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ABSTRACT

The nost well-known and widely-used algorithm for conputing
the Singular Value Deconposition (SVD) of an m x n rectangul ar
matrix A nowadays is the Golub-Reinsch algorithm {1]. In this
paper, it is shown that by (1) first triangularizing the matrix
A by Householder transformations before bidiagonalizing it,

and (2) accurulating some left transformations on an n x n array

instead of on an m x n array, the resulting algorithm is often nore

efficient than the Golub-Reinsch algorithm especially for
matrices with considerably nmore rows than colums (m >> n),
such as in least squares applications. The two algorithns
are conpared in terns of operation counts, and conputational
experinments that have been carried out verify the

t heoreti cal compari sons. The nodified algorithm is nore

efficient even when m is only slightly greater than n, and in

some cases can achieve as nuch as 50% savings when m >> n. | f
accunulation of left transformations is desired, then n 2 extra
storage locations are required (relatively small if m >> n),

but otherwise no extra storage is required. The nodified
algorithm uses only orthogonal transformations and is therefore
nunerically stable. In the Appendix, we give the FORTRAN code of
a hybrid method which automatically selects the nobre effiecient
of the two algorithns to use depending upon the input values for

and n.
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(0) | NTRODUCTI ON

Let A be a real mx n matrix, with m >> n. It is well-known

(1,2} that the following deconposition of A always exists
A- u2vt (0.1)

where U is a mx n matrix and consists of n orthonormalized
ei genvectors associated with the n largest eigenvalues of
AAT, Vis a n x n matrix and consists of the orthonormalized
ei genvectors of ATA, and £ is a di agonal matrix consisting of
the "singular values" of A which are the non-negative square
roots of the eigenvalues of ATA.

Thus,

Ty « yvT = 1

vTy = v
and 2 = diag( Oy, ... .. ). (0.2)
It is wusually assuned for convenience that

0—1>- 5'2 W >m ¢ >=0.

The deconposition (0.1) is called the Singular Value

Deconposition (SVD) of A

Remar ks:
(1) If rank(A) =r, then O ;=0 = - G _=0.
(2) There is no loss of generality in assuning that m >= n,
for if m<n, then we can instead conpute the SVD of AT,
If the SVD of AT is equal to UZVT, then the SVD of A

is equal to VZUT.



The SVD plays a very inportant role in linear algebra. It
has applications in such areas as |east squares problems [1,2,3],
in conputing the pseudo-inverse [2), in conputing the Jordan
Canonical form {4}, in solving integral equations [5], in digital
i mage processing [(6), and in optimzation [7). My of the
applications often involve large matrices. It is therefore
important that the conputational procedures for obtaining the SVD

be as efficient as possible.

It is perhaps difficult to find an algorithm that has
optimal efficiency for all nmatrices, so it would be desirable to
know for what kind of natrices a given algorithm is best
sui t ed. It is in this spirit that we were first notivated
to look for inprovenents of the Colub-Reinsch algorithm when the

mat-rix A has considerably nore rows than colums, i.e. m >> n.

It turns out that such an inprovenent is indeed possible, with only

sl i ght nodi fications to the Golub-Reinsch algorithm even when
mis only slightly greater than n, and can sonetines achieve as

much as 50% savings in execution tine when m >> n.

In section (1) we wll briefly describe the Golub-Reinsch
al gorithm W will then present the nodified algorithm in
section (2), with some conputational details deferred to section
(3). peration counts for the two algorithns will be given
in section (4) and sone conputational results in section (5).

W wili make sonme conclusions in section (6). In the Appendi x,



we will give the FORTRAN inplenentation of a hybrid nethod
which automatically selects the nore efficient of the two

algorithnms to use depending upon the input values for m and n.



(1) _THE GOLYB- REI NSCH. ALGORITHM - (GR=SVD)

W will use the sane notation as in [1].

This algorithm consists of two phases. In the first phase

one constructs two finite sequences of Householder transformations

p (k) (k-1,2, . . . ,n)
and Q(k) (k=1,2, . . ..n2
such that
*2. o |
o "%
p(n) . p(1) 4 (1Y q(n=2) . T - 3(0)
O (m—=mr)x n
.
an upper bidiagonal nmatrix. Specifically, P(i) zeros out the

subdi agonal elenments in columm 1 and Q(j) zeros out the appropiate

el enents in row j.

The singular values of 3(0) are the same as those of A
Thus,
i f J=c2uT is the SvD of J,
then A = P ¢y T oT
so that U=P G, V =QH {1.2)

with P-PLY  p(n) g (D)  q(n=2),



The second phase js to iteratively diagonalize J{(0) py the
QR nmethod so that
3(0) 5 51 5 -7
wher e g(i+1) o S(“TJ“)T(” , (1.3)
where s{1) and T{1) 5¢ products of G vens transformations and

are therefore orthogonal.

The matrices T1(1) are chosen so that the sequence

. T
M) o 517 ;1) converges to a diagonal matrix while the matrices
S(i)'are chosen so that all J(1i) are of bidiagonal form
The products of the TU) "5 ang the s(1) "¢ 4re exactly the matrices

T . .
B and GT respectively in Egn (1.2). For nore details, see [1].

It has been reported in [1] that the average nunber of

iterations on J{1) jn (1.3) is usually less than 2n. In other

wor ds, 3(2n) iy Eqn (1.3) is wusually a good approximation to a

di agonal matri x.

W will briefly describe how the conputation is wusually
i mpl enent ed. Assume for sinplicity, that we can destroy
A and return U in the storage for A |n the first phase, the p{1)

are stored in the lower part of A and the (1) are stored in the upper

triangular part of A After the bidiagonalization, the Q(i) g ¢

accunmul ated in the storage provided for V, the two diagonals

of 3(0) are copied to two other linear arrays, and the P{1) _ g

accunul ated in A



In

in order

the second phase, for each i,

s(1) s applied to P from the right
T

(1) s applied to QT from the left

to accunul ate the transformations.

and



(2) THE MODIFIED ALGORITHM (MOD-SVD)_

Qur original notivation for this algorithm is to find
an inmprovenent of GR-SVD when m >> n. In that case, two

i nprovenents are possible:

(1) In Egn (1.1), each of the transformations P{1) znq o(1)

has to be applied to a submatrix of size (m-=i+l1) X (n-i+1),

y m-t+1

N

.

Fig. 2.1 p(1) and Q(“ affects the shaded portion of the matrix

Now, since nobst entries of this subnmatrix are ultinmately going to be
zeros, it is intuitive that if it can sonehow be arranged that the
Q(” does not have to be applied to the subdiagonal part of

this submatrix, then we wll be saving a great anount of work

when m >> n.



This can indeed be done by first transforming A into

upper triangular form by Householder transformations on the

| eft.

111

(Al - -2

o

where R is n x n upper triangular and L is orthogonal,

and then proceed to bidiagonalize R The inportant difference

is that this tine we wll be working with a nmuch smaller matrix R
than A (if n? << m), and so it is conceivable that

the work required to bidiagonalize R is much snaller than

that originally done by the right transformations when m >> n.

