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I. Introduction

In June 1962, the first American space probe to Venus (Mariner I) went off course and had to
be destroyed because of an error in one of the guidance programs in its onboard computer.
One statement of the program, though syntactically correct, had a meaning altogether different
from that intended by the programmer. Although few bugs have such spectacular effects,
errors in computer programs are frequent and influential. There has been substantial effort
recently to apply mathematical rigor to the programming process and to enable the accuracy of
the machine to compensate for the error-prone human mind.

In the late nineteenth and early twentieth century, mathematics underwent a process of
formalization and axiomatization, partially in an effort to escape from paradoxes and logical
errors encountered by previous generations of mathematicians. A similar process is underway
in the development of a logical theory of programs.’ This theory has already made our
understanding of programs more precise and may soon facilitate our construction of computer
programs as well. Logical techniques are being developed to prove programs correct, to detect
programming errors, to improve the efficiency of program operation, to extend or modify
existing programs, and even to construct new programs satisfying a given specification; many of
these techniques have been implemented in experimental programming systems. In the last
decade, this field of research has been extremely active; it now has the potential to exert a deep
influence on the way computer programs are produced.

The available techniques are already described in the literature, but the relevant papers are
scattered through many technical journals and reports, are written in a variety of incompatible
notations, and are often unreadable without some background in mathematical logic. In this
paper, we attempt to present the principal methods within a unified framework, conveying the
intuition behind the methods by examples, and avoiding the formal apparatus of the logicians.

To facilitate a comparison between the various techniques, we use a number of different
algorithms for performing the same task: to compute the greatest common divisor of two

integers. These algorithms are simple enough to be readily understood, but subtle enough to
demonstrate typical difficulties. \

The greatest common divisor of two nonnegative integers x and y , abbreviated as g&(x  y), is
the largest integer that divides both x and 1 . For instance: gcd(9 12) = 3, g&(12 25) = 1, and
gcd(0  14) = 14. When x and y are both zero there is no greatest common divisor, because
every integer divides zero; on the other hand, when x or y is not zero, a greatest common
divisor must exist.

A naive algorithm to compute the gcd of x and 7 might behave as follows: Make lists of all
the divisors of’x &and  of all the divisors of r ; then make a third list of all the numbers that
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appear in both lists (these are the common divisors of x and J ); finally, find the largest
number in the third list (this is the greatest common divisor of x and 7 ). The cases in which
x or 7 is zero must be handled separately. This algorithm is straightforward but inefficient
because it requires an expensiv!  operation, computing all the divisors of a given number, and
because it must remember three lists of intermediate numbers to compute a single number.

A more subtle but more efficient algorithm to compute the gcd of two numbers can be devised.
IJntil  the first number is zero, repeat the following process: if the second number is greater
than or equal to the first, replace it by their difference -- otherwise interchange the two
numbers -- and continue. When the first number becomes zero, the answer is the second
number. This answer turns out to be the gcd of the two original numbers. The new algorithm
is more efficient than the naive one, because it only needs to remember two numbers at any one
time and to perform the simple minur operation.

The above algorithm can be expressed as a stylized program:

Program A (the subtractive algorithm):

input(q) 70)

(x 7) + (x0 70)

more: if x = 0 then goto  enough
if y 1 x then 7 t y-x else (x 7) t (r x)
got0 more

enough: outputi).

The notation (x y) t (xo yo) means that the values of x and JI are simultaneously set to the

input values x0 and y. Thus, the statement (x u) e (r X) has the effect of interchanging the

values of x and J . This program causes the following sequence of values of x and JI to be
generated in computing the gcd of the input values x0=6 and ~0-3:

x = 6 and y = 3,
x = 3 and y = 6,
x = 3 and y = 3,
x = 3 and r = 0,
x = 0 and JI = 3.

Thus, the output of the program is 3.

Although the earlier naive algorithm was obviously correct, because it closely followed the
definition of gcd, it is by no means evident that Program A computes the gcd function. First
of all, it is not clear that when x becomes zero, the value of y will be the gt4 of the inputs;
that this is so depends on properties of the gcd function. Furthermore, it is not obvious that x
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will ever become zero; we might repeatedfy execute the If-then-else statement forever. For
instance, consider the program A ’ obtained from A by replacing the conditional

if y 1 x then y c y-x else (x y) e (y x)

by
if y i’x ihen y t 9-x else x t x-y.

This program closely resembles Program A, and it actually does compute the gcd of its inputs
when it happens to produce an output. However, it will run forever and never produce an
output for many possible input values; for instance, if x0*0 and yo=O,  or if x0* 0 and JI~=x~.

Thus, if xo=yo= 3, the following sequence of successive values of x and g emerges:

x = 3 and y = 3,
x = 3 and y = 0,
x = 3 and y = 0,
x - 3 and y = 0,. . . .

These programs are as simple as any we are likely to encounter, and yet their correctness is not
immediately clear. It is not surprising, therefore, that bugs occur in large software systems.
Although programs may be subjected to extensive testing, subtle bugs frequently survive the
testing process. An alternative approach is to prove mathematically that bugs cannot possibly
-occur  in the program. Although more difficult to apply than testing, such mathematical proofs
attempt to impart absolute certainty that the program is, indeed, correct.

Techniques derived from mathematical logic have been applied to many aspects of the
programming process, including:- ’

0 correctness: proving that a given program produces the intended results.

l termination: proving that a given program will eventually stop.

l transformation: changing a given program into an equivalent one, often to improve its

efficiency (optimization).

@ development: constructing a program to meet a given specification.

These techniques are intended to be applied by the programmer, usually with some degree of
computer assitance. Some of the techniques are fairly well understood and are already being
incorporated into experimental programming systems. Others are just beginning to be
formulated and are unlikely to be of practical value for some time.

1
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Our exposition is divided between a basic text, given in an ordinary type font

and secondary notes interspersed throughout the text in a smaller font. The
basic text presents the principal logical techniques as they would be applied

by hand; the secondary notes discuss subsidiary topics,  report  on

implementation efforts, and include bibliographical remarks. Only, a f e w
references are given for each topic, even though we are likely to lose some

good friends in this way. The hasty reader may skip all the secondary notes

without loss of continuity.

In the following pages, we will touch on each
investigated and best understood of them all.

of topics; we begin with correctness, the
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II. Partial Correctness

To determine whether a program is correct, we must have some way of specifying what it is
intended to do; we cannot speak of the correctness of a program in isolation, but only of its
correctness with respect to some specifications. After all, even an incorrect program performs
JO~O computation correctly, but not the same computation that the programmer had in mind.

For instance, for the gcd program we can specify that when the program halts, the variable y

intended to equal the greatest integer that divides both inputs x0 and yo; in symbolic notation
iS

y = max(2.4  : ulx, and ulyO)  .

(Here,’ the expression (U : p(u)) stands for the set of all elements u such that p(u) holds, and the
expression U(U  stands for “u divides v .“) We call such a statement an output assertion, because
it is expected to be true only when the program halts. Output assertions are generally not
sufficient to state the purpose of a program; for example, in the case of the gcd , we do not
expect the program to work for any x0 and yo, but only for a restricted class. We express the

class of “legal inputs” of a program by an input assertion. For the subtractive gcd algorithm
(Program A), the input assertion is

xc h 0 and ‘y. 2 0 and (x0 z 0 or y. f 0).

We require that at least one of the inputs be nonzero, because otherwise the gcd does not exist. t
We do not state explicitly that the inputs are integers, but we will assume throughout this paper
that variables always assume integer values.

We have expressed the specifications for Program A as a pair of input-output assertions. Our
task now is to show that if we execute Program A on any input satisfying the input assertion,
the program will halt with output satisfying the output assertion. If so, we say that Program A
is totally correct. It is sometimes convenient, however, to split the task of proving total
correctness of a program into two separate subtasks: showing partial correctness,  that the
output assertion is satisfied for any legal input if the program halts; and showing termtnation,
that the program does indeed halt for all legal inputs.

The language in which we write the assertions is different from the programming language
itself. Because the statements of this a~ertlon  hnguuge are never executed, it may contain
much higher level constructs than the programming language. For instance, we have found the
set constructor (u : . . .) useful in describing the purpose of Program A, even though this
notation is not a construct of conventional programming languages. Written in such a high-
level language, the assertions are far more concise and naturally expressed than the program
itself.

6
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It will be convenient for us to ignore the problem of termination for a while and deal only with
partial correctness. In proving partial correctness, it helps to know more about the program
than just the input-output assertions. After all, these assertions only tell us what the program
is expected to achieve and give us no information on how it is to reach these goals. For
instance, in understanding Program A, it is helpful to know that whenever control passes
through the label more, the greatest common divisor of x and y is intended to be the same as
the greatest common divisor of the inputs x0 and y. , even though x and y themselves may

have changed. Because this relationship is not stated explicitly in either the input-output
assertions or the program itself, we include it in the program as an intermediate arsertion,
expressed in the assertion language:

max{u  : ulx and uly} = max(u  : ulxo  and ulyoj  .

Another intermediate assertion states that whenever we pass through more, the program
variables, x and y , obey the same restrictions as the input values x0 and y. , i.e.,

x L 0 and y > 0 and (X z 0 or y z 0).

We rewrite Program A below, annotated with its assertions (within braces, “1 . . . )‘I). Note that
the assertions are not intended to be executed, but are merely comments expressing relationships
that we expect to hold whenever control passes through the corresponding points.

Program A (annotated):

inwt(xo yo)

( x0 2 0 and y. L 0 and (x0  ti 0 or y. rc 0) )

(x y) + (ql Jo)
more: {x~Oand~rOand(xzOorylcO)

and max(u  : U/X  and uly) = max(ulxo  and ubo} )

if x = 0 then goto  enough
if y 2 x then J t y-x else (x y) e (y x)
got0 more

enough: ( y = max(u : ujxo and u[yo) )

output(y) .

Our goal is to prove that if the program is executed with input satisfying the input assertion,
and if the program halts, then the output assertion will hold when the program reaches enough.

For this-purpose, we will show that the intermediate assertion is true whenever control passes
through more; in other words, it is invariant at more. The proof is by mathematical induction on
the number of times we reach more. That is, we will start by showing that if the input assertion
is true when we begin execution, the intermediate assertion will be true the first time we reach .
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more;  we wilt then show that if the intermediate assertion holds when we pass through more,
then it wilt be true again if we travel around the loop and return to more; therefore, it must be
true every time we pass through more.

Finally, we will show that if the intermediate assertion holds at more, and if control happens to
pass to enough, then the output assertion will be true. This will establish the partial correctness
of the program with respect to the given input and output assertions.

Let us first assume that the input assertion is true when we begin execution, and show that the
intermediate assertion holds the first time we reach more. In other words, if

xo 1 0 and r. L 0 and (x0 l 0 or y. z 0) ,

and we execute the assignment

then
x 1 0 and y 2 0 and (X z 0 or 1 z 0)
and mnx(u : ulx,and ub) = max(u  : ulxo  and Use) ,

f-or the new values of x and y .

Because the assignment statement sets x to x0 and y to ~0, we are led to prove the ueri;fication

condition

(1) x0 > 0 and y. 2 0 and (x0 z 0 or y. r~ 0)

=> x0 1 0 and y. 2 0 and (x0 z 0 or y. ti 0)

and max(u : u@o and U~O)  - max(u  : ulxo  and ubo) .

(Here the notation A => B means that the antecedent A implies the consequent B.) The
consequent was formed from the intermediate assertion by replacing x by x0 and y by lo.

Next, assuming that the intermediate assertion is true at more and control passes around the
loop, we need to show that the assertion will still be true for the new values of x and y when we
return to more. In other words; If the intermediate assertion

x 1 0 and y ~0 and (x z 0 or y H 0)
and mczx(u : u/x and ub] = max(u  : ulxo  and zQyo]

holds, if the exit text x = 0 is false (i.e., x z 0) and if the conditional statement

8
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if y 1 x then y + y-x else (x y) c (y x)

is executed, then the intermediate assertion will again be true. To establish this, we distinguish
between two cases. If y L x , the assignment statement p l p-⌧ is executed, and we therefore
must prove the verification condition

(2) x r 0 and p L 0 and (x rr 0 or p z 0)
and max(u : ulx and ub) - mux(u : ulzo and ubo)  ,

and ~0 .

and p L x
-> x L 0 and p-x z 0 and (x ti 0 or p-x z 0)

and max{u  : u@ and ub-tc) = mux(u : ubo and ubo) .

The antecedent is composed of the intermediate assertion and the tests for traversing this path
around the loop. The consequent was formed from the intermediate assertion by replacing y by
p-x . .

In the alternate case, in which J < x, the consequent is formed by interchanging the values of x

and y. The corresponding verification condition is

(3) xrOandyr:Oand(xH  OorpH  0 )
and max(u : ub and ub) = max(u  : ubo and ubo}

and ~0
andpcx ’

4

=> p L 0 and x 2 0 and (r z 0 or x z 0) *
and max(u : ub and ub} = max(u  : ~1x0 and ubo)  .

To complete the proof we must also show that if the intermediate assertion holds at more and
control passes to enough, then the output assertion will hold. For this path, we need to establish
the verification condition ’

(4) x’zOandpzOand(rH  OorpH  0 )

and max{u : uk and ub) - max(u : ubo and ubo]

and x - 0 .

. . -> p - mux{u : ubo and ubo).

These verification conditions are lengthy formulas, but it is not difficult to prove that they are
ail true. -Conditions (1) and (3) are logical identities, which can be proved without any
knowledge of the integers. The proofs of Conditions (2) and (4) depend on three properties of
the integers:



Manna & Waidinger The Logic of Computer Programming

u/x and ub <=> ~1%  and ub-x

(the common divisors of x and p-x are the same as those of x and p),

(any integer divides zero), and *

( c )  max{u:ulyJ=y  ifp>O

(any positive integer is its own greatest divisor).

To prove Property (a), assume ub and ub . Then, we must show that $1-2
as well. We know that x=&m u and ‘y = /a U, for some integers & and I . But
then y-x = (I-k)* u, and hence ub-x, as we wanted to show. Similarly, if ulx

and ub-x, then x = m*u and p-x = nd for some integers m and n . But

then y = x+(y-x) = (m+n)e  u, and hence t/b .

To prove Condition (2), let us consider the consequents  one by one. That x20, ~+xrO,  and (XZ 0
or y-x rc 0) are true follows directly from the antecedents ~20, 71% and xz 0, respectively. That

ma+ : ulx and ub-r)  = max(u  : ulxo  and ubo)

follows from the antecedent

max(u  : u)x and uly)  = max(u  : ubo and ubo]

and Property (a).

To prove Condition (4), first observe that the antecedents imply
l

p>o  ,

because x=0 and (xrt 0 or yt0)  imply 7~0 , but pec0  and pro imply p>O . Now, since x=0 ,
applying Property (b) to

max(u : ~1% and ub] - max(u  : ubo and z@yoj

yields

max(u  : ub] - max(u  : u/x0 and ubo]  .

Because jy>O , applying Property (c) yields

10
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p = max(u  : ulxo and ubo)  ,

the consequent of Condition (4).

This concludes the proof of the partial correctness of Program A. Note again that we have not
proved the termination of the program: we have proved merely that if it does terminate then
the output assertion is satisfied. A similar proof can be applied to Program A’ (the program
formed from Program A by replacing the statement (x p) +- (v X) by x + x-p), even though that
program may loop indefinitely for some legal inputs, Program A’ is partially correct, though
not totally correct, because it does compute the gcd of those inputs for which it happens to halt.

