ONCOMPUTINGTHE SINGULAR VALUE DECOMPOSITION

 byTony Fan C. Chan

STAN-CS-77-588 FEBRUARY 1977

COMPUTER SCIENCE DEPARTMENT School of Humanities and Sciences STANFORD UNIVERSITY


```
*Computer Science Dept., Stanford Univ., Ca94305.
This work was supported by NSF Grant DCR75-13497
and NASA Ames Contract NCA2-0R745-520. The computing
time was provided by the Stanford Linear Accelerator
Center (SLAC).
```


ABSTRACT

The most well-known and widely-used algorithm for computing the Singular Value Decomposition (SVD) of an $m \mathrm{x} \quad \mathrm{n}$ rectangular matrix A nowadays is the Golub-Reinsch algorithm [1]. In this paper, it is shown that by (1) first triangularizing the matrix A by Householder transformations before bidiagonalizing it, and (2) accumulating some left transformations on an $n d n$ array instead of on an m x array, the resulting algorithm is often more efficient than the Golub-Reinsch algorithm, especially for matrices with considerably more rows than columns (m >> n), such as in least squares applications. The two algorithms are compared in terms of operation counts, and computational experiments that have been carried out verify the theoretical comparisons. The modified algorithm is more efficient even when m is only slightly greater than n, and in some cases can achieve as much as 50% savings when $m \gg n$. If accumulation of left transformations is desired, then n^{2} extra storage locations are required (relatively small if m >> n), but otherwise no extra storage is required. The modified algorithm uses only orthogonal transformations and is therefore numerically stable. In the Appendix, we give the FORTRAN code of a hybrid method which automatically selects the more effiecient of the two algorithms to use depending upon the input values for m and n .

(0) INTRODUCTION

Let A be a real $m x n$ matrix, with $m \gg n$. It is well-known [1,2] that the following decomposition of A always exists :

$$
\begin{equation*}
A-u \sum v^{T} \tag{0.1}
\end{equation*}
$$

where U is $a m x d n$ matrix and consists of n orthonormalized eigenvectors associated with the n largest eigenvalues of $A A^{T}, V$ is $a n d x$ matrix and consists of the orthonormalized eigenvectors of $\mathbf{A}^{\mathbf{T}} \mathbf{A}$, and $\boldsymbol{\Sigma}$ is a diagonal matrix consisting of the "singular values" of A, which are the non-negative square roots of the eigenvalues of $\mathbf{A}^{T} \mathbf{A}$.

Thus,

$$
\begin{equation*}
U^{T} U=v^{T} v=V v^{T}=I_{n} \tag{0.2}
\end{equation*}
$$

and $\quad \Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots \sigma_{n}\right)$.
It is usually assumed for convenience that

$$
\sigma_{1}>=\sigma_{2} " \ldots>=\sigma_{n}>=0
$$

The decomposition (0.1) is called the Singular Value
Decomposition (SVD) of A.

Remarks:
(1) If $\operatorname{rank}(A)=\mathbf{r}$, then $\sigma_{\mathbf{r}+1}=\sigma_{\mathbf{r}+2}=\ldots \ldots \sigma_{\mathbf{n}}=0$.
(2) There is no loss of generality in assuming that $m>m n$, for if $m<n$, then we can instead compute the $S V D$ of A^{T}. If the $S V D$ of $\mathbf{A}^{\mathbf{T}}$ is equal to $\mathbf{U} \sum \mathbf{V}^{\mathbf{T}}$, then the $S V D$ of A is equal to $\mathbf{V} \boldsymbol{\sum} \mathbf{U}^{\mathbf{T}}$.

The SVD plays a very important role in linear algebra. It has applications in such areas as least squares problems [1,2,3], in computing the pseudo-inverse [2], in computing the Jordan Canonical form [4], in solving integral equations [5], in digital image processing [6], and in optimization [7]. Many of the applications often involve large matrices. It is therefore important that the computational procedures for obtaining the SVD be as efficient as possible.

It is perhaps difficult to find an algorithm that has optimal efficiency for all matrices, so it would be desirable to know for what kind of matrices a given algorithm is best suited. It is in this spirit that we were first motivated to look for improvements of the Golub-Reinsch algorithm when the mat-rix A has considerably more rows than columns, i.e. m >> n. It turns out that such an improvement is indeed possible, with only slight modifications to the Golub-Reinsch algorithm, even when m is only slightly greater than n, and can sometimes achieve as much as 50% savings in execution time when $m \gg n$.

In section (1) we will briefly describe the Golub-Reinsch algorithm. We will then present the modified algorithm in section (2), with some computational details deferred to section (3). Operation counts for the two algorithms will be given in section (4) and some computational results in section (5). We wili make some conclusions in section (6). In the Appendix,

```
we will give the FORTRAN implementation of a hybrid method
which automatically selects the more efficient of the two
algorithms to use depending upon the input values for m and n.
```

We will use the same notation as in [1].

This algorithm consists of two phases. In the first phase one constructs two finite sequences of Householder transformations

	$\mathbf{P}(k)$	$(k-1,2, \ldots, n)$
and	$Q^{(k)}$	$(k=1,2, \ldots .$.

such that
an upper bidiagonal matrix. Specifically, $P(i)$ zeros out the subdiagonal elements in column $\mathbf{1}$ and $Q(j)$ zeros out the appropiate elements in row j.

The singular values of $J(0)$ are the same as those of A.

Thus,

$$
\begin{aligned}
& \text { if } J \\
& \text { then } A=G \sum H^{T} \quad \text { is the } S V D \text { of } J, \\
& \text { so that }=P H^{T} Q^{T} \\
& \text { with } \quad P-P(1) \ldots P^{(n)}, Q=Q^{(1) \ldots} \ldots(n-2) .
\end{aligned}
$$

The second phase is to iteratively diagonalize $\mathrm{J}(.0)$ by the QR method so that

$$
J(0) \rightarrow J(1) \rightarrow \ldots
$$

where

$$
\begin{equation*}
J(i+1)=S^{(i)^{T}}{ }_{J}(i)_{T}(i) \tag{1.3}
\end{equation*}
$$

where $\mathbf{S}^{(1)}$ and $\mathbf{T}^{(1)}$ are products of Givens transformations and are therefore orthogonal.

The matrices $\mathbf{T}^{(1)}$ are chosen so that the sequence $M^{(i)}=J^{(1)^{T}}{ }_{J}(\mathbf{i})$ converges to a diagonal matrix while the matrices $\mathbf{S}^{(i)}$ are chosen so that all $\mathbf{J}(\mathbf{i})$ are of bidiagonal form. The products of the $T(i){ }^{\circ} s$ and the $S^{(i)}$ ' s are exactly the matrices $H^{\mathbf{T}}$ and $G^{\mathbf{T}}$ respectively in Eqn (1.2). For more details, see [1].

It has been reported in [1] that the average number of iterations on $\mathbf{J}(\mathbf{1)}$ in (1.3) is usually less than $2 n$. In other words, $\mathbf{J}(2 \mathrm{n})$ in Eqn (1.3) is usually a good approximation to a diagonal matrix.

We will briefly describe how the computation is usually implemented. Assume for simplicity, that we can destroy A and return U in the storage for A. In the first phase, the p (i) are stored in the lower part of A, and the $Q^{(i)}$ are stored in the upper triangular part of A. After the bidiagonalization, the $Q(i)$ are accumulated in the storage provided for V, the two diagonals of $\mathbf{J}(\mathbf{0})$ are copied to two other linear arrays, and the $P(\mathbf{1})$ are accumulated in A.

> In the second phase, for each \mathbf{i}, $\mathbf{S}^{(1)}$ is applied to P from the right and $\mathbf{T}^{(1)}{ }^{\mathbf{T}}$ is applied to Q^{T} from the left
in order to accumulate the transformations.

Our original motivation for this algorithm is to find an improvement of $G R-S V D$ when $m \gg n$. In that case, two improvements are possible:
(i) In Eqn (1.1), each of the transformations $P(1)$ and $Q^{(1)}$ has to be applied to a submatrix of size (m-i+1) x ($n-i+1$).

