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1. [ ntroduction

The collocation nethod based on trigonometric interpolation is
called the Fourier (or pseudo-spactral) nethod. |t has been used
extensively for the computation of approximate solutions of parti al
differential equations with periodic solutions. A satisfactory
theoretical justification for equations with variable coefficients
has only existed for equations witten in skew symetric form[3, 6, 7].
Recent work of Mjda, McDonough and Gsher [8] treats hyperbolic systens
with ¢® coefficients.

In this paper we develop a stability theory for Iinear hyperbolic
and parabolic partial differential equations with variable coefficients.
The generalization of these results to nonlinear equations follows if the
probl em has a sufficiently smooth solution. W restrict our discussion
to problens in one space dinmension. The extension to problens in nore
space dinensions is immediate. Error estimates can easily be derived

using our results follow ng those in Kreiss and Oliger [7] and Fornberg

[(3].



2. Trigononmetric |Interpolation

nthis section we collect sone known results on trigononetric

interpolation (see [ 4, 5, 7]). Let N be a natural nunber

h = (2N+1)'l, and define grid points x_, = vh, v = 0,1,2,...,2N.

v
Consider a one-periodic function v(x), v(x) = v(x+1), whose values

v, - vix,) are known at the gridpoints x,. Ve define a discrete

scal ar product and norm by

2N 2
:VZ_O U_(XV) V(XV)h ’ HUHh a (u;u)

(2.1) (ulx),v(x))

h h

The trigononetric polynonial w(x) of degree N which interpolates

vix) in the points X, i.e.,

(2.2) wix,) = vix,) V = 0,1,2,...,2N

is uniquely given by

(2.3) Wx) = L a (@) PTX
w=-N

wher e

(2.4) a(®) . <v(x>,e2mx)h

This follows from the orthonormality of the exponential function

0 if 0<|mn|<?2N
(2.5) (e27T1IlX e2‘lT1mx>

)

h =
1 if meEn



The useful ness of trigonometric interpolation stens from the fact
that the snoothness properties of the function are preserved and that
the convergence is rapid for smooth functions. Let the L,-scalar

product and norm be defined by
o 2
(2.6) (u,v) = f wax ,  |ulf . (wu)

Ve will need the following well known theorem

interpolate v, and Vo respectively, then

Theorem 2.1. If Wy oW

2 1

(2.7) (wl,w2 )h = (wl,w2) = (vl,v2 )h and
(2.8) | (X)HE = HVJ_(X>H}21 = g la(w) |2
1 W N

It will be convenient to work with the follow ng class of functions.

Definition 2.1. P(g,M) is the class of all functions v(x) which

can be developed in a Fourier series

(2.9) V(x) = L v()edTex
D==c0
Wi th
.10) Pl em]® + 15 2 < P
W= —=o

P(a,M) is contained in the Sobelev space Hg‘.

W now need the relationship between the Fourier coefficients v (o)



of a given function +v(x) and the coefficients a(w) of its
trigononetric interpolant w(x). This is contained in the follow ng

wel | known result [ 4, 71.

Theorem 2.2.  Let v be given by (2.9) and w given by (2.3) and
(2.4) then

(2.11) aw) = ¥ v(wtjlen+l)) , o] < N .

J=—=

We can now investigate the rate of convergence of the interpolating

polynomal to a function v(x) ¢ P(g,M).

Theorem2.3. Let v(x) ¢ P(e,M) With o> 1/2. Then

oo 1 MC
(2.12) v()-wix)||<m 12 2 5 1 ol /2 = @
(emn)eY + (em)=%j=1 (2j-1) (om0 )©
were 2 -1+ ¥ 1
¢ j=1 (23-1)°% .

Proof. wWe wite (2.9) as v(x) = v _(x) + v_(x) where

v (x) = ¥ F(w)esTex
ko] >N

Let wy(x) and w,(x) be the trigonometric interpolants of vy (x)

and vR(x), respectively. They are given by

N . .
wN(x) =w=ZN a(N)(w>627r1a>x} a(N)(a)) = (VN(X),egmmx)h



egﬂ'lwx )

(R) () e2TiOX (R) )

N
wR(x)= 2 a , al(w)= (VR(X),

w==-N
The trigononetric interpolant of wv(x)is
wix) . oy (x) we (x)

wy(x) interpolates v (x) in the 2m+1 points of (2.2)' and from

(2.3) we have

wN(x) ; vN(x) )

