desired
program. PSI then synthesizes a p r o g r a m meeting the
specifications. The PSI system is a group project being done
at the Stanford University Artificial intelligence Laboratory.
The personnel include David Barstow, Jerrold Ginsparg,
Cordeli Green, Elaine Kant, Brian McCune, Jorge Phillips,
Louis Steinberg, and Ronny van den Wuevel. Former members
include Avra Cohn and Bruce Nelson.

PSI deals with the world of symbolic computation (as
opposed to numeric computation) and produces programs in
LISP. -Examples of symbolic computation include list
processing, searching, sorting, set operations, data storage
and retrieval, and pattern matching.

There is a variety of programming applications that can bc
made up out of these kinds of techniques, including algebraic
simplification, symbolic learning programs, simple data
management systems, etc. We expect the class of programs
PSI can write to grow as the project proceeds We arc
planning for PSI to be able to write a series of application
programs that use increasing amounts of both low-lcvci
programming knowledge and of higher-levci or appiication-
specific knowledge. W e present later in this paper an
example of a specific learning program to be written by PSI.

The user specifies or describes the desired program through
an interactive dialogue between the system and the user,
where each Is able to take the Initiative in leading the
discussion and asking questions as the situation requires. The
intent is that the dialogue be as natural as possible to the
user for the particular class of programs being produced. We
allow two specification methods In the initial implcmcn!ation.
The principal method is the use of natural language, in
particular a reasonably useful subset of English. A second
specification method available to the user of PSI is traces, a
Sequence *of “snapshots” of the state of execulion of the
desired program. Effectively the user shows the system in a
step-by-step manner how the desired program should work.
and then the system writes the actual program.

PSI is organized as a knowledge-based system containing a
great deal of information about the process of writing a
program and about discussing a program with a user. The
system is organized as a set of closely Interacting modules or
experts. There are programmed modules for the following
areas:

Parser-Interpreter
Discourse (including User Model)
Application Domain
Trace Understanding
Model Building (constructs a model from fragments)
Coding (pure programming knowledge)
Ef ficlency (Including algorithm analysis)

There is currently no explanation or natural language
generation system, although such an expert is clearly needed.

The operation of the system may be said to fall into two (not
entirely distinct) phases. The first is the modci acquisition
phase in which a high-level model of the desired program is
built up through conversation with the user. III the second
phase, an efficient program that meets these specifications is
produced.

AS of November 1976 an initial implementation of
the PSI system has been completed and has
successfully synthesized several programs from
.natural language dialogues. In particular, the two
synthesis group modules, the coder and the
efficiency expert, have synthesized many test
programs. The parser-interpreter works properly
on several of the target dialogues, including the
one presented in this paper. The model builder
can currently construct program models from a
few dialogues. There are partial implementations
for the other modules in the acquisition group, but
they are not yet in a state to be interfaced or
tested. In general, our progress is encouraging,
and We hope to be able to report in later papers
the details of the impiementations and the
successes end iimltations of our design.

60

How does this system compare with others? At the time of
its design there were no really comparable systems in
cxistcncc, although a few arc similar. ThC ClOXSt VJCIS
Hcidorn’s natural language programming system [Heidorn,
1974 J. which was a specialized design for writing simulation
programs. There are three other automatic programming
research projects which rely on natural language, at MIT, ISI,
and IBM Yorktown Heights. All of these projects have the
same global goal of making programming caslcr. Since all of
these projects, including ours, are continually undergoing
redefinition, it is somewhat speculative to compare them, but
we can try. Our system is distinguished from tile others
perhaps by its scope-- ranging from the use of traces as
inputs to reliance on discourse cxpcrtisc, domain cxpcrtisc
and some automatic analysis of algorithms for cflicicncy. In
addition to using all of these parts, we are concentrating on
finding solut ions to t h e VariOUS problems of system
integration. The other projects may be distingtiishcd from
ours as follows: At MIT the OWL project [Hax and Martin,
1973). emphasizes natural language. A second MIT project
(PROTOSYSTEM I) deafs with a system specially devised for
the problems of data management and inventory control.
Currently, these two efforts are not integrated into one
s y s t e m , A t Lsl [Balzer, 19741, there has been g rea te r
emphasis on acquisition of domain knowledge from English
rather than having this knowlcdgc built in, as in our system.
That ISI effort focused on the program model acquisition
phase rather than producing efficient code from the model.
IBM [Mikclsons, 19751 has shifted major emphasis from
synthes is o f new programs to undcrstnnding of existing
programs, utilizing Heidorn’s system for the natural language
processing. In summary, these efforts are con~;~lcrncntary,
each ernphasizing somewhat different aspects of automaiic
programming. There i s , additionally, much research on
relevant independent subparts of the entire problem, ranging
from natural language to analysis of algorithms. The research
in related areas is too voluminous to discuss hc:e, but two
recent papers survey the field of automatic programming
[Hoidorn, 1976),[Ciermann, 1976).

2. Research Objectives

,

Our major reason for atternpting a synthesis of the many
asp%cts of automatic programming was the bclicf that an
attempt to integrate a total system would serve to focus
research efforts. There has been much research on particular
related sub-problems, e.g. program Inference from traces or
examples, and program synthesis from formal specifications.
but we felt that an overall framework was missing. Without
knowing yherc and how the pieces would fit in, it was
difficult to decide on optimal research stratcgics for the
parts. For this reason we have chosen rclativcly long-term
total system goals. We are evolving a framework to meet
these goals.

In our efforts, we hope to establish the feasibility of this
approach to automatic programming, and to answer some key
questions, such as: How should a total system bc organizcc!?
How much programming knowledge is needed to accomplish a
particular task, and can this knowledge be codified in machine
form? How crit ical arc qucstiqns of cfficicncy, and can
algor i thm analys is tcchniqucs bc automated in any useful
vfay? 00 there exist alternative natural ways of expressing
programs that are bcttcr than current programining l,:nguagcs?

W C also hope to shed light on other research issues, cllthough
In a sense they are less pressing, due to the amount of effort
already being expended on them by others. These areas
include work on parsers for limited natural language and the
use of inference and problem-solving techniques for program
synthesis.

2.1 Dcsidcrata

In arder to accomplish our research objectives, it was
necessary to carefully draw up a set of design constraints
that was ambitious enough to force us to look at the
important issues and yet limited enough to make the project
feasible. The design constraints decided upon are as follows:

Program Specification: The specification process may bc
interactive. The range of specificity allowed the user is
large, varying from one extreme in which the user gives
great detail, to the other extreme in which the system uses
its domain knowledge to suggest a complete progl.lm. More
than one natural specification method will be available to the
user (forcing the system to internally integrate different
forms of program description). A program can be specified
relative to an existing program (this is similar to a program
modification capability, but in our system the modification
occurs at the program description level).

Languages for Program Specification: Thcsc should
examples, traces, and a reasonable subset of English.

include

Usor Interaction: Both th’e system and the user will be able to
explain the program, ask necessary questions, and provide
answers. A mixed-initiative dialogue will be possible.

Documentation: The system shall be able to explain its
operation and its finished program by answering “why” and
“how” questions at each significant Icvel. These reasons
should form the basis for a later system that would produce
readable documentation. This would requi re additicnal
information on how to convert reasoning chains into readable
prose. We are not currently working on this problem.

User: The user must have in mind a general idea of the
desired program, should be a programmer, and should be able
to stay within a limited subset of English. If Ihc user’s
general view of the program is at odds with the domain
knowledge of the system, then the user will have to be very
specific, but still will need no detailed knowlcdgc of the
target language.

System Model of tho Usor: The system wi l l have a
reasonable model of the user and of the discourse. The
model will Include topics under discussion, degree of user
initiatlve, discourse history, etc.

C lass o f Target P rog rams and Knowledge: They are,
generally, symbolic computation programs. At the lower
Icvels, the type of programming knowledge ntccssary to
write them includes such subjects as list processing. set
operations, sorting, pattern matching, etc. The system shall
have domain knowll:dge about higher-lcvcl application or
problem domains, e.g. data managcmcnt programs, symbolic
classif ication ployrams, s i m p l e Icarnir,g programs, ttc.
Initially, the system shall know about one high-lcvcl dom;lin--
that of concept formation programs. This d;r~lc;in is ratltcr
broad and presumes some simpler application ~OIKIIX, such as
cldssific&ion and symbolic (as opposed, say, to siatisticsl)
pattern recognition.

Vatiahility in Target Programs: The system will ~!Iow a
variety of alqorithm and datcl structures in fhe programs beinq
constructed. For low-level algorithms (such as table look-up
o r s.r>1 itl:crsection) thare should bc several varictics of
aigotithrn and data structures that the system can synthesize
for e~h problem. D;xta strtrCtures should include lists, arrays,
records and references. Control structures should include
itcrdtion and rcc;:sion. At higher levels, the system should
be able to produce many significantly different types of
prograrns (although we don‘t quite know how to characterize
this desired variety except to list typical target programs).

c

Efficiency of Target Programs: The programs produced
should be efficient. i.e. cornparablc to those produced by an
average programmer. This will require some algorithm
analysis capability beyond conventional obtimization
techniques.

2.2 Assumptions about the Future World of Programming

Underlying this set of constraints and choices about what
abilities are important to include and to omit in planning an
autocratic programming system for the future, there are a
few assumptions about what the programmhg environment of
the future will be like.

Perhaps the most significant assumption is that much higher-
level languages will come into use in our interactions with
computers. Limited English is a very high-lcvcl language
suitable to certain applications. (This does not imply that an
algorithmic language such as ALGOL has no place, but merely
that it can often be successfully rcplaccd.) When we are
specifying a program in Englis!), there is littlc need for the
user to go through the target language program and make
changes at that level. If thr! user wishes to modify a
program, the desired modificat’qq would be exprcsscd at the
English level, not at the targcl language level. Reflection
upon this point implies that our s;,,:cm need not necessarily
modify object or target programs in the conventional sense
of

s
rogram modification. Instead, a high-level internal model

or escription of the desired program would be modified, and
a new and efficient program could be produced from this
model. Whether or not any of the old program would be
used or modified would be a question of synthesis efficiency
to be decided by the code-producing part of the automatic
proiramrning system. Cor.:>ilcrs provide a good analogy.
Users need to look at target code only for special purposes;
most interaction is carried out at the source code lcvcl.

A second assumption is that some part of the art of computer
programming can be made into a science or a tlrcory of
computer Grogramming. In addition, we thin!< that this theory
can be a detailed, machine-usable theory of the process of
programming. We are assuming that such a theory can be put
into some form of rules, embodied in a computer program.
Evidence that this is possible is provided by the machinc-
usable theories o f s o r t i n g [Grcon a n d Earstow,
1976].[Grcon and Barstow, 19753 and theories of hash
tables [Rich and Shrobo, 1974). The important questions
are the amount of knowledge that will be rl?cessary to carry
out synthesis of a particular class of programs and the
difficulty of embedding this knowledge in usefk:l programs.

Although there is an optimistic feeling that conventional
synthesis knowlcdgc can be encoded in a machine-usable
1h?ory. WC imagine that it will bc more difficl.llt to hc ohlc to
auL~natically synthesize novel and very clcvcr ;l!;orithrns.

That is, we do not expect to automatically dcvisc rc;llly gou,J
sort algori:!lms from first princiJ>les. Instead, our s)ls’\.Ti;l w,II
be able to synthesize a reasonable sort rouiinc or C’WW a
variation that is suitable for the task at hand, but it will knoLv
the principles of sorting and programming necessary for t!lat
derivation from the outset.

3. “A Sample Session with PSI

3.1 The Specification Dialogue

To show how our system will work we present here a
dialogue In which *the user describes a desired concept-
formation program. This dialogue has been used for hand
simulations to guide the design of PSI and should be
representative of its capabilities. We have prepared 20
dialogucis for 20 different target concept formation programs,
to characterize the desired performance; the program
discussed here is approximately mid-range in the difficulty
level of the target dialogues. Other dialogues WC prepared
specified a symbolic pattern classification program and a
simple data storage and retrieval program.

W e would like to warn the reader that the dialogue is
illustrative of our intent but should not be construed too
literally. In particular, this dialogue endows PSI with an
impressive English synthesis ability. While this makes for
easier reading, our near-term implementation will use simpkr
standard responses, since synthssis of natural language is not
the focus of our research. We also anticipate the necessity
of more interaction to disambiguate the user sentences.

To understand this dialogue, WC digress briefly to discuss in
general what a “concept formation program” is. It is a type
of simple learning program that takes as Input scvrral objects
that are instances of some concept and also scvc~:sl obj;Jc:s
that are not Instances of the concept. As output, it produces
an abstracted description of the concept so that given a new
instence, it can classify that instance a5 reprct;cntii~~j tltat
concept or not. A typical concept formation program, given
the instances

part of the concept not part of fhe concept
b l u o c i r c l e blue square
blue oval rod ellipso

might conclude that the concept includes “blue, curvctl
shapes” as features. Then, given a new instance “yctlow
circle,” the program would say “not an instance of tllc
concept.” In our dialogue the input instances are called
“scents”. For further explanation of concept form;ltisn
programs, the reader may peruse section 4.3. Concept
formation programs can also be quite complex; for example
Winston’s doctoral thesis [Winston, 1975) was based on
such a concept formation program. Our current cxamplc is
one that lies somewhere between these two cxtrcmcr,.
Concept formation is in fact quite a good domain, since tilt
programs invo lved ca l l upon an Interestin:; b o d y of
programming ideas and these programs can vary coiACi(:t Aly
in difficulty. They exercise our system well. Oar tarq:t
programs are typically several pages of modcratcly complex
LISP code.

v“

The dialogue is as follows:

PI

PI

PI

PI

c53

L-61

171

PI

PI

USER: Please write me a theory formation
program.

PSI: What would you like to call the theory
formation program?

USER: “TF”.

PSI: Tell mc more about TF.

USER: Where should I start?

PSI: First, let’s make sure we’re talking about the
silrne thing. I w i l l assume tha t by “theory
fcrmation” you Mean what Is frequently rcferrcd
to as concept formation. To me, a concept
formation program is a program wl,Ich accflpts
scenes from a user end forms theories to explain
or model the scents. Is that close to what you
mean?

USER: Yes.

PSI: There are now sevf??_ral things to talk obout:
the input scenes, the structure of the thcorics, and
the theory formation algorithm. Is that OK with
you?

USER: Yes.

[lOJPSI: What is the structure of the input sccncs?

[l l]USER: An input scene is 3 colMlion of rcl;itions,
each of which is a properly name foiiovdcd by the
names of the objects over which the property
holds.

[lZ]PSI: OK. I think we’re done with scenes for now,
Is it all right if we go on now to talk about the
theories?

[13]USER: Yes.

4)PSI: Should the program maintain several different
theor les at the same time, or only one theory?

[15]USE’R: I coil theories “concepts”. There should be
only one of them. It should be a set of relations,
each marked either as “possible” or “necessary”.

[16]P51: OK. I think we’re done with concepts for
now. Is it OK if WC go on now to talk Ax~i IIOW
a scene is used to form and modify the t:,$zsric;?

[1 T]USER: Yes.

[1 SIPSI: Please describe the top level of TF.

[19]USER: It inputs a scene, tests whether it fits the
concept, verifies the result of this test wiili the
u\cr, and updates the concept. Then it rci;<*a;s t,le
PI occss.

[2O]PSI: I take it you mean that
user provides an exit signal.

it repcAt. Uritil t h e

[~~]usER: Yes , stop Witcn the user types quit instc;d
of an iilput scene.

[22]f’sI: OK. NOW we need to talk about itiputti:;g a
scene, testing whether tllc scene fits tile coiicf’pf,
Verifying the result of the test with tlte user, and
updating the concept. Would you describe the test

. . that a scene fits the concept?

[23]USER: OK. The ‘: ,lut scene fits the concept if aI1
Of the rCiatiOnS ill the concept that ,zrc marked
“necessary” are part of the scene.

[24]PSI: What is the concept initially?

[25]USER: It has no relations stored initially.

[26]PSI: OK. Can we talk about how to verify the
result of this test with the user now?

[27]USER: Yes. Output the result of ttle test, ask the
user if this is correct, and input the u;cr’s
response. The response should be cithcr correct or
wrong. l

[28]PSI: What should be done if the user’s response is
neither?

[29]USER: Output “type correct or wrong” arid input a
new response.

[~o]PSI: In what output format should the result of the
test be output given?

[~~]usER: output fit if the scent fit and didn’t fit if it
didn’t.

[32)PSI: OK. I th ink we are done ta lk ing abcut
verifying the result of the test. Can we talk about
how to update the concept now?

[33]USER: OK. Thcrc are four casts, dcpcnding on
whether tllc scene fit or didn’t and whcthcr tljc
user said the program’s guess was correct or
wrong. lf the scene fit and the user said the guess
was correct, then every relation thnt is pzrt of the
scene but not part of the concept should be added
to the concept and marked “maybe”.

[34]PSI: [interrupts] Above you said that relations in
the concept were to be marked “possll4e” or
“necessary”. Do you want to add “maybe” as
another marking?

[35]USER: No, “maybe” mc&ns the same as “~~omtjle”.

[3G]PSI: Go on.

[37]USER: Where am I?

[38JPSI: You were just Lqlking about four ciiflcrent
cases f o r uj&ting tlic cmccpt. You had j u s t
tctlkcd ahout the case wllcrc thu sccnc fit ;?iId tiz
user said ttlc t;ucss was cc.rrect.

63
[39JUSER: OK. The next case is If the scene fit, and

the user said “wrong”: then find a relation in the
concept which Is marked “possible” and which is
not in the s c e n e . Change its marking to
“necessary”. If the scene did not fit, and the user
said correct, then do nothing. If the scene did not
fit, and the user said wrong, then for each relation
in the concept marked “necessary” that is not in
the scene, re-mark It “possible”.

[4O]PSI: In the case where the scene fit and the user
said wrong, what if there is no description in the
concept marked possible that is not in the scene?

[4l]USER: Do nothing.

[42JPSI: Can we talk about input forinats now?

[43]USER: OK. Input a scene es a list of descriptions,
where each description is a list of the property
name followed by its objects.

[443PSI: OK. How should TF prompt the user for an
input scene?

--[45)USER: 8y typing reedy.

[46]PSI: That seems to complete the description of TF.
Anything else?

[4?]USER: No.

[48]PSI: Then I will begin writing the program now and
let you know if further questions arise.

3.2 The Final Program

The resulting program produced consists of nine LISP
functions in the hand simulation of PSI. We exhibit it here to
give the reader a rough idea of the complexity of the output.
See section 4.6 for a high-level algorithmic description of
this program, our program model which serves as the
pribcipal intermediate representation.

(PROGRAM-X .
[LA\lBDA N1.L

(PROG (NECESSARY POSSIBLE SCElVE GUESS USER)
(INITIALIZE)

START
. (TERPRI)

(PRI Nl “Ready”)
STARTX

;;;;i SCENE (READ))

(‘(;;;;DSCENE)

(‘(EQP SCENE (QUOTE QUIT))
(RETURN NI L1)

(T (TERPRI 1
(PRINl “Type ‘quit’ or a
(GO STARTXI

(SETQ GUESS (TEST: SUBSET (CDR NECE
SCEh’E) 1

(SETQ USER (VERIFY GUESS))
(UPDATE SCENE GUESS USER)
(GO START1 1

scene”)

(TEST: SUBSET
[LAMBDA <X Y)

(PROG (STATE)
(SETQ STATE (CDR X1)

RPT (COND
((N U L L S T A T E)

(RETURN T) 1
((hlE\tBER (CAR STATE) Y)

i;;T$p+;;4TE (CDR STATE) 1
-. (T --

(RETURN NI Ll 1

O’ER I FY
[LAMBDA (TRY)

(PROG (RESPONSE)
(TERPRI)
(PRINI (COND

(TRY “fit”)

IN

1)

(T V~If;l;Typk ‘correct ’ or ‘wrong’“)

(UPDATE
‘Ly;;;; (INPUT GUESS RESPONSE)

[GUESS (COND
(RESPONSE (UP’DATE: FIT: CORRECT INPUT))
(‘I’ (UPDATE: FIT: WRONG INPUT]

((NOT RESPONSE)
(UPDATE: DI DNT: WRONG INPUT))

0 Tl)

(UPDATE: FIT: CORRECT
[LAMBDA (INPUT)

(MAPC INPUT (FUNCTION ADD: POSSIBLE?] 1

(ADD: POSS I BLE?
ILAlBDA (X-l

(COND . .
((OR (MEMBER X (CDR NECESSARY)
(T cR;;I;;E;o;s:;;; POSS 1 BLE) 1) 1

(CONS X (CDR POSSI BLEI 1

(UPDATE: FIT: URONG
[LAMBDA (INPUT)

(PROG (PRED)
(SETQ PRED POSSIBLE)

RPT (COND
((NULL (CDR PRED))

(RETURN T) 1
((NOT (MEMBER ‘CAP;p;;;P’

(RPLACD NECESSARY (COSS

(RPLACD PRED (CDDR PRED)
(RETURN T) 1

(T (‘;;TiP;;;D (CDR PRED))

(UPDATE: DI
‘LA&;;;;

RPTl

(INITIALIZE
[LA!IBDA N I L

(SETQ NECESSARY (LIST (QUOTE NECESSARY: 1))
(SETQ POSSIBLE (LIST (QUOTE POSSIBLE: 1)

(CADR PRED)
(CDR NECESSARY) 1)
1.

iSSARY)

(T “(SETQ PRED (CDR PRED))
(GO RPTll)

LE)))

For the reader concerned about a more “structured” program.
the coder does indeed produce a cles?cr intermediate
program: an example is given in [Groan and Earslow. 197G J.

c

P a r s e r - +cl LJb I n t e r -
p r e t e r -

I

Oovra i n
l Expert
+cl

I
_

Discourse Expert
and User flodel

.I Program
r+ tloclel

--
Coding

{ I ExpertEl
I

Effi-

cl

c i ency
Expert

3 Target
Program

Acquisition Group Synthesis Group

4. System Organization

We will first describe the overall design and then discuss
each module in detail.

4.1 Tho System Design

The structure of the system is shown in the block diagram
here. Arrows indicate paths of communication, and the
experts appear in the frames.

-The experts may be conveniently divided into two groups,
acquisition and synthesis. The former group of experts
acquires a model of the desired program from the user. The
latter group synthesizes an efficient target program that
satisfies the model. The majority of the interactions within
the system are within each group, and the program model is
the major communication between the two groups. (It turns
out that ths simplified view is not quite accurate, since, for
example, certain questions from the efficiency cxpcrt can
reach the user, but the division is convenient and mostly
true.)

The program model can be seen as a very high-lcvcl language
program, or alternatively, as a description of a program. It
allows hic;h-lcvcl proccdurcs and information structures, as
VJCII as assertions about these items. We have dcvclopcd an
exact ICLLJJ~CJ~ for specifying this model. It is concrete
enough that it can be interpreted, albeit slowly compared to
the synthesized program. The interpreter for the model
language has been in,plemented by Bruce Nelson [Nelson,
1 9 7 6) .

The specification phase consists of interaction between the
user and the system. The flow of the dialogue is governed
by the discourse expert, based on its measurements and
estimations about the user’s state of mind (the user model)
and on the current topic under discussion. The discourse
expert adjusts to changes in initiative (whether the user or
the system seems to be leading the discussion at a given
time), changes in topics (different users may want to discuss
different aspects of their programs in different orders), and
the degree of user control (different users may want the
system to make different choices automatically). Since the
dialogue is to be conducted in a subset of EncJlish, there is a
parser-interpreter which parses the sentences and then
partially interprets them into a relational structure. The
ability to complete the interpretation of the incoming
utterances (and to make reasonable responses or requests)
requires the help of two other modules: the domain expert
and the model-building expert. The domain expert interprets
terms with domain-specific meanings, providing disambiguation
information to the natural language expert. It provides
guidance to the discourse expert regarding the user’s
apparent knowledge of the domain, and provides help to both
the user and the model-building expert regarding possible
algorithms and information structures to be used. In addition
to the English dialogue input, input in the form of traces and
cxC>mplcs is allowed. The trace expert intcrprcts such inputs,
receiving help in the process from the domain cxpcrt. Its
output to the model builder is a partial description of the
program. The model-building expert constructs a comptcte and
consistent high-level program model by assembling
fragmentary program descriptions from the user, the domain
expert, and the trace expert, and by asklng questions when
necessary. It also acts as a source of information for the
user and all of the other experts regarding the program model
being constructed. Its knowledge includes very general higk-
levct program description knowledge.

