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Manna & Shamir
Introduction

A recursive definition of the form F(x)= 7[FXx) (where F is a function variable and 7 isa
functional) can be considered as an implicit functional equation. In general, such a functional
equation may have many possible solutions (fixedpoints), all of which satisfy the relations
dictated by the recursive definition. Of al these fixedpoints, only one, the least fixedpoint, has
been studied thoroughly; however, recursive definitions have other interesting solutions (e.g.,
the optimal fixedpoint discussed in Manna and Shamir [1976]). By considering the properties of
the entire set of fixedpoints, a unified theory for the various fixedpoint approaches can be
devel oped.

One of the most fundamental resultsin the theory of recursive definitionsis Kleene’s Theorem
which states that (under suitable conditions) the least fixedpoint is the least upper bound (/ub)
of the sequence Q, 710, 7%Q),. .., where the initid function @ is the totally undefined function.
This theorem gives a constructive method by which the least fixedpoint can be “accessed” from

theinitial function Q.

The purpose of this paper is to generalize Kleene's Theorem so that arbitrary fixedpoints of a
recursve definition can be accessed. This is done by dtering Kleene's access method in three
ways: by allowing an arbitrary initial function, by generating the corresponding sequence of
functions in a different manner, and by introducing a modified notion of convergence.

Part | contains al the preliminary definitions and results. Our, slightly nonstandard, model of
recursive definitions is presented in Section 1. In Section 2 we prove some properties of
functionals in this model, and in Section 3 we study the elementary closure properties of three
important sets of functions: fixedpoints, prefixedpoints, and postfixedpoints.

Our generalization of Kleene's Theorem is discussed in Part 1. In Section 4, we consider the
behavior of Kleenc’'s “direct” access method for initial functions other than § . In particular,
we show that this generalized sequence of functions may fail to converge, but whenever it
converges the limit is a fixedpoint which is “close” to the initia function.

More general types of access methods are defined in Section 5. In essence, each such method
defines a sequence of transformations which should be applied to the initial function. These
transformations are defined in terms of the three basic operations: functional application, gZb,
and {ub. Among the access methods, we pay specia attention to the “descending” access method.
The sequences of functions generated by this method aways converge, but their limit need not
be a fixedpoint.

Finally, in Section 6, we show that under the composition of the “descending” and “direct”
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access methods, any initia function converges to a “close’ fixedpoint. We then prove that no
single access method can enjoy this property, and thus the composition of methods is essential.
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PartlI: Recursive Definitions and Their
Fixedpoints

1. The Model
1.1 The Basic Domains

The purpose of this subsection is to introduce the basic terminology about partialy ordered sets
used throughout this paper.

Definition: A binary relation = over anonempty set Sis apartial ordering of Sif
e is areflexive, transitive and antisymmetric relation. The pair (S,
is called a partially ordered set (poset).

Definition: Let (S,s) be aposet. For asubset A of S, an element x € Sis called:
(@ leastif xe A andforall yeA , hxey;
(b) greatest if xe A andfor al ye A, yEx;
(c) minimal if xe A and thereisnoye A, y=x for which y&x;
(d) maximal if xe A and thereisnoye A, y=x for whichxey ;
(e) lower bound if for all ye A ,xey;
(f) upper bound if for al ye A, yex;

(g) greatest lower bound (gib) if x isa lower bound of A , and for any
other lower bound y of A | yex;

(h) least upper bound (/ub) if ¥ is an upper bound of A , and for any other
upper bound yof A ,x=y.

Definition: A semilattice IS a poset (S,g) in which any two elements in S have a
glb. A complete semilattice is a poset (S,&) in which any nonempty
subset of Shasagib.

Such structures are usually called “lower semilattice” and “complete lower semilattice”. The
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notions of “upper semilattice’ and “complete upper semilattice” are smilarly defined with the
&b replaced by lub in the definition. However, we omit the word “lower” since in this paper we
work exclusively with lower semilattices and no confusion is caused.

Definition: A subset A of Sin a semilattice (8,) is said to be consistent if it has
an lub. An element x e Sis said to be consistent with an element ye S
if the set {x,y} IS consistent.

Semilattices may contain both consistent and inconsistent sets. The binary relation of being
“consstent with” is clearly reflexive and symmetric, but not necessarily trangitive. Note that if
the semilattice is complete, the existence of some upper bound implies the existence of alub.
Any subset of a consistent set is aso consistent in this case, but pairwise consstency of elements
does not imply the consistency of the set as awhole.

Definition: A sequence xp, x|, %p, ... Of elements in aposet Sis an ascending
(descending) chain if x;=x;, 1(x;, ;%;) for dl i. The sequence is a
chain if it is elther an ascending or a descending chain.

Definition: A flat semilattice is a semilattice in which all chains contain at most
two distinct eements.

It is clear that any flat semilattice is complete; it contains abottom element w (which satisfies we
d for all d), and all the other elements are unrelated. The importance of this structure in the
theory of computation stems from the fact that they represent the two-state discrete type of
knowledge which often occurs during a computation: A variable either contains a well-
characterized value or has an undefined value (if used without proper initialization); an
operation (such as a divison of two numbers) may ether yield a definite result or terminate as
“illegal”; aprocedure call may either return a proper result or loop forever. In al these cases,
one possible extreme is a totally defined entity, while absolutely nothing is known about the
other (besides its very “undefinedness’).

All the basic domains considered in this paper are flat semilattices, denoted by D. Two domains
of specia importance are the Boolean domain B =({w, true, false}, ) and the domain of natural
numbers N =({w, 0,1, 2, ...},5).
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1.2 Higher Type Objects

In this section we inductively define the objects of all finite types over the basic domain D;.

The two basic notions used, that of a convergent sequence and that of a continuity, are defined
in a nonstandard way. The classcad definition of these notions is heavily oriented towards the
needs of the least fixedpoint approach; we need more balanced definitions in order to construct
a generd fixedpoint theory of recursive definitions. In particular, we no longer concentrate on
ascending chains and their fub, but consider also descending chains and their glb, as well as

more generd forms of convergence.

Definition: A mapping ¢ : A - B between posets is monotonic if ¢(x) = ¢(y) in B
whenever xsyinA.

Definition:  The set of (finite) types is defined inductively as follows:

(i) Any basic domain D; is atype; the objects of this type are the elements

(i) Ifey,.... o aretypes s0ise X ... X 0; the objects of this type are
the vectors (x,, . . . . x;) where each x; is an object of type ;.

(iii) If ¢, 0, are types, so is (¢~ 7,}; the objects of this type are the
monotonic mappings from objects of type ¢ to objects of type @,

There is anatural way to extend the & relation to the set of objects of any finite type,

following inductive definition:
Definition:

() Ifx=(x,....x,)and y=(y;,..y) are objects of type e X ... X o,

then ¥ § iff for all 1<isk, x;£y; as objects of type ;.

(i) If x and y are objects of type [¢,- a,], then x & y iff for any fixed
object z of type e, x(z) = y(2) as objects of type a».

using the

It is easy to see that the set of objects of any finite type is a complete semilattice under this

relation.
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The notions of a convergent sequence and limit are usually identified with those of an
ascending chain and lub, respectively. Our definition of these notions is more inclusive:

Definition: A sequence of objects {xj} of some finite type @ is said to converge to
the object x,, of type e, written asx,, = lim{xj}, if:

({) ¢ is some basic domain D;, and al the eements in {xj} are equa to x,,
from some index j, onwards.

(i) eise;x... xo, and for any 1si sk, x,jszsm{xji} (Where xji isthe
i-th component of xj).

(iii) ¢ isley - ;] and for any fixed object z of type @, x,(z) & lim{xj(z)}

(these are objects of type a,, for which the notion of convergence is
dready defined).

