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1. Introduction

The collocation method based on trigonometric interpolation is

called the Fourier (or pseudo-spactral) method. It has been used

extensively for the conrputation  of approximate solutions of partial

differential equations with periodic solutions. A satisfactory

theoretical justification for equations with variable coefficients

has only existed for equations written in skew symmetric form [3, 6, 73.

Recent work of Majda, McDonough and Osher [81 treats hyperbolic systems

with Coo coefficients.

In this paper we develop a stability theory for linear hyperbolic

and parabolic partial differential equations with variable coefficients.

The generalization of these results to nonlinear equations follows if the

problem has a sufficiently smooth solution. We restrict our discussion

to problems in one space dimension. The extension to problems in more

space dimensions is immediate. Error estimates can easily be derived

using our results following those in Kreiss and Oliger [7] and Fornberg

c31.



2. Trigonometric Interpolation

In this section we collect some known results on trigonometric

interpolation (see [ 4, 5, 711. Let N be a natural number,

h = (2N+l?, and define grid points
xV

= vh, v = 0,1,2,...,2N.

Consider a one-periodic function v(x), v(x)

vv = v(x,) are known at the gridpoints
xV*

scalar product and norm by

(2.1) (u(x),v(x)J, = F L&f) v(xv)h Y
v=o

z v(x+l), whose values

We define a discrete

lluil:,  = (u,u),  l

The trigonometric polynomial w(x) of degree N which interpolates

vix) in the ,points xv, i.e.,

(2.2) w(x,) = dx,)

is uniquely given by

(2.3)

where

(2.4)

v = 0,1,2,...,2N ;

w(x) = a (0) e2timx

03=-N

a(W) = (v(⌧),e2tiu)h  l

This follows fram the orthonormality of the exponential function,

(2.5)

0
(e27Bnx,e27Cmx)  =

h
1

if

if

0 < /m-n1 5 2N

m=n .



The usefulness of trigonometric interpolation stems from the fact

that the smoothness properties of the function are preserved and that

the convergence is rapid for smooth functions. Let the L2-scalar

product and norm be defined by

(2.6) (u,v> = ,r 1 usdx , lll☺2 = (u,u>  l

0

We will need the following well known theorem.

Theorem 2.1. If wy2 interpolate v1 and v2'
respectively, then

(2.7) ‘wl,w2 )h = (w,,w,)  = h1,v2 )h and

(2.8) /wl(x)l12  = //v,(x)//~  = 5 la(m) I2
W-N

It will be convenient to work with the following class of functions.

Definition 2.1. P&M) is the class of all functions v(x) which

can be developed in a Fourier series

(2.9) v(x) = “c G<de277-i-U

03=-X

with

(2.10)

P(a,M) is contained in the Sobelev space HF.

We now need the relationship between the Fourier coefficients &J)
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3

of a given function v(x) and the coefficients a(4 of its '

trigonometric interpolant w(x)* This is contained in the following

well known result c 4, 71.

Theorem 2.2. Let v be given by (2.9) and w given by (2.3) and

(2.4) then

(2.11) a(4 = IF G(wj(2N+l)) , 1~1 < N .-
j=e

We can now investigate the rate of convergence of the interpolating

polynomial to a function v(x) E P(a,M).

Theorem 2.3. Let V(X) E P(a,M) with a> l/2. Then

i2J-2) Ilvix )-w(x)/l<M-
1 2

i IL
(2773)2a + (273JJ)2a  j=l (2j-l)2a

l/2 "'"OI

= (271TJ)a '

1where 5=1+2 c
j=l (2jBl)2a  l

Proof. We write (2.9) as v(x) = v,(x) + v,(x) where

N
vN(x) = c +(u)e2mcux ) v,(x) = c $(u)e2tiwx .

a= -N I I0 >N

Let w,(x) and w,(x) be the trigonometric interpolants of v,(x)

and vR(x), respectively. They are given by

N
W,(x) = C a (N)(,)e2~iuur,

CO=-N
.(N)

(ml = (vN(x),e2Tiu)h
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w,ix) = a(R) (CO)e2mux y a
UP-N

(R)(a)  = (vR(x),e2Tiwlh  .