The proof of the partial correctness of Program A involved reasoning about four loop-free
program ,paths: one path from the input assertion to the intermediate assertion, two paths from
the intermediate assertion around the loop and back to the intermediate assertion, and one path
from the intermediate assertion to the output assertion. Had we not introduced the
intermediate assertion, we would have had to reason about an infinite number of possible
program paths between the input assertion and the output assertion corresponding to the
indefinite number of times the loop might be executed. Thus, the intermediate assertion is
essential for this proof method to succeed.

A ithough a program’s assertions may become true or false depending on the location of control
in _ the program, the verification conditions are mathematical statements whose truth is
independent of the execution df the program. Given the appropriate assertions, if the program
is partially correct, then ail the verification conditions will be true; inversely, if the program is
not partially correct, at least one of the verification conditions wilt be false. ‘We have thus
transformed the problem of proving the partial correctness of programs to the problem of
proving the truth of several mathematical theorems.

The verification of a program with respect to given input-output assertions consists of three
phases: finding appropriate intermediate assertions, generating the corresponding verification
conditions, and proving that the verification conditions are true. Although generating the
verification conditions is a simple mechanical task, finding the intermediate assertions requires
a deep understanding of the principles behind the programs, and proving the verification
conditions may demand ingenuity and mathematical facility. Also, a knowledge of the subject
domain of the program (e.g., the properties of integers or the laws of physics) is required both
for finding the intermediate assertions and proving the verification conditions.

One way lo apply the above technique is to generate and prove verifiation conditions by hand.
However, in performing such a process we are subject to the same kinds of errors that
programmers commit when they construct a program in the first place. An alternate possibility
is to generate and prove the verification conditions automatically, by means of a verification

I I
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system. Typically, such a system consists of a veripatfon  condition generator, which produces

the verification conditions, and a theorem prover,  which attempts to prove them.

i nvar ian t  assertlons were ‘ in t roduced by Floyd [1967]  to prove part ia l

correctness of programs, although some traces of the idea appear earlier in

the literature. King [1969] implemented the first system that used invariant

assertions to prove the partial correctness of programs. Given a program, its

input-output as’sertions, and a set of proposed intermediate assertions, King’s
system generated the verification conditions and attempted to prove them.

Some later systems (such as those of Deutsch [1973],  Elspas, Levitt, and

Waldinger [ 1973 J, Good, London, and Bledsoe [ 19753,  Igarashi, London, and
Luckham  119753,  and Suzuki [ 1975)) adopted the same basic approach but
employed more powerful theorem provers to prove the verification conditions.

Therefore, they were able to prove the partial correctness of a wider class of

programs.

Although the above systems have advanced somewhat beyond King’s original
effort, they have two principal shortcomings. They require that the user

supply an appropriafe set of intermediate assertions, and their theorem

provers are not powerful enough to prove the verification conditions for most

of the programs that arise in practice. Let us consider each of these

difficulties separately.

0 finding invariant assertions. Although the invariant assertions required to

perform , the verification are guaranteed to exist, to find them one must

understand the program thoroughly. Furthermore, even if we can discover

the program’s principal invariants (e.g., max(u  : U~X and I.@) = max(u : uJxo

and ubo) above) we are likely to omit some subsidiary invariants (e.g., 920

above) that are still necessary to complete the proof.

Of course, it would be ideal for the programmer to supply only the program

and its input-output assertions and to rely on the verification system to
construct all the required intermediate assertions automatically. Much
research in this direction has already been done (see, for example, German
and Wegbreit [1975]  and Katz and Manna [1976J.)  However, it is more difficult

for a computer system to find the appropriate assertions than for the

programmer to provide them, because the principles behind a program may
not be readily revealed by the program’s instructions. A less ambitious goal
is to require the programmer to supply the principal invariants and expect the

- system to fill in the remaining subsidiary assertions.

l proving verification conditions. Verification conditions may be complex

formulas, but they are rarely subt le mathematical  theorems. Current

verification systems can be quite effective if they are given strategies

12
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specifically tailored to the subject domain of the program. However, the

programs we use in everyday life rely on a large and varied body of subject

knowledge, and it is unusual that a system can verify a program in a new
subject domain without needing to be extended or adapted in some way (cf.
Waldinger and Levitt [1974J). Of course, some of this difficulty may be
remedied by future theorem proving research and by the development of
interactive verification systems.

The invariant assertions that we attach to intermediate points to prove partial correclness  relate
the values of the program variables at the intermediate points lo their initial values. For
instance, in Program A we asserted that

x>Oandy~Oand(xtOoryrO)
and max(u  : ulx and uly)  = max(u  : uixO  and ujyO)

at the label more . A more recent method, the subgoal-assertion method, employs subgoal
assertions that relate the intermediate values of the program variables with their ultimate
values when the program halts. For Program A the subgoal assertion at more would be.

x L 0 and y L 0 and (xz 0 or ye 0) =-> Jr = max(u  : ulx and ub),

where ‘yf denotes the final value of 9 at termination. This assertion expresses that whenever

control  passes through more with acceptable values for x and g , the gcd of thelcurrent  values of
x and y will be the ultimate value of 9.

We prove this. relationship by induction on the number of times we have yet to traverse the
loop before the program terminates. Whereas the induction for the invariant-assertion method
follows the direction of the computaQon, the induction for the subgoal-assertion method
proceeds in the opposite direction. Thus, we first show that the subgoal assertion holds the last
time control passes through more , when we are about to leave the loop. We then show that if
the subgoal assertion holds at more after traversing the loop, then it also holds before traversing
the loop. This implies that the subgoal assertion holds every time control passes through more.
FInally, we show that if the subgoal assertion is true the first time control passes through more,
the desired output assertion holds.

To apply this method to prove the partial correctness of Program A, we need to prove the
following verification conditions:

-(I) x=0
=> [ x L 0 and 12 0 and (x H 0 or y N 0) => y = ma+  : ulx and ub) J

(the subgoal assertion holds when we are about to leave the loop).

13
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(2) [ x L 0 and 1-x r 0 and (x z 0 or l-x rr 0) => yf = max{tc]x  and uly-x) ]

and x z 0
and y L x

=> Lx r 0 andp 0 and(x  rr Oory rr 0 ) -> yf - max(u:uJx  a n d  ub) ]

(the subgoal assertion after traversing the then path of ‘the loop
implies the subgoal assertion before traversing the path).

(3) [ fy I 0 and x 2 0 and (J N 0 or x f 0) => If = ma+  : ub and u/x) ]

and x f 0
andy<x,
=> E x L 0 and y > 0 and (x rr 0 or y z 0) => Yf = max(u : ~1% and I,@) J

(the subgoal assertion after traversing the else path of the loop
implies the subgoal assertion before traversing the path).

(4) x0 L 0 and y. I 0 and (x0 N 0 or r. H 0)

and [ x0 L 0 and y. 1 0 and (x0 z 0 or r. z 0) => yf = max{ulxo  and ubo). J

=> yf = max(u  : z&z0  and ubo)

(the input assertion and the subgoal assertion the first time we enter
the loop imply the output assertion).

Each of these conditions can be easily proved. Conditions (l), (Z), and (3) establish that our
intermediate assertion is indeed a subgoal assertion. Thus, whenever control reaches more the
assertion holds for the current values of the program variables x and JI and the ultimate value

Yf of Y * Condition (4) then ensures that the truth of the subgoal assertion the first time we

reach tn~re is enough to establish the desired output assertion. Together, these conditions prove

the partial correctness of Program A.

From a theoretical point of view, the invariant-assertion method and the subgoal-assertion
method are equivalent in power, in that a proof of partial correctness by either of the methods
can immediately be rephrased as an equivalent proof by the other method. In practice,
however, for a given program the subgoal assertion may be simpler than the invariant
assertion, or vice versa. It is also quite possible to apply both methods together in verifying a

single program. Thus, the two methods may be regarded as complementary. ,

The subgoal-assertion method was suggested by Manna 11971 J and developed
by Morris and Wegbreit 119771

In demonstrating the partial correctness of Program A, we employed rigorous but informal
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mathematical arguments. It is possible to formalize these arguments in a deductive system,
much in the same way that logicians formalize ordinary mathematical reasoning. To introduce
an invariant Reductive system for the invariant-assertion approach, we use the notation

where P and Q are logical statements and F is a program segment (a sequence of program
instructions), to mean that if P holds before executing F, and if the execution terminates, then
0 will hold afterwards. We call an expression of this form an invariant statement. F o r
Instance,

is ‘a true invariant statement, because if the value of x is less than the value of

interchanging those values, the value off will be less than the value of x afterwards.

Using this notation, we can express the partial correctness
and output assertions by the invariant statement

(input assertion} program {output assertion) .

Y before

This statement means that if the input assertion holds, and if the

output assertion will hold; therefore, it adequately states the partial

of a program with respect to its input

program terminates, then the
correctness of our program.

To prove such invariant statements we have a number of rules oftnfercncc,  which express that
to infer a given invariant statement it suffices to prove several subgoals. These rules are
usually presented in the form

A,,A2,...J,

B

meaning that to infer the consequent B it suffices to prove the antecedents A ], AZ, . . . . A, .

Here B is an invariant statement, and each of Al, AZ, . . . . A, is either a logical statement or

another invariant statement. We have one rule corresponding to each statement in our
language.

l nsslgnment  rule. Corresponding to the assignment statement

which assigns the value of each term ti to its respective variable Xi simultaneously, is
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P(x, x2 . . . Xn) =7 Qp, t2 * * * fn)

( P(x 1 x2 * * * Xn))  (x1 x2 . . . Xn) 4- 0, tp l * ’ ‘J {Q@, x:! * ’ * Xn> ) ,

where P(q x2 . . . x,$ and Q(q x2 . . . xn) are arbitrary logical statements, and

c& 12 ’ ’ ’ I,J is the result of simultaneously substituting ti for Xi wherever it appears In

qqx,. . . x,). In other words, to infer the invariant statement

( P(x, x2 . . . XJ) (XI x2 . . . x,b- (t, 22 *a*  ‘n) (QJq x2 a.0 qJ ),

it suffices to prove the logical statement 5

P(q x2 . . . rn)  =7 OJ, 12 . . . tn).

For example, to prove the invariant statement (x < y ) (x y) c (y x) @ 5 x) it is enough to
p r o v e  x < y =7 x 5 y.

This rule is valid because each Xi has been assigned the value ti by the assignment statement.

Thus, Odx,  x2 . . . xn) will hold after the assignment if q(t i t2 . . . tn) held before. Because we

are assuming P(x, x2 . . . xn) held before the assignment, it  is enough to show

Pfi, “2 . . . Xn) =7 Q(t, t, . . . tn).

l conditional rule. The rule for the statement “if R then F, else F2” is

(P and R) F, (Q, (P and -R) I3 (9)

(P) if R then F, else F2 (Q

That is, to establish the consequent it suffices to prove the two antecedents (P and R) Ft (Q,

corresponding to the case that R is true, and (P and -R} F2 (Q, corresponding to the case that

R is false.

To treat loops in this notation it is convenient to use the while statement instead of the goto.

The statement

while R do F

means that the program segment F is to be executed repeatedly as long as the logical statement
R is true. In other words, this statement is equivalent to the program segment

16
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more: if not R then goto  enough
F
got0 more

enough:

The more concise structure of the while statement simplifies the formulation of its rule.

l while rule. Corresponding to the while statement we have the rule

P => I, (I and R) F (I), I and -R => Q
,

(P) while R do F (9)

for any 1. Here, I plays the same role as the invariant assertion in our informal proof; the
condition “P => I” states that the invariant I is true when we enter the loop; the condition
“{I and RJ F {I)”  conveys that if I is true before executing the loop body F, and if the execution
of F terminates, I will be true afterwards; then the condition “I and -R => Q’ ensures that if
control ever exits from the loop, then Q will be true.

To apply the while rule to infer the desired consequent, we need to find a logical statement I

satisfying the three antecedents.

-0 concatenation rule. This rule enables us to make inferences about the concatenation Fi F2 of

two program segments, Fl and F2:

for any R. The consequent follows from the antecedents. For suppose that P holds before
executing F, FP, and that the execution terminates. Then R holds after executing Fi (by the

first antecedent), and therefore Qhoids after executing F2 (by the second antecedent).

These are ail the rules in our deductive system. qdditional  rules are necessary if we wish to
add new statements to our programming language.

To prove an invariant statement (P) F (Q), we apply the appropriate inference rule, of the
f o r m  _

17
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If Ai is an invariant statement, then it is of form (P’j F’ IQ’), where F’ IS a subsegment of F.

In this case, we repeat ihe process for this antecedent. On the other hand, if Ai is a logical

statement, we prove it directly without using any of the rules of the invariant deductive system.
Eventually, all the subgoals are reduced to logical statements, which are proved to be true.

To establish the partial correctness of a program with respect to given input-output assertions,
we prove the invariant statement

(input assertion} program (output assertion) .

In this case, the logical statements produced in applying the above procedures are the program’s
verification conditions.

To show how this formalism applies to the partial correctness of the subtractive gcd
(Proqram A), we rewrite this program using a while statement instead of a goto:L

algorithm

Program A (with whiie statement):

input(x0  ~0) ’

( x0 2 0 and y. 2 0 and (x0  N 0 or y. f 0) }

(x y> + (x0 Jo)
while x + 0 d o

( invariant(x  y) )
if y L x then y t y-x else (x y) t 0) x)

( y = max{u  : ulxo  and uboj )

outPut  9

where invariant(x  y) is taken to be the same invariant we used in our informal invariant-
assertion proof, i.e.,

xrOand~~Oand(xzOoryzO)
and max(u : ulx and I@) = max(u  : ulxo  and ubo) .

This program has the form

( x0 3 0 and y. 1 0 and (x0 z 0 or y. + 0) )

Body A
( y = max(u : ulxo  and ulyo} )

output(y),

and the invariant statement to be proved is

18
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Goal 1. ( x0 1 9 and lo L 0 and (x0*  0 or rof 0) )

Body A

( y=max(u  : ~1x0  and ubo] ).

Note that Body A is a concatenation of an assignment statement and a while statement; thus,
the concatenation rule tells us. that to establish Goal 1 it suffices to prove

Goal 2. ( x0 > 0 and p. 1 0 and (x0*  0 or yoz 0) ) (x j)c(xo yo) ( R(x u) )

and

Goal 3. ( R(x y)) while xz 0 do . . . { y=max(u  : ulxo  and ubo] )

for some assertion .R(x  y) . Here, R(x y) can be taken to be invariant(x  y) itself. (If we make an
inappropriate choice for R(x y), we may be unable to complete the proof.)

To infer Goal 2, it suffices by the assignment rule to prove the logical statement

Goat 4. I x0 2 0 and y. 2 0 and (x0*  0 or yo# 0) => invariant(xo  yo),

which is easily established, because invariant(xo  yo) is simply

x0 2 0 and y. > 0 and (x0+  0 or pof 0)
and max(u  : tllxo  and ubo) - max(u  : ulxo  and zQyo),

The while rule reduces Goal 3 to the trivial logical statement

invariant(x  y) -B invariant(x  y), .

and the two new subgoals

Goal 5. ( invariant(x  y) and xz 0 ) if JI > x then . . . else . . . ( invariant(x y) )

and

Goal 6. invarianr(x  r) and x = 0 => y = max(u  : ulxo  and ubo).
.