Parts (ii) and (iii) in this definition are standard, and once we define our notion of convergence
in the basic domains, it is carried over to al finite types. It is easy to see that any ascending or
descending chain of any type is a convergent sequence (with lub or gib, respectively, as limits).
The following example shows that the converse is not true:

Example 1: Let {f;} bea sequence of objects of type [N - NJ, defined by:
i ifxzi
A [ 0ifx<i

wifx=w

No two eements in the sequence {f;} arerelated by =, but the sequence converges to the object
zero of type [N - N]

W ifx=zw
0 otherwise

zero(x) = {

This follows immediately from the fact that for any argument x of type N, the sequence {f¥x)}
of elements of type N is convergent, i.e, its elements are O for al sufficiently high i. O

Using the notion of a convergent sequence, we can define our notion of continuity:
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Definition:

(i) An object (x,....x) of typeeo;x...x ¥y is continuous if &l the
objects ¥; are continuous.

(ii) An object x of type [¢,~a,]is continuous if for any convergent
sequence {zj} of objects of type ¢, the sequence {x(zj)} of objects of
type e, is convergent and x(lim{zj}) = lim{x(zj)} :

Since the notion of a convergent sequence is more inclusive than that of a chain, our notion of
continuous objects (Le., of limit-preserving mappings) is potentially more restrictive than the
standard notion of chain-continuity. The following example shows that in fact an object can
preserve the Zub and glb of ascending and descending chains, and still be noncontinuous in our
system:

Example 2: Let f be an object of type [N -NJ). Wesay that T isclosed if the sequence {x;}
defined by

xo= 0 and x;, = flx) (i.e, x=£90))

consists of afinite number of distinct elements, none of which isw. It is clear that a necessary
and sufficient condition for afunction f to be closed isthe existence of numbers 0 s i< j such

that j(")(O)s j(f)(O);w, inwhich case the sequence {x;} is periodic from some point onwards.

Let the object © of type[[N - NJ]- B] be defined as follows:

o111 = { true if T contains a finite sequence of pointers
“lw  otherwise

The object @ preserves the lub and glb of ascending and descending chains, since the finite
number of values flx;) which constitute a sequence of pointers are either constructed or

destroyed at some finite point in any chain {f;}, and thus 8llim{f;}1= 8[f;,] for some k.

However, @ isnot continuous in our model. Consider, for example, the following sequence of
objects {f}:

x+ 1 ifx<i
X ifx2:

FORE|
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The sequence converges to the object

folx) =x+ 1.

It is easy to see that 8[f,Jisw , while for any i, 8[f;] is true. Thus 8[lim{f;}) 2 lim{©[f;]} and
© is not continuous. a

From now on, we shall be interested mainly in the lower three types of objects: values (objects
of type D), functions (objects of type [D;x ... XDy~ Do), and (single-argument) functionals

(objects of type([D} x .. .x D} -»D}]-[D3x... x D}- D% ). Since we shall not deal

with systems of recursive definitions, we do not have to consider multi-argument functionals
(for which the fixedpoint theory obtained is somewhat different).

1.3 Term Functionals end Recursive Definitions

Among al the functionals 7, we shall be interested mainly in term functionals, which are
syntactically expressed as compositions of constants, monotonic base functions g;, a function

variable F, and individual variables x;. Associated with each symbol (including the variables)
is atype, and the composition of these types must be legd.

Example 3: A term of the form
if glx;,x;) then x, else glx,, x3)

can be lega only if the types of x4, x5, and x5 are the boolean semilattice B, and the type of g is
(B x B » BJ. Thiscan be shown by the following argument:

Since gx;,x;) appearsin the if part, the range of this term must be B. Since the two subterms
x5 and g(x,,x3) Must have identical ranges, the type of , is necessarily B. Therefore the type
of g is of the form [B x ? - BI. In order to make the term g(x;, ¥,) legal, ¥, must be of type
B, implying that "?" is also B. We can thus conclude (from the term g{x,,x3)) that x5 is also of
type B. ]

A term functional is denoted by T(F)x;,....xp), wherex,,.... %, are al the individual variables
occurring in it, in some order. It can be interpreted as a functional in the following way:

10
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Given a function f and an argument vector @=(d,, . ... d}) (of the appropriate types), the value

of [f)@) isthe object obtained by evaluating the variable-free term in which F is interpreted
asT and x; isinterpreted as 4;. The function 7(f] to which f is mapped under 7 is the function

abstraction ax r[f)(x). The fact that £ maps monotonic functions to monotonic functions is
immediate from the fact that all the base functions in 7 are monotonic, and the set of
monotonic functions is closed under composition.

Definition: A recursive definition is an equation of the form

where 7 is aterm functional.

In order to make this equation meaningful, T must map functions of the appropriate type
(D, x... XDy =Dl to functions of the same type.

1
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2 Properties of Term Functionals

The fact that term function& are monotonic mappings which preserve the {ub of ascending
chains is one of the oldest and most basic results in the recursive definitions theory. In a
simple form it appears in Kleene [1952], while a detailed proof of this result for a model of
functionals which is quite similar to ours appears in Cadiou [1872]. In this section we prove
the stronger result of continuity in our model, and discuss the behavior of term functionals
under the glb and lub operations over arbitrary sets of functions (rather than over chains).

2.1 The Continuity of Term Functionals

Under the classical definition of continuity, any mapping which preserves the {ub of ascending
chains is necessarily monotonic. However, amapping € can preserve the limits of convergent
sequences without preserving a fub of chains, or without being monotonic at dl. This happens,
for example, when € maps an ascending chain {x;} into a descending chain {6(x;)} provided

that
Oim{x;}) = O(lub{x;}) = glb{B(x))} = im{B(x)}.

The property of continuity is thus totally independent from the property of monotonicity in our
model.

We now prove the basic result:

Theorem 1: Let 7 be aterm functional and {f;} a convergent sequence, Then
{r[f;}} is a convergent sequence and

lim{r[f;}} = rllim{f}}].

Proof: The proof is by induction on the structure of 7, using the fact that term functionals
contain finitely many basic constructs. Note that the monotonicity of these constructs is not
used a al.

If risa variable x; or constant c, the proof istrivial.

If 7 is of the form g(r,,.... 7,,), we may apply the induction hypothesis that all the subterms 7;
are continuous. Let ¥ be fixed. Then for any 1<k < n, thereisan index jj such that

12
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TRlf® = rllim{f;))%) forallj2j .
Let jo be max(j,, . ... jn)- Then for al j 2 jg:
Tlfjl®) = g7 &), ., 7o (f51E)

Tllim {fl}J(f)

Findly, if risof theformF(r, . ... 7,), We define j, in exactly the same way as before. We

denote the vector (7, llim{f;})®) , ..., T,lim{f;})%) ) by 3, and thus by the definition of I,

rllim{f})%) = Um{f;}F) .

Since {f;} is a convergent sequence, there is some Jo such that
fj@) = (lim{f;})F for alljzf; .

Let 7" be max(jo, 7. Then we have, for al j 2 /i

Tf®) = ST f3R), -, 7olf5130)

= j.‘](fl[lim{fi}](f), o T llim{f;1)(%))
= j.‘]@) = (lim{f;D®) r{lim{f;})(%).

Some of the consequences of Theorem 1 are:

Corollary: Let £ be aterm functional. Then:

() If{f;}isan ascending chain, then {7{f;} is an ascending chain and

lub{r(f,)} = rliub{f;})

(i) If {f;} is a descending chain, then {r{f;}} is a descending chain and

glb{rlfid} = rlgib{f;})

13

Q.ED.
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Proof:

(i) Any ascending chain {f;} is a convergent sequence, and lub{f;} = lim{f;}. Since term
functionals are monotonic, {r(f;}} is also an ascending chain and ub{r[f;}} = tim{r[f;]}. By
Theorem 1,

lub{‘r[fi]} = lim{7(f;)} = ‘r[lim{fi}] = T[Zub{fi}l
(ii) The proof is similar.