The trigonometric interpolant of v(x) is

w(x) = w,(⌧)  + w,(⌧)  l

w,(x) interpolates v,(x) in the 2N+l points of (2.2)' and from

(2.3) we have

w,(⌧)  = v,(⌧)  l

Therefore,

liV(X)-w(x)  II2 = I~vR(x)-wR(x)  [I2 = I/v,(x)/12 + !lw,(x)/12

since v,(x) is orthogonal to w,(x). By (2.10) we can write

&J) =
1

I I2W a+l

where

Therefore,

-Ilv,(x) II2 =
I I

c laoI =
I I

c
I

1

I I2moa+1
G(o3) 2 < $

UJ >N W >N I - (2TIY)2a  l

By Theorem 2.2



IIWR(X)~~'  = ; la(') (W) I2 = E / F G(UJ+j (2N+l)) I2
u)= -N cU= -N j=-33

jfo

= ?(cu+j(2N+l!) 2

l2r(u~+j (2N-tl)) Icy+1

1
l "c I?((JJ+j(2N+l)) I2

(127T(~j(2N+l!)la+l)2 j=-c0

2M2
<
- (~TN)~~  l

mc
j=l

(2j-l)-=la

and the theorem follows.

Remark. Observe that the contributions to the error by vR and wR

are of the same order if a > l/2. wR is often called the aliasing

error. Thus, we see that if v is at all smooth, then aliasing

plays no important role.

The following result follows immediately from the last theorem.

Corollary 2.1. Let v(x) E P(a,M) with a > j + l/2, j a natural

number. Then

(2.13)

. .dJ dJ MC
a-j.

dxJ
v(x) -* 7 w(x) <

dxJ II
- (2m)a-j '



3. Stability of Fourier Methods

Let v(x) be a one-periodic function whose values, v(xv) are

-1known at the gridpoints xy = Vh, h = (2N+l) . If we want to approxi-

mate dv(x#x we can compute the trigonometric interpolant (2.3) of

v(x), differentiate it, and use its derivative

(3*1)
N

dw$,)/dx = c kfia>a(~>e
271iUXv

W=-N

as an approximation of dv(x,,)/dx. The computation of (3.1) in all

of the gridpoints xv,  V = 0,1,2,... ,2N can be done using two discrete

Fourier transforms (DFT) and 2N complex multiplications. Also, if

we know that v(x) E P&M) with a > 3/2, then Corollary 2.1 gives

us the error estimate

(3.2)
MC

I/ /dv dx - dw/dxII < a-1
- (2773!0@l  l

Higher derivatives can be computed analogously.

The above process is linear so it can also be represented using

matrix notation. Let

v_ = (v(xo),...,v~x2N)~' , x = (dw(xo)/dx,...,dw(x2N)/dx)'  "

denote the (2N+l) dimensional

v(x) and dw/dx, respectively.

vector formed of the grid values of

Then there is a (2N+l) X (2N+l)

%f x is a vector then y'- denotes its transpose and x* its

conjugate transpose. The same notation will be used for matrices.

b



matrix such that

(3.3)

Formulas for the elements of S have been computed by B. Fornberg

[ 2, 31= He has also shown that S can be considered as the limit

of higher and higher order difference approximations.

The scalar product and norm of x and v are defined by (2.1)'

i.e.,

(u,v), =
- -

? u(xv)V(Xv)h  , /ju~/2 = (�,u), l
- -

v = o

We need several properties of the operator S. In [ 61 we

proved the following lemma.

Lemma 3.1. S is skew Hermitian, II I/S h = 2nI\J, the eigenvalues of S

are h, = 2Ticu, and the corresponding eigenfunctions are

5 = (l,e2TiUh,...,e2ai@Nh)'  , a = O,+l,...,r_rJ  .

We next consider the approximation of b(x) du/dx where b(x)

is a smooth one-periodic function. The operator b(x) d/dx is essentially

skew Hermitean because we can write

(3.4) b(x) du/dx = Qu + Ru

where



Qu = ;(bdu/dx + d(bu)/dx) , Ru = - 5 db/dx u .

Q is skew Hermitian and R is bounded. There are many problems where

R f 0. For example, we can write udu/dx in the form

udu/dx = +du/dx + du2/dx) .

Now consider the partial differential equation

Ut = b (x)bu/bx  = Qu + Ru , Ut = 6&t Y

then

(u,dt = (U'U,) + (up) = (u&u) + (Qu,u> + (u,Ru) + (Ru,u) = -(u,udb/dx

and we have an energy estimate. If we approximate the above problem by

dv-
qb"s + s6)v -dt=2 -

where

b(xo) 0 . . . . . . . . 0

0 b(xl) 0 . . . 0

l  . * . . . . . . . * * * . . . . . . . * . .