Theref or e,

) ae (o) (B = Tl )= (o) 1B = o Ge) I+ Ihog ()

since vy(x) i's orthogonal to wp(x). By (2.10) we can wite

T@) = —L —
lomy ¥ +1
wher e
+oo
LT [? <
W=-0
Therefore,
T Bz £ FeP= 5 —L1 gwec X
9 > N ol > x| lomo)%+1 | (om )=

By Theorem 2.2



N N o

HWR(X)HQ =7 la(m @ |2 = ¥ 1% v+ (ewer)) |2
w= -N W= - J=-o
J#0
_ g E F(w+3 (on+1)) |2
w=-N | j=—=o |omlo+;j (eN+1)) |O(+l|
3#0
N kS 1 S~ o
< 2. 5 2 ¥y (en+r)) |
To=aN | g (lomesy (i) [F41)T jea
70 j#0
a s . =20
< Y (23-1)
T (emn)? . -1

and the theorem fol | ows.

Remark. Cbserve that the contributions to the error by Ve and e
are of the same order if o > 1/2. Wp is often called the aliasing

error. Thus, we see that if v is at all snooth, then aliasing

plays no inportant role.

The following result follows immediately from the last theorem

Corollary 2.1. Let v(x)ec P(a,M) With o >j + 1/2,j a natural

nunber . Then

(2.13)




3. Stability of Fourier Methods

Let v(x) be a one-periodic function whose val ues, v(xv) are
known at the gridpoints x, = Vh, h = (ene1’! 1t we want to appr oxi -
mat e dv(xv)/d.x we can conpute the trigononetric interpolant (2.3) of
v(x), differentiate it, and use its derivative

N 2minx
(3.1) dw(xv)/dx = 2 (omiw)a()e v
w=-N
as an approxi mation of dv(xv)/dx. The conputation of (3.1)in all
of the gridpoints x,,V=0,1,2,...,2N can be done using two discrete
Fourier transforns (DFT) and 2N conplex nultiplications. Also, if

we know that v(x)e P(a,M) wWith o > 3/2, then Corollary 2.1 gives

us the error estimte

a-1

(3.2) ldv/dx - aw/ax| <
(o) "

1
H gher derivatives can be conputed anal ogously.

The above process is linear so it can also be represented using

matrix notation. Let

1)

v = (v(xo),...,v(x2 ),y = (dw(xo)/dx,...,dw(xEN)/d_x)’

N

denote the (ew+1) dimensional vector formed of the grid values of

v(x) and dw/ax, respectively. Then there is a (on+1) X (on+1)

l)If y is a vector then y' denotes its transpose and y* its

conjugate transpose. The sane notation will be used for natrices.



matrix such that

(3.3) y = Sv
Fornulas for the elements of S have been conputed by B. Fornberg
[ 2, 3]. He has also shown that S can be considered as the [imt
of higher and higher order difference approximations.

The scal ar product and normof y and v are defined by (2.1),

i.e.,
oN o
(g,z)h = X u(xv)v(xvjh, ull® . (g;g)h
W need several properties of the operator S. In [6] we
proved the fol lowi ng |emma.
Lemma 3.1. S is skew Hernmitian, |§Hh = 2V, the eigenval ues of S

are A, = 2miw, and the corresponding eigenfunctions are

e KA SN IS B |

W next consider the approximtion of b(x) du/dx where b(x)
is a snooth one-periodic function. The operator b(x) d/dx is essentially
skew Herm tean because we can wite

(3.14) b(x) du/dx = Qu + Ru

wher e



Qu = %(bdu/dx +d(bu)/ax) , Ru = - -21- db/dx U .

Qis skew Hermitian and R is bounded.
R=0.

There are many problenms where
For exanple, we can wite wudu/dax in the form

udu/dx = %(udu/dx + due/d.x)

Now consider the partial

differential equation

u =0b (x)ou/ox = Qu + Ru , u, = du/ot

£ = (u,ut) + (ut,u) = (u,qu) + (qu,u) + (u,Ru) + (Ru,u) = -(u,udb/dx)
and we have an energy estimte.