Q.E.D.

2.2 Behavior Under the glb and fub Operations

Lemma 1: For any monotonic functional 7:

() If {f}isanonempty set of functions, then
rlglb{f.})  glb{rlf ]} .

(i) If {f4}isaconsstent set of functions, ehen so is {7[f,]},and
lub{r(f )} & TLub{f }).

Proof:

(i) SinceT is monotonic and gh{f.}= f, for al a, rlglb{f,}1& rlf.] for all «. Thus
Tlgb{f}]l is alower bound of the set {rlf, ]}, and therefore T(glb{f, } & glb{r(f, ]} .

(i) Since {f,} is consistent, its {ub exists. By the same procedure as above, T[lub{f,}] can be
shown to be an upper bound of {r{f,]}. In our model this implies the existence of lub{r[f ]},
and we have lub{r(f ]} = T[iub{f.}]. Q.ED.

According to corollary (ii) of Theorem 1, the inequality {glb{f.}} = glb{T[f.]} becomes an

equality if Tisa term functional and {f.} is a descending chain. This result can be
strengthened by showing that for a wide subclass of term functionals in our model, the words “a
descending chain” can be replaced by “a consistent set”. Mappings which preserve the gib of

14
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consistent sets of arguments are defined and studied in Berry [1976) in connection with the
bottom-up computations of least fixedpoints.

The dua property of preserving the lub of arbitrary consistent sets of functions holds only for a

very restricted subclass of term functionals (mainly those in which the term 7[FXx) can be
simplified, for any given %, to aterm with a single occurrence of F). The problem in more

redistic cases isdemonstrated by the following example:
Example 4. Let 7 be the following functiond over the naturd numbers:
7[FXx): F(x+1)-F(x+2)

(where 0-w=w-. 0 =w). Define the functions

0 ifxiseven 0 ifxisodd
filw) = {w otherwise fAx) = {w otherwise

Then f, and f, are consistent, but

lub{r(f,17f2)} = lub{Q.Q} = O 2 zero0 = lzero) & TIubd{f, fo}] .

El

15
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3. Properties of Fixedpoints, Prefixedpoints
and Postfixedpoints

A recursive definition F(x) = 7[f)x) can be consdered as an implicit functional equation in F.
With each such recursive definition, we associate three important sets of functions. fixedpoints,
prefixedpoints, and postfixedpoints.

3.1 Closure Properties

Definition:

(i) A partial function fisa fixedpoint of afunctional 7, or of arecursive
definition F(x)=7[FX®), if f=7[f] The set of al fixedpoints of 7 is
denoted by FXP(7).

(i) A partial function fis a prefixedpoint of a functional = , or of a
recursive definition F&) = 7[FX%) , if felf]l. The set of all
prefixedpoints of 7 is denoted by PRE(T) .

(i) A partial function fis a postfixedpoint of a functional 7, or of a
recursive definition F(x)=7[FXx%),if 7[fle f . The set of all
postfixedpoints of 7 is denoted by POST(r).

Example 6: Consider the following recursive definition, in which Fis of type[N x N » NJ.
F(xy) = if x= 0 then y else F(F(xy-1),F(x-1)).

The following three (quite different) functions are al fixedpoints of this recursive definition, as
can be shown by direct substitution:

(i) fixp=ifx=0theny elsew;
(i) folxg)=ifx20theny else w;
(i) folxy) = max(xy).

The recursive definition has infinitely many more fixedpoints. A whole family of such
fixedpoints is

(iv) fy(xy)=if x= O then y else a(x)

16
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where a(x) is any function over the natura numbers satisfying
a(x) = 0 and a(a(x)) = a(x) for al x> 0.

Examples of functions satisfying this conditions are the identity function, any nonzero constant
function, or the function which assignsto any nz 2 .. greatest prime factor (witha( 1) = 1).

The totally undefined function Q is clearly a prefixedpoint of any recursive definition; in our
case it isan example of a prefixedpoint which is not a fixedpoint.

An infinite class of postfixedpoints which are not fixedpoints of this recursive definition is

y ifO0sx<gd
gifx, y) {w otherwise
for alli 2 1. O

By definition, it is clear that a partial function f is a fixedpoint of a functional 7 if and only
if it isboth a prefixedpoint and a postfixedpoint of 7 (that is, FXP(r) = PRE(T) n POST(7)).

In this section we summarize the closure properties of the sets FXP(r), PRE(7) and POST(7)
under the operations lub, gib and lim. These properties belong to the “folklore” of known but
seldom stated factsabout recursive definitions.
Lemma 2: For any monotonic functional 7:

(& 7 maps FXP(r),PRE(r) and POST(r) into themselves.

(i) PRE(r) is closed under the lub operation over consistent sets.

(iii) POST(r) is closed under the gib operation over nonempty Sets.
Proof:

() Immediate from the monotonicity of 7.

(if) Let {f4} be a consistent subset of PRE(r) , Then for each «, f, =7[f,]. Since
lub{f .} exists, fo €lub{f,}, and r is monotonic, we have

So € Tlfo) & rllub{f 1],

i
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Thus rliub{f,}] is an upper bound of {f,} , and therefore
lub{f,} & TUub{f}].
In other words, lub{f..} is aso a prefixedpoint.
(iii) Similar. QED

It is not hard to show by appropriate counterexamples that PRE(7) need not be closed under
glb, POST(7) need not be closed under (ub, and FXP(r) need not be closed under either
operation.

Let us turn now to consider yet another operation -- the Zim of convergent sequences.

Lemma 3: For any term functional 7, FXP(r), PRE(r) and POST(r) are all
closed under the lim operation.

Proof:

(i) Let{f;} be aconvergent sequence of fixedpoints of 7. By Theorem 1 we have:
rllim{f;}] = lim{r[f;]} = lim{f}},
and thus lim{f;} is also a fixedpoint of 7.

(i) Let {f;} be a convergent seqhence of prefixedpoints of 7. Then for any i, f; =7[f;). By
the definition of the lim operation we have

lim{f;} = lim{7[f;}} ,
By Theorem 1, lim{7(f;}} exists and lim{r[f;]} = Tllim{f;}). Thus
lim{f;} € rllim{f;}],
or equivalently lim{f;} is a prefixedpoint of 7.
(i) Similar to (ii). Q.ED.

An important special case is.

18
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Corollary: For a term functional 7, FXP(r) , PRE(r) and POST(r) are all
closed under the lub and gib of ascending and descending chains.

3.2 Maximal and Minimal Fixedpoints

We turn now to study those fixedpoints located at the extreme ends of FXP(r) -- the
maximal and the minimal fixedpoints of 7.

Asusual, a maximal fixedpoint of r is defined to be a fixedpoint which is not less defined
than any other fixedpoint of . The set of al maximal fixedpoints is denoted by MAX(r).

A basic property of MAX(7) is.

Theorem 2: For a monotonic functiona 7,
if fePRE(r) then f=g¢g for some g e MAX(T).

Proof: Thisis quite a straightforward application of Zorn’s Lemma which states that if (S,€)
isanonempty partialy ordered set in which any totally ordered subset has an upper bound,
then S contains a maximal element (see eg. Dugundji [1966)).

“For our purposes, we take the set
S={hePRE(T) | fch}

with the standard partial ordering = . This set is not empty since fe S. If S is atotaity
ordered subset of S, it is in particular consistent, and thus ubS; exists. By Lemma 2(ii)

lubS, is a prefixedpoint of 7 , and it clearly satisfies fsubS; . Thus lubS;e S and
therefore the subset $; has an upper bound in S.