The if-then-else rule reduces Goal 5 to

Goal 7, ( invariant(x’  r) and w 0 and y 1 x} y t y-x ( invariant(x  y) )

and

Goal 8. ( invariant(x  y) and x11 0 and y < x ) (x y) + (y x) ( invariant(x  y) ).

19



Manna & Waidinger The Logic of Computer Programming

Applying the assignment rule to each of these goals yields

Goal 9. invariant(x  y) and xrc 0 and y 1 x -> invariant(x  y-x)

and

Goal 10. invariant(x  y) and w 0 and y c x => invariant(y  x).

Now the remaining Coals 6, 9, and 10, like Goal 4, are all logical statements; these are the four
verification conditions of Program A. Each of these statements can be shown to be true, and
the partial correctness of Program A is thus established.

The above deduction can be summarized in the following “deduction tree”:.

G o a l  2

I assignment I assignment
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The above invariant deductive system is essentially the same as the o n e

introduced by Hoare  [ 1969).

Whenever a new deducfive system is developed, it is natural to ask whether it

possesses certain desirable logical properties. The deductive system we have

presented has been proved (Cook [1976-J)  to have the following properties:

l sou.ndness.  If

program is indeed

the verification conditions of a program are true, the

partially correct.

l completeness. If the program is partially correct, its verification conditions

are true.

We have presented the inference rules for only a very simple programming

language. Such rules have also been formulated for goto‘s  , procedures, and

other common programming features (e.g., see Clint and Hoare  [ 19721  and

Ashcroft, Clint, and Hoare  [1976]). However, when more complex features are

introduced, finding sound and complete rules to describe them becomes a

serious challenge. It has actually been proven impossible to formulate

complete rules of inference for certain programming constructs (Clarke

[ 19771).

Part of the difficulty in formulating rules of inference for certain constructs

arises because, traditionally, programming languages have been designed
without considering how programs using their constructs are to be verified. It

has been argued that programming languages designed to allow easier

verification will also facilitate the construction of more comprehensible

programs. Some recent  programming languages designed wi th such

considerations in mind are LUCID (Ashcroft and Wadge [1977]),  EUCLID

(Lampson et al. [ 1977)),  CLU (Liskov [ 197611,  and ALPHARD  (Wulf, London, and

Shaw [ 19761).

Our treatment of partial correctness has been rather idealized: our programming language
Includes only the simplest of features, and the program we considered was quite
straightforward. We have not discussed the more complex problems that occur in verifying the
kinds of programs that actually arise in practice.

Let us briefly mention a few of the trouble sp6ts in proving the correctness

of practical programs.

0 computer a, ithmetic. We have assumed that the arithmetic operations

performed by the computer correspond precisely with the ideal operations of

the mathematician; in fact, the computer is limited in the precision to which a

real number can be represented. Consequently, our notion of correctness
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should be modified to take into account thqt a computer  program only
computes an approximation of the mathematical function it is intended to

compute (see, e.g., Hull, Enright,  and Sedgwick [1972]).

0 cleanness. A computer program may be incorrect not only because it fails

to satisfy its output specification, but also because of mishaps that occur

during the computation: it may generate a number larger or smaller than the

computer system can store (overflow or underflow), for instance, 01* it may

attempt to divide a number by zero or to find the square-root of a negative

number. It is possible to prove that a program is clean (i.e., that no such

accident can occur) by establishing an appropriate invariant before each
program statement tha,t  might cause offense (Sites [ 19741).  For example,
before a statement z t X/J we can introduce the assertions that JI z 0 and

t h a t  c I lx/)( 5 E, where r and E are the smallest and largest positive real

numbers, respectively, that the computer system can store.

l side-effects. Many programming constructs have indirect side-effects:

their execution can alter the properties of entities not explicitly mentioned by

the instructions themselves. For instance, suppose our programming language

allows assignment to the elements of an array. Then the instruction A[i] c t,
which assigns t to the ith element of an array A, can alter the value of A[j]  if

it happens that i = j , even though A[j] itself is not explicitly mentioned in

the instruction. To .prove  the correctness of programs employing such

constructs requires an alteration of the principles outlined here. For example,

one consequence of the assignment rule is the invariant statement

{P) x i- t (P) 9

where the variable x does not occur in P. If array assignments are admitted, ’

however, one instance of this statement is

(AEj]  = 5) ALi]+ 4 (A[jl = 5) l

This statement is false if i can equal j . (For a discussion of such problems,

see Oppen and Cook [ 19751.)

l intermediate behavior of programs. We have formulated the correctness of

a program by providing an output assertion that is intended to be satisfied
when the program terminates. However, there are many programs that are

not expected to terminate, such as airline reservation systems, operating

systems, and conversational language processors. The correctness of these

programs cannot be characterized by an output assertion (e.g., see France2

and Pnueli [ 19753).  Moreover, certain properties of such programs are more
naturally expressed as a relation between events that occur while the

program is running. For instance, in specifying an operating system, we might
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want to state that if a job is submitted it will ultimately be executed. Even if

the operating system does terminate, this property cannot be expressed

conveniently as an output assertion. Similarly, in specifying the security
property of a data base system, to ensure that a user cannot access or alter

any f i le  wi thout  the proper author izat ion,  we are concerned wi th the

intermediate behavior of the system during execution, and not with any final

.outcome.

l indeterminacy. Some programming languages have introduced control

features that allow the system to choose arbitrarily between several alternate

courses of action during execution. For example, the guarded command
cons t ruc t  (see’ Dijkstra [1975])  a l lows one to express a program that

computes the gcd of two positive integers as follows:

do x > y => x c x-y

0 xvy =’ (x y) + 01 d
0 y>x => yty4
o d

output(x).

This denotes that if x > y, we can execute either x t x-y or (X JI) t (+y x),

while if 9 > x we must execute y t 7-x. The statements within the do . . . od

construct are executed repeatedly until neither condition x > JI or y > x

applies, i.e. until x - J. (The  terminator “od” of the construct is merely “do”
backwards.) Although for a given input there are many ways of executing the

program, the ultimate output is always the gcd  of the inputs. Extensions of

our proof methodology exist to prove the correctness of such programs.

l parallelism. We have only considered programs that are executed

sequentially by a single computer processor, but some programs are intended
to be executed* by seversl processors at the same time. Many different parts
of such a program might be running simultaneously, and the various

processors may cooperate in producing the ultimate output. Because the
various processors may interact with each other during the computation, new

obstacles arise in proving the correctness of a parallel program. For example,

it becomes desirable to show the absence of deadlacle,  a situation in which

- two processors each halt and wait for the other to conclude some portion of

the task, thus preventing the completion of the program’s execution. To

prove the correctness of parallel programs requires special techniques; this is

currently an active research area (cf.  Ashcroft  [1975],  Howe  [1975],  Owicki
and Gries [1976]).
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l very large programs. For the sake of clarity we have discussed only the

verification of small programs, but in practice it is the large and complex
systems that really require verification. As one would expect, the verification
of such programs is obstructed by the larger number and greater complexity
of the intermediate assertions and verification conditions. Furthermore, the

specifications of a large system are likely to be more difficult even to

formulate: one must detail all the situations a spacecraft guidance system is
expected to handle, for instance, or all the error messages a compiler is
expected to produce. Finally, in a larger system the specifications are likely
to  be  h igher - leve l  and  more abstract, the discrepancy between the
specifications and the implementation will be greater, and the verification
conditions will be correspondingly more difficult to prove than we have found

s o  f a r .

It has been argued that such large programs cannot be verified unless they
are given a hierarchical structure that reduces their apparent complexity. A
hierarchically structured program will be decomposed into a few top-level

modules, each of which in turn will be decomposed into a few more detailed

modules at a lower level. The verificaton of a mOdUl8  at a given level t h u s

involves only a few lower-level modules, each of which may be regarded as a
primitive instruction. Therefore, the program becomes understandable, and its 1

verification manageable. (Examples of hierarchical decomposition are given, ’ ’

e.g., in Parnas [ 19723  and Robinson et al. [1975))

One might hope that the above methods for proving the correctness of programs, suitably
extended and incorporated into verification systems, would enable us to guarantee that
programs are correct with absolute certainty. In the balance of this section we will discuss
certain theoretical and philosophical limitations that will prevent this goal ‘from ever being
reached. These limitations are inherent in the program verification process, and cannot be
surmounted by any technical innovations.

l We can never be sure that the specifications are correct.

In verifying a program the system assures us that the program satisfies the specifications we
have provided. It cannot determine, however, whether those specifications accurately reflect the
intentions of the programmer. The intentions, after all, exist only in the mind of the
programmer and are inaccessible to a program verification system. If he has made an error in
expressing them, the system has no way of detecting the discrepancy.

For example, in specifying a sort program one is likely to assert that the elements of the array
are to be in order when the program halts, but to neglect to assert that the array’s final contents
are some permutation of its original contents. In this event, a program that merely resets the
first element to I, the second to 2, and so on, may be verified as a correct sort program.
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However, no system will ever be able to detect
it cannot read the mind of the programmer.

the missing portion of the specification, because

To some extent, these difficulties can be remedied by the use of a well-designed, high-level
assertion language. The programmer can express his intentions in such a language quite
naturally, and with little chance of error, presumably because he thinks about his problem in
the same terms as he expresses it.

l No verification sytem can verify every correct program.

For a system to verify a program, it must prove the appropriate verification conditions.
Typically, these conditions are logical statements about the numbers or other data structures.
Any system that attempts to prove such statements is subject to certain theoretical limitations,
no matter how powerful it may be. In particular, it is known to be impossible (as a consequence
of Godel’s Incompleteness Theorem) to construct a system capable of proving every true
statement about the numbers. Consequently, for any verification system there will be some
correct program that it cannot verify, even though its specifications are correct and complete.

This theoretical limitation does not preclude the construction of theorem provers useful for
program verification. After all, verification conditions are usually not deep mathematical
theorems, and it is entirely possible that a computer system will be developed that will be able

-to verify all the programs that arise in practice. But no matter how powerful a verification
system may be, when it fails to verify a program we can never rule out the possibilky  that the
failure is attributable to the weakness of its theorem prover, and not to an error in the
program.

l We can never be certain that a verification system is correct.

When a program has been verified, we must have confidence in the verification system before
we believe that the program is really correct. However, a program verifier, like any large
system, is subject to bugs, which may enable it to verify incorrect programs. One might
suppose that bugs in a verification system could be avoided by allowing the verifier to verify
itself. Do not be fooled: if the system does contain bugs, the bugs themselves may cause the

program to be verified as correct. As an extreme case, a verifier with a bug that allowed it to
verify any program, correct or incorrect, would certainly be able to verify itself.

This philosophical limitation does not imply that there is no use in developing verification
systems. Even if the system has bugs itself, it may be useful in finding other bugs in computer
programs. A large system (which presumably had some bug), written by a graduate student to
check mathematical proofs, was able to discover several errors in the Principia  Mathematics  of
Whitehead and Russell, a classical source in mathematical logic; a slightly incorrect program
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verification system could be of comparable value. Moreover, once we have developed a
verification system we make it the focus of all our debugging effores,. instead,  of spreading our
attention over every program that we construct. In this way, although we can never hope to

achieve utter certainty that the system is correct, we can establish its correctness “beyond
reasonable doubt.” .

Gerhart and Yelowitz 119763  have presented a collection of programs whose

verifications were published in the literature but which contained bugs.

DeMillo,  Lipton, and Perlis Cl9771  advance a philosophical and “sociological”

argument against the utility of verifying programs. Dijkstra [1977]  expresses
pessimism about constructing a useful automatic verification system.

Cr i t i cs  o f  l og i ca l  t echn iques  fo r  ensu r ing  p rog ram co r rec tness  o f ten

recommend the traditional approach to detecting bugs by program testing. In

this hpproach,  the program is actually executed on various inputs, and the

resulting outputs are examined for some evidence of error. The sample

inputs are chosen wi th the intent ion of exercis ing al l  the program’s

components, so that any bug in the code will be revealed1 however, subtle

bugs often escape the most thorough testing process. Some bugs may escape

because they occur only upon some legal input configuration that was not

anticipated, and therefore not tried, by the programmer. Other bugs may

actually occur during a test execution but escape observation because of
human carelessness. These problems are discussed in a special section of the

IEEE Transactions on Softzuare  Engineering, September 1976.

Some efforts have been made to apply logical techniques to systematize the

testing process. For instance, the SELECT system (Bayer, Elspas, and Levitt

[ 19751) attempts to construct a sample input that will force a given path of
the program to be executed. The EFFIGY system (King [ 1976 J) executes the

program on symbolic inputs rather than concrete numerical quantities, thereby
testing the program for an entire class of concrete inputs at once.

The techniques we have given in this section establish the partial correctness of a computer
program but not its termination. We now turn our attention to techniques for proving the
termination of programs.
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III. Termination

Proving the termination of programs can be as difficult as proving partial correctness. For
instance, consider the following program:

.
input(x)
while x z 1 do

if even(x) then x t x/2 else x t 3x t 1 -

output(x) .

.

This program is known to terminate for every positive integer less than 3* 108. However, for
over a decade no researcher has succeeded in proving its termination for every positive integer,
nor in producing a positive integer for which it fails to terminate. Resoiutioti  of this question
could depend on some deep unknown property of the integers.

Let us examine the subtractive. gcd ,aigorithm (Program A) again to see informally why we
believe it terminates for every input satisfying the input assertion.

( x0 L 6 and y. L 0 and (x0 rc 0 or y. or 0) )

(x y) + (q) yo)
more: {x~Oandy~Oand(xzOory#O)

and max(~ : ~1%  and tlb}  = max(u : tllxo and tlbo) }

if x - 0 then goto  enough
if y L x then JI t y-x else (x y) c (y x)
got0 more

e n o u g h :  ( y = mnx(u : ulxo  and ulyo)  )

output(Y).

Note that in showing the partial correctness of this program we have established as invariant
that x and +y will always be nonnegative at more. Now, observe that every time we go around

the loop, either x is reduced, or x is held fixed and 1 is reduced. First, x is reduced if x and y
are interchanged, because f is less than x in this case. On the other hand, if y is set to Y-X,

then x is held fixed and y is reduced, because x is positive when this assignment is executed.
The crux of <he argument lies in observing that we cannot forever continue reducing X, or
holding x fixed and reducing 9, without eventually making one of them negative, contradicting
the invariant.

To make this argument more rigorous, we introduce the notion of the lexicographic ordering >
on pairs of nonnegative integers. We will say that

(q y,) ) (x2 y2)9
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i.e., (x, yr) is greater than (x2 y2) under the lexicographic ordering, if

XI ‘X2
or Xl = 9~2 and yr > y2.

(Thus (2 2) > (1 100) and (1 4) > (1 3)) The set of pairs of nonnegative integers has the
special property that there exist no infinite decreasing sequences under this ordering; i.e., there
are no sequences su& that

Proof: Suppose that (xr yr), (x2  yz),  (x3  ~a), . . . is an infinite decreasing

sequence of pairs of nonnegative integers. The def ini t ion of  the
lexicographic ordering then requires that x1 L x2 L x3 1 . . . , but because

the nonnegative integers themselves admit no infinite decreasing sequences,
there must exist some n such that x, = x,+t = x,+2  = . . . . (Otherwise we

could extract an infinite decreasing subsequence from xl, x2, x3, . . . .)