0 . . . . . . ...* 0 b(X2N)

Y 6X =

'db((xg)

dx
. . . . . . ...*

db:xl)
0

0 dx
0 . . . 0

. . . . . . . . . . . . ..a............

0
db (X2N)

. . . . . ...*.* 0
dx.

Then we obtain the same energy estimate because

(ITS + s6) = - (6s + SE)*
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is skew Hermitian and therefore

~h,v), = - (v_,s;x~)h

The above procedure can be generalized considerably. Consider the

parabolic system

(3*5) Ut = (Au ) + Bu + CU , U = bUhx
xx X X

where u denotes a vector function with n components, A, B, and C

are nx n matrices, A and B are Hermitian, A is positive definite, and

C and aB/ax are uniformly bounded. We can rewrite this system in the form

(3.6) Ut
= (Au > +

x x
;(B ux f (B uJx) + Clu ,

where

Cl = c - 21 dB/hx .

We then obtain the energy estimate

(U’U),  = -2(ux,A ux) + 2 Real (u,C,u)

which depends solely on the property that b/bx is skew Hermitian.

Thus, we obtain a corresponding estimate if we replace b/bx by S

and approximate (3.6) by

(3.7)



The estimate is

where we extend our earlier definitions of the discrete norm and inner pro-

duct in the obvious way. Here v is the vector with vector components

v(y) and Au, 5, cl, and g are block diagonal matrices with blocks

A(xv >, B(xV), Cl(xV), and S, respectively.

The system of ordinary differential equations (3.7) can be solved

using an appropriate difference method for ordinary differential

equations. However, the approximation (3.7) requires about twice as

much work as the simpler approximation

(3.8)
dv NH--
- = SASv + i%v + &
dt - -

of (3.5L Since numerical experience has shown that approximations

of the form (3.8) can be unstable, it is desirable to find ways of

stabilizing them which are cheaper to use than reverting to (3.7). We

can achieve this by adding appropriate dissipative or projective

operators. We will now develop this approach in detail.

It is easier to do this if we work within the space TN of

trigonometric polynomials

(3.9) p(x) = $(cU,,
27E.uJx

Uk -N

A vector function v(x) or a matrix function B(x) will belong to

TN
if all their components do. There is a one-to-one correspondence

between a polynomial (3.9) and its values



v = (v(xO),...,v(x,,)P .-

Thus, there is a linear operator P such that

Py = v(x) Y

If v(x) E TN then

(3.10)

Let B(x), v(x) E TN. Then we define w(x) = B(x)*v(x) to be the

convolution

i.e., v(x,) = vv , v = 0,1,2,...,2N  l

PSv = dv/dx .

(3.11)

with

w(x) = B(x)wv(x) = it -t;(V)e2rrivx
V=-N

(3.12) iad =

+N
c $(,)(i&,) + ;(v-2N-14 for v > o-

p=-N

N
C ii(,)(G(v-,I f G(V+2N+l-p))  for V < 0 .

/ cl=-N

where we have used the convention that G(W) = G(U) = 0 if 1~01 > N.

B(x)v(x) is a trigonometric polynomial of order 2N. By theorem 2.2

its interpolant is given by B(x)*v(x). Therefore,

(3.13) w(x) = P(&) = B(x)*v(d .
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Lemma 3.2. Let B(x) E TN be a matrix and v,w e TN be vector functions.

Then

I~%~V>I  5 max IBb) I l IIWII llvll l

O<x<l- -
and, if B is Hermitian,

(w,wv) = (?3+w,v)  l

Proof. By theorem 2.1 and (3J3)

(w,B*v) = (w,B+vjh = (w_,& l

- h

If B is Hermitian, then

b&)h = (k,v)h = (&w,v)h = (%w,v)  .--
Also,

1 (&)h 1 5 @I 1\$$& = mx IB(y) 1 I lb II llvll l

O<xy<l

and the lemma is proved.

We can now write equation (3.8) as an evolution equation in TN

via the isomorphiam P.

