
ONCOMPUTINGTHE SINGULARVALUEDECOMPOSITION

bY

Tony Fan C. Chan

STAN-CS-77-588
FEBRUARY1977

COMPUTER  SCIENCE DEPARTMENT
School of Humanities  and Sciences

STANFORD UNIVERSITY





ON COMPUTING THE SINGULAR VALUE DECOMPOSITXON

Tony Fan C. CHAN*

August, 1976.

*Computer Science Dept., Stanford Univ., Ca94305.

This work was supported by NSF Grant DCR75-13497

and NASA Ames Contract NCA2-OR745-520.  The computing

time was provided by the Stanford Linear Accelerator

Center (SLAC).





ABSTRACT--a a---

The most well-known and widely-used algorithm for computing

the Singular Value Decomposition (SVD) of an m x n rectangular

matrix A nowadays is the Golub-Reinsch algorithm [l]. In this

paper, it is shown that by (1) first triangularizing the matrix

A by Householder transformations before bidiagonalizing it,

and (2) accumulating some left transformations on an n x n array

instead of on an m x n array, the resulting algorithm is often more

efficient than the Golub-Reinsch algorithm, especially for

matrices with considerably more rows than columns (m >> n),

such as in least squares applications. The two algorithms

are compared in terms of operation counts, and computational

experiments that have been carried out verify the

theoretical comparisons. The modified algorithm is more

efficient even when m is only slightly greater than n, and in

some cases can achieve as much as 50% savings when m >> n. If

accumulation of left transformations is desired, then n 2 extra

storage locations are required (relatively small if m >> n),

but otherwise no extra storage is required. The modified

algorithm uses only orthogonal transformations and is therefore

numerically stable. In the Appendix, we give the FORTRAN code of

a hybrid method which automatically selects the more effiecient

of the two algorithms to use depending upon the input values for m

and n.





(0) INTRODUCTION----I_--.-

Let A be a real m x n matrix, with m >> n. It is well-known

[1,2] that the following decomposition of A always exists :

A - u 2 VT (0.1)

where U is a m x n matrix and consists of n orthonormalized

eigenvectors associated with the n largest eigenvalues of

AAT, V is a n x n matrix and consists of the orthonormalized

eigenvectors of ATA, and x is a diagonal matrix consisting of

the "singular values" of A, which are the non-negative square

roots of the eigenvalues of ATA.

Thus,

UTU - VTV - VVT - I,

and z - diagl Gl, . . . . . . Gn). f0.2)

It is usually assumed for convenience that

r >- G1 2 " . . . . . . >= G po.

The decomposition (0.1) is called the Singular Value-.--w

Decomposition (SVD) of A.

Remarks:

(1) If rank(A) - r, then t,+,l rr+2- . . . . . - G,-0.

(2) There is no loss of generality in assuming that m >= n,

for if m C n, then we can instead compute the SVD of AT.

If the SVD of AT is equal to UzVT, then the SVD of A

is equal to VZUT.
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The SVD plays a very important role in linear algebra. It

has applications in such areas as least squares problems [1,2,3],

in computing the pseudo-inverse [2], in computing the Jordan

Canonical form [4], in solving integral equations [5], in digital

image processing (61, and in optimization [7]. Many of the

applications often involve large matrices. It is therefore

important that the computational procedures for obtaining the SVD

be as efficient as possible.

It is perhaps difficult to find an algorithm that has

optimal efficiency for all matrices, so it would be desirable to

know for what kind of matrices a given algorithm is best

suited. It is in this spirit that we were first motivated

to look for improvements of the Golub-Reinsch algorithm when the

mat-rix A has considerably more rows than columns, i.e. m >> n.

It turns out that such an improvement is indeed possible, with only

slight modifications to the Golub-Reinsch algorithm, even when

m is only slightly greater than n, and can sometimes achieve as

much as 50% savings in execution time when m >> n.

In section (1) we will briefly describe the Golub-Reinsch

algorithm. We will then present the modified algorithm in

section (2), with some computational details deferred to section

(3). Operation counts for the two algorithms will be given

in section (4) and some computational results in section (5).

We wili make some conclusions in section (6). In the Appendix,

3



we will give the FORTRAN implementation of a hybrid method

which automatically selects the more efficient of the two

algorithms to use depending upon the input values for m and n.



(1) THE GOLUB-REINSCH ALGORITHM &R-SVD)' p - e -------a -- .--

We will use the same notation as in 111.