The question still remains as to howto bidiagonalize R
An obvious wayis to treat R as an input matrix to GR SVD,
using alternating left and right Householder transformations.
In fact, it can be easily verified that if the SVD of R is

equal to XZ YT, then the SVD of A is given by

A =L )_(_]ZYT (2.1)
W can identify U wioth L[_x_ and V with Y. Notice that in order
to obtain U we have to fgrm the extra product L}Xf. If Uis not
needed (e.g. in least squares), then we do not ha\?e to accunul ate

any left transformations and in that case, for m>> n, it seens

likely that we wll nake asubstanti al savi ng.



It is also possible to take advantage of the structure

of R to bidiagonalize it. This will be discussed in section (3).

(ii) The second inprovenent over GR-SVD that can be nmde

is the follow ng. In GR-SVD, each of the s{1) js applied to
the m x n matrix P from the right to accurmulate U. |If

m>> n, then this accunulation involves a large anount of work
because a single Gvens transformation affects two colums of P
(of length m and each s(1) is the product of on the average
n/2 Gvens transformations. Therefore, in such cases, it would
seem nore efficient to first accunulate all S(1) onanx_ n
array Z and later form the matrix product PZ after

3 has  converged toz.

In essence, inprovenent (1) works best when U is not needed,

i mprovenent (ii) works best when U is needed and both work

best when m >> n.

W now present the nodified algorithm

MOD=-SVD:
(1) LT[A] -> [3_] where R is n X n upper triangular,
©

(2) Find the SVD of R by GRSWD, R =xp¥T,

(3) Form A = L{}]}EYT, the SVD of A
o

10



The idea of transformng A to upper triangular
form when m >> n and then calculating the SVD of R is nentioned
in Lawson & Hanson [3,pp.119,122] in the context of

| east squares problenms where U is not explicitly required.

In the next section we wll discuss sonme conputational

details of this nodified algorithm and in section (4) we

will conpare the operation counts of the two algorithns.

11



(3) SQVE . CONPUTATI.ONAL . DETAIfS

(1) It should be obvious that when U is not needed then
MOD- SVD does not require any extra storage. VWen U is needed, we can
store LT in the Iowver part of A copy R into another n x n array W

and ask GR-SVD to return X in W  Therefore we need at nost n?

extra storage locations which is relatively small when m >> n.

(ii) The next question is how to form IX| wthout using
0
extra storage. This can be done by noting that

BB

so we can first accunulate L |1} in the space provided for

(2]
U and then do a matrix nultiplication by X

In the experinents that we have carried out, we actually
accunul ate the Householder transformations L on X
W do not recommend doing this in practice becalIJsole
it requires m instead of n? extra st orage |ocations. But
one can show that both methods take about the sane

anmount of work and so it wll not affect the conparisons.

12



(iii) The question arises whether it is possible to bidiagonalize

R in a way that takes advantage of the zeros that are

already in R One way is to use Givens transformations to

zero out the elenments at the wupper right hand corner of R, one

colum or one row at a tine. Pictorially, (for n-5) to zero out the

(1,5) element, we do two Gvens transformations as foll ows:

: . X N :
1st rotation introduces lst rotation to zero
nonzero elenent here Q out the (1,5) elenent

\_//

L g ! .
2nd rotation to zero out the (2, 1j
element introduced by the 1st rotation

It turns out however, by sinple counting, that this
nmet hod takes about the sanme operations (4n3/3 mul tiplications)
as the previous nethod to bidiagonalize R provided that we do
not have to accurmulate transformations. If we do need to accunulate
either the left or the right transformations, then this
method will require nore work (4n3 ver sus lm3/3 mult.)
mai nly because it requires two rotations to zero out each
element and these rotations have to be accumul ated.
So it seens that taking advantage of the zero structure of R

in this fashion actually makes the nethod less efficient.

13



W have to note, however, that Gvens transformations involve
fewer additions and array accesses than Househol der
transformations per nultiplication (see section 4.1). Therefore
this method tends to be nore conpetitive on nodern computers
where the tine taken for floating point additions and

mul ti-di nensional array indexings are not negligible conpared to

that for multiplications.

There may be other ways to bidiagonalize R

usi ng orthogonal transformations, but we shall not

pursue this subject further.

1k



(4) OPERATI ON .. QOUNTS
In section (2), we indicated that MDD SVD should be
nore efficient than CR-SVD when m >> n. In this section,
we study the relative efficiency between
CR-SVD and MOD-SVD as a function of m and n. W

do this by conputing the asynptotic operation counts for

each algorithm

In the operation counts given below, we only keep

the highest order ternms in m and n, and so the results are

correct for relatively iarge m and n.

CR- SVD:

(1) _Bidiagonalization (using Householder transfornmations)

3 =p(m) | p(l)gq(l) | q(n=2) 2(mn2-n3/3) mult.
accunulate P = p(l)__ p(n) m2-n3/3 nmul t .
accumulate Q = Q(1) q(n=2) 2n3 nul t .

(2) Diagonalization (using Gvens transformations)

accunul at e S(i) on P Cmnz (C=4) mult.
accunul at e T(i" on Q Cn3 (C=4) mult.
MOD- SVD:

(1) Triangularization_ (using Householder transfornations)

LT[A] -> [q m12-n3/3 mult.
(o]

(2) CRSWD of R R = x) VYT depends on whet her
accunul ations are needed.

(3) Form L[x] (using Householder transf.) 2mn2-n3 mul t.
o

15



Some coments are in order:

(0) The entries cm? and cn® with G4 in the di agonal i zati on
phase of CR-SVD are obtained by assuming that the iterative
phase of the SVD takes on the average two conplete QR iterations
per singular value [1], [3,p122). W have checked this
experinmentally and found it to be quite accurate.
It is assuned that slow Gvens is used throughout the calculation.
If fast Gvens [8] had been used, then the entries would becone

approxi matel y om? and 2n3 instead (viz C2).

(1) For the Householder transformations, each nmultiplication also
invokes 1 addition and approximately 2 array addressings.
For the Givens transformations, each nmultiplication invokes
1/2 an addition and 1 array addressing. On many |arge
conputers today, afloating point nultiplication is not nmuch
slower than a floating point addition. Al so, array
indexing is wusually quite expensive. In such cases, a
Househol der nmultiplication actually involves nore work than
a Gvens nultiplication because of the extra additions and
array indexings. Therefore, the operation counts given for
the diagonalization phase of GR-SVD may be m sleading
because it may actually involve relatively less work. The
total effect, however, can be accounted for by using a
small er value for C For exanmple, if 1 dvens
“mul tiplication" takes half the work needed by a Househol der
“mul tiplication", then the effect on the
relative efficiency can be accounted for by

16



setting G2 instead of GC 4. On older or non-scientific
machi nes where multiplications take nuch nore tinme than
additions and array addressings, the operation count based
on multiplications alone is usually a good neasure of

relative efficiency.

T
(2) The application of s{1)" ang (1) o g (1) is actually

(3)

of order O(nz) and is therefore not included in the

above counts.
W have to distinguish between 4 cases in the conparison:

Case a: both U and V are required explicitly,
Case b: only U is required explicitly,
case c: only V is required explicitly,

Case d: only Z is required explicitly.