Fig. $2.1 \quad P^{(i)}$ and $Q^{(1)}$ affects the shaded portion of the matrix

Now, since most entries of this submatrix are ultimately going to be zeros, it is intuitive that if it can somehow be arranged that the Qi) does not have to be applied to the subdiagonal part of this submatrix, then we will be saving a great amount of work when m >> n.

This can indeed be done by first transforming A into upper triangular form by Householder transformations on the left.

$$
L^{\top}\left[A|\rightarrow| \begin{array}{l}
Q
\end{array}\right] \equiv\left[\left.\begin{array}{c}
R \\
\hdashline 0
\end{array} \right\rvert\,\right.
$$

where R is $n ~ x ~ u p p e r ~ t r i a n g u l a r ~ a n d ~ L ~ i s ~ o r t h o g o n a l, ~$ and then proceed to bidiagonalize R. The important difference is that this time we will be working with a much smaller matrix R than $A\left(\right.$ if $\left.n^{2} \ll m n\right)$, and so it is conceivable that the work required to bidiagonalize R is much smaller than that originally done by the right transformations when $m \gg n$.

The question still remains as to how to bidiagonalize R. An obvious way is to treat R as an input matrix to GR-SVD, using alternating left and right Householder transformations. In fact, it can be easily verified that if the $S V D$ of R is equal to $\mathbf{X Z} \mathbf{Y}^{\mathbf{T}}$, then the SVD of A is given by

$$
\begin{equation*}
A=L\left[\frac{X}{O}\right] \sum Y^{T} \tag{2.1}
\end{equation*}
$$

We can identify U with I. $\left[\frac{\mathbf{X}}{\mathbf{0}}\right]$ and V with Y. Notice that in order to obtain U, we have to form the extra product $L\left[\frac{x}{0}\right]$. If U is not needed (egg. in least squares), then we do not have to accumulate any left transformations and in that case, for $m \gg n$, it seems likely that we will make a substantial saving.

It is also possible to take advantage of the structure of R to bidiagonalize it. This will be discussed in section (3).
(ii) The second improvement over GR-SVD that can be made is the following. In GR-SVD, each of the $\mathbf{S}^{(i)}$ is applied to the $m x n$ matrix P from the right to accumulate U. If $\mathbf{m} \gg \mathrm{n}$, then this accumulation involves a large amount of work because a single Givens transformation affects two columns of P (of length m) and each $\mathbf{S}^{(1)}$ is the product of on the average n/2 Givens transformations. Therefore, in such cases, it would seem more efficient to first accumulate all S (i) on ann array Z and later form the matrix product $P Z$ after $J^{(1)}$ has converged to \sum.

In essence, improvement (i) works best when U is not needed, improvement (ii) works best when U is needed and both work best when $m \gg n$.

We now present the modified algorithm:

MOD-SVD:

(1) $L^{T}[A] \rightarrow\left[\frac{R}{O}\right] \quad$ where R is $n x n$ upper triangular,
(2) Find the $S V D$ of R by $G R-S V D, R=X \sum \mathbf{Y}^{\mathbf{T}}$,
(3) Form $A=L\left[\frac{\mathbf{X}}{\mathbf{O}}\right] \sum^{\mathbf{T}}$, the $S V D$ of A.

```
    The idea of transforming A to upper triangular
form when m >> n and then calculating the SVD of }R\mathrm{ is mentioned
in Lawson & Hanson [3,pp.119,122] in the context of
least squares problems where U is not explicitly required.
    In the next section we will discuss some computational
details of this modified algorithm, and in section (4) we
will compare the operation counts of the two algorithms.
```

(3) SOME - COMPDUTATIONAL _ DETAInh
(i) It should be obvious that when U is not needed then MOD-SVD does not require any extra storage. When U is needed, we can store L^{T} in the lower part of A, copy R into another $n x n$ array W and ask GR-SVD to return X in W. Therefore we need at most n^{2} extra storage locations which is relatively small when m > n.
(ii) The next question is how to form $\left[\frac{x}{0}\right]$ without using extra storage. This can be done by noting that

$$
L\left[\frac{x}{0}\right]=L\left[\frac{I}{0}\right] x
$$

so we can first accumulate $L\left[\frac{I}{O}\right]$ in the space provided for U and then do a matrix multiplication by X.

In the experiments that we have carried out, we actually accumulate the Householder transformations L on $\frac{X}{\mathbf{0}_{i}}$. We do not recommend doing this in practice because it requires $m n$ instead of $\mathbf{n}^{\mathbf{2}}$ extra storage locations. But one can show that both methods take about the same amount of work and so it will not affect the comparisons.
(iii) The question arises whether it is possible to bidiagonalize R in a way that takes advantage of the zeros that are already in R. One way is to use Givens transformations to zero out the elements at the upper right hand corner of R, one column or one row at a time. Pictorially, (for $n-5$) to zero out the $(1,5)$ element, we do two Givens transformations as follows:

and rotation to zero out the (2,1j element introduced by the list rotation

It turns out however, by simple counting, that this method takes about the same operations ($4 n^{\mathbf{3} / 3}$ multiplications) as the previous method to bidiagonalize R, provided that we do not have to accumulate transformations. If we do need to accumulate either the left or the right transformations, then this method will require more work ($4 n^{3}$ versus $4 n^{3} / 3$ milt.) mainly because it requires two rotations to zero out each element and these rotations have to be accumulated.

So it seems that taking advantage of the zero structure of R
in this fashion actually makes the method less efficient.

```
We have to note, however, that Givens transformations involve
fewer additions and array accesses than Householder
transformations per multiplication (see section 4.1). Therefore
this method tends to be more competitive on modern computers
where the time taken for floating point additions and
multi-dimensional array indexings are not negligible compared to
that for multiplications.
    There may be other ways to bidiagonalize R
using orthogonal transformations, but we shall not
pursue this subject further.
```

(4) OPERATION _-COUNTS.

In section (2), we indicated that MOD-SVD should be more efficient than $C R-S V D$ when $m \gg n$. In this section, we study the relative efficiency between

CR-SVD and MOD-SVD as a function of m and n. We do this by computing the asymptotic operation counts for each algorithm.

In the operation counts given below, we only keep the highest order terms in m and n, and so the results are correct for relatively iarge m and n.

CR-SVD:
(1) Bidiagonalization (using Householder transformations)
$J=P^{(n)} \ldots P^{(1)} A Q^{(1)} \ldots Q^{(n-2)}$
$2\left(m n^{2}-n^{3} / 3\right) m u l t$.
accumulate $P=P^{(1)} \ldots P^{(n)}$
$m n^{2}-n^{3} / 3$ mult.
accumulate $Q=Q^{(1)} \ldots Q^{(n-2)} \quad 2 n^{3}$ mult.
(2) Diagonalization (using Givens transformations)

| accumulate $S^{(i)}$ on P | $\operatorname{Cmn}^{2}(C=4)$ |
| :--- | :--- | :--- |
| accumulate $T^{(i)}$ on Q | $\mathrm{Cn}^{3} \quad(C=4)$ |