This algorithm consists of two phases. In the first phase

one constructs two finite sequences of Householder transformations

p(k) (k-1,2, . . . ,n)

and QW (k-1,2, . . ..n-2)

such that

,(n) ... ptl) A Q(1) . . . . . Qb-2) I

an upper bidiagonal matrix. Specifically, P w zeros out the

subdiagonal elements in column I and Q (5) zeros out the appropiate

elements in row j.

The singular values of J (0) are the same as those of A.

Thus,

if J- GzHT is the SVD of .I,

then A - P GZHT QT

so that U =PG, V-QH 0.2)

w i t h  P - P (1) . . . . pin), Q m Q(1).e..Q(n’2).



a

The second phase is to iteratively diagonalize J(.O) by the

QR method so that

where

J(o) e-) J(l) -> . . . .

J(i+l) = s(i)TJii),(i)  ,
(1.3)

where S(l) and T(l) are products of Givens transformations and

are therefore orthogonal.

The matrices T(l) are chosen so that the sequence

,W I J(i)TJ(i) converges to a diagonal matrix while the matrices

s(i)’ are chosen so that all J 0) are of bidiagonal form.

The products of the T (0 ’ s and the S(l) ’ s are exactly the matrices

HT and G T respectively in Eqn (1.2). For more details, see [l].

It has been reported in [l] that the average number of

iterations on J (0 in (1.3) is usually less than 2n. In other

words, J (2n) in Eqn (1.3) is usually a good approximation to a

diagonal matrix.

We will briefly describe how the computation is usually

implemented. Assume for simplicity, that we can destroy

A and return U in the storage for A. In the first phase, the P(l)

are stored in the lower part of A, and the Q(l) are stored in the upper

triangular part of A. After the bidiagonalization, the Q (0 are

accumulated in the storage provided for V, the two diagonals

of J(O) are copied to two other linear arrays, and the P (1) are

accumulated in A.



In the second phase, for each I,

S(l) is applied to P from the right and

TIijT is applied to QT from the left

in order to accumulate the transformations.



(2) THE MODIFIED ALGORITHM (MOD-SVD)P -.- --P.-B--- -

Our original motivation for this algorithm is to find

an improvement of GR-SVD when m >> n. In that case, two

improvements are possible:

(0 In Eqn (l.l), each of the transformations P 0) and Q(l)

has to be applied to a submatrix of size (m-1+1) x (n-1+1).

Fig. 2.1 pw and Q(l) affects the shaded portion of the matrix

Now, since most entries of this submatrix are ultimately going to be

zeros, it is intuitive that if it can somehow be arranged that the

Q(l) does not have to be applied to the subdiagonal part of

this submatrix, then we will be saving a great amount of work

when m >> n.



4 This can indeed be done by first transforming A into

upper triangular form by Householder transformations on the

left.

L iA
.

T

.

where R is n x n upper triangular and L is orthogonal,

’ 4J! = I ’

R

-c-

0 0
.

and then proceed to bidiagonalize R. The important difference

is that this time we will be working with a much smaller matrix R

than A (if n2 << mn), and so it is conceivable that

the work required to bidiagonalize R is much smaller than

that originally done by the right transformations when m >> n.

The question still remains as to how to bidiagonalize R.

An obvious way is to treat R as an input matrix to GR-SVD,

using alternating left and right Householder transformations.

In fact, it can be easily verified that if the SVD of R is

equal to XzYT, then the SVD of A is given by

A- (2.1)

We can identify U and V with Y. Notice that in order

to obtain U, we have to form the extra product L If U is not

needed (e.g. in least squares), then we do not to accumulate

any left transformations and in that case, for m >> n, it seems

likely that we will make a substantial saving.



It is also possible to take advantage of the structure

of R to bidiagonalize it. This will be discussed in section (3).

(ii) The second improvement over GR-SVD that can be made

is the following. In GR-SVD, each of the S(l) is applied to

the m x n matrix P from the right to accumulate U. If

m >> n, then this accumulation involves a large amount of work

because a single Givens transformation affects two columns of P

(of length m) and each S(l) is the product of on the average

n/2 Givens transformations. Therefore, in such cases, it would

seem more efficient to first accumulate all S fi) o n a n x  n-.-. -

array Z and later form the matrix product PZ after

JW has converged to .
t

In essence, improvement (I) works best when U is not needed,

improvement (ii) works best when U is needed and both work

best when m >> n.