(3.14)
vt = *vxJx + B *vN x + cN*v

where
AN yBN "N and v are the trigonometric polynomials in

*N

which interpolate the discrete values A(+ B(x& Ck,), dx,),

respectively. The term w =BN*vx can be written as

w=B*v
N x = Qv + Rv

14



where

(3*x5)

Qv = $BNxvx + (BN*v)x) ,

Rv = $(BN*vx - IBN*v)x)  l

It follows from lemma 3.2 that the operator Q is skew Hermitian.

Straightforward application of (3.12) gives us

N
Rv = Rlv + R2v , Rjv= c Gj We2fim 7 J- = 127 f

U.k -N

where

i

N
c piN('I) (;(U-U) + ?(u-2N-l-M)) for (JJ> 0-

cl=-N

(3.16) Gl(Lu) = -m
r +N

c
p=-N

&j (, > (G&p) + $(w2N+LP)) for m<o

for _a> 0

(3.17) E;,(m) = 715(2N+l)

I

p-L=-N
;N(P)&+2N-l-,)

+N
c 6N(p)++2N+1-p) for o<o .

1=-N

By (3.12)

(3;W Rlv = - $ dE@& x v .

Therefore, by lemma 3.2, the operator Rl is bounded if B e P&M) with

a > 3/2, certainly if B is twice continuously differentiable (see [l]).

In general we can not expect that (v,R2d is bounded independent

of N. For example, if B(x) = I(1 + $ sin 2??~) then

15



gN(o) = I, SN(l) = 4$(-l) = - t I, GN((D) = 0 if IWI f 0,l

and

G2(~) = f (2N+l)$(-N) , G2(-N) = $ (2N+l)&N) , c2(d = 0 if' l@t f N l

Therefore,  b y  Parseval�s r e l a t i o n ,

(v,$,v) = g (2N+l) Real{G(N)j(-N)) .

Nbw assume that there are constants
FL

and p > 1, independent of N, such

that

(3.19)

Then we obtain

Iyv,R,v)l < 7r(2N+l)(l c s(m)
cu=O p=-N

5.,&)&'-2N-l-p)~

(3.20)
-1

+  I  c 34 ; q&)Gb+2N+l-J)
o=-N 1=-N

where &r) = 0 for 1~1 > N. By (3.19)

- Ml ! IL f Ih',I (i+-2N-l-w)I <
--N 127# w=o

-

$0

-1

Ml c l.
p=-N 127# UJ=N+p+l

16



t

1

There Ys a constant Kl such that

+ (;(,-2N-l-V)/2 <

.A

)I’) <-

5 = (1/2~r)'(B/(p-1)) will do. Furthermore, the same estimate holds for

the second sum on the right side of (3.20). We obtain

(3.21) 1 (v,R2d 1 5 MIKl l

c-b= -N

where

rcu =
(2N+lj7r

(N-+l+l)'-'
if a+O, To=0 .

Consider the system (3.14). We have, Using (3.15) and (3*18)~

(v,v), = 2 Real ((v,(s )t~~)~) + (v,Qv) + h&d + (v,c,,,)3

(3.22)

= -2(vx'AN *vx) + 2 Real (v,(C, - $ bBN/bx) * v> + 2 Real (v,R2v) .



A is positive definite by assumption, i.e., there is a constant

0 > 0 such that A >, 01. Therefore,

By Parseval's relation and (3*21)

-2(vx,q~~x)  + 2 Real (v,R2v) <,

(32'3)
N

1 2< 2al(vJ12, a =
0 <y&N

( -aw2+  M-p-&)  l

Since o > 0, and if p

Ivb>

> 2, then a is bounded independent of N, and

(3.22) and lemma 3*2 give us the energy estimate

(v,v), < 2 Real (v,  (CN - Jj bBN/bx)  * v)+2aIIvI12
-

5 2(max IcN - $ bBN/bxl  + ~~)llvll~  .
X

If f$ > 3 then a simple calculation  gives us-

r < (2N+l)r

CJJ - (N+~1+1)~

Therefore, if 27~3 > &L&(N -1 -2
- +N ) then a in (3.23) is nonpositive and we

obtain the following theorem from (3.22).

Theorem 3.1. If 8 > 3 and 2~0 > (Ml$(N-1+N-2), then the solutions of- -

(3.14) satisfy the estimate

18



(3.24) (v&t 5 2 Real (v,(C, - $ aBN/bx) st V> .

This is entirely satisfactory since it is essentially the same as the

corresponding estimate for the differential equation. Furthermore, N can

always be chosen large enough so that 2~0> MIKl(N-'+ No2), at least in principle.