We may now gpply Zorn's Lemma, which guarantees the existence of a maximal element g e S.
By definition, f= g and g =7lg] . To show that g is a fixedpoint of ¥, we note that by
Lemma 2(i), rlg) is dso a prefixedpoint of 7in S, and thus the assumption that g = 7(g]
contradicts the maximality of gin S. Q.ED.

Since for any functional 7, PRE(7) isnonempty (3 € PRE(7)) , we have:
Corollary: For any monotonic functional 7, MAX(7) is not empty.

This corollary guarantees the existence of at least one maximal fixedpoint, but it need not be

19
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unique. As a matter of fact, monotonic functionals may have any number of maximal
fixedpoints in our semilattice model.

Let us consider now the minimal fixedpoints of a monotonic functional 7. The main result
(the Least Fixedpoint Theorem) states that a monotonic functional ? has a least (and thus a
unique minimal) fixedpoint, which we denote by Ifxp(7). Thisis a classical theorem, and it
has two well-known types of proofs:

() (A nonconstructive proof, due to Tarski[1955]): In @ model in which

7 is defined over a complete lattice (rather than a complete semilattice)
of elements, one can take the gt of any set of elements. The element

glb POST(?) is then shown to be a fixedpoint of ?, and it is clearly
below all the other fixedpoints of 7 (which are al contained in
POST(?) ).

(ii) (A constructive proof, due to Hitchcock and Park [1972], Cadiou
(1972)): This is a rather complicated proof, which constructs a

transfinite ascending chain of approximations r™[Q] . This chainis
shown (by transfinite induction) to converge to the least fixedpoint of
T.

The first approach cannot be directly applied when a model of complete semilattices is
considered. If the function gib POST(r) exists, it is the least fixedpoint of 7 in this case as

well. However, this function need not exist if POST(?) is empty, since the glb operation is
defined only over the nonempty subsets of the complete semilattice. We thus have to show that

POST(?) is not empty as a first stage in a Tarski-like proof. Fortunately, the existence

theorem of maximal fixedpoints (Theorem 2) implies that FXP(?) (and thus also POST(?) )
is not empty. We thus get the following indirect proof, in which maximal fixedpoints are used
in order to show the existence of a least fixedpoint.

Theorem 3  (The Least Fixedpoint T acorem): If T is a monotonic functional (over
acomplete semilattice) then FXP(r) contains aleast element.

Proof: By the corollary of Theorem 2, POST(r) is not empty, and thus f = gib POST(?)
exists. By Lemma 2(iii), it is a postfixedpoint of 7, and thus 7[fl= f. The function 7[f] is
also a postfixedpoint of 7, and thus f = glb POST(r) s 7[f] as well. Consequently T = 7[f]
and therefore ¥ e FXP(?) . It is the least fixedpoint of 7 since f =gib POST(?) = gib
FXP(?) . Q.E.D.
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Theorem 3 can be used in order to find the relationships between prefixedpoints,
postfixedpoints and fixedpoints in generd. The relative form of Theorem 3 is.

Theorem 4: For amonotonic functional (oter acomplete semilattice):

(i) 1f F isaprefixedpoint of 7, then there exists a least fixedpoint in the
set of functions Sf ={g | f = g}

(i) 1f ¥ is a pottfixedpoint of 7, then there exists a greatest fixedpoint in
the set of functions 8/ ={glgs f} .

Proof:

(i) Since ¥ e PRE(r), Theorem 2 guarantees that Sf contains at least one fixedpoint. The
proof of Theorem 3 can then be applied without change (over the complete semilattice sf).

(i) Using the inverse relation, 4,< 4, if #, = 4,, it can be shown that (8/ , <) is a complete

lattice. Theorem 3 now shows that Sf contains a least fixedpoint with respect to «; this
fixedpoint is clearly greatest with respect to . Q.E.D.
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Part II: The Convergence of Functions to
Fixedpoints

In Part | we defined our model of recursive definitions and studied its basic properties. Using
these results, we now andyze the methods by which fixedpoints of recursve definitions can be
“accessed” from other partia functions. In essence, each “access method” uses a given initia
function f, as a starting point, and constructs a sequence of functions which converges to a

fixedpoint of 7. We want the fixedpoint obtained to be “closest” to the initial function. Since
the ordering = isonly partia, one can directly compare in this sense only fixedpoints related
by . The most natural definition of this notion is therefore:

Definition: A fixedpoint g of 7 is said to be close to a partia function fq if
for every fixed point 4 of 7 :

@) if he fo then 2= g , and
(ii) if foeh then g eh.

In other words, the fixedpoint g is close to f, if it is above any fixedpoint below fq, and
below any fixedpoint above f,. A priori, it is not clear that such a close fixedpoint must exist
for any partial function f, -- this will be one of the results proved in this part.

All the functionals considered in this part are term functionals.
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4. The Direct Access Method

Kleene's version of the Least Fixedpoint Theorem for continuous functionals shows that by
repeated application of the functional 7 to the initial function &, one can construct a

sequence {‘r(i)[Q]} whose limit is the least fixedpoint of 7. This method (which we call the
direct access method) can be applied to an arbitrary initial function fo , but in genera the
sequence obtained need not converge to a limit.  The following example demonstrates such a
case:

Example 6: Consider the recursive definition over the natura numbers:
F(X) =if x210 then F(x-10) else F(x+1)

The collection of equdities implied by this recursive definition has a cyclic component:
F(O)=F(1)=F(2) =...=F(9) = F(10)= F(0)

and the additiona equalities:
F(11) =F(1), F(12)=F(2) ....

Ek is clear that any constant function is a fixedpoinr of the recursive definition and there are no

other fixedpoints; the least fixedpoint is &, and any constant total function is a maximal
fixedpoint.

Consider now the two initid functions:

0 ifx=0 0 if0<x<10,
fit) = {w otherwise ) = {1 otherwise

The sequence {r(i)[f, J} does not converge, since the value O is rotated in the cycle x=0,1,...,10

under the repeated application of 7. On the other hand, the sequence {r(i)[le} converges to

the fixedpoint zero of 7, since all the nonzero values of f, are eventually replaced by 0 .
Note that this sequence is neither an ascending chain nor a descending chain (in fact, no two

digtinct hlements are ever consstent), but it converges according to the generdlized notion of lim.
O
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Definition:  The function £, converges to g (under a functional 7) if {r{){f,)} isa
convergent sequence and g is its limit.

We now state and prove the basic result:

Theorem 5: If fo converges to g under 7, then g is a fixedpoint which is close to f, .

Proof: To show that g is a fixedpoint of 7, we use the (generdized) continuity of 7:
rlg) = tUim{rOf0) = tim{rlrDf 1) = timr(+ g ]y = .

To show that g iscloseto f,, consider an arbitrary fixedpoint 4 of i:

() If Ae fy then by the monotonicity of 7, 7¢)a1e r(f] for all i, and thus since # is a
fixedpoint

k= limfrOn Y e lim{rf, 3 = g.
(i) If foeh then similarly:

g = lim{rOfely e timrOa)y = 4 Q.ED.

We can describe the result of Theorem 5 as follows: if g, and g, are any two fixedpoints of
T such that g€ fosg,, andif {f(i)[J’OJ} converges, then it converges to a fixedpoint g
which is also in the “box” g, =g=g,. Note that, unless f, € PRE(r)u POST(r), an initial

function fq need not be related by = to the fixedpoint g to which it leads. Furthermore,
there need not be a greatest element among the fixedpoints which are less defined than £, or a
least element among the fixedpoints which are more defined than f .

Given an arbitrary initial function fy, it may be hard to determine in advance whether the

sequence {f(i)[j‘o]} convergesor not. One important case in which the convergence is
guaranteed is when fy is either a prefixedpoinr or a postfixedpoint of 7 . In these cases the
generated sequence is a chain, and thus has a lint.