If we approximate the above problem by

dv
y 1.~ ~ 1~
I = §(bs + 8blv - 5 by
wher e
) 'db(xo)
b(x ) o ........ 0 o . 0
© dx db(x )
0 b(xl) 0 0 . 0 1 0 0
b= s b = dx
rrrrrrrrrrrrrrrr X A
0 * 0 b(ng) . b (XEN)
0 0
. dx

Then we obtain the same energy estimte because

Bs + sB) = - (Bs + sB)*

10



is skew Hermtian and therefore

d
E(V’V)h = - (z,ﬁxz)h

The above procedure can be generalized considerably. Consider the

parabolic system

- Cu , = du/ox
(5.5) Y~ <A}%x) * %{u i ux

where u denotes a vector function with n conponents, A B, and C
are nxn mtrices, A and B are Hernmitian, Ais positive definite, and

C and oB/ox are uniformy bounded. W can rewite this systemin the form
— 1

(3.6) u, = (AY ))( + 5B u + (B u)x) + Cqu

wher e

1
Cl =C -5 BB/Bx.

V¢ then obtain the energy estinate

whi ch depends solely on the property that 3/ox i s skew Hermitian.

Thus, we obtain a corresponding estimate if we replace »/ox by S
and approxi mate (3.6) by

dy
(3.7) Fra

11



The estimate is

a 2 ~ ~%

& el < (v (cy + ¢ vy
where we extend our earlier definitions of the discrete norm and inner pro-
duct in the obvious way. Here v is the vector with vector conponents

v(x,) and 4, B, C., and S are block diagonal matrices with bl ocks

17
A(XV )s B(Xv)’ cl(xv), and S, respectively.

The System of ordinary differential equations (3.7) can be sol ved
using an appropriate difference nethod for ordinary differential
equations.  However, the approxination (3.7) requires about twce as
much work as the sinpler approxination

dv. ... — ~
(3.8) g = SASy * BSv + Cv
of (3.5). Since numerical experience has shown that approxi mations
of the form (3.8)can be unstable, it is desirable to find ways of
stabilizing them which are cheaper to use than reverting to (3.7). Ve
can achieve this by adding appropriate dissipative or projective
operators. V¥ will now develop this approach in detail.

It is easier to do this if we work within the space T of

trigononetric polynonials

=
2z
1
™M=

(3.9)

W= -N
A vector function v(x) or a matrix function B(x) will belong to
Ty if all their conponents do. There is a one-to-one correspondence
between a polynomal (3.9)and its val ues

12



v = (v(xo),...,v(ng)>’ .

Thus, there is a linear operator P such that

pv = vix), i.e, vix,) =v,, V = 0,1,2,...,2N.

If v(x) e TN then

(3.10) PSv = dv/ax .

Let B(x), v(x) e T.. Then we define w(x) = B(x)*v(x) to be the

N
convol ution
N oL | omv
(3.11) wix) = Bx)svx) = 2 wve X
=N
W th
N
L B(y) (F(v-p) + ¥(v-oN-1-4)) for v>o0
u=-N
(3.12) wlv) = <
N
Y B(u) @(v-u) + T(veem+i-y)) for v < 0
- u=-N

where we have used the convention that v) = 8) =0 if |of> N
B(x)v(x) is a trigononmetric polynonial of order 2N. By theorem 2.2

its interpolant is given by B(x)xv(x). Therefore,

(3.13) wix) = P(Bv) = B(x)*v(x) .

13



Lenmma 3.2. Let B(x) e T

N be a matrix and v,w € TN be vector functions.

Then

|(w,Bev)| < max  [B(x) | . [WI| |Iv]| .
0<x<1

and, if Bis Hermtian,
(w,Bxv) . (Bxw,v)

Proof. By theorem2.1 and (3.13)

(w,B¥v) = (W’B*V)h = (w,Bv).
If Bis Hermtian, then
(z,ﬁx)h = (ﬁ_vg,;r)h = (Bxw,vV)

Al so

| (w,Bv)y | < 1Bl wll, vl = el 13C¢, ) | 1 v

and the lemma is proved.
We can now wite equation (3.8)as an evolution equation in Ty

via the isonorphiam P.

(314) Vt - (A_N-)(-VX)X + BN*)‘(}. + CN-X-V

wher e AN,BN,CN and v are the trigononetric polynomals in Ty

), c(x.), vix ),

which interpolate the discrete values A(xv), B(xV v v

respectively. The termw =B¥v, can be witten as

w=BN*vX:Q/+R\/

14



wher e

Qv = %(BN*VX + (BN*V)X) ,

(3.15)
Rv = %(BN*VX - KBN*V)X)'

It follows fromlema 3.2 that the operator Qis skew Hernitian.