I n the synthesis phase PSI takes the program model and
derives a LISP program from it. The process is based on a
body of systematized, codified programming knowledge to
which the coding expert will have access, When faced with a
choice, the coding expert is guided by the efficiency export,
which evaluates the alternatives in terms of rcLltive space
and time efficiency. The efficiency expert uses heuristic
analysis of algorithms techniques.

A comment on the modular i ty of our system may bo
appropriate at this point. In this presentation, alid in our
dcslgn. WC have drawn somcwhnt over-simplified boundaries
around the various modules or experts, Two purposes are
served by this simplification: firstly, the system is made
easier to understand, and secondly, both responsibility and
credit for the implementation of particular system capabilities
becomes easier to assign, in practice, such a clean and
simple sepafation is not always possible or efficient. A
closer examination will reveal that the required degree of
communication between certain modules can be quite large,
and that certain tasks may require cooperation between two
or more experts. For this reason, the implementation is more
complex than this design indicates; some knowlcdgc is
duplicated for the sake of efficiency, and sornc code
“belonging” to one.expert is physically located within another
expert. For a further discussion of some of these issues, sco
[Barstow and Kant, 19763. Now that the rcadcr has been
warned that the design presented-here is over-sill;plified and
in some cases untested, we proceed with the exposition,

4.2 Parser-intorproter

The function of the parser-interpreter is to parse and partially
interpret sentences into less linguistic, and more program-
oriented terms. it consists of two parts, READER and SPAN.
both described in [Ginsparg, 19763. READER is a
nondeterministic parser. The SPAN program converts the

output of the parser into a more usable form called INT. INT
is a relational structure, suited for describing programs. in
INT some pronoun and noun references have been found.
Verbs and nouns have taken on subject-specific senses. For
example, “of” can be interpreted to be set mcmbcrship, “is”
can be interpreted to be data-structure definition, etc.

WC now show a simple example of whst the natural ianguagc
expert does. Given the two sentences,

e

“It should be a set of relations, each marked either
as possible or necessary”

“The scene fits the concept if ail of the relations in
the- concept that are marked “necessary” arc part
of the scene”

it produces the following parses:

(EE (SS SHOUL9)
;;;yW;;T 1 T)

tjET A
(OF (RELATlO!;S

(DESCRI PTIOS EACH
(MARK F’i

(0E.J ECT KOUSDIIVZ)
(!.:.4RK 1 SG (OR (I: I TM-R)

PO5S I ELI:
SECESSAEY

)))))))>)

(FIT ss
(SUEJECT (SCESE THE) 1
(OBJECT KOSCEPT THE) 1
(IF (BE NN

(SUEJECT (ALL
(OF (RELATIOSS THE

(I X KOSCEPT
(MARK SS

THE) 1

(OBJECT TMT)
(MAR); I h’C SECESSXY)

))))I
(OBJECT (PART (OF (SCESE THE) 1) i) 1)

where NN and PN are tense markers.

From this parsed form, it produces the following LNT form.

shou I cl

1

of

(object [z!,,

\ POSSIBLE NECESSARY

plural

TRUE

The natural language piograms interact with the dialogue
expert, domain cxpcrt, and model buifdcr, Ail of those
experts play a role in the disambiguation of the input. Take,
for example, the sentence

“lt inputs a scene, tests whether it fils the
concept, verifies the result with the user, a n d
updates the concept. T h e n it r epea ts tl,e
process.”

Ihe references for the italicized parts may be found as
follows: the first if is solved by the parser-interpreter and
clialoguc expert by knowing which topic was just asked
about: the second it is solved by the domain expert using
knowlcdgc of what Can fit a concept; the last it and tllc

process use knowfcdgc from the domain cxpcrt and model
builder about what a concept-formation program c3n do, and

The concept is initially null. The scene

what constitutes a process.

4.3 Trace Expert

The trace expert allows the USC of an alternative input
language to specify a program. A trace is a series of
snapshots of a program’s execution. Exomplc input/output
pairs are treated as subcases of traces. The trace expert is
strongly oriented toward inductive inference; i.c. it does
more ‘guessing than natural language input requires, which in
turn is more than conventional programming language input
requires.

Let us illustrate how one would input a trace of the ‘desired
program to the system. The user gives a seqrrcncc of inputs
and internal states. In the example below, thcsc states and
inputs correspond 19 the formation of the concept “tower”.
The input consists of twc parts, a scene and its category.
The internal concept consists of Jwo parts, necessary and
possible.

The trace shown here is shortened and specifies a simpler
program than the TF program specified in the dialogue. (For
example, TF Includes the ability
ask the user if that is correct.)

to classify a new input and

Note that in this case, a trace is a convenient way for a
human user to communicate the gcncral idea about how a
program works. (It is a good way for the program to rcvcal
to the user how it works.) In this case, and in certain others
we have studied, traces are more natural than limited English
or programming languages, although this is not universally
true. For discussion see [Green et al, 1074).

Since there is no graphic input available, the actual form of
the trace input will look more like the following excerpt from
a dialogue specifying the TF program.

(1)

lNPUT
SCENE CATEGORY
none none
I-?(2) B
III

is a tower

A

(3) IA B is not a tower

(4) LB
a

is not a tower
A

(5) ;A is a tower
.

(Block a)
(Block b)
(Supports b a)

is input to the TF program. Match the scene and
the concept. The scene fits the concept. Output
“fits” to the user. Prompt the user. Tl~e user

-. replies “correct”, and the concept becomes

((Block a) possible)
((Block b) possible)
((Supports a b) possible)

Assume now that the input scene is

(Block a)
(Block b)

Match the scene and the concept. The sccnc fits
ihe concept, so output “fits” to the user and
prompt her for a reply. The user replies “wrong”
so the concept becomes

((Supports a b) necessary)
((Block a) possible)
((Block b) possible)

The trace expert is being designed and implemented by Jorge
Phillips. Its operation is described in more detail in [Phillips,
19763. It is the most recent addition to the PSI system.
The trace expert uses the natural language parser and
interpreter on the English sentences. From these and special
knowlcdgo o f i n p u t f o r m a t s , a s e q u e n c e o f state-
charactcriring schemata Is produced. From these, a set of
program model fragments is inferred and sent to the model
builder.

The t race expert has several new and s igni f icant
characteristics. It allows the use of high-level t r aces
expressed in natural language. It also incorporates into the
trace the use of example input-output pairs. Another feature
is that it draws upon a large knowledge base, incorporating
knowledge of input formats and knowledge about inference
of algorithms and data structures. Finally, it utilizes
knowledge from the domain expert, which we feel is an
important source of *constraint in a heavily lnductivc inference
oriented system.

CONCEPT
NECESSARY POSSIBLE
empty set empty set

empty set (B L O C K A)
(BLOCK B)
(SUPPORTS A B)

(SUPPORTS A B) (BLOCK A)
(BLOCK B)

(SUPPORTS A 8) (BLOCK B)
(BLOCK A)

(SUPPORTS A B) (BLOCK B)
(BLOCK A) (PYRAMID 8)

4.4 Tho Discourse Expert (including tho User Modal)

The discourse expert (or dialogue expert) a!lows for a very
flexible interface with the user. This flexibility is one of the
core issues of automatic programming; how weil can a
cornputcr system bend itself to the current task and user,
fZIthC!f than vice-versa? . The discourse expert is being
dcsigncd and implemented by Louis Steinberg [StcinbcrcJ,
1976-J.

Ttlc function of the discourse expert is to model the user, the
dialogue, and the state of the system. Using thcsc models
ttw discourse expert selects appropriate questions or
s!dtements to present to the user. It determines whether
user or expert has the initiative and at what level and on
what subject. Additionally, it helps to disambiguate the
natural language input by keeping track of the dialogue
context.

The parts of the discourse expert Include a semantic structure
and a discourse tree. The semantic structure tncodcs the
semantic relations among the possible topics of discussion.
These relations, such as super and subalgorithm, and USC of
data structure by algorithm define the set of potential paths
the dialogue may take, in that any relation is a potential path
for changing topics. The Dialogue Tree encodes the path
actually taken by the dialogue. Fit%ly, there is a user model
that includes what topic(s) the user Is talking about, how
much initiative the user has taken, how confused the usor is,
etc.

W e can illustrate the discourse expert’s operation by
example. In the dialogue given earlier, we have a reasonably
unconfused user, but one who asks for some guidance in the
discussion. In this dialogue the discourse expert generally
suppresses questions, since the user’s statcmcnts seem to fit
internal models of the domain. ?he first significant question
“Tell me more about IF” allows the user to take the initiative
and guide the discussion. At first the user is unsure and asks
where to start, so the discourse expert delivers a topic
outline provided by the domain expert and suggests beginning
with the first topic, the form of the lnput. A heuristic is that
users and programmers often like to begin with the format of
the input. This indeed works and the discussion is underway.

After digesting the input, the system suggests the next toPic.
TypiCally, with complex programs, programmers get lost (lose
context) and some assistance is helpful. This occurs in more
dramatic form In line 37 where, in the middle of a complex
algorithm the user asks, “Where am I?“.

Interruptions occur in line 20 and 40, whcrc the system
perceives -a fairly serious omission. In the first case, a
missing exit test lmplics an infinite input loop, and the system
suggests that the user provide a @stop’ command. In the
second instance, the user is listing what to do in each cast
and forgets to say what to do in the last case. The
discourse expert decided that an interruption in the form of a
question would be less disruptive at this time than in a later
context.

At any moment, there are many questions being asked
internally by the various experts. The discourse expert
sclccts from among thcsc the ones that will bc prcsentcd to
the user. Some heuristics include the fact that a supcrtopic
subsumes a subtopic, and that USU~IY. the hil;in cxpcrt’s
questions subsume any related gcncral progranmin~~ +cstioIls.

Thus, the questions tend to be phrased in terms the user fi;ltls
meaningful, i.e., terms related to the problem domin, rather
than the more programming-oriented terms used by the model
builder.

4.5 The Domain Expert

The domain expert’ functions in several ways in the PSI
system. Its principal purpose is to take partially intcrpretcd
sentences as input from the natural language expert, and
produce as output more specific fragments of prograrn
description, which are given to the model builder to assemble.
In this process, the in format ion is convcrtcd f rom a
linguistically oriented form to a more program-usable forrn,
and much of the ambiguity is removed. The domtin expcr t
also makes domain-specific inferences to fill in missing
information. The output from the domain export is in a
language called FRAGMENTS. FRAGMENTS is a program
description-oricntcd language, but is not specific enough to bc
interpretable as a program in any ordinary scnsc. The domain
expert is described in more detail in [Stcinbcrg, 19761.
Avra Cohn, Louis Steinberg, Jorge Phillips, and Brian McCune
all helped in defining and formulating the domain expert. ‘The
current design and implementation is being done by Honny van
den Heuvel.

As an example O f the domain expert’s performance,
it received the INT form of the sentences

suppose

‘W should be a set of relations,
as possible or necessary.”

each marked either

“The scene fits the concept if all of the relations in
the concept that are marked “necessary” arc part
of the scene.”

For the sentence referring to concepts, “it should be a set of
relations, each marked either apossiblo’ or *ncccssary,“’ the
input to the domain expert in INT form is

hember 8 lneniberof

argl

POSS I RLE

at-g2

NECESSARY

68
The program model fragments produced as an output provide

the following information:
The output produced is roughly,

fit (input scene, concept) is defined to be
A Concept is an information structure. It is 8 set.
There Is only one concept. It changes during the
execution of the program. Elements of the cct are

(v rel E concept)Marking(rel);“nccssary”
*part-of(rel,input scene)

marked features.
Again, it takes a slightly different internal form,

.’A marked feature is a pair (plcx) consisting of a
n~ark and a feature. A mark is a primitive. There The domain expert serves other purposes as well. It helps to
are two types of marklngs, may-marking and must- disambiguate input sentences by answering questions for the

marking. natural language expert during the course of parsing and
interpreting the sentence. Some disambiguation is done

A feature is a pair (plex) COnSkting of a relation interactively with the natural language expert and further
name and its argument list. dlsambiguation occurs after the natural language expert is

. through and INT has been passed to the domain expert.

. Similarly, the domain expert answers questions posed by the

. trace expert, the model builder and even the efficiency
expert. To whatever extent possible, the domain expert

The above information is coded in the special internal prevents the nonessential questions from propagating to the

fragment lenguage and really looks more like user. The domain expert is a very important information
source, and without one, an automatic programming system

(NAME COSCEFT has significantly less capability and l;tility.

CLASS 1 SFORMATIOh’ STRUCTURE
WPE SET
SIZE 011 sINlM CL
DYNAMIC YES
ELEMENT MARKED-FEATURE)P_

and so on. Observe that the domain expert has produced a
much more precise description of the data structure
information “concept”, adding information of its own that was

. not previously known about concepts and features. Often, as
in this case, mtch of the detail omitted from the input

In addition, the domain expert should enable the system to
carry on a relatively coherent dialogue by phrasing questions
and comments which are in domain-specific terms and which
are directly relevant to the user’s particular idea of the
domain. Finally, the domain expert should be able to inform
the discourse expert about how well the user’s apparent idea
of a program matches that of the domain expert, thereby
helping to Judge how well the system is following the user
(and how well the user Is following the system).

dialogue can be supplied by the domain expert. Also note
that fragments do not correspond in a one-to-one fashion to
sentences, but can be the result of several sentences or of
part of a sentence.

Let us now look at the role of the domain expert in the
sample dialogue. We can see the use of general knowledge
about, concept formation when input becomes the topic of
conversation:

As a second example, the INT form for the sentence “The
scene fits the concept If all the relations that are marked
*necessary’ are part of the scene,” Is

[8] PSI: There are now several things to talk ibout:
the input scene, what the theories are like, and
how the scene Is used to form and modify the
theories. Is that OK with you?

Since the concept formation expert seems to be following the
user fairly well, the discourse expert assumes that rcsponscs
suggested by the concept formation expert are the most apt.
As part of its information about concept formation, the expert
knows about the nature and purpose of inputs to typical
concept formation programs, and in particular that inputs are
information structures. The form of information structures Is
of interest, since it helps specify what sort of concept
formation program the user wants. Therefore, a question is
posed to the user:

[1 O]PSI: What is the structure of the input scene?

Further information about inputs enables the c o n c e p t
formation expert (and the system) to follow the rest of the
discussion about inputs.

It is our intent to separate the domain knowledge as much as
possible from the rest of the system. This modularity should
help to maintain the generality of the rest of the system, so
that a new domain can eventually be added. Accordingly, tliis
cxpcrt is organized with most of the knowicdge encoded in
an easy-to-modify relational data structure,

4.6 Tho Modal-Building Expert

.

1 jle model-building expert (or simply “model builder”)
contains high-level, general programming knowlcclge and rules
for t.sscmMing f ragments of program dcscriijiion into a
complctc algorithm and information structure model. These
fragrncnts come from the domain expert or tract cxpcrt. In
the event that the domain expert or trace cxpcrt cannot help
in interpreting INT, the model builder can attempt to perform
the same lnterpretatlon and disambiguation functions as the
domain expert, although the task is more difficult without
domain knowledge. The model builder is being designed and
implemented by Brian McCune [McCuna, 1976).

The program model (also called the algorithm model) itseli
may be thought of as a very high-level program, allowing
annotation, such as comments about the information
sfrucfures, the constraints on the program, which parts of the
program use what data, likely sizes of data sets, and
sometimes estimates about the probable outcome of tests
used for branching. The high-level data structures are’ called
Abstract Information Units (AIUs) and include
correspondences (mappings), collections (sets, lists, ordered

--.

69
s e t s , a n d multisets), pkxes (record structures). booleans,
and strings. The high-level procedural ua;iS, Abstract Co:ltrol
Units (ACUs), Include partially ordered sr,!; of actions, te:ts,
cases, loops, and many high-level operations on the AlUs
(e . g . , t a k e the inverse of a correspondcncc). Tile nloll
builder’s programming knowledge occurs at tvlo Jcvcls: (1)
the syntax and semantics of the primitives of the ~noc!clli~~~
language and (2) high-level knowledge built u;~on tilis b;,;c.
This second type of knowlcdgc includes ways of expressing
common constructs such as names of objects, rcl,ltions, data
which arc input, input-and-process looiT& and
correspondences.

To clarify the notion of a program model, Brian \<cCunc hns
prepared a simplified program model for the IT prograril,
which Is shown here. This example represents about half of
the program model; all information structure descriptions, set
sizes, branching probabilities, cross-references. snd oti~ti;
annotations have been omit ted. A l s o , we do no! have
sufficient space to define thr! terms used. Still, WC‘ feet that
from a perusal of the version given here the reader may gain
a better understanding of the procedural portion of the model.

THE PROCEDURAL PART OF Tf-IE PROGRAM MODEL FOR TF

Input. and_ process:
Initi&e:

parbegin
Initialize- labels:

ntccssq c new- primiriuc(nece5saIy prarorypc);
possible c new- primifivc(possible. prototype);

Initialize. concept:
concept +-’ new~cortc2pondcncf(conctpf.. proiotype,Hk

Input.hd-process..body:
loop until ail;
Input .and. test .for. exit:

Input:
inpuf. dutn c input(input. data. protorypc,“Keady”,“Type ‘Quit’ or a scene.‘?,

Test-for-exit:
if input-&to - *Quit” tl)PII exit else clidinguish(in~ut rk7ta,rrlations);

Classify:

rcsr-jif- result e conceprW’(nccrssary) s relations;
Verify:

Output. test fit- result:

Input-verification
I

user _ rfsponse c inpudtrscr rfstonse prcrtoIypc,
“Is this correct or wrong? ‘.“Tyl~= ‘COI 1 ect’ or ‘W rot@.“);

cia5e (rcst~fi~~ tesull,uscr. response) 0T

if IcJI. f;l rfsult A user- rfsponse = “Correct” thrn
V ret E r&lions 1 rfl $ doninin(toncfpt)

if
do eslnblish ~c~rrcsPondrr~cc(concfpf,rcl -9 possiblf);

Icst.fit. result A urer. response = “Wrolbg” theu
if 3 rcl E concfpt-‘(CoJsiblf) 1 rfl $ rrlotion
then ertnhlish c~rrcsl~~t7c/c’7~cc(c~nfc~f,rF(+

if -Icsl fir rcsuk A u s e r &sgonJf 7 “Cc&W” thrll Itil.
i f -tfst fir rest& A usfr rfsI,onjf - “W~cmg” Ihcu

V rel E conTc~t.‘(ncccss,7t:J) I rfl (i rfI~7liorrs
do tstMsh. corrfspo~7df~lc-c,(icttlcc~I,rfl 4 pos~il*!f),

CIIJ;

repeat;
Exit:

7@
A s a n cxamplc of the operation of the model builder, su~:posc

that it received the model frngmcnts discussed in ihc dolnain
cxpcrt section. Rccali that one set of fralimcnts was tllc
definition of a concept as a collection of msrkcd fcaturcs.
The moclcl buiidcr uses this as the basis for constructing an
Al).stract Information Unit. In . th is cast tllc concept i s
represented as a correspondence between relations and their
labels, “necessary” and “possible”. The correspondence
representing the concept is marked as many-to-one, with the
set of relations in the concept as the domain, and the set of
two labels as the range. Correspondences can later bc
implcmentcd by the coder in many ways, e.g., using. tables,
association lists, functions, etc. The Internal representation
for this AIU is

(NAME COSCEFT
CLASS AIIJ
TYPE CORRESFOSDESCE
SUPER-A/US 80
INSTANCES (COSCEFT-I:\‘STA!;CE)
DO!/fAlN-AlU RELATIOSS- I S-CO!;CEFT
DOiJAlN SIZE (si~s~s:ti~! o s~.\xI!.;\N :;IL

SIEAS SIL VARIASCE SIL)
RANGE-AlU LAPELS
R A N G E SIZE (~1 SINLN 0 ~iAXISllJ!~l 2

SIEAS KIL VARIASCE SIL)
WHAT-TO-ONE NASY

-=

Another type of high-level structure used by lhc model
builder is the Abstract Control Unit, which provklcs control of
procedure flow. As an example of the use of ACUs, consider
our other sentence stating that the scene fits the concept if
?ii relations in the concept that arc marked “ncccssary” are
part of the scene. The input representing this scntcncc is the
model fragment discussed in the previous section,

fit (input scene, concept) is defined to be

(v rcl c concept) Marking (rel)=“ncccssary”
a Part-of(rel,input scene)

This fragment (along with knowledge from other fragments,
including the information structure sc lcc tcd fo r the
correspondence) yields the high-lcvcl algoritlim s t r u c t u r e
which we may describe as

test-fit-result - [Concept-’ (necessary) c relations]

T h i s statement then f o r m s t h e t e s t - f i t section o f t h e
procedural part of the model shown earlier. This means that
the result of the “fit” test is true if the inverse mapping of
the ra!ige element “necessary” u n d e r t h e corrcspondcnce
“concept” is a subset of the relations of the input scene.
Observe that the test has been mapped into suitable high-
level operations (inverse and subset) on the high-level
information structure, and that the result will be remembered
in the Boolean test-fit-result for later use.

O n c e tllis program model h a s been complctcd t o the
satisfaction of the model-building cxpcrt, control is turned
over to the codillg cxpcrt for synthesis of a LISP program
which satisfies t1Ic descriptions in the modci. Note, howcvcr,
tll,3t this process is not necessarily scqucntinl: the coding
cxpcrt or the efficiency expert may have questions for the
model-building ez?crt about possible further assumptions
wi~ich, if considered before coding occurs, would lcad to a
better program.

The model-building expert also acts as a source of
information for the user and the other cxpcrts in the system.
An cx~~plc of its providing help to the dialogue cxpcrt is the
disatnbiguation of referents in the dialol;~rc. it dots this by
keeping track of the most recently discussed portion of tlic
model and dctcrmining which poss;blc referents are plausible
in terms of the semantics of the model. An cxt(mple of help
to the efficiency expert might consist of providing a list of all
the accesses of an information structure so that an efficient
data representation can be selected.

The model-building expcr t must cheek that the final progrzrn
model produced has no obvious incon;istcl,cics, cithcr
i n t c r n a i i y o r a s i t relates t o the dcsircs o f the user.
Consistency checking at each step will thus help assure a
program model which is both legal and correct. This capability
is useful for program modification, whcrc small local chnnc;cs
can cause interactions with other parts of the model ar;d have
tremendous implications for later implemcr~tation choices.

4.7 The Coding Expert

TIIC purpose of the coding expert ot “coder” is to take as
ir~put the program model and produce as output an efficient
target language program that satisfies tllc program model.
The coder interacts closely with the cfficicncy expert in this
task. The knowledge base f o r the cc&r co:\sists o f
rclativc!y “pure,” domain-indcpcndent knowictlyc about the
process of programming. The Coding Expert is being dcsigiled
and implemented by David Barstow [Earstow ar;d Kant,
7 076-j.

T? show by example how it works, consider the high-level
information structure, a corrcspondcncc, used to represent a
concept. The coder sclccts a proper data s t ructure to
implement the correspondence. Recall that the
correspondence maps the set of necessary relations into the
term “necessary” and the set of possible relations into the
term “possible.” By analyzing all uses of the correspondence,
as discussed in the next section 011 the efficiency expert, an
appropriate data structure is chosen. The set of “necessary”
relations is represented by a linked list, and that list is
referenced by being the value of the atom “N”. In order to
facilitate insertions and dclctions, a special clcmcni is kept as
the first elcmcnt of the list. lhus (CDR fJ> is r: poinlcr to the
list of elements. The “possible” set is rcprcscntcd similarly.