These four cases do arise in applications. W will

nmention a few here:

Case a arises in the conputation of pseudo-inverses [1].
Case b is Case c for AT.
Case ¢ arises in least squares applications [1,3] and
in the solution of honpbgeneous linear equations [1}.
Case d arises in the estimation of the condition nunber
of a matrix and in the determ nation of the rank of

a matrix [(10].

17



The total operation count for each case is given in

Table 4.1

Table 4.1
Total operation counts of CGR-SVD and MO SVD for each
of the cases a, b, ¢, and d.

e o n W en Sas T s TS TEn s Ghe Yhs TR YER N THS M TS MG YES TEA TR YRS NN TEA W Tue Mt TS Yhe S e She e Y Ve WS THD D T The W G bs e e e am T4 M S T ew S

Case GR- SVD MOD- SVD
Cu et @uma e s
[
o ot mieee?
e mes

Using Table 4.1 , we can conpute the ratio of the
operation counts of MDD SVD to that of GR-~SvD for each of
the four cases. This is given in Table 4.2 where the

ratio is expressed as a function of r = mn.

18



Table 4.2

Ratio of operation count of MOD~SVD to that of GR-=SVD,

r = m/n
e e ceassmaver potne.
e e G osire
o beesiiowen e
e te@smaea v
e s

VA e M e T n G T s e T TR T Yhe T Me e RN Sht TS fae M T ThS T e e She M e WA THS THe TS ThS TRS W T TEe e TH e Fiw $he Ve TM e VMo Mie b e e The Y M

These ratios are plotted in Fig. 4.1 to Fig. 4.4 for C=2,3,4.
The cross-over point r* is the value of r which makes the
ratio equal to 1. If r >r*, then MDD SVD

is more efficient than CR-SVD.

From Figures 4.1 - 4.4, we see that, in all 4 cases a,b,c
and d, MOD-SVD becones nore efficient than CR-SVD when r
starts to get bigger than 2 approximtely, and the savings
can be as much as 50% when r is about 10. On the other
hand, when r is about 1, CR-SVD is nore efficient. Thi s

agrees with our eariier conjectures. However, the inportant

19
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thing is that all the curves decrease quite fast -asrbecomes

| ar ge. If we assume that it is equally likely to encounter
matrices with any value of r >= 1 (this is not an unreasonable
assunption for designers of general nathematical software, for
exanple), then MOXD-SVD is obviously preferable. In

any case, Fig. 4.1 = 4.4 give indications as to when

one of the methods is nore efficient, at least when m and

n are large enough so that our operation counts apply.

In the context of I|east squares applications, we can also
conpare the operation counts of CR-SVD and MOD-SVD to that of the
orthogonal triangularization nmethods [9) (OTLS) often used for

such probl ens. This conparison is shown in Table 4.4

Table 4.4

Least squares using orthogonal triangul arization versus

using SVD

D D D AP D D D D D D D A D D P D SD M D D P B A S D W A A D D D A A D AP D D A S B A AR AP A A A 2D b

OTLS = orthogonal triangul arization nethod

for |east squares problens.

D D T D D D D D N D D D AP D D M A Y D Y D D ) D D M DD M D D A MY B A A A D S A A A A

OLS : GRSVWD = [r-1/3]/1[2r+C)
OTLS : MID-SVD = [r=1/3]1 / [r+C+5/3)

D D D D OB B D D A D D D D D D Y S D Y D D D IR D D D N WD A D D AP D D O D A B A P D NG A DAY A Y AP D D D

These ratios are plotted in Fig. 4.5 and Fig. 4.6 for C=2,3,4

2
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One sees from these figures that for m nearly equal to n,
the two SVD algorithnms require nuch nore work than OILS.
However, when r is bigger than about 3, MOD-SVD requires only
about 3 times nmore work than OILS. It may therefore becone
economcally feasible to solve the least squares problens at hand
by MOD- SVD instead of OILS. The reward is that
the SVD returns much nore useful infornmation about the problem

t han OTLS [3].

It is easy to see that as r beconmes arbitrarily Ilarge, MOD SVD
is as efficient as OILS since the bulk of the work is in the
triangufarization of the data matrix A However, GR-SVD can be

at nost half as efficient as OILS.

27



(5)  COVPUTATLQNAL __RESULTS

The conclusions in the last section hold only if m and
n are both |arge. In this section, some conputational experinents
are carried out to see if the conclusions are still valid for

matri ces with realistic sizes.

We conputed the SVD of some randomly generated matrices using
both GR-SVD and MOD- SVD. The version of GR-SVD that we used is a
nodi fied ALGOL W translation of the procedure that appeared in [1].
MOD-SVD is realized by witing a procedure to triangularize the
input matrix by Householder transformations and then using the

same above-nentioned GR-SVD procedure for conputing the SVD of R

All tests were run on the IBM 370/168's at the Stanford
Li near Accelerator Center (SLAQ). Long precision was used throughout
cal cul ati on. The mantissa of a floating point number is represented

by 56 bits (approximately 16 decinmal digits).

For each of the 4 cases, we fixed some values for n
and computed the SVD of a sequence of randomly generated natrices
with different values of r. The execution tines taken by GR SVD
and MOD-SVD were then conpared, together with the accuracies of the
conputed answers. Since we are working in a nulti-programing

environment, the execution tinmes we neasured cannot be taken as the

28
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actual conputing tinme taken. Moreover, the influence of the

conpiler on the relative efficiency of the two algorithns may be the
deciding factor ([11]. However, Kkeeping these points in nmnd, we can
still expect aqualitative agreenent with the analysis based on

operation counts.

On the IBM 370/168's at SLAC, a floating point nultiplication
takes only about 1.5 tinmes the work taken for afloating point
addi tion. Al so, array indexing in ALGOL W is very expensive due to
subscript checking (it actually can be nore expensive than
floating point nultiplications). Therefore, asnoted in section 4.1,
we should use C approximately equal to 2 instead of 4 in Table 4.2
and Table 4.4, for the purpose of conparing the relative efficiency

of the two algorithms based on the conputational results.

The results of the conputations are plotted in Fig. 5.1 -
Fig. 5.6 . In general, they agree very well qualitatively wth

the asynptotic results we obtained by operation counts (with

C2). W observe that the larger n is the better the agreenent,
as it should be. However, even when n is small, the theoretical
results based on asynptotic operation counts still describe very
wel |  the qualitative behavior of the conputational results in

many cases. The computational results also show that |arge
savings in work areindeed realizable for reasonably-sized

matrices (For exanple, see Fig. 5.3 and Fig. 5.4).
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W also checked the accuracies of the conputed results,
The singular values returned by both procedures GR-SVD and
MOD-SVD agree to within a few units of the nmchine precision in
alnost all cases that we have tested. The matrices U and V also
agree to the sanme precision but the signs of the corresponding
columms may be reversed. However, the SVD is only unique to

within such a sign change, so this is acceptable [10].