We now present the modified algorithm:

where R is n x n upper triangular,

(2) Find the SVD of R by GR-SVD, R = XIYT ,

(3) Form A - the SVD of A.
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The idea of transforming A to upper triangular

form when m >> n and then calculating the SVD of R is mentioned

in Lawson 6 Hanson [3,pp.119,122] in the context of

least squares problems where U is not explicitly required.

In the next section we will discuss some computational

details of this modified algorithm, and in section (4) we

will compare the operation counts of the two algorithms.
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(3’) SOME COMPUTATIONAL DETAILS- - - - - w - - - - - - - - - - m -

(i) It should be obvious that when U is not needed then

MOD-SVD does not require any extra storage. When U is needed, we can

store LT in the lower part of A, copy R into another n x n array W

and ask GR-SVD to return X in W. Therefore we need at most n 2

extra storage locations which is relatively small when m >> n.

(ii) The next question is how to form 1,s without using

II0
extra storage. This can be done by noting that

yi] - L[jX

so we can first accumulate L I

- [1iY
in the space provided for

U and then do a matrix multiplication by X.

In the experiments that we have carried out, we actually

accumulate the Householder transformations L on X .

I I0
We do not recommend doing this in practice because

it requires mn instead of n2 extra storage locations. But

one can show that both methods take about the same

amount of work and so it will not affect the comparisons.

12



(iii) The question arises whether it is possible to bidiagonalize

R in a way that takes advantage of the zeros that are

already in R. One way is to use Given8 transformations to

zero out the elements at the upper right hand corner of R, one

column or one row at a time. Pictorialiy, (for n-5) to zero out the

(195) element, we do two Givens transformations as follows:

1st rotation introduces
nonzero element here

rotation to zero
out the (1,5) element

2nd rotatiozo zero out the (2,1j
element introduced by the ist rotation

It turns out however, by simple counting, that this

method takes about the same operations (4n’/3 multiplications)

as the previous method to bidiagonalize R, provided that we do

not have to accumulate transformations. If we do need to accumulate

either the left or the right transformations, then this

method will require more work (4n3 versus 4n3/3 mult.)

mainly because it requires two rotations to zero out each

element and these rotations have to be accumulated.

So it seems that taking advantage of the zero structure of R

in this fashion actually makes the method less efficient.

13



We have to note, however, that Givens transformations involve

fewer additions and array accesses than Householder

transformations per multiplication (see section 4.1). Therefore

this method tends to be more competitive on modern computers

where the time taken for floating point additions and

multi-dimensional array indexings are not negligible compared to

that for multiplications.

There may be other ways to bidiagonalize R

using orthogonal transformations, but we shall not

pursue this subject further.

14



(4) OPERATION COUNTS---.- - -- - - .- -. -

In section (Zj, we indicated that MOD-SVD should be

more efficient than CR-SVD when m >> n. In this section,

we study the relative efficiency between

CR-SVD and MOD-SVD as a function of m and n. We

do this by computing the asymptotic operation counts for

each algorithm.

In the operation counts given below, we only keep

the highest order terms in m and n, and so the results are

correct for relatively iarge m and n.

CR-SVD:

(li ~Bidiago_nalization  (using Householder transformations)- -

J = ph),,,p(ljAQ(l)  .... Qcna2) 2(mn2 -n3/3j mult.

accumulate P = P (l)m..ph) 2mn -n 3/3 mult.

accumulate Q = Q (1) . . . . Q(“-2) 2n3 mult.

(2) Diagonalization (using Givens transformationsje--M

accumulate ,(I) on P Cmn2 (C=4j mult.

accumulate ,(i, on Q Cn 3
(C=4j muit.

MOD-SVD:---A

(1) Triangularization (using Householder transformations)----P-m

(2) CR-SVD of R, R =
x~YT 2mn -n 3/3 mult.

depends on whether
accumulations are needed.

(using Householder transf.!

15
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Some comments are in order:

(0) The entries Cmn 2 and Cn 3 with C-4 in the diagonalization

phase of CR-SVD are obtained by assuming that the iterative

phase of the SVD takes on the average two complete QR iterations

per singular value [l], [3,p122]. We have checked this

experimentally and found it to be quite accurate.

It is assumed that slow Givens is used throughout the calculation.

If fast Givens [8] had been used, then the entries would become

approximately 2mn 2 and 2n 3 instead (viz C-2).

(1) For the Householder transformations, each multiplication also

invokes 1 addition and approximately 2 array addressings.