The definition of lexicographic ordering, again, implies that then 9” > J,,+~

’ yn+2  ’ * * * 9 which violates the same property of the nonnegative integers.

In general, if a set is ordered in such a way that there exist no infinite decreasing sequences, we
-qay that the set is a well-founded Jet, and the ordering a well-founded ordering.  Thus, the
lexicographic ordering is a well-founded ordering on the set of pairs of nonnegative integers, as

we showed above.

The nonnegative integers themselves are well-founded under the usual > ordering. However,
there exist other well-founded orderings over the nonnegative integers. For exampie,l the
ordering defined so that x > y if y properly divides x, i.e.,

~1%  and y # X,

is a well-founded ordering.

The well-founded set concept allows us to formulate a more rigorous proof of the termination
of Program A. To construct such a proof, we must find a set W with a well-founded ordering
>, and a termination expression E(x v), such that .whenever control passes through the label
more, the value of E(x y) belongs to W, and such that every time control passes around the loop,
the value of E(x y) is reduced under the ordering >. This will establish’the termination of the
program, because if there were an infinite computation, control would pass through more an
infinite number of times;  the corresponding sequence of values of E(x y) would constitute a n

infinite decreasing sequence of elements of W, contradicting the well-foundedness of the set.
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To formulate *such a termination proof for Program A, we must prove the following three
termination conditions for some invariant assertion invariant&  y) at more:

( 1 )  invariant(x  y) => E(x 9) c W  ,

(the value of the expression belongs to W when control passes through
more) ,

(2) invariant(x  9) and X+ 0 and y 1 x => E(x y) > E(x 9-x)

(the value of the expression is reduced if control passes through the
then branch of the loop), and

(3) invariant(x  y) and xz 0 and 9 < x => E(x 7) > E(y X)

(the value of the expression is reduced if control passes through the
else branch of the loop).

Because the invariant will be true every time
suffice to establish termination.

through more, the above conditions

Perhaps the most straightforward way to construct such a termination proof for Program A is
to follow our informal demonstration and to take W to be the set of pairs of nonnegative
integers, > to be the lexicographic ordering, and E(x J$ to be the pair (X y) itself. The invariant
assertion invariant(x  y) can simply be taken to be x L 0 and 1 2 0. The termination conditions
are then

( 1 )  xzOandyz0  => (x y) t (pairs of nonnegative integers],

( 2 )  xzOandyzOandxzOandy>x  -> (Xjy)>(xr-x),and

( 3 )  xzOandyzOandX*Oand+y<x -S (xY)>~x).

We have already indicated in our informal argument the justification for these conditions.

A trickier termination proof may be constructed by taking W to be the nonnegative integers, >
to be the usual > ordering, and E(x y) to be the expression 2x t y. The termination conditions

are then

( 1 )  xrOandyr0 => 2x + y e (the nonnegative integers] ,

( 2 )  x?OandyzOandzzOandy>x  => 2xty>2xt(y+),and
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( 3 )  xrOand~~OandxzOand~<x  => 2x+9&$+x.

These conditions can also,be easily established. ,

The above description iNustrates  how to prove the termination of a program with only a single
loop. If we want to apply the well-founded ordering method to show the termination of a
program with several loops, we must designate a particular loop label within each of the
program’s loops. We choose a single well-founded set and with each designated loop label we
associate an expression whose value belongs to the well-founded set. These expressions must
be chosen so that each time control passes from one designated loop label to another, the value
of the expression corresponding to the second label is smaller than the value of the expression
corresponding to the first label. Here, “smaller” means with respect to the ordering of the
chosen’ well-founded set. This method establishes the termination of the program, because if
there were an infinite computation of the program, control would pass through an infinite
sequence of designated labels; the corresponding sequence of values of the expressions would
constitute an infinite decreasing sequence of elements of the welt-founded set, contradicting the
well-foundedness of the set, as in the one-loop case.

The well-founded set approach introduces machinery to prove termination completely different
from that required to prove partial correctness. There is an alternate approach which extends
the invariant-assertion method to prove termination as well as partial correctness. In this
approach we alter the program, associating with each loop a new variable called a counter. The
counter is initiilized  to 0 before entering the loop and incremented by 1 within the loop body.
We must also supply a new intermediate assertion at a point inside the loop, expressing that the
corresponding counter does not exceed some fixed bound. In proving that the new assertion is
invariant, we show that the number of times the loop can be executed is bounded. (If for some
reason control never passes through the assertion, the number of times the loop can be executed
is certainly. bounded - by zero.) Once we have proved that each loop of the program can only
be executed a finite number of times, the program’s termination is established.

For instance, to prove that our subtractive gcd algorithm (Program A) terminates, we introduce
a counter i, and establish that the assertion

i 5 2x0  + yo

is invariant at more. To show this, it is actually necessary to prove the stronger assertion

x 2 0 and y 1 0 and 2x + 9 + i d 2x0 + 90

is invariant at more. (The stronger assertion implies the weaker because if x 2 0 and 9 r 0 then
2x + y 2 0.)
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Augmented with the counter t and the new intermediate assertion, Program A appears as
follows:

Program A (with counter):

inwtbo ~0)

( x0 2 0 and y. 2 0 and (xoHO or yo*O)  )

(x y) +- b-0 yo)
i t 0

more: ( x L 0 and y 2 0 and 2x + y + i s 2x0 + y. )
if x = 0 then goto  enough
if JJ L x then y t y-x else (x y) t 0) x)

iti+l
got0 more

enough: output(y).

The new assertion is clearly true at more initially; it remains true after each execution of the
loop body, because each execution reduces the quantity 2x + y by at least I, and i is increased
by only I.

The counter method yields more information than the well-founded set method, because it
enables us to establish a bound on the number of times each loop is executed and, hence, on
the running tilne of the program, while termination is being proved. By the same token,
however, the counter method is more difficult to apply, because it requires that suitable bounds
be known, and we often can prove that a program terminates without knowing such bounds.

Well-founded se,ts  were first used to prove the termination of ‘programs by
F l o y d  [1967J,  in  the  same paper  in  which  he  in t roduced the  invariant-
assertion method. The alternate approach, using counters, was suggested by
Knuth [ 1968). The program verifier ‘of Luckham  and Suzuki [ 19771  proves
termination by this method.
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IV. Well-founded Induction

The well-founded sets that we have used to prove termination actually have a much broader
domain of application; they can serve as the basis for a proof by mathematical induction using
the following principle of well-founded induction:

Let W be a set with well-founded ordering > .
To prove P(w) holds fof every element w of W,

consider an arbitriry  element w of W and prove that
P(zu) holds under the assumption that
P(ZI.J  ‘) holds for every element w ’ of W such that w > w ‘.

In other words, in attempting to prove that every element of a well-founded set has a certain
property, we can choose an arbitrary element w of the set, assume as our tnduction  hypothesis
that every element less than w (in the well-founded ordering) has the property, and prove that
IU has the property too. (In the special case that no element of W is less than 10 , the inductive
assumption does not tell us anything, and is therefore of no help in proving that w .has the
property.)

For example, suppose we want to show that every integer greater than or equal to 2 can be
expressed as a product of prime numbers. We can use the principle of well-founded induction,

-taking W to be the set of integers greater than or equal to 2, and > to be the ordinary “greater-
than” ordering, which is a well-founded ordering of W. Thus, to prove the desired property,
we let zu be any element of W, and show that w can be expressed as a product of prime
numbers using the induction hypothesis that every element of W less than w can be expressed
as a product of prime numbers. The proof distinguishes between two cases: if w is a prime,
the property holds, because the product of the single prime w is IO itself. On the other hand, if
IU is not a prime, it is the product of two integers w1 and w2, each smaller than w and greater

than or equal lo 2. Because wl and wp are each members of W less than w under the ordering

> , our induction hypothesis implies that each of them is a product of primes, and hence w is
also a product of primes. We then conclude by well-founded induction that every member of
W can be expressed as a product of primes. (Alternatively, we could prove the same property
taking the well-founded ordering x > r to be the properly-divides relation defihed earlier, i.e.,
~1% and r z x. Clearly, if zv is the product of wI and w2, then w > w l and w > w2 under this

ordering.)

The validity of the principle of well-founded induction is a direct consequence

of the definition of a well-founded set. For;’  suppose we have used the

induction hypothesis to prove that P(w)  holds for an arbitrary w, but that

there actually exists some element wl of W such that -P(zu,).  Then for some

e l e m e n t  zu2 such that ~1 > ~2, UP holds as WC&;  otherwise, our proof
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using the induction hypothesis would allow us to conclude P(w ,), contrary to

our supposition. The same reasoning applied to w2 implies the existence of

an element w3 such that wp > wa and -P(w&  and so on. In this way we can

construct an infinite descending sequence of elements ~1, w2, w3, . . . o f

W,suchihat  wI >zu~>zu~>.  . . , contradicting the well-foundedness of W.

Many of the proof techniques we .have  already introduced may be regarded as applications of
the principle of well-founded induction. In the remainder of this section we will look back on
the invariant-assertion method, the subgoal-assertion method, and the well-founded ordering

method, to see how each of them may be viewed as an instance of well-founded induction.

In t introducing the invariant-assertion method to prove the partial correctness of the subtractive
gcd al,gorithm (Program A), we invoked ordinary mathematical induction on the number of
times control has passed through the loop label more since the beginning of the execution.
Alternatively, we can regard this method as an application of the principle of well-founded
induction, taking W to be the set of positive integers, and > to be the usual “greater-than”
ordering between them. The property we wish to prove is that, for every positive integer n,
the intermediate assertion will hold the nth time control passes through more.

To prove the desired property, we let n be any positive integer, and we show that the
intermediate assertion holds the neh time control reaches more, using the induction hypothesis
that the intermediate assertion holds the n’th time control reaches more, for every positive
integer n’ such that n > n’. The proof distinguishes between two cases: if n = 1, then control

has reached more for the first time, and the induction hypothesis gives us no information; we
prove that the intermediate assertion holds as a direct consequence of the input assertion.
(This corresponds to the verification condition for the initial path from start to more.) On the
other hand, if n > 1, control has passed through more previously; our induction hypothesis tells
us (taking n’ to be n-l) that the intermediate assertion held the previous time control passed
through more. We use this induction hypothesis to show that the intermediate assertion still
holds. (This corresponds to thk verification conditions for the paths from more around the loop
and back to more.) We can then conclude by the principle of well-founded induction that the
intermediate assertion holds every time control passes through more, i.e., that it ‘is an invariant
assertion. The balance of the proof, that the output assertion holds when the program halts, is
concluded in the usual way (corresponding to the verification condition for the path from mope

to tnough.) This shows that the invariant-assertion method may be regarded as an application
of the principle of well-founded induction.

In applying the subgoal-assertion method, we remarked that the mathematical induction
employed is precisely the reverse of that used in the invariant-assertion method. In fact, we
could also regard the subgoal-assertion method as an application of the well-founded induction
principle, but instead of basing the induction on the number of time control has passed
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through store since the execution began, we would consider the number of times control will
pass through more before the execution terminates. (This is a finite number if we assume’that
the program does terminate.)

The invariant-assertion and the subgoal-assertion methods prove partial correctness, but do not
establish termination. It is possible to use the principle of well-founded induction to prove
termination as well as partial correctness. In fact, the well-founded ordering method for
proving termination may be regarded as another application of well-founded induction. For
instance, recall that to apply the well-founded set method to prove the termination of Program
A, we need to find a well-founded set W ordered by the ordering > and a termination
expression E(x y) such that whenever control passes through more, the value of E(x y) belongs
to W, .and such that whenever control passes around  the loop, the value of E(x y) is reduced
under the ordering > . To phrase this method as a well-founded induction proof, we prove ‘the
property that if during a computation control passes through more, the computation will
terminate. The well-fownded set used as a basis for the induction is the set of pairs of

nonnegative integers, and the ordering >> is defined by

(zu, zu& >> (WI ’ I+‘) i f  E(zq w2) > E(q’ w2’).

We show that the property holds for arbitrary values (IUI wp) of the pair (X y) at more, assuming

[he induction hypothesis that the program will terminate if control passes through tnOTe  with

values (zuuI  ’ zu$) of (X 9) such that (wl w2) >> (~1’ w$), i.e,, such that E(wl wp) > E(wl’ IL+‘).

Following the two well-founded sets in the termination proofs of the previous section, we can
either take E(x y) to by (X y) itself, and > to be the lexicographic ordering between pairs of
nonnegative integers, or we c& take E(x y) to be 2x+9,  and > to be the usual greater-than
ordering between nonnegative integers. The details of the proof then correspond closely to the
steps in the well-founded set termination proof.

In proving partial correctness by the invariant-assertion and the subgoal-assertion methods, we
employed well-founded induction based on the number of steps in the computation; for this.
reason they are classified as forms of compututional  induction. On the other hand, our proof
of termination employed an, induction independent of the computation; such proofs are
generally referred to as structural induction proofs. We have seen that both computational
induction and structural induction may be regarded as instances of well-founded induction. In
subsequent sections we will encounter this principle in many other guises.
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V. Total Correctnem

So far we have considered correctness separately from termination; to prove that a program
halts and produces the desired result required two separate proofs. In this section we will
introduce a technique that establishes the total cor~sctnr~~  of a program, i.e.,  its termination and
correctness, with a single proof.

In our previous correctness proofs we attached assertions to points in the program, with the
intended meaning that the assertion is to be invariant, that is to hold every  time control passes
through the corresponding point. Conceivably, the assertion could be proved to be invariant
even though control never passes through the point in question. In particular, we can prove
that the output assertion is invariant even though the program never halts; thus, a separate
termination proof is required.

In the method we are about to introduce, we will also attach assertions to points in the program,
but with the intended meaning that ~ometimc  control will pass through the point and satisfy the
attached assertion. In other words, control may pass through the point many times without
satisfying the assertion, but control will pass through the point at least once with the assertion
satisfied; therefore, we call these assertions intermittent  assertions. If we manage to prove that
the output assertion is an intermittent assertion at the program’s exit, we have simultaneously
shown that the program must halt and satisfy the output assertion. This establishes the

-program’s total correctness.

We will use the phrase

sometime Qat L
.

to denote that Q is an intermittent assertion at the label L, i.e., that sometime control will pass
through L with assertion Q satisfied. (Similarly, we could have used the phrase “always Q at
L” to indicate that Q is an invariant assertion at L.) If the entrance of a program is labelled
start and its exit is labelied enough, we can express the total correctness of the program with
respect to an input assertion P and output assertion R by

if sometime P at dart

then sometime R at enough.

Generally, to prove this statement as a theorem, we must affix intermittent assertions to some of
the pragram’s  intermediate points, and supply lemmas to relate these assertions. The proof of
these lemmas typically employs well-founded induction.

To illustrate this method we introduce a new program to compute the greatestecommon divisor.
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Program 6 (the symmetric algorithm):

inputixo  ~0)

start: (x y) + (x0 90)

more: if x = y then goto  enough
reducex: if x > J then x t x-y

goto  reducex
reducey:  if y > x then y e ‘y-x

goto  reducey
got0 more

enough: output(Y).

This program is only intended to be used for positive x0 and ~0, whereas the previous Program

A can also be used when either x0 - 0 or 90 - 0.