We also conputed the singular values of the follow ng

30 x 30 matrix:

This matrix is very ill-conditioned (with respect to
conputing its inverse) and is very close to being a matrix of
rank 29 even though the determnant equals 1 for all values of n.
The conputed singular values from both GR-SVD and MOD-SVD agree
exactly with those given in [1) to 15 significant digits (which

are all the digit8 printed in ALGOL W.
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(6) CONCLUSI ONS

Firstly, the theoretical results we obtained do seem to predict
the actual conputational efficiencies quite well, and they can
therefore be used to indicate which algorithm to choose for a

given matrix.

The MOD-SVD algorithm clearly work8 better than CGR-SVD for
matrices that have many nore rows than columns. The price
that MOD-,SVD ha8 to pay when mis nearly equal to n is not that big
(usually 1ess than 309%. W have also seen that the cost of
solving a least squares problem by MDD SVD can often be less than twce
that of the wusual orthogonal triangularization algorithns.
It may therefore becone econonically feasible to solve many

| east squares problens by the SVD algorithns.

Sonme inprovenments can probably be made on the bidiagonalization
of the wupper triangular matrix R in MOD-SVD by taking advantage
of the the special structure of R W also want to note again
that MOD-SVD requires n? extra storage locations if the |left
transformations have to be accunul ated. This may be a

di sadvantage when storage is at a premum

W have also seen that the usual practice of counting only
multiplications in operation counts for nunerical algorithnms is
no longer viable for many nodern conputers. O her properties,
such as the ampunt of array accesses involved, may influence the

efficiencies of algorithns decisively.
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To be sure, there may be other ways to conpute the SVD that
will work better in sonme cases but not in others. It is perhaps
i npossible to find an “optimal” algorithm that works best for all
matri ces. Neverthel ess, we hope this paper has shown that it may
be worthwhile to look for inprovenents in the organizations of

exi sting algorithns.
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Appendi x : Fortran Code of a Hybrid Al gorithm

Based on the results of earlier sections, we can inplenent
a hybrid nethod for conputing the SVD of a rectangular matrix A
which automatically chooses to use the nore efficient algorithm
between CR-SVD and MOD- SVD. For each of the four Cases a,b,c and
d, if the input matrix A has a value of r (= nin) which is less
than the cross-over point r* for that case, then we use
GR-SVD, otherwise we use MDD SVD. The cross-over points depend
on the value of C used. As noted before, the value of C to be
used depends on the relative efficiencies of floating point

mul tiplications, floating point additions and array indexings on

the particular machine concerned. However, C can be deterni ned
once for all for any particular machine and conpiler conbination.
exanple, if floating point nultiplications take much nore tine than

floating point additions and array indexing8 on the machine in

question, then we should use C approxinmately equal to 4.

In this Appendix, we give the codes of a Fortran subroutine
called HYBSVD which inplenents the above-nentioned hybrid algorithm
HYBSVD will need to call a standard Gol ub-Reinsch SVD subroutine
during part of its conputation and so we have included such a

routine, called GRSVD, in the listing of the codes of HYBSVD.
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The routine GRSVD is actually a slightly nodified version of the
subroutine SVD in the EISPACK [12] package. The nmain nodification
that we have made is to elimnate the requirenent in subroutine
SVD that the row dinension of V declared in the calling program

be equal to that of A This mninmzes the storage requirenents

of GRSVD at the cost of one nore argunent in the argument |[ist.

There is one additional feature inplenmented in HYBSVD (and
also in GRSVD). In least squares applications, where we are
|l ooking for the minimal length |east squares solution to the
overdeternmined linear system Ax = b, the left transformations
uT have to be accunulated on the right-hand side vectors b
(there may be nore than one b). This can be done by putting
the vectors b in the mtrix argunment B when calling HYBSVD and

-setting IRHS to the nunber of b's.
The calling sequences and usages of HYBSVD and CGRSVD are

explained in the coments in the beginning of the listings of

t he subroutines.
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DN ONNOOOANOCONNONONNOA

CONODNOOODANAOONNANNHO NN

L]
. e

seecssrrrerrce FIRSTCARD O FHYBSVD:Izz::

SURRDUTINE FYBSVDINAU NV s NZs My Ne AgWo MATU U MATV sV o+Z4s By IRHS, IERR o
RV1)
INTEGER NAUJAV N2 MeNy IRHS s IEQR, IP1, 1,JsK, IM1, IBACK \
DOURLE PRECISION A(NAU N)Y sWIN) JUINAUGN) s VINV,N)YZ(NZ,N),
BI(NAU, IRHS),R V1 (N)
DCUBLE PRECISION XOVRPT+CyR Gy SCALE s DSIGNsDABS s CSQRT 9 Fy Sy H
REAL FLOAT
LOGICAL MATUsMATV

THISSUBROUTINE I SA MODIFICATIONOF THE GOLUB-REINSCHPROCEDURE
T

(})FCRCOMFUTINC THE SINGULAQ VALUE OECOMPOSITION A = UWV OF A

REAL M BY N RECTANGULARMATRIX. THE ALGORITHM IMPLEMENTED I N THIS
ROUTINE HAS A HYERIDNATURE. WHENMISAPPROXIMATELY EQUAL TO N
THEGOLUBREINSCFALGORITHM | SUSED+BUT WHENMISGREATER THAN
APPROXIMATELY 2*%Ns A MODIFIED VERSION OF THE GOLUB-RE INSCH
ALGORITHM| S USED. THISMODIFIEO ALGORITHMF

1
G
IRST TRANSFORMS A
T
OR
D

INTOUPPEF TRIANGULARFORMB Y HOUSEHOLDER TRANSFORMAT IONS L
AND THEN USES THEE GOLUB REINSCH ALGORITHMT OoFINDTHE S | N Gu L AR
VALUE OECOMPOSITION OF THE RESULTING UPPERTRIANGULARMATRIXR.
WHENU ISNEEDECD EXPLICITLY+ AN EXTRA ARRAYZ(OFSIZE AT LEAST
N BYN) I S NEECELC, BUTDTHERWISE Z MAY COINC IDEWITHEITHER

A DR V ANDN OEXTRASTORAGE | SREQUIRED. IS HYBRID METHOD
SHOULDBEMCREEFFICIENTTHAN THEGOLUBRE NSCHALGORITHM WHEN
MISM UC HBTIGGER T H A N N FORDETAILS, SEE(2).

EAST

GTH
EMAXX=B.

HYRSVOCANALSQBEUSED TOQCOMPUTETHFE MINIMAL LEN
SQUARES SOLUTICNT O THEGC CVERDETERMINEDLINFEARS Y ST

NOTICE THAT THE SINGULARVALUEDECOMPASITIONOF AMATRIX
I SUNIQUE ONLYUPTO THESIGN OFTHECORRESPONDINGCOLUMNS

OF U AND V.

THISROUTINEHASBEENCHECKED BY THE PFORT VERIFIER{(3)FOR
ADHFRENCE T O A LARGEs, CAREFULLY OEF I NEDy PORTABLE SUBSET OF
AMERICAN NATIONAL STANDARDFORTRANCALLEDPFORT,.

REFERENCES @

(i)GOLUB,G.He A
DECCMPQOSIT
A

N “SIN ulL
C A N D LEAST SQUARES SOLUTIONS
NUMER. M H.