For the Given8 transformations, each multiplication invokes

l/2 an addition and 1 array addressing. On many large

computers today, a floating point multiplication is not much

slower than a floating point addition. Also, array

indexing is usually quite expensive. In such cases, a

Householder multiplication actually involves more work than

a Givens multiplication because of the extra additions and

array indexings. Therefore, the operation counts given for

the diagonalization phase of GR-SVD may be misleading

because it may actually involve relatively less work. The

total effect, however, can be accounted for by using a

smaller value for C. For example, if 1 Givens

"multiplication" takes half the work needed by a Householder

"multiplication", then the effect on the

relative efficiency can be accounted for by- -
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setting C-2 instead of C-4. On older or non-scient.ific

machines where multiplications take much more time than

additions and array addressings, the operation count based

on multiplications alone is usually a good measure of

relative efficiency.

(2) The application of S(i)
T

and T(i) on J(i) is actually

2of order O(n ) and is therefore not included in the

above counts.

(3) We have to distinguish between 4 cases in the comparison:

Case a: both U and V are required explicitly,

Case b: only U is required explicitly,

case c: only V is required explicitly,

Case d: only 1 is required explicitly.

These four cases do arise in applications. We will

mention a few here:

Case a arises in the computation of pseudo-inverses 111.

Case b is Case c for AT.

Case c arises in least squares applications [1,3] and

in the solution of homogeneous linear equations [l).

Case d arises in the estimation of the condition number

of a matrix and in the determination of the rank of

a matrix [lo].

17



The total operation count for each case is g1ve.n in

Table 4.1 .

Table 4.1--e---.-w

Total operation counts of GR-SVD and MOD-SVD for each

of the cases a, b, c, and d.

Case GR-SVD MOD-SVD

a (3+C)mn2 + (C-1/3)*3 3mn2 + (2C+4/3)n3

b (3+C)mn2 - n3 3mn2 + (C+2/3)n3

C 2mn2 + Cn 3 mn 2 + (C+5/3)n3

d 2mn2 - 2n3/3 mn2+n 3

Using Table 4.1 , we can compute the ratio of the

operation counts of MOD-SVD to that of CR-SVD for each of

the four cases. This is given in Table 4.2 where the

ratio is expressed as a function of r = m/n.

18



These ratios are plotted in Fig. 4.1 to Fig. 4.4 for C=2,3,4.

The cross-over point r* is the value of r which makes the

ratio equal to 1. If r > r*, then MOD-SVD

is more efficient than CR-SVD.

From Figures 4.1 - 4.4, we see that, in all 4 cases a,b,c

and d, MOD-SVD becomes more efficient than CR-SVD when r

starts to get bigger than 2 approximately, and the savings

can be as much as 50% when r is about 10. On the other

hand, when r is about 1, CR-SVD is more efficient. This

agrees with our eariier conjectures. However, the important
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thing is that all the curves decrease quite fast .as r becomes

large. If we assume that it is equally likely to encounter

matrices with any value of 1: >- 1 (this is not an unreasonable

assumption for designers of general mathematical software, for

example), then MOD-SVD is obviously preferable. In

a n y  c a s e ,  F i g .  4 . 1 - 4.4 give indications as to when

one of the methods is more efficient, at least when m and

n are large enough so that our operation counts apply.

In the context of least squares applications, we can also

compare the operation counts of GR-SVD and MOD-SVD to that of the

orthogonal triangularization methods [9] (OTLS) often used for

such problems. This comparison is shown in Table 4.4 .

Tab le  4 .4_ --.-

Least squares using orthogonal triangularization versus

udling SVD

OTLS - orthogonal triangularization method

for least squares problems.

OTLS : GR-SVD - [ r - 1 / 3 ]  / [2r+C]

--~YIIIIIIIIIIIIIIII~~-~~~----~.--~------------~-----~-*.*.*

OTLS : MOD-SVD - [r-1/3] / [r+C+5/3]

-~-~~~~----~~~---~-~-~~~~UYIIIIIIY---U*U.*.*.*~~-.*-.*.*Y.*~-.~-

These ratios are plotted in Fig. 4.5 and Fig. 4.6 for C-2,3,4 .
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One sees from these figures that for m nearly equal to n,

the two SVD algorithms require much more work than OTLS.

However, when r is bigger than about 3, MOD-SVD requires only

about 3 times more work than OTLS. It may therefore become

economically feasible to solve the least squares problems at hand

by MOD-SVD instead of OTLS. The reward is that

the SVD returns much more useful information about the problem

than OTLS (31.