MOD-SVD:
(1) Triangularization (using Householder transformations)
$L^{T}[A] \rightarrow\left[\frac{R}{0}\right]$

$$
m n^{2}-n^{3} / 3 \quad m u l t
$$

(2) CR-SVD of $R, R=X \sum Y^{T}$ depends on whether accumulations are needed.
(3) Form $L\left[\frac{x}{0}\right]$ (using Householder transf.) $2 m n^{2}-n^{3}$ mult.
(0) The entries Cmn^{2} and Cn^{3} with $\mathrm{C}-4$ in the diagonalization phase of $C R-S V D$ are obtained by assuming that the iterative phase of the $S V D$ takes on the average two complete $Q R$ iterations per singular value [1],[3,pl22]. We have checked this experimentally and found it to be quite accurate. It is assumed that slow Givens is used throughout the calculation. If fast Givens [8] had been used, then the entries would become approximately $2 \mathrm{mn}^{2}$ and $2 \mathrm{n}^{3}$ instead (viz $\mathrm{C}-2$).
(1) For the Householder transformations, each multiplication also invokes 1 addition and approximately 2 array addressings. For the Givens transformations, each multiplication invokes 1/2 an addition and 1 array addressing. On many large computers today, afloating point multiplication is not much slower than a floating point addition. Also, array indexing is usually quite expensive. In such cases, a Householder multiplication actually involves more work than a Givens multiplication because of the extra additions and array indexings. Therefore, the operation counts given for the diagonalization phase of GR-SVD may be misleading because it may actually involve relatively less work. The total effect, however, can be accounted for by using a smaller value for C. For example, if 1 Givens
"multiplication" takes half the work needed by a Householder "multiplication", then the effect on the relative efficiency can be accounted for by
setting $C-2$ instead of $C-4$. On older or non-scientific machines where multiplications take much more time than additions and array addressings, the operation count based on multiplications alone is usually a good measure of relative efficiency.
(2) The application of $\mathbf{S}^{(\mathbf{1})^{T}}$ and $\mathbf{T}^{(\mathbf{1})}$ on $\mathbf{J}^{(\mathbf{1})}$ is actually of order $O\left(n^{2}\right)$ and is therefore not included in the above counts.
(3) We have to distinguish between 4 cases in the comparison:

Case a: both U and V are required explicitly,
Case b: only U is required explicitly,
case c: only V is required explicitly,
Case d: only \sum is required explicitly.

These four cases do arise in applications. We will
mention a few here:

Case a arises in the computation of pseudo-inverses [1].
Case b is Case c for $\mathbf{A}^{\mathbf{T}}$.
Case c arises in least squares applications [1,3] and
in the solution of homogeneous linear equations [1].

Case d arises in the estimation of the condition number of a matrix and in the determination of the rank of a matrix [10].

Table 4.1
Total operation counts of GR-SVD and MOD-SVD for each of the cases a, b, c, and d.

Case GR-SVD MOD-SVD
$(3+C) m n^{2}+(C-1 / 3) * 3$
$3 m n^{2}+(2 C+4 / 3) n^{3}$
b
$(3+C) m n^{2}-n^{3}$
$3 m n^{2}+(C+2 / 3) n^{3}$
c
$2 m n^{2}+C n^{3}$
$m n^{2}+(C+5 / 3) n^{3}$
$\mathrm{d} \quad 2 m n^{2}-2 n^{3} / 3$
$m n^{2}+n^{3}$

Using Table 4.1 , we can compute the ratio of the operation counts of MOD-SVD to that of $G R-S V D$ for each of the four cases. This is given in Table 4.2 where the ratio is expressed as a function of $r=m / n$.

Table 4.2
Ratio of operation count of MOD-SVD to that of GR-SVD.

$$
r=m / n
$$

These ratios are plotted in Fig. 4.1 to Fig. 4.4 for $C=2,3,4$. The cross-over point \mathbf{r}^{*} is the value of r which makes the ratio equal to 1. If $r>r *$, then MOD-SVD is more efficient than CR-SVD.

From Figures 4.1 - 4.4 , we see that, in all 4 cases $\mathbf{a , b}, \mathbf{c}$ and d, MOD-SVD becomes more efficient than CR-SVD when r starts to get bigger than 2 approximately, and the savings can be as much as 50% when r is about 10 . On the other hand, when r is about $1, C R-S V D$ is more efficient. This agrees with our eariier conjectures. However, the important

Fig. 4.3 Casec


```
thing is that all the curves decrease quite fast asr becomes
large. If we assume that it is equally likely to encounter
matrices with any value of r >= 1 (this is not an unreasonable
assumption for designers of general mathematical software, for
example), then MOD-SVD is obviously preferable. In
any case, Fig. 4.1 - 4.4 give indications as to when
one of the methods is more efficient, at least when m}\mathrm{ and
n are large enough so that our operation counts apply.
In the context of least squares applications, we can also compare the operation counts of GR-SVD and MOD-SVD to that of the orthogonal triangularization methods [9] (OTLS) often used for such problems. This comparison is shown in Table 4.4.
```


Table 4.4

```
These ratios are plotted in Fig. 4.5 and Fig. 4.6 for C=2,3,4 .
```

Fig. 4.5


```
    One sees from these figures that for m nearly equal to n,
the two SVD algorithms require much more work than OTLS.
However, when r is bigger than about 3, MOD-SVD requires only
about 3 times more work than OTLS. It may therefore become
economically feasible to solve the least squares problems at hand
by MOD-SVD instead of OTLS. The reward is that
the SVD returns much more useful information about the problem
than OTLS [3].
    It is easy to see that as r becomes arbitrarily large, MOD-SVD
is as efficient as OTLS since the bulk of the work is in the
triangufarization of the data matrix A. However, GR-SVD can be
at most half as efficient as OTLS.
```

The conclusions in the last section hold only if m and n are both large. In this section, some computational experiments are carried out to see if the conclusions are still valid for matrices with realistic sizes.

We computed the $S V D$ of some randomly generated matrices using both GR-SVD and MOD-SVD. The version of GR-SVD that we used is a modified ALGOL W translation of the procedure that appeared in [1]. MOD-SVD is realized by writing a procedure to triangularize the input matrix by Householder transformations and then using the same above-mentioned GR-SVD procedure for computing the SVD of R.

All tests were run on the IBM 370/168's at the Stanford Linear Accelerator Center (SLAC). Long precision was used throughout the calculation. The mantissa of a floating point number is represented by 56 bits (approximately 16 decimal digits).

For each of the 4 cases, we fixed some values for n and computed the $S V D$ of a sequence of randomly generated matrices with different values of \mathbf{r}. The execution times taken by GR-SVD and MOD-SVD were then compared, together with the accuracies of the computed answers. Since we are working in a multi-programming environment, the execution times we measured cannot be taken as the
actual computing time taken. Moreover, the influence of the compiler on the relative efficiency of the two algorithms may be the deciding factor [11]. However, keeping these points in mind, we can still expect a qualitative agreement with the analysis based on operation counts.

On the IBM 370/168's at SLAC, a floating point multiplication takes only about $\mathbf{1 . 5}$ times the work taken for a floating point addition. Also, array indexing in ALGOL W is very expensive due to subscript checking (it actually can be more expensive than floating point multiplications). Therefore, as noted in section 4.1, we should use C approximately equal to 2 instead of 4 in Table 4.2 and Table 4.4, for the purpose of comparing the relative efficiency of the two algorithms based on the computational results.

The results of the computations are plotted in Fig. 5.1 Fig. 5.6 . In general, they agree very well qualitatively with the asymptotic results we obtained by operation counts (with C-2). We observe that the larger n is the better the agreement, as it should be. However, even when n is small, the theoretical results based on asymptotic operation counts still describe very well the qualitative behavior of the computational results in many cases. The computational results also show that large savings in work are indeed realizable for reasonably-sized matrices (For example, see Fig. 5.3 and Fig. 5.4).

Fig. 5.2 Case b

Fig. 5.3 Case c

Fig. 5.4 Case d

Fig. 5.5

Fig. 5.6

We also checked the accuracies of the computed results, The singular values returned by both procedures GR-SVD and MOD-SVD agree to within a few units of the machine precision in almost all cases that we have tested. The matrices U and V also agree to the same precision but the signs of the corresponding columns may be reversed. However, the $S V D$ is only unique to within such a sign change, so this is acceptable [10].

We also computed the singular values of the following 30 x 30 matrix:

This matrix is very ill-conditioned (with respect to computing its inverse) and is very close to being a matrix of rank 29 even though the determinant equals 1 for all values of n. The computed singular values from both GR-SVD and MOD-SVD agree exactly with those given in [1] to 15 significant digits (which are all the digit printed in ALGOL W).

Firstly, the theoretical results we obtained do seem to predict the actual computational efficiencies quite well, and they can therefore be used to indicate which algorithm to choose for a given matrix.