I
T
(2) CHAN,T .+ (:976)"ONCOMPUTING THE SINGULAR VALUE

DECOMPOSITICN," TOAPPEAR AS A STANFORD COMPUTER
SCIENCE REPORTe.

(2)FYDER+B«Ge(1G728)"THEP FORTVERIFIER.” SOFTYARC
PRACTICE ANCEXPERIENCEs VOL ¢4y 359 377.1974.

HYBSVDASSUMESM«GE«N 0 | FMelTe NeTHENCOMPUTE THE
T T T T
SINGULAR VALUE CECOMPDSITIONOF A IF A =UWV . THENA=VWU .

ON INPUT:

b1



OO NONNONNDNOO0O0OOONNONNOODNNNODNODANNNNCONANNO00OONA0NO000O

NAUMUSTBE SET TO THE ROW DIMENSION OF THE TWO-DIMENSIONAL
ARRAYFARANETERSAyUANOBAS DECLARED IN THE CALLINGPROGFRAM
PIMENS T C Nusva-eo-sa o NOTE THAT NAU MUSTBE AT LEAST
AS LARGE AS M3

NV MUSTRBESET TO THE R O WDRIMENSIONOF THE TWO~DIMZINSIONAL
ARRAY PARAMETER V AS DECLARED IN THE CALLING PROGRAM
DIMENSICNSTATEMENT. NV MUSTBEAT LEAST AS LARGE AS N:

NZMUSTEE SET TO THE ROW DIMENSION OF THE TWO-DIMENSIONAL
ARRAY PARAMETER ZAS DECLARED IN THE CALLING PROGR A
DIMENS ION STATEMENT . NOTE THAT NZ MUST BEATLFA

AS LARGE AS N:
M|IS THENUMBEROF ROWS OF A (ANDU);}
N IS THE NUMBER OF COLUMNS OF A (ANDU)AMDTHEODRDEROF V:

A CONTAINSTHE RECTANGULAR INPUT MATRIX TOBEDECOMPOSED:

BCONTAINS THE RIGHT-HAND SIOESOF THEOQVERDETERMINED
LINEARSYSTE Be | F IRHS«GT a0y
HESTEIRHASCOLUMNS | NB

HS

A X=

THEN ON DUTPL o T
T

8

e THUSy TO COMPUTE THE MINIMAL LENGTH LEAST
+

SQUARE S SOLUTION, ONEM U S TCOMPUTE Vv *wW TIMESTHE COLUMNS OF

W I L LCONTAIN U

+ +
Bes WHERE W IS IM‘UNALMATRlx,N (1)=01 FW(I)I s
NEGLIGIRLE . CTHF_ WISE IS I /W (Il). IFIRHS=0.8M A Y CGINCIDE
WITH A CR UANDWILLNOTB EREFERENCED
IFHS I STHENUWWBEROF RIGHT HAND-SIDESOF THEOQVERDETERMINED
SYSTEM A%X=Ps IRHSSHOULDSBSESET TOZERQIF ONLY THE SINGULAR
VALUEDECOMPCSITIONOF A IS DESIRED;
MATUSHOULDPRESET TOSTFUE«I FTHE U MATRIX IN THE
DECOMPOSITION | SDESIPZDsAND TOeFALSEe OTHERWISE;
MATVS HOULDBESET TO«TRUZSIFTHE VMATRI X INTHE
DECOMPCSITICN I SD&SIRED. MDT O«FALSEe OTHERWISE
WHEN HYBSVOISUSFDTOCOMPUTE THE MINIMAL LENGTH LEAST
SQUARES‘EO LTIONTO ANOVERDETERMINED SYSTEM, MATUSHOULD
RESET T ALSE.. AND MATV SHOULD BRESET TO @ T=IUE. .

ON OUTPUT ¢
4 ISUNALTERED (UNLESSOVERIWRITTENBYUNRV) ]S

W CONTAINSTHERN(NONNEGATIVE) S INGULARVALUES OF A (THE
DI AGONAL ELEMENTS OFW) . THEY ARE UNORDERED » I'F AN
ERROR EXIT | S MADEs THE SINGULAR VALUES SHOULD BE CORRECT

FORINLCICESIERR+1,IFRR+2s¢ . m sN3

RIX U(ORTHOGONAL COLUMNVECTORS)IOF T HE
MATUH A SBEENSETT O-TRL’E. DTHERWISE
OR ARY ARRAY. U MAY COINCIDE WITH A.

S N S OF U COREKE SPONDI NG
S SHOULO BECORRECT;

USED A TEM
N RRUREXIT

CONT T
DECONPCSITI CN IF
U P
I 1
T NDI ESCF CORRE c SINGULAR VALU

Lo
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V CONTAINSTHEMATRIXY (ORTHOGONAL) OFTHEDECOMPOSITIONIF
MATVHASBEENSET TO TRUE. OTHERWISE V IS NOTREFERENCED.
V MAY ALSO COINCIDEWITHAIFU IS NOT NEECED. IFAN ERROR
EXIT ISMADE. THECOLUMNSOFV CORRESPONDINGTOINDICES OF
CORRFCTSINCGULAR VALUES SHOULDBE CORGECT:

Z CONTAINSTHEMATRIX X IN THE SINGULARVALUE DECOMPOSITION

T
O FR=XS5Y, IF THE MODIFIED ALCOFITHMISUSED. IF THE
GOLUB-FEINSCHPRDCEDURE ISUSEDSs THEN ITISNDOTRFFERENCED,
IF MATU HASBEENSET TOFALSE., ZM A YCCINCINDE

WI TH AORV ANDISNOTREFERENCEDS
T

iERRIS SET C
ZERO F C RNORMAL RSTURN,
K IF THE K~-THSINGULARVALUE HAS NOT BEEN
DETFRMINED AFTER 30 ITERATIONS:
IF IRHS LT. 0 .
IF MebLTa N &
IF NAU LTe M &
IF NV LT. N .
IF NZ LT. N .

, 4
ad -

FV11S ATEMFCRARPY STORAGE ARRAY.

PROGRAMMED EY:TONYCHANsCOMP.SCI « DEPT o
STANFORDUNI V. s CA 94305
LASTMODIFIEC:1 2 SEPTEMBER, 1 9 7 6

- T e e e meowr - T T . e @ Wt M e Y B s e M WY M M AP WM (. e R . M e Oe T e e o e mae v de T T

IERR=0

| F(ITRHS.GE«C)YG O T O 2

IEFR= 1

QETULRN

I F(MeGEs N}y GO TO 3

1EFR= 2

RETURN

IF (NAUGE«. M) GO TO &

IERR=- 3

RETURN

IF (NVGE.N)GC TO 5

1EFS= -4

FETURN

IF (NZ.GE«N) CcO TO 6

IFRR= §

RETURN

COMTI NUE

SETVALLEFCRCe THE VALUEFQR C DERPENDSON THE RELATIVE
EFFICIENCYC FFLCATINGPOINTMULTIPLICATIONSSFLOATINGP OINT
ACDITIONS AND TWCDIMENSIONALARRAYINDEXINGSON THE
COMPUTER WHERE THFISSUBROUTINE I ST OBER U N C SHOULD
USUALLY BE FETWFEEN 2 A N D&, FORDETAILSON CHCOSINGCySEE
(2)e. THE ALGORITHM IS NOTSENSITIVETTOTHE VALUE 0= C
ACTUALLYUSEDA SILCNGA SC | SBETWFEN2AND 4