We now proceed to characterize two other cases in which the sequence must converge.

Lemma 4: If fie focs f2 where £, and f, both converge to the fixedpoint g
of r, then fo also convergesto g .
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Proof: By the monotonicity of 7, 7¢)(f,12 70 (£, e 70)(£,) for any i. The definition of
convergence implies that for each x there is a natural number j, such that

1@ = 10000 = g foraljzjo,
and therefore
(o)) = g®  forallj 2 jo.
In other words, the sequence {T(i>[fo]} convergestog. Q.E.D.

One immediate corallary of this “sandwich” property is:

Corollary:  If fo € ifxp(T), then lim{f(i)[fo]} = Ifxp(T) .

The least fixedpoint of 7 thus has the interesting property that any initial function fo =

Ifxp(r) converges to it under the repeated application of 7 (but not necessarily in the form of

an ascending chain). Consequently, in order to access other fixedpoints of 7, one must start
with initid functions which are aready sufficiently defined.

A dightly different type of result is:

Lemma 5: If fie f, and g= lim{r®lf ) is a total fixedpoint of 7, then f,
aso converges to ¢ .

Proof: By the monotonicity of T,T(i)[f]]sf(i)[fz] for al i . Since the sequence {f(i)[f )
convergesto g, for any ¥ there is a j, such that:

O M =g®  foraljzj,,
or, in other words:
g®@ e riif)m  foralljzj,.

Since g isatotal function, we obtain:

g® = tipkm  foralj:jp,

and thus lim{r@f,)} = ¢ . Q.E.D.
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Note that the requirement that ¢ is total is essential; it may well happen that a function T |
converges to a nontotal maximal fixedpoint g, while a function f, , which is more defined

than ¥ |, , does not converge a al.

Taking f; = §§ , we obtain an important specia case of Lemma 5:

Corollary: If ifxp(r) isatotal function, then any initial function f, converges to
Ufxp(r) .

If arecursive definition has only one fixedpoint, then it is clear that the lim of any convergent
sequence {r(i>[j’°]} isifxp(r) . However, if the unique fixedpoint Ifxp(r) is not total, there
may be initia functions f, for which the sequence {r(i)ﬂfol} does not converge & all.
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5. General Access Methods

In the previous section we have consdered one of the smplest ways by which we can access the
fixedpoints of 7 -- the repeated application of 7 to an initia function fo. This method may
fall to converge when applied to certain initial functions f,. In this section we investigate some

more general access methods, which are later used in order to access fixedpoints of 7 from
arbitrary initial functions.

5.1 Access Methods

In order to formally introduce the general notion of an access method, we first define:
Definition: The set of formula& is defined inductively asfollows:

(i) The symbol Fisaformula (F is said to be afunction variable).

(i) If Fisaformula, then T (3] isaformula(T issaid to be afunctional
variable).

(iii) If &,, &, are formulae, then gib{&,, &5} and iub{T &} are formulae.

Given a formula & and a functional 7, we denote by &7 the formula in which the functional
variable 7 is interpreted as 7. &7 can be considered as a functional (over the same domain of

functions as 7) in the following way: Given any function f, §7[f] is the function obtained by
evaluating the formula & in which T is interpreted as 7 and F is interpreted asf. Unlike the

functionals considered so far, &7 may fail when applied to certain functions f, in case the {ub of

inconsistent functions is to be taken during the evaluation process; in this case, &7 [f1is not
defined.

Example 7. Consider the formula
gIb{T [lub{F,T [F}1F},
and the functional

T[F)x) : F(x+1)
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over the natural numbers.

The functional &7 failsfor the identity function f(x) =, since f and 7[f] are inconsistent, and

thus their ub is not defined. However, 87 does not fail for the function:

{0 if x=0 (mod 3)
fix) = { w otherwise

and the function T[AisQ. ]

Given a functiona = and initia function £, we may consider a function &7[f] as a modification
of f. A sequence of formulae {&;} can thus be used in order to construct a sequence of
successively modified functions {$73}. If the sequence {&,} is properly chosen, this sequence
of functions may converge to afixedpoint of 7. We thus define:

Definition:  An access method ¥ is a sequence of formulae {&;}. For a given
functiona 7, a partial function f issaid to converge to g under ¥ if all
the functions /] exist, and tim{EFJfT} = g. If some of the functions

§771 do not exist, the method is said to fail for 7 and F .

In the case the formulae %i become successively more complicated, it is convenient to use a
dightly modified notation for formulae. We use a sequence of function variables Fg, F, . . . .

where each F; represents the function 37, given r and .  Each function variable F; is
defined by aformulain which all the function variablesFo, Fy, . . . . F;_j, in addition to F, may

appear. This representation is equivadent to the origina one, since one can adways expand the
formulae in the new representation to formulae in which only the function variable F may

Some of the smplest access methods, in the new representation, are:
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(A) FoEF
Fi Ef[Fi_l] fori = 1.

(B) Fo=F
F; = glb{Fy .7 WIF) foriz1.

(C) Fo = F
F; = gb{F; | T[F;_y)} fori 2

=

(D) Fo=F
F; =gh{FT(F,_1} forizl

(E) Fo s F
Fie T (gh{FF;,_{}] for izl

Note that methods C-E represent all the nontrivial ways by which F; can be defined in terms

of F;_yand F, using one occurrence of T and one occurrence of glb. Four other simple access
methods (denoted by B’-E’) can be obtained from methods B-E by replacing each gib by lub.

Method A is the direct access method discussed in Section 4, since the expanded form of any F;

is 7 W[F). Method B is closdy related to this method, since each F; is smply the glb of afinite
number of POWErS:

F; = glb{F,T [F1T @[F)... .7 OrF)y.

For any functional = and initial function £, the sequence of functions {f;} generated by method
B isadescending chain, since the glt in the formula for F;, | contains one more term than the
glb in the formula for F;. The convergence of any initial function f isthus guaranteed, but

unlike the case of the direct access method, the limit function need not be a fixedpoint of r.
This is demondtrated in the following example:

Example 8: Let 7 be the following functional over the natural numbers:
T[F)x) : if x = 0 then F(x)+ 1 else 0. F(x-1).

Let ¥ be the initid function:
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v0 if ==0,1
w otherwise.

fix) e {
For any i 20,

i if x=0
r(i)[ﬂ(x) E{ 0 iflzxsivl

w othewise,
and thus the g¢b of al these functions is:

0 if x=1
w otherwise .

gt ) = {

This function is not a fixedpoint of 7 (as a matter of fact, it is not even a prefixedpoint or a
postfixedpoint of 7). O

5.2 The Descending Access Method

Among the access methods listed above, we shall be interested mainly in method C, called tke
descending access method, and in method C’, called the ascending access method. In this section
we study the behavior of the first method.

For any initial function f, the descending access method constructs a descending chain of
functions {f;}, since each f; isthe git of f;_; with some other function. The idea behind the

method is to “smooth up” the initial function f by repeatedly taking the common part f; of the
functions f;_; and 7(f;_ ), hopefully such a process may result in a function whose values are

preserved under the gpplication of 7, i.e. a fixedpoint of 7.

If the initial function T is a prefixedpoint or a postfixedpoint of 7, then the sequence {fi}
generated by method C has an especidly smple form:

Lemma 6: Let {f;} be the sequence generated by the descending access method C
for # and f. Then:

@) 1fF ePRE(r)thenfordli, f;=T.

30



Manna & Shamir
(i) If F ePOST()then forall i, f; = 7{)A

Proof:

(i) The proof is by induction oni.Fori=0, f= ¥ by definition. Suppose that for some i, fi
= f. Then:

fior = g{fprlf;l} = glblfr(f} = £,

since f & 7[f].