Straightforward application of (3.12) gives us

R\/:Rlv+R2v, R.v = 3 , J =1,2,
w= -N
wher e
N ~ ~ A
2 uBN(u) (vw-y) + V((D—EN-J_—H)) for w>0
p,:-N
(3.16) rw) = .m
N,
2 uBy (W) Tl-y) + v(oreN+1-y)) for o< 0
u=-N
N ~ ~
-z Bylwvle-2N-1-4)  for ©>0
“Z—N
(3.17) z_ (o) = mi(en+1)
2 W
Lo Bo(Ov(een+l-y)  for w<o .
H:_N
I
By (3.12)
. 1
(3.18) RV =-5 dBN/dx ¥V .

Therefore, by lemma 3.2, the operator R, is bounded if B e P(c,M) with

a > 3/2, certainly if B is twice continuously differentiable (see [1]).
In general we can not expect that (v,REV) i s bounded independent

of N For exanple, if B(x) =1(1 +%—sin omx) then

15



faN(o)=I, ﬁ(l)=-B(-l)=-%|, B =0if o £o0,1

N N N
and
£ = [ @w)F(N) , 5,(w) = pem)van) , £ @) = o if lof £ N.
Therefore, . . Parseval's ......a-

(v,R;v) = T (20+1) Real{v(W)v(-N)] .

Now assunme that there are constants M and g > 1, i ndependent of N, such

t hat
M

(3.19) 1B ()] < for 4 #£0

omy| P

Then we obtain

N N
|(v,R2v)| < mlew) (] ¥ 7)) X ﬁN(u)G(w-zN-l-u)l
=0 p=-N

(3. 20)

-1 N
+ | £ vy ﬁN(u)(}(MEN+l-u)U

W=-N u=-N

where v(r) = 0 for |t > N By (3.19)

N N
| 2 v) 2 B (W¥lan-1-)] <
w=0 u_'—‘-N
1 ¥oa .
My Zv@)] [§w-on-1-p) | <
w=-N |2m{P w=0
Ko
-1 1 N . .
My 2 Y |v@)] [(w-2N-1-p)| <

u=—N |2'Tru ' p (D=N+p+l

16



M, -1 N . .
REEY L Y (@) ? ¢ |3@-an-1-4) |7 <
PR T L TS

I—l

m||_,z

-
™
<>
&
T
=
3
o
AN

N
Ml lt\l (AN 12 iy 1
2 p=-N u=N-|o|+1 (om)
%%

There is a const ant Kl such that

G S
u=N-fol+n (em)P T (- o]+

Pt

K = (1/2n)B(B/(B-l)) will do. Furthermore, the same estimate holds for

the second sumon the right side of (3.20). W obtain

N
(3.21) | feme, o 2 Y(D1v(<b)|2 )
W= =N
wher e
(on+1)T ,
- if o#0, 1 =0
(- fol+1)Pt ©

Consider the system (3.14). We have, Using (3.15) and (3.18),

(v,v), = 2 Real {(v,(AN*vX)X) + (v,qv) + (v,Rv) + (V,CN*V)}

t
(3.22)

= -2(v,A*v ) + 2 Real (v,(cy - % bBN/bx) * v) + 2 Real (v,R,v) .

N



A is positive definite by assunption, i.e., there is a constant

o > 0 such that A > ¢I. Therefore,

(o) = Crplngy 2 olfe P
By Parseval's relation and (3.21)
-2 (VX;AN*VX) + 2 Real (V:REV) <
(3.23)
N -
2 T (-o(eno) + Ky ) v(e) | P<afvl?, o= mex (-o(ome)? ).

Since ¢ >0, and if g >2, then o is bounded independent of N, and

(3.22) and lemma 3.2 give us the energy estimate

I

(v,v), < 2 Real (v,(cy - % bBN/bx) * v) +20lv

N

1
< 2(1;1{ax 'CN - é‘bBN/bX' + OK)HVHE-

If g > 3 then a sinple calculation gives us

2
Ty < AT or o 1y lob
(N- jo]+1)

Therefore, if em > MK (N 1+N')?then ain (3.23) is nonpositive and we

obtain the following theoremfrom (3.22).

Theorem3.1. If g > 3 and 2m >_(M:LK1(N'1+N'2), then the solutions of

(3.14) satisfy the estimate

18



(3.24) (v,v), < 2 Real (v, (¢ - T 2By /ox) #v)

t N

This is entirely satisfactory since it is essentially the same as the

corresponding estimte for the differential equation. Furthernore, N can

al ways be chosen |arge enough so that 2no>M1K1(N'1+ N'E), at least in principle.
For hyperbolic equations, A "0, the situation is not as good.