C = 4.000

DETFRMI NE CRCSS~CVER POINT
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IF(MATU «ANDe MATV)IX O VR P T =(C+5.D0/3.D0)/C
I F(MATU «ARDe oNOT .MATV ) XOVRPT = (C+5.00/73.D0)/C

I FCeNOTeMATU. A N D . MATV) XOVRPT = 5.D00/3.D0
I F{eNOTeMATU e ANDe e NOTeMATV)IX O VR P T =95D0/3.D0

DETERMINE WHFETHER TO USE GOLUB-REINSCHOR THE MODI FI ED
ALGDRITHM,

R = FLOAT(M)/FLCAT(N)

I F{R. GE. XCVFPT)YGO TO 8
USEGOLUBREINSCE PROCEDURE

CALL GRSVD(NAU NV M, Ny A Wy MATUSUsMATVsV,eBy IRHSSIERR,RV1)
FETURN

USE MODIFIED ALGCRITHM

DO !0 I=1,M

U BY HOUSEHOLDER TRANSFORMATIONS s USING
TENMFORARY STORAGE .

ot]

1
J
TRIANGULARIZE
W ANDRVS A S

DO ? CI=1sN
G=0.0D0
S=0.0D0
SCALE=9.00D0

PERFORM SCALING OF COLUMNS TO AVOID UNNECSSARY OVERFLOW
O RUNDERFLOW

D03 0K=1,M
SCALE= SCALE + DABS(U(K,I))
IF (SCALEEGe Q40D0YIG O T 020
0 04 OK=I,M
U(K,I) = U(KsI1)/SCALE
S =3 + U{KeI)*%x2
CONTINUE
THE VECTOR EOF THE HOUSEHOLDER TRANSFORMATION I +EE*/H
WILLBESTORED INCOLUMN I OF U. THE TRANSFORMED ELEMENT
UCILI)YILLBES TORED | NW(IYANCT H ESCALARH ]| N
RVI(1)e.
F = U(I'I,
G = “DSIGN(DSQRT(S),F)
H = FXG -~ S
U(I,1) = F - G
RV21(I) = H
W(I) = SCALE*G

I F(I.EQe N) GO TO 85

APPLY TRANSFCRMATIONS TO REMAINING COLUMNS OF A

Lh



S = Ce0DC
DO €0 K=1I,M

63 S =S + UK I ) *U(K L J)
F = S/H
D7 0K=I.M
UK sJ) = U(KsJ) + FxU(K, 1)
70 CONTINUE
5Q C ONTINUE
C
C APPLY TRANSFCRMATIONS TO COLUMNS OF B IF IRHS «GT.0
C
]5 Il F{(IFHS<EC.0)G O T O 20
D O 80J=1,1RHS
S = 0000
DO SO K=1I,WM
90 S = € + U(K,1)1%B(K,J)
F = S/H
D O :00K=1I,M
B(KJ) = BKysJ) ¢ FXU(K,LT)
+ 03 CONT INUE
20 CONTINUE

20 CONT | NUE

C
c CCPY RINTOZI FMATU =+TRUE,
~
Il F(«eNOT.MATU)G O T O 300
DO 110 I=1 oM
D 01i10J=1,N
| F(J «eCEe 1) GO TO 112
Z(1,Jd) = 0.900
GO T O1:0
102 | F(J «EGe. 1) GO TO 114
Z(1,J) = U(1,J)
G OoOTC11i0
. Z(I+,1) = W(I)
10 CONTINUE
C
C- ACCUMULATE HOUSEHOLDER TRANSFORMATIONS IN U
C
D O i20IBRACK=1,N
= N - IBACK 4+ 1
IPT =1 + 1
G = W(1)
H = RVLI(I)
IF (I EQeN) GO TO 130
C
D C*40 J=IP1,sN
140 Ul ,J) = 0.300
C
*30 I F(H «fQe C40DOYG O T O150
I F(lIeEQe NGO TO 160
C
D O*70 J=1IP1,N
S = 0.CDC
DO "8 0 K=IP1 M
189 S = S + UK, I)*U(KeJ)
F = S/H
D OJ70K=1I,M
CiK,yJ) = U(Ky J) + FRXU(K, 1)
70 CONTINUE
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20 CONTINUE
COMPUTE SVD OFF (WHICH IS STORED INZ)

r O

CALL GRSVD(NZ sNV NNy Z W, MATU,Z4yMATV,VeBs IRHS,IERR,RV1)

T
FORMULXXTO OBTAIN U(WHERER=XWY ). X IS RETURNED IN Z
B8Y GRSVDe THFEMATRIXMULTIPLYI SDONEONEROW AT ATIME,
USINGRVIA S SCRATCH SPACE,

OO0O0ONND

D 022C 1I=1,NWN

oN
240 +U(ILKI*Z{(K,yJ)

<30
N
250 Ll = Rvi(J)
2206 CAONT | NUE
RETURN

FOFMRIN U BY ZEROINGTHELOWERTRIANGULARPART OF R IN U

nNnMNo

26 IF ( GC TO 280

CALL GR‘SVD(NAU'Nv.NoNQU,WOMATUOUQMATVQVOB|IRHSQIERRQRVI,
RETURN
THE BODY OF SUPROUTINE GRSVDSHDULD BE INCLUDED WITH HYESVD

o, . CBOMINOIIMANEEED LAST CARD OF HYBSVD fissiocozsressis
END
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SUBROUTINE GRSVD(NAUNV My Ny Ay WyMATU,UMATV,V,B,IRHS,IZRR,RV1)

INTEGER ToJ oK ol eMoNeTI ¢+ T1sKKsKlslLL L1 +MNygNAUJNVLJITS,IERR,,IRHS
DOJBLE PRECISION A(NAUGN) yWIN)I U(NAUINIZVINV,N)sBI{NAU,IR4S) 4RV1(N)
DOUBLE PRECISION CosFsGesHsSsXsY sZEPS SCALEs MACHEP

DOUSLE PRECISION DSQRT,DMAX] ,DABS,DSIGN

LOGICAL MATU+MATV

THIS SUBROUTINE IS A TRANSLATIONOF THEALGOL PROCEDURE SVD,
NUM. MATH.14, 3403-420(1970) BY GOLUB A N DREINSCH
HAND3QOKFORAUTO,CCMP .43 VO LIf-LINEARALGEBRA,134-151(1971).