The MOD-SVD algorithm clearly work8 better than GR-SVD for matrices that have many more rows than columns. The price that MOD-,SVD ha8 to pay when m is nearly equal to n is not that big (usually less than 30%). We have also seen that the cost of solving a least squares problem by MOD-SVD can often be less than twice that of the usual orthogonal triangularization algorithms. It may therefore become economically feasible to solve many least squares problems by the SVD algorithms.

Some improvements can probably be made on the bidiagonalization of the upper triangular matrix R in MOD-SVD by taking advantage of the the special structure of R. We also want to note again that MOD-SVD requires n^{2} extra storage locations if the left transformations have to be accumulated. This may be a disadvantage when storage is at a premium.

We have also seen that the usual practice of counting only multiplications in operation counts for numerical algorithms is no longer viable for many modern computers. Other properties, such as the amount of array accesses involved, may influence the efficiencies of algorithms decisively.

```
            To be sure, there may be other ways to compute the SVD that
will work better in some cases but not in others. It is perhaps
impossible to find an "optimal" algorithm that works best for all
matrices. Nevertheless, we hope this paper has shown that it may
be worthwhile to look for improvements in the organizations of
existing algorithms.
```


Appendix : Fortran Code of a Hybrid Algorithm

Based on the results of earlier sections, we can implement a hybrid method for computing the $S V D$ of a rectangular matrix A which automatically chooses to use the more efficient algorithm between GR-SVD and MOD-SVD. For each of the four Cases a, b, c and d, if the input matrix A has a value of $r(=m / n)$ which is less than the cross-over point r^{*} for that case, then we use GR-SVD, otherwise we use MOD-SVD. The cross-over points depend on the value of C used. As noted before, the value of C to be used depends on the relative efficiencies of floating point multiplications, floating point additions and array indexings on the particular machine concerned. However, C can be determined once for all for any particular machine and compiler combination. For example, if floating point multiplications take much more time than floating point additions and array indexing8 on the machine in question, then we should use C approximately equal to 4.
In this Appendix, we give the codes of a Fortran subroutine called HYBSVD which implements the above-mentioned hybrid algorithm. HYBSVD will need to call a standard Golub-Reinsch SVD subroutine during part of its computation and so we have included such a routine, called GRSVD, in the listing of the codes of HYBSVD.

The routine GRSVD is actually a slightly modified version of the subroutine SVD in the EISPACK [12] package. The main modification that we have made is to eliminate the requirement in subroutine SVD that the row dimension of V declared in the calling program be equal to that of A. This minimizes the storage requirements of GRSVD at the cost of one more argument in the argument list.

There is one additional feature implemented in HYBSVD (and also in GRSVD). In least squares applications, where we are looking for the minimal length least squares solution to the overdetermined linear system $A x=b$, the left transformations U^{T} have to be accumulated on the right-hand side vectors b (there may be more than one b). This can be done by putting the vectors b in the matrix argument B when calling HYBSVD and -setting IRHS to the number of b's.

The calling sequences and usages of HYBSVD and GRSVD are explained in the comments in the beginning of the listings of the subroutines.

```
    *..:.O.:FIRSTC A R D O FHYBSVD:::::::::
    SURPOUTINE FYBSVD(NAU,NV,NZ,M,N,A,W,MATU,U,MATV,V,Z,B,IRHS,IERR,
!
                            RV1)
    INTEGER NAU,NV,NZ,N,N,IFHS,IERR,IPI,I,J,K,IM1,IBACK
    DOURLE PRECISION A(NAU,N),W(N),U(NAU,N),V(NV,N),Z(NZ,N).
    ;
    DCUBLEPPRECISION XOVRPT,C,R,G,SCALE,OSIGN,DABS,DSQRT,F,S,H
    REAL FLOAT
    LOGICAL MATU,MATV
    THIS SUBROUTINEISA MODIFICATIONOF THE GOLUB-REINSCHPRDEEDURE
```

 (:) FCFCOMFUTINCTHE SINGULAQ VALUE OECOMPOSITION A = UWV OFA
 REAL M GYN RECTANGULARMATFIX. THE ALGORITHM IMPLEMENTEDINTHIS
 ROUTINE HASA HYERIDNATURE. WHENMISAPPROXIMATELYEQUAL TON.
 thegol ubreinscralgorithmis used. but when mis greater than
 APPROXIMATELY \(2 * N\) * A MODIFIEDVERSION OF THEGOLUB-REINSCH
 ALGORITHMI S USED. THISMODIFIEOALGOOITHMFIRST TRANSFORMS A
 INTOUPPEF TRIANGULARFDRMB YHOUSEHOLDERTRANSFORMATIONS L
 AND THEN USESTHE GOLUBREINSCHALGORITHMT OFINDTHES I N Gu L AR
 VALUEOECOMPOSITION OF THERESULTING UPPERTRIANGULARMATRIXR
 WHENU ISNEEDEDEXPLICITLY+AN EXTRA ARRAYZ (OFSIZE AT LEAST
 N GYN) I S AEECEC. BUTDTHERWISEZ MAY COINCIDE WITHEITHER
 A OF V ANDN OEXTR A STOFAGEIS SEQUIRED. THIS HYBRID MFTHOD
 SHOULD REMCREEFFICIENTTHAN THEGOLUBREINSCHALGORITHMWHEN
 MISMUCHBIGGERTHANN. FORDETAILS, SEE(2)•
 H Y R S V O CANALSQBEUSEDTOCD!APUTETHEMINIMALLENGTH LEAST
 SOUARESSOLUTICATO THEOVEFDETEFMINEDLINEARS YSTEMA\#X=B.
 NOTICETHAT THESINGULAFVALUEDECOMPOSITIONOF AMATRIX
 I SUNIQUE ONLYUPTO THESIGN OFTHECORRESPONDINGCOLUMNS
 THISFOUTINEHAS BEENCHECKED BY THE PFORT VERIFIER(3)FOR
 ADHE RENCET O ALARGE, CAREFULLYOEFINED. PORTAGLESUBSET OF
 AMERICAN NATIONALSTANDARDFORTRANCALLEDPFORT.
 FRFGRENCES:
 (i) GOLUB, G.H.A N D REINSCH.C.(i 970)"SINGULARVALUE
 DECCMPOSITIC h A N DLEASTSQUARES SOLITIONS,"
 NUMER. MATH. 14.4034 2O. 1970 .
 (2) CHAN.T.F. (! 976) "ONCOMPUTINGTHE SINGULARVALIJE
DECOMDOSITICA," TOAPPEARAS A STANFORD COMPUTER
SCIENCERFPOFT .
(3)FYDER. B.G. (1G74)"THEPFORTVERIFIER." SOFTYARC
PRACTICE ANCEXPERIENCE.VOL.4, 359 377.1974.

HYBSVDASSUMESN.GE•NO I FM.LT. NOTHENCOMPUTE THE
 ON INPUT:

NAUMUSTBESET TO THE ROW DIMENSION OF THE TWO-DIMENSIONAL ARFAYFARANETERSA,UANOBAS DECLAREDINTHE CALLINGPROGPAM
 AS LARGE ASM:

NV MUSTEESET TO THE R O WIMENSIONOF THE THOMDIMENSIONAL ARFAYPARAMETER V AS DECLARED IN THE CALLINGPFOGRAM DIMENSIONSTATEMENT. NV MUSTBEAT LEASTAS LARGEAS N:

NZMUSTEESET TO THE ROW DIMENSION OF THE TWO-DIMENSIONAL ARRAY PARAMETERZAS DECLARED IN THE CALLING PROGRAM DIMENS ION STATEMENT. NOTE THAT NZ MUSTBEATLEAST AS LARGEASN:

MIS THENUMEEROF ROWS OF A (ANDU);
N IS THE NUMBER OF COLUMNS OF A (ANDU)ANDTHEJRDEROF V:
A CONTAINSTHERECTANGULAR INPUTMATRIX TOBEDECOMPOSED:
gCONTAINSTHE IRHS RIGHT-HANDSIOESOF THEQVERDETEFMINED LINEAR S Y S TEM A*X=B. IF I R H S. CTT.O. THEN ON OUTPLT; T HE S EIRHSCOLUMNSI NB

U B. THUS. TO COMPUTE THEMININALLENGTH LEAST W I L LCOATAIN U B. THUS. TO COMPUTE THEMININALLENGTHLEAST SQUARES SOLUTION, ONEM US TCOMPUTEV *W ${ }^{+}$TIMESTHECOLUMNS OF B, WHERE W IS ADIAGONALM ATRIX,W (I)=OIFW(I)I S NFGLIGIPLE. CTHERWISEISI/W(I). IFIRHS=O. BM A YCOINCIDE WITH A CR U AND W IL L NOT B EREFERENCED:

IFHSISTHENLMBEROF RIGHT HAND-SIDESOF THEOVERDETERMINED SYSTEMA*X=E. IRHSSHOULD SESET TOZEROIF ONLY THE SINGULAR VALUEDECOMPCSITIONOF A IS DESIRED;
natusholldees et to oteve.i fthe u matrix in the DECOMPRSITIONISDESIPED.AND TO -FALSF.OTHERWISE;

MATVSHOULDDRESET TO.TRUE.IFTHE VMATRIXINTHE DECDMPRSITICNI S DESIRED.ANDT O OFALSE.OTHERWISE.