COllSkk?r next the test to See i f the ilyJUt fits tile COnCCpt.
Recall that the condition for successful fit was that the set
of “necessary” relations must bc a subset of tllc input scene
relations. So a subset test must be constructed. The input
scene is represented as a linked list and is the value of a
variable, “1”. The completed program for the test is

(PROG (STATE)
(SFTQ STATE (CDR K))

RFT (C&D
((SULL STATE)

(R ETL’RN T))
((XlF!dt;ER (CAR STATE) I)

(SETQ STATE (CDR STATL))
(GO RPT) 1

(T
(RETURS SIL))))

T h e c o d i n g e x p e r t u s e s a l a r g e knowlcdsc base o f
programming techniques to generate, in succc.ssiv~-:y finer
detail, alternative algorithms and data strlzturcs t!l:lt sstisfy
i ts goals . These techniques, a long wi th simple !c~~<!~*:lcdgc
bases, are discussed in [Green and Barstow, I!li’G].[C;rcrn

. and Barstow, 19763. The knowledge and methodology, as

expanded in these papers and in the implcmcntstion of the
coder, constitotd our first attempt at a theory of the process
of programming,

.
To exemplify the coding process, consider the subset
operation above. One meihod of testing whether set A is a
subset of set B, is to test whether all elements in A are
members of 8. This may be done by enumerating over A,
testing each element for membership in B. In order to
enumerate A, an enumeration order is selected, a method for
saving the state of the enumeration is selected, and then a
loop is written, having appropriate body, initializer,
incrcmenter, and termination test. Each p::rt is selected
intelligently, e.g., if the set is a linked list, the enumeration
order is front-to-back, and the state saving scheme is a
pointer that moves along the list, and if the target lnnguogc is
LISP, then the termination test is a test that the pointer has
the value “NIL ”.

The coder proceeds through these steps of generating
alternative data structures and algorithms. At choice points,
the alternatives are passed to the efficiency expert for
recommendations about which path to choose. Since an
exact analysis could not bc complctcd until all code is
finished, this efficiency analysis Is heuristic in nature, using
estimates on the efficiency o+the process on subparts not
yet written.

.
The knowledge base for the coder is in the form of a set of
rules. Some examples of such rules, given here in informal
English, are:

“One technique for representing a correspondence
is to use a collection where the elcrncnts are
plcxes of size 2, with one part being the domain
e l c m c n t a n d t h e other p a r t being the ran+
element.”

“In order to write an enumeration for an explicitly
represented collection, first dcterminc the order
fo r gene ra t i ng t he elements, t hen select a n
appropriate scheme for saving the stztc of the
enumeration between the production of the
elements, then wri te the body, in i t ia l izer,
Incrementor, and termination test.”

“In LISP, the function CAR applied to a pointer to a
list returns the first element in the list.”

A more detailed discussion of the nature of tilcse rules can
be found in [Garstow and Kant, 1976 3. For this overview a
short summary will suffice. it appears that approximately a
thousand rules will be necessary for the task we have
chosen, and the level of competence at which we aim. The
rules span many levels, from high-level concepts such as
correspondences, to low-level LISP-specific concepts, such
as knowlcdgc about CONS-cells. The rules seem to fail into
two broad classes:
techniques

those dealing with gcncrzi programming
and those dea l i ng wilh LISP-qccific details.

Currently we estimate that about two-thirds cl the rules arc
general and the rest are specific to the LISP language.
tlowever, we expect the set of LISP-specific rules to stay
fixed, while the data base of general rules grows.

4.8 Efficiency Expert
71

The function of the elficicncy expert is to select effl.;icnt
algorithms and data structures, from the alternatives offcretl
by the coding expert.
algorithm

The tools available are analysis of
techn iques, heur is t ics , and si:l:ul;rtio:l. The

ef f ic iency exper t uses pr imar i ly 1he first tvlo m~~tt~o~ls.
Based upon sizes of data sets, probabilities of tltc outcomes
ijf tests, algorithm and data sfructures, and costs of
operations, it is able to calculate symbolic space-time cost
functions of competing alternatives. The efficiency expert is
being designed and implemented by Elaine Kant [Barstow and
Kant, 19761.

As an example of the operation of the efficiency cxpcrt,
consider the choice of the data structures to represent a
concept . The concept Is a correspondence between tile
necessary relations and the label “necessary”, and between
the possible relations and the label “possible”. There are
many ways to represent a correspondence, including various
forms of tables, bit maps, or functions. Let us examine the
choice between only two alternatives. We shall call tile two
choices “set of pairs” and “one set per range elcmcnt”. To
illustrate, let the relations bc simple propositions such as bl~,
triangle, curved, tilted, red, etc. Then wo cDn illustrate tit?
two cases as follows:

(a) one set per range element

(blue, curved, tilted) w Necessary
(square, triangular, red) ++ Possible

(b) set of pairs

((blue necessary) (curved necessary) (square possitdc)
(triangular possible) (tilted necessary) (red possible))

Note that (b) corresponds to a form of association list or
property list (with parentheses added for clarity). Note that
in (a) W C do not specify how the sets are sssociatcd with
their Iabclo: the s e t s m a y b c the va lue o f a v;lriablc?
corresponding to the label, or the label could be a hash link
from the list, or the set could be on the property list of the
label, or the set and label could be a piex, etc.

Next, consider how the efficiency expert cl:ooscs bctwccn
these two data structures. Since the data structure is
accessed in many places, the calculation actually rsiade by the
efficiency expert is rather complex. For our example, W C

will simplify matters by considering only one access to the
data, the “foe many nccessarics” update.

The “ too many necessaries” case occurs in tlic Icarninq
portion of the TF program, in which the concept being learn&l
is incorrect and tiust be modified. Bccausc too many
relations were marked necessary, a scene that ~11s a correct
instance was rejected as not being an instance of ti:c
concept. Accordingly, some of the “nccessarics” must hc

made into “possibles”. In particular, any relations that arc not
in the scene are not necessary, so any such relations in tije
concept must be changed to possible.

In the model, this u;jdate action is rcprcscnted rou$ly as

(y rcl E concept-l(nccessary) such that rel e input
do establish-correspondence (concept, rcl-possible)

For each possible data structure imptcment~tion, the coder
produces the appropriate algorithms in a special intcrmcdiatc
language used for analysis. These ancitysis language programs
are passed to the efficiency expert to make the cost
calculation. The two programs passed to the ciiicicncy
expert look something like:

(a) one set per range element

(Forall x in Net. s u c h t h a t x 4 input
do move x from Net. to Poss.)

(b) set of pairs

(Forall pairs <x,y> in Concept
such that [y = Net. and x e input]

do re-pair(x,possible))

Thus in case (a) WC must loop through the “ncccssary” set,
test for membership in the input-and then move clcmcnts from
01x set to another. In cast (b) w e l o o p Glrough the
“concep 1” set (o f p a i r s) and if an elcmcnt is p,.i~cd with
necessary and also satisfies the test f o r mCrll!Jcrsflil~ in
input, lllen p a i r the e!c,nent w i t h possible insicad
necessary (i.e., re-label x).

To do the analysis, the efficiency expert needs to know the
size of the sets that are enumerated, the cost of
cnumcration, the probability pf each test being flue, and tllc
cost of cnch operation. Thus in (a) W C need lhc size of the

tt1c
of

set “necessary”, the cost of the test “x c. Input” (which
might require knowing the size of input), the likcli:lood of that
test being true, and the cost of the move opcratio:~. In cam
(b) we need to know the size of the set “concept”, the cost
of enumerating it, the probability of truth of the conjunction
of the two tests, “x paired with necessary” and “x c input”,
and the cost of changing the label. From this information, Ihe
cost of the update operation is estimated for each alternative

Pata structure choice.

This provides the efficiency expert the basic inforlnJiion wiih
which to calculate the cost of each method, since we can
now predict the number of times each operation is cxccutcd
and the cost per operation. But the calculation is somewhat
more tomplcx lhan is apparent from this cxamplc. Rcmcmbcr
tljat this is only ot;c use of the data structure; it is acccsscd
in at least four other places in the program. The cost of each
access must also be part of the c;,lculation. llo\vcvcr. the
exact costs of each sub-operation arc often not k n o w n
exactly, since furlher synthesis by the coder may tc required
to knov/ how sub-operations are implemented. So thcsc
c o s t s rr,ust bc est imated. Alr,o, tllc cost incluic; iirc sprrce
as well as time costs, so the calculation must take into
account the (s o m c t i m c s c h a n g i n g) sizes of tilt data
structcrcs extant during the algorithm. The knovrlcdgc for
prob:dbility estimates comes f rom the data sup;>:icd by tllc
dontnin expert or by the user. 1 bWCver, these [Ji dxh;li~ies

may not bc in the right form, since transformatioils made by
tl~c co&r c&n change the program structure. In this cast, tlrc
proba!>ilities m u s t a l s o b e transformed. If no probG!>ility

in format ion is ctvailable, the probahillties m a y be trcL;tcd 2;s
v a r i a b l e s I n w h i c h c a s e i t it%)/ be pOSSibic to co;npc~rc

symbolic cost functions.

For the example considered above the probzbilitics v/crc
estimated by the domsin cxpcrt, #and t h e s,?acc-tin:,? cc\t
function turned out to be a polynomial fl!nction of 111~ :,ii:cs c?f
the sets of Concept, Ncccssary, and Input. For rcason;!‘,lc
a.qsumptions about the size of thcsc sets, tl\c p;oc:r;ni s(‘~cct;
choice (a), one set jxr roKl;e clcmcnt.

5. Conclusions

ln conclusion, we have specified some of the desired
capabilities of an automat i c progrzmmlng system. We h a v e
created an overall rough system d e s i g n to meet these
specifications. An implementation effort is underway and
scve:al key parts of the system arc? work;r,$ It is too early
to make an evaluation of our goals, CkSignS, and
implementation at this time.

6. Acknowledgements

I would like to thank Louis Steinberg, Jorge Phillips, Bruce
Nelson. Brian McCunc, El&r: Kant, Jcrrold Giilsparg, Avra
Cohn, and David Barstow for tllcir contributioll$ to the design
of PSI and their assistance in the preparation of tllis paper.

This research was supported by the Advanced Research
Projects Agency of the Dcpartmcnt of Dcfcnse under
Contract hlDA903-76-C-0206. Computer time VJ~S provided
by the Information Sciences Institute of the lJ:livc:sity of
Southern California and the Artificial lntelligcncc Center of
Stanford Research Institute.

7. Rofercnces

[Balzcr, 1 9 7 4)
Balzer, Robert, Greenfcld, Norton, Kay, Martin,
Mann, William, Ryder, Walter, Wilczynski, David,
and Zobrist, Albert, “Domain-tndepcl~r~ci~t Aulomatic
Programming”, in Rosenfeld, Jack L., editor,
Software, Information Proccssing 7 4 :
Proceedings of lFlP Congress 74, Volume 2,
American Elsevier Publi;hiiig Company, Inc., t<ew

York, New York, 1974, pages 326-330.

[Barstow and Kant, 19761
Barstow, David R. and Kant, Elaine, “Observations
on the Interaction bctwccn Coding and El iicicncy
Know!edge in the PSI Program Synthc;is System”,
Second International Conference on Sc.:‘\vare
Engineering, San Francisco, California, Cc ‘obor
1976.

[Eiermann, 1975)
Bicrrnann, A l a n W., “Approaches to Automatic
Pi ogramming”, in Advances in Computers, Volume
15, Academic Press, 1975.

[Ginspxg, 1976-j
Ginsparg, Jerr old, “A Parser and interpreter for
PSI System”, in preparation.

the

[Gram and B;rrstow, 1976)
Crucn, Cordcll, and Barstow, Dav id , A
Hypothetical DialogliD Exhibiting a Knowlcdgo
Gase for a Program Understanding System, Memo
AIM-258, Artificial Intclligcncc Laboratory, Report
STAN-CS-75-476, Computer Scicncc Dcpartmcnt,
Stanford University, Stanford, California, January
1975; to appear in Elcock, E. W., and Micllic, D.,
editors, Machine Representations of Knowledge,
D. Reidel Publishing Company, Dordrecht, The
Netherlands, 1976.

[Green and Barstow, 1975)
Green, CordelI, and Barstow, David, “Some Rules
f o r the Automatic Synthesis of Programs”,
Advance Papers of the Fourth International Joint
Conference on Artificial Intelligence, Volume I,
Artificial intelligence Laboratory, Massachusetts
lnstitute of Technology, Cambridge, Massachusetts,
September 1975, pages 232-239.

[Green et al, 19741
Green, C. Cordcll, Waldinga, Richard J., Barstow,
David R., Elschlager, Robert, Lenat, Dougl~ B.,
McCunc, Brian P., Shnw, David E., and Stcinbcrg,
Louis I., Progress Report 011 Pror--rnJ’ aa
Understanding Systems, Memo AIM-240, Artificial
InteKigcnce Laboratory, Report STAN-CS-74-444,

. Computer Science Department, Stanford University,
Stanford, California, August 1974.

[Hax and Martin, 1973)
tlax, Arnold0 C., and Martin, William A., “Automatic
Genera t ion o f Customized, Mod&Based
lnformation Systems for Operations Man;lgme;#‘,
in Morgan, Howard Lee, editor, Prococdirqs of the
Wharton Conference on Research on Computers in
Organizations, Data Base, Volume 5, Numbers 2-4,
Winter 1973, pages 140-l 44.

[Hcldorn. 1974-J
Heidorn, George E., “English as a Very High-Level-
Language for Simulation Programming”, Proceedings
of a Symposium on Very High-Love1 Latquqcs,
SlGPLAN Notices, Volume 9, Number 4, April
1974, pages 91- 100.

[Heidorn, 19763
Hejdorn, Geo rge E . , “Automatic Programming
through Natural Language Dialogue: A Survey”, ICTJ
Journal of Research and Development 20, 4 (July
1976), pages 302 - 313.

[McCuno, 7 9761
McCune, Brian P., “The PSI Algorithm Model
Builder: Synthzsis of Very High-Level Algorithms”,
in preparation.

73
[N&on, 19761

Nelson, Bruce, “The PSI Interpreter”, unpublished
Master’s Project, Computer Science Depa:t:ncnt,
Stanford University, June 1976.

[Phillips, 1976)
Phillips, Jorge V., “The P S I T r a c e Expert:
Understanding Traces Using Multiptc Knowicdge

. Sources”, in preparation.

[Rich and Shrobu, 19743
Rich, Charles, and Shrobe, Howard E .
“Understanding LISP Programs: Towards a
Programmer’s Apprentice”, Working Paper 82, Al
Laboratory, Massachusetts Institute of Technology,
December, 1974.

[Steinberg, 19761
St&berg, LOUIS L, “The P S I P r o g r a m Synillcsis
System: Discourse and Domain Expcrtisc”, in
preparation.

[Winston, 19751
Winston, Patrick Henry, “Learning Structural
Descriptions from Examples”, in Winston, Patrick
Henry, editor, The Psychology of Computer
l/is/on, McGraw-Will Book Company, Inc., New
York, New York, 1975, pages 157-209.

[Mikolsons, 19751
Mlkclsons, “Computer-Assisted Applic;r tion
Definition”, Second ACM Symposium on the
Principles of Programming Languages, January
1975.

74

Appendix A
Theses

Theses that have been published by this
laboratory are listed here. Several earned
degrees at institutions other than Stanford, as
noted. This list is kept in diskfile THESES
[BIB,DOC] &U-AI.

D. Raj. Reddy, AIM-43
An Approach to Computer Speech
Recognition by Direct Analysis of the
Speech Wave,
Ph.D. in Computer Science,
Sep tern ber 1966.

S. Persson, AIM-46
Sowe Sequence Extrapolatirlg Programs: a
Study of RepreseJ~tatiOJi-and Modeling in
Inquiring Systems,
Ph.D. in Computer Science, University of
California, Berkeley,
September 1966.

Bruce Buchanan, AIM-47
Logics of Scientific Discovery,
Ph.D. in Philosophy, University of California,
Berkeley,
Decetn ber 1966.

James Painter, AIM-44
Semantic Correctliess of a Compiler for an
Algol-Ii ke Language,
fh.D. in Computer Science,
March 1967.

Wllllam Wichman, AIM-56
tJse of Optical Feedback in the Computer
Contr;ol of an Arm,
E ng. tn Electrical Engineering,
A ugust 1967.

Monte Callero, AIM-58
An Adaptive Command alld Colltrol System
Utilizillg Heuristic Learliing Processes,
Ph.D. in Operations Research,
December 1967.

Donald Kaplan, AIM-60
The Formal Theoretic Analysis of Strong
Equivalence for Elemental Properties,
Ph.D. in Computer Science,
July 1968.

Barbara Huberman, AIM-65 -
A Program to Play Chess End Gatnes,
Ph.D. in Computer Science,
A ugust 1968.

Donald Pieper, AIM-72
The Kilielnatics of Manipulators under
Coni pu ter Control,
Ph.D. in Mechanical Engineering,
October 1968.

Donald Waterman,
Machille Learning of Heuristics,
Ph.D. in Computer Science,
December 1968.

AIM-74

Roger Schank, AIM-83
A Conceptual Dependency Representation
for a Computer Oriented Semantics,
Ph.D. in Linguistics, University of Texas,
March 1969.

Pierre Vicens, AIM-85
Aspects of Speech Recognition by
Corn pu ter,
Ph.D. in Computer Scienie,
March 1969.

Victor D. Scheinman, AIM-92
Design of Coniputer Controlled Manipulator,
Eng. in Mechanical Engineering,
June 1969.

Claude Cordell Green, AIM-96
The Application of Theorem Proving to
Question-answering Systems,
Ph.D. in Electrical Engineering,
August 1969.

James J. Horning, AIM-98
A Study of Grammatical Inference,
Ph.D. in Computer Science,
A ugust 1969.

Theses 75

.

Michael E. Kahn, AIM-106
The Near-minimum-time Control of Opel+
loop Articulated Kinematic Chains,
Ph.D. in Mechanical Engineering,
December 1969.

Joseph Becker, AIM-l 19
A ~1 Inf ortn ation-processing Model of
Intermediate-Level Cognition,
Ph.D. in Computer Science,
May 1972.

Irwin Sobel, AIM-121
Camera Models arid Machine Perception,
Ph.D. in Electrical Engineering,
May 1970.

Michael D. Kelly, AIM-130
Visual Identification of People by computer,

Ph.D. in Computer Science?;’
July 1970.

Gilbert Falk, AIM-132
Computer Interpretation of Imperfect Line
Data as a Three-dimensional Scene,
Ph.D. in Electrical Engineering,
August 1970.

Jay Martin Tenenbaum, AIM-134
Accommodation iti Computer vision,
Ph.D. in Electrical Engineering,
September 1970.

Lynn H. Quam, AIM-144
Cow puter Comparisoll of Pictures,
P7l.D. in Computer Science,
May 1971.

Robert E. Kling, AIM-147
Reasoriilig by Allalogy with Applications to
Heurisiic Problem Solvillg; a Case Study,
Ph.D. in Computer Science,
August 1971.

.

Rodney Albert Schmidt Jr., AIM-149
A Study of the Real-time Control of a
Computer-driven Vehicle,
Ph.D. in Electrical Engineering,
August 1971.

Jonathan Leonard Ryder, AIM-155
Heuristic Analysis of Large Trees as
(3enerated in the Came of co,
Ph.D. in Computer Science,
December 197 1.

Jean M. Cadiou, . AIM-163
ReCUrSiVe Definitions Of ParhI Functions
and their Computations,
Ph.D. in Computer Science,
April 1972.

Gerald Jacob Agin, AIM-173
RepreSeJltatiOtl and Description of Curved
Objects,
Ph.D. in Computer Science,
October 1972.

Francis Lockwood Morris, AIM-174
COrreCtliess of Translations of
Programming LaJlguages - an Algebraic
Approach,
Ph.D. in Computer Science,
August 1972.

Richard Paul, AIM-177
Modelling, Trajectory Calculation and
Servoing of a Computer Controlled Arm,
Ph.D. in Computer Science,
November 1972.

A haron Gill, AIM-178
Visual Feedback and Related Problems in
Coinputer Controlled Hand Eye
Coordination,
Ph.D. in Electrical Engineering,
October 1972.

Ruzena Bajcsy, AIM-180
Computer Iderltificatiofl of Textured Visiual
Scenes,
Ph.D. in Computer Science,
October 1972.

Ashok Chandra, AIM-188
011 the Properties and Applications of
Programming Schemas,
Ph.D. in Computer Science,
March 1973.

76 Appendix A

Gunnar Rutger Grape, AIM-201
Model Based (Intermediate Level) Computer
Vision,
Ph.D. in Computer Science,
May 1973.

Yoram Y akimovsky, AIM-209
Scene Analysis Using a Setnantic Base for
Region Growing,
Ph.D. in Computer Science,
July 1973.

Jean E. Vuillemin, AIM-218
Proof Techniques for Recursive Programs,
Ph.D. in Computer Science,
October 1973.

Daniel C. Swinehart, AIM-230
COPILOT: A Multiple Procers Approach to
Illteractive Programnirlg Gyrtcmr,
Ph.D. in Computer Science,
May 1974.

James G ips, AIM-231
Shape Grammars and their Uses
Ph.D. in Computer Science,
May 1974.

Charles J. Rieger III, AIM-233
Conceptual Memory: A Theory alid
Computer Program for Processing the
Meaning CoIltent of Natural Language‘
Utterances,
Ph.D. in Computer Science,
June 1974.

Christopher K. Riesbeck, AIM-238
Computational Understanding: Atlalysis of
Sentences and Context,
Ph.D. in Computer Science,
June 1974.

Marsha Jo Hannah, AIM-239
Computer Matching of Areas in Stereo
In1 ages,
Ph.D. in Computer Science,
July 1974.

James R. Low, AIM-242
Autotnatic Coding: Choice of Data
Structures,
Ph.D. in Computer Science,
August 1974.

Jack Buchanan, AIM-245
A Study in Automatic Programming
Ph.D. in Computer Science,
May 1974.

Neil Goldman, AIM-247
Computer Gelieratiorl of Natural Language
From a Deep Conceptual Base
Ph.D. in Computer Science,
January 1974.

Bruce Baumgart, AIM-249
Geometric Modeling for Computer Vision
Phh tn Computer Science,
October 1974.

Ramakant Nevatia, AIM-250
Structured Descriptions of Complex Curved
Objects for Recognition and Visual Memory
Ph.D. in Electrical Engineering,
October 1974.

Edward H. Shortliffe, AIM-25 1
MYCIN: A Rule-Based Computer Program
for Advising Physicians Regarding
Antilnicrobial Therapy Selection
Ph.D. in Medical Information Sciences,
October 1974.

Malcolm C. Newey, AIM-257
Formal Semantics of LISP With
Applications to Program Correctness
Ph.D. in Computer Science,

January 1975.

Hanan Samet, AIM-259
Autotnatically Provillg the Correctness of
Translations Involving Optimized Coded
PhD in Computer Science,

May 1975.

Theses 77

David Canfield Smith, AIM-260
PYGMALION: A Creative Programming
Environment
PhD in Computer Science,

June 1975.

Sundaram Ganapathy, A IM-2’72
Reconstructioll of Scenes Contailling
Polyhedra From Stereo Pair of Views
Ph.D. in Computer Science,

December 1975.

Linda Gail Hemphill, AIM-273
A Corlceptual Approach to Automated
Language Understallding aljd Belief
Structures: with Disambiguatiorl of the
Word ‘For’
Ph.D. in Linguistics,
May 1975.