It is easy to see that as r becomes arbitrarily large, MOD-SVD

is as efficient as OTLS since the bulk of the work is in the

triangufarization of the data matrix A. However, GR-SVD can be

at most half as efficient as OTLS.
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(5) COMPUTATIONAL RESULTS- - -  - - -- -.-w--w -.- -

The conclusions in the last section hold only if m and

n are both large. In this section, some computational experiments

are carried out to see if the conclusions are still valid for

matrices with realistic sizes.

We computed the SVD of some randomly generated matriceti using

both GR-SVD and MOD-SVD. The version of GR-SVD that we used is a

modified ALGOL W translation of the procedure that appeared in [l].

MOD-SVD is realized by writing a procedure to triangularize the

input matrix by Householder transformations and then using the

same above-mentioned GR-SVD procedure for computing the SVD of R.

All tests were run on the IBM 370/168's at the Stanford

Linear Accelerator Center (SLAC). Long precision was used throughout the

calculation. The mantissa of a floating point number is represented

by 56 bits (approximately 16 decimal digits).

and computed the SVD of a sequence of

For each of the 4 cases, we fixed some values for n

randomly generated matrices

with different values of r. The execution times taken by GR-SVD

and MOD-SVD were then compared, together with the accuracies of the

computed answers. Since we are working in a multi-programming

environment, the execution times we measured cannot be taken as the

28



actual computing time taken. Moreover, the influence of the

compiler on the relative efficiency of the two algorithms may be the

deciding factor ill]. However, keeping these points in mind, we can

still expect a qualitative agreement with the analysis based on

operation counts.

On the IBM 370/168’s at SLAC, a floating point multiplication

takes only about 1.5 times the work taken for a floating point

addition. Also, array indexing in ALGOL W is very expensive due to

subscript checking (it actually can be more expensive than

floating point multiplications). Therefore, as noted in section 4.1,

we should use C approximately equal to 2 instead of 4 in Table 4.2

and Table 4.4, for the purpose of comparing the relative efficiency

of the two algorithms based on the computational results.

The results of the computations are plotted in Fig. 5.1 -

Fig. 5.6 . In general, they agree very well qualitatively with

the asymptotic results we obtained by operation counts (with

C-2). We observe that the larger n is the better the agreement,

as it should be. However, even when n is small, the theoretical

results based on asymptotic operation counts still describe very

well the qualitative behavior of the computational results in

many ca se s . The computational results also show that large

savings in work are indeed realizable for reasonably-sized

matrices (For example, see Fig. 5.3 and Fig. 5.4).
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We also checked the accuracies of the computed results,

The singular values returned by both procedures GR-SVD and

MOD-SVD agree to within a few units of the machine precision in

almost all cases that we have tested. The matrices U and V also

agree to the same precision but the signs of the corresponding

columns may be reversed. However, the SVD is only unique to

within such a sign change, so this is acceptable [lo].

We also computed the singular values of

30 x 30 matrix:

the following

This matrix is very ill-conditioned (with respect to

computing its inverse) and is very close to being a matrix of

rank 29 even though the determinant equals 1 for all values of n.

The computed singular values from both GR-SVD and MOD-SVD agree

exactly with those given in [l] to 15 significant digits (which

are all the digit8 printed in ALGOL W).
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(61 CONCLUSIONS-.-

Firstly, the theoretical results we obtained do seem to predict

the actual computational efficiencies quite well, and they can

therefore be used to indicate which algorithm to choose for a

given matrix.

The MOD-SVD algorithm clearly work8 better than GR-SVD for

matrices that have many more rows than columns. The price

that MOD-,SVD ha8 to pay when m is nearly equal to n is not that big

(usually le88 than 30%). We have also seen that the cost of

solving a least squares problem by MOD-SVD can often be less than twice

that of the usual orthogonal triangularization algorithms.

It may therefore become economically feasible to solve many

least squares problems by the SVD algorithms.

Some improvements can probably be made on the bidiagonalization

of the upper triangular matrix R in MOD-SVD by taking advantage

of the the special structure of R. We also want to note again

that MOD-SVD requires n 2 extra storage locations if the left

transformations have to be accumulated. This may be a

disadvantage when storage is at a premium.

