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Manna & Shamir

Introduotion

A recursive definition of the form F(x) t ~[F](x) (where F is a function variable and T is a
functional) can be considered as an implicit functional equation. In general, such a functional
equation may have many possible solutions (fixedpoints), all of which satisfy the relations
dictated by the recursive definition. Of all these fixedpoints, only one, the least fixedpoint, has
been studied thoroughly; however, recursive definitions have other interesting solutions (e.g.,
the optimalfixedpoint  discussed in Manna and Shamir [19761).  By considering the properties of
the entire set of fixedpoints, a unified theory for the various fixedpoint approaches can be
developed.

One of the most fundamental results in the theory of recursive definitions is Kieene’s  Theorem
which states that (under suitable conditions)  the least fixedpoint is the least upper bound (I&)

of the sequence 0, ~[nl,  ~*[fll,  . . . , where the initial function n is the totally undefined function.
This theorem gives a constructive method by which the least fixedpoint can be “accessed“ from
the initial function 0.

The purpose of this paper is to generalize Kleene’s Theorem so that arbitrary fixedpoints of a
recursive definition can be accessed. This is done by altering Kleene’s access method in three
ways: by allowing an arbitrary initial function, by generating the corresponding sequence of
functions in a different manner, and by introducing a modified notion of convergence.

Part I contains all the preliminary definitions and results. Our, slightly nonstandard, model of
recursive definitions is presented in Section 1. In Section 2 we prove some properties of
functionals  in this model, and in Section 3 we study the elementary closure properties of three
important sets of functions: fixedpoints, prefixedpoints,  and postfixedpoints.

Our generalization of Kleene’s Theorem is discussed in Part II. In Section 4, we consider the

behavior of Kleenc’s “direct” access method for initial functions other than fi . In particular,
we show that this generalized sequence of functions may fail to converge, but whenever it
converges the limit is a fixedpoint which is “close” to the initial function.

More general types of access methods are defined in Section 5. In essence, each such method
defines a sequence of transformations which should be applied to the initial function. These
transformations are defined in terms of the three basic operations: functional application, glb,
and iub.  Among the access methods, we pay special attention to the “descending” access method.
The sequences of functions generated by this method always converge, but their limit need not

be a fixedpoint.

Finally, in Section 6, we show that under the composition of the “descending” and “direct”
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access methods, any initial function converges to a “close” fixedpoint. We then prove that no

single access method can enjoy this property, and thus the composition of methods is essential.
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P a r t  I: Recwsive Definitions and Their
Fixedpoints

I. T h e  M o d e l

1 .l The Basic Domains

The purpose of this subsection is to introduce the basic terminology about partially ordered sets
used throughout this paper.

Definition: A binary relation E over a nonempty  set S is a partial ordering of S if
E is a reflexive, transitive and antisymmetric relation. The pair (S,c)
is called a partially  ordered set (poset).

Definition: Let (S,E) be a poset. For a subset A of S , an element x E S is called:

(a) least if x E A and for all y E A , x E JI ;

(b) greatest if x E A and for all y E A , y E x ;

(c) minimal if x E A and there is no JI E A , y rr x for which 9 c x ;

(d) maximal if x E A and there is no y E A , y ti x for which x E JI ;

(e) lower bound if for all y E A , x E y ;

(f) upper bound if for all y E A , JI E x ;

(g) greatest loroer  bound (g/b)  if x is a lower bound of A , and for any
other lower bound y of A , JI E x ;

(h) least upper bound (lub) if x is an upper bound of A , and for any other
upper bound y of A , x E y .

Definition: A semilattice is a poset (S,@ in which any two elements in S have a
glb.  A complete semilattice is a poset (S,E) in which any nonempty
subset of S has a g/b.

Such structures are usually called “lower semilattice” and “complete lower semilattice”. The
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notions of “upper semilattice” and “complete upper semilattice” are similarly defined with the
g/b replaced by lub in the definition. However, we omit the word “lower” since in this paper we
work exclusively with lower semilattices and no confusion is caused.

Definition: A subset A of S in a semilattice (S,E) is said to be consistent if it has
an lub. An element x E S is said to be consistent with an element y E S
if the set (x,~]  is consistent.

Semilattices may contain both consistent and inconsistent sets. The binary relation of being
“consistent with” is clearly reflexive and symmetric, but not necessarily transitive. Note that if
the semilattice is complete, the existence of some upper bound implies the existence of a lub.
Any subset of a consistent set is also consistent in this case, but pairwise  consistency of elements
does not imply the consistency of the set as a whole.

Definition: A sequence x0, x 1, x2, . . . of elements in a poset S is an ascending

(descending) chain if Xi E Xi+  1 ( Xi+ 1 E Xi ) for all i. The sequence is a

chain if it is either an ascending or a descending chain.

Definition: A flat semilattice is a semilattice in which all chains contain at most
two distinct elements.

It is clear that any flat semilattice is complete; it contains a bottom element w (which satisfies o E
& for all d), and all the other elements are unrelated. The importance of this structure in the

theory of computation stems from the fact that they represent the two-state discrete type of
knowledge which often occurs during a computation: A variable either contains a well-
characterized value or has an undefined value (if used without proper initialization); an
operation (such as a division of two numbers) may either yield a definite result or terminate as
“illegal”; a procedure call may either return a proper result or loop forever. In all these cases,
one possible extreme is a totally defined entity, while absolutely nothing is known about the

other (besides its very “undefinedness”).

All the basic domains considered in this paper are flat semilattices, denoted by D. Two domains

of special importance are the Boolean domain E = <(a, true, false),  E) and the domain of natural

numbers N - ((w, 0, 1, 2, . . . >, E).
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1.2 Higher Type Objects

In this section we inductively define the objects of all finite types over the basic domain Di.

The two basic notions used, that of a convergent sequence and that of a continuity, are defined
in a nonstandard way. The classical definition of these notions is heavily oriented towards the
needs of the least fixedpoint approach; we need more balanced definitions in order to construct
a general fixedpoint theory of recursive definitions. In particular, we no longer concentrate on
ascending chains and their lub,  but consider also descending chains and their glb, as well as
more general forms of convergence.

Definition: A mapping 4 : A 3 B between posets is monotonic if 4(x) E +<u>  in B
whenever x E y in A.

Definition: The set of (finite) types is defined inductively as follows:

(i) Any basic domain Di is a type; the objects of this type are the elements

of Die

(ii) If Q 1, . . . . Ok are types, so is O1 x . . . x @k; the objects of this type are

the vectors (xl, . . . . xk) where each Xi is an object of type @I.

(iii) If u ], u2 are types, so is [@i + ~~1; the objects of this type are the

monotonic mappings from objects of type u 1 to objects of type g2.

There is a natural way to extend the E relation to the set of objects of any finite type, using the
following inductive definition:

Definition:

(t) If x’ E (xl, . . . . Xk) and 7 E (~1,  .+., 3]k) are objects of type d l x . . . x @k,

then S’i E j! iff for all 1 < i s k, Xi E Ji as objects of type UI.

(ii) If x and 9 are objects of type 1~ i + ~21,  then x E JJ iff for any fixed

object z of type u I, x(z) E y(z) as objects of type up

It is easy to see that the set of objects of any finite type is a complete semilattice under this
relation.
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The notions of a convergent sequence and limit are usually identified with those of an
ascending chain and lub,  respectively. Our definition of these notions is more inclusive:

Definition: A sequence of objects {~j] of some finite type Q is said to converge to

the object X, of type 6, written as X, E lim{x$  if:

0) Q is some basic domain Di, and all the elements in {z$ are equal to x,

from some index j, onwards.