Norihsa Suzuki, AIM-279
Atrtornatic Verificatioll of Programs with
Corn plex Data Structures
Ph.D. in Computer Science,

February 1976.

Russell Taylor, AIM-282
Synthesis of Manipulator Control Programs
From Task-Level Specifications
PhD in Computer Science,
July 1976.

Randall Davis, AIM-283
Applications of Meta Level Knowledge to
the Construction, Mairrterlance
atid Use of Large Knowledge Bases
Ph.D. in Computer Science,
July 1976.

Rafael -Finkel, AIM-284
Constrircting and Debugging Manipulator
Programs
Ph.D. in Computer Science,
A ugust 1976.

July 1976.

Michael Roderick, AIM-287
Discrete Colltrol of a Robot Arm
Engineer in Electrical Engineering,
August 1976.

Robert C. Bolles, AIM-295
Verification Visioli Within a Progralnmable
Assent bly System
Ph.D. in Computer Science,
December 1976.

Robert Cartwrigh t, AIM-296
Practical Formal Semantic DefXtiorl and
Verificatioil Systems
Ph.D. in Computer Science,
December 1976.

Douglas Lenat, AIM-286
AM: An Artificial Intelligence Approach to
Discovery in Mathematics as Heuristic
Search
Ph.D. in Computer Science,

78

Appendix B
Film Reports

Prints of the following films are available for
distribution. This list is kept in diskfile
FILMS [BIB,DOC] &U-AI.

1. Art Eisenson and Gary Feldman, Ellis D.
Kroptechev and Zeus, his Marvelous
Time-sharing System, 16mm B&W with
sound, 15 minutes, March 1967.

The advantages of time-sharing over
standard batch processing are revealed
through the good offices of the Zeus time-
sharing system on a PDP-1 computer. Our
hero, Ellis, is save,d from a fate worse than
death. Recommended for mature audiences
only. --_

2. Gary Feldman, Butterfinger, 16mm color
with sound, 8 minutes, March 1968.

Dkscribes the state of the hand-eye system at
the Artificial Intelligence Project in the fall of
1967. The PDP-6 computer getting visual
information from a television camera and
controlling an electrical-mechanical arm solves
simple tasks involving stacking blocks. The
techniques of recognizing the blocks and their
positions as well as controlling the arm are
briefly presented. Rated “G”.

3. Raj Reddy, Dave Espar and Art Eisenson,
- Hear Here, 16mm color with sound, 15

minutes, March 1969.

Describes the state of the speech recognition
project- as of Spring, 1969. A discussion of
the prdblems of speech recognition is followed
by two real time demonstrations of the current
system. The first shows the computer learning
to recognize phrases and second shows how
the hand-eye system may be controlled by
voice commands. Commands as complicated
as ‘Pick up the small block in the lower
lefthand corner’, are recognized and the tasks
are carried out by the computer controlled
arm.

4. Gary Feldman and Donald Peiper, Avoid,
16mm color, silent, 5 minutes, March 1969.

An illustration of Peiper’s Ph.D. thesis. The
problem is to move the computer controlled
tiichanical arm through a space filled with
one or more known obstacles. The film shows
the arm as it moving through various
cluttered environments with fairly good
success.

5. Richard Paul and Karl Pingle, Instant
Insanity, 16mm color, silent, 6 minutes,
August, 1971.

Shows the hand/eye system solving the puzzle
Instant Insanity. Sequences include finding
and recognizing cubes, color recognition and
object manipulation. [Made to accompany a
paper presented at the 1971 IJCAI. May be
hard to understand without a narrator.]

6, Suzanne Kandra, Motion alld Vision,
16mm color, sound, 22 minutes, November
1972.

A techcical presentation of three research
projects completed in 1972: advanced arm
control by R. P. Paul [AIM-1771, visual
feedback control by A. Gill [AIM-1781, and
representation and description of curved
objects by G. Agin [AIM-l 731. Drags a bit.

7. Larry Ward, Computer Interactive
Picture Processing, (MARS Project),
16mm color, sound, 8 min., Fall 1972.

This film describes an automated picture
differencing technique for analyzing the
variable surface features on Mars using data
returned by the Mariner 9 spacecraft. The
system uses a time-shared, terminal oriented
PDP- 10 computer. The film proceeds at a
breathless pace. Don’t blink, or you will miss
an entire scene.

Film Reports

8. D.I. Okhotsimsky, et al, Display
Simulations of g-legged Walking,
Institute of Applied Mathematics - USSR
Academy of Science, (titles translated by
Stanford AI Lab and edited by Suzanne
Kandra), 16mm black and white, silent, 10
minutes, 1972.

A display simulation of a 64egged ant-like
walker getting over various obstacles. The
research is aimed at a planetary rover that
would get around by walking. This cartoon
favorite beats Mickey Mouse hands down. Or
rather, feet down.

9. Richard Paul, Karl Pingle, and Bob Bolles,
Automated Pump Assembly, 16inm color,
silent (runs at sound speed!), 7 minutes,
A pril, 19’73. --.

Shows the hand-eye system assembling a
simple pump, using vision to locate the pump
body and to check for errors. The parts are
assembled and screws inserted, using some
special tools designed for the arm. Some titles
are included to help explain the film.

10. Terry Winograd, Dialog with a robot,
MIT A. I. Lab., 16mm black and white,
silent, 20 minutes, 1971.

Presents a natural language dialog with a
simulated robot block-manipulation system.
The dialog is substantially the same as that in
V nderstanding Natural Language (T .
Winograd, Academic Press, 1972). No
explanatory or narrative material is on the
film.

11. Karl Pingle, Lou Paul, and Bob Belles,
Prdgramnable Assembly, Three Short
Examples, 16mm color, sound, 8 minutes,
October 1974.

79

from a run-time error, Finally, a cinematic
first: two arms cooperating to assemble a hinge.

12. Brian Harvey, Display Termirlals at
._ Stanford, 16mm B&W, sound, 13 minutes,

May 1975.

Although there are many effective programs to
use display terminals for special graphics
applications, very few general purpose
timesharing systems provide good support for
using display terminals in normal text display
applications This film shows a session using
the display system at the Stanford AI Lab,
explaining how the display support features in
the Stanford monitor enhance the user’s
control over his job and facilitate the writing
of display-effective user programs.

The first segment demonstrates the arm’s
ability to dynamically adjust for position and
orientation changes. The task is to mount a
bearing and seal on a crankshaft. Next, the
arm is shown changing tools and recovering

80

Appendix C
External Publications

Articles and books by project members that
have appeared since July 1973 are listed here
alphabetically b y lead author. Earlier
publications are given in our ten-year report
[Memo AIM-2281 and in diskfile PUBS.OLD
[BIB,DOCl &U-AI. The list below is kept
in PUBS [BIB,DOC] (~su-AI.

1. Agin, Gerald J., Thqmas 0. Binford,
Computer Description of Curved
Objects, Proceedings of the Third
International Joint Conference on Arti)%ial
Intelligence, Stanford University, August
1973.

2. Aiello, Mario, Richard Weyhrauch,
Checking Proofs in the
Metamathetnatics of First Order Logic,
Ah. Papers of 4th ht. Joint Conference
on Artipial Intelligence, Vpl. 1, pp, l-8,

. September 1975.

3. Ashcroft, Edward, Zohar Manna, Amir
Pnueli, Decidable Properties of Monadic
Functional Schemas, J. ACM, July 1973.

4. Ashcroft, Edward, Zohar Manna,
Translating Program Schemas to While-
schemas, SIAM Journal on Computing,
Vol. 4, No. 2, pp. 125-146, June 1975.

5. -Bajcsy, Ruzena, Computer Description of
Textured Scenes, Proc. Third ht. Joint
Conf. on Artifiial Intelligence, Stanford U.,
1973.

6. Barstow, David, Elaine Kant, Observations
on the Ineraction between Coding and
Efficiency Knowledge in the PSI
Program Synthesis System, Proc. 2nd lnt.
Conf. on Software Engincrring, IEEE
Computer Society, Long Beach, California,
October 1976.

7. Barstow, David, A Knowledge-Based
System for Automatic Program
Construction, Proc. Int. Joint Con. on
RJ., August 1977.

8:.Biermann, A. W., R.I. Baum, F.E. Petry,
Speeding Up the Synthesis of Programs
from Traces, IEEE Trans. Computers,
February 1975.

9. Bobrow, Daniel, Terry Winograd, An
Overview of KRL, a Knowledge
Represelltation Language, J. Cognitive
Science, Vol. 1, No. 1, 1977.

10. Bobrow, Dan, Terry Winograd, 8~ KRL
Research Group, Experience with KRL-0:
One Cycle of a Knowledge
Representation Language, Proc. ht.
Joint Con. on A.]., August 1977.

11. Belles, Robert C. V,eritication Vision for
Programmable Assern bly, Proc. Int. Joint
Con/. on Ak, August 1977.

12. Chandra, Ashol, Zohar Manna, On the
Power of Programmillg Features,
Computer Languages, Vol. 1, No. 3, pp.
219-232, September 1975.

13. Chowning, John M., The Synthesis of
Complex Audio Spectra by means of
Frequellcy Modulation, J. Audio
Engineering Society, September 1973.

14. Clark, Douglas, and Green, C. Cordell, An
Empirical Study of List Structure in
LISP, Communicattons of the ACM,
Volume 19, Number 11, November 1976.

15. Colby, Kenneth M., Art@ial Paranoia; A
Computer Simulation of the Paranoid
Mode, Pergamon Press, N.Y., 1974.

16. Colby, K.M. and Parkison, R.C. Pattern-
matching rules for the Recognition of
Natural Language Dialogue Expressions,
Amerfcan Journal of Computational
Linguistics, 1, September 1974.

External Publications 81

17. Dershowitz, Nachum, Zohar Manna, On
Automating Structural Programming,
Collogues IRIA on Proving and Improving
Progrnms, Arc-et-Senans, France, pp. 16%
193, July 1975.

. .

18. Dershowitz, Nachum, Zohar Manna, The
Evolution of Programs: a System for
Automatic Program Modification, Proc.
4th Symp, on Principles of Programming
Languages, Los A ngeles, pp. 144- 154,
January 1977.

19. Dobrotin, Boris M., Victor D. Scheinman,
Design of a Computer Controlled
Manipulator for Robot Research, Proc.
Third ht. Joint Conf. on Artifiial
Intelligence, Stanford U., 1973.

--.
20. Enea, Horace, Kenneth Mark Colby,

Idiolectic Language-Analysis for
Understanding Doctor-Patient Dialogues,
Proceedings of the Third International

. Joint Conference on Artifiial Intelligence,
Stanford University, August 1973.

2 1. Faught, William S., Affect as Motivation
for Cognitive and Conative Processes,
Ah. Papers of 4th ht. Joint Conference
on Arti.ial Intelligence, Vol. 2, pp. 893-
899, September 1975.

22. Feldman, Jerome A., James R. Low,
Comn~ent 011 Brent’s Scatter Storage

e Algorithm, Comm. ACM, November 1973.

23. Feldman, Jerome A., Yoram Yakimovsky,
Decision Theory and Artificial
Intelligence: I A Semantics-based Region
Au$lyzer, Artifiial Intelligence J,, Vol. 5,
No: 4, Winter 1974.

.

24. Finkel, Raphael, Russell Taylor, Robert
Belles, Richard. Paul, Jerome Feldman, An
Overview of AL, a Programming System
for Autotnatiorl, Ah. Papers of 4th ht.
Joint Conference on Art@ial Intelligence,
Vol. 2, pp. 758-765, September 1975.

25. Fuller, Samuel H., Forest Baskett, An
Analysis of Druln Storage Units, J.
ACM, Vol, 22, No. 1, January 1975,

26. Funt, Brian, WI-IISPER: A Problem-
solving System utilizing Diagrams and a
Parallel Processing Retina, PYOC. ht.
Joint Con. on Ad., August 1977.

27. Gennery, Don A Stereo Vision System
for an Autoriomous Vehicle, Proc. ht.
Joint Conf. on AL, August 1977.

28. Goldman, Neil M., Sentence
Paraphrasing from a Coweptual Base,
Comm. ACM, February 1975.

29. Goldman, Ron, Recent Work with the
AL System, PYOC. ht. Joint Con. on A.].,
August 1977.

30. Green, Cordell, David Barstow, Some
Rules for the Automatic Synthesis of
Programs, Ah. Papers of 4th ht. joint
Conference on Artifkial Intelligence, Vol. 1,
pp. 232-239, September 1975.

31. Green, Cordell, and Barstow, David,
Some Rules for the Automatic Synthesis
of Programs, Advance Papers of the
Fourth International Joint Conference on
Artifcial intelligence, Volume 1, Artificial
Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge,
Massachusetts, September 1975, pages 232-
239.

32. Green, Cordell, The Design of the PSI
Program Syzlthesis System, Proc. 2nd ht.
Conf. on Software Engineering, IEEE
Computer Society, Long Beach, California,
October 1976.

33. Green, Cordell, The PSI Program
Synthesis System, 1976, ACM ‘76:
Proceedings of the Annual Conference,
Association for Computing Machinery,
New York, New York, October 1976, pages
74-75.

82 Appendix C

34. Green, C. C., and Barstow, D. R., .A
Hypothetical Dialogue Exhibiting a
Knowledge Base for a Program
‘LJndcrstanding System, in Elcock, E. W.,
and Michie, D., editors, Machine
Intelligence S: Machine Representations of
h’nowledge, Ellis Horwood, Ltd., and John
Wiley and Sons, Inc., New York, New
York, 1976.

35. Green, C. C., A Summary of the PSI
Program Synthesis System, Proc. ht.
Joint Conf. on Al., August 1977.

36. Harvey, Brian, Increasing Programmer
Power at Stanford with Display
Terminals, Minutes of the DECsystem-IO
Spring-75 DECVS Meeting, Digital
Equipment Computer Users Society,
Maynard, Mass., 1975.=.

37. Hieronymus, J. L., N. J. Miller, A. L.
Samuel, The Amanuensis Speech
Recognitioll System, Proc. IEEE

. Symposium on Speech Recognition, April
_ 1974.

38. Hieronymus, J. L., Pitch Synchronous
Acoustic Segmentation, Proc. IEEE
Symposium on Speech Recognition, April
1974.

39. Hilf, Franklin, Use of Computer
Assistance in Enhancillg Dialog Based
Social Welfare, Public Health, allda
Educatiollal Services in Developillg
Countries, Proc. 2nd Jerusalem Conf. on
Info. Technology, July 1974.

40. Hi!f, Franklin, Dyllarnic Corltent
Analysis, Archives of General Psychiatry,
January 1975.

41. Hueckel, Manfred H., A Local Visual
Operator which Recognizes Edges and
LiJles, J. ACM, October 1973.

42. Igarashi, S., R. L. London, D. C.
Luckham, Automatic Program
Verification I: Logical Basis and its
Implerneatation, Acta Informatica,, Vol. 4,

_. pp.145-182, March 1975.

43. Ishida, Tatsuzo, Force Control in
Coordinatiotl of Two Arms, Proc. Int.
Joint Conf. on Ad., August 1977.

44. Kant, Elaine, The Selectiorl of Efficient
Implementations for a High-level
Language, Proc. S/CART-SIGPLAN
Symp. on A.1. & Prog. Lang., August 1977.

45. Karp, Richard A., David C Luckham,
Verificatioli of Fairness in an
Implementation of Monitors, Proc. 2nd
Intnl. Con> on Softroare Engineering, PP.
40-46, October 1976.

46. Katz, Shmuel, Zohar Manna, A Heuristic
Approach to Program Verification,
Proceedings of the Third International
Joint Conference on Artijkial Intelligence,
Stanford University, August 1973.

47. Katz, Shmuel, Zohar Manna, Towards
Automatic Debugging of Programs, Proc.
ht. Con. on Reliable Software, Los
Angeles, April 1975.

48. Katz, Shmuel, Zohar Manna, Logical
Analysis of Programs, Comm. ACM, April
1976.

49. Katt, Shmuet, Zohar Manna, A Closer
Look at Term ination, Acta Informatica,
Vol. 5, pp. 333-352, April 1977.

50. Lenat, Douglas B., BEINGS: Knowledge
as Interacting Experts, A&. Papers of
4th ht. Joint Conference on Artijkial
Intelligence, Vol. 1, pp. 126- 133,
September 1975.

51. Luckham, David C., Automatic Problem
Solving, Proceedings of the Third
International Joint Conference on ArtiIial

External Publicatiom 83

Intelligence, Stanford University, August
1973.

52. Luckham, David C., Jack R. Buchanan,
Automatic Generatiotr of Programs
Containing Conditional Statements, PYOC.
AISB Summer Conference, U. Sussex, July
1974.

53. Luckham, David C., Program
Verification and Verification-oriented
Programming, Proc. I.F.I.P., August 1977.

54. Manna, Zohar, Program Schemas, in
Currents in the Theory of Computing (A.
V. Aho, Ed.), Prentice-Hall, Englewood
Cliffs, N. J., 1973.

55. Manna, Zohar, Stephen Ness, Jean
Vuillemin, Inductive Methods for
Proving Properties of Programs, Comm.
ACM, August 1973.

56. Manna, Zohar, Automatic Programming,
Proceedings of the Third international
Joint Conference on Artifiial Intelligence,
Stanford University, August 1973.

57. Manna, Zohar, Mathematical Theorp of
Computation, McGraw-Hill, New York,
1974.

58. Manna, Zohar, Amir Pneuli, Axiomatic
Approach to Total Correctness, Acta

a Informatica, Vol. 3, pp. 243-263, 1974.

59. Manna, Zohar, Richard Waldinger,
Knowledge alld Reasolling in Program
Synthesis, Artifiial Intelligence, Vol. 6,
Nd. 2, pp. 175-208, 1975.

60. Manna, Zohar, Adi Shamir, The
Theoretical Aspects of the Optimal
Fixpoint, SIAM Journal of Computing,
Vol. 5, No. 3, pp.414-426, September 1976.

61. Manna, Zohar, Richard Waldinger, Is
‘Sometime’ sometimes better than
‘Always’? Intermittant Assertionr in

Proving Program Correctness, Proc. 2nd
ht. Con. on Software Engineering, IEEE
Computer Society, San Francisco,
California, October 1976.

62, Manna, Zohar, Richard Waldinger, The
Automatic Synthesis of Recursive
Programs, Proc. SMART-SICPLAN
Spmp. on A./. &? Prog. Lang., August 1977.

63. Manna, Zohar, Richard Waldinger, The
Automatic Synthesis of Systems of
Recursive Programs, hoc. ht. Joint Conf.
on A.Z., August 1977.

64. McCarthy, John, Mechanical Servants
for Mankind, Britannica Yearbook of
Science and the Future, 1973.

65. McCarthy, John, Book Review: Artificial
Intelligence: A General Survey by Sir
James Lighthill, Artifiial Intelligence, Vol.
5, No. 3, Fall 1974.

66. McCarthy, John, Modeling Our Minds
Science Year 1975, The World Book
Science Annual, Field Enterprises
Educational Corporation, Chicago, 1974.

67. McCarthy, John, Proposed Criterion for
a Cipher to be Probable-word-proof,
Comm. ACM, February 1975.

68. McCarthy, John, An Unreasonable Book,
a review of Computer Power and Human
Reason by Joseph Weizenbaum (W.H.
Freeman and Co., San Francisco, 1976),
S/CART Newsletter ~58, June 1976.

69. McCarthy, John, Review: Computer Power
and Human Reason, by Joseph
Weizenbaum (W.H. Freeman and Co.,
San Francisco, 1976) in Physics Today,
1977.

70. McCarthy, John, Another
SAMEFRINGE, SIGART Newsletter No.
61, February 1977.

84 Appendix C

71. McCarthy, John, The Home Informatioll
Terminal, The Grolicr Encyclopedia, 1977.

72. McCarthy, John, M. Sato, S. Igarashi, T.
Hayashi, On The Model Theory of
Knowledge, P rot. 5th international joint
Conference on Artijkial Intelligence, MLT,
Cambridge, 1977 (to appear).

73. McCarthy, John, M. Sato,fT. Hayashi, S.
Igarashi, On the Model Theory of
Knowledge, Proc. ht. Joint Con. on AL,
August 1977.

74. McCarthy, John, Epistemological
Problems of Artificial Intelligence, Proc.
ht. Joint Con.. on A.I., August 1977.

75. McCune, Brian, The PSI Progratn Model
Builder: Synthesis of V%!ry High-level
Programs, Proc. SIGART-SICPLAN
Symp. on AI. U Prog. Lang., August 1977.

76. Miller, N. J., Pitch Detectiotl by Data
. Reduction, PYOC. IEEE Symposium on

Speech Recognition, April 1974.

77. Moore, Robert C., Reasoning about
Knowledge arrd ‘Action, PYOC. ht. Jafnt
Conf. on AL, August 1977.

78. Moorer, James A., The Optimum Comb
Method of Pitch Period Analysis of
Continuous Speech, IEEE Trans.
Acoustics, Speech, and Signal Processing,

- Vol. ASSP-22, No. 5, October 1974.

79. Moorer, James A., On the Transcription
of Musical Sound by Computer, USA-
JAPAN Computer Conference, August
1975.

80. Morales, Jorge J., hteractive Theorem
Proving, Proc. ACM National Conference,
August 1973.

82. Nevatia, Ramakant, Thomas 0. Binford,
Structured Descriptions of Complex
Objects, Proceedings of the Third
lntcrnational Joint Conference on Arti$ial

_. Intelligence, Stanford University, August
1973.

83. Newell, A., Cooper, F. S., Forgie, J. W.,
Green, C. C., Klatt, D. H., Medress, M. F.,
Neuburg, E. P., O’Malley, M. H., Reddy,
D. R., Ritea, B., Shoup, J. E., Walker, D.
E., and Woods, W. A., Considerations for a
Follow-On ARPA Research Program for
Speech Understanding Systems,
Information Processing Techniques Office,
Advanced Research Projects Agency,
Department of Defense, Arlington,
Virginia, August 1975.

84. Oppen, Derek, &A. Cook, Proving
Assertions about Programs that
Manipulate Data Structures, Acta
lnformatica, Vol. 4, No. 2, pp. 127-144,
1975.

85. Phillips, Jorge, T. H. Bredt, Design and
Verification of Real-time Systems, Proc.
2nd ht. Con- on Softruare Engineering,
IEEE Computer Society, Long Beach,
California, October 1976.

86, Phillips, Jorge, Program Inference f ram
Traces using Multiple Knowledge
Sources, Proc. ht. Joint Conf. on AL,
August 1977.

87. Quam, Lynn, Robert Tucker, Botond
Eross, J. Veverka and Carl Sagan,
Mariner 9 Picture Differewing at
Stanford, Sky and Telescope, August 1973.

88. Rubin, Jeff, Computer Communication
via the Dial-up Network, Minutes of the
DECsystem-10 Spring-75 D ECU S
Meeting, Digital Equipment Computer
Users Society, Maynard, Mass., 1975.

81. Moravec, Hans, Towards Automatic
Visual Obstacle Avoidance, Proc. ht.
Joint Conf. on A.I., August 1977.

External Publications 85

89. Sagan, Carl, J. Veverka, P. Fox, R.
Dubisch, R. French, P. Gierasch, L. Quam,
J. Lederberg, E. Levinthal, R. Tucker, B.
Eross, J. Pollack, Variable Features OJI
Mars II: Mariner 9 Global Results, J.
Csophys. Res., 78, 4 163-4 196, 1973.

90. Schank, Roger C., Neil Goldman, Charles
J. Rieger III, Chris Riesbeck, MARGIE:
Memory, Analysis, Response Generation
and Inference 011 English, Proceedings of
the Third International Joint Conference
on Arti$iaI Intelligence, Stanford
University, August 1973.

91. Schank, Roger C., Kenneth Colby (eds),
Computer Models of Thought and
Lnlzguage, W. H. Freeman, San Francisco,
1973.

92. Schank, Roger, The Conceptual Analysis
of Natural Language, in R. Rustin (ed.),
Natural Language Processing,
Algorithmics Press, New York, 1973.