For hyperbolic equations, A "0, the situation is not as good.

In this case we have to control the smoothness of v. Experience has

shown that higher frequency modes can grow if this is not done.

Let m > 1 be a natural number,

5 27riu.X
V= i&de

Uk-N

and define Vl' v2 bY

(3.25 1 c 27Jio3x
v1 = X&e > v2

= v - v

I Icu 91
1 '

where Nl = (1 - l/m)N. The smoothing operator H = H(j,m,D) mapping

TN
into T

N
is defined by

(3.26) w=Hv=
uk-N

where

I

&4 if Ial < (1 -- ;)N

i&m) = G(a) if IUI > (1 -i)N and IG(w>l <
~ll-yll

- (27r(wI)j

4l~~lI 34
(2744 9 I+, 1 otherwise .
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j is a natural number and D is a constant. Thus, only the higher

frequencies are modified, i.e.,

Hvl = vl , IIHVII i lld l

We want to show that H is a very mild form of smoothing.

Lemma 3.3. Let y > 0 be a constant and j a natural number. Consider

the class of functions with

(3.2'7)

If

(3.28)

then

Il,ju/bxj  II2 <, y2~lul[2  .

(29~(~$))~' > 2 v2 and D >_$? 'y-

Hu=u.

Proof. Let u E TN and write it in the form

m-l
u = u, + u9 where G,w =0 for a>mNI I

A L

(3.27) implies

( m-l 2~N)~jllu~/1~ 5m

By (3.28)

lbju2/bxj II2 <, F (llu1112 + llu2112) l

20



lb2 II2 5 //u1112  l

Therefore, for

I (;w >I2 < y2(2n[cuj)-23

UJ # O,

Ilull 5 2r2( 27-r  Iw I r2j llu1112

and the lemma follows.

Instead of (3.14) we now consider the approximation

(3*29)
3,,=BN*Hvx+CN*v ,

To see that (3.29) has a unique solution we need.

Lemma 3.4. H is a Lipschitz continuous operator from TN into TN.

.( >v ' e TN and ( )i
.

Proof. Let w = Hv ' , i = 1,2. Note that( >

Ij(i)(m)l 5 lC(i)(cu)I and arg w(i)(,) "(i)(w)l i = 1,2, both= arg v

follow from the definition of H. Consider the quantities

$qw) - ;(2) (cu)~. We consider three cases. Let

Jl = {LU~~LU~ IN, F;@(w) = G(')(U), .8 = 1,23

J2 = (coj1~I <N, w^(a)(w) # G(&)(U), 4 = 1,23

J3 = (WI I4 5 NY Lb p J1 u 523

From the definition of H it follows that cu e Jl if 1~1 5 Nl = N( l-l/m).

If u3 e J,, then liP)(clJ) - d2)(,o) 1 = IjquJ) - ;(2)(u3) I. If
JL

w E Jp then

)(m) 1 = IKb



3

where K(m) = D/(2rr(o()j. We assume, without loss of generality,

that I@)11 > I~v~~)I~. Using the triangle inequality we obtain

- K(w)/Iv!p)l/
( >

' ' (w) 1 +
FTzi

( >
IK(dlb~2'~l e - K(m)llvi2)ll '(2)(w) 1 ,

V cu PGT

We can bound the first term of our last expression by

K(w)  1 ilv~’ 11 - l~v~"ll1 5 K(m)/lvi') - vi')l/ 5 K(Lo)~/v(') - ~(~$1

since the two complex numbers have equal arguments. We can bound the

second term by I;qLo) - $2)(a>1 utilizing the triangle inequality
ie i0and the fact that the distance between two points r e 1 2