The intuitive basis for this program rests on the following three properties of the integers:

(4 U./X and ub <-> ‘ulx-j and ~13) ‘
(the common divisors of x-r and y are the same as those of x and JI),

(b) ujx and ub <=> ulx and uly-x
(the common divisors of x and 9-x are the same as those of x and JI), and

(4 max(u:  ub) = y i f  y> 0
(any positive integer is its own greatest divisor).

We would like to use the intermittent-assertion method to prove the total corkectness  of
Program B. The total correctness can be expressed as follows:

Theorem: if sometime x0 > 0 and y. > 0 at start

then sometime y = max(u  : ulxo and ubo)  at enough.

This theorem states the termination as well as the partial correctness of Program B, because it
asserts that control must eventually reach enough, the exit of the program, given that it begins
execution with positive x0 and yQ

To prove this theorem we need a lemma that describes the internal behavior of this program:

Lemma: if sometime x = a and y = 6 and a, 6 > 0 at tltore
or sometime x = a and y = 6 and a, 6 > 0 at reducex
or sometime x = a and 9 = 6 and a, 6 > 0 al reducey

then sometime y = max{u  : ub and u(b) at enough.
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To show that the lemma implies the theorem, we assume that

sometime x0 > 0 and y. > 0 at start .

Then control passes to more, with x and y set to x0 and y. respectively, so we have

sometime x = x0 and y - y. and x0, y. > 0 at more.

But then the lemma implies that

,

sometime y - max(u : tllxo  and z@yo] at enough,

which4s the desired conclusion’of the theorem.

It remains to prove the lemma. We assume

sometime x = a and y = b and a, 6 > 0 at more
or sometime x = a and y - 6 and a, 6 > 0 at reducex
or sometime x = a and y - b and a, 6 > 0 at reducey

and show that

sometime y = mux(u  : ukz and ub} at enough.

The proof employs well-founded induction on the set of pairs of nonnegative integers, under
the well-founded ordering > defined by

(a b) > (a’ b’) if u+b > u’+b’.

In other words, during the proof we will assume that the lemma holds whenever x=a’  and yeb’,
where u+b > u’+b’;  i.e., we take as our induction hypothesis that

if sometime x = a’ and y = b’ and a’, 6’ > 0 at more
or sometime x - a’ and y - b’ and a’, 6’ > 0 at reducex
or sometime x = a’ and y = b’ and a’, 6’ > 0 at teducey

then sometime y = max(u : I&’ and up’} at enough.

The proof distinguishes between three cases.

Case a - 6: Regardless of whether control is at mote, rehcex,  or reducey, control passes to
,

enough with y = b, so that

sometime y = b at enough.
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But in this case 6 = mux(u : u(b) - mux(u : Z&Z and up), by Property (c) above. Thus,

sometime y = mux(u : ula and ulb)  at enough,

which is the desired conclusion of the lemma.

Case u > b: Regardless of whether control is at more, reducex, or reducey, control reaches
re&ccx and passes around the top inner loop, resetting x to a-6, so that

sometime x = a-b and y = b at reducex.

For simplicity, let us denote a-6 by u’ and 6 by 6’. Note that

a’, b’ > 0,
a + b  B u’+b’,  and
mux(u  : ulu and ulb’) - max{u  : uJa-6 and ub) = max{u  : ul& and upj.

This last condition follows from Property (a) above.

Because a’, b’ > 0 and a t b > a’ t b’, the induction hypothesis implies that

sometime y = max(u  : u/a’ and ulb’) at enough;

i.e., by the third condition above,

sometime y = max(u  : u/a and ulb)  at knough.

This is the desired conclusion of the lemma.

Case b > a: This case is disposed of in a manner symmetric to the previous case.

This concludes the proof of the lemma. The total correctness of Program B is thus established.

Let us see how we would prove the correctness and termination of Program B if we were using
the methods of the previous sections instead.

The partial correctness of Program B is straightforward to prove using the invariant-assertion
method introduced in Section II. The invariant-assertions at more, reducex and reducey, can all
be taken to be..
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x>Oandy>O

and max{u  : ulx and ub) = mux{u : ubo and ubo) ,

In contrast, it is awkward to prove the termination of this program by the well-founded
ordering approach we discussed in Section III; it is possible to pass from more to reducex’, from
re&cex to reducey, or from reducey to more without altering the value of any program variables.
Consequently, it is difficult to find expressions whose values are reduced whenever control
passes from one of these labels to the next. One possibility is to take the well-founded set to be
the pairs of nonnegative integers ordered by the lexicographical ordering; the expressions
corresponding to the loop labels are taken to be

(x+y  2) at more,
if x * y then (xty 1) else (xtg 4) at reduceat,  and
if x < y then (xty 0) else (xty 3) at reducey.

It can be shown that as control passes from one loop label to the next the values of the
cot-responding expressions decrease. Although this approach is effective, it is unduly
complicated.

The above example illustrates that the intermittent-assertion method may be more natural to
apply than one of the earlier methods. It can be shown that the reverse is not the case: a proof
of partial correctness by either of the methods of Section II or of termination by either of the
methods of Section III can be rephrased directly as a proof using intermittent assertions. In this
sense, the intermittent assertion method is more powerful than the others.

The intermittent-assertion method was first formulated by Burstall [1974]  and

further developed by Manna and Waldinger [ 1976).  Different approaches to

its formalization have been attempted, using predicate calculus (Schwarz

[1976]),‘a  deductive system (Wang [1976]), and modal logic (Pratt [1976)).
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VI. Correctness of Recursive Programs

SO far, we have indicated repeated operations by a particular kind of loop, the iterative loop, ,
which is expressed with the goto  or while statement. We are about to introduce a new looping
construct that *‘is  in some sense more powerful than the iterative loop. This construct, the

4 recursive cull, allows a program to use itself as its own subprogram. A recursive call denotes a
repeated operation because the subprogram can then use itself again, and so on.

For instance, consider the following recursive version of our subtractive gcd aigorithm
(Program A):

Program A (a recursive version):
gcdminus(x  y) <= if x = 0

then y

else if y 2 x

then gcdminus(x  y-x)
else gcdminus(y  x) .

In other words, to compute the gcd of inputs x and y, test if x - 0; if so, return y as the output;
otherwise test if y 1 x; If so, return the value of a recursive call to this same program on inputs
x and y-x; if not, return the value of another recursive call, with inputs 9 and X. For example,

in computing the gcd of 6 a.nd 3 we get the following sequence of recursive calls:

gcdminus(6  3) <= gcdminus(3 F) <= gcdminus(3 3) <- gcdminus(3 0) -cm gcdminus(0  3) 0 3,

Thus, the value of gcdminus(6,3)  is 3. Although a recursive definition is apparently circular, it
represents a precise description of a computation. Note that gcdmlnus  is a “dummy” symbol
and, like a loop label, can be replaced by any other symbol without changing the meaning of

the program.

A recursive computation can be infinite if the execution of one recursive call leads to the
execution of another recursive call, and so on, without ever returning an output. For example,
the program

gcdnostop(x  y) <= if x = 0
then y

else if y 2 x ’

then gcdnostop(x  y-x)
else gcdnostop(x-y  fy) ,

which is obtained from Program A by altering the arguments of the second recursive call,
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computes the gcd of those inputs for which it halts. However, this program will not terminate
for many inputs, e.g. if xlr  0 and y = 0 or if ~0 and y - x. Thus, for x - 3 and y = 3 we
obtain the infinite computation

gcdnomp(  3 3) <- gcdnoJtop(3 0) <= gcdno~top(3  0) <- gcdnomp(3  0) <- . . . ,

Our recursive version of .Program A. describes essentially the same computation and produces
the same outputs as the iterative version. In fact, it is straightforward to transform any
iterative program into a recursive program that performs the same computation. The reverse
transformation, however, is not so straightforward; in translating a recursive program into a

corresponding iterative one, it is often necessary to introduce devices to simulate the recursion,
complicating the program considerably. Some computational problems can be solved quite
naturally by a recursive program for which there is no iterative equivalent of comparable
simplicity.

As a new specimen for our study of recursion we will tntroduce a recursive cousin of the
greatest common divisor algorithm of Euclid, which appeared in his Elements  over 2200 years
ago.

Program C (the Euclidean algorithm):

gcdrem(x  y) <- if’x = 0

then y

else gcdrem(rem(y x) x).

Here rem@ x) indicates the remainder when y is divided by X. Program C, like Program A,
computes the ~6” of any nonnegative integers x and y, where x and y are not both zero. The
correctness of this ‘program will be seen to depend on the following properties of the Integers:

(a) ~1% and I@ x=> I.# and ulrent(y x) if xz0
(the common divisors of x and y are the same as those of x and
rem(y x), if x z 0),

W 40
(every integer divides 0),

(d mux(u : u/y) = y if y > 0
(every positive integer is its own greatest divisor), and

(d) x > rem(y x) 2 0 if x > 0.
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The reader may be interested to see a proof of Property (a). Suppose that

~1% and ub)  and that x # 0. We need to show that ulrem(y x). We know that

x = km IL and y = 1e u, for some integers R and 1. But rem(y x) is defined so

that 9 = q* x+rem(v x), where q is the quotient of y and x. Therefore rem(y x)

=y-qa = leu - q*ka = ~(1 - qek), so that ulrem(J  x), as we intended to

prove. The proof in the opposite direction is similar.

We would like to introduce techniques for proving the correctness and termination of recursive
programs. In proving the properties of iterative programs, we often employed the principle of
well-founded induction. We distinguished between computational induction, which was based
on the number of steps in the computation, and structural induction, which was independent of
the computation. These versions of the induction principle have analogues for proving
properties of recursive programs. We will illustrate these techniques in proving the correctness
and termination of the above recursive Euclidean algorithm (Program C).

To apply computational induction to Program C, we perform induction on the number of
recursive calls in the computation of gcdrem(x  y). (This number is finite if we assume that  the
computation terminates.) Thus, in proving that some property holds for gcdrem(x y), we assume
inductively that the property holds for gcdrem(x’ y’), where x’ and y’ are any nonnegative
integers such that the computation of gcdrem(x’ y’) involves fewer recursive calls than ;he
coniputaUon  of gc&em(x y). .

Now, let us use computational induction to show that Program C is partially correct with
respect to the input specification

and the ovtput specification

gc&em(x  y) = max(u : u@ and ub).

Thus, we must prove the property that

For every input x and y such that
x?OandyrOand(x~Oory~O),

if the computation of gcdrem(x  y) terminates, then
gc&em(x y) - max(u : u)x and u@}.

Therefore, we consider arbitrary nonnegative integers x and y and attempt to prove that the
above property holds for these integers, assuming as our induction hypothesis that the property
holds for any nonnegative integers x’ and y’ such that the computation of gcdrem(x’  y’)
involves fewer recursive calls than the computation of gcdrem(x  y).
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Thus, we suppose that .

and that the computation of gcdrem(x  y) terminates. We would like to show that

gc&em(x  y) - m&x@ : ~1%  and @y}.

Following the definition of g&en, we distinguish between two cases.

If x = 0, then Program C dictates that

.
gcdrem(x  y)=  y. I

But because we have assumed that xrr 0 or yrr 0 and that y L 0, we know that y > 0. Therefore,
by Properties (b) and (c),

max(u  : tllx  and ub) - max(u  : ub) - y .

Thus,

gcdrem(x y) = y - max(u  : uk and ub),

-as we wanted to prove.

On the other hand, if x3 0, Program C dictates that

gcdrem(x  y) = gcdrem(rem(g  x) x).

Because a recursive call to gcdrem(rem~  x) x) occurs in the computation of gcdrem(x  y), the
computation of gc&em(remb x) x) involves fewer recursive calls than the compuation of
gcdrem(x  y).

Therefore we would like to apply the induction hypothesis, taking x’ to be rem(y x) and y’ to
be x. For this purpose, we attempt to prove the antecedent of the induction hypothesis, i.e.,

rem(y  x) L 0 and x L 0 and (retn(y x)z 0 or x# 0)

and that the computation of gcdrem(rem(y  x) x) terminates. However, we know that rem(y  x) 1 0
by Property (d), that x 1 0 by the input specification, and that xz 0 by our case assumption.
Furthermore, we know that the computation of gcdrem(rcm(y  x) x) terminates, because it is part
of the computation of gcdrem(x  y), which has been assumed to terminate. Our induction
hypothesis therefore allows us to conclude that
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gc&em(rem(y  X) X) 5 nax(u : uIrem(y X) and ulx) .

But, by Property (a),

max(u : ~jrrm(y X) and ~1x1  = max{u : ~1%  and @y},

and therefore

gcdrem(r y) = max(u : ulx and I@],

as desired. This concludes the proof of the partial correctness of Program C.

In the above computational-induction proof we were forced to assume that the computation
terminates. However, if we choose an appropriate well-founded ordering independent of the
computation, we can employ structural induction to prove termination as well as correctness.
For example, suppose we want to prove the termination of Program C for all inputs satisfying
the input specification; in other words,

For every input x and y such that
x~Oandy>Oand(x~Oor~~O),

the computation of gc&em(x y) terminates.

The well-founded set which will serve as the basis for the structural induction is the set W of
all pairs (zq ru2) of nonnegative integers, under the ordering > defined by

(ZU,  2u2)>(~uI’2u2’)  i f  w, >w,‘.

(Yes, the second component is ignored completely.)

To prove the termination property, we consider arbitrary nonnegative integers x and y and
attempt to prove that the property holds for these integers, assuming as our induction
hypothesis that the property holds for any nonnegative integers x’ and y’ such that

(x y) > (x’ y’), i.e., x > x’.

Thus, we suppose that

Following the definition of g&rem, we again distinguish between two cases. If x = 0, the
computation terminates immediately. On the other hand, if xz 0, the program returns as its
output the value of the recursive call gcdrem(rem(y  X) x). Because x > rem(y x), by Property (d),
we have
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and therefore we would like to apply the induction hypothesis, taking X’ to be rem(y X) and y’
to be X. For this purpose, we prove the antecedent of the induction hypothesis, that

rem(y  x) 2 0 and x 2 0 and (rem(y x) rc 0 or x z 0),

using Property (d), the input specification, and the case assumption, respectively. T h e
consequent of the induction hypothesis tells us that the computation of gcdrem(rem(y x) x),  and
therefore of gc&m(r y), terminates. This concludes the proof of the termination of Program C.

Of course, we could have used structural induction, with the same well-founded ordering, to
prove the total correctness of Program C. For this purpose we would prove the property that

.For every input x and r such that
x 1 0 and y 2 0 and (x z 0 or y f 0),

the computation of gcdrem(x  y) terminates and
gc&em(x r> = max{~ : I& and I@).

The proof would be similar to the above termination proof.

Euclid, himself, presented a “proof” of the properties of his gcd algorithm. His

termination proof was an informal version of a well-founded ordering proof,

but his correctness. proof considered only two special cases, in which the

recursive cal l  is executed precisely one or three t imes dur ing the
computation. The principle of mathematical induction, which would have been

necessary to handle the general case, was unknown at the time.

The reader may have noticed that the proofs of correctness and termination for the recursive
program presented here did not require the invention of the intermediate assertions or lemmas
that our proofs for iterative programs demanded. He may have been led to conclude that
proofs of recursiv.e programs are always simpler than proofs of the corresponding iterative
programs; in general, this is not the case. Often, in proving a property by the well-founded
induction principle, it is necessary to establish a more general property in order to have the
advantage of a stronger induction hypothesis. For example, suppose we wanted to prove that
Program C satisfies the property that.’