93. Schank, Roger, Charles J. Rieger III,
Inference and Computer Understanding
of Natural Language, Arti$ial
intelligence J., Vo1.5, No. 4, Winter 1974.

94. Schank, Roger C., Neil M. Goldman,
Charles J. Rieger III, Christopher K.
R iesbeck, Interface and Paraphrase by
Computer, J. ACM, Vol 22, No. 3, July
1975.

95. Shaw, David E., William R. Swartout, C.
Cordell Green, Inferring LISP Programs
from Examples, Adv. Papers of 4th ht.
Joint Conference on Artijzial Intelligence,
Vol: 1, pp. 260-267, September 1975,

96. Shortliffe, Edward H., Davis, Randall,
Axline, Stanton G., Buchanan, Bruce G.,
Green, C. Cordell, and Cohen, Stanley N.,
Corn pu ter-Based Consultations iti
Cliiiical Therapeutics: Explanation and
Rule Acquisition Capabilities of the
MYCIN System, Computers and

Biomedical Research, Volume 8, Number 3,
June 1975, pages 303-320.

97. Smith, David Canfield, Horace J. Enea,
L. Backtracking ill MLISPP, Proceedings of

the TAird International Joint Conference
on Arti@zf Intelligence, Stanford
University, August 1973.

98. Smith, Leland, Editing and Printing
Music by Computer, J. Music Theory,
Fall 1973.

99. Sobel, Irwin, on Calibrating Computer
COJitrolled Cameras for Perceiving 3-D
Scenes, Proc. Third ht. Joint Conf. on
Arti.ial Intelligence, Stanford U., 1973;
also in Artificial Intelligence J., Vol. 5, No.
2, Summer 1974.

100. Suzuki, N., Verifying Programs by
Algebraic arid Logical Reduction, hoc.
ht. Conf. on Reliable Software, Los
Angeles, Calif., April 1975, in ACM
SIGPLAN Notices, Vol. 10, No. 6, pp.
473-481, June 1975.

101. Tesler, Lawrence G., Horace J. Enea,
David C. Smith, The LISP30 Pattern
Matching System, Proceedings of the
Third International Joint Conference on
Artifiial Intelligence, Stanford University,
August 1973.

102. Thomas, Arthur J., Puccetti OJI

klachitie Pattern Recognition,
Brit.J.Philosophy of Science, 26~227-232,
1975.

103. Veverka, J., Carl Sagan, Lynn Quam, R.
Tucker, B. Eross, Variable Features on
Mars III: Comparison of Mariner 1969
and Mariner 1971 Photography, /cams, 21,
317-368, 1974.

104. von Henke, F. W., D.C. Luckham, A
Methodology for Verifying Programs,
Proc. lnt. Conf. on Reliable Software, Los
Angeles, Calif., April 1975, in ACM

86 Appendix C

SlCPLAN Notices, Vol. 10, No. 6, pp.
156-164, June 1975.

105. Wilks, Yorick, The Stallford Machine
Translation and Understanding Project,
in R. Rustin (ed.), Natural Language
Processing, Algorithmics Press, New York,
1973.

106. Wilks, Yorick, Understanding Without
Proofs, Proceedings of the Third
International Joint Conference on Artifcial
Intelligence, Stanford University, August
1973.

107. Wilks, Yorick, Annette Herskovits, AJI

Intelligent Analyser and Generator of
Natural Language, Proc. ht. Conf. on
Computational Linguistics, Pisa, Italy,
Proceedings of the Third Internation Joint
Conference on Artif2ial Intelligence,
Stanford University, August 1973.

108. Wilks, Yorick, The Computer Analysis
. of Philosophical Arguments, CIRPHO,

Vol. 1, No. 1, September 1973

109. Wilks, Yorick, An Artificial Intelligellce
Approach to Machine Translation, in
Schank and Colby (eds.), Computer Models
of Thought and Language, W, H. Freeman,
San Francisco, 1973.

110. Wilks, Yorick, One Small Head -
Models alld Theories in Linguistics,

- Foundations of Language, Vol. 10, No. 1,
January 1974.

111. Wilks, Yorick, Preferewe Semantics, E.
Keenan (ed.), Proc. 1973 Colloquium on
Forinal Semantics of Natural Language,
Cambridge, U.K., 1974.

112. Wilks, Yorick, The XCP Computer-
driven Printer at Stanford, Bultetin of
Assoc. for Literary and Linguistic
Computing,, Vol. 2, No. 2, Summer 1974.

113. Wilks, Y., Semantic Procedures and
Information, in Studies in the
Foundations of Communication, R. Posner
(ed.), Springer, Berlin, forthcoming.

1 I;Q. Wflks, Yorick, A Preferential, Pattern-
Seeking Semantics for Natural Language
Itlference, Artifiial Intelligence J., Vol. 6,
No. 1, Spring 1975.

115. Wilks, Y., An Intelligent Arialyser and
Understander of English, Comm. ACM,
May 1975.

116. Winograd, Terry, A Process Model of
Lallguage Understanding, in Schank and
Colby (eds.), Computer Models of Thought
and Language, W. H. Freeman, San
Francisco, 1973.

117. Winograd, Terry, The Processes of
Language Understanding in Benthall,
(ed.), The Limits of Human Nature, Allen
Lane, London, 1973.

118. Winograd, Terry, Language and the
Nature of Intelligence, in G.J. Dalenoort
led.), Process Models for Psychology,
Rotterdam Univ. Press, 1973

119. Winograd, Terry, Breaking the
Complexity Barrier (agafn), Proc.
SICPLAN-SIGIR interface Meeting,
1975; ACM SIOPLAN Notices, lO:l, pp.
13-30, January 1975.

120. Winograd, Terry, Artificial Intelligence
- When Will Computers Understand
People?, Psychology Today, May 1974.

121. Winograd, Terry, Frame
Representations and the Procedural -
Declarative Controversy, in D. Bobrow
and A. Collins, eds., Representation and
Understanding: Studies in Cognitive
Science, Academic Press, 1975.

Ex temal Publications

122. Winograd, Terry, Reactive Systems,
Coevolution Quarterly, September 1975

123. Winograd, Terry, Parsing Natural
Language via Recursive Transition Net,
in Raymond Yeh (ed.) Applied
Computation Theory, Prentice-Hall, 1976.

. .

124. Winograd, Terry, Computer Memories
- a Metaphor for Human Memory, in
Charles Cofer (ed.), Models of Human
Memory, Freeman, 1976.

125. Yakimovsky, Yoram, Jerome A.
Feldman, A Semantics-Based Decisioll
Theoretic Region Analyzer, Proceedings
of the Third International Joint Conference
on Artifcial intelligence, Stanford
University, August 19yP..

126. Yolks, Warwick, There’s Always Room
at the Top, or How Frames gave my Life
Meaning, S/CART Newsletter, No. 53,
August 1975.

Apperldix D
Abstracts of Recent Reports

A bstracts are given here for Artificial
Intelligence Memos published since July 1973.
For earlier years, see our ten-year report
[Memo AIM-2281 or diskfile AIMS.OLD
[BIB,DOC] &U-AI. The abstracts below are
kept in diskfile AIMS [BIB,DOC] &U-AI
and the titles of both earlier and more recent
A. I. Memos are in AIMLST[BIB,DOC]
&U-AI.

In the listing below, there are up to three
numbers given for each report: an “AIM”
number on the left, a “CS” (Computer Science)
number in the middle, and a NTIS stock
number (often beginning ‘AD...“) on the right.
Special symbols preceding the, ‘AIM” number
indicate availability at this writing, as follows:

+ hard copy or microfiche,
Q microfiche only,
* out-of-stock.

If. there is no special symbol, then it is
available in hard copy only, Reports that are
in stock may be requested from:

Documentation Services
Artificial Intelligence Laboratory
Stanford University
Stanford, California 94305

Rising costs and restriction, on the use of
research funds for printing reports have made
it necessary to charge for reports at their
replacement cost. By doing so, we will be able
to reprint popular reports rather than simply
declaring them “out of print”.

Alternate Sources

Alternatively, reports may be ordered (for a
nominal fee) in either hard copy or microfiche
from:

National Technical Infortiation Service
P. 0. Box 1553
Springfield, Virginia 22 16 1

If there is no NTIS number given, then they

may or may not have the report. In
requesting copies in this case, give them both
the ‘AIM-’ and “CS-nnn” numbers, with the
latter enlarged into the form “STAN-CS-yy-
nnn”, where “yy” is the last two digits of the
year of publication.

Memos that are also Ph.D. theses are so
marked below and may be ordered from:

University Microfilm
P. 0. Box 1346
Ann Arbor, Michigan 48106

For people with access to the ARPA Network,
the texts of some A. I. Memos are stored
online in the Stanford A. I. Laboratory disk
file. These are designated below by “Diskfile:
<file name>” appearing in the header.

* AIM-21 1 cs-383
Yorick Wilks,
Natural Lallguage Inference,
24 pages, September 1973.

AD769673

The paper describes the way in which a
Preference Semantics system for natural
language analysis and generation tackles a
difficult class of anaphoric inference problems
(finding th correct referent for an English
pronoun in context): those requiring either
analytic (conceptual) knowledge of a complex
sort, or requiring weak inductive knowledge of
the course of events in the real world. The
method employed converts all available
knowledge to a canonical template form and
endeavors to create chains of non-deductive
inferences from the unknowns to the possible
referents. Its method of selecting among
possible chains of inferences is consistent with
the overall principle of ‘semantic preference’
used to set up the original meaning
representation, of which these anaphoric
inference procedures are a manipulation.

t AIM-212 CS-384 AD769379
Annette Herskovits,
The Celreratioll of French from a Semantic
Representation,
20 pages, September 1973.

Abstracts of Recent Reports 89

The report contains first a brief description of
Preference Semantics, a system of
representation and analysis of the meaning
structure of natural language. The analysis
algorithm which transforms phrases into
semantic items called templates has been
considered in detail elsewhere, so this report
concentrates on the second phase of analysis,
which binds templates together into a higher
level semantic block corresponding to an
English paragraph, and which, in operation,
interlocks with the French generation
procedure. During this phase, the semantic
relations between templates are extracted,
pronouns are referred and those w o r d
disambiguations are done that require the
context of a whole paragraph. These tasks
require items called paraplates which are
attached to keywords such as prepositions,
sub junctions and relative pronouns. The
system chooses the representation which
maximizes a carefully defined ‘semantic
density’.

A system for the generation of French
sentences is described, based on the generation
of French sentences is described, based on the
recursive evaluation of procedural generation
patterns called stereotypes. The stereotypes are
semantically context sensitive, are attached to
each sense of English words and keywords
and are carried into the representation by the
analysis procedure. The representation of the
meaning of words, and the versatility of the
stereotype format, allow for fine meaning
distinctions to appear in the French, and for
the construction of French differing radically
from the English origin.

AIM-213 CS-385
Ravindra B. Thosar,
Recognition of Continuous Speech:
Segmentation and ClassificatioJi using
Sigliature Table Adaptation,
37 pages, September 1973. Cost: $2.75

This report explores the possibility of using a
set of features for s e g m e n t a t i o n a n d
recognition of continuous speech. The

features are not necessarily distinctive or
minimal, in the sense that they do not divide
the phonemes into mutually exclusive subsets,
and can have high redundancy. This concept
of feature can thus avoid aptiori binding
between the phoneme categories to be
recognized and the set of features defined in a
particular system.

An adaptive technique is used to find the
probability of the presence of a feature. Each
feature is treated independently of other
features, An unknown utterance is thus
represented by a feature graph with associated
probabilities. It is hoped that such a
representation would be valuable for a
hypothesize-test paradigm as opposed to a one
which operates on a linear symbolic input.

AIM-214 CS-386 AD767332
Walter A. Perkins, Thomas 0. Binford,
A Comer Fielder for Visual Feedback,
59 pages, September 1973. Cost: $3.35

In visual-feedback work often a model of an
object and its approximate location are known
and it is only necessary to determine its
location and orientation more accurately. The
purpose of the program described herein is to
provide such information for the case in
which the model is an edge or corner. Given ,
a model of a line or a corner with two or three
edges, the program searches a TV window of
arbitrary size looking for one or all corners
which match the model. A model-driven
program directs the search. It calls on another
program to find all lines inside the window.
Then it looks at these lines and eliminates
lines which cannot match any of the model
lines. It next calls on a program to form
vertices and then checks for a matching
vertex. If this simple procedure fails, the
model-driver has two backup procedures.
First it works with the lines that it has and
tries to form a matching vertex (corner). If
this fails, it matches parts of the model with
vertices and lines that are present and then
takes a careful look in a small region in which
it expects to find a missing line. The program

90 Appendix D

often finds weak contrast edges in this manner.
Lines are found by a global method after the
entire window has been scanned with the
H ueckel edge operator.

>k AIM-215 CS-387 A D769380
Bruce G. Buchanan, N. S. Sridharan,
Analysis of Behavior of Chemical Molecules:
R u le Form at ioll 011 Non-homogeneous
Classes of Objects,
15 pages, September 1973.

An information processing model of some
important aspects of inductive reasoning is
presented within the context of one scientific
dlsclpllne. Given a collection of experimental
(mass spectrometry) data from several chemical
molecules the computer program described
here separates the molecg!es into well-behaved
subclasses and selects from the space of all
explanatory processes the characteristic
processes for each subclass. The definitions of
well-behaved and characteristic embody several
heuristics which are discussed. Some results
of the program are discussed which have been
useful to chemists and which lend credibility
to this approach.

* AIM-216 CS-389 AD771299
Larry Masinter, N.S. Sridharan, J. Lederberg,
S. H. Smith,
Applications of Artificial Intelligence for
Chemical Inferewe: XII. Exhaustive
Generation of Cyclic and Acyclic Isomers,
60 pages, September 1973.

A systematic method of identification of all
possible graph isomers consistent with a given
empirical formula is described. The method,
embodied in a computer program, generates a
complete list of isomers. Duplicate structures
are avoided prospectively.

* AIM-217 cs-39 1 AD770610
N. S. Sridharan,
Search Strategies for the Task of Orgallic
Chemical Synthesis,
32 pages, August 1973.

A computer program has been written that
successfully discovers syntheses for complex
organic chemical molecules. The definition of
the search space and strategies for heuristic
search are described in this paper.

* AIM-218 CS-393 AD772063/4WC
Jean Etienne Vuillemin,
Proof Techniques for Recursive Programs,
Thesis: Ph.D. in Computer Science,
97 pages, October 1973.

The concept of least fixed-point of a
continuous function can be considered as the
unifying thread of this dissertation. The
connections between fixed-points and
recursive programs are detailed in Chapter 2,
providing some insights on practical
implementations of recursion. There are two
usual characterizations of the least fixed-point
of a continuous function. To the first
characterization, due to Knaster and Tarski,
corresonds a class of proof techniques for
programs, as described in Chapter 3. The
other characterization of least fixed points,
better known as Kleene’s first recursion
theorem, is discussed in Chapter IV. It has
the advantage of being effective and it leads
to a wider class of prrof techniques.

* AIM-219 cs-394 AD769674
C. A. R. Hoare,
Parallel Programming: an Axiomatic
Approach,
33 pages, October 1973.

This paper develops some ideas expounded in
[I]. It distinguishes a number of ways of
using parallelism, including disjoint processes,
competition, cooperation, communication and
“colluding”. In each case an axiomatic proof
rule is given. Some light is thrown on traps
or ON conditions. Warning: the program
structuring methods described here are not
suitable for the construction of operating
systems.

Abstracts of Recent Reports 91

AIM-220 CS-396 AD772064/2WC
Robert Bolles, Richard Paul,
The use of Sensory Feedback in a
Programmable Assembly Systems,
26 pages, October 1973. Cost: $2.45

This article describes an experimental,
automated assembly system which uses sensory
feedback to control an electro-mechanical arm
and TV camera. Visual, tactile, and force
feedback are used to improve positional
information, guide manipulations, and
perform inspections. The system has two
phases: a planning phase in which the
computer is programmed to assemble some
object, and a working phase in which the
computer controls the arm and TV camera in
actually performing the assembly. The
working phase is designed to be run on a
mini-computer.

The system has been used to assemble a water
pump, consisting of a base, gasket, top, and six
screws. This example is used to explain how
the sensory data is incorporated into the
con 0.01 system. A movie showing the pump
assembly is available from the Stanford
A rtificial Intelligence Laboratory.

Q AIM-221 CS-447 AD787631IlWC
Luigia A iello, Mario Aiello, Richard
Weyhrauch,
The Senlantics of PASCAL in LCF,
78 pages, October 1974.

We define a semantics for the arithmetic part
of PASCAL by giving it an interpretation in
LCF, a language based on the typed a-
calculus.. Programs are represented in terms of
their abstract syntax. We show sample proofs,
using LCF, of some general properties of
PASCAL and the correctness of some
particular programs. A program
implementing the McCarthy Airline
reservation system is proved correct.

+ AIM-222 cs-467
Mario Aiello, Richard Weyhrauch,
Checking Proofs in the Metalnathetnatics of
First Order Logic,
55 pages, August 1974. Cost: $3.25

This is a report on some of the first
experiments of any size carried out using the
new first order proof checker FOL. We
present two different first order
axiomatizations of the metamathematics of the
logic which FOL itself checks and show
several proofs using each one. The difference
between the axiomatizations is that one defines
the metamathematics in a many sorted logic
the other does not.

e AIM-223 cs-400
C. A. R. Hoare,
Recursive Data Structures,
32 pages, December 1973.

AD772509

The power and convenience of a
programming language may be enhanced for
certain applications by permitting data
structures to be defined by recursion. This
paper suggests a pleasing notation by which
such structures can be declared and processed;
it gives the axioms which specify their
properties, and s u g g e s t s a n efficient
implementation method. It shows how a
recursive data structure may be used to
represent another data type, for example, a set.
It then discusses two ways in which significant
gains in efficiency can be made by selective
updating of structures, and gives the relevant
proof rules and hints for implementation. It is
shown by examples that a certain range of
applications can be efficiently programmed,
ithout introducing the low-level concept of a
reference into a high-level programming
language.

Q AIM-224 cs-403 AD773391
C. A, R. Hoare,
Hillts 011 Programming Language Design,
29 pages, December 1973.

This paper (based on a keynote address

92 Appendix D

presented a t the SIGACT/SICPLAN
Symposium on Principles of Programming
Languages, Boston, October l-3, 1973)
presents the v i e w that a programming
language is a tool which should assist the
programmer in the most difficult aspects of his
art, namely program design, documentation,
and debugging. It discusses the objective
criteria for evaluating a language design, and
illustrates them by application to language
features of both high level languages and
machine code programming. It concludes with
an annotated reading list, recommended for all
intending language designers.

Q AIM-225 CS-406 AD77564515WC
W. A. Perkins,
Memory Model For a Robot,
11s pages, January 1974.

A memory model for a robot has b e e n
designed and tested in a simple toy-block
wor!d for which it has shown clar i ty ,
efficiency, and generality. In a constrained
pstiedo-English one can ask the program to
manipulate objects and query it about the
present, past, and possible future states of its
world. The program
understanding of its wor:da’ anad $Et
intelligent answers in reasonably good English.
Past and hypothetical states of the world are
handled by changing the state the world in an
imaginary context. Procedures interrogate and
modify two globabl databases, one which
contains the present representation of the
wo?ld and another which contains the past
history of events, conversations, etc. The
program has the ability to create, destroy, and
even resurrect objects in its world.

+ AIM2226 CS-407 AD778310/3WC
F.H.C. Wright II, R. E. Gorin,
FAIL,
6 1 pages, April 1974. Cost: $3.40

This 1s a reference manual for FAIL, a fast,
one-pass assembler for PDP-10 and PDP-6
machine language. FAIL statements, pseudo-
operations, macros, *and conditional assembly

features are described. Although FAIL uses
substantially more main memory than
MACRO- 10, it assembles typical programs
about five times faster. FAIL assembles the
enf,ire Stanford time-sharing operating system
(two million characters) in less than four
minutes of CPU time on a IiA - 10 processor.
FAIL permits an ALGOL-style block
structure which provides a way of localizing
the usage of some symbols to certain parts of
the program, such that the same symbol name
czn be used to mean different things in
different blocks.

+ AIM-227 cs-408 ADA003483
A. J, Thomas, T. 0. Binford,
Inforlnation Processing Analysis of Visual
Perception: A Review,
50 pages, June 1974. Cost: $3.10

We suggest that recent advances in the
construction of artificial vision systems provide
the beginnings of a framework for an
information processing analysis of human
visual perception. We review some pertinent
investigations which have appeared in the
psychological literature, and discuss what we
think t be some of the salient and potentially
useful theoretical Concepts which have resulted
from the attempts to build computer vision
systems. Finally we try to integrate these two
sources of ideas to suggest some desireable
structural and behavioural concepts which
apply to both the natural and artificial
systems.

e AIM-228 CS-409 AD776233/9WC
Lester Earnest (ed.),
FINAL REPORT: The First Ten Years of
Artificial Intelligence Research at Stanford,
118 pages, July 1973.

The first ten years of research in artificial
intelligence and related fields at Stanford
University have yielded significant results in
computer vision and control of manipulators,
speech recognition, heuristic programming,
representation theory, mathematical theory of
computation, and modeling of organic

Abstracts of Recent Reports 93

chemical processes. This report summarizes
the accomplishments and provides
bibliographies in each research area.

a~ AIM-229 cs-4 11
D.B. Anderson, T.O. Binford, A.J. Thdmas,
R.W. Weyhrauch, Y.A. Wilks,
AFTER LEIBNIZ . . . : Discussions 011
Philosophy and Artificial Intelligence,
43 pages, April 1974.

This is an edited transcript of informal
conversations which we have had over recent
months, in which we looked at some of the
issues which seem to arise when artificial
intelligence and philosophy meet. Our aim
was to see what might be some of t h e
fundamental principles of attempts to build
intelligent machines. The major topics
covered are the relationship of AI and
philosophy and what help they might be to
each other; t h e machanisms of natural
inference and deduction; the question of what
kind of theory of meaning would be involved
in a successful natural language understanding
program, and the nature of models in AI
research.

8 AIM-230 CS-412 AD7867211lWC
Daniel C. Swinehart,
COPILOT: A Multiple Process Approach to
Interactive Programming Systems,
Thesis: Ph.D. in Computer Science,
2 13 pages, August 1974.

The addition of multiple processing facilities
to a language used in an interactive
computjng environment requires new
techniques. This dissertation presents one
approach, emphasizing the characteristics of
the interface between the user and the system.

We have designed an experimental interactive
programming system, COPILOT, as the
concrete vehicle for testing and describing our
methods. COPILOT allows the user to create,
modify, investigate, and control programs
written in an Algol-like language, which has
been augmented with facilities for multiple

processing. Although COPILOT is compiler-
based, many of our solutions could also be
applied to an interpretive system.

Central to the design is the use of CRT
displays to present programs, program data,
and system status. This continuous display of
information in context allows the user to
retain comprehension of complex program
environments, and to indicate the
environments to be affected by his commands.

COPILOT uses the multiple processing
facilities to its advantage to achieve a kind of
interactive control which we have termed non-
jwrm ptive. The user’s terminal i s
continuously available for commands of any
kind: program editing, variable inquiry,
program control, etc., independent of the
execution state of the processes he is
controlling. No process may unilaterally gain
possession of the user’s input; the user retains
control at all times.

Commands in COPILOT are expressed as
statements in the programming language.
This single language policy adds consistency to
the system, and permits the user to construct
procedures for the execution of repetitive or
complex command sequences. An
abbreviation facility is provided’ for the most
common terminal operations, for convenience
and speed.