We have also seen that the usual practice of counting only

multiplications in operation counts for numerical algorithms is

no longer viable for many modern computers. Other properties,

such as the amount of array accesses involved, may influence the

efficiencies of algorithms decisively.
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To be sure, there may be other ways to compute the SVD that

will work better in some cases but not in others. It is perhaps

impossible to find an “optimal” algorithm that works best for all

matrices. Nevertheless, we hope this paper has shown that it may

be worthwhile to look for improvements in the organizations of

existing algorithms.
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Appendix : Fortran Code of a Hybrid Algorithm

Based on the results of earlier sections, we can implement

a hybrid method for computing the SVD of a rectangular matrix A

which automatically chooses to use the more efficient algorithm

between GR-SVD and MOD-SVD. For each of the four Cases a,b,c and

d, if the input matrix A has a value of r (- m/n) which is less

than the cross-over point *r for that case, then we use

GR-SVD, otherwise we use MOD-SVD. The cross-over points depend

on the value of C used. As noted before, the value of C to be

used depends on the relative efficiencies of floating point

multiplications, floating point additions and array indexings on

the particular machine concerned. However, C can be determined

once for all for any particular machine and compiler combination. For

example, if floating point multiplications take much more time than

floating point additions and array indexing8 on the machine in

question, then we should use C approximately equal to 4.

In this Appendix, we give the codes of a Fortran subroutine

called HYBSVD which implements the above-mentioned hybrid algorithm.

HYBSVD will need to call a standard Golub-Reinsch SVD subroutine

during part of its computation and so we have included such a

routine, called GRSVD, in the listing of the codes of HYBSVD.
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The routine GRSVD is actually a slightly modified version of the

subroutine SVD in the EISPACK [l2] package. The main modification

that we have made is to eliminate the requirement in subroutine

SVD that the row dimension of V declared in the calling program

be equal to that of A. This minimizes the storage requirements

of GRSVD at the cost of one more argument in the argument list.

There is one additional feature implemented in HYBSVD (and

also in GRSVD). In least squares applications, where we are

looking for the minimal length least squares solution to the

overdetermined linear system Ax = b, the left transformations

UT have to be accumulated on the right-hand side vectors b

(there may be more than one b). This can be done by putting

the vectors b in the matrix argument B when calling HYBSVD and

-setting IRHS to the number of b's.

The calling sequences and usages of HYBSVD and GRSVD are

explained in the comments in the beginning of the listings of

the subroutines.
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C
C

.............

. . . . . . . . . . . . . FXUST C A R D  O F  HYBSVD ::::::: ::

c”
E
C

:

5
C
c
C

E
C
C

5

s
c
C
PL

E -

4

E
C

:

c”

s
C

i
t
C
C
C

c”c

5
C
c

I
SUPROUTINE ~Y~~V~~NA~~~Y,NZ.M~N.A~W.MATU~U~~A~V~V~Z~B~IRHS,  IEGR.

INTEGER  NAUrhVthZ.M,Nw  IFHSeIE?R,IPlr  IrJ,K.IMl,  IBACK \

sDOU~LE  PRECI$ION  A1NAU.N)  rW(N) rU(NAU,N)  ,V(NV,N)rZ(NZ.N).
B(NAU. fRHS)rRVl  (N)

‘OOU~LE  P R E C I S I O N  X!JVRPTIC.R,G.SCALE,~SIGN.C!ABS,CSQRT.F,S~H
R E A L  F L O A T
L O G I C A L  MkTC;rMAIV

T H I S  S U B R O U T I N E  I S  A MODIFIC4TInN  O F  T H E  GOLUB-REINSCH  PRBCEOVRE

(!. ) FCK CclMFUTIhC  T H E  S I N G U L A Q  V A L U E  O E C O M P O S I T I O N  A  =  UWVT O F  A
REAL M BY N  R E C T A N G U L A R  MATGIX. T H E  A L G O R I T H M  I M P L E M E N T E D  I N  THtS
R O U T I N E  H A S  A tiYtZRI0  N A T U R E . W H E N  M I S  A P P R O X I M A T E L Y  E Q U A L  T O  Y.
T H E  GQLUB  REIPJSCt-  ALGORtTHM I S  USE@r BUT W H E N  M I S  G R E A T E R  T H A N
4PPPOXIMATELY  2*Na A MOOIFJEO V E R S I O N  O F  T H E  GOLUB-QEINSCH
ALGCIR  ITHM I  S  U S E D . T H I S  M O D I F I E O  ALG091THM  F I R S T  T R A N S F O R M S  A