WHEN HYBSVOIS USEDTO COMPUTETHE MINIMAL LENGTH LEAST SQUARES SOLLTIONTO AN OVERDETEFMINEDSYSTEM, MATUSHOULD RESET T C.FALSE. AND MATVSHOULDRESETTO® T=!UE.•

ON OUTPUT:
4 ISUNALTERED (UNLESS OVEPWFITTENBYUDPV):
W CONTAINSTHEN(NONNEGATIVE)S INGULARVALUES OF A (THE DI AGONAL ELEMENTS OFW). THEY ARE UNORDERED. IF AN EFFOR FXITI SMADE, THE SINGULAR VALUES SHOULD BE CORRECT FORINCICESIERR+1,IERR+2...m.N;

U CONTAI NS THE MATRIX U (ORTHOGONAL COLUMNVECTORSIOFT HE DECOMFCSITICN IFMATUH A SBEENSETT O.TRUE. DTHEFWISE U IS USEDAI A TEMPORARYARRAY. U MAY COINCIDE WITHA. IF AN ©RROREXITISMADE, THECOLUMNS OF U COFFESPONOING TO INDICESCFCORRECT SINGULAR VALUES SHOULOBECORRECT;
V CONTAIASTHEMATRIXV (ORTHOGONAL) OFTHEDECOMPOSITIONIF M A TV HASEEENSET TO.TRUE. OTHERWISEV IS NOT REFERENCED V MAYALSO COINCIDEWITHAIFU IS NOTNEEDED. IFANERROR EXIT IS MADE. THECOLUMNSOFV CORRESPONDINGTOINDICES OF COFRFCTSINGULARVALUES SHOULD BECORGECT:
Z CONTAINSTHEMATRIXX IN THE SINGULARVALUE DECOMPOSITION T
OFR $=X$ SY, IF THE MODIFIED ALCOFITHMISUSED. IF THE G O L U B-FEIN S C H PROCFDUREIS USED. THEN ITISNDTRFFERENCED. IF MATU HASGEENSET TO.FALSE•, ZM A YCOINCIDE WI TH A O RV ANDISNOTREFERENCED;
IERRIS SETTC
ZERO F C R NORMALFETURN.
K IFTHEK-THSINGULARVALUE HAS NOT BEEN DETHRMINED AFTER 30 ITERATIONS:
.. 1 IF IRHS .LT. 0 -
 $\begin{array}{lllll}\mathbf{4} & \text { IF NV } & \text { LT. } & \mathrm{N} . \\ 5 & \text { IF } & \mathrm{NZ} & \text {.LT. } & \mathrm{N}\end{array}$
FVIIS ATEMFORAPY STORAGE ARRAY.
PROGRAMMED EY:TONYCHAN, COMP.SCT. DEPT.. STANFORDUNI V. © CA 94305 .
LASTMODIFIEC: 12 SEPTEMGER• 1976 .
$I E P R=0$
I F (IFHS•GE•C) G O T O 2
IEFR= 1
RETURN
2 I F (M.GE. N) GO TO 3
IEFF= 2
RETURN
3 IF (NAU.GE. M) GO TO 4
IERR=-3
RETURN
4 IF (NV.GE•N)GC TO 5
IEFE= 4
FETURN
IF (NZ.GE.N) CO TO 6
IERR= 5
FETURN
CONTINUE
S E TVALLEFC RC. THE VALUEFOR CDEPENDSON THE RELATIVE
EFFICIENCYC FFLCATINGPOINTMURIPLICATIONS, FLOATINGP O I N T ACDITIONS ANDTYCDIMENSIONALARRAYINDFXINGSON T H E COMPUTEF WHERETHIS SUBFOUTINEI ST OBER U N. C SHOULD USUALLYBE EETWEEN2 A N DA. FORDETAILSON CHCOSINGC, SEE (2). THE ALGORITHM IS NOTSENSITIVETOTHE VALUE $0=C$ ACTUALLYUSEDA SLCNGASCISBETWEENRAND 4 .
$\mathrm{C}=4.000$
DETFRMI NE CFCSS-CVER POINT

DO : $0 \quad I=1, M$ D C $10 \mathrm{~J}=1, \mathrm{~N}$ U(I, J) $=A(I, J)$

TRIANGULARIZE U BYHOUSEHDLDER TRANSFORMATIONS OUSIVG W ANDRV1 A STENFOPARYSTORAGE.

D O ? CI=1,N
$\mathrm{G}=0.000$
$S=0.000$
SCALE=?.ODO
PERFORM SCALING OF COLUMNS TO AVOID UNNECSSARYOVERFLOW O R UNDERFLOW

OC $3 \quad 0 K=1, M$
$S C A L E=S C A L E+D A B S(U(K, I))$
IF (SCALE EOC O.ODO)GO TO20 $0040 \mathrm{~K}=\mathrm{I}$, M
$U(K, I)=U(K, I) / S C A L E$
$S=3 \quad+U(K, I) * * 2$
CONTINUE
THE VECTOR E OF THE HOUSEHOLDER TRANSFORMATIONI + EE Y / H WILLBESTORED IN COLUMNI OF U. THE TRANSFORMEDELEMENT U(I,I)VILLBES TOREDINW(I)ANCTHESCALARHI N RVI (I).
$F=U(I, I)$
$G=\cdots$ SIGN(DSQRT(S),F)
$H=F \neq G \cdots S$
$U(I \cdot I)=F \cdot G$
RV1 (I) $=H$
$W(I)=S C A L E * G$
I F(I.EQ. A) GO TO 85
APPLYTFANSFCRMATI ONS TO REMAINING COLUMNS OFA

$$
\begin{aligned}
& 70 \\
& 50
\end{aligned}
$$

$$
\begin{aligned}
& S=C \cdot O D C \\
& D O \in O \quad K=I, M
\end{aligned}
$$