THIS SUBROUTINEDEZTERMINES THE SINGULAR VALUE DECOMPOSITION

T
A=UWYV OF AREALMABY N RECTANGULARMATRIX. HOUSEHOLDER
3IDIAGONALIZATIIONAYDA VARIANT OF THE OR ALGORITHM ARE USED.
GREVD ASSUMESMeGEeN . IFM oLTeN, THENCOMPUTE THE SI'JGULA?
T T T T
VALUEDECOMPOSITIONOF A . IF A =UWV , THEN A=VWU

GRSVDCANALSOBEUSEDT OCOMPUTETHE MINIMALLENGTH LEAST SQUARES
SOLUTION TO THE JVERDETERMINEDLINEAR SYSTEM AkX=B,

ON INPUT:

NAU MUSTBESET TOTFEROFADIMENSION OF THE TWO-DIMENSIONAL
ARRAY PARAMETERS AsU AND 8 AS DECLAREDIN THECALLING PROGRAM
DIMENSION ST ATEMENT. NOTETHAT NAUMUST BEATLEAST
AS LARGE AS M;

NV MUSTBE SET TOTHERCW DIMENSION OF THE TWO-DIMENSIONAL
ARRAY PARAMETER V AS DECLAREDINTHECALLING PROGRAM
DIMENS ION STATEMENT. N VMUSTBEAT LEAST ASLARGE ASN;

MIS THERNUMBERO FRCWSO FA (ANDU)S
N IS THE NUMBEROF COLUMNS OF A (ANDU)AND THE ORDEROFYV;
A COJTAINS THE RECTANGULARINPUTMATRIX TO BEDECOMD®)]SED;
BCONTAINS THE IRHS RIGHT-HAND~-SIDES OF THE OVERDETERMINED
LINEARS Y STEMA%XX=BelF IRHSeGTe?2,
THEN ON JUT?UT, THESEIRHSCOLUMNS

T
WILL CONTAINU BeTHUS,TO COMPUTE THE MINI MAC LENGTH LEAST

+
SQUARES SOCUTI ON. ONEMUSTCOMPUTE V%W TIMES THE COLUMNS OF
+

+
By WHERE W I S A DIAGCNAL MATRIX,H (I)=C 1 FWwW(I)IS
NEGLIGIBLEs OTHERWISE IS1/W(I)e IF IRHS=0,BMAY COINCIDE
WITH A OR U ANDWILLNOTBE REFERENCED:
IPHS 1 S THENUMBER O FRIGHT-HAND - S DESOF THE OVERDETERMINED
SYSTEM A¥X=Be |IRHSSHOULDBE S E TOZERPOIFONLYTHAZSI NGULA?
VALUE DECOMPOSITIONO F AISDES IRED,
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00000 ANONOOANADD00000NADONAN00000N0000ANAANADOOAN0000O0NAONAR0ON

(@]

MATU SHOULD BE SET TC « TRUEeIFTHE U MATRIX IN THE
DECOMPOSITION 1S DESIREDJANDTIOFALSESe OTHERWISE:

MATV SHOULDBESET TO «TRUESGIFTHEYVY MATRIX IN THE
DECOMPOSITIONI S DESIREDs AND TO eFALSE« OTHERWISE

O NOUTPUT:®
A TSUNALTERZID (UNLESS OVERWRITTENBY UO RV);

W CONTAINS THE N{(NIN-NEGATIVE)SINGULAR VALUES OF A (THE
DIAGDNAFLEMENTS OF W)e THEY ARE UNORDERED. IF AN
ERROF EXIT | S MADEs THE SXNGULAR VALUES SHOU_DBECIJORRRECT
F O RINDICESIERR+1sJERR+2,4¢4e0¢9sNj

VECTORS1 0OF THE
RUE. OTHERWI SE
OINCIDE WITH A.

U CONTAINS THE MATRIX U (ORTHOGONAL COLUMN
OECOMPOSITIONIF MATU HASSBZENSET
U KS USED AS ATEMPORARY ARRAY. u
IF ANERRO?EXIT IS MADEs THE COLU
T O IMDICES OF CORRECT SINGULAR VAL

U CORRESFUONDING
ES SHOULDRBRECORRECTS

A
V CONTAINS THE MATRIX V (ORTHOGONA
H
S

L)OF THE DECOMPOSITIONIF
MATV HASBEENSET TO eTRUE. OTHERWISE VISNOTREFERENCEDe
V MAY ALSOCOINCIDEWITH A IF U | NOT NEEDED. IF ANERROR
EXITISMADE, THE COLUM'JS OF V CORRESPONDING TO INDICES OF
CORRECT SINGULAR VALUES SHOULD BECORRECT;

IERRISSET TO

ZERO FOR NDRFAL RETURN,

K IF THE K-TH SINGULAR VALUE HAS NOTBEEN
DETERMINED AFTER 30 ITERATIONS

-1 IF IRHS L Tee: & o

-2 IF M olT. N .

-3 I FNAU eLTeM

IF NV «LTe N .
RV1IS A TEMPORARY STORAGEA R R A Y .

(RYDER+BeGe “THE PFORT VER IER SOFTWARE = PR
EXPERIENCE, VOLe4s 359-377 1974)F0OR ADH
CAREFUL-Y DEFINED, PORTABLE SUBSETOF AME
FORTRAN CALLED PFORT.

”
i

THIS SUBROUTINE HAS BEEN CHECKEDBY THE PFORT
I F
L]

ORIGINAL VERSIONOF THTS CODEI SSUBROUTINESVD |l N RELEASE 2 COF

EJ SPACYe
MODIFIEDBY TONMY CHAN. CNMPeSCI. DEPT.STANFORDUNIV.,CAQA30S,

L ASTMNDIFIED: 2 SEPTEMBER,1976.

VIS S MACHE®? IS A MACHINE DEPENDENT PARAMETER SPECTFY ING
THE RELATIVEPRECISIONO FFLOATINGPOINTARITAMETIC,.
MACHEP = 16+0D0*%x(~13)FOR LONGFORM ARITHMETIC
ON 5369 Tzt

DATAMACHER/2.22D~-15h/

TERR = 3
IF (IRHS «GEe 0) GC TO 2
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ONnON

(@)

OO0

100

120

1390

140

IERR=-1

RETURN

IF (M .GEe N )G3 TO 3
IZRR==-2

RETURN

IF

(NAU «GEe M) GO TO 4

Il ERR=- 3
RETURN

IF

(NV «GEeN) GO TOS

IZRR=-4
RETURN
CONTI NUE

DO

APPLY LEFT TRANSFORYATTONS TO REMAINING COLUMNS OF A

1631 = 1, M
1

DO 190 J = 1 N
U(T,J) = A(T,J)

NTINUZ
SIIISSSS HOUSEHOLDFRREODUCTIONTOBIDIAGONAL FORM3ITSS 2222

SCALE * G

OF THEIITH COLUMN.