(ii) This part isagain proved by induction. Fori=0, fo= f by definition. If for some i, f; =
7{)(£), then f; is also a postfixedpoint of 7 by Lemma 2(i), and thus:

fie1 = @Y = 7Y = o Lrl = 04 g QED.

Part (i) of Lemma 6 shows that aninitial function f may converge under method C to alimit
function which is not a fixedpoint of 7. However, we have:

Theorem 6: For any functional 7 and initial function £, the sequence {f;} generated

by the descending access method C converges to a prefixedpoint of .
This limit function is the greatest among the prefixedpoints of 7 that
are below T

Proof: The fact that the descending chain {f;} converges to some limit function g, which is
below f, is clear. We now show that g is a prefixedpoint of 7,i.e. gs7[g] . By definition

g = lim{f;} = lim{gb{f;_17Ufi 1} -

Since both {f;_;} and {r(f;_ |1} are convergent sequences
g = gb{tim{f;_\Wim{t(f; |11},

and by the continuity of 7 and the definition of g
g = gb{lim{f;_}Lrlim{f;_|}]} = glb{g7lgl}.

The fact that g s 7[g] follows now from the equality g = glb{g,7[gl}.

3l



Manna & Shamir

Finaly, we show that if 2isany prefixedpoint of 7 such that k& f, then A e@. It sufficesto
show that e f; for al i. We prove this by induction on i.

Ifi=0,then fo= T andthus ke f, by assumption. If f; satisfieske f; for some i, then:
hc T[b] € f[fl] ,
and thus 2 isbelow both f; and r{f;], implying that

ke glb{f, T} = fiur -

Q.ED.

The existence of a greatest prefixedpoint below an arbitrary partial function ¥ can be
independently proved by taking the lub of the consistent set of dl the prefixedpoints of 7 below

T, and using the fact that this (b is itself a prefixedpoint of 7. Theorem 6 shows that the
descending access method always leads to this greatest prefixedpoint. Note that the set of
fixedpoints below T need not have a greatest element (in fact, it may even be empty it ¥ =

Ifep(T) ).

-We can now show that the descending access method is the least access method in the following
sense:

Theorem 7: For any functional 7,if an initial function T converges to g; under the
descending access method C and to g, under some other access method

U, then g, g2

Proof: We first prove that for any formula & for which 87[f] exists, g,= 87[f). The proof is

by induction on the structure of the formula &.
(i) 1f&isF then clearly g, F = §7(7)

(i) If & is of the form 7[&,), then by the induction hypothesis g,-&,7[f). Since by
Theorem 6, g, is a prefixedpoint of 7, we have:

g1 & 7lg e rIENMN =TT
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(i) if & isof the form gi{%,T,} then g,= &7/ and g, &I/ by the induction
hypothesis, and thus

g1 = gb{&TAST = T
(iv) If § is of the form [ub{T T} then

g1 & &7 = wh{ AT = §7If
The lub exists since we assume that E7(f] is defined.

Let U be the sequence of formulae {&;}. The functions &7f] exist since we assume that this

sequence CONVerges to g,. Since g, =& 771 for al i, and the sequence {&7f3} is convergent,

g € im{8Nf = g» Q.E.D.

Using Theorems 6 and 7, we can now indirectly show that access methods C and D are
equivaent. One can easily show that any initid function f converges under method D to some

prefixedpoint g, of 7. If we denote by ¢, the prefixedpoint to which T converges under the

descending access method C, then g, g, by Theorem 6, and g,= g, by Theorem 7.
Consequently, any initial function T converges to the same function under access methods C and
D.

5.3 The Ascending Access Method

In this section we consider the ascending access method C’, which is dua to the descending
access method C. The following results (which are stated without proofs) are analogous to
those obtained in subsection 5.2; the main difference is that access methods in which the fub
operation occurs may fail if the (ub of inconsistent functions is taken.

Lemma 7. Let {f;} be a sequence of functions generated by the ascending access
method C' for 7 and f. Then:

() 1f F ePRE(r)thenforali f;=74)f
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@) If fe POST(?) then for dl i, f; = f.

Theorem 8: For any functional rand initial function f, if the functions f;

generated by the ascending access method C' exist, then the sequence
{f;} converges t o a postfixedpoint of 7. This limit function is the least

among the postfixedpoints Of 7 that are above f.

Theorem 9: For any functiona 7,if aninitial function f converges to g, under the
ascending access method C' and to g, under some other access method

QI, then nggl.

The following Lemma gives asufficient condition on 7 andf which guarantees the existence of

&TLf for an arbitrary formula §.

Lemma 8: For agiven 7 and f, if thereis a postfixedpoint g of  which satisfies
f & g, then for any formula &, the function §7[f] exists.

Proof: We show (by induction on the structure of &) that §T[f) exists and satisfies 7 [f1= g
for any formula §:

() IfFisof theformF, then37(f]= f = ¢ by assumption.

(i) If & is of the form 7[%,), then by the induction hypothesis &lf] exists and satisfies
&A= g, and thus:

TN =& rlglee
Gii) 1f § is of the form glb{¥ ¥}, where §Tlf1e g and §[f1= g, then clearly:
BT = g BTN = gble gl = ¢

(iv) Similarly, if & isof the form (& . §,}, where T(f1& g and §3(f1= g, then these two
functions are consistent, and thus their lub exists and satisfies:

ST = wp{E (A, T = lwvlg. g} = ¢ Q.E.D.

34



Manna & Shamir

Corollary: For agiven 7 and £, if there is a postfixedpoint g of 7 which satisfies
f = g, then no access method ¥ can fail for 7 and .

Note that this corollary does not imply that such an ¥ converges to alimit under 9.

The sufficient condition in this corollary is clearly not necessary in general. Consider, for
example, the following access method:

Fo = glb{F,T [F}
F = glo{T [F1T 2F}
Fi =7 [lub{Fi_ l'T [Fl-z]}] for i22.

For any functional 7 and initial function f, all the pairs of functions f;_}, 7{f;_o] to which the
lub is applied are consistent, and thus this access method can never fail.

We now show that for the specid case of the ascending access method, the condition in Lemma
8 exactly characterizes the cases in which the method does not fail.

Lemma 9: A necessary and sufficient condition for a function f to converge under
the ascending access method C' is the existence of a postfixedpoint g
of 7 such that feg.

Proof: If the postfixedpoint g exists, then by the corollary of Lemma 8 the sequence {f;} is

defined. Since it is an ascending chain, it is a convergent sequence and thus f converges under
method C'.

On the other hand, if f converges under C’ then, by Theorem 8, the limit g of the generated
sequence {f;} is a postfixedpoint of 7. Furthermore, f = g, since {f;} is an ascending chain
whose first element is f. We have thus shown the existence of a postfixedpoint g of 7 which
satisfies f=g.

Q.ED.

By the corollary of Lemma 8 and by Lemma 9, the ascending access method C’ is the most
exacting in the sense that:

Corollary: If method C' does not fail for a given r and £, then no other access
method ¥ can fail for 7 and f.
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6. The Fixedpoint Method

In this section we finally devise a method which always succeeds and under which any initial
function converges to afixedpoint. As we show in subsection 6.2, no single access method can
achieve this goal; we thus need a somewhat more complicated method, based on compositions of
access methods. This notion is formally defined as follows:

Definition:  For afunctional 7, an initial function f is said to converge to 4
under the composition ¥,0 ¥, of two access methods ¥, and U, , if
f converges to some function g under ¥, and g converges to 4

under %, .

This definition can be naturdly extended to an n-fold composition 0. . oW 0N .

6.1 Properties of the Fixedpoint Method

Definition: ~ The fixedpoint method is the composition A o C of the two access
methods C and A .