In this case we have to control the snoothness of v. Experience has

shown that higher frequency nodes can grow if this is not done.

Let m> 1 be a natural nunber,

V =
w=-N
and define VisV, by
(3.25 ) v, - T fw)efTex vy SV -V
ol < Ny

where W, = (1 - 1/m)N. The snoothing operator H = H(j, mD) mapping

1
Ty into TN is defined by
. 2Tiw:
(3.26) w=H = 2. we ®
w=-N
wher e

AN

(orlo] ) |5@) |

ot herw se .

19



j is a natural number and D is a constant. Thus, only the higher

frequencies are nodified, i.e.,

Hy vl < vl

1 - V1o

W want to show that His a very mld form of snoothing.

Lenma 33. Let y > 0 be a constant and j a natural nunber.

the class of functions with

(3.27) lb%u/ox? 1P < VPl
| f
(3.28) (2111\1(r£;l—1))2j >2 v and D >V2' v
t hen
Hu = u

Proof. Let u e« TN and wite it in the form

~ L
U= u +u, where ul(w) =0 for |o > %—N

(3.27) inplies

(el 2Pl [P < lloTuy /o) 1P < 2 (fhay [P+ Jh, ).

By (3.28)

20

Consi der



g 1P < oy

Therefore, for ® # O,
[8) 2 < v2(2rlo)) Il s 2 (2n o 17 fu, 1P

and the lemma foll ows.

| nstead of (3.14) we now consider the approximation

(3.29) g%=BN*HVX+CN*v,

To see that (3.29) has a unique solution we need.

Lemma 34. His a Lipschitz continuous operator from T

N into TN

Proof. Let v('l)e TN and w(') = HV( l), i = 1,2. Note that

0] < [8w)] and arg #H)(w) = arg ¥, 1 = 3,2, both
follow fromthe definition of H  Consider the quantities

lﬁ(l)(os) - G(g)(m)\. W consider three cases. Let
I = {ollel <1, ) = ¥ w), 5 = 1,2)

3, = {ollo| <, 38 (w) # G(ﬂ)(w), £ = 1,2}

I = ol lo] <N, 0 ¢J, UJ,]

From the definition of Hit follows that we g, if lo| < N, = N( 1-1/m).
it wea, then KM - 4w | = [HM) - 8w |. 11

) t hen

2’

(1), #(2)
dw) = lﬁ(l)(w)- ﬁ(g)(w) | = IK(M“V&]‘)H —E{Tﬁ i K(w)|lv§‘2)“ |v 2 (wu)bil

2l



where K(w) = D/(2r|w|)?. W& assune, without loss of generality,

1 2
t hat ”V§_ )H > ”V:(L )“- Using the triangle inequality we obtain

(1)
“w>slﬂwwé}m]%rﬁ—ﬁ- (o m(enTéfgﬂﬁ
v w

K(w)]|lv (2)” '—A(T)j—L - K(w)lv :(LZ)H——(—S(-C-LLI‘

W can bound the first term of our last expression by

k() | I - 1420 < k@)l - W2 < ko)) - 3

since the two conplex nunbers have equal arguments. Ve can bound the

~(1) a2

|v ( (w) - # )(co)l utilizing the triangle inequality

and the fact that the distance between two points elel d iez
1 and r,e

Finally, we obtain

second term by

I's a non-decreasing function of ;
ry i f ry > Ty

(3.30) d(w) < K(w)llv(l) - v(2)|| + Iv(l)(w) “(2)(w)|

if wed,. Let we J5 and assume without |oss of generality that

) £ #@) ang $ @ = 8@ w). 11 53w > k() [+{*],

t hen
) A( )
d(w) < P 0) - k()] |+ K@D Sy - #w)]
re J 1NEE
+(2) A(2)
< F@) - 33| + 1) D) Lo - k(w2
EQJ . |$2N|

22



IN

#5@) - 9@+ xtw) | WD) - 2

15 @) - 9]+ k)W) - (B

A

1t [32)(w) | < k(@) I¥H]l, then it easily follows that
a(w) < [#w) - #®Nw)]. Thus, if e 35, a(w) satisfies the

inequality (3.30). Now we estimate

N
B wBE - 5 )

w==N

[w

< 3 ) - #®)w))?
w€J1

oz (&) P ) ) - 5B ) |2

< (2 + qu(Nl)(N-Nl))llv(l) - V(2)||2

which yields the desired result.