DN 120 K = TeM
SCALE = SCALE+DABS(U(K,.I))

IF (SCALE+EQeD+0D0)GO TO 210

DO 130K = 1I,M
U(K.I) = U(Ks1)/ SCALE
S S+ U(K,I)*%2

CONTINUE

F = U(I,I)

G = —DSIGN(DSQRT(S),F)

H = F ®* G - S

U(ls1) = F - G

|

F(I+EQe N) GO TO 155

DO 156G J = Ls N

s = Ge0DC

DO 14C K = [+ M

s = S + U(KL,1) * U(K,L,J)
F = s /H

DO 150 K = I,M
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eNaYe!

onn

150

155

190
200

210

220

230

240

250

260

2790
280

29c

UK sJ) = U(KeJ) + F *=U(K,I)
CONTINUE

APPLY LEFT TRANSFORMATIONS TO THE COLUMNS OF B IF

I FCIRHS ¢EQ2¢0)G O T 0190
DO1 6 0J=1, IRHS

S=0.0D9
DO 170K=1+M
S = 5 + U(K,I1)%B(K,J)
F = S/H
DO 180K=1I,M
B(K,J) = B(K’J)+—F*U(K'I,
CONTINUE

COMPUTE R I GHT TRANSFORMATIONS »

DO 200 K = T+M
U(KsI) = SCALEZX®U(K,LI)

W(I) = SCALE* G

G = O.(JDO

S = 0..2D00

SCALE = OQODO

IF (JeGT e M e0ORe | eEQe N) GO TO 290

DO 220 K = Ls N
SCALE = SCALE+ DABS(U(I,K))

IF (SCALEeEQe QCDO)GO TO 290

DO 23C K = Ls N
U(TeX) = U(1,K)/SCALE
S =S +U(l,K)#%2
CONT INUVE
F = U(l,L)
G = =DSIGN(DSQRT(S),F)
H = F I G - S
uctr.L)= r -G
DO 240 K = Ly N
PVI(K) = U(l.K) /7 H
I F{I «EQe M) GO TCQG 270
OO0 260 J = UL.M
S = C.2D0
DO 250 K = LN
S = S + U(J.K)*LHI.K)
DO 26C K = Ls N
UCJ oK) = UlJsK) + S *x RV1(K)
CONTI NUE
DO 28Q K = Ls N
U(Tl sK) = SCALE*®U(]I,K)
x = DMAXI1(X,DABS(W(I1))+DABS(RVI(I)))
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300

320

340

350

360

380

390

400

41c

420

430

440

CONT INUE
%% r 2?22 ACCUMULATION OF RIGHT-HAND TRANSFORYATIONS ss22222z22:
I F(eNOTe MATV)IGO TO 410
2222222222 FOR I=N STEP-1UNTIL1 DO --%%%%cecseve
DO 40C 1 1 =1 N
I =N 4+ 1 =11
IF (I EQe N) GC TO 390
I F{(G «EQeCeUDN)G O TO 360
30 320 J =L, N
® . *=-*:: DOUBLEDIVISION AVOIDS POSSIBLE UNDERFLOW *®**2*2cse
VIJ,1) = (U(T,J) 7 U1, L))/ G
30 353 J = Ls N
S = Cr.000
DO 340 K = Lse N
s = S +U(TI,K) * VIK,J)
DO 353 K =Ls N
VIKesJd) = VIKeJd)+ S * VIK,1)
CONT I NUE
DO 380 J = Ls N
V{I.J) = 0.000
V(JesI) = D000
CON TI NUE
VII+1) = 1.0D7
G = RVI(1)
L =1
CONTINUE
22322222t ACCUMULATION OF LEFT-HAND TRANSFORMATIMNNS® **° %* = %**
IF («NOTe MATU)GOT 0510 . x .
T3S IISFORI=SMIN(MONIS TEP=-=IUNTILLI DO -- . .« o ol
MN = N
Iz(MoLT.N’ MN = v
DO 5611 =1, MN
I = MN + 1 -1
L = 1 + 1
G = Ww(I1)
IF (1 «EQe N) GO TO 430
DO 420 J = L, N
Ul «J) = D0DO0
I F{(G ¢eEQe 0.000) GO TO 475
I F(I.EQe MN )GO TO 460
DO 450 J = Ls N
s = 0.CDC
DO 440 K = Ly M
3 = S +U(KsI) * U(K,J)
critiio iy DNUBLEDIVISICNAVOIDS POSSIBLE UNDERFLOW $s3s223:352:2
F = (S /7 U(I,1)) /7 G
DOQSO K = | ° M
U(KeJ) = U(KeJI) + F¥ U(K.T1)
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onn

520

530

540

545
54%

CONTI NUE
DO 470 J=IsM
UutJyg.I1) = UCJ.1)/ G
G 070490
DC 480 J = T+M
U(JsI) = 0.000
U(TII) = U(l,I) + 1.00C
CONTINUE
ottt it DIAGONALIZATIONOF THEBIDIAGONAL FORM
EPS = MACHEP % X
$22232322YF O RX=NS TEP- 1IUNTIL 1 DO --238%22s2z2z:
on.7ee KK = 1, N
K1 = N = KK
K = K1 + 1
1ITs = €
e.see.vese TEST FOR SPLITTINC.
FOR L=K STEP =] UNTIL 1 DO - - tss3sss322
DO S3”2LL =1, K
L1 = X = UL
L = L1 + 1
IF (DABS(RVY (L)) oLECEPS)GO TO 565
*it T, RWVI(LI)ISALWAYSZERO, SO THEREISNIEXIT
THPOUGH THE BCTTOMO3FTHE LOOPZ2z32s22222:
I F(DABS(W(L1)).LE.EPS)YG O T 0540
CONT I NUE
i 2:%%%w.: CANCELLATION OFRVI(L)IFLGREATER THAN1:
C = 0.0DO
S = 16000
DO S60 | = L, K
F = S ®*xRV1(1)
RV1I(Y) = C*RVI(I)
IF (DABS(F) eLEeE P S)G 0OTQOS6S
G = W(1)
t-i = DSQRT(F¥F +G%*G)
wil) = H
cC =6 / H
s = =F /J H
APPLYL E F TTRANSFNORMATIONS T o alF IRHS «GTe Co
I F(IRHS .ENsN)G O T 0542
DO 545J=14IRHS
Yy=8(L1 ,J)
Z2=B(1,J)
B(L1,J) = Y*C + Z*S
B(l4J) = -Y%XS +2z * ¢
CONT INUE
CONTI NUF
I F(eNDTe MATU)G OTC56 0
DO 850 J = 1, M
Y = U(J,L1)
Z = U(J,.1)
U(JoL1) =Y % C + Z xS
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-Y * S ¢+ Z % C
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o0 o 0

B(l,J) = —-YXS + 7Z%_C
585 CUONT :NUE
582 CONTI NUE
| F(«NOTe MATU)IGO T O 600
DO 590 J =1+ M
Y = UlJ,11)
Z = U(Js1)
U(Je11) = ¥ *« C + Z * S
U(Jel) = =Y 2s + z * C
590 CONT |IYUE
600 CONTI NUE
RVI(L) = 0,0DO0
RV1(K) = F
wiK) = X
GO TO S20
o CONVERGEYCE 23322228233
650 I FA(Z ¢eGEe 0INC)GO T O 700
tiririiri W(K) ISMADENON-NEGATIVE $s22222
wiK) = -Z
IF ( «eNOTe MATVIGO TO 7CO
DO 590 J = 11 N
690 VIJe<) = =V(J,K)
7 00 CONTINUE
GO TO 1001
111111111 SET ERROR -- NO CONVERGENCE TO A
SINGJLARVALUEAFTER3CITERATIONS
1CO0IERR = K
100 1 RETURN N
csetitiltt LAST CARD O FGRSVD ¢ oo
END
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