 C C P Y RINTOZIFMATU = . TRUE.
 I F (. NOT.MATU) G O T O 300
 DO: \(10 \quad 1=10 \wedge=1, N\)
 D Oilo J=i,N \(\quad\) I) GO TO 112
 \(\begin{array}{lll}\text { Z(I.EJ) } & =0.900 \\ \text { GOTO TO }\end{array}\)
 G门TO1:0
 I F (J:EQ: I) GO TO114
 Z(I,J) =U(I,J)
 G OTC110
 4
 10
$Z(I, I)=W(I)$
CONTINUE
C- ACCUMULATE HOUSEHCLDER TRANSFORMATIONS IN U
D 0 i 20 IBACK=1, λ
$1=N \cdot I B A C K+1$
$I P I=I+1$
$G=W(I)$
$H=R V I(I)$
IF (I.EQ.N) GO TO i30
C
140
C. 30
C
D C:40J=IPI,N
$U(1, J)=0.300$
- 30 I F(H.EQ. C.ODO) GO TO150
I F (I.EQ. NIGOTO 160
D $0: 70 J=I P 1, N$
$S=0 \cdot C E C$
$00: 80 K=I P$
DO : 80 K=IPI.M
$\mathrm{F}=\underset{\mathbf{S} / \mathbf{H}}{\mathbf{S}}$
D O : $70 \mathrm{~K}=\mathrm{I}, \mathrm{M}$
CONTINUE $((K, J)=U(K, J)+F * U(K, I)$

```
C
    50
    210 U(J.I)=O.CDO
    2OC U(I,I)=U(I.I)+1.000
        2C CONTINUE
C COMPUTESVD OFF(WHICH ISS STORED INZ)
c
C
C
C
    CALL GRSVD(NZ,NV,N,N,Z,W,MATU,Z,MATV,V,B,IRHS,IERR,RVI)
    F O RMLL*XTO OBTAIN U (WHEQER=XWY'). X IS RETUGNED IN }
    BY GFSVD. THEMATFIXMULTIPLYIS D O N EONEROW AT ATIME,
    USINGRVIA S SCRATCH SPACE.
    D O 220I=1,N
        PO230 J=1,N
                S = O O O O O O N.N
    240
    Z30
    250
    220 CONT I NUE
    FETURN
C C. FOFMRIN U BY ZEROINGTHELOWERTRIANGULARPART OF R IN U
    3CO IF (N.EO.:) GC TO 280
    D O 2501=2.N
                IMI = I - m
                    P O 27C J=1.IN1
    270 U(I,J)=0.ODO
            U(I,I)=W(I)
        260 CONTINUE
    290 U(i,()=W(:)
C
    CALL GRSVD(NAU,NV,N,N,U,W,MATU,U,MATV,V,B,IRHS,IERR,RVI)
    RETURN
C THE BODY OF SUPROUTINE GFSVDSHDULD BE INCLUDED WITH HYESVD
```



```
    END
```

P.... $6-0$ *:: FIRSTCARD OF GRSVD:: :: : : : : :
SUBROUTINE GRSVD(NAU,NV,M,N,A,W,MATU,U,MATV,V,B,IRHS,IERR,RVI)
INTEGERI,J,K,L,M,N,II,II,KK,KI,LL,LI, MN,NAU,NV,ITS,IERR,IRHS
DOJBLE PRECISION A(NAU,N),W(V),U(NAU,N),V(NV,N),B(NAU,IRTS),RVI(N)
DOUBLE PRECISION C, F, G, H, S, X, Y, Z EPPS, SCALE, MACHEP DOUGLE PRECISION DSQRT, DMAXI, DABS,DSIGN LOGICAL MATU, MATV
THIS SUBROUTINEIS A TRANSLATIONOF THEALGOLPROCEDURESVD. NUM. MATH.14.403-420(1970) BYGOLUBA N DREINSCH. HAND3OOKFORAUTO.CCMP., V OLIf-LINEARALGEBRA, 134-151(1971).
THIS SU3ROUTINEDETERMINES THE SINGULAR VALUE DECOMPOSITION T
A=UWV O F AREALMGY N FECTANGULARMATRIX. HOUSEHOLDER 3IDIAGONALIZATI JNAYDA VARIANT OF THE OR ALGORITHM ARE USED. GREVDASSUMESM•GE•N. TIMM•LT•N, THENCOMPUTE THE SI'JGULA?
VALUEDECOMPOSITIONOFA. IFA A. UWV. THEN A=VWU.
grsvocanalsobeused T O compute themminimallength least squares SOLUTION TO THE JVERDETERMINEDLINEAR SYSTEMA*X=B•
ON INOUT:
NAU MUSTBESET TOTHEROW DIMENSION OF THETWO-DIMENSIONAL ARQAYPARAMETERSA,UAND 8 AS DECLAREDINTHECALLING PROGRAM DIMENSICNST ATEMENT. NOTETHATNAUMUSTBEATLEAST AS LARGE ASM:
N V MIJSTBESET TOTHEREW DIMENSION OF THE TWO-DIMENSIONAL arRay Parameter vas oeclared in the Calling program DIMENS ION STATEMENT. N V MUSTBEAT LEAST ASLARGE ASN:
MIS THENUMBERO FRCWSO FA (ANDU):
N IS THE NUNBERIF COLUMNS OF A (ANDU)AND THE ORDERDFV;
A COJTAINSTHE RECTANGULARINPUTMATRIX TO REDECOMJJSED:
B CONTAINS THE IRHSRIGHT-HAND-SIDESOFTHE OVERDETERMINED LINEARS Y STEMA*X=B.IFIRHS GT. O.
THEN OV OUTTUT. THESEIRHSCOLUMNS
WIL: CONTAIVU B. THUS, TO COMPUTE THE MINI MAC LENGTH LEAST SQUARES SOCUTI ON. ONEMUST COMPUTEV*W ${ }^{+}$TIMES THE COLUMNS OF
B, WHERE ${ }^{+}$I ISADIAGCNAL MATRIX, ${ }^{+}$(I)=(IFW(I)IS
NEGLIGIBLE, OTHERWISEISI/W(I), IFIRHS=0. RMAYCOINCIDE WITH A OR U AND WILL NOTBE REFERENCED:
IPHSIS THENUMBER O F PIGHT-HAND-SIDES OF THE OVERDETERMINED SYSTEM A*X=B. IRHSSHOULDBESET TOOZFROIFONLYTHESINGULA? VALUEDEGOMPOSITIONOF AISDESIRED;

MATUSHOULDBE SET TC. TRUE.IFTHE U MATRIX IN THE DECOMPOSITION IS DESIRFD, AVDTO.FALSE. OTHERWISE:
 MATVSHOULDBESET TO. TRUE。IFTHEV MATRIX IN THE DECOMPOSITIONIS DESIREO, AND TO •FALSE•OTHERWISE.
 O N OUTPUT:

A ISUNALTERED(UNLESS OVERWRITTENBYUORV):
W CONTAINSTHE N(NJN-NEGATIVE)SINGULAR VALUES OF A (THE DIAGONAFDEMENTS OFW). THEY ARE IJNORDERED. IF AN ERROF EXIT I S MADE. THE SXNGULAR VALUES SHOU_DBECDRRECT F O RINDICESIERR+1,IERR+2,....N:

U CONTAINS THE MATRIXU (ORTHOGONAL COLUMN VECTORS 1 OF THE DECOMPOSITIONIF MATU HAS 3EENSET T O. TRUE。 OTHERWISE U KS USED AS A TEMPORARYARRAY. U MAY COINCIDE WITH A. IF AN ERRO? EXIT IS MADE, THE COLUMNS OF UCORRESFCNDING T O Indices Of CORRECT SINGULARVALUES ShOULDRECORPECT;

V COVTAINSTHE MATRIX V (ORTHOGONAL) OF THEDECOMPOSITIONIF M ATV HASREENSET TO -TRUE. OTHERWISE VIS VOTREFERENCED. V MAYALSOCDINCIDE WITH A IF U IS NOT NEEDED. IF ANERROR EXITISMADE, THE COLUM'JS OF V CORRESPONDING TO INDICES OF CORRECT SINGULAR VALUES SHOULD BECORRECT;

IERRIS SET TO ZER 0 FOR NDRFAL RETURN,

RVIIS A TEMPORARYSTORAGEA R R A Y

THIS SUBROUTINE HAS BEEN CHECKED BYTHE PFORT VERIFIER (RYDER, G.G• "THE PFORT VERIFIER", SOFTWARE-PRACTICE AND EXPERIENCE, VOL.4, 359-377, 1974)FORADHERENCE TO A LARGE, CAREFUL-Y DEFINED, PORTABLESUBSETOFAMERICANNATIONALSTANDARD FORTRAN CALLED PFORT.