We have attempted in this thesis to extend the
facilities of interactive programming systems
in response to developments in language
design and information display technology.
The resultant system provides an interface
which, we think, is better matched to the
interactive needs of its user than are its
predecessors.

o AIM-231
James Gips,

cs-413 ADA001814

Shape Grammars and their Uses,
Thesis: Ph.D. in Computer Science,
243 pages, August 1974.

94 Appendix D

Shape grammars are defined and their uses
are investigated. Shape grammars provide a
means for the recursive’specification of shapes.
A shape grammar is presented that generates
a new class of reversible figures. Shape
grammars are given for some well known
mathematical curves. A simple method for
constructing shape * grammars that simulate
Turing machines is presented. A program has
been developed that uses a shape grammar to
solve a perceptual task involving the analysis
and comparison of line drawings that portray
three-dimensional objects of a restricted type.
A formalism that uses shape grammas to
generate paint ings i s defined, its
implementation on the computer is described,
and examples of generated paintings are
shown. The use of shape

-m.
Q AIM-232 CS-4 14 AD78045219WC
Bruce G. Baumgart,
CEOMED - A Geometric Editor,
45 pages, May 1974.

GEOMED is a system for doing 3-D
geometric modeling; used from a keyboard, it
is an interactive drawing program; used as a
package of SAIL or LISP accessible
subroutines, it is a graphics language. With
GEOMED, arbitrary polyhedra can be
constructed; moved about and viewed in
perspective with hidden lines eliminated. In
addition to polyhedra; camera and image
models are provided so that simulators
relevant to computer vision, problem solving,
and animation may be constructed.

o AIM-233 CS-419 ADA000086/9WC
Charles J. Rieger, III,
Conceptual Memory: A Theory and
Coinputer Program for Processing the
Meaning Contellt of Natural Language
Utterances,
Thesis: Ph.D. in Computer Science,
393 pages, June 1974.

Humans perform vast quantities of
spontaneous, subconscious computation in
order to understand even the simplest natural

language utterances. The computation is
principally meaning-based, with syntax and
traditional semantics playing insignificant
roles. This thesis supports this conjecture by
Synthesis of a theory and computer program
which account for many aspects of language
behavior in humans. It is a theory of language
and memory.

Since the theory and program deal with
language in the domain of conceptual
meaning, they are independent of language
form and of any specific language. Input to
the memory has the form of analyzed
conceptual dependency graphs which represent
the underlying meaning of language
utterances. Output from the memory is also in
the form of meaning graphs which have been
produced by the active (inferential) memory
processes which dissect, transform, extend and
recombine the input graphs in ways which are
dependent upon the meaning context in which
they were perceived.

A memory formalism for the computer model
is first developed as a basis for examining the
inferential processes by which comprehension
occurs. Then, the notion of inference space is
presented, and sixteen classes of conceptual
inference and their implementation in the
computer model are examined, emphasizing
the contribution of each class to the total
problem of understanding. Among the sixteen
inference classes are: causative/resultative
inferences (those which explain and predict
cause and effect relationships relative to the
memory’s model of the world), motivational
inferences (those which infer the probable
intentions of actors), enabling inferences (those
which predictively fill out the circumstances
which were likely to have obtained at the time
of an action), action prediction inferences
(those which make guesses about what a
person might be expected to do in some
situation), knowledge propagation inferences
(those which predict what knowledge is
available to a person, based on what the
memory already knows or can infer he knows),
normative inferences (those which assess the

Abstracts of Recent Reports 95

“normality” of a given piece of information),
and state duration inferences (those which
predict the probable duration of specific states
in the world). All inferences are probabilistic,
and “backup” is deemphasited as a
programming tool.

The idea of points of contact of information
structures in inference space is explored. A
point of contact occurs when an inferred unit
of meaning from one starting point within one
utterance’s meaning graph either confirms
(matches) or contradicts an inferred unit of
meaning from another point within the graph,
or from within the graph of another utterance.
The quantity and quality of points of contact
serve a s the primary def in i t ion of
understanding, since such points provide an
effective measure of the memory’s ability to
relate and fill in information,

Interactions between the inference processes
and (1) word sense promotion (how meaning
context influences the language analyzer’s
choice of lexical senses of words during the
parse), and (2) the processes of reference (how
memory pointers to tokens of real world
entities are established) are examined. In
particular, an important inference-reference
relaxatiotl cycle is identified and solved.

The theory forms a basis for a
computationally effective and comprehensive
theory of language understanding by
conceptual inference. Numerous computer
examples are included to illustrate key points.
Most issues are approached from both
psychological and computational points of
view, and the thesis is intended to be
comprehensible to people with a limited
background in computers and symbolic
computation.

Q AIM-234 cs43 1 not at NTIS
Kenneth Mark Colby, Roger C. Parkison, Bill
Faught,
Pattern-Matching Rules for the Recognition
of Natural Language Dialogue Expressions,
23 pages, June 1974.

Man-machine dialogues using everyday
conversational Engl ish present difYicult
problems for computer processing of natural
language. Grammar-based parsers which
perform a word-by-word, parts-of-speech
analysis are too fragile to operate satisfactorily
in real time interviews allowing unrestricted
English. In constructing a simulation of
paranoid thought processes, we designed an
algorithm capable of handling the linguistic
expressions used by interviewers in teletyped
diagnostic psychiatric interviews. The
algorithm uses pattern-matching rules which
attempt to characterize the input expressions
by progressively transforming them into
patterns which match, completely or fuzzily,
abstract stored patterns. The power of this
approach lies in its ability to ignore
recognized and unrecognized words and still
grasp the meaning of the message. The
methods utilized are general and could serve
any “host” system which takes natural
language input.

+ AIM-235 CS-432 ADA006898/lWC
Richard W. Weyhrauch, Arthur J. Thomas,
FOL: A Proof Checker for First-order Logic,
57 pages, September 1974. Cost: $3.30

This manual describes a machine
implementation of an extended version of the
system of natural deduction described by
Prawitz. This language, called FOL, extends
Prawitz’s formulation to a many-sorted logic
allowing a partial order over sorts. FOL also
allows deductions to be made in some
intuitionistic, modal and strict-implication
logics. It is intended to be a vehicle for the
investigation of the metamathamatics of first-
order systems, of problems in the theory of
computation and of issues in representation
theory.

Q AIM-236 CS-433 AD784513/4WC
Jack R. Buchanan and David C. Luckham,
On Automating the Construction of
Programs,
65 pages, May 1974.

96 Appendix D

A n experimental system for automatically
generating certain simple kinds of programs is
described. The programs constructed are
expressed in a subset of ALGOL containing
assign men ts, function calls, conditional
statements, while loops, and non-recursive
procedure calls. The input is an environment
of primitive programs and programming
methods specified in a language currently used
to define the semantics of the output
programming language. The system has been
used to generate programs for symbolic
manipulation, robot control, everyday
planning, and computing arithmetical
functions.

+ AIM-237
Yorlck Wilks,

CS-436

h’a t u ml Lmguage Unders%anding Systems
Within the AI Paradigm - A Survey alld
Solii e Corn parisons,
40 pages, December 1974. Cost: $2.85

The paper surveys the major projects on the
understanding of natural language that fall
within what may now be called the artificial
intelligence paradigm for natural language
systems. Some space is devoted to arguing
that the paradigm is now a reality and
different in significant respects from the
generative paradigm of present day linguistics.
The comparisons between systems center
around questions of the relative perspicuity of
procedural and static representations; the
aduantages and disadvantages of developing
systems over a period to test their limits; and
the degree of agreement that now exists o n
what are the sorts of information that must be
available to a system that is to understand
everyday language.

Q AIM-238 c s - 4 3 7 A DA 005040
Christopher K. Riesbeck,
Conlputatior~al Understanding: Allalysis of
Sentences and Context,
Thesis: Ph.D. in Computer Science,
245 pages, May 1974.

The goal of this thesis was to develop a

system for the computer analysis of written
natural language texts that could also serve a
a theory of human comprehension of natural
language. Therefore the construction of this
system was guided by four basic assumptions
about natural language comprehension. First,
the primary goal of comprehenslon is always
to find meanings as soon as possible. Other
tasks, such as discovering syntactic
relationships, are performed only when
essential to decisions about meaning. Second,
an attempt is made to understand each word
as soon as it is read, to decide what it means
and how it relates to the rest of the text.
Third, comprehension means not only
understanding what has been seen but also
predicting what is likely to be seen next.
Fourth, the words of a text provide the cues
for finding the information necessary for
comprehending that text.

G AIM-239 CS-438 AD786720/3WC
Marsha Jo Hannah,
Computer Matching of Areas in Stereo
1111 ages,
Thesis: Ph.D. in Computer Science,
99 pages, July 1974.

This dissertation describes techniques for
efficiently matching corresponding areas of a
stereo pair of images. Measures of match
which are suitable for this purpose are
discussed, as are methods for pruning the
search for a match. The mathematics
necessary to convert a set of matchings into a
workable camera model are given, along with
calculations which use this model and a pair
of image points to locate the corresponding
scene point. Methods are included to detect
some types of unmatchable target areas in the
original data and for detecting when a
supposed match is invalid, Region growing
techniques are discussed for extend matching
areas into regions of constant parallax and for
delimiting uniform regions in an image. Also,
two algorithms are presented to show some of
the ways in which these techniques can be
combined to perform useful tasks in the
processing of stereo images.

,

Abstracts of Recent Reports 97

Q AIM-240 cs-444 AD787035
C. Cordell Green, Richard J. Waldinger,
David R. Barstow, Robert Elschlager, Douglas
B. Lenat, Brian P. McCune, David E. Shaw,
and Louis I. Steinberg,
Progress Report on Program-understanding
Systems,
47 pages, August 1974.

This progress report covers the first year and
one half of work by our automatic
programming research group at the Stanford
Artificial Intelligence Laboratory. Major
emphasis has been placed on methods of
program specification, codification of
programming knowledge, and implementation
of pilot systems for program writing and
understanding. List processing has been used
as the general problem domain for this work.

+ AIM-241 es-446 AD78672317WC
Luigia Aiello, Richard W. Weyhrauch,
LCFstnall: an Implementation of LCF,
45. pages, August 1974. Cost: $2.95

This is a report on a computer program
implementing a simplified version of LCF. It
is written (with minor exceptions) entirely in
pure LISP and has none of the user oriented
features of the implementation described by
Milner. We attempt to represent directly in
code the metamathematical notions necessary
to describe LCF. We hope that the code is
simple enough and the metamathematics is
clear enough so that properties of this
particular program (e.g. its correctness) can
eventually be proved. The program is
reproduced in full.

e AIM-242
James R. Low,

CS-452 ADA000500/9WC

Automatic Coding: Choice of Data
Structures,
Thesis: Ph.D. in Computer Science,
110 pages, August 1974.

and relations for a given computer program.
Representations are picked from a fixed
library of low-level data structures including
linked-lists, binary trees and hash tables. The
representations are chosen by attempting to
minimize the predicted space+time integral of
the user’s program execution. Predictions are
based upon statistics of information structure
use provided directly by the user and collected
by monitoring executions of the user program
using default representations for the high-
level structures. A demonstration system has
been constructed. Results using that system
are presented.

e AIM-243 CS-456 ADA003815
Raphael Finkel, Russel Taylor, Robert Bolles,
Richard Paul, Jerome Feldman,
AL, A Programming System for
Automation,
130 pages, November 1974.

AL is a high-level programming system for
specification of manipulatory tasks such as
assembly of an object from parts. AL includes
an ALGOL-like sauce language, a translator
for converting programs in runnable code,
and a runtime system for controlling
manipulators and other devices. The system
includes advanced features for describing
individual motions of manipulators, for using
sensory information, and for describing
assembly algorithms in terms of common
domain-specific primitives. This document
describes the design of AL, which is currently
being implemented as a successor to the
Stanford WAVE system.

+ AIM-244 cs-457 not at NTIS
Kenneth Mark Colby,
Ten Criticisms of PARRY,
7 pages, September 1974. Cost: $1.90

Some major criticims of a computer simulation
of paranoid processes (PARRY) are reviewed
and discussed.

98 Appendix D

Q AIM-245 CS-458 AD7848 16/l WC
Jack Buchanan,
A Study in Automatic Programmiilg,
Thesis: Ph.D. in Computer Science,
14s pages, May 1974.

A description of methods and an
implementation of a system for automatic
generation of programs is given. The
problems of writing programs for numerical
computation, symbol manipulation, robot
cot;trol and everyday planning have been
studied and some programs generated. A
particular formalism, i.e. a FRAME, has been
developed to define the programming
environment and permit the statement of a
problem. A frame, F, is formulated within the
Logic of Programs [Hoare 1969, Hoare and
W irt h 1.9721 and includes--primitive functions
and procedures, axioms definitions and rules
of program composition. Given a frame, F, a
problem for program construction may be
stated as a pair <I,G>, where I is an input
assertion and C is an output assertion. The
program generation task is to construct a
program A such that I{A]I’, where I’ 3 G.
This process may be viewed as a search in the
Logic of Programs for a proof that t h e
generated program satisfies the given input-
output assertions. Correctness of programs
generated using the formal algorithm is
discussed.

QP AIM-246 CS459 ADA000085/lWC
Terry W inograd,
Five Lectures 011 Artificial Intelligence,
93 pages, September 1974.

T h i s .publication is a s l i g h t l y e d i t e d
transcriptIon of five lectures delivered at the
Electrotechnical Laboratory in Tokyo, Japan
from March 18 to March 23, 1974. T’hey were
intended as a n introduction to current
research problems in Artificial Intelligence,
particularly in the area of natural language
understanding. They are exploratory in
nature, concentrating on open problems and
directions for future work. The five lectures
include: A survey of past work in natural

language understanding; A description of the
SHRDLU system; A comparison of
representations used in AI programs; A rough
sketch of some ideas for a new representation
tiich combines features of the previous ones;
A discussion of the applications of these ideas
to programming systems.

Q AIM-247 CS-461 ADA005041/9WC
Neil Goldman,
Computer Generation of Natural Language
From a Deep Conceptual Base,
Thesis: Ph.D. in Computer Science,
318 pages, January 1974.

For many tasks involving communication
between humans and computers it is necessary
for the machine to produce as well as
understand natural language. We describe an
implemented system which generates English
sentences from Conceptual Dependency
networks, which are unambiguous, language-
free representations of meaning. The system
is designed to be task independent and thus
capable of providing the language generation
mechanism for such diverse problem areas as
question answering, machine translation, and
interviewing.

+ AIM-248 CS-462
Karl Pingle, Arthur Thomas,
A Fast, Feature-Driven Stereo Depth .
Program,
15 pages, May 1975. Cost: $2.15

In this paper we describe a fast, feature-
driven program for extracting depth
information from stereoscopic sets of digitized
TV images. This is achieved by two means:
in the simplest case, by statistically correlating
variable-sized windows on the basis of visual
texture, and in the more complex case by pre-
processing the images to extract significant
visual features such as corners, and then using
these features to control the correlation
process.

The program runs on the PDP-10 but uses a
PDP-I l/45 and an PSP-41 Signal Processing

Abstracts of Recent Reports 99

Computer as subsidiary processors. The us of
the two small, fast machines for the
performance of simple but often-repeated
computations dffects an increase in speed
sufficient to allow us to think of using this
program as a fast 3-dimensional segmentation
method, preparatory to more complex image
processing. It is also intended for use in
visual feedback tasks involved in hand-eye
coordination and automated assembly. The
current program is able to calculate the three-
dimensional positions of 20 points in an image
to within 5 millimeters in less than 5 seconds
of computation.

+ AIM-249 es-463 A DA 00226 l-
Bruce Baumgart,
Geometric Modeling for Computer Vision,
Thesis: Ph.D. in Computer--Science,
14 I pages, October 1974. Cost: $5.65

A 3-D geometric modeling system for
application to computer vision is described.
In computer vision geometric models provide
a goal for descriptive image analysis, an origin
for verification image synthesis, and a context
for spatial problem solving. Some of the
design ideas presented have been implemented
in two programs named CEOMED and CRE;
the programs are demonstrated in situations
involving camera motion relative to a static
world.

e AIM-250 CS-464 A DA 003486
Ramakant Nevatia,
Structured Descriptions of Complex Curved
Objects for Recogaitiorl and Visual
Meniory,
Thesis:. Ph.D. in Electrical Engineering,
126 pages, October 1974.

Description and recognition of three-
dimensional objects from range data obtained
by a laser triangulation technique are
described. A complex object is described by
decomposition into sub-parts and relations of
these sub-parts. The individual parts are
described by generalized cones, which are
defined by a space curve known as the axis,

and arbitrary shaped normal cross-sections
along this axis.

Techniques for segmenting an object into
sub-parts and generating structured, symbolic,
graph like descriptions are described. These
symbolic descriptions are matched with stored
descriptions and the best match is picked for
recognition. A limited amount of indexing
capability exists to efficiently retrieve a sub-
class of similar objects from the models stored
in the memory. Indexing is a necessity if a
large number of visual models is to be used.

Results of working programs for the stated
tasks on many actual scenes are presented.
The scenes consist of single as well as multiple
models is to be used.

Q AIM-251 CS-465
Edward H. Shortliffe,

ADA001373

MYCIN: A Rule-Based Computer Program
for Adviring Physiciam Regarding
Antimicrobial Therapy Selection,
The&: Ph.D. in Medical lnformation Sciences,
409 pages, October 1974.

This thesis describes a rule-based problem-
solving system, termed MYCIN, which is
designed to assist physicians with the selection
of appropriate therapy for patients with
bacterial infections. After a brief survey of
medical computing, with an emphasis on
computer-based medical decision making, the
report describes the clinical problem and th
design considerations necessary for a
consultation program to gain acceptance by
the physicians for whom it is intended. The
three system components are then described in
detail: 1) a Consultation System which
interacts with the physician and gives
therapeutic advice, 2) an Explanation System
which seeks to justify the program’s adivce,
and 3) a Rule-Acquisition System which
accepts rules from experts and codes them for
use during future consultation sessions.
MYCIN’s quantitative model of inexact
reasoning in medicine is also described in
detail, and the results of an evaluation study

100 Appendix D

comparing MYCIN’s advice to that df experts
are presented. The report closes with
speculations regarding future extensions and
applications of a system such as MYCIN and
with a discussion of the program’s
contributions to medical decision making and
artificial intelligence.

+ AIM-252 CS-466 A DA 002246
Lester Earnest (ed.),
Recent Research in Artificial Intelligence,
Heuristic Programming, and Network
Protocols,
74 pages, July 1974. Cost: $3.80

This is a progress report for ARPA-
sponsored research projects in computer
science for the period July 1973 to July 1974.
A ccomplishmen ts are reported in artificial
intelligence (especially heuristic programming,
robotics, theorem proving, automatic
programming, and natural language
understanding), mathematical theory of
computation, and protocol development for
communication networks. References to recent
publications are provided for each topic.

+ AIM-253 cs-47 1 ADA003487
Bill Faught, Kenneth Colby, Roger Parkison,
The interaction of Inferences, Affects, and
Intelltions in a Model of Paranoia,
35 pages, December 1974. Cost: $2.75

The analysis of natural language input into its
underlying semantic content is but one of the
tasks necessary for a system (human or non-
human) to us natural language. Responding
to natural language input requires performing
a number of tasks: 1) deriving facts about the
input : and the situation in which it was
spoken; 2) attending to the system’s needs,
desires, and interests; 3) choosing intentions to
fulfill these interests; 4) deriving and executing
actions from these intentions. We describe a
series of processes in a model of paranoia
which performs these tasks. We also describe
the modifications made by the paranoid
processes to the normal processes. A computer
program has been constructed to test this
theory.

t AIM-254 CS-472 ADA00540712WC
Lynn @am, Marsha Jo Hannah,
Stanford Autolnatic Photogramrnetry
Research,
15 pages, November 1974. Cost: $2.15

This report documents the feasibility study
done at Stanford University’s Artificial
Intellignece Laboratory on the problem of
computer automated aerial/orbital
photogrammetry. The techniques investigated
were based on correlation matching of small
areas in digitized pairs of stereo images taken
from high altitude or planetary orbit, with the
objective of deriving a S-dimensional model
for the surface of a planet.

t AIM-255 CS-473 ADA005412/2WC
Norihisa Suzuki,
Automatic Program Verification II:
Verifying Programs by Algebraic 256
Logical Reduction,
29 pages, December 1974. Cost: $2.50

Methods for verifying programs written in a
higher level programming language are
devised and implemented. The system can
verify programs written in a subset of
PASCAL, which may have data structures
and control structures such as WHILE,
REPEAT, FOR, PROCEDURE,
FUNCTION and COROUTINE. The
process of creation of verification conditions is
an extension of the work done by Igarashi,
London and Luckham which is based ,on the
deductive theory by Hoare. Verification
conditions are proved using specialized
simplification and proof techniques, which
consist of an arithmetic simplifier, equality
replacement rules, fast algorithm for
simplifying formulas using propositional truth
value evaluation, and a depth first proof
search process. The basis of deduction
mechanism used in this prover is Gentzen-
type formal system. Several sorting programs
including Floyd’s TREESORTS and Hoare’s
FIND are verified. It is shown that the
resulting array is not only well-ordered but
also a permutation of the input array.

Abstracts of Recerlt Reports . 101

e AIM-256 CS-474 ADA007563lOWC
Friedrich W. V.Henke, David C. Luckham,
Automatic Prograin Verification III: A
Methodology for Verifying Programs,

45 pages, December 1974.

The paper investigates methods for applying
an on-line interactive verification system
d,esigned to prove properties of PASCAL
programs. The methodology is intended to
provide techniques for developing a debugged
and verified version starting from a program,
that - is possibly unfinished in some respects, -
may not satisfy the required specifications,i.e.,
may contain bugs, - may be incompletely
documented in the sense that the assertions
provided by the programmer are not sufficient
fo r p rov ing correctnesst It deals with
programs that may be written in non-standard
ways, e.g., permits user defined data structures.

The methodology involves - techniques for
describing data structures, type constraints,
and properties of programs and rubprograms
(i.e. lower level procedures); - the xse of
(abstract) data types in structuring programs
and proofs. - interactive application of a
verification condition generator, an algebraic

. simplifier and a theorem-prover;

Within each unit (i.e. segment of a problem),
the interactive use is aimed at reducing
verification conditions to manageable
proportions so that the non-trivial factors may
be analysed. Analysis of verification
conditions attempts to localize errors in the
program logic, to extend assertions inside the
program, to spotlight additional assumptions
on program subfunctions beyond those already
specified by the programmer, and to generate
appropriate lemmas and assumptions that
allow a verification to be completed. Methods
for structuring correctness proofs are
discussed.

e AIM-257 CS-475 ADA005407/2WC
Malcolm C. Newey,
Formal Semalltics of LISP With
Applications to Program Correctness,
Thesis: Ph.D. in Computer Science,
184 pages, January 1975.

Described are some experiments in the
formaiisation of the LISP programming
language using LCF (Logic for Computable
Functions). The bulk of each experiment was
concerned with applying the formalisation to
proofs of correctnes of some intere5ting LISP
functions using Milner’s mechanised version
of LCF.

A definition of Pure LISP is given in an
environment which includes an axiomatisation
of LISP S-expressions. A primitive theory (a
body of theorems in LCF) of Pure LISP is
derived and is applied to proving the
correctness of some simple LISP functions
using the LCF proof checking system. A
proof of correctness of McCarthy’s interpreter
is dewibed and a machine checked proof of
the partial correctness is outlined,

A more substantial subset of LISP and a
subset of LAP (a LISP-oriented assembly
language for the PDP-10 computer) were
formalised and simple theories for the two
languages were developed with computer
assistance. This was done with a view to
proving the correctness of a compiler, written
the LISP subset, which translates LISP
functions to LAP subroutines. The coarse
structure of such a compiler correctness proof
is displayed.

Particular attention is paid, in describing the
experiments, to deficiencies revealed in the
expressive power of LCF as a logical language
and to limitations on the deductive power of
the machine implementation of the logic.