(ii) U is Q 1 x . . . x uk and for any IS i 5 k, z&i E hn(x/]  (where z/ is the

i-th component of ~j).

(iii) Q is [ul + u2] and for any fixed object z of type u ], x,(z) H lim{xj(r)]

(these are objects of type u2, for which the notion of convergence is

already defined).

Parts (ii) and (iii) in this definition are standard, and once we define our notion of convergence
in the basic domains, it is carried over to all finite types. It is easy to see that any ascending or
descending chain of any type is a convergent sequence (with lub or glb, respectively, as limits).
The following example shows that the converse is not true:

Example 1: Let vi] be a sequence of objects of type [N + NJ, defined by:

i ifxri
fi (x) E { 0 if x < i

WifxzU

No two elements in the sequence cfi] are related by E , but the sequence converges to the object

zero of type [N + NJ

zero(x) - { y
ifxfo
otherwise

This follows immediately from the fact that for any argument x of type N, the sequence cfi(x)]

of elements of type N is convergent, i.e., its elements are 0 for all sufficiently high i. cl

Using the notion of a convergent sequence, we can define our notion of continuity:
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Definition:

(i) An object (x1, . . . . xk> of type 4 1 x . . . x @k is continuous if all the

objects Xi are continuous.

(ii) An object x of type [cl + Q21 is continuous if for any convergent

sequence {zj] of objects of type Q 1, the sequence (x(z$ of objects of

type u2 is convergent and x(Zim{zj))  I Um{x(z$] .

Since the notion of a convergent sequence is more inclusive than that of a chain, our notion of
continuous objects (Le., of limit-preserving mappings) is potentially more restrictive than the
standard notion of chain-continuity. The following example shows that in fact an object can

preserve the Zub and glb of ascending and descending chains, and still be noncontinuous in our
system:

Example 2: Let f be an object of type [N + Nl. We say that f is closed if the sequence (xi]

defined by

~0 E 0 and Xi+ 1 E f(Xi) ( i.e., Xi zfii)(0)  )

consists of a finite number of distinct elements, none of which is O. It is clear that a necessary
and sufficient condition for a function f to be closed is the existence of numbers 0 s I < j such

that f(‘)(O) @J(O) d o, in which case the sequence (xi) is periodic from some point onwards.

Let the object 8 of type [[N -) NJ + BI be defined as follows:

true if f contains a finite sequence of pointers
w otherwise

The object 8 preserves the lub and glb  of ascending and descending chains, since the finite
number of values f(xr> which constitute a sequence of pointers are either constructed or

destroyed at some finite point in any chain vi>, and thus @kmlft)] E &&I for some k.

However, 8 is not continuous in our model. Consider, for example, the following sequence of
objects cfr):

fi) 1
x+ 1 ifxxi

x E
x ifx2i
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The sequence converges to the object

foe(x) 5x+ 1.

It is easy to see that erf,] is o , while for any i, e[f,l is true. Thus 8[limvi)] d h(e[fi]] and

9 is not continuous. Cl

From now on, we shall be interested mainly in the lower three types of objects: values (objects
of type I$), functions (objects of type [D 1 x . . . x Dk + DOI, and (single-argument) functionals

(objects of type [ID’, x . . . x D\ + D\ 1 -) [D2] x . . . x D; + D\ 11).  Since we shall not deal
with systems of recursive definitions, we do not have to consider multi-argument functionals
(for which the fixedpoint theory obtained is somewhat different).

1.3 Term Function& end Recursive Definitions

Among all the functionals 7, we shall be interested mainly in term functionals, which are
syntactically expressed as compositions of constants, monotonic base functions gi, a function

variable F, and individual variables Xi. Associated with each symbol (including the variables)

is a type, and the composition of these types must be legal.

Example 3: A term of the form

if g(xr , x1) then x2 else g(x2 , xg)

can be legal only if the types of x 1, x2, and x3 are the boolean semilattice B, and the type of g is
[B x B 3 B]. This can be shown by the following argument:

Since &q,xJ appears in the if part, the range of this term must be B. Since the two subterms
x2 and g(x2,x3) must have identical ranges, the type of x2 is necessarily B. Therefore the type
of g is of the form [B x ? + BI. In order to make the term g(xl  , x1) legal, x1 must be of type
B, implying that “3” is also B. We can thus conclude (from the term g(x2,x3))  that x3 is also of
type B. - 0

A term functional is denoted by ~[Fl(x,,  . . . . xk), where x1, . . . . ok are all the individual variables

occurring in it, in some order. It can be interpreted as a functional in the following way:

10
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Given a function f and an argument vector 22 = (dl, . . . . d$ (of the appropriate types), the value

of ~[fl(Z)  is the object obtained by evaluating the variable-free term in which F is interpreted

as f and xi is interpreted as die The function r[fl to which f is mapped under 7 is the function

abstraction XZ r[fl(Z).  The fact that 7 maps monotonic functions to monotonic functions is

immediate from the fact that all the base functions in 7 are monotonic, and the set of
monotonic functions is closed under composition.

Definition: A recursive definition is an equation of the form
F(Z) E 7[Fl(??),
where ? is a term functional.

In order to make this equation meaningful, T must map functions of the appropriate type
ID 1 x . . . x Dk + Do] to functions of the same type.

11
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2 Properties of Term Funct ionals

The fact that term function& are monotonic mappings which preserve the lub of ascending
chains is one of the oldest and most basic results in the recursive definitions theory. In a
simple form it appears in Kleene [19521,  while a detailed proof of this result for a model of
functionals which is quite similar to ours appears in Cadiou 119721.  In this section we prove
the stronger result of continuity in our model, and discuss the behavior of term functionals

under the glb and lub operations over arbitrary sets of functions (rather than over chains).

2.1 The Continuity of Term Functionals

Under the classical definition of continuity, any mapping which preserves the lub of ascending

chains is necessarily monotonic. However, a mapping 8 can preserve the limits of convergent
sequences without preserving a lub of chains, or without being monotonic at all. This happens,
for example, when 8 maps an ascending chain {Xi) into a descending chain {8(x,)) provided

that

The property of continuity is thus totally independent from the property of monotonicity in our
model.

We now prove the basic result:

Theorem 1 t Let 7 be a term functional and vi] a convergent sequence, Then

(TLfiI] is a convergent sequence and

Proof:  The proof is by induction on the structure of ?, using the fact that term functionals
contain finitely many basic constructs. Note that the monotonicity of these constructs is not

used at all.

If 7 is a variable Xi or constant c, the proof is trivial.

If 7 is of the form g@ l, . . . . T,J, we may apply the induction hypothesis that all the subterms  Q

are continuous. Let Z be fixed. Then for any 1 s k s n, there is an index fk such that

12
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Let j. be ncrx(jl,  . . . . jn). Then for all j 2 j,:

Finally, if 7 is of the form F(7 1, . . . . q.J, we define j, in exactly the same way as before. We

denote the vector ( I #irn(fi]l(3 , . . . , ~,[ZimCfi)](Z)  ) by y, and thus by the definition of I,

Since vi] is a convergent sequence, there is some ji such that

for allj 2 ji .

Let A be ma&, $J. Then we have, for all j L jl,’  :

QED.