ORIGINAL VERSIONOF THTS CODEIS SUBROUTINESVDINRELEASE 2 CF EI SP ACK. MODIFIE D BY TONY CHAN. COMP.S CI. D E P T. STANFORJ UN IV., CAO4 305. L A S T moified: 2 SEPTENAER, 1976 .

```
:::...* MACHEDIS A MACHINE DEPENDENT PARAMETER SPECIFYING
                        THE RELATIVEPFECISIONO FFLOATINGPOINTARITHMETIC.
                        MACHEP = 16.COD&*(-13)FOR LONGFORM ARITHMETIC
                        ON 536')::::::::::
D AT A MACHEP/2.22D-15/
```

IERR $=3$
IF (IRHS.GE.O) GC TO 2

```
        IERR=-1
    2
    IF (M .GE. N )GJ TO 3
    IERR=-2
    RETURN
        IF (NAU.GE.M) GO TO
        I ERR=- 3
        RETURN
    IF=(NV *GF.N) GO TOS
        RETURN
        5 CONTI NUE
    DO 10こI=1,M
        DO 190,J, = 1:N(N,J)
    100 CINTINUE
C
    :::::\therefore:O HOUSEHOLDFRREDUCTIONTO BIDIAGONAL FORM::::::::::
    G = 0.0DO
    SCALE=O.CDO
    X = 0.0DO
C
    DO 303 I = 1. N
        LQVI(I)+ = = SCALE
        * G
        G=0.000
        S = O.ODS
    C
    C
    C
    130 CONTINUE
        F}=|(I,I
        G=-DSIGN(DSQRT(S),F)
        H=F*G-S
        U(I,I)=F-G
        I F(I.EQ.N) GO TO 155
    A PPLYLEFTTRANSFORYATTONS TO REMAINING COLUMNS OFA
    DO l
C
    140 S = S +U(K,I)*U(K,J)
        F = s/ H
        OO 150 K = I,M
```

```
    150 CONTINUEK,J) = U(K,J) + F * U(K,I)
```

anの 155

170

180 160
$\stackrel{C}{C}$

C
190
200 210
c
C
C

C

C

C

C
250

260
C
270
280
29 c
220

240

```
APPLY LEFT TRANSFORMATIONS TO THE COLUMNS OF B IF IRHS •GT• O.
IF(IRHS.EO.U)G O T O 190 DO \(1 \quad 6 \quad 0 J=1\), IRHS \(\mathrm{S}=0.000\) DO \(170 \mathrm{~K}=\mathrm{I}\).
\(F=S / H\)
D \(0180 \mathrm{~K}=1, \mathrm{M}\)
\[
B(K, J)^{M}=B(K, J)+F * U(K, I)
\]
CONTINUE
COMPUTERIG H T TRANSFORMATIONS
DO \(200 \mathrm{~K}=\mathbf{I} \cdot \mathrm{M}\)
\(U(K, I)=S C A L E * U(K . I)\)
\(W(I)=S C A L E * G\)
\(G=0 . \mathrm{CDO}\)
\(S=0.000\)
SCALE = \(=\) IFT.ODO M . OR. I •EQ.N NO TO 290
```

DO $220 \mathrm{~K}=\mathrm{L} \cdot \mathrm{N}$
SCALE = SCALE + DABS (U(I,K))
IF (SCALE.EQ. O.ODO) GO TO 290
DO $230 \mathrm{~K}=\mathrm{L}, \mathrm{N}$
$U(I, K)=U(I, K) / S C A L E$
$S=S+U(I, K) * * 2$
CONTINUE
$F=U(I, L)$
$G=-\operatorname{DSIGN}(\operatorname{DSQRT}(S), F)$
$H=F$
$U(I, L)=G-S$
DO $240 \mathrm{~K}=\mathrm{L}, \mathrm{N}$
$P \vee 1(K)=U(I, K) / H$
I F (I.EQ. M) GO TC 270

${ }_{s}^{D O}=S^{250}+U(=L, N(N) * U(I, K)$
DO 26C K = L, N
CONTINUE
DO $280 \mathrm{~K}=\mathrm{L}, \mathrm{N}$
U(I,K) = SCALE*U(I,K)
$x=\operatorname{DMAXI}(X, D A B S(W(I))+D A B S(R V I(I)))$

$$
350
$$

$$
360
$$

 380
 390
 0
 400 CONTINUE
 41 c
 C
C
C
C

$$
430
$$

CONT INUE
con tinue

LTINUE
41 c
$\mathbf{I}=\mathrm{MN}+$
$\mathrm{L}=\mathbf{t}$
$\mathbf{G}=\mathbf{1}$ $G=W(I)$
C

$$
420
$$

.

440

$$
\text { DO } \begin{aligned}
& 380 \\
& v(I, J)=L \cdot N \\
& v(J, I)=0.0000 \\
& V(0 . O D O
\end{aligned}
$$

$V(I .1)=1.000$
$G=R V 1(I)$

IF (.NOT. MATU)GD O 510

$I=(M \cdot L T \cdot N) M N=N$

IF (I EQ. N) GO TO 430 DO $420 \mathrm{~J}=\mathrm{L}, \mathrm{N}$
(1.J) = N・カOO

${ }_{3}^{D O}=S^{4} 40 K=L, M(K, I) * U(K, J)$
$::$ DOUBLEDIVISICNAVOIDS POSSIBLE UNDERFLOW: : : : : : : : : : : :
$=:$ U(I,I)
$=$ G
$D 0450 \mathrm{~K}=1 \quad \mathrm{M}$
$U(K, J)=U(K, J)+F * U(K . I)$
c

$$
460
$$

$$
470
$$

C
C

475

U(I.I) $=U(I, I)+1 . O D O$
ONTINUE
:: : : : : : : : : DIAGJNALIZATIONOF THEBIDIAGONALFORM
EPS = MACHEP $\quad X$

DO $700 \mathrm{KK}=1, \mathrm{~N}$
$K 1=N-K K$
$K=K 1+1$
$\begin{array}{ll}K \\ \text { ITS } & =0\end{array}$
.......... TEST FOR SPLITTINC.

DO
$530 L L=1 . K$
$L=L 1+{ }^{-}$

THPOUGHTHEBCTTOMOFTHE LOOP:: :: : : : : : :
I F(DABS(W(Li)). LE.FPS) G O T O SA0
CONT INUE
: : $:$ CANCELLATION OFRV1 (L)IFLGREATER THAN1:::::: : : :
$c=0.000$
$S=1.000$

IF (DABS (F) •LE.EPS)G OTO565
$G=W(I)$
$\mathrm{G}=\mathrm{W}=\mathrm{DSQRT}(F * F+G * G)$
$W(I)=H$
$W=G / H$
$s=-F / H$
APPLYLE F TTRANSEORMATIONST O aIFIRHS.GT.C.
I F(IRHS.ER.O) G O T O 542
DO $545 \mathrm{~J}=1$. IRHS
$Y=B(L 1$, J)
$Z=B(1, j)$
$B(L 1, j)=Y * C+Z * S$
CONT INUE
CONTINUF
I F(.VOT. MATU)G OTO 560
Do $\begin{aligned} \text { 55: } \\ =U(J, L 1, ~ M\end{aligned}$
$Z=U(J, I)$
U(J.L1) $=Y * C+Z * S$

```
```

 550 CONTINUE \(\quad\) U \(=-Y * S * Z * C\)
    ```
```

 550 CONTINUE \(\quad\) U \(=-Y * S * Z * C\)
 c
 c
 c 560 : CONTINUE
    ```
```

 c 560 : CONTINUE
    ```
```



```
```

 IF.(L.EQ.K) GO TO 650
    ```
```

```
```

 IF.(L.EQ.K) GO TO 650
    ```
```



```
```

 \(I T S=I T S+1\)
 $X=W(L)$

```
```

 \(I T S=I T S+1\)
 $X=W(L)$
$X=W(L)$
$Y=W(K I)$
$G=R V 1(K 1$
$X=W(L)$
$Y=W(K I)$
$G=R V 1(K 1$
$G=R V_{1}\left(K_{1}\right)$
$G=R V_{1}\left(K_{1}\right)$
$H=R V 1(K)$
$F=(Y-Z) *(Y+Z)+(G-H) *(G+H)) /(20000 * H * Y)$
$G=D S O R T(F+F+1$ (SDO)
$H=R V 1(K)$
$F=(Y-Z) *(Y+Z)+(G-H) *(G+H)) /(20000 * H * Y)$
$G=D S O R T(F+F+1$ (SDO)
$H=R V 1(K)$
$F=(Y-(Y) *(Y+Z)+(G-H) *(G+H)) /(20000 * H * Y)$
$G=D S O R T(F+F+1$ ODO)