The main result concerning the fixedpoint method is:

Theorem 10: For a functional r, any initial function f converges under the

fixedpoint method A o C to afixedpoint of # whichiscloseto ¥ .
Furthermore, this fixedpoint is the least among all the fixedpoints of

r which can be reached from f under any composition of access
methods.

Proof: Any initial function ¥ converges under A o C to a fixedpoint 4 of 7 , since f
converges under C to a prefixedpoint g of r (by Theorem 6), and g converges under A
to a fixedpoint 4 of 7 (by Theorem 5).

We now show that 4 is close to the initial function f . Let ! be an arbitrary fixedpoint of
7. Then:

(i) If L= £, the prefixedpoint ¢ is below F | and by Theorem 6, the prefixedpoint g to
which ¥ converges under C satisfies = g. Consequently,

! = lim{ru)y g tim{r g} = A
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and thus lgh.

(i) If f=t, then clearly g =i, since ge f . This implies that:
= im{rOg) € timr@uyy =1 |

and thus ke!.

Finally, we show that 4 is the least among all the fixedpoints of £ which can be reached
from f under any composition of access methods.

Suppose that f converges to afixedpoint ! of 7 under the composition A, 0¥, ;0...0

converges under the partial compositions ;0. ..o%, (in particular, g, =¢). The function
S converges to the prefixedpoint ¢ under C. We now show that g & g; for al i=1,..n .

Since f converges to g and g; under the respective methods C and ¥, , we have (by

-Theorem 7) that g =g, . The function g, converges to g, under %, , and to some
prefixedpoint g,” under C (this convergence is assured since any initial function converges

under C ). By Theorem 6, g,’ isthe greatest among the prefixedpoints of # which are
below g; . However, g is one such prefixedpoint and thus g & g’ . On the other hand, g’ =
g2 by Theorem 7; we thus concludethat g g, .

Continuing this type of reasoning for i=3,.,n, we can show that g =g; for al ¢ . In

particular, g, is the fixedpoint ¢of 7, and thus g 1.

We still have to show the relation # =/ between the fixedpoints # and ! obtained under the
compositions A o Cand %, 0. ..o, respectively. We aready know that g=/, and that

the prefixedpoint g converges to 4 under the direct access method A . By Theorem 5, the
fixedpoint % is close to g, and in particular # =k for any fixedpoint k of ¢ satisfying g
ek . Since ! isone such fixedpoint, we obtain the desired result A=/ .

Q.E.D.

Aninitial function f which converges under the ascending access method C’, convergesto a
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pcstfixedpoint g of 7 (by Theorem 8). The function g is assured to converge to a
fixedpoint 4 of 7 under the direct access method A , and thus any f converges under A o
C' to afixedpoint of 7 , provided only that method C' does not fail for f . By Lemma 8,
this condition is equivalent to the existence of a postfixedpoint of 7 above f . The dual to
Theorem 10 is therefore:

Theorem 11: For any functional = and initial function f such that there exists a
postfixedpoint of 7 above f , the function f converges under A o
C' to a fixedpoint of 7 which is close to f . Furthermore, this

fixedpoint is the greatest among all the fixedpoints of T which can
be reached from f under any composition of access methods.

The proof of Theorem 11 is analogous to the proof of Theorem 10; the additional assumption
about the existence of a postfixedpoint is used only in order to establish the existence of the
appropriate limits.

Two other compositions of access methods which are equivalent to A ¢ C and A o C are
characterized in the following lemma

Lemma 10:

(i) Foranyrand f, f converges to the same function under A o C and
C'oC.

(if) For any 7 and f, f converges to the same function under A o C’
and C o C', provided that C' does not fail.

Proof:

(1) The function g to which f converges under C is a prefixedpoint of . By Lemma
7(1), methods A and C' behave in the same way for prefixedpoints, and thus the
compositions A o C and C' o C are equivalent.

(if) Similar, by Lemma 7(::). Q.E.D.

An arbitrary initial function f can be considered as a “distorted fixedpoint” to which two
types of corrections must be applied:

(i) Defined parts, which are either changed or replaced by w under the
application of 7, must be deleted from the function since they do not
represent possible fixedpoint values.
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(ii) Undefined parts, which are replaced by defined values under the

application of 7, must be completed with the appropriate fixedpoint
values.

The descending access method performs only the first type of correction, while the ascending
access method performs only the second type of correction. None of them can transform an

arbitrary initial function f to a fixedpoint of 7, but when both of them are applied to £, a

fixedpoint of 7 is obtained. The order in which the two correcting stages are performed (i.e.,
C oCor CoC )may affect the fixedpoint obtained, since the two access methods C and
C’ do not commute in general. Furthermore, the composition C o C' in which the deletion
stage comes after the completion stage may fail, while the fixedpoint method C' o C cannot.

Let us denote by ST the set of fixedpoints of 7 which can be reached from ¥ by
compositions of access methods. The following immediate corollaries summarize the structure

of 8T in the case where method C’ does not fail for rand ¥ .

Corollaries:

(i) The set ST contains a least element (accessed by C o C) and a
greatest element (accessed by Co C').

(i) If ¥ converges to the same function # under C'o C and C o C',

then 4 isthe only fixedpoint of = which can be reached from ¥
(by any composition of access methods).

(i) If f is ether a prefixedpoini or a postfixedpoint of 7 , which
converges to /4 under the direct access method A , then 4 is the

only fixedpoint of * which can be reached from f (by any
composition of access methods).

(iv) If f is afixedpoint of 7, then f converges to itself under any
composition of access methods.

(v) All the fixedpoints in $7 are close to f (however there may be
other fixedpoints which are close to f but which are inaccessible from

T by any composition of access methods).

(vi) All the fixedpoints in ST are consistent with the initial function ¥ .
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If access method C' fails for 7 and f , then the set ST need not have a greatest element,

and the functions in 87 need not be consistent with f . However, if T is either a
prefixedpoint or a postfixedpoint of 7, then C’ cannot fail for r and f .

Theorem 10 guarantees that for any initial function f , there is at least one fixedpoint 4 of 7
which is close to f . For afixed functional 7, we can consider the fixedpoint method A o C

as a functional M, which maps any function f to some fixedpoint of 7 that is close to f
The functional M, maps the set PF of partial functions (over the appropriate domain) onto
the set FXP(r), since any fixedpoint % of 7 is mapped to itself under M, . Our aim in
the rest of this subsection is to study the monotonicity and continuity properties of M, .

Theorem 12: For any functional 7, 3, : PF-FXP(r) is monotonic.

Proof: By induction on the structure of formulage it is easy to show that for a fixed functional

7 , any access method is amonotonic mapping from initial functions to limit functions
(Whenever they exist). Consequently, the composition A o C (for which limits always exist) is

also monotonic.

Q.ED.

Note that the existence of such a monotonic mapping from PF onto FXP(r) is not surprising
(due to the many structural similarities between the two sets); however, the theory of access
methods enables us to define the mapping in a Smple and constructive way.

The functional M, whose monotonicity was shown above, is not continuous. This fact does

not stem from the special way in which 3, isdefined. The following theorem shows that for
certain functionas 7, any such mapping is inherently noncontinuous.

Theorem 13: There are functionals 7, for which any mapping ©: PF-FXP(r),

which assigns to each partial function f afixedpoint of 7 that is
close tof , must be noncontinuous.

Proof: Let 7 be the following functional over the integers:
r[FXx): 1T F(x- 1) =0then F(x)t0.F(x+ 1) t 0. x
else F(x-1)t 0. F(x+ 1) t 0o ¢ .

The specia property of this functional is that for a certain sequence {f;} of initial functions,
each f; has exactly one fixedpoint -- & -- which is close to it. By the assumption on @ ,
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0[f;1=0 for all i, and thus im{B[f;}} = {. We shall use this fact in order to show that 8
does not preserve the lim of convergent sequences.