Some of the consequences of Theorem 1 are:

Corollary: Let 7 be a term functional. Then:

(f) If vi] is an ascending chain, then {?v$ is an ascending chain and

Zub{T[fiI]  c ~[rUbCfijI*

(Ii) If ul> is a descending chain, then {V&I) is a descending chain and

glb(rtfilj  = ‘t[glbCf$

13
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Proof:

(i) Any ascending chain &) is a convergent sequence, and ltlb(fi]  = IimCfi].  Since term

functionals are monotonic, (7Ijil) is also an ascending chain and IUb(7[‘iJ] L lim(r[fiJ). By

Theorem 1,

(ii) The proof is similar.

QE.D.

2.2 Behavior Under the glb and fub Operations

Lemma 1: For any monotonic functional 7:

(i) If cfd) is a nonempty  set of functions, then

(ii) If (f,> is a consistent set of functions, ehen so is {~[fd]),  and

Proof:

(i> Since  7 i s  m o n o t o n i c  a n d  glbCf,) E fd for all a, r[glb&)]  E r[f,]  for all a. Thus

rrglbCf,]j is a lower bound of the set {T[.,& and therefore T[glb&)] E; grb(r[$,J]  .

(ii) Since v&) is consistent, its lub  exists. By the same procedure as above, r[lubCf,)] can be

shown to be an upper bound of (~rf,]]. In our model this implies the existence of 4r[f,]),

and we have Iub(7[fd]j  E 7[lubCf,j] . QE.D.

According to corollary (ii) of Theorem 1, the inequality r[glbCf,,J]  E g16{7[f,]j  becomes an

equality if 7 is a term functional and u,.J is a descending chain. This result can be
strengthened by showing that for a wide subclass of term functionals in our model, the words “a
descending chain” can be replaced by “a consistent set”. Mappings which preserve the glb of

14
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consistent sets of arguments are defined and studied in Berry 119761  in connection with the
bottom-up computaeions  of least fixedpoints.

The dual property of preserving the lub of arbitrary consistent sets of functions holds only for a

very restricted subclass of term functionals  (mainly those in which the term ?[F](x) can be
simplified, for any given x0 , to a term with a single occurrence of F).  The problem in more
realistic cases is dembnstraeed  by the following example:

Example 4: Let 7 be the following functional over the natural numbers:

7[F1(4  : F(x + I)- F(x + 2)

(where 00 o E o* 0 E w). Define the functions

f,(x>  f {
0 if x is even
w otherwise

Then f 1 and f2 are consistent, but

r0 if x is odd
Lo otherwise

El

15
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3. Properties of Fixedpoints, Prefixedpoints
and Postfixedpoints

A recursive definition F(x) E Q-l(x) can be considered as an implicit functional equation in F.
With each such recursive definition, we associate three important sets of functions: fixedpoints,
prefixedpoints, and postfixedpoints.

3.1 Closure Properties

Definition:

(i) A partial function f is a fixed#oinf of a functional 7, or of a recursive

definition F(Z)  E 7[Fl(jc), if f 1 7[fl. The set of all fixedpoints of 7 is
denoted by FXP(7).

(ii) A partial function f is a prefixcdpoint  of a functional 7 , or of a

recursive definition F(Z) E 7[Fl(Z) , if f E 7&l . The set of a l l

prefixedpoints of 7 is denoted by PRE(7) .

(iii) A partial function f is a postfixedpoint  of a functional 7 , or of a

recursive definition F(Z) E 7[F1(2) , if 7[fl E f . The set of all

postfixedpoints of 7 is denoted by POST@).

Example 6: Consider the following recursive definition, in which F is of type [N x N + NJ:

F(x,y)  z if x - 0 then y else F(F(xJ-l),F(x-1,~)).

The following three (quite different) functions are all fixedpoints of this recursive definition, as
can be shown by direct substitution:

(i) f &t,y) = if x = 0 then y else o ;

(ii) f2(x,y)  E if x 2 0 then y else o ;

(iii) f&y) E max(x,y).

The recursive definition has infinitely many more fixedpoints. A whole family of s&h
fixedpoints is

(iu) f,(x,y)  G if x = 0 then y else a(x)

16



I Manna & Shamir

where a(x) is any function over the natural numbers satisfying

a(x> rt 0 and a(&~)) - a(x) for all x > 0.

Examples of functions satisfying this conditions are the identity function, any nonzero  constant
function, or the function which assigns to any n L 2 its greatest prime factor (with a( 1) - 1 ).

The totally undefined function n is clearly a prefixedpoint of any recursive definition; in our
case it is an example of a prefixedpoint which is not a fixedpoint.

An infinite class of postfixedpoints which are not fixedpoints of this recursive definition is

By definition, it is clear that a partial function f is a fixedpoint of a functional 7 if and only

if it is both a prefixedpoint and a postfixedpoint of 7 (that is, FXP(7) - PRE(?) n POST(v) ).

_In this section we summarize the closure properties of the sets FXP(7),  PRE(7) and POST(7)
under the operations hb, gZb and km. These properties belong to the “folklore” of known but
seldom stated facts about recursive definitions.

Lemma 2: For any monotonic functional 7:

(9 7 maps FXP(7),  PRE(7) and POST(s)  into themselves.

(ii) PRE(7) is closed under the lub  operation over consistent sets.

(iii) POST@) is closed under the glb operation over nonempty  sets.

Proof:

(i) Immediate from the monotonicity of 7.

(ii) Let cf,) be a consistent subset of PRE(7) , Then for each o( , fd E 7udJ . Since

hbu,)  exists, fd E IubCfJ , and 7 is monotonic, we have

17
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Thus 7[lub~,jJ  is an upper bound of (f,] , and therefore

In other words, lub(fd)  is also a prefixedpoint.

(iii) Similar. QE.D

It is not hard to show by appropriate counterexamples that PRE(7)  need not be closed under
glb,  POST(r)  need not be closed under iub, and FXP(?) need not be closed under either
operation.

Let us turn now to consider yet another operation -- the lim of convergent sequences.

Lemma 3: For any term functional 7 , FXP@), PRE(7)  and POST@)  are all
closed under the lim operation.

Proof:

(i) Let cfi] be a convergent sequence of fixedpoints of T . By Theorem 1 we have:

and thus lim(fi)  is also a fixedpoint of 7 .

(ii) Let vi> be a convergent seq;ence  of prefixedpoints of 7. Then for any i, fi E r[ff3. By

the definition of the lim  operation we have

By Theorem 1, lim{T[fiI] exists and /im{r[fiI]  z ?[limCfi)I.  Thus

or equivalently limvi)  is a prefixedpoint of ? .

(iii) Similar to (ii). QE.D,

An important special case is:
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Corollary: For a term functional 7 , FXP(7)  , PRE(7)  and POST(T)  are all
closed under the lub and gfb of ascending and descending chains.

3.2 Maximal and Minimal Fixedpoints

We turn now to study those fixedpoints located at the extreme ends of FXP(r) -- the

maximal and the minimal fixedpoints of 7 .

As usual, a maximal fixedpoint  of 7 is defined to be a fixedpoint which is not less defined

than any other fixedpoint of 7 . The set of all maximal fixedpoints is denoted by MAX(T)  .

A basic property of MAX@)  is:

Theorem 2: For a monotonic functional 7 ,
if f E PRE(7)  then f E g for some g E MAX(r) .

Proof: This is quite a straightforward application of Zorn’s Lemma which states that if (S,<)
is a nonempty  partially ordered set in which any totally ordered subset has an upper bound,
then S contains a maximal element (see e.g. Dugundji [1966J).

-For our purposes, we take the set

with the standard partial ordering c . This set is not empty since f E S . If Sr is a totally
ordered subset of S , it is in particular consistent, and thus lubSl exists. By Lemma 2(ii)

lubS, is a prefixedpoint of T , and it clearly satisfies f c iubSl . Thus iubS, E S and
therefore the subset S1 has an upper bound in S.