_ gcdYem(x  y)lx.

If ‘we tried to apply an inductive proof directly, the induction hypothesis would yield merely
that

gcdrem(rem(y  x) x)lrem(y x);
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this assumption is not strong enough to imply the desired property. To prove the property we
must instead prove a more general property, such as that

gc&em(x  $1~ a n d  gcdrent(x  ~)b.

The induction hypothesis would then yield that

gc&em(rem(g  x) x)lrem@  x) and gcdrem(rent(y  x) x)k,

which is enough to imply the more general result. It may require considerable ingenuity to find
the appropriate stronger property that will enable the inductive proof to go through.

We have used structural induction to show the termination of a program, and we have
indicated how it can be used to show the total correctness of a program. We will now show
how structural induction can be used to prove an entirely different property: the equivalence
of two programs.

We say that two programs are equivalent with respect to some input specification if they
terminate for precisely the same legal inputs, and if they produce the same outputs when they
do terminate. We will write f(x) E g(x) if, either the computations of f(x) and g(x) both
terminate and yield the same output, or if they both fail to terminate. Then we can say that f
is equivalent to g with respect to a given input specification if, for all x satisfying the input
specificaton,  f(x> = g(x).

Let us see how structural induction can be applied to prove the equivalence of the subtractive
gcd algorithm (Program A) and the Euclidean gcd algorithm (Program C) we have introduced
in this section. Recall that the Euclidean algorithm is

,
gcdrem(x y) <- if x - 0

then y .

else gcdrem(remb  x) x) ,

and the subtractive algorithm is

gcdminw(x  y) <- if x - 0

then f

else if y 2 x

then gcdmin&  J-X)
else gcdminuJ(y  x) .

The remainder function retft  can be defined by the recursive program
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rem(u v) <= if u < v
then u

else rem(u-v  v),

where v is assumed not t,o be zero.

To establish the equivalence of the two gcd programs, we need to prove that

ifxkOandy?Oand(x*Oory#O)
then gcdrem(x  y) it gcdminus(x  y).

The proof of this property is a straightforward application of structural induction, in which the
well-founded set is the set of pairs of nonnegative integers ordered by the lexicographic

ordering >. We consider arbitrary nonnegative integers x and 9 and attempt to prove that the
equivalence property holds for these integers, assuming as our induction hypothesis that the

property holds for any nonnegative integers x’ and 1’ such that (x J) ) (x’ y’),

Thus, we suppose that

x L 0 and 7 2 0 and (X#O.org*O).

a-nd attempt to prove that

gcdrem(x  y) E gcdminus(x  y).

The proof distinguishes between several cases. If x - 0, both programs terminate and yield y as
their output. On the other hand, if xz0 and J < x, the Euclidean algorithm executes a
recursive call

gcdrem(rem(3,  x) x),

or (by the definition of rem)

gcdrem(y  x).

In this case, the subtractive algorithm executes a recursive call

gcdminus(y  x).

Recall that x > JI, and therefore that (x J) > 0 x). Thus, because y and x satisfy the input
specificaton
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our induction hypothesis yields that
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gcdrem(y  x) E gchminus(y  x),’

i.e., (in this case)

gcdrem(x  y) E gcdminus(x  3).

Finally, if xz 0 but y L x, the Euclidean algorithm executes a recursive call

gcdrsm(rem(y  x) x), ’

or (by the definition of rem)

gcdrem(rem(y-x  x> x),

or (by the definition of gcdrem)

gcdrem(x  y-x).

In this case, the subtractive algorithm executes a recursive call

gcdm,inu$x  y-x).

Note that x > 0, and therefore that (x J) > (x y-x). Thus, because here x and y-x satisfy the
input specification

x L 0 and 9-x L 0 and (w 0 or y-w O),

the induction hypothesis yields that

gcdrem(x  y-x) E gcdminus(x  j-x),

i.e., (in this case)

gcdrem(x  y) E gcdminus(x  y).

This concludes the proof of the equivalence of the two gcd algorithms,

The twd gcd programs we have shown to be equivalent both happen to terminate for at1 legal
inputs. However, the same proof technique could be applied as well to show the equivalence of
two programs that do not always terminate, provided that they each fail tb terminate for the
same inputs.
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In general, to solve a programming problem can require not one but a system of recursive
programs, each of which may call any of the others. Even our simple recursive Euclidean
algorithm can be regarded as a system of programs, because gcdrem calls the recursive
remainder program rem. Everything we have done in this section can be extended naturally to
treat such systems of programs.

Various forms of computational induction were applied to recursive programs
by deBakker  and Scott [ 1969 J, Manna and Pnueli [ 1970 J, and Morris [197 13.
The structural induction method was first presented as a technique for

proving properties of recursive pograms by Burstall [1969].  A verification
system employing this method was implemented by Boyer and Moore [1975].
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Vii. Program Transformation

LJp to now we have been discussing ways of proving the correctness and termination of a given
program. We are about to consider logical techniques to transform and improve the given
program. These transformations may change the computation performed by the program
drastically, but they are guaranteed to produce a program equivalent to the original; we
therefore call them equivalence-preserving transformations. Usually, a sequence of such
transformations is applied to optimire  the program, i.e., to make’it more economical in its use of
time or space.

Perhaps the simplest way of expressing a transformation Is as a rule that slates that a program
segment of a certain form can be replaced by a program segment of another form.

For example, an assignment statement of form

x +$a a . . . a),

which contains several occurrences of a subexpression a, may be replaced by ttie program
segment

where y is a new variable. This transformation often optimizes the program, because the
subexpression a will only be computed once by the latter segment. For instance, the assignment

x t (ab)3  + 2(abj2  + 3(ab)

may be replaced by the segment

y c ab

x t y3 t 52 t 3r.

Such elimination of common subexpressions  is performed routinely by optimizing compilers.

Another transformation: in a program segment of form

- irp

then a
e l se  if p

then (3

else Y
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the second test of p, if executed, will always yield fake; the expression fi will never be
evaluated. Therefore, this segment can always be replaced by the equivalent segment of form

ifP .
then a

else “Y .

Another example: a while loop of form

while p(x) and q(x y) do 1 +fi),

where y does not occur in p(x), may be replaced by the equivalent statement of form

if p(x)  then while 4(x y) do J cfi).

The former segment will test both P(X) and 4(x  r) and execute the assignment y c fly)
repeatedly, even though the outcome of the test p(x) cannot be affected by the assignment
statement. The latter segment will test p(x) only once, and execute the while loop only if the
outcome is true. Therefore, this transformation optimizes the program to which it is applied.

An important class of program transformations are those that effect the removal of recursive
calls from the given program. Recursion can be an expensive convenience, because its
implementation generally requires much time and space. If we can replace a recursive call by
an equivalent iterative loop, we may have achieved a great savings.

One transformation for recursion removal states that a recursive program of,form a:

F(u) c= if p(u)

then s<u)  - ’

else F(h(u))  8

L

can be replaced by an equivalent iterative program of form /3:

input(u)
more: if p(u)  then output(&))

u 6 h(u)
got0 more .

To see that the two progams are equivalent, suppose we apply each program

to an input a. First, if p(a) is true, each program produces output g(a).

Otherwise, if p(a) is false, the iterative program will replace u by h(a) and go

to more: thus, its output will be the same as if its input had been h(a). In this
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case, the recursive program will return F(A(u));  thus, its output, too, is the

same as if its input had been h(u).
,

I

For example, this transformation will enable us to repiiace  our recursive Euclidean algorithm
(Program C)

gcdrem(x  y) e= if x = 0

then y

else gcdrem(rem(y  a$ x)

by the equivalent iterative program

inputb y)
more: if x - 0 then output(y)

(x y) + hm(r d ~4
got0 more .

For some forms of recursive programs, the corresponding iterative equivalent, is more complex.
For instance, a recursive program of form

F(u) <= if p(u)
then g(u)

else k(u) t F@(u))

can be transformed into the iteiative  program of form

input(u)
ZCO

more: if p(u) 4

then output(ztg(u))
else (u z) 4- (h(u) z+k(u))

got0 more.

However, the iterative program requires the use of an additional
running subtotal. A more complex recursive program, such as one of

variable r to maintain a
form

F(u) <= if p(u)
then g(u)

else W(h I F(M4h

cannot be transformed into an equivalent iterative program at all without introducing
considerable intricacy.
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Although not every recursive program can be transformed readily into an equivalent iterative
program, an iterative program can always be transformed into an equivalent system of
recursive programs in a straightforward way. This transformation involves introducing a
recursive program corresponding to each label of the given iterative program. For example, if
the iterative program contains a segment of form

Ll : if p(x)
then output(&))
else x 6 h(x)

got0 L2,

the corresponding recursive program will be

Ll(x)  <= i f  p (x )

then g(x)
else L2(h(x)).

The idea behind this transformation is that Ll(a) denotes the ultimate output of the given
iterative program if control passes through label Ll with x = a. By this transformation we can

replace our symmetric gcd algorithm (Program B) by an equivalent system of recursive

programs. The original program may be written as

iwut(x  y)
,

I

start: .
more: if x = JI then output@)

reducex: if x > JY then x t x-y

goto  reducex
reducey: if y > x then 9 c y-x

goto  reducey
got0 more.

The equivalent system of recursive programs is

start(x  y )  <- more(x y )
more(x  y )  <- If x = y then y else reducex(x  y)
reducex(x  y )  <- if x > y then reduce&y  y) else reducey(x  y)
reducey(x  y )  <- if y > x then reducey(x y-x) else more(x  y).

The output of the system for inputs x and y is the value of start(x y). This transformation
does not improve the efficiency of &he program, but the simplicity of transforming an iterative
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program into an equivalent recursive program, and the complexity of performing the opposite
transformation, substantiates the folklore that recursion is a more powerful programming

feature than iteration.

Paterson and Hewitt 11970) have studied the theoretical basis for the
difficulty of transforming recursive programs into equivalent i terat ive

programs. The reverse transformation, from iterative to recursive programs,

is due to McCarthy [1962).

Equivalence-preserving transformations have been studied extensively, and

some of these have been incorporated into optimizing compilers. The text of

Aho and Ullman  [1973)  on compilers contains a chapter on optimization.

Some more ambitious examples of equivalence-preserving program

transformations are discussed by Standish et al. [1976J.  An experimental
system for performing such transformations was implemented by Darlington

a n d  Burstall [ 19731. . ’

The above tansformations are all equivalence preserving: for a given input, the transformed
program will always produce the same output as the original program. However, we may be ,
satisfied to produce a program that computes a different output from the original, so long as it
still terminates and satisfies the same input-output assertions. For example, if we are
aptirnizing  a program to compute the square-root of a given real number within a tolerance, we
will be satisfied if the transformed program produces any output within that range. In the
remainder of this section, we will discuss the correctness-preserving tranJfomatton~;  such a
transformation yields a program that is guaranteed to be correct, but that is not necessarily
equivalent to the original program.

Correctness-preserving transformations are applied to programs that have already been proved
to be correct; they use information gathered in constructing the proof as an aid in the

transformation process: In particular, suppose we have a partial-correctness proof that employs
an invariant assertion invariant(x  y) at some label L, and a well-founded-ordering termination
proof that employs a well-founded set W and an expression E(x y) at L. Then we can insert
after L any program segment F with the following characteristics:

(1) If invariant(x  y) holds, then the execution of F terminates and tnvarlant(x y) is
still true afterwards. (Thus, the altered program will still satisfy the original
in-put-output assertions.)

(2) Jf invariant(x  y) holds, then the value of E(x y) in the well-founded set is
reduced or held constant by the execution of F. (Therefore, the altered
program will still terminate.)
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For example, suppose that we have proved the partial correctness of a program by means of the
invariant assertion

L: (X L 0 and y L 0 and x*y = k)

and that we have proved its termination by means of the expression

over the nonnegative integers. Then we may insert the statement

if even(x) then (x y) t (x/2 2.y)

after L, without destroying the correctness of the program or its termination.

Note that the above transformation does not dictate what segment F is to be inserted, nor does
it guarantee that the altered program will be more efficient than the original. Furthermore,
even though itpreserves  the correctness of the transformed program, it may cause it to produce
a different output from the original program.

Let us now apply these techniques to transform our subtractive gcd algorithm (Program A) into
the so-called binary gcd algorithm. We reproduce Program A below, introducing a new
invariant assertion in the middle of the loop body:

( x0 2 0 and y. 2 0 and (x0 z 0 or ~0 z 0) )

(x y) + (x0 yo)
more: {x>OandyrOand(xzOoryHO)

and gcdb y) = gcdbo ~0))
if x - 0 then goto  enough
( x > 0 and y > 0 and gcd(x y) = gcd(xo yo) )
if y 2 x then y t y-x else (x y) t (‘y x)

got0 more

enough:  ( y = gcdbo  yo) )

output *

The new assertion

x > 0 and y 1 0 and gcd(x  y) = gcd(xo  yo)

is equivalent to our original loop assertion at more, and is included because we want to insert
new statements at this point. In formulating the invariant assertions for this program, we have
used the abbreviated notation gcd(x  y) in place of the expression max(u : ulx and I.# ).
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Recall that to prove the termination of this program by the well-founded ordering method, we
used the expression E(x y) - (x 1p)  over the set of ail pairs of nonnegative integers, with the
lexicographic ordering.

Now, suppose that we know three additional properties of the gc&

(a) gcdk p) - gcdbd2 p)
(b) g& 9) = g& ~12)
(4 g& p) - 2* gcm2 912)

if x is even and y is odd
if x is odd and sy is even
if x and 7 are both even.

Then we can use these properties and the above correctness-preserving
. technique to introduce three new statements into the body of the program loop.

transformation

Property (a) will allow us to divide x by 2 when x is even and 1 is odd, without changing the
value of g&c y) and, hence, without affecting the truth of the new invariant

x > 0 and y 2 0 and g&(x  9) = gcd(%o  90).

Furthermore, the value of the expression (x J) used to prove termination is reduced in the
lexicographic ordering if fc is divided’ by 2. Similarly, Property (b) will allow us to do the same
for y if y is even and x is odd. Consequently, we can apply the , correctness-preserving

-transformation to introduce the two new statements

if euen(x) and o&(p)  then x t x/2 .

if o&(x) and men(y) then J t y/2

after the new invariant.

Property (c), on the other hand, cannot be applied so readily, because dividing both x and p by
2 will divide gc& J) by 2 and disturb the invariant. To restore the balance, let us generalize
ail the invariant assertions, replacing

bY

where z is a new program variable. We can then preserve the truth of the invariant by
multiplying z by 2’when we divide both x and 7 by 2. Thus, we introduce the new statement

if even(x) and even(y)  then (x y z) t (x/2  y/2 2* 2).
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The altered program will still terminate, because if x and 7 are even, the expression (X 9) used
to prove termination will then be reduced in the lexicographic ordering..

To introduce the new variable.2  into the intermediate assertions, we must also adjust the initial
and final paths of our program. To ensure that the generalized assertion will hold when
control first enters the loop, x must be initialized to 1. Furthermore, when control ultimately
leaves the loop with x = 0, the output returned by the program must be reg rather than y,
b e c a u s e  t h e n  x*r = xa gcd(0 y) = x*gc&(x y) - g&o ~0). The re fo re ,  we  i n t roduce  t he

assignment y c z*y into the final path of the program.