The two subterms 0- x in the functional guarantee that any fixedpoint of 7 is undefined for x =
w. For other values of x, 7[Fl(x) is defined in terms of both F(x-1) and F(x+1) , and thus
any fixedpoint of 7 is either € or total over the defined integers. Among the total functions,
only two types of functions are fixedpoints of 7 :

(i) The constant functions:
g(x) =c for some defined integer ¢ ;
(if) The split-constant  functions:

Oifxsj

¢ if x> for some defined integers ¢ and j.

glx) = {
Congder now the ascending chain of functions {f;} , where

Oif x<i
fi) = {w otherwise.

Each f; is a postfixedpoint of 7, which descends to the fixedpoint & of r under the direct

access method A . We now show that & is the unique fixedpoint of ¥ whichiscloseto f; -

Let 42 be a fixedpoint of = which is close to f; . By definition, # must be below any
fixedpoint of 7 which is above f; . Two such fixedpoints above f; are:

gi{x) =0

Oif x<i
gz(x)s{lifxw.

The only fixedpoint of 7 which is below both g, and g, isfl , since no other nontotal
function can be a fixedpoint of 7. On the other hand, one can easily show that Q itself isa
fixedpoint which iscloseto f; . We have thus shown that { is the unique fixedpoint of

which is close to f; . Using the assumption on € , we can now deduce:
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6[£;1=Q for al i .

Let us consider now the function zero =lim{f;} . Since zero is a fixedpoint of 7, it is the

unique fixedpoint of 7 which is close to itsdf, and thus:
6[/im{f;}] = Blzero) = zero .

We have thus shown that © does not preserve the limit of convergent sequences (or even the
lub of ascending chains).

Q.ED.

6.2 The Insufficiency of a Single Access Method

Theorem 10 showed that the composition A o C of access methods has the interesting
property that any initial function converges to a fixedpoint under it. A natural question is

whether there exists some single access method % which has this property, i.e., whether the
fixedpoints of 7 can be reached from arbitrary initial functions by means of a single limiting
Process.

A plausible candidate for such an access method is:
Fo = F
Fo,.1 = T[Fo;] } foral i20.
F2i+2 = glb{F2i+ ] Ni [F2£+ ] ]}

In this method, the functions with odd indices are defined as in method A , and the functions
with even indices are defined as in method C . Unfortunately, one can easily show that certain
initial functions T do not converge under this “aternating access method.”

In this section we formally prove that any such attempt to construct a single access method, in
which any ¥ converges to afixedpoint, must fail. It suffices to consider for this purpose the

simple functional 7,[F)x): F(x+1) over the natural numbers. What we actually show is that
for any “candidate” access method ¥ , one can construct an appropriate initial function ¥ such
that T does not converge to afixedpoint of 7, under ¥ .

Two useful properties of the selected functional 74[FXx) : F(x+1) are

(i) For any two functions T, f,:
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Tolglb{f1f2}] = glb{Tolf117olf20),

(i) For any two congstent functions fi, f> :

Tollub{f) f2}] = lub{7olf 1 7olf2]} -
Let & be an arbitrary formula. The interpreted formula ¥ eisa composition of 7, glb and
lub, and T, commutes with both the g/b and {ub operations. We can thus push each occurrence
of T4 in %: ¢ al theway inwards, and obtain a modified formulain which various powers of
T, are combined by a structure of gl6 and lub operations.

Example 9: Consider the formula &:

T (ub{F,T [glb{F.T [F]}]}].
For the specid case of the functional 7, & "o can be transformed in the followi ng way:

T ollub{F,7olglb{F,7o[F}})}] »

7 ollub{F,glb{r o[F)7o @ IF)}) -
Lub{ro[F1,rolglb{ro[F1 7o PIF ]} -
Lub{ro[Flgib{r o' PIF )7 F )} .

In this modified formula, there are three powers of 74 (7, 7%, 7o), these powers are

connected by a structure consisting of one g6 and one lub operation. O
r . T T .

For a formula® °, we define the depth of & °, d(F °), to be the greatest power of 7, occurring

. o . T . .

in the modified formula. Since 7,®[fi(x)= fx+k), the value of &' °[f)x) istotally determined

by the values of fix’) for x < x’ sx+d(?§'7°). We shall later use the fact that any change in the

values of fx’) for other arguments X' cannot affect the value of $}f°[fJ(x).
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We can now prove the theorem:

Theorem 14: Let T4 be the following functionad over the natural numbers:
To[F)(x) : Flx+ 1).

Then there is no single access method ¥ under which any initial
function f converges to a fixedpoint of 7.

Proof: We first give an informal overview of the proof. Suppose that the theorem is not true,
and access method % -{8}}, has the desired property, We derive a contradiction by

constructing an initial function T in such away that for some ascending sequence ig < i; <... of
indices,

r w ifkis even
B0 = {) i ieodd

The sequence of functions {5};"[}“]} thus cannot converge, since it changes value infinitely
many times at x = 0.

The function f is defined as the lim of some convergent sequence of functions {g;}. This
sequence satisfies, for each k:

w if & is even
0 ifkisodd.

¥ %0 = {
For any fixed function g, the other functions g, for k’ > k, are constructed in such a way that
gilx) and g,(x) are identical for all Osxsd(g‘l{ 9. Consequently, the limit ¥ of {g;} aso
satisfies.
T

fx) = gdx) forall 0sxsdd; 9.

Since the vaue of is"l:"{gk](O) depends only on the value of g for the first d(?ri:")
arguments, we obtain:
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F; 0 = §; g X0)

This equality establishes the oscillating nature of the sequence of values {%t-:"[ﬂ(O)}, whichis
the desired result.

We now formaly define the convergent sequence of functions {g;} and the ascending sequence
of indices {i;}.

As first elements in these sequences, we take go=Q and iy = 0. We justify this selection by

noting that ?rg°[m(0)sw , since © is a fixedpoint of 7 and thus for any formula &, 5}7°[Q]
=Q.

We now proceed to define g, and ;. As discussed above, we want g,(x) to be identical to gq(x)
for any 0 <x < d(?rz:"). We thus define:

’
_ [ &ofx) if0sx<dd;9
gl = { 0 otherwise. ¥

By assumption, any initial function converges under U to a fixedpoint of 7, and thus g,

converges under ¥ to some fixedpoint % of 7. Since g; converges to the same fixedpoint zero
under the two extreme compositions C' o C and Co C', the function 2 must be zero. By
definition of convergence, there is some index ¢; such that

¥%g, X0 = 0,
and we have thus found the second function g, and second index i;.

We now briefly outline the next stage in the construction of {g;} and {i;} (i.e., g2 and ip). Let m,
be defined as:

my = max( 2, d(if‘l{)") . d(%‘;") ).

The function g, is defined as:
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gilx) if0Osxsmy
(A] otherwise .

gl = |

This function converges to @ under both compositions C' o C and C o C', and thus g,

converges to § under % as well. This convergence implies the existence of an index i >,
such that

%;;o[gzl =W.

The other functions g, in the sequence are constructed by taking an appropriate initial segment
of g_; and changing the value of the constant tail from O tow or from w to O (according to
the oddity of k). The boundary of the initial segment, m,, is defined in such away that mj, 2
k, and thus the sequence {gj} of functions is assured to converge a any argument x (Since gp(x)
is constant for all k2 x). The function f = Zim{gj} isthus defined, and by its definition, it
sdtisfies:

w if xis even

g‘f:o [fX0) = g.;ko [g:X0) = { 0 ifxisodd.

Q.ED.
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Future Research

This paper covers only the lattice-theoretical aspects of access methods. Other problems which
might be of interest include the computability aspects of access methods, the relations between
access methods and substitution/simplification techniques for evaluating fixedpoints, and
characterizations Of those cases in which a single access method is sufficient in order to access
fixedpoints.
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