T
INTO UPPEF 7RIbhGUtAR  FORM B Y  HOUSEHOLOtR  T R A N S F O R M A T  I O N S  L
AND THEN lJSi?3 T~-E cmue  REINSCH  ALGORITHM  T O  FIND THE S I N GU L AR
V A L U E  O E C O M P O S I T I O N  O F  T H E  R E S U L T I N G  U P P E R  T R I A N G U L A R  MAT91  X R .
W H E N  U IS NItEOEG  E X P L I C I T L Y + A N  E X T R A  A R R A Y  2 ( O F  S I Z E  A T  L E A S T
N RY N) I S h\EEGEC. B U T  L)THERWISE  Z  M A Y  C O I N C I D E  WTTH  E I T H E R
A 0% V ANO N O  E X T R A  STOK4GE  I S  QE;OU?RED. T H I S  H Y B R I D  MFTH@O
SroULO  RE M C R E  E F F I C I E N T  T H A N  T H E  GOLUB REJNSCH  4LGf2RITHM  YHEN
M !s M U C H  BTGGER  T H A N  Na Fr3R D E T A I L S ,  S E E  (21..

H Y R S V O  C A N  A L S Q  BE U S E D  TQ CClrrlPUTE TPE M I N I M A L  L E N G T H  L E A S T
SOUARES  SnLLTICh T O  T H E  0VERDETEF:MINEO LINE4R S Y S T E M  A*X=B.

N O T I C E  T H A T  T H E  SINGULAC;  VALIJE  DE-COMP9SITION  O F  A  M A T R I X
I S  UNIQUE 0FJL.Y U P  T O  T H E  S I G N  O F  T H E  CORRES’ONOING  C O L U M N S
OF U AND Vo

T H I S  FlOUTtNE  H A S  BEEN  C H E C K E D  B Y  T H E  P F O R T  V E R I F I E R  (3) F O R
AOHF?ENCE  T O  A  LARGE* CARS’FULLY  O E F  I RED, PORTA@LE  S U B S E T  O F
A M E R I C A N  N A T I O N A L  S T A N D A R D  FORTRAN CALLEO PFORT.

PCFFRENCES:

(i) GOl,UBeG.H*  A N D  QEINSCHeCo  (Z970)  “ S I N G U L A R  V A L U E
DECCMPOSITI  C h  A N D  LEAST SC)UAfi%S SOLIITIONS,”
N U M E R .  M A T H .  1 4 . 4 0 3  420. 1 9 7 0 .

(2) CHAN,T.?=. ( f 976) “ O N  C O M P U T I N G  T H E  S I N G U L A R  VkL11E
DECOMf’OSITICfkr” T O  APPEAR  A S  A  S T A N F O R D  C O M P U T E R
S C I E N C E  REPOGT.

(3) FY0ER.S.G.  (1574) ‘*THE P F O R T  V E R I F I E R . ”  S O F T Y A R C
P R A C T I C E  A N C  EXPER IENCEe V O L  .4r 3 5 9  377r 1 9 7 4 .

HYBSVD A S S U M E S  lu .GE. N o I F  M .LT. Ng THtZPJ  C O M P U T E  T H E
T T T

S I N G U L A R  V A L U E  CECOMPOSlTION  O F  A  l IF A =UYV l T H E N  A=VWUT.

O N  I N P U T :
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C
C
C
C
C
C

:
C
C
C
C
C
c
t

c"
C
c

E

s

E
CP

E
C

E

E
C
C

E
C

E
C
C
C
C
C
C
C
c

’ c
b

NAU M U S T  BE S E T  T O  T H E  R O W  D I M E N S I O N  O F  T H E  T W O - D I M E N S I O N A L
ARC;AY FARANETERS  A,U A N 0  6 A S  D E C L A R E D  I N  T H E  C A L L I N G  PROGP.AM
CI PENS T C N  S T A T E M E N T  l N O T E  T H A T  N A U  M U S T  BE A T  L E A S T
A S  L A R G E  A S  M;

N V  M U S T  F3E S E T  T O  T H E R O W  OIMENSION  O F  TH E TWO-DIM5NSXONAL
APGAY P A R A M E T E R  V  A S  D E C L A R E D  I N  T H E  C A L L I N G  PROGRAM
01 ‘JENSIGN S T A T E M E N T . N V  M U S T  BE A T  L E A S T  A S  L A R G E  A S  N :