A detailed case study of a pattern matching
algorithm illustrating the various aspects of
the methodology (including the role played by
the user) is given.

102 * Appendix D

Q ATM-258 CS-476 ADA006294/3WC
Cordell Green, David Barstow,
A Hypothetical Dialogue Exhibiting a
Kmwledge Base for a Program-
Understanding System,
3s pages, January 1975.

A hypothetical dialogue with a fictitious
program-understanding system is presented.
In the interactive dialogue the computer
carries out a detailed synthesis of a simple
insertion sort program for linked lists. The
content, length and complexity of the dialogue
reflect the underlying programming knowledge
which would be required for a system to
accomplish this task. The nature of the .
knowledge is discussed and the codification of
such programming knowledge is suggested as
a major research area in the development of
program-understanding systems.

+ AIM-259
Hanan Samet,

CS-498

Automatically Provillg the Correctness of
Translations Iwoiving Optimized Code,
Thesis: PAD in Computer Science,
2 14 pages, May 1975. Cost: $7.70

A formalism is described for proving that
programs written in a higher level language
are correctly translated to assembly language.
In order to demonstrate the validity of the
formalism a system has been designed and
implemented for proving that programs
written in a subset of LISP 1.6 as the high
level language are correctly translated to LAP
(an assembly language for the PDP-10) as the
low level language. This work involves the
identification of critical semantic properties of
the language and their interrelationship to the
instruction repertoire of the computer
executing these programs. A primary use of
the system is as a postoptimization step in
code generation as well as a compiler
debugger.

The assembly language programs need not
have been generated by a compiler and in fact
may be handcoded, The primary restrictions

on the assembly language programs relate to
calling sequences and well-formedness. The
assembly language programs are processed by
a program understanding system which

-simulates their effect and returns as its result a
representation of the program in the form of a
tree.

The proof procedure is independent of the
intermediary mechanism which translates the
high level language into the low level
language. A proof consists of applying valid
transformations to show the equivalence of the
forms corresponding to the assembly language
program and the original higher level
language program, for which there also exists
a tree-like intermediate form.

Some interesting results include the ability to
handle programs where recursion is
implemented by bypassing the start of the
program, the detection and pinpointing of a
wide class of errors in the assembly language
programs, and a deeper understanding of the
question of how to deal automatically with
translations between high and extremely low
level languages.

8 AIM-260 CS-499 ADA01681 1/2WC
David Canfield Smith,
PYGMALION: A Creative Program rniq
EJ~viroJllneJ~t,
Thesis: PhD in Computer Science,
193 pages, June 1975.

PYGMALION is a two-dimensional, visual
programming system implemented on an
interactive computer with graphics display.
Communication between human being and
computer is by means of visual entities called
“icons”, subsuming the notions of “variable”,
“reference”, “data structure”, “function” and
“picture”. The heart of the system is an
interactive “remembering” editor for icons,
which executes and (optionally) saves
operations for later re-execution. The display
screen is viewed as a document to be edited.
Programming consists of creating a sequence
of display frames, the last of which contains

Abstracts of Recent Reports 103

the desired information. Display frames are
modified bY editing operations.
PYGMALION employs a powerful paradigm
that can be incorporated in virtually any other
programming language:

Every operation has both visual (aesthetic)
semantics and internal (mechanical) semantics.

In fact, every operation in PYGMALION has
three responsibilities:

(a) for accomplishing a given internal machine
t a s k - the machine “semantics” of the
operation;

(b) in display mode, for generating a represen-
tative visual action;

(c) in remember mode, for adding onto a code
list the operation(s) necessary to reproduce
itself.

Th.us the system includes an incremental
“iconic compiler”. Since each operation has
visual semantics, the display becomes a visual
metaphor for computing. The programmer
need deal with operations only on the display
level; the corresponding machine semantics are
managed automatically. The mechanical
aspects of programming languages has been
and is continuing to be well studied. The
focus in this paper is on developing and
interacting with a n articulate visual
presentation.

PYGMALION is a computational extension
of the brain’s short term memory. It is
designed to relieve the load on the short term
memory :by providing alternative storage for
mental images during thought. The display
screen is seen as a “dynamic blackboard”, on
which ideas can be projected and animated.
Instead of abstract symbols, the programer
uses explicit display images. Considerable
flexibility is provided for designing icons; the
programmer may give them any shape that
can be generated by a routine. This helps to
reduce the translation distance between

representations used in the mind in thinking
about a problem and representations used in
programming the problem.

The main innovations of PYGMALION are:

(1) a dynamic representation for programs -
an emphasis on doing rather than telling;

(2) an iconic representation for parameters
and data structures requiring less translation
from mental representations;

(3) a “remembering” editor for icons;

(4) descriptions in terms of the concrete, which
PYGMALION turns into the abstract.

The responsive, visual characteristics o f
PYGMALION permit it to play an active role
in human problem solving. The principal
application has been in assisting the design
and simulation of algorithms.

This dissertation was submitted to the
Department of Computer Science and the
Committee on Graduate Studies of Stanford
University in partial fulfillment of the
requirements for the degree of Doctor of
Philosophy.

+ AIM-26 1
Odd Pettersen,

CS-501 ADAO16808/8WC

Procedural Events as Software Interrupts,
8 pages, June 1975. Cost: $1.95

The paper deals with procedural events,
providing a basis for synchronization and
scheduling, particularly applied on real-time
program systems of multiple parallel activities
(“multi-task”).

There is a great need for convenient
scheduling mechanisms for minicomputer
systems as used in process control, but so far
mechanisms somewhat similar to those
proposed here are found only in PL/I among
the generally known high-level languages.
PL/I, however, is not very common on

104 Appendix D

computers of this size. Also, the mechanisms
in PL/I seem more restricted, as compared to
those proposed here.

A new type of boolean program variable, the
EVENTMARK, is proposed. Eventmarks
represent events of any kind that may occur
within a computational process and are
believed to give very efficient and convenient
activation and scheduling of program mgdules
in a real-time system. An evenfmark is
declared similar to a procedure, and the
proposed feature could easily be amended as
an extension to existing languages, as well as
incorporated in future language designs.

+ AIM-262 CS-502 ADA016810/4WC
Odd Pettersen,
Synchronization of Concurrent Processes,
14 pages, July 1975. Cost: $2.10

This paper gives an overview of commonly
used synchronization primitives and literature,
and presents a new form of primitive
expressing conditional critical regions.

A new solution is presented to the problem of
“readers and writers”, utilizing the proposed
synchronization primitive. The solution is
simpler and shorter than other known
algorithms. The first sections of the paper give
a tutorial introduction into established
methods, in order to provide a suitable
background for the remaining parts.

+ AIM-263 cs-503
Odd Pettersen,
The Macro Processing System STAGEB:
Transfer of Comments to the Cellerated
Tex tr
20 pages, July 1975. Cost: $2.25

This paper is a short description of a small
extension of STAGE2, providing possibilities
to copy comments etc. from the source text to
the generated text. The description
presupposes familiarity with the STAGE2
system: its purpose, use and descriptions, like
Cl3 to [91. On1 y section 3 of this paper requires

knowledge of the internal structures and
working of the system, and that section is
unnecessary for the plain use of the described
feature.

The extension, if not used, is completely
invisible to the user: No rules, as described in
the original litterature, are changed. A user,
unaware of the extension, will see n o
difference from the original version.

+ AIM-264 CS-506
Michael Gordon,
OperatiOllai ReaSOJlhlg and DeJiOtathat
Semantics,
33 pages, August 1975. Cost: $2.65

“Obviously true” properties of programs can
be hard to prove when meanings are specified
with a denotational semantics. One cause of
this is that such a semantics usually abstracts
away from the running process - thus
properties which are obvious when one thinks
about this lose the basis of their obviousness
in the absence of it. To enable process-based
intuitions to be used in constructing proofs
one can associate with the semantics an
abstract interpreter so that reasoning about
the semantic can be done by reasoning about
computations on the interpreter. This
technique is used to prove several facts about
a semantics of pure LISP. First a denotational
semantics and an abstract interpreter are
described. Then it is shown that the
denotation of any LISP form is correctly
computed by the interpreter. This is used to
justify an inference rule - called “LISP-
induction” which formalises induction on the
size of computations on the interpreter.
Finally LISP-induction is used to prove a
number of results. In particular it is shown
that the function eval is correct relative to the
semantics - i.e. that it denotes a mapping
which maps forms (coded asd S-expressions)
on to their correct values.

Abstracts of Recent Reports .

+ AIM-265 cs-507
Michael Gordon,
Towards a Semantic Theory of Dynamic
Binding,
28 pages, August 1975. Cost: $2.50

The results in this paper contribute to the
formulation of a semantic theory of dynamic
binding (fluid variables). The axioms and
theorems are language independent in that
they don’t talk about programs - i.e. syntactic
objects - but just about elements in certain
domains. Firstly ’ the equivalence (in the
circumstances where it’s true) of “tying a knot”
through the environment (elaborated in the
paper) and taking a least fixed point is shown.
This is central in proving the correctness of
LISP “eval” type interpreters. Secondly the
relation which must hold between two
environments if a program is to have the
same meaning in both is established. It is
shown how the theory can be applied to LISP
to yield previously known facts.

+ AIM-266 cs-517 ADA019641
Randall Davis, Bruce Buchanan, Edward
S hortliffe,
Production Rules as a Representation for a
Knowledge-Based Corrruftrtiorr PrograIn,
37 pages, October 1975, Cost: 82.75

The MYCIN system has begun to exhibit a
high level of performance as a consultant on
the difficult task of selecting antibiotic therapy
for bactercmia. This report discusses issues of
representation and design for the system. We
describe the basic task and document the
constraints involved in the use of a program
as a consultant. The control structure and
knowledge representation of the system are
examined in this light, and special attention is
given to the impact of production rules as a
representation. The extent of the domain
independence of the methodology is also
examined.

105

+ AIM-267 CS-520 ADA01966412WC
Friedrich W. von Henke,
On the Representation of Data Structures in

LCF with Applications to Program
Generation,
41 pages, September 1975. Cost: $2.85

In this paper we discuss techniques of
exploiting the obvious relationship between
program structure and data structure for
program generation. We develop methods of
program specification that are derived from a
representation of recursive data structures in
the Logic for Computable Functions (LCF).
As a step towards a formal problem
specification language we define definitional
extensions of LCF. These include a calculus
for (computable) homogeneous sets and
restricted quantification. Concepts that are
obtained by interpreting daa types as algebras
are used to derive function definition schemes
from an LCF term representing a data
structure; they also lead to techniques for the
simplification of expressions inthe extended
language. The specification methods are
illustrated with a detailed example.

+ AIM-268 CS-521 ADA019663/4WC
Clark Thompson,
Depth Perception in Stereo Computer
Vision,
16 pages, October 1975. Cost: $2.15

This report describes a stereo vision approch
to depth perception; the author has build
upon a set of programs that decompose the
problem in the following way: 1) Production
of a camera model: the position and
orientation of the cameras in 3-space. 2)
Generation of matching point-pairs: loci of
corresponding features in the two pictures. 3)
Computation of the point in S-space for each
point-pair. 4) Presentation of the resultant
depth information.

106 Appendix D

+ AIM-269 CS-522 ADA019569/3WC
David C. Luckham, Norhisa Susuzki,
Automatic Program Verification IV: Proof
of Termination Within a Weak Logic of
Programs,
29 pages, October 1975. Cost: $2.50

A weak logic of programs is a formal system
in which statements that mean “the program
halts” cannot be expressed. In order to prove
termination, we would usually have to use a
stronger logical system. In this paper we show
how we can prove termination of b o t h
iterative and recursive programs within a
weak logic by adding pieces of code and
placing restrictions on loop invariants and
entry conditions. Thus, most of the existing
verifiers which are based on a weak logic of
programs can be used to--prove termination of
programs without any modifidation. We give
examples of proofs of termination and of
accurate bounds on computation time that
were obtained using the Stanford Pascal
program verifier.

+ AIM-270 CS-523 ADA019467
John F. Reiser,
BAIL - A debugger for SAIL,
26 pages, October 1975. Cost: $2.45

BAIL is a debugging aid for SAIL programs,
where SAIL is an extended dialect of
ALGOL60 which runs on the P D P - 1 0
computer. BAIL consists of a breakpoint
package and an expression interpreter which
allow the user to stop his program at selected
points, examine and change the values o f
variables, and evaluate general SAIL
expressions. In addition, BAIL can display
text from the source file corresponding to the
currelit location in the program. In m a y
respects BAIL is like DDT or RAID, except
that BAIL is oriented towards SAIL and
knows about SAIL data types, primitive
operations, and procedure implementation.

t AIM-271 CS-524 ADA019702/OWC
Randall David, Jonathan King,
An Overview of Production Systems,
40 pages, October 1975. Cost: $2.85

Since production systems were first proposed
i n 1943 a s a general computational -%
mechanism, the methodology has seen a great
deal of development and has been applied to
a diverse collection of problems. Despite the
wide scope of goals and perspectives
demonstrated by the various systems, there
appear to be many recurrent themes. This
paper is an attempt to provide an analysis and
overview of those themes, as well as a
conceptual framework by which many of the
seemingly disparate efforts can be viewed,
both in relation to each other, and to other
methodologies.

Accordingly, we use the term ‘production
system’ in a broad sense, and attempt to show
how most systems which have used the term
can be fit into the framework. The
comparison to other methodologies is intended
to provide a view of PS chdracteristics in a
broader context, with primary reference to
procedurally-based techniques, but with
reference also to some of the current
developmen& in p rog ramming and t he
organization of data and knowledge bases. .

This is a slightly revised version of a paper to
appear in Machine Representations of
Knozuledge, Dordrecht, D. Reidel Publishing
Company (1976).

+ AIM-272 CS-525
Sundaram Ganapathy,
Reconstruction of Scenes Containing
Polyhedra From Stereo Pair of Views,
Thesis: Ph.D. in Computer Science,
204 pages, December 1975. Cost: $7.40

The problem of constructing a 3-D
description of a scene given two views of it,
taken from widely different angles, is attacked
in this thesis. The program accepts line
drawing data as input and uses a large

Abstracts of Recent Reports 107

number of rules to match the corresponding
features in the two views. These rules are
derived from observation and are based on
the fact that the scene consists of polyhedral
bodies only.

There are .several possible approaches to the
problem. We have taken one approach which
involves matching up the corresponding
vertices and building up from that. The
problem of matching up the corresponding
vertices is combinatorial in nature and is
somewhat analogous to graph matching.
However the structure of objects provides
helpful clues and constrains the search
considerably. In fact quite often no search is‘
necessary, if the rules are combined properly.

Towards this end, the individual rules have
been studied in great detail and their power
analysed both from a theoretical and
experimental standpoint. We have developed
a theoretical framework, in which the power
and. the probability of application of these
rules can be studied. A scheme has been
designed which combines these rules in such a
way so as to make the best match (based on
scoring functions) the right match with a very
high probability. But in as much as no
algorithm exists for doing vision, the best
match is not always the right match. However
a wrong match would result in an
interpretation that is inconsistent. Ideas have
been developed which will verify the
consistency of a match. A procedure has been
designed which will backtrack and correct the
errors in an incorrect match.

All these _ ideas have been implemented as a
computer program which works extremely well
on ideal&d drawings. The problems
encountered in applying these ideas to real
data have been analysed. Finally suitable
modifications have been made to make these
same ideas work well on real-data as well.

e AIM-273 cs-534
Linda Gail Hemphill,
A Conceptual Approach to Automated
Language Understallding and Belief
Structures: with Disambiguatiora of the
Word ‘For’,
Thesis: Ph.D. in Linguistics,
254 pages, May 1975.

This thesis deals with the problem of human
language understanding, that is, what kinds of
information does a person use in order to be
able to understand what is said to him. The
word “for” is examined because it can have
more than twenty different meanings, and yet,
a person rarely misinterprets an instance of
“for” or finds it ambiguous.

The problem is approached from the
standpoint of a computer understanding
model, that is, what kinds of information must
a computer understanding model have to
interpret sequences of language, in particular,
those in which “for” occurs, as an American
English-speaking person might. This model
would of necessity be idiosyncratic, since a
person’s idiosyncratic background determines
the way in which he interprets certain
utterances.

It is shown that a conceptual approach to
analysis must be used in order for an
understanding system to perform the tasks
that a human being does in understanding.
In order for an understanding model to assign
a meaning representation to utterances, it must
manipulate conceptual information. For
example, the model must make inferences
from the sentences under analysis; it must
analyze two syntactically different sentences
which are paraphrases of each other into the
same meaning representation; and it must
interact with a memory structure; each of these
tasks requires that a conceptual approach to
language analysis be used. Conceptual
Dependency Theory is the approach used
here.

The memory structure required an

108 Appendix D

understanding model must have certain types
of conceptual information. The memory
information that must interact in t h e
disambiguation of “for” is varied. Certain
conceptual features that apply to objects must
be specified, as well as conceptual features that
apply to actions; the concept of different
Scales, and terms that designate evaluations
on those scales, interact in the understanding
of “for”. Often the understanding model must
interact with Expectancy Rulesl The
Expectancy Rules deal with the different types
of non-linguistic information that interact in
the understanding process. The Expectancy
Rule is of the form:ru IF situation A occurs,
THEN EXPECT B. This type of rule .
interacts constantly in language understanding,
and examples are given where this type of
rule must interact in a-. model of language
generation. This type of rule (or one ,might
say “belief”) is so basic that people do not feel
the need to state it explicitly in language, and
thus it must be in the memory of an
understanding system.

The context of an utterance, both linguistic
and non-linguistic, determines the way in
which that utterance is interpreted.
Therefore, the understanding model must
store information as a “conversation” proceeds,
because context ultimately determines the
meaning of “for”, not the sentence which
contains “for”. Specific procedures for the
disambiguation of each meaning of “for” are
given, which are based on elements of the
“for” sentence itself; however, context can set
up a completely different-interpretation for a
“for” by providing the conceptual format
underlying a particular meaning of “for”, in
which case the model would choose the
contextual interpretation.

The theory of an understanding model that
would correctly interpret all instances of “for”
points out many of the problems that any
natural language understanding model must
handle, and the types of information needed
for an understanding system to correctly
interpret “for” were shown to interact in other

instances of language understanding and
generation as well.

+ AIM-274 CS-536 ADA020942/9WC
David Grossman, Russell Taylor,
Interactive Generation of Object Models
with a Manipulator,
32 pages, December 1975. Cost: $2.60

Manipulator programs in a high level
language consist of manipulation procedures
and object model declarations. As higher
level languages are developed, the procedures
will shrink while the declarations will grow.
This trend makes it desirable to develop
means for automating the generation of these
declarations. A system is proposed which
would permit users to specify certain object
models interactively’ using the manipulator
itself as a measuring tool in three dimensions.
A preliminary version of the system has been
tested.

+ AIM-275 CS-537 ADA020943/7WC
Robert C. Bolles,
Verification Vision Within a Programmable
Assembly System: An Introductory
Discussion,
82 pages, December 1975. Cost: $4.00

This paper defines a class of visual feedback
tasks called Verijkation Vision which includes a
significant portion of the feedback tasks
required within a programmable assembly
system. It characterizes a set of general-
purpose capabilities which, if implemented,
would provide a user with a system in which
to write programs to perform such tasks.
Example tasks and protocols are used to
motivate these semantic capabilities. Of
particular importance are the tools required to
extract as much information as possible from
planning and/or training sessions. Four
different levels of verification systems are
discussed. They range from a straightforward
interactive system which could handie a subset
of the verification vision tasks, to a completely
automatic system which could plan its own
strategies and handle the total range of

.

Abstracts of Recent Reports 109

verification tasks. Several unsolved problems
in the area are discussed.

+ AIM-276 CS-539 ADA021055/9WC
Zohar Manna, Adi Shamir,
A New Approach to Recursive Programs,
25 pages, December 1975. Cost: $2.40

In this paper we critically evaluate the
classical least-fixed point approach towards
recursive programs. We suggest a new
approach which extracts the maximal amount
of valuable information embedded in the
programs. The presentation is informal, with
emphasis on examples.

o AIM-277 CS-542 ADA027454
Zohar Manna, Adi Shamir,
The Theoretical Aspects of-the Optimal
Fixedpoin t,
24 pages, March 1976.

In this paper w’e define a new type of
fixedpoint of recursive definitions and
investigate some of its properties. This
optimal fixedpoint (which always uniquely
exists) contains, in some sense, the maximal
amount of “interesting” information which can
be extracted from the recursive definition, and
it may be strictly more defined than the
program’s least fixedpoint. This fixedpoint
can be the basis for assigning a new semantics
to recursive programs.

+ A-IM-278 cs-549 ADA027455
David Luckham, Norihisa Suzuki,
Automatic Program Vcrificatiorr VI
Verification-Oriented Proof Rules for
Arrays, Records and Pofrrtcrs,
48 pages; March 1976. Cost: $3.05

A practical method is presented for
automating in a uniform way the verification .
of Pascal programs that operate on t he
standard Pascal data structures ARRAY,
RECORD, and POINTER. New assertion
language primitives are introduced for
describing computational effects of operations
on these data structures. Axioms defining the

semantics of the new primitives are given.
Proof rules for standard Pascal operations on
pointer variables are then defined in terms of
the extended assertion language. Similar rules
for records and arrays are special cases. An
extensible axiomatic rule for the Pascal
memory allocation operation, NEW, is also
given.

These rules have been implemented in the
Stanford Pascal program verifier. Examples
illustrating the verification of programs which
operate on list structures implemented with
pointers and records are discussed. These
include programs with side-effects.

QD AIM-279 CS-552
Norihsa Suzuki,
Autotnatic Verification of Programs with
Complex Data Structures,
Thesis: Ph.D. in Computer Science,
194 pages, February 1976.

The problem of checking whether programs
work correctly or not has been troubling
programmers since the earliest days of
computing. Studies have been conducted to
formally define semantics of programming
languages and derive proof rules for
correctness of programs.

Some experimental systems have been built to
mechanically verify programs based on these
proof ruler, However, these systems are yet
far from attacking real programs in a real
environment. Many problems covering the
ranges from theory to artificial intelligence and
programming languages must be solved in
order to make program verification a practical
tool. First, we must be able to verify a
complete practical programming language.
One of the important features of real
programming languages which is not treated *
in early experimental systems is complex data
structures. Next, we have to s t u d y
specification methods. In order to verify
programs we have to express what we intend
to do by the programs. In many cases ,we are
not sure what we want to verify and how we

110 Appendix D

should express them. These specification
methods are not independent of the proof
rules. Third, we have to construct an efficient
prover so that we can interact with the
verification process. It is expected that
repeated verification attempts will be necessary
because programs and specifications may have
errors at first try. So the time to complete one
verification attempt is very important in real
environment.

We have chosen Pascal as the target language.
The semantics and proof rules are studied by
Howe SC Wirth and Igarashi, London 8~
Luckham. However, they have not treated
complex data structures obtained from arrays, .
records, and pointers. In order to express the
state of the data structures concisely and
express the effects of statements we introduced
special assertion language primitives and new
proof rules. We defined new methods of
introducing functions and predicates to write
assertions so that we can express simplification
rules and proof search strategies. We
introduced a special language to document
properties of these functions and predicates.
These methods enable users to express
assertions in natural ways so that verification
becomes easier. The theorem prover is
constructed so that it will be efficient for
proving a type of formulas which appear very
often as verification conditions.

We have successfully verified many programs.
I=ising our new proof rules and specification
methods we have proved properties of sorting
programs such as permutation and stability
which have been thought to be hard to prove.
We see no theoretical as well as practical
problems in verifying sorting programs. We
have also verified programs which manipulate
pointers. These programs change their data
structures so t h a t usually verification
conditions tend to be complex and hard to
read. Some study about the complexity
problem seems necessary.

The verifier has been used extensively by
various users, and probably the most widely

used verifier implemented so far. There is yet
a great deal of research necessary in order to
fill the gap between the current verifier and
the standard programming tools like editors
and compilers.