From Lemma 3.4 it follows that the operator on the right hand side
of (3.29) is Lipschitz continuous and it then follows that (3.29),
with initial data, has a unique solution. v(t). W will now derive
estimates for the norm of this solution.

W& have

atllV.l|2 = 2 Real (v,v,) = 2 Real (v,By » Hv, + Gy * V) .

The term(v,cN % V) is easily bounded as before using Lemma 3.2 if

Ce P(a,M) with & >1/2, or is continuously differentiable.

2>



W wite

(v,By * Br,) = (v,B; * (v;),) + (v, B, * ((v;), - Bv)

splitting v = v. + v

1 2

alter the first N, Fourier conponents of the vector it operates on.

Ve then further split v *(vl)x internms of Qand R = R+ R,

and utilizing the fact that H does not

as before to obtain

2 Real (v, By * Hv,) = 2 Real {(V,Rlvl) + (V)Rgvl) + (V,BN * ((vy), - Hv )]

where we have used the fact the Qis skewhermtian. Recall that
Rlvl = - %— dBN/dx * vy which is bounded as before if B e P(a,M)

with a > 3/2. W have

(3.31) at Hvl|2 = 2 Real (V’CN *V - % dB/dx * vl) + 2 Real (V,Rgvl) +

2 Real (v, By * ((vi)x - Hwk)

the first termis bounded and converges to the proper estimate for the
differential equation. W wll now construct bounds for the last two
terns. W assume that BN satisfies (3.19) and obtain, corresponding

to (3.20) ,

N N
i(V)RQVl)I < TT(ﬂ\'H'l)(l z ‘,’\'((D) x EN(H)‘?J_(UJ'QN'J-'H)I

w=0 p==N
(3.32)
:-L A 'NT A A
+ 1 T v(w) T By(ulvy(wren+l-p)|) .
w=-N u=-N
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Uilizing (3.19) we obtain

N
[ 2 W) : BN(p) (w-2N-1-p)] <

w=0 u=-N
N o-2N-14,
Ml z |v(w)] z J’IQTTul plv (w=-2N=1-p)| <
w=1 p==N
m B N w=2N=-1+N
M () Z @) T | (e-2n-1-p)] <
w=1 pu=-N

(P2l 3 (60| <

w=1

w, (2P wlhvy vl

and the second termon the right hand side of (3.32) also satisfies the

Same estimate. W obtain

| (vsByvy )| < 2ty (2 ) (5P v, [l
(3.33)

< (3/(2n)” M nPw P *R v v

W only have the term(V,.BN * ((vl)X - Hvx) left to estimate. W

have, via |emma 3.2, that

(3.3%)  |(v,By % ((v), - Ev )] < max (Bl IvllCCry ), = P )
X

From the definition of H we have
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Di(v, )| m

v - Hv ) —— > ———!1-
¢ 1)x % I < (2n)? w11 WE

2D 2-3
< - N, ¢l
= (2n)d7H(5-1)

Ve can now col lect our estimates (3.31), (3.33), (3.34) and (3.35)

to obtain

Theorem3.2. Let j =8> 2, then the solutions of (3.29) satisfy

the estimte

étﬂvllg < 2 Real (v,C %V - % dBN/dx * vy )+

N
(3. 36)

[(6/(2m)® ™ el ® + ( 1p/(2n)TH(5-0)) ()TN max [ |
X

If j =p > 2, then the estimate (3.35) converges to the corresponding
estimate for the differential equation as v - o« .

If the coefficients are smooth the estimate (3.35) is quite
satisfactory for sufficiently large NN W have been able to obtain
this estimate by introducing the smoothing operator H and by requiring
that the coefficients C and B be snooth. A simlar estimate can
be obtained, with nuch less effort, if we were to alter the definition
of H such that w(w) = 0 if |o| > Ny, or w(w) = G(w)/((Qn[lwl-NlL)j+1)
o] > N, where [g], denotes the positive part of g. These are
both linear operators. However, the resulting nethods are |ess accurate.

Convergence estimtes can be constructed utilizing the estinates

of theorens 3.1 and 3.2 follow ng those of Kreiss and Aiger (7] and
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Fornberg [3] and the approximation results of Bube [I].
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