We may now apply Zorn’s Lemma, which guarantees the existence of a maximal element g E S .

By definition, f E g and g ,c 7[gJ . To show that g is a fixedpoint of P , we note that by
Lemma 2(i), r[gI is also a prefixedpoint of 7 in S , and thus the assumption that g = T[gJ
contradicts the maximality of g in S . QE.D.

Since for any functional 7, PRE(7)  is nonempty  <n E PRE@))  , we have:

Corollary: For any monotonic functional 7, MAX@) is not empty.

This corollary guarantees the existence of at least one maximal fixedpoint, but it need not be

19
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unique. As a matter of fact, monotonic functionals  may have any number of maximal
fixedpoints in our semilattice model.

Let us consider now the minimal fixedpoints of a monotonic functional 7 . The main result
(the Least Fixedpoint Theorem) states that a monotonic functional ? has a least (and thus a

unique minimal) fixedpoint, which we denote by Lfxp(?).  This is a classical theorem, and it
has two well-known types of proofs:

(i) (A nonconstructive prool,c due to Tarski 119551):  In a model in which
7 is defined over a complete lattice (rather than a complete semilattice)
of elements, one can take the g/b of any set of elements. The element
glb POST(?) is then shown to be a fixedpoint of ? , and it is clearly
below all the other fixedpoints of ? (which are all contained in

POST(?) ).

(ii) (A constructive proof, due to Hitchcock and Park [1972J,  Cadiou
[ 19721):  This is a rather complicated proof, which constructs a

transfinite ascending chain of approximations TWJ . This chain is
shown (by transfinite induction) to converge to the least fixedpoint of
7 .

The first approach cannot be directly applied when a model of complete semilattices is

considered. If the function g/b POST(r) exists, it is the least fixedpoint of ? in this case as

well. However, this function need not exist if POST(?) is empty, since the glb operation is
defined only over the nonempty  subsets of the complete semilattice. We thus have to show that
POST(?) is not empty as a first stage in a Tarski-like proof. Fortunately, the existence

theorem of maximal fixedpoints (Theorem 2) implies that FXP(?) (and thus also POST(?) )
is not empty. We thus get the following indirect proof, in which maximal fixedpoints are used
in order to show the existence of a least fixedpoint.

Theorem 3 (The Least Fixedpoint  Theorem):  If ? is a monotonic functional (over

a complete semilattice) then FXP(7) contains a least element.

Proof: By the corollary of Theorem 2, POST(r) is not empty, and thus f E gib POST(?)

exists. By Lemma 2(iii),  it is a postfixedpoint of ? , and thus ?[fl 5 f. The function ?[fl is

also a postfixedpoint of 7 , and thus f E glb POST@)  E ?[f3 as well. Consequently f E 'z[fl
and therefore f E FXP(?) . It is the least fixedpoint of ? since f E glb POST(?) E glb

FXP(?) . QE.D.
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Theorem 3 can be used in order to find the relationships between prefixedpoints,
postfixedpoints and fixedpoints in general. The relative form of Theorem 3 is:

Theorem 4: For a monotonic functional (c&r a complete semilattice):

(i) If f is a prefixedpoint of 7, then there exists a least fixedpoint in the
set of functions Sf = Ig I f 5 g>*

(ii) If f is a pottfixedpoint of 7, then there exists a greatest fixedpoint in

the set of functions sf = (g 1 g f f) .

Proof:

(i) Since f E PRE(?), Theorem 2 guarantees that SJ contains at least one fixedpoint. The

proof of Theorem 3 can then be applied without change (over the complete semilattice Sf).

(ii) Using the inverse relation, h, Q h2 if h2 E h r, it can be shown that (sf , 4) is a complete

lattice. Theorem 3 now shows that Sf contains a least fixedpoint with respect to 4; this
fixedpoint is clearly greatest with respect to E. QE.D.
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Part II: The Convergence of Functions to
Fixedpoints

In Part I we defined our model of recursive definitions and studied its basic properties. Using
these results, we now analyze the methods by which fixedpoints of recursive definitions can be

“accessed” from other partial functions. In essence, each “access method” uses a given initial
function f. as a starting point, and constructs a sequence of functions which converges to a

fixedpoint of 7 . We want the fixedpoint obtained to be “closest” to the initial function. Since

the ordering c is only partial, one can directly compare in this sense only fixedpoints related
b y  E. The most natural definition of this notion is therefore:

Definition: A fixedpoint g of 7 is said to be close to a partial function fo if

for every fixed point h of T :

(i) if h 5 f. then h E g , and

(ii) if f. E h then g c h .

In other words, the fixedpoint g is close to fO if it is above any fixedpoint below fo, and

below any fixedpoint above fO . A priori, it is not clear that such a close fixedpoint must exist
for any partial function f. -- this will be one of the results proved in this part.

AU the functionals  considered in this part are term functionah.
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4. The Direct Access M e t h o d

Kleene’s version of the Least Fixedpoint Theorem for continuous functionals  shows that by

repeated application of the functional 7 to the initial function fi , one can construct a

sequence (7 (9@I) whose limit is the least fixedpoint of 7 . This method (which we call the
direct  access  method) can be applied to an arbitrary initial function f0 , but in general the

sequence obtained need not converge to a limit. The following example demonstrates such a
case:

Example 6: Consider the recursive definition over the natural numbers:

F(x) E ijxr10  then F(x-10)  elss F(x+l)

The collection of equalities implied by this recursive definition has a cyclic component:

F(O) I F( 1) E F(2) E . . . E F(9) 2 F( IO) E F(O)

and the additional equalities:

F( 11) = F(l), F(12) E F(2), . . . .

k is clear that any constant function is a fixedpoinr of the recursive definition and there are no

other fixedpoints; the least fixedpoint is ti , and any constant total function is a maximal

fixedpoint.

Consider now the two initial functions:

I 0 ifO5xI 10,
1 otherwise

The sequence {&&I] does not converge, since the value 0 is rotated in the cycle x=O,l,...,lO

under the repeated application of 7 . On the other hand, the sequence {di)[f2]] converges to

the fixedpoint Zero  of T , since all the nonzero  values of f2 are eventually replaced by 0 .
Note that this  sequence is neither an ascending  chain nor a descending chain (in fact, no two
distinct hlements are ever consistent), but it converges according to the generalized notion of lim.
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Definition: The function f. converges to g (under a functional 7) if {&)&,J]  is a
convergent sequence and g is its limit.

We now state and prove the basic result:

Theorem 5: If fa converges to g under 7, then g is a fixedpoint which is close to fo .

Proof: To show that g is a fixedpoint of 7, we use the (generalized) continuity of 7:

To show that g is close to& consider an arbitrary fixedpoint h of I:

(i) If’ ir e f. then by the monotonicity of 7, ?%I e &&j for all i, and thus since h is a
fixedpoint

h f lim{di)[h  1) E lim{di)[fo J) = g- .

(ii) If f. E h then similarly:

g E lim{di)[fo]j  E Um{&)[h])  E 11 . QE.D.

We can describe the result of Theorem 5 as follows: if gl and g2 are any two fixedpoints  of

7 such that gl c f. E g2 , and if {di)[fol]  converges, then it converges to a fixedpoint g

which is also in the “box” g, s g E g2 . Note that, unless fo E PRE(?)  u POST(r), an initial
function fo need not be related by E to the fixedpoint g to which it leads. Furthermore,
there need not be a greatest element among the fixedpoints which are less defined than f. or a
least element among the fixedpoints which are more defined than fO .