1 and r2e

is a non-decreasing function of
rl if rl>- r2. Finally, we obtain

(3.30) d(cu) < K(Lu)I~$) - ~(~$1 + l;(l)(~) - ;(2)(cu)l

if meJ2. Let cu e J
3 and assume without loss of generality that

C(uJ) # W(uJ) and $(2)(w) = w"(2>(Lu). If [$2)(~)1 > K(m,nv~)1~,

then

d.(cu) 5 Iw*(')(,u)  - K(cu)/@)l/ ' 2
( >

T-T"i' + lKb,ilv~'li f$+ - G(2b)I
V V

22



5 I$ (1) b> - ^,(2)(m)1 + K(u) 1 l@[l - ~~v~~)~~ 1

5 I$(1) (03) - 9 (2) (cu)l + K(ui)ilv(')  - v(~)II

If p2) b-9 I 5 K(o)llpll, then it easily follows that

d(m) < I$)(,) - +2)((o)1. Thus, if weJ
3’ a4 satisfies the

inequality (3.30). Now we estimate

II (1)W’ -w (2)112 = ; d2(m)
CO=-N

< c I$)(,) - GC2)(,)12
WEJ1

+ (ocJx”J mJ-4lIV 0) - vq + l$qLu) I ;yo) I)2
2 3

< (2 + 4K?(Nl)(N-Nl))l$1)  - vc2)li2

which yields the desired result.

From Lemma 3.4 it folluws that the operator on the right hand side

of (3.29) is Lipschitz continuous and it then follows that (3.29),

with initial data, has a unique solution. v(t). We will now derive

estimates for the norm of this solution.

We have

at II IIV2 = 2 Real (v,vt) = 2 Real (v,% * Hvx + CN * v) l

The term (v,CN JC v) is easily bounded as before using Lemma 3.2 if

C E P&M) with a > l/2, or is continuously differentiable.

23



We write

by% * H”,) = <v,s * (v,>~> + (v,s * ((v,), - H”,)

splitting v = vl + v2 and utilizing the fact that H does not

alter the first Nl Fourier components of the vector it operates on.

We then further split
4v * (vl)x in terms of Q and R = 5 + R2

as before to obtain

2 Real (v, s * HVx) = 2 Real (b,Rlvl> + b,R2vl, + (v,s * ((v,), - Hvx))

where we have used the fact the Q is skew-hermitian. Recall that

Rlvl = - ;dBN/dx * vl which is bounded as before if B e P&M)

with a > 3/2. We have

(3.31) a, llvl12 = 2 Real (v,CN * v - $ dBN/dx JC vl) + 2 Real (v,R2vl) t-

2 Real (v, s * (bl), - Hv,)

the first term is bounded and converges to the proper estimate for the

differential equation. We will now construct bounds for the last two

terms. We assume that BN satisfies (3.19) and obtain, corresponding

to (3.20) 7

N
I(v,R,v,)l < rr@N+1)(1 "r ?(d c ~(d+---d)

w=o U=-N
(3.32)

+ 1 -; &b) ; i@)++2N+l-p))) .
CO=-N p=-N

24



Utilizing (3.19) we obtain

w-2N-l+N,

and the second term on the right hand side of (3.32) also satisfies the

same estimate. We obtain

We only have the term (v,s * ((vl), - Hv ) left to estimate. We
X

have, via lemma 3.2, that

(3.34) I(b~ ++ (bl>, - Hvx)l < max (~~(Ivll~l((vljx  - Hv )[I .
X

X

From the definition of H we have
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IIbQx -
Dbl),II  N 1

Hvx)Il 5 2 *
TTJ

c -
(2 1 cu=N,+l lrnlj

(3.35)
2D

< .-I N2-j v
1 II II

if jL2.

We can now collect our estimates (3.31

to obtain

> and (3.35)

Theorem 3.2. Let j = B > 2,- then the solutions of (3.29) satisfy

the estimate

oJvll' < 2 Real (v,cN * v -

(3.36) -

c3Jd /dx*vl)+

[(6/(2n)B-1)~m%2-B + ( 4D/(2n)j-1(j-1))(&)j-2N2-'j  max lIQJl~vl~*~
X

If j = p > 2, then the estimate (3.35) converges to the corresponding

estimate for the differential equation as N + 00 .

If the coefficients are smooth the estimate (3.35) is quite

satisfactory for sufficiently large N. We have been able to obtain

this estimate by introducing the smoothing operator H and by requiring

that the coefficients C and B be smooth. A similar estimate can

be obtained, with much less effort, if we were to alter the definition

of H such that j(w) = 0 if lcul > Nl, or G(w) = &.0)/((2n[I~/-~&j+l)

i-f ]cul > Nl where [gJ+ denotes the positive part of g. These are

both linear operators. However, the resulting methods are less accurate.

Convergence estimates can be constructed utilizing the estimates

of theorems 3.1 and 3.2 following those of Kreiss and Oliger 1'71 and
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Fornberg [3] and the approximation results of Bube [l].
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