.

This dissertation was submitted to the
Department of Computer Science and the
Committee on Graduate Studies of Stanford
University in partial fulfillment of the
requirements for the degree of Doctor of
Philosophy.

+ AIM-280 cs-555
David D. Grossman,
Monte Carlo Simulatioll of Tolerancing in
Discrete Parts Manufacturing and Assetn bly,
25 pages, May 1976. Cost: $2.40

The assembly of discrete parts is strongly
affected by imprecise components, imperfect
fixtures and tools, and inexact measuremets. It
is often necessary to* design higher precision
into the manufacturing and assembly process
than is functionally needed in the final
product. Production engineers must trade off
between alternative ways of selecting
individual tolerances in order to achieve
minimum cost, while preserving product
integrity. This paper descr ibes a
comprehensive Monte Carlo method for
systematically analysing the stochastic
implications of tolerancing and related forms
of imprecision. The method is illustrated by
four examples, one of which is chosen from
the field of assembly by computer controlled
manipulators.

+ AIM-28 1.1 CS-558 AD-A031
406/2W C

Zohar Manna, Richard Waldinger,
Is ‘sometime’ sometimes better than ‘always’?
Intertnittent assertions in proving program
correctness,
41 pages, June 1976, revised March 1977.
Cost: $2.85

This paper explores a technique for proving
the correctness and termination of programs

Abstracts of Recent Reports 111

simultaneously. This approach, which we call
the [intermittentl-[assertion method], involves
documenting the program with assertions that
must be true at some time when control is
passing through the corresponding ,point, but
that need not be true every time. The
method, introduced by Knuth and further
developed by Burstall, promises to provide a
valuable complement to the more conventional
met hods.

We first introduce and illustrate the technique
with a number of examples. We then show
that a correctness proof using the invariant
assertion method or the subgoal induction
method can always be expressed using’
intermittent assertions instead, but that the
reverse is not always the case. The method
can also be used just to prove termination,
and any proof of termination using the
conventional well-founded sets approach can
be rephrased as a proof using intermittent
assertions. Finally, we show how the method
can be applied to prove the validity of
program transformations and the correctness
of continuously operating programs.

This is a revised and simplified version of a
pevious paper with the same title (AIM-281,
June 1976).

+ A I M-282
I? ussell Taylor,

CS-560

Synthesis of Manipulator Control Programs
froln Task-level Specifications,
Tlwsis: Ph.D. in Computer Science,
229 pages, July 1976. Cost: $8.10

Thus research is directed towards automatic
generation of manipulator control programs
from task-level specifications. The central
assumption is that much manipulator-level
coding is a process of adapting known
program constructs to particular tasks, in
whrch coding decisions are made by well-
defined computations based on planning
inJformation. For manipulator programming,
the principal elements of planning information
are: (1) d escriptive information about the

objects being manipulated; (2) situational
information describing the execution-time
environment; and (3) action information
defining the task and the semantics of the
execution-time environment.

A standard subtask in mechanical assembly,
insertion of a pin into a hole, is used to focus
the technical issues of automating manipulntor
coding decisions. This task IS first analyzed
from the point of view of a human
programmer writing in the target language,
AL, to identify the specific coding decisions
required and the planning information
required to make them. Then, techniques for
representing this information i r-1 a
computationally useful form are developed.
Objects are described by attribute graphs, I;-I
which the nodes contain ShnlJe information.
the links contain structural information, and
properties of the links contain location
information. Techniques are developed for
representing object locations by parameterized
mathematical expressions in which free scalar
variables correspond to degrees of freedom
and for deriving such descriptions from
symbolic relations between object features.
Constraints linking the remaining degrees of
freedom are derived and used to predict
maximum variations. Differential
approximations are used to predict errors in
location values. Finally, procedures are
developed which use this planning
information to generate AL code
automatically.

The AL system irseli performs a number of
coding functions not normally found in
algebraic compilers. These functions and the
planning information required to support
them are also discussed.

8 AIM-283
Randall Davis,

CS-552

Applications of Meta Level Knowledge to
the Corlstructiorr, Maintenance and Use of
Large Know ledge Bases,
Thesis: Ph.D. in Computer Science,
304 pages, July 1976.

112 Appendix D

The creation and management of large
knowledge bases has become a central problem
of artificial intelligence research as a result of
two recent trends: an emphasis on the use of
large stores of domain specific knowledge as a
base for high performance programs, and a
concentration on p,roblems taken from real
world settings. Both of these mean an
emphasis on the accumulation and
management of large collections of knowledge,
and in many systems embodying these trends
much time has been spent on building and
maintaining such knowledge bases. Yet there
has been little discussion or analysis of the
concomitant problems. This thesis attempts to
define some of the issues involved, and
explores steps taken toward solving a number
of the problems encountered. It describes the
organization, implementation, and operation
of a program called TEIRESIAS, designed to
make possible the interactive transfer of
e x p e r t i s e f r o m a h u m a n e x p e r t t o t h e
knowledge base of a high performance
program, in a dialog conducted in a restricted
subset of natural language.

The two major goals set were (i) to make it
possible for an expert in the domain of
application to “educate” the performance
program di rectly, and (ii) to ease the task of
assembling and maintaining large amounts of
knowledge.

The central theme of this work is the
ekploration and use of what we have labelled
nretn l e v e l knodedge. This takes several
different forms as its use is explored, but can
be summed up generally as “knowing what
you know”. It makes possible a system which
has both the capacity to use its knowledge
directly, and the ability to examine it, abstract
it, and direct its application.

W e report here on the full extent of the
capabilities it makes possible, and document
cases where its lack has resulted in significant
difiiculties. Chapter 3 describes efforts to
enable a program to explain its actions, by
giving it a model of its control structure and

an understanding of its representations.
Chapter 5 documents the use of abstracted
models of knowledge (rule mo&ls) as a guide
to acquisition. Chapter 6 demonstrates the
utility of describing to a program the structure
of its representations (using data structure
sc/iemafa). Chapter 7 describes the use of
strategies in the form of meta rules, which
contain knowledge about the use o f
knowledge.

Q AIM-284
Rafael Finkel,

cs-567

Constructing and Debugging Manipulator
Programs,
Thesis: Ph,D, in Computer Science,
171 pages pages, August 1576.

This thesis presents results of work done at
the Stanford Artificial Intelligence Laboratory
in the field of robotics. The goal of the work
is to program mechanical manipulators to
accomplish a range of tasks, especially those
found in the context of automated assembly.
The thesis has three chapters describing
significant work in this domain. The first
chapter is a textbook that lays a theoretical
framework for the principal issues involved in
computer control of manipulators, including
tY Pes of manipulators, specification of
destinations, trajectory specification and
planning, methods of interpolation, force
feedback, force application, adaptive control,
collision avoidance, and simultaneous control
of several manipulators. The second chapter
is an implementation manual for the AL
manipulator programming language. The
goals of the language are discussed, the
language is defined, the compiler described,
and the execution environment detailed. The
language has special facilities for condition
monitoring, data tY Pes that represent
coordinate systems, and affixment structures
that allow coordinate systems to be linked
together. Programmable side effects play a
large role in the implementation of these
features. This chapter closes with a detailed
programming example that displays how the
constructs of the language assist in

Abstracts of Recent Reports 113

formulating and encoding the manipulation
task. The third chapter discusses the
problems involved in programming in the AL
language, including program preparation,
compilation, and especially debugging. A
debugger, ALAID, is designed to make use of
the complex environment of AL. Provision is
made to take advantage of the multiple-
processor, multiple-process, real-time,
interactive nature of the problem. The
principal conclusion is that the debugger can
fruitfully act as a uniform supervisor for the
entire process of program preparation and as
the means o f communication bet ween
cooperating processors.

Q AIM-285 CS-568 PB-259 130/3WC
T. 0 Einford, D. D. Grossman, C. R. Lui, R.
C. Eolles, R. A. Finkel, M. S.. Mujtaba, M. D.
Roderick, EL E. Shimano, R. H. Taylor, R. H.
Goldman, J. P. Jarvis, V. D. Scheinman, T. A.
Gafford,
Eq)loratory Study of Computer Integrated
Assembly Systems, Progress Report 3,
336 pages, August 1976.

The Computer Integrated Assembly Systems
project is concerned with developing the
software t e c h nology of programmable
assembly devices, including computer
controlled manipulators and vision systems. A
complete hardware system has been
implemented that includes manipulators with
tactile sensors and TV cameras, tools, fixtures,
and auxiliary devices, a dedicated
minicomputer, and a time-shared large
computer equipped with graphic display
terminals. An advanced software system call
AL has _ been developed that can be used to
program: assembly applications. Research
currently underway includes refinement of AL,
development of improved languages and
interactive programming techniques for
assembly and vision, extension of computer
vision to a.reas which are currently infeasible,
geometric modeling of objects and constraints,

. assembly simulation, control algorithms, and
a.daptive methods of calibration.

8 AIM-286
Douglas Lenat,

cs-570

AM: An Artificial Intelligence Approach to
Discovery in Mathematics as Heuristic
Sekch,
Thesis: Ph.D. in Computer Science,
350 pages, July 1976.

A program, called “AM”, is described which
models one aspect of elementary mathematics
research: developing new concepts under the
guidance of a large body of heuristic rules.
“Mathematics” is considered as a type of
intelligent behavior, not as a finished product.

+ AIM-287 cs-57 1
Michael Roderick,
Discrete Control of a Robot Arm,
Thesis: Engineer in Electrical Engineering,
9s pages, August 1976. Cost: $4.45

The primary goal of this thesis was to
determine the feasibility of operating the
Stanford robot arm and reduce sample rates.
A secondary goal was to reduce the effects of
variations in inertia and sampling rates on the
control system’s stability.

,

A discrete arm model was initially developed
to illustrate the effects of inertia and sampling
rate variations on the present control system.
Modifications were then suggested for
reducing these effects. Finally, a method was
demonstrated for reducing the arm sampling
rate from its present value of 60 hertz to
approximately 45 hertz without significantly
effecting the arms performance.

+ AIM-288 CS-572
Robert Filman, Richard Weyhrauch,
An FOL Primer,
36 pages, September 1976, Cost: $2.70

This primer is an introduction to FOL, an
interactive proof checker for first order logic.
Its examples can be used to learn the FOL
system, or read independently for a flavor of
our style of interactive proof checking.
Several example proofs are presented,

114 Appendix D

successively increasing in the complexity of the
FOL commands employed.

FOL runs on the computer at the Stanford
Artificial Intelligence Laboratory. It can be
used over the ARPA net after arrangements
have been made with Richard Weyhrauch
(network address RWW&U-AI).

+ AIM-2S9 cs-574
John Reiser (ed.),
SAIL,
178 pages, August 1976. Cost: $6.70

SAIL is a high-level programming language
for the PDP-10 computer. It includes an .
extended ALGOL 60 compiler and a
companion set of execution-time routines. In
addition to ALGOL, theSanguage features: (1)
flexible linking to hand-coded machine
language algorithms, (2) complete access to the
PDP- 10 I/O facilities, (3) a complete system of
compile-time arithmetic and logic as well as a
flexible macro system, (4) a high-level
debugger, (5) records and references, (6) sets
and lists, (7) an associative data structure, (8)
inclepenclent processes, (9) procedure variables,
(IO) user modifiable error handling, (11)
backtracking, and (12) interrupt facilities.

This manual describes the SAIL language and
the execution-time routines for the typical
SAIL user: a non-novice programmer with
some knowledge of ALGOL. It lies
sbmewhere between being a tutorial and a
reference manual.

+ AIM-290 cs-575
Nancy W. Smith,
SAIL:Tutorial,
54 pages, November 1976. Cost: $3.20

This TUTORIAL is designed for a beginning
user of Sail, an ALGOL-like language for the
PDP 10. The first part covers the basic
statements and expressions of the language;
remaining topics include macros, records,
conditional compilation, and input/output.
Detailed examples of Sail programming are

included throughout, and only a minimum of
programming background is assumed.

e AIM-291 cs-577
Bruce Buchanan, Joshua Lederberg, John
McCarthy,
Three Reviews of J. Weizenbaum’s
Computer Power and Kuman Reason,
28 pages, November 1976.

Three reviews of Joseph Weizenbaum’s
Computer Power and Human Reason (W.H.
Freeman and Co., San Francisco, 1976) are
reprinted from other sources. A reply by
Weizenbaum to McCarthy’s review is also
reprinted.

+ AIM-292 cs-580
Terry Winograd,
Towards a Procedural Understanding of
Semantics,
30 pages, October 1976. Cost: $2.55

The term “procedural semantics” has been
used in ‘a variety of ways, not all compatible,
and not. all comprehensible. In this paper, I
have chosen to apply the term to a broad
paradigm for studying semantics (and in fact,
all of linguistics). This paradigm has
developed in a context of writing computer
programs which use natural language, but it is
not a theory of computer programs or
programming techniques. It is “procedural”
because it looks at the underlying structure of
language as fundamentally shaped by the
nature of processes for language production
and comprehension. It is based on the belief
that there is a level of explanation at which
there are significant similarities between the
psychological processes of human language use
and the computational processes in computer
programs we can construct and study. Its goal
is to develop a body of theory at this level.
This approach necessitates abandoning or
modifying several currently accepted doctrines,
including the way in which distinctions have
been drawn between “semantics” and
“pragmatics” and between “performance” and
“competence”.

Abstracts of Receut Reports 115

The paper has three major sections. It first
lays out the paradigm assumptions which
guide the enterprise, and elaborates a model of
cognitive processmg and language use. It then
illustrates how some specific semantic problems
nv$ be approached from a procedural
perspective, and contrasts the procedural
approach with formal structural and truth
conditional approaches. Finally, it discusses
the goals of linguistic theory and the nature of
the linguistic explanation.

Much of waht is presented here is a
speculation about the nature of a pradqm yet
to be developed. This paper is an attempt to
be evocative rather than definitive; to convey
~ntult~ons rather than to formulate crucial
arguments which Justify this approach over
others. It will be successful -if it suggests some
Wa\fs of looking at language which lead to
further understandlng.

P A I hf-293 cs-5s 1
Daniel Bobrow, Terry Winograd,
A II Overview of Ii RL,
40 pages, November 1976.

Thus paper describes KRL, a Knowledge
Representarion L;rnguage designed for use in
understander systems. It outlines both the
general concepts which underlie our research
and the details of KRL-0, an experimental
implementation of some of these concepts.
KRL is an attempt to integrate procedural
knowledge with a broad base of declarative
forms. These forms provide a variety of ways
to express the logical structure of t h e
knowledge, in order to give flexibility in
associatln-g procedures (for memory and
reasoning) with specific pieces of knowledge,
and to control the relative accessibility of
dlfierent facts and descriptions. The
formalism for declarative knowledge is based
on structured conseptua~ objects with associated
&sc7 iic,tions. These objects form a network of
memory units with several different sorts of
Iit-1 kages, each having well-specified
~nipl~cat~ons fo1 the retrieval process.
Procedures can be associated directly with the

internal structure of a conceptual object. This
procedural attachment allows the steps for a
particular operation to be determined by
characteristics of the specific entities involved.-.

The control structure of KRL is based on the
belief that the next generation of intelligent
programs will integrate data-directed and
goal-directed processing by using multi-
processing. It provides for a priority-ordered
multi-process agenda with explicit (user-
provided) strategies for scheduling and
resource allocation. It provides prncedure
directories which operate along with process

frameworks to allow procedural
parameterization of the fundamental system
processes for building, comparing, and
retrieving memory structures. Future
development of KRL will include integrating;
procedure definition with the descriptive
formalism.

+ AIM-294 cs-586
Nachum Dershowitz, Zohar Manna,
The EiroJution of Programs: A System for
Automatic Program Modificatioll,
45 pages, December 1976. Cost: 82.95

An attempt is made to formulate techniques of
program modification, whereby a program that
achieves one result can be transformed into a
new program that uses the same principles to
achieve a different goal. For example, a
program that uses the binary search paradigm
to calculate the square-root of a number may
be modified to divide two numbers in a
similar manner, or vice versa.

Program debugging is considered as a special
case of modification: if a program computes
wrong results, it I:NW be modified to achieve
the intended results. the application of
abstract program schemata to concrete
probtems is also viewed from the perspective
of modification techniques.

We have embedded this approach in a
running implementation; our methods are
illustrated with several examples that have
been performed by it.

116 Appendix D

+ AIM-295 cs-59 1
Robert C. Belles,
Verification Visioll Within a Programmable
Assenr bly System,
Thesis: Ph.D. in Computer Science,
245 pages, December 1976. Cost: $8.55

The long-range goal of this research is to
simplify visual information processing by
computer. The research reported in this thesis
concentrates on a subclass of visual
information processing referred to as
verifia tion vision (abbreviated VV). VV
includes a significant portion of the visual
feed back tasks required within programmable
assembly. There are several types of ’
information availab.le in VV tasks that can
facilitate the solution of such tasks. The main
question addressed in this thesis is how to use
all of this information to perform the task
efficiently. Two steps are involved i n
answering this question: (1) formalize the types
of tasks, available information, and quantities
of interest and (2) formulate combination rules
that use the available information to estimate
the quantities of interest.

The combination rules that estimate
confidences are based upon Bayes’ theorem.
They are general enough to handle operators
that are not completely reliable, i.e., operators
that may find any one of several features or a
surprise. The combination rules that estimate
precisions are based upon a least-squares
technique. They use the expected precisions
of the operators to check the structural
consistency of a set of matches and to estimate
the resulting precisions about the points of
interest. An interactive VV system based
upon: these ideas has been implemented. It
makes it possible for a person who is not an
expert in vision research to program visual
feedback tasks. This system helps the
programmer select potentially useful
operator/feature pairs, provides a training
session to gather statistics on the behavior of
the operators, automatically ranks the
operator/feature pairs according to their
ex petted contributions, and performs the

desired task. The VV system has also been
interfaced to the AL control system for the
mechanical arms and has been tested on tasks
that involve a combination of touch, force,
and visual feedback.

,

+ AIM-296 CS-592
Robert Cartwright,
Practical Formal Semarltic Definition and
Verificatioll Systems,
Thesis: Ph.D. in Computer Science,
158 pages, December 1976. Cost: $6.15

Despite the fact that computer scientists have
developed, a variety of formal methods for
proving computer programs correct, the formal
verification of a non-trivial program is still a
formidable task. Moreover, the notion of
proof is so imprecise in most existing
verification systems, that the validity of the
proofs generated is open to question. With an
aim toward rectifying these problems, the
research discussed in this dissertation attempts
to accomplish the following objectives:,

1. To develop a programming language
which is sufficiently powerful to express many
interesting algorithms clearly and succintly, yet
simple enough to have a tractable formal
semantic definition.

2. To completely specify both proof theoretic
and model theoretic formal semantics for this
language using the simplest possible
abstractions.

3. To develop an interactive program
verification system for the language which
automatically performs as many of the
straightforward steps in a verification as
possible. &ontinued next page] .univ .next
Page

The first part of the dissertation decribes the
motivation for creating TYPED LISP, a
variant of PURE LISP including a flexible
data type definition facility allowing the
programmer to create arbitrary recursive types.
It is argued that a powerful data type

Abstracts of Recellt Reports 117

definition facility not only simplifies the task of
writing programs, but reduces the complexiey
of the complementary task of verifying those
programs.

The second part of the thesis formally defines
the semantics of TYPED LISP. Every
function symbol defined in a program P is
identified with a function symbol in a first
order predicate calculus language Lp. Both a
stahdard model Mp and a natural deduction
system Np are defined for rhe language Lp.
In the standard model, each function symbol is
interpreted by the least call-by-value fixed-
point of its defining equation. An informal
meta-mathematical proof of the consistency of
the model Mp and the deductive system Np is
given.

The final part of the dissertation describes an
interactive verification system implementing
the natural deduction system Np.

The verification system includes:

1. A subgoaler which applies rules specified
by the user to reduce the proof of the current
goal (or theorem) to the proof of one or more
subgoals.

‘2. A powerful simplifier which automatically
proves many non-trivial goals by utilizing
user-supplied lemmas as well as the rules of
NP.-
With a modest amount of user guidance, the
verlfication system has proved a number of
interesting, non-trivial theorems including the
total correctness of an algorithm which sorts
by successive merging, the total correctness of
the McCarthy-Painter compiler for
expressions, the termination of a unification
algorithm and the,equivalence of an iterative
algorithm and a recursive algorithm for
counting the leafs of a tree. Several of these
proofs are included in an appendix.

+ AIM-297 CS-610
Terry Winograd,
A Framework for Understanding Discourse,
24. pages, April 1977. Cost: $2.40

There is a great deal of excitement in
linguistics, cognitive psychology, and artificial
intelligence today about the potential of
understanding discourse. Researchers are
studying a group of problems in natural
language which have been largely ignored or
finessed in the mainstream of language
research over the past fifteen years. They are
looking into a wide variety of phenomena,
and although results and observations are
scattered, it is apparent that there are many
interrelationships. While the field s not yet at
a stage where it is possible to lay out a precise
unifying theory, this paper attempts to provide
a beginning framework for studying discourse.
Its main goal is to establish a general context
and give a feeling for the problems through
examples and references. Its four sections
attempt to:

Delimit the range of problems
covered by the term “discourse.”

Characterize the basic structure of
natural language based on a notion of
communication.

Propose a general approach t o
formalisms for describing the phenomena and
building theories about them

Lay out an outline of the different
schemas involved i n generating and
comprehending language

+ AIM-298 CS-6 11
Zohar Manna, Richard Waldinger,
The Logic of Computer Programming,
90 pages, June 1977. Cost: $4.25

Techniques derived from mathematical logic
promise to provide an alternative to the
conventional methodology for constructing,
debugging, and optimizing computer

118 Appendix D

programs. Ultimately, these techniques are
intended to lead to the automation of many of
the facets of the programming process.

In this paper, we provide a unified tutorial
exposition of the logical techniques,
illustrating each with examples. We assess the
strengths and limitations of each technique as
a practical programming aid and report on
attempts to implement these methods in
experimental systems.

+ AIM-299 CS-614
Zohar Manna, Adi Shamir,
The Convergence of Functions to
Fisedpoi 11 ts of Recursive Definitions,
45 pages, May 1977. Cost: $2.95

.

The classical method for-constructing the least
fixeclpoint of a recursive definition is to
generate a sequence of functions whose initial
element is the totally undefined function and
which con verges to the desired least
fixedpoint. This method, due to Kleene,
cannot be generalized to allow the construction
of other fixedpoints.

In this paper we present an alternate
definition of convergence and a n e w
[fixedpoint access] method of generating
sequences of functions for a given recursive
definition. The initial function of the
sequence can be an arbitrary function, and the
sequence will always converge to a fixedpoint
that is “close” to the initial function. This
defines a monotonic mapping from the set of
partial functions onto the set of all fixedpoints
of the given recursive definition.

+ AIM-300 CS-6 17
Terry Winograd,
0 II SON e con tested suppositions of
generative linguistics about the scientific
study of language,
25 pages, May 1977. Cost: $2.40

the development of theories of language. The
authors of that paper declare that workers in
AI have misconstrued what the goals of an
explanatory theory of language should be, and
that there is no reason to believe that the
development of programs which could
understand language in some domain could
contribute to the development of such theories.
This paper concentrates on the assumptions
underlying their view of science and language.
It draws on the notion of “scientific
paradigms” as elaborated by Thomas Kuhn,
pointing out the ways in which views of what
a science should be are shaped by unprovable
assumptions. It contrasts the procedural
paradigm (within which artificial intelligence
research is based) to the currently dominant
paradigm typified by the work of Chomsky. It
describes the ways in which research in
artificial intelligence will increase our
understanding of human language, and
through an analogy with biology, raises some
questions about the plausibility of the
Chomskian view of language and the science
of linguistics.

This paper is a response to a recently
published paper which asserts that current
work in artificial intelligence is not relevant to