Our generalized program is then

Wut(xo  90)
( x0 1 0 and y. 1 0 and (x0 rr 0 or ~~ rr 0) )

kp 2) + (q)yo 1)
more: ( x L 0 and y L 0 and (X f 0 or 9 z 0)

and ~0 gc4x y) = gc&o 90) )
if x - 0 then goto enough
{ x > 0 and y L 0 and ze gcd(x  J) = gcd(xo yo) )

if euen(x) and o&(y) then x t x/2 . . . . . . . . . . . . . . . . . . . 4)
if o&(x) and euen(y)  then 7 t y/2 . . . . . . . . . . . . . . . . . .

if euen(x)  and even(p) then (x y z) t (x12  912 2a 2) : . . . . . . . . . . . . . . . . . .
* (2)
43)

( x > 0 and r 2 0 and z* gcd(x  r) = g&co uo) }

if y L x then y + y-x aI80 (x y) t (J x)

got0 marl

enough: y t rey

19 = !Mxo  PO) 1
output(p).

(The enumeration on the right is added for future reference.) The correctness-preserving
transformation does not ensure that this program will run faster than the original program, but
only that it satisfies the same input-output assertions and that it still terminates.

To improve our program further, we introduce another correctness-preserving transformation.
If x is even and y is odd, the assignment statement x t x/2  preserves the truth of the invariant
assertion

x > 0 and y > 0 and g&(x  y) = g&(x0 yO)

and, so long as x > 0, reduces the value of the expression (X J$ used to prove termination.
Therefore, if ‘we replace the conditional statement
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if euen(x)  and o&(y) then x c x/2 (1)

by the while statement

whii& eden(x) and odd(y) and x > 0 do x t x/2, (1’)

we have maintained the correctness and termination of the program. The assignment statement
will then be applied repeatedly until x is odd.

Similarly, if x is odd, 1 is even, and y > 0, the assignment y t y/2 will preserve the invariant
assertion and reduce the termination expression; therefore, the conditional statement

if odd(x)  and even(y) then y t y/2 ‘(2)

can be replaced by the while statement

while o&(x) and even(y) and 9 > 0 do y t y/2. (2 ‘J

In the same way, the conditional statement

if euen(x)  and euen(y)  then (x y 2) t (x/2 y/2 2* z)

can be replaced by the while statement

(3)

while even(x)  and eve?(y).  and (x > 0 or y > 0) do (X y x) t (x/2  y/2 2* 2). (3’)

The condition “x > 0 or y > 0” guarantees that the assignment (X y z) t (x/2 y/2 2* z) reduces
the value of the expression (X y) in the lexicographic ordering.

In the while statement

while euen(x)  and odd(y) and x > 0 do x t x/2, 0’)

the truth of the test “o&(y)  and x > 0” cannot be affected by the assignment statement x c x/2;
therefore, using an equivalence-preserving transformation we mentioned earlier, we can replace
the while statement by

if on&y) and x > 0 then while ezren(x)  do x t 42. (1”)

The same transformation can be used to transform

while oM(x)  and euen(y)  and y > 0 do y t y/2

into
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if o&(x) and y > 0 then while men(y)  do y t y/2, (2”)

and the statement

while elten(x)  and euen(y) and (x > 0 or y > 0) do (x y x) t (x/2 y/2 2* z) (3’)

into

if (x>O  or y>O)  then while e@en(x)  and even(‘y)  do (x y z) t (x/2 y/2 2@ 2). (3”)

Because all of these statiments preserve the truth of the invariant x > 0, the test x > 0 can be
dropped from (1 I’), and the test (x > 0 or y > 0) can be dropped from (3”).

The final resulting program ip then

Program 0 (the binary algorithm)

Input(q) ~0)

more: if x = 0 then goto  enough
if odd(y) then while  even(x)  do x + x/2

if o&(x) and y > 0 then while cuen(y)  do y c y/2
while ken(x) and euen(y)  do (x y 2) t (x12 y/2 2e z)

ifyrxthenyty-xelse(xy)t(yx)

got0 more *
enough :  y  t zey )

output(y) .

Although the transformations we applied rrk not a11 guaranteed to produce optimitations,  this
algorithm turns out to be significantly faster than the given subtractive algorithm If
implemented on a binary machine, where division and multiplication by 2 can be performed
quite quickly by shifting words to the right or left.

The binary gcd algorithm is based on one discovered by Silver and Terzian
(see Knuth [ 1969 J). An analysis of the running time of this algorithm h a s
been performed by Knuth and refined by Brent [1976J.

’
.

The correctness-preserving transformations we used to produce the binary

- gcd algorithm are in the spirit of Gerhart  [1975J  and Dijkstra [1976J.
,

We have presented program transformations as a means of improving the efficiency of a given
program. In fact, the existence of such transformations may aid in ensuring the correctness of
programs as well. A programmer can safely ignore efficiency considerations for a while, and
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produce the simplest and clearest program possible for a given task; the program so produced is
more likely to be correct, and can be transformed to a more efficient, if less readable, program
at a later stage.

Program transformation as a method for achieving more reliable programming

has been advocated by Knuth (19741  and Burstall and Darlington [ 19773.  The

latter authors implemented an interactive system for the transformation of

recursive programs. Wegbreit [1975]  illustrates how a transformation system

can be guided by on analysis of the efficiency of the program b e i n g
transformed, thu6  ensuring that the program ie improved and not merely

transformed.

One area for which the application of program transformations has been

particularly well explored is the representation of data structures: programs

written in terms of abstract data structures, such as sets or graphs, are

transformed to employ more concrete representations, such as arrays or bit

strings, instead. By delaying the choice of representation for the abstract

data structure until after the program is written, one can analyze the program

to ensure that  an ef f ic ient  representat ion is  chosen. This process is

examined, for example, in Earley [ 197 l] and l-bare [1972). Exper imenta l  ’ ,

implementations have been constructed by LOW [1974J,  Schwartz [ 19743, and

Guttag  et al. [1977]. *
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VII. Program Development

In the previous section we discussed logical techniques for transforming one program into
another that satisfies the same specifications. In this section we will go one step further and
introduce techniques for developing a program from the specifications themselves. These
techniques involve generalizing the notion of transformation to apply to specifications as well as
to programs. The programs produced in this way will be guaranteed to satisfy the given
specifications, and thus will require no separate verification phase.

To illustrate this process we will present the systematic development of a recursive and an
iterative program to compute the gcd function. From each derivation we will extract some of
the pr,inciples  frequently used in program development. We will then show how these
principles can be applied to extend a given program to achieve an additional task. In
particular, we will extend one of our gcd programs to compute the “least common, multiple” (rem)  4
of two integers as well as their gcd .

Let us first develop a recursive program for computing the gtd. We require that the desired
program gcdgoal(x  IV)  satisfy the output specification

gcdgoal(x  J) - mux(u  : ulx and tlb),

.
where x and y are integers satisfying the input specification

x L 0 and y 2 0 and (x z 0 or 7 z 0).

The set constructor (u : . . .} is admitted to our specification language’ but is not a primitive of
our programming language. We must find a sequence of transformations to produce an
equivalent description of the output that does not use the set constructor or any other

nonprimitive construct. This description will be the desired primitive program. In what

follows we will exhibit a successful sequence of transformations, without indicating how the
next transformation at a given stage is selected.

The transformations we employ for this example embody no knowledge of the gcd function
itself, but some sophisticated knowledge about functions simpler than the gcd, such as the
following:

For any integers u, v, and w,
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(a) U}U  E>  true ii v = 0
(any integer divides zero),

I

( b )  ulv a n d  ujzu => U~V a n d  ulw-v
(the common divisors of v and w are the same as those of*v and w-v) ,

(c) max(u : ulv) E> zi if v > 0
(any positive integer is its own greatest divisor).

In applying these transformations, we will produce a sequence of goals; the first will be derived
directly from the output specification, and the last will be the deslred program itself. Our
initial goal is

‘. ,

Goal 1. Compute max(tl : ~lx and @),

for any x and y satisfying the input specification. The transformation (b) above,

ulv and ulzu  =>* ulv and ulw-v

applies directly to a subexpression of Goal I, yielding

Goal 2. Compute nax(u  : ulx  and @y-x).

Note that Goal 2 is an instance of our output specification, Goal I, but with x and r-x in place
of the arguments x and y. This suggests achieving Goal 2 with a recursive call to gcdgoal(x y-
x), because the gcdgour  program is intended to satisfy its output specification for any
arguments satisfying its input Specification.

To see that the input specification is indeed satisfied for the arguments x and 7-x  of the
proposed recursive call, we establish a subgoal to prove the input condition ,

Goal 3. Prove x 2 0 and y-x ~0 and (x or 0 or y-x z 0).

This input condition is formed from the original input specification by substituting the
arguments x and y-x for the given arguments x and y . 1

Furthermore, we must ensure that the proposed recursive call will terminate. For this purpose,
we wili use the well-founded ordering method of Section IV; we establish a subgoal to achieve
the following terminatton  condition
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Goal 4. Find a well-founded set W with ordering > such that
(X y) E W and (x y-x) c W
and (X 9) > (x y-r).

Let us consider the input condition (Coal 3) first. Because x has been assumed nonnegative by
our original input specification, Goal 3 can be reduced to the two subgoals,

+

Goal 6. Prove y L x,

and

Goal 6. Prove (x z 0 or y z x).

We cannot prove or disprove Coal 5 -- it will be true for some inputs and false for others --
so we will consider separately the case for which this condition is false, i.e., y < JC. This case
analysis will yield a conditional expression, testing if y c X, in the final program.

We cannot achieve Goal 5 in this case. In fait, the proposed recursive call does not satisfy its
input condition; therefore, we try to find some other way of achieving one of our higher goals.

Using the logical identity ’

P and Q c-> Q a n d  P ,

we see that Goal 1 is an instance of itself, with x replaced by r and’ y by x. This suggests
achieving Goal I with the recursive call gcdgoul<y  x). For this purpose we must establish the
input condition L

and the termination condition

Goal,;8., Find a well-founded set W with ordering > such that
(x 7) c W and 0) x) c W
and (x 9) > 0) x).

Goal 7 is achieved at once; it is a simple reordering of our original input specification. We can
achieve Goal 8 by taking W to be the set of pairs of nonnegative integers, because x and y are
known to be nonnegative by our input specification. In this case y c X, so we take our well-
founded ordering > to be the usual > ordering applied to the first components of the pairs. (In
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other words, (u, up) > (vr v2)  if ul > vr.) Having established the input condition and the

termination condition, we are justified in returning the recursive call gcdgoa@  x). Thus, the
partial program completed at this stage is

gcdgoul(x  y) <= i f  JI < x
then gcdgoal(r  x)
else . . . .

It remains to consider the alternate branch of the case ana!ysis, in which r z X. This case
corresponds to the else branch of the final program.

Case y 1 x:

Here, we have established Goal 5, a subgoal of the input condition for the proposed recursive
call gcdgoul(x  y-x). It remains to prove the other subgoal of the input condition, Goal 6, that
x + 0 or y # X. Again, we cannot prove or disprove either disjunct of this goal because they
will be true for some inputs and false for others. Thus, we can make either x z 0 or y z x a
basis for a case analysis; we choose the former disjunct and consider the case in which x z 0 IS
false.

Case x = 0:

We cannot achieve Goal 6 here, so we are prevented from introducing the recursive call
gcdgoul(x  y-x). We therefore again attempt to apply alternate transformations to the higher-
level goals. Because in this case x I: 0, Transformation (a),

ulv EB true if v = 0

applies to the subexpression U/X of Goal 1, yielding

Goal 9. Compute mux(u : true and ub).

Applying the logical transformation

true and P => P

produces

Goal 10. Compute max(u  : I.@].

Because JI L 0 and (x H 0 or J z 0), by our original input specification, and x z 0, by our case
condition, we know that y > 0 at this point; therefore, we can apply Transformation (c)
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mux(I.4  : I.&} E> v if v > 0

yielding I

Goal 11. Compute y .

We have thus reduced the goal in this case to the task of computing y, which involves no
nonprimitive constructs. The desired program may simply output y. The partial program we
have constructed so far is

gcdgoul(x  y) < = if 9 < x
then gcdgoal(y  x)
else if x - 0

then y

else . . . .

Finally, we consider the remaining branch in our case analysis.

Case  x z 0:

Here, the input condition (Goal 3) for our proposed recursive call gcdgoal(x  u-x) is satisfied; it
remains, therefore, to consider the termination condition (Goal 4):

Find a well-founded set W with ordering > such that
(x y) E W and (x 7-x) E W
and (X y) > (X y-x).

For the previous recursive call, gcdgoal(y  x), we have taken UI to be the set of pairs of
nonnegative integers, and > to be the usual > relation on the first components of the pairs. To
ensure the termination of the final program, it is necessary that W and > be the same for both
recursive calls. Unfortunately, the first argument of the proposed recursive call gcdgoul(x  y-x)
is x itself, and it is not so that (x y) > (x y-x) in the ordering > we have employed. We

therefore attempt to alter > to establish the termination conditions of both recursive calls
gcdgoal(y x) and gcdgoal(x  y-x).

Because in this case It is known that x > 0 (Le., x N 0 and x ? 0), we have that 1 > r-x. We
therefore extend the ordering to examine the second components if it happens that the first
components are equal; in other words, we revise > to be the lexicographic ordering on the pairs
of nonnegative integers. With the new ordering >, both recursive calls can be shown to
terminate. We have thereby established Goal 4, and the program can output gcdgoal(x  y-x) In
this case.

Our final program is
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gcdgoal(x  y) <= if y c x

t h en gcdgoalfy x)

else If x = 0

then JI
else gcdgoal(x  y-x).

This program is similar to our subtractive gcn algorithm (Program A), but its tests are
performed in the reverse order.

Note that in performing the above derivation, we have ensured that the derived program
terminates and satisfies the given specifications; thus, we have proved the total correctness of
the program in the course of its construction.

From the above example, we may extract some of the basic principles that are frequently used
in program development.

l transformation rules. The program is developed by applying successive
transformation rules to the given specifications. The rules preserve the
meaning of the specifications, but try to replace the nonprimitive
contructs of the specification language by primitive constructs of the
programming language.

l conditional introduction. Some transformation rules require that certain
conditions be true before the rules can be applied. When a
transformation requires a condition that we cannot prove or disprove,
we introduce a case analysis based on that condition, yielding a
conditional expression in the ultimate program.

l recursion introduction. When a subgoal is an instance of the top goal
(or any higher-level subgoal), a recursive call can be introduced,
provided that the input specification of the desired program is satisfied
by the new arguments, and the termination of the recursion can be
guaranteed.

The above example illustrated the construction of a recursive program from given
specifications. If we wish to contruct an iterative program instead, alternate techniques are
necessary. In our next example we will illustrate some of these techniques.

In constructing the recursive program we did not allow ourselves to use any of the properties
we know about the gcd function itself, but only the properties of subsidiary functions such as.
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division and subtraction. In constructing the iterative program, however, we facilitate the
process by admitting the use of several properties of the gcd function itself:

For any integers u and u

(a) gcd(u v) = v if u = 0 and v > 0

(b) gcd(u U) = gcd(rem(v  u) u) if u > 0 and v 2 0,

where rem(u U) is the remainder of dividing v by u. We further simplify the task by assuming
the stronger input assertion

x0 > 0 and y. > 0.