Given an arbitrary initial function f. , it may be hard to determine in advance whether the

sequence (7 (i) [JJj converges or not. One important case in which the convergence is

guaranteed is when fo is either a prefixedpoinr or a postfixedpoint of 7 . In these cases the
generated sequence is a chain, and thus has a lint.

We now proceed to characterize two other cases in which the sequence must converge.

Lemma 4: If fl 5 fo 5 f2 where fl and f2 both converge to the fixedpoint g

of ? , then f. also converges to g .

24



Manns & Shamir

Proof: By the monotonicity of 7 , r@)[jI] 5 ~(~)[f,] E z($.~] for any i . The definition ‘&

convergence implies that for each 2 there  is a natural number j, such that

IRfJ(j;;) E ?V)[f&) E g(F) for all j 2 j, ,

and therefore

rfi)[filC3 f g(E) for allj kj, .

In other words, the sequence {&J-J) converges to g . Q&D,

One immediate corollary of this “sandwich” property is:

The least fixedpoint of 7 thus has the interesting property that any initial function f. c
Ifxp(?)  converges to it under the repeated application of 7 (but  not necessarily in the form of
an ascending chain). Consequently, 111 order to access other fixedpoints of ? , one must start
with  initial functions which are already sufficiently defined.

A slightly different type of result is:

Lemma 5: If fl E f2 and g G lim{~(i)[fll]  is a total fixedpoint of 7 , then f2
also converges to g .

Proof: By the monotonicity of 7 , 71i)[fi]  E 7($f’] for all i . Since the sequence (&)[f 1 1)
converges to g , for any Z there is a j, such that:

Svkf 1 l(F) E g(Z) for all j 2 j, ,

or, in other words:

ge> E r~kf~lm for alljrjo.

Since g is a total function, we obtain:

g(Z) = rRfJ(s) for all j 2 jO ,

and thus lim{&)[f,]j  = ga . QE.D.
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Note that the requirement that g is total is essential; it may well happen that a function f 1
converges to a nontotal  maximal fixedpoint g , while a function f2 , which is more defined
than f 1 , does not converge at all.

Taking fl E 0 , we obtain an important special case of Lemma 5:

Corollary: If lfxp(7)  is a total function, then any initial function fo converges to

IfxpW

If a recursive definition has only one fixedpoint, then it is clear that the lim of any convergent

sequence {4)[folj is Ificp(7) . However, if the unique fixedpoint Ifxp(v)  is not total, there

may be initial functions f. for which the sequence @)[fo]] does not converge at all.
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5. General Access M e t h o d s

In the previous section we have considered one of the simplest ways by which we can access the

fixedpoints of 7 -- the repeated application of 7 to an initial function fO This method may
fail to converge when applied to certain initial functions fO. In this section we investigate some

more general access methods, which are later used in order to access fixedpoints of ? from
arbitrary initial functions.

5.1 Access Methods

In order to formally introduce the genera! notion of an access method, we first define:

Definition: The set of formula& is defined inductively as follows:

(i) The symbol F is a formula (F is said to be a function variable).

(ii) If 8 is a formula, then 7 [81 is a formula (7 is said to be a functional
variable).

(iii) If 8$, 8, are formulae, then @ti(&,%~j  and lub{8&)  are formulae.

Given a formula 8 and a functional 7, we denote by 8’ the formula in which the functional

variable 7 is interpreted as 7. g7 can be considered as a functional (over the same domain of

functions as 7) in the following way: Given any function f, g7[’ is the function obtained by

evaluating the formula 8 in which  7’ is interpreted as T and F is interpreted as f. Unlike the

functionals  considered so far, E7 may fail when applied to certain functions f, in case the lub of

inconsistent functions is to be taken during the evaluation process; in this case, 8’[fl is not
defined.

Example 7: Consider the formula:

g/b{7 kb(F,7 [Fl)l,FJ  ,

and the functional

7[F1(x)  : F(x+l)
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over the natural numbers.

The functional ?? fails for the identity function j’(x) = x, since f and ~[fl are inconsistent, and

thus their lub is not defined. However, s7 does not fail for the function:

if XEO (mod 3)
“) E { i o t h e r w i s e

and the function 8’rfl is a. Cl

Given a functional 7 and initial function f, we may consider a function 8’rfl as a modification

of f. A sequence of formulae {8i] can thus be used in order to construct a sequence of

successively modified functions {%rflj. If the sequence {$ij is properly chosen, this sequence

of functions may converge to a fixedpoint of 7. We thus define:

Definition: An access method ti is a sequence of formulae {Et]*  For a given

functional 7, a partial function f is said to converge to g under ti if all

the functions 8Ffl  exist, and lim@fifl]  I g. If some of the functions

8$fl do not exist, the method is said to fail  for 7 and f.

In the case the formulae & become successively more complicated, it is convenient to use a

slightly modified notation for formulae. We use a sequence of function variables Fo, F I, . . . .

where each Fi represents the function 8$j’J,  given 7 and f. Each function variable Fi is

defined by a formula in which all the function variables Fo, Fr, . . . . Fi-1, in addition to F, may

appear. This representation is equivalent to the original one, since one can always expand the
formulae in the new representation to formulae in which only the function variable F may

appear.

Some of the simplest access methods, in the new representation, are:
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( A )  Fo=F

Fi z 7IFi-11 for i 2 1.

(B) F. z F

Fe = glb{Fa  1 7 (i)[F1]t- t- ’ for i ’ 1- .

(C) F. E F

Fi z glb{Fi-l,T[Fi-1Jj  for i 1 1.

(D) F. = F

Fi s glb{F,7  [Fi- 1 J) for i L 1.

(E) F. E F

Fi E 7 [glb{F,Fi,  111 for i 2 1.

Note that methods C-E represent all the nontrivial ways by which Fi can be defined in terms

of Fi-1 and F, using one occurrence of ? and one occurrence of glb.  Four other simple access

methods (denoted by B’-E’) can be obtained from methods B-E by replacing each glb by t?ub.

Method A is the direct access method discussed in Section 4, since the expanded form of any Fi

is 7 (9[FJ. Method B is closely related to this method, since each Fi is simply the glb of a finite

number of powers:

Fi E glb{F,T [FIB7  ‘2’[FJ,*  * l ,‘? ci)[Fl)  a

For any functional 7 and initial function f, the sequence of functions vi> generated by method

B is a descending chain, since the glb  in the formula for Fi+l  contains one more term than the

glb in the formula for Fi. The convergence of any initial function f is thus guaranteed, but

unlike the case of the direct access method, the lrmit  function need not be a fixedpoint of 7.
This is demonstrated in the following example:

Example 8: Let 7 be the following functional over the natural numbers:

~[F](x) : i f  x = 0 then F(x)+ 1 else 00 F(x-1).

Let f be the initial function:
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0 if x~O,l
f(X) ’ {U otherwise .

For any i 2 0,

i if XEO

4)[fl(x) i { 0 if lSxSi+ 1

w otherwise ,

and thus the glb of all these functions is:

This function is not a fixedpoint of T (as a matter of fact, it is not even a prefixedpoint or a
postfixedpoint of 7). 0

5.2 The Descending Access Method

Among the access methods listed above, we shall be interested mainly in method C, called Me

descending access method, and in method C’, called the ascending access method. In this section
we study the behavior of the first method.

For any initial function f, the descending access method constructs a descending chain of
functions vi], since each fi is the glb of fi-1 with some other function. The idea behind the

method is to “smooth up” the initial function f by repeatedly taking the common part fi of the

functions fi-1  and T[fi- 11; hopefully such a process may result in a function whose values are

preserved under the application of T, i.e. a fixedpoint of 7.