```
```

 \(H=R V 1(K)\)
 $F=(Y-(Y) *(Y+Z)+(G-H) *(G+H)) /(20000 * H * Y)$
$G=D S O R T(F+F+1$ ODO)

```
```



```
```

 \(:=::: 0\)
 $C=1: 000$
$S=1.0 D O$

```
```

 \(:=::: 0\)
 $C=1: 000$
$S=1.0 D O$
C
C
$\begin{array}{rl}00 & 500 I 1=L, K I \\ I & =I 1+1 \\ G & =R V I(I)\end{array}$
$\begin{array}{rl}00 & 500 I 1=L, K I \\ I & =I 1+1 \\ G & =R V I(I)\end{array}$
OOO $\begin{aligned} & 500 I I=L O K I \\ & I=I 1 Y 1 \\ & G=R V I(I) \\ & Y=W(I)\end{aligned}$
OOO $\begin{aligned} & 500 I I=L O K I \\ & I=I 1 Y 1 \\ & G=R V I(I) \\ & Y=W(I)\end{aligned}$
$H=S * G$
$G=C * G$
$H=S * G$
$G=C * G$
$Z=\operatorname{DSQRT}(F * F+H * H)$
$Z=\operatorname{DSQRT}(F * F+H * H)$
$R V 1(I 1)=Z$
$C=F / Z$
$S=H / Z$
$F=X+C+$
$R V 1(I 1)=Z$
$C=F / Z$
$S=H / Z$
$F=X+C+$
RVI(II) $=Z$
$C=F$
$S=H / Z$
$F=X+C+$

```
```

 RVI(II) \(=Z\)
 $C=F$
$S=H / Z$
$F=X+C+$

```
```



```
```

 IF (.NOT. MATV) GO TO E75
    ```
```

 IF (.NOT. MATV) GO TO E75
 c
 c
 570
 570
 C
 C
 575
 575
 DO \(570 \mathrm{~J}=\mathrm{v}=\mathbf{j}, \mathrm{i},)^{N}\)
 DO \(570 \mathrm{~J}=\mathrm{v}=\mathbf{j}, \mathrm{i},)^{N}\)
 Z \(=\mathrm{V}(J, I)\)
 $\mathrm{V}(J, I: J)=$
Z $=\mathrm{V}(J, I)$
$\mathrm{V}(J, I: J)=$
V(J, I: $)=x * C+Z * S$
$V\left(J, I^{*}=-X * S+Z * C\right.$
V(J, I: $)=x * C+Z * S$
$V\left(J, I^{*}=-X * S+Z * C\right.$
CONTINUE
CONTINUE
$Z=\operatorname{DSORT}(F * F+H * H)$

```
```

 \(Z=\operatorname{DSORT}(F * F+H * H)\)
    ```
```



```
```

C :::::::: R ROTATION CAN BE ARBITRARY IF Z IS ZERO :: :: :: :: :

```
```

```
```

C :::::::: R ROTATION CAN BE ARBITRARY IF Z IS ZERO :: :: :: :: :

```
```



```
```

 \(C=F / Z\)
 $S=H / Z$
$F=C * G$
$X=-S *$

```
```

 \(C=F / Z\)
 $S=H / Z$
$F=C * G$
$X=-S *$
580
580
C
C
C
C
C
C
c
c
$k 1$

```
                        \(k 1\)
```

```
        CONTINUE
```

 CONTINUE
 C : : : : : : : : : NEXT OR TPANSFOPMATION \(::::::::=:\)
    ```
    C : : : : : : : : : NEXT OR TPANSFOPMATION \(::::::::=:\)
```



```
    ADPLY LEFT TRANSFDRMATIONS TO B IF IRHS •GT. \(\quad\).
```

 ADPLY LEFT TRANSFDRMATIONS TO B IF IRHS •GT. \(\quad\).
 IF (IRHS FO. O) GO TO 582
 DO $585 \mathrm{~J}=\mathrm{I}$ IFHS
IF (IRHS FO. O) GO TO 582
DO $585 \mathrm{~J}=\mathrm{I}$ IFHS
DO $585 \mathrm{~J}=1$ IIFHS
DO $585 \mathrm{~J}=1$ IIFHS
$Y=B(I 1, J)$
$Z=B(I, j)$
$Y=B(I 1, J)$
$Z=B(I, j)$
$B(11 . J)=Y * C+Z * 5$

```
                \(B(11 . J)=Y * C+Z * 5\)
```

$?$

```
    585
    582
C
C
C
        590
        600 CONTINUE
    C
            \(\begin{aligned} \text { RVI(L) } & =0.000 \\ \text { RVI } & \text { (K) }\end{aligned}\)
            \(W(K)=X\)
            GO TO 520
C : : : : : : : : : CONVERGEYCE: : : : : : : : : :
```



```
            W(K) = NOTR. MATV)GO TO 7 CO
C
```



```
C
    700 CONTINUE
C GOTO10@1
```



```
1rOOIERR = K
    1001 RETURN
```


ACKNOWLEDGEMENT

The author would like to thank Prof. John Gregg Lewis for his
initial interest in this work and for providing the ALGOL W SVD
procedure that was used in the experiments. Special thanks are also
due Prof. Gene Golub, Prof. Charles Van Loan and Mr. W.Coughran for
their helpful discussions. The following persons also helped at one
time or another: Dr. C.Lawson, Prof. R-Hanson, Prof. M.Gentleman,
Prof. J. Oliger, Dr. P.Gill, Prof. J-Dennis, Mr. J. Bolstad and Dr.
J.S.Pang. Finally, the author thanks SLAC for providing the computing
time that was used.

REFERENCES

[1] Golub,G.H. and Reinsch,C. (1971) "Singular Vaiue Decomposition and Least Squares Solutions" in Handbook for Automatic Computation, II, Linear Algebra, by J.H.Wilkinson and C.Reinsch, Springer-Verlag, New York.
[2] Golub,G.H. and Kahan,W. (1965) "Calculating the Singular Values and Pseudoinverse of a Matrix,' SIAM J. Numer. Anal., '2, No.3, 205-224.
[3] Lawson,C.L. and Hanson,R.J. (1974) "Solving Least Squares Problems," Prentice-Hall, New Jersey.
[4] Golub,G.H. and Wi1kinson,J.H. (1975) "Ill-conditioned Eigensystema and the Computation of the Jordan Canonical Form," To appear in SIAM Review, 1976.
[5] Hanson,R.J. (1971) "A Numerical Method for Solving Fredholm Integral Equations of the First Kind Using Singular Values," SIAM J. Numer. Anal., 8, No. 3, 616-626.
[6] Andrews,H.C. and Patterson,C.L. (1976) "Singular Value Decompositions and Digital Image Processing," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP - 24, No.1, Feb. 1976.
[7] Bartels,R.H., Golub,G.H., and Saunders,M.A. (1970)"Numerical Techniques in Mathematical Programming," inNonlinear Programming. Academic Press, New York, 123-176.
[8] Gentleman,W.M. (1972) 'Least Squares Computations by GivensTransformations without Square Roots,' Univ. of Waterloo
Report CSRR-2062, Waterloo, Ontario, Canada.
[9] Golub, G.H. and Businger,P.A. (1965) "Linear Least Squares Solutionby Householder Transformations,' Numer. Math., 7, Handbook seriesLinear Algebra, 269-276.[10] Stewart.G.W. (1973) 'Introduction to Matrix Computations,'Academic Press, New York.[11] Parlett, B.N. and Wang,Y. (1975) "The influence of the Compileron the Cost of Mathematical Software,' ACM TOMS, Vol.l, No.l,March 1975, pp.35-46.
[12]Smith, B.T. et al (1976) "Matrix Eigensystem Routines EISPACK Guide,' Second Edition, Springer Verlag, Lecture Notes in Computer Science Series.