We write our goal directly in terms of the gcd function

G o a l  1. input(xo  yo)

( x0 > 0 and y. > 0 )

achieve z = gc&o ycd

1 z = @(x0 Yo 1
output(z) .

Here, to achieve a relation means to construct a program segment assigning values to the

program vari,ables  so that the relation holds. Note that we have annotated the goal with the
program’s input and output assertions.

It is understood that “gc$”  is part of the assertion language but not a primitive construct of our
programming language, so it does not suffice merely to set x to be gcd(xo  yo); we are forced to

rephrase our goal in terms of more primitive constructs.

Because x0 and y. are input values, which we will want to refer to later, we introduce new

program variables x and y whose values can be manipulated. Consequently, the above goal is
replaced by the equivalent subgoal

Goal 2. Input(xO  yO)

( x0 > 0 and y. > 0 )

achieve z -‘gcd(x  y) and gcd(x y) = gcd(xo  ya>
.{ 2 = gcdbo  yo) }
output(z) .

Using Property (a), that 1
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gc& v) = v if u = 0 and v > 0,

we can reduce Goal 2 to the following goal,

G o a l  3, input(xo uo)

{ x0 > 0 and r. >. 0 )

achieve r 7 j and gcd(x 7) = gcd(xo  90) and x - 0 and y > 0

1 z = @(x0 Jo) 1
output(z).

We can now achieve z = y by setting z to be y before exiting from the program. We choose to
achieve the remaining conjunction by introducing a loop whose exit test is x = 0, and whose
invariant assertion is gcd(x  y) = gcd(xo yo) and y > 0. (To be certain that gcd(x 9) is defined, we

must add the invariant x L 0, as well.) On exiting from such a loop, we can be sure that all the
conjuncts are satisfied. The desired program will be of the form

-

Goal 4, InPutko yo)

{ x0 > 0 and y. B 0 )

achieve gcd(x 9) - gcd(x0  yo) and x 2 0 and y > 0

more: ( g&(x 9) = gcd(x, yo) and x 2 0 and y > 0 }

if x = 0 then goto  enough
achieve gcd(x  y) = gcd(xo  yo) and x 2 0 and g > 0

while guaranteeing termination
got0 more

enough: z t y

1 2 = SC@0 Jo) I
output(z).

The variables x and y can be initialized to satisfy the invariant assertion easily enough by
setting x to x0 and y to yo. In constructing the loop body, we must ensure not only that the

invariant is maintained, but also that the values of the program variables x and y are altered so
that the program will ultimately terminate, i.e., so that eventually x = 0. For this purpose, we
require that x be strictly reduced with each iteration. c

To reduce x while maintaining the invariant assertion, we use the above Property (b) of the &d
function, that I

gcd(u v) = gcd(rem(v u) u) if u > 0 and v 2 0,

and the additional property of the remainder function, that

0 I rem(u u) < u if u > 0 and v 2 0.
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Because we know that x and y are positive (by the exit test and the invariant assertion), we can
achieve the requirements for the loop body by updat ing x and y to be remb x) and x,
respectively. The final program, complete with its annotations, is

mori?‘:

e n o u g h :

input(xo  90)
( x0 > 0 and y. > 0 )9
k. y) + h) 90)

*( gcd(x  r) - gcd(xo  yo) and x 2 0 and 9 B 0 ,)

if x - 0 then goto  enough
(x y) + bm(r 4 4
got0 more

-9,
1 2 - gcd(xo  90) 1
output(z).

This is an iterative version of the Euclidean gcd algorithm (Program C).

The above example allows us to extract some additional principles of program development:

l variable introduction. Introduce program variables that can be
manipulated in place of input values, and rewrite the goal in terms of the
program variables.

l iteration introducfion.  If a goal is expressed as a conjunction of several
conditions, attempt to introduce an iterative loop whose exit test 4s one of
the conditions and whose invariant assertion is the conjunction of the
others.

There are many other program development techniques besides those encountered in the two
examples above. Some of these are listed here:

l generalization. We have observed earlier that in proving a theorem by mathematical
induction, it is sometimes necessary to strengthen the theorem, so that a stronger induction
hypothesis can be used in the proof.  By the same token, in deriving a recursive program it is
sometimes necessary to generalize the program’s specifications, so that a recursive call to the

program will satisfy a desired subgoal.  Thus,  in constructing a program  to sort an array with
elements Ao, A 1, . . . . A,,, we may be led to construct a more general program to sort an arbitrary

segment Ai, Ai+ 1, . . . . Aj. Similarly, in constructing an iterative program we may need to

generalize a proposed invariant assertion, much as we were forced to generalize the invariant
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assertion g&(x y) = @(x0 yO) to be z*gcd(x  y) - gc&(xo  yO) in developing the binary’  gcd

algorithm (Program D) in Section VII. I

l simultaneous goals. Often we need to construct a program whose specifications involve
achieving a conjunction of two or more interdependent conditions at the same time. The
difficulty is that in the course of achieving the second condition we may undo the effects of
achieving the first, and so on. One approach to this problem is to construct a program to
achieve the first condition, and then extend that program to achieve the second condition as
well; in modifying the program we must protect the first condition so that it will still be
achieved by the altered program. For instance, a p!ogram to sort the values of three variables
X, y, and z *must  permute their values to achieve the output specification “x s y and y I x.”
To construct such a program, we may first construct a program to achieve x s y and then
extend that program to achieve y d: z as well, while protecting x 5 y.

l efficiency. To ensure that the program we contruct  will be efficient, we must be able t o

decide between alternate means of achieving a given subgoal. We must consider the effects of
the chosen transformations on the time and space requirements of the ultimate program. For
example, in constructing a gcb program, if we were given a variety of transformations based on

different properties of the gcn function, we might need to decide between achieving the subgoal
“compute max{u  : ulx and ub-~3”  and the subgoal “compute max{u:  tllx and 241(92))“.

A discussion of generalization in program synthesis is found In Sikiossy

[ 19743.  An approach to the simultaneous goal problem appears in Waldinger ’

[1977]. l

The systematic development of programs has been regarded from two points
of view: as a discipline to be adhered to by human programmers in order to

c.onstruct  correct and transparent programs, and as a method by which
programs can be generated automatically by computer systems. The first

aspect, referred to as structured programming (see, for example, Dahl,

Dijksika,’ and Hoare  (19721,  W irth [1.974], and Di jkst ra [1976]),  has  been

advocated as a practical method for achieving reliability in large computer

programs. The second aspect of program development, called program
synthesis, is currently being pursued as a research activity (e.g., see

Buchanan and Luckham  [ 19741, Manna and Waldinger [ 19751,  and Darlington

[1975]).  ’

_ Although the techniques of structured programming are sufficiently well-
specified to serve as a guide to the human programmer, much needs to be

done before his performance can be imitated by an automatic system. For

instance, at each point in the development of a program, a synthesis system

m u s t  decide what port ion of  the speci f icat ions wi l l  be the next  to be

70



Manna & Waldinger The Logic of Computer Programming

transformed and select  an appropriate transformation from many plausible
candidates .  In  In t roducing a loop  or recursive call It may need to find a
suitable generalization of the goal  or the proposed invariant\ assertion.
Furthermore, a synthesis system must have access to knowledge of the
properties of the operations involved in the program being constructed and
be able to use this knowledge to reason about the program. To some extent’
these problems are shared by verification systems, but the synthesis task is
more difficult than verification, because it receives less help from the human
programmer and demands more from the computer system. Consequently,
automatic program synthesis is still in an experimental stage of development,
and does not seem likely to be applied to practical programming problems in
the near future.

In the examples of program development we have seen so far, we have used the given
specification as a basis for constructing a completely new program. We have introduced no
mechanisms for taking advantage of work we may have done previously in solving some
related problem. This situation conflicts sharply with ordinary programming practice, where
we are often altering or extending old programs to suit new purposes. In our next example we
will assume that we are given a program with its original specifications plus some additional
specifications; we will extend the program to satisfy the new specifications as well as the original
ones. Thus, although we may add new statements or change old ones in the existing program
to achieve the new goal, we will always be careful that the program still achieves the purpose

“for which it was originally intended. *

We suppose we are given a program to compute the gcd of two positive integers, and we want
to extend it to compute their least common multiple as well. The least common multiple of x
and y, or lcm(x  y), is defined to be the smallest positive integer that is a multiple of both x ’
and y; for example, Icm( 12 18) - 36. Now, of course we could construct a completely separate
program to compute Icm(x y), but in fact the gcd and the Icm are closely related by the identity

(a) g&(x y)hm(x  y) - xay.

(For example, gcci  (12 18)dcm(12  18) ,= 6* 36 - 216 ,= 12a 18.) We would like to take advantage
of the work being done in the gcd program by adding new statements that will enable it to

compute the km at the same time.

Suppose the given gcd program, annotated with its assertions, is as follows:
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{ x0 > 0 and y. > 0 )

(x y) + (JQ yo)
more: ( gc& y) = g&o ~)o)  and x 2 0 and 9 s 0 )

if x = 0 then goto enough
tf 7 > x then y t y-x 8188 x t x-7
got0 mote

enough:  ( y - gc&o y0) )
outpu*).

This is a version of our subtractive aigorithni  (Program A) for computing the gcd of positiveI
integers only.

The extension task is to achievc,thc additional output assertion

’x’ = wq) yo)

as well as the original output assertion

y - gcn(qJ  ycj)*

In the light of the identity (a) relating the gcd  and the Icnr, the most stralghtforward way to
achieve this new assertion is to assign

at the end of Program A. However, Program A itself computes the gcd without using

multiplication or division; let us see if we can extend the program to compute the km using

only addition and subtraction.

One approach to program extension reflects a technique we already used in developing a new
program: we try to find an additional intermediate assertion for the program, usually involving
new variables, that will irnpiy the new output assertion when the program halts. We then alter
the program by initializing the new variables so that the additional intermediate assertion will
be satisfied the first time we enter the loop, and by updating these variables in the loop body so
that the assertion will be maintained as an invariant every time we travel around the loop. As
in proving the correctness of a program, the choice of suitable intermediate assertion may
require some ingenuity.

For instance, it would suffice if we could  extend the program by introducing the relation

x’*y - xo*yo
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as a new intermediate assertion in addition to our original assertion

gcti(x y) - gc&o 10) and x 2 0 and y B 0.

This relation implies the new output assertion, because when the program halts, 7 will be
g&(x0 yo), and therefore x’ will be Icm(xo 70). If we initialize x.’ to be xo, this relation will be

satisfied the first time we enter the loop, because y is initialized to yo. However, we still need

to update the value of x’ as we travel around the loop so that the relation is maintained; this
turns out to be a very difficult task.

A successful new intermediate assertion is the much less obvious choice

( b )  x’$ t x.y’ = x090

where x’ and y’ are both new variables. This relation does imply the output assertion, because
x = 0 and y = g&(x0 uo) when the program halts. Furthermore, because y is initialized to yo,

we can ensure that  the relation will be true the first time we enter the loop by initially assigning

w y’) + kg 0).

Finally, we can maintain the’ relation when control passes around the loop: Considering the
case in which y > x, let us rewrite the relation (b) as

x’*((y-x)+x)  t x*y’ - Jf(-j*jl(J.

After y is reset to y-x, a new relation holds:

i.e.,

r’*(vtx> + x.7’ - xo*y(),

x’.y + xt(y’+;Y’)  - x0+).

Hence, to restore our intended invariant asserton, it is only necessary to assign

y’ t y’+x’

in this branch of the loop body.

In considering the other branch, for which y s x, we merely  reverse the roles of x and 9, and

of x’ and y’; thus, we can restore our intended invariant by assigning 8

x' t x' + iy'

in this case.
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It is clear that the changes we have introduced do not affect the truth  of the program’s original
assertions, because we have only altered the values of the new variables x’ and y’, which do
not appear in those assertions. The complete program, which computes both the gcd and the
/cm at the same time, is

Program E (the extended algorithm):
inwtb0 ~0)
( x0 > 0 and y. B 0 )

(x3) x’y’) + (xoyo  3) 0)

more: ( g&(x 7) = gcd(xo  ro) and x L 0 and y > 0 *
,

and ~‘97 t x*lp’ - ~0.~0)

if x = 0 then goto enough
ify>xthen(yy’)tb-xy ‘tx’) else (x x’) t (x-y x’tf)

got0 tnore
enough: ( y - g&(x0 ~0) and x’ - Icm(xo 90) )

output(y  X’).

This program computes the km as a,byproduct  of computing the gcd, using only the addition
operation. Given the intermediate assertion (b), it is purely mechanical lo extend Program A to
Program i.e., Choosing a.successful  intermediate assertion, however, is still a mysterious process.

In the above example, ‘we were careful that, the program being extended still achieved its
original purpose, computing the gcd of its arguments. It sometimes happens that we need to

adupt a program to perform a new but analogous task. For example, a program that computes
the square root of a number by the method of “successive approximations” mi,ght  be adapted to
compute the quotient of two numbers by the same method. In adapting a program we want to
maintain as much as possible of its original structure, but we change  as much as necessary of its
details to ensure that the altered program will satisfy the new specifications. If we have proved

the correctness of the original program, it is possible that we may also be able to adapt the
proof in the same way to show the correctness of the new program. Program debugging may be
considered as a special case ofSadapeation,  in which we alter an incorrect program to conform

with its intended specifications.

Program adaptation has been studied by Ml, Soloway,  and Ulrich [ 19773, and
an experimental program adaptation system has been produced by Dershowitz
and Manna [ 19773.  Automatic debugging has been discussed by von Henke

- and Luckham  [ 19751  and by Katz and Manna [1976)

In this section, we have discussed logical techniques for program development
from given input-output specifications. Other approaches to the construction
of programs, under the general rubric of automatic programming, have used
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more informal  methods of  program speci f icat ion and less  systemat ic
techniques for program development; a survey of the entire field of automatic
p r o g r a m m i n g  i s  proyided by Biermann  [1976)  A l t e r n a t e  a p p r o a c h e s  t o
automatic programming include 0

l giving typicrl pairs of inputs and  oufpufr~ l ,g., (A (6 C) D) 0~ (D (B C) A)
6UggeSt6 (I prOgram t0 r8V0168 I Ii6t. A 6yStOWl  t h a t  MC@@6  s u c h
specifications must be able to generalize from examples (e.g., see Hardy
[ 1975 J and Summers [ 19761).  Sample input-output pairs are natural and easy
to formulate, but they may yield ambiguities, even if several pairs are given.

0 giving typical traces of the execution of the algorithm to be encoded; e.g.,
the trace (12 18) + (6 12) + (0 6) + 6 suggests that the Euclidean gcd
algorithm is to be constructed (see Biermann and Krishnaswamy [ 19761).  io
formulate such a specification, we must have a particular algorithm in mind.

l engaging in a natural-language dialogue with the system. For instance, in
specifying an operating system or airline reservation system, we are unlikely
to formulate a complete and  correct description all at once. In the course of
an extended dialogue, we may resolve inconsistencies and clarify details (see
Balzer  [ 19721,  Green [ 1976)). The use of natural language avoids the
necessity to communicate through an artificial formalism, but requires the
existence of a system capable of understanding such dialogue.

0 constructing a program that “almost” achieves the specifications, but is not
complete ly  correct ,  and then debugging i t  (see  Sussman 119751).  This
technique is  s imi lar  to  the  way human programmers proceed and is
particularly appropriate in conjunction with the natural-dialogue approach, in
which the specifications themselves are likely to be incorrect at first.
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