If the initial function f is a prefixedpoint or a postfixedpoint of 7, then the sequence (fi]

generated by method C has an especially simple form:

Lemma 6: Let &} be the sequence generated by the descending access method C

for 7 and f. Then:

(i) If f E PRE(r) then for all i, fi E f.
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(ii) If f E POST(T) then for all i, fi E &fl.

(i) The proof is by induction on i. For i = 0, f. = f by definition. Suppose that for some i, fi

ZJ Then:

sincef E r[fl.

(ii) This part is again proved by induction. For i = 0, fo zf by definition. If for some t, fi I

&fl, then fi is also a postfixedpoint of T by Lemma 2(i), and thus:

QE.D.

Part (i) of Lemma 6 shows that an initial function f may converge under method C to a limit

function which is not a fixedpoint of 7. However, we have:

Theorem 6: For any functional 7 and initial function f, the sequence v’] generated

by the descending access method C converges to a prefixedpoint of 7.
This limit function is the greatest among the prefixedpoints of 7 that
are below f.

Proof: The fact that the descending chain &] converges to some limit function g, which is

below f, is clear. We now show that g is a prefixedpoint of 7 , i.e. g E ?[gl . By definition

Since both (fi- 11 and {T[fi- 113 are convergent sequences

and by the continuity of T and the definition of g

The fact that g ,c r[gJ follows no w from the equality g = gfb(g,r[gl).
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Finally, we show that if AI is any prefixedpoint of 7 such that h s f, then A E g. It suffices to
show that h E fi for all i. We prove this by induction on i.

If i = 0, then f. E f and thus h E f. by assumption. If fi satisfies /r E fi for some i, then:

h E 7[h] E l[fi] 9

and thus h is below both fi and T[fiI,  implying that

QE.D.

The existence of a greatest prefixedpoint below an arbitrary partial function f can be

independently proved by taking the hb of the consistent set of all the prefixedpoints of 7 below

f, and using the fact that this lub is itself a prefixedpoint of 7. Theorem 6 shows that the
descending access method always leads to this greatest prefixedpoint. Note that the set of
fixedpoints below f need not have a greatest element (in fact, it may even be empty if f t
Ifxpw 1.

-We can now show that the descending access method is the least access method in the following
sense:

Theorem 7: For any functional T, if an initial function f converges to gl under the

descending access method C and to g2 under some other access method

a, then gr 5 g2.

Proof: We first prove that for any formula 8 for which g7[fl exists, gl E E7[fl. The proof  is

by induction on the structure of the formula 8.

(i) If 8 is F, then clearly g1 E f = s'rfl.

(ii) If 8 is of the form 7[8 ]I, then by the induction hypothesis gl E @rr[fl. Since  by

Theorem 6, gl is a prefixedpoint of 7, we have:
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(iii) if 8 is of the form glI@,,82j then gl c 8T[fl and gl E &[$I by the induction
hypothesis, and thus

The lub exists since we assume that $‘[fl is defined.

Let 8 be the sequence of formulae ($i]. The functions @$fl exist since we assume that this

sequence converges to g2. Since g1 c 8$Jl for all i, and the sequence {%Fflj  is convergent,

QE.D.

Using Theorems 6 and 7, we can now indirectly show that access methods C and D are
equivalent. One can easily show that any initial function f converges under method D to some

prefixedpoint g, of 7. If we denote by l2 the prefixedpoint to which f converges under the
descending access method C, then 92 c gl by Theorem 6, and gr E g2 by Theorem 7.
Consequently, any initial function f converges to the same function under access methods C and
D.

5.3 The Ascending Access Method

In this section we consider the ascending access method C’, which is dual to the descending
access method C. The following results (which are stated without proofs) are analogous to
those obtained in subsection 5.2; the main difference is that access methods in which the lub
operation occurs may fail if the lub  of inconsistent functions is taken.

Lemma-  7: Let cfi] be a sequence of functions generated by the ascending access

method C’ for 7 and f. Then:

(i) If f E PRE(7)  then for all i, fi E ,(i)[fl

33



Manna & Shamir

(ii) If f E POST(?) then for all i, fi z f.

Theorem 8: For any functional 7 and initial function f, if the functions fi

generated by the ascending access method C’ exist, then the sequence

&> converges to a postfixedpoint of 7. This limit function is the least

among the postfixedpoints  of T that are above)

Theorem 9: For any functional 7, of an initial function f converges to gl under the

ascending access method C’ and to 92 under some other access method

a, then g2 E gl.

The following Lemma gives a sufficient condition on 7 andf which guarantees the existence of

B7[fl for an arbitrary formula 8.

Lemma 8: For a given 7 and f, if there is a postfixedpoint g of 7 which satisfies

f E g, then for any formula ‘8, the function E7[fl exists.

Proof: We show (by induction on the structure of 8) that !!‘&I exists and satisfies &?[fl c g

for any formula 8:

(.i) If 8 is of the form F, then 8’[j]  E f E g by assumption.

(ii) If & is of the form 7 [&I, then by the induction hypothesis &Trfl  exists and satisfies

8Trfl c g, and thus:

(iii) If 8 is of the form glb{&82j,  where 8Trfl E g and 8JLfl  5 g, then clearly:

(iv) Similarly, if 8 is of the form 114% ,&], where 8Trfl E g and &rfl E g, then these two

functions are consistent, and thus their lub  exists and satisfies:
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Corollary: For a given 7 and f, if there is a postfixedpoint g of 7 which satisfies

f c g, then no access method !8 can fail for 7 and f.

Note that this corollary does not imply that such an f converges to a limit under a.

The sufficient condition in this corollary is clearly not necessary in general. Consider, for
example, the following access method:

F. E g&IF,7 [Fl)

F 1 z g/b{7 CF1,7  2[F1)

Fi E 7 [lUb{Fi-  I,7 [Fi_2IjI  for i 2 2.

For any functional 7 and initial function f, all the pairs of functionsfi-1, T[fi-z]  to which the

lub is applied are consistent, and thus this access method can never fail.

We now show that for the special case of the ascending access method, the condition in Lemma

8 exactly characterizes the cases in which the method does not fail.

Lemma 9: A necessary and sufficient condition for a function f to converge under
the ascending access method C’ is the existence of a postfixedpoint g

of T such that f E g.

Proof: If the postfixedpoint g exists, then by the corollary of Lemma 8 the sequence vi] is

defined. Since it is an ascending chain, it is a convergent sequence and thusf converges under
method C’.

On the other hand, if f converges under C’ then, by Theorem 8, the limit g of the generated
sequence vi> is a postfixedpoint of 7. Furthermore, f c g, since vi> is an ascending chain

whose first element is f. We have thus shown the existence of a postfixedpoint g of ? which
satisfies f E g.

QE.D.

By the corollary of Lemma 8 and by Lemma 9, the ascending access method C’ is the most
exacting in the sense that:

Corollary: If method C’ does not fail for a given 7 and f, then no other access

method u can fail for 7 and f.
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6. The Fixedpoint M e t h o d

In this section we finally devise a method which always succeeds and under which any initial
function converges to a fixedpoint. As we show in subsection 6.2, no single access method can
achieve this goal; we thus need a somewhat more complicated method, based on compositions of
access methods. This notion is formally defined as follows:

Definition: For a functional 7, an initial function f is said to converge to h

under the composition Q12  0 8, oi two access methods a1 and M2 , if

f converges to some function g under a, and g converges to h

under g2.

This definition can be naturally extended to an n-fold composition ano. . .0’11~08~  .

6.1 Properties of the Fixedpoint Wthod

Definition: The fixedpoint  method is the composition A o C of the two access
methods C and A .

The main result concerning the fixedpoint method is:

Theorem 10: For a functional T , any initial function f converges under the

fixedpoint method A 0 C to a fixedpoint of 7 which is close to f .
Furthermore, this fixedpoint is the least among all the fixedpoints of
T which can be reached from f under any composition of access

methods.

Proof: Any initial function f converges under A o C to a fixedpoint h of 7 , since f
converges under C to a prefixedpoint g of ? (by Theorem 6),. and g converges  under A

to a fixedpoint h of 7 (by Theorem 5).

We now show that h is close to the initial function f . Let t be an arbitrary fixedpoint of
7. Then:

(i) If I E f , the prefixedpoint I is below f , and by Theorem 6, the prefixedpoint g to
which f converges under C satisfies I E g. Consequently,
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and thus I E ir .

(ii) If f E I , then clearly g c 1 , since g E f . This implies that:

h E fim{7(i)[g]j  E fim(4~fl]  : I ,

and thus h 5 I.

Finally, we show that h is the least among all the fixedpoints of 7 which can be reached
from f under any composition of access methods.

Suppose that f converges to a fixedpoint I of T under the composition M, o M,-, o . . . o

N1 of access methods. Let us denote by gi (i= l,...,n) the successive limit functions to which f

converges under the partial compositions ai o . . . o & (in particular, g, E 1 ). The function

f converges to the prefixedpoint g under C . We now show that g E gi for all i=l,...,n  .

Since f converges to g and g1 under the respective methods C and 8, , we have (by

-Theorem 7) that g E gl . The function g1 converges to g2 under u2 , and to sOme
prefixedpoint g2’ under C (this convergence is assured since any initial function converges

under C ). By Theorem 6, g2’ is the greatest among the prefixedpoints of 7 which are

below gl . However, g is one such prefixedpoint and thus g E g2’ . On the other hand, g2’ E

g2 by Theorem 7; we thus conclude that g E g2 .

Continuing this type of reasoning for i=3,...,n  , we can show that g E gi for all t . In

particular, gn is the fixedpoint I of 7 , and thus g E I I

We still have to show the relation h E I between the fixedpoints h and I obtained under the

compositions A o C and PI, o . . .o %l , respectively. We already know that g E I , and that

the prefixedpoint g converges to h under the direct access method A . By Theorem 5, the

flxedpoint  h is close to g , and in particular h c k for any fixedpoint k of 7 satisfying g
c k . Since I is one such fixedpoint, we obtain the desired result h E I .

QE.D.

An initial function f which converges under the ascending access method C’, converges to a
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pcstfixedpoint g of 7 (by Theorem 8). The function g is assured to converge to a

fixedpoint h of ? under the direct access method A , and thus any f converges under A o

C’ to a fixedpoint of 7 , provided only that method C’ does not fail for f . By Lemma 8,
this condition is equivalent to the existence of a postfixedpoint of ? above f . The dual to
Theorem 10 is therefore:

Theorem 11: For any functional 7 and initial function f such that there exists a

postfixedpoint of r above f , the function f converges under A o
C’ to a fixedpoint of 7 which is close to f . Furthermore, this
fixedpoint is the greatest among all the fixedpoints of 7 which can
be reached from f under any composition of access methods.

The proof of Theorem 11 is analogous to the proof of Theorem 10; the additional assumption
about the existence of a postfixedpoint is used only in order to establish the existence of the
appropriate limits.

Two other compositions of access methods
characterized in the following lemma:

which are equivalent to A o C and A o C’ are

Lemma 10:

(i) For any 7 and f , f converges to the same function under A o C and
C’OC.

(ii) For any 7 and f , f converges to the same function under A o C’
and C o C’, provided that C’ does not fail.

(i) The function g to which f converges under C is a prefixedpoint of 7. By Lemma
7(i), methods A and C’ behave in the same way for prefixedpoints, and thus the
compositions A o C and C’ o C are equivalent.

(ii) Similar, by Lemma 7(ii). QE.D.

An arbitrary initial function f can be considered as a “distorted fixedpoint” to which two
types of corrections must be applied:

(i) Defined parts, which are either changed or replaced by w under the

application of 7, must be deleted from the function since they do not
represent possible fixedpoint values.

38



Manna & Shamir

(ii) Undefined parts, which are replaced by defined values under the

application of 7, must be completed with the appropriate fixedpoint
values.

The descending access method performs only the first type of correction, while the ascending
access method performs only the second type of correction. None of them can transform an

arbitrary initial function f to a fixedpoint of 7 , but when both of them are applied to f , a

fixedpoint of 7 is obtained. The order in which the two correcting stages are performed (i.e.,
C’ o C or C o C’ ) may affect the fixedpoint obtained, since the two access methods C and
C’ do not commute in general. Furthermore, the composition C o C’ in which the deletion
stage comes after the completion stage may fail, while the fixedpoint method C’ CJ C cannot.

Let us’ denote by ST the set of fixedpoints of 7 which can be reached from f b y
compositions of access methods. The following immediate corollaries summarize the structure

of ST in the case where method C’ does not fail for 7 and f .

Corollaries:

(i) The set ST contains a least element (accessed by C’ o C ) and a
greatest element (accessed by C 0 C’ >.

(ii) If f converges to the same function h under C’o C and C o C’,

then h is the only fixedpoint of 7 which can be reached from f
(by any composition of access methods).

(iii) If f is either a prefixedpoini or a postfixedpoint of 7 , which
converges to it under the direct access method A , then h is the

only fixedpoint of 7 which can be reached from f (by any
composition of access methods).

(iu) If f is a fixedpoint of 7 , then f converges to itself under any
composition of access methods.

(v) All the fixedpoints in ST are close to f (however there may be
other fixedpoints which are close to f but which are inaccessible from
f by any composition of access methods).

(ui) All the fixedpoints in ST are consistent with the initial function f .
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If access method C’ fails for ? and f , then the set ST need not have a greatest element,

and the functions in ST need not be consistent with f . However, if f is either a

prefixedpoint or a postfixedpoint of 7 , then C’ cannot fail for 7 and f .

Theorem 10 guarantees that for any initial function f , there is at least one fixedpoint h of 7

which is close to f . For a fixed functional r , we can consider the fixedpoint method A o C

as a functional !& which maps any function f to some fixedpoint of 7 that is close to f .

The functional m, maps the set PF of partial functions (over the appropriate domain) onto

the set FXP(7)  , since any fixedpoint h of 7 is mapped to itself under %$ . Our aim in

the rest of this subsection is to study the monotonicity and continuity properties of %& .

Theorem 12: For any functional 7 , 912,  : PF+F>(P&)  is monotonic.

Proof: By induction on the structure of formulae it is easy to show that for a fixed functional

;1;
any access method is a monotonic mapping from initial functions to limit functions

w enever  they exist). Consequently, the composition A 0 C (for which limits always exist) is
also monotonic.

QE.D.

Note that the existence of such a monotonic mapping from PF onto FXP(7)  is not surprising
(due to the many structural similarities between the two sets); however, the theory of access

methods enables us to define the mapping in a simple and constructive way.

The functional B7 whose monotonicity was shown above, is not continuous. This fact does

not stem from the special way in which ‘332, is defined. The following theorem shows that for

certain functionals T , any such mapping is inherently noncontinuous.

Theorem 19: There are functionals ? , for which any mapping 8: PF+FXP(r)  ,

which assigns to each partial function f a fixedpoint of 7 that is
close tof , must be noncontinuous.

Proof: Let 7 be the following functional over the integers:

T[F](x)  : if F(x- 1) = 0 then F(x) t O1 F(xt 1) t On x
else F(x-1)  t O* F(xt 1) t 01 x .

The special property of this functional is that for a certain sequence v’j of initial functions,

each fi has exactly one fixedpoint -- n -- which is close to it. By the assumption on 8 ,
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@[fi] E O for all i , and thus lim{eL,jiI]  E Ucl . We shall use this fact in order to show that 8

does not preserve the lim of convergent sequences.

The two subterms  0~ in the functional guarantee that any fixedpoint of 7 is undefined for x z
w. For other values of x , r[F](x) is defined in terms of both F(x-1) and F(x+l)  , and thus
any fixedpoint of 7 is either D or total over the defined integers. Among the total functions,
only two types of functions are fixedpoints of ? :

(i) The constant functions:

g(x) E c for some defined integer c ;

(ii) The split-constant functions:

iid) 1x E
0 ifx<j
c ifx>j

for some defined integers c and j.

Consider now the ascending chain of functions vi1 , where

fib) L {
0 if xii
o otherwise.

Each fi is a postfixedpoint of T , which descends to the fixedpoint n of 7 under the direct

access method A . We now show that 0 is the unique fixedpoint of 7 which is close to fi .

Let h be a fixedpoint of 7 which is close to fi . By definition, /I must be below any

fixedpoint of 7 which is above fi . Two such fixedpoints above fi are:

g&d  s {
0 if xii
1 if x>i.

The only fixedpoint of 7 which is below both g1 and g2 is it , since no other nontotal

function can be a fixedpoint of ? . On the other hand, one can easily show that 0 itself is a

fixedpoint which is close to fi . We have thus shown that 0 is the unique fixedpoint of 7

which is close to fi . Using the assumption on 8 , we can now deduce:
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e[fi]  E 52 for all i .

Let us consider now the function wo 4 fimCfi]  . Since wo is a fixedpoint of 7 , it is the

unique fixedpoint of 7 which is close to itself, and thus:

We have thus shown that 8 does not preserve the limit of convergent sequences (or even the
lub of ascending chains).

QE.D.

6.2 The Insufficiency of a Single Access Method

Theorem 10 showed that the composition A 0 C of access methods has the interesting
property that any initial function converges to a fixedpoint under it. A natural question is

whether there exists some single access method 8 which has this property, i.e., whether the
fixedpoints of T can be reached from arbitrary initial functions by means of a single limiting
process.

A plausible candidate for such an access method is:
FO EF

F2i+ 1 5 7 LF2iI
F2i+2 E SlbIF2i+ 1 g7 [Fzi+ 1 J]

I for all i r 0 .

In this method, the functions with odd indices are defined as in method A , and the functions
with even indices are defined as in method C . Unfortunately, one can easily show that certain
initial functions f do not converge under this “alternating access method.”

In this section we formally prove that any such attempt to construct a single access method, in
which any f converges to a fixedpoint, must fail. It suffices to consider for this purpose the
simple functional ~~[FI(x)  : F(x+l)  over the natural numbers. What we actually show is that

for any “candidate” access method ‘8 , one can construct an appropriate initial function f such

that f -does  not converge to a fixedpoint of 70 under u .

Two useful properties of the selected functional ~&F](X)  : F&+1) are

(i) For any two functions f I, f2 :
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(ii) For any two consistent functions fl,f2 :

Let 8 be an arbitrary formula. The interpreted formula g7’ is a composition of TV,  glb and

lub,  and 7. commutes with both the g/b and lzlli operations. We can thus push each occurrence

of r. in 708i all the way inwards, and obtain a modified formula in which various powers of

7. are combined by a structure of &b and lub operations.

Example 9: Consider the formula 8:

7 hb(F,7  [glb(F,7  [Fljljl.

For the special case of the functional ro, 8 TO can be transformed in the following way:

In this modified formula, there are three powers of ?. (TV, 7o(2),  TV; these powers are

connected by a structure consisting of one g/b and one lub  operation. cl

For a formula s7’, we define the depth of z7’, & 70 ), to be the greatest power of r. occurring

in the modified formula. Since 7 o(k)[j&) z f(x+k),  the value of 8 70L,(x) is totally determined

by the values of fix’) for x s x’ 2 x+L#~). We shall later use the fact that any change in the

values offix’)  for other arguments x’ cannot affect the value of g’“[fl(x).
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We can now prove the theoren?:

Theorem 14: Let ?. be the following functional over the natural numbers:

I, 70[F1(~)  : F(x+ 1).

Then there is no single access method u under which any initial

function f converges to a fixedpoint of 70.

Proof: We first give an informal overview of the proof. Suppose that the theorem is not true,

and access method a - {Sit, has the desired property, We derive a contradiction by

constructing an initial function f in such a way that for some ascending sequence i0 < il < ,.. of
indices,

{
w if k is even
0 if k is odd .

The sequence of functions 70{Si IfI] thus cannot converge, since it changes value infinitely

many times at x E 0.

The function f is defined as the lim  of son>e  convergent sequence of functions (gj]. This
sequence satisfies, for each k:

For any fixed function & the other functions gk’ for k’ > k, are constructed in such a way that

g&X) and g&c) are identical for all 0 s x s d&:9.  Consequently, the limit f of (gj) also

satisfies:

Since the value of $~?&](O)  depends only on the value of & for the first d($O)

arguments, we obtain:
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This equality establishes the oscillating nature of the sequence of values $$:“ifl(O)], which is

the desired result.

We now formally define the convergent sequence of functions (gJ and the ascending sequence
of indices {ij].

As first elements in these sequences, we take go E n and i. E 0. We justify this selection by

noting that 8~“ml(o)  E w , since fi is a fixedpoint of ? and thus for any formula 8, 8*‘[R]

E sl.

We now proceed to define g1 and i,. As discussed above, we want gr(x) to be identical to go(x)

for any 0 I x I d(@i9.  We thus define:

g,(x) z
g&c>
0 otherwise .

By assumption, any initial function converges under % to a fixedpoint of ro, and thus gr

converges under (u to some fixedpoint h of 7. Since gt converges to the same fixedpoint zero
under the two extreme compositions C’ 0 C and C 0 C’, the function h must be zero. By
definition of convergence, there is some index i j such that

and we have thus found the second function gl and second index iI.

We now briefly outline the next stage in the construction of (gJ and (ii)  (Le,, g2 and i2).  Let vz2
be defined as:

The function g2 is defined as:
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This function converges to n under both compositions C’ o C and C o C’, and thus g2

converges to 52 under g as well. This convergence implies the existence of an index i2 > il
such that

The other functions gk in the sequence are constructed by taking an appropriate initial segment

of gkil  and changing the value of the constant tail from 0 to W or from w to 0 (according to

the oddity of k). The boundary of the initial segment, ??$, is defined in such a way that rnk r
k, and thus the sequence {gj] of functions is assured to converge at any argument x (since gk(x)

is constant for all k 2 x). The function f E lim(gj)  is thus defined, and by its definition, it

satisfies:

QE.D.
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Future Research

This paper covers only the lattice-theoretical aspects of access methods. Other problems which
might be of interest include the computability aspects of access methods, the relations between
access methods and substitution/simplification techniques for evaluating fixedpoints, and
characterizations of those cases in which a single access method is sufficient in order to access
fixedpoints.
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