NZ M U S T  FE S E T  T O  T H E  R O W  D I M E N S I O N  O F  T H E  T W O - D I M E N S I O N A L
A R R A Y  P A R A M E T E R  2 A S  D E C L A R E D  I N  T H E  C A L L I N G  P R O G R A M
01 VEriS  I O N  S T A T E M E N T  l N O T E  T H A T  N Z  M U S T  BE A T  LE4ST
A S  L A R G E  A S  N : \

M I S  T H E  fiUMBER  O F  R O W S  O F  A  ( A N D  U) ;

N  I S  T H E  N U M B E R  O F  C O L U M N S  O F  A  ( A N D  U) AFJD T H E  3RDE.H O F  V :

A CONTAlhS  TtiE R E C T A N G U L A R  I N P U T  M A T R I X  T O  8E D E C O M P O S E D :

9 CT!NTAIr\S  T H E  I R H S  R I G H T - H A N D  S I O E S  O F  T H E  OVERSETEFk~INED
LINEAR S Y S T E M  A*X=6. I F  I R H S  .GTe 09
T H E N  O N  OUTPlTe T H E S E  IRHS COLUYh’S  I N  B

1
W I L L  COhTAIh U 8. THUSI T O  C O M P U T E  T H E  MINIM4L  L E N G T H  L E A S T

+
SflUAFE S SOLUTI  O N , C-tNE  M U S T  COMfUTE V *U TXMES  T H E  C O L U M N S  O F

+
R, MHERE  W I S  A  014c,ma  M A T R I X ,  W+uko I F  W(I)  I S
NFGI-IGIRLE. CTHiZRWISE  I S  l / W ( I ) .  I F  IRHS=O. i3 M A Y  COINCIOE
W I T H  A  C R  U  AN0 W I L L  NOT B E  HEFfREYCED:

IRHS  I S  T H E  b\CMBER O F  R I G H T  H A N D -  SIDLS O F  T H E  OVERDETEfiMINED
S Y S T E M  FtX=e. IRHS S H O U L D  !3E S E T  T O  ZEfiQ I F  O N L Y  T H E  S I N G U L A R
V A L U E  DECOMPCSITION  O F  A  I S  D E S I R E D ;

MATU  SHOVLD f!E S E T  T O  .TFUE. I F  T H E  U  M A T R I X  I N  T H E
DECOMPQSITION I S  OESIPED,  A N D  T O  .FALSE. O T H E R W I S E ;

MATV  S H O U L D  BE S E T  T O  .TRUE. IF T H E  V  MATRI  X ‘IN T H E
OECOMPCSITICN  I S  OESIREO.  Al’10  T O  .FALSE. O T H E R W I S E .

W H E N  H Y B S V O  I S  USFD T O  COYPUTE T H E  M I N I M A L  L E N G T H  L E A S T
S Q U A R E S  COLCTION  T O  A N  OVERDETERMINED  S Y S T E M ,  M4TU SHDULD
PE S E T  T C  .FPLSE. 9 A N D  M A T V  S H O U L D  fX S E T  T O  l T = ! U E .  l

O N  O U T P U T  :

4 IS U N A L T E R E D  ( U N L E S S  OVE~WGITTEN  BY U OR VI:

cc
C

:
C
c
C
c

c”

W  C O N T A I  hS T H E  N (NQN NEGAT IVE) S INGULAR V A L U E S  O F  A  ( T H E
DIACONPL E L E M E N T S  O F  W) l T H E Y  A R E  U N O R D E R E D  l I F  A N
EGGOR  EXIT I S  YADEI T H E  S I N G U L A R  V A L U E S  S H O U L D  B E  C O R R E C T
F O R  INCICES  I&RR+l,IERR+Zs.  l m ,N;

U  C O N T A I  N S  T H E  M A T R I X  U  ( O R T H O G O N A L  COLUYN VECTO2S  1 OF T  H E
OEICOMPCSIT  I C N  I F  MAT-U H A S  FLEEN SET T O  .TRI;E. ,3THERWISE
U  I S  USE0  A I  A  T E M P O R A R Y  A R R A Y . U  M A Y  C O I N C I D E  W I T H  A .
I F  A N :-RROR E X I T  IS FIADE, T H E  C O L U M N S  OF U CC’JGF;,ESPONDI  ffi
T O  I N D I C E S  CF C O R R E C T  S I N G U L A R  V A L U E S  S H O U L O  RF C O R R E C T ;
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V CONTAIhS  TrE  MATGIX  V  ( O R T H O G O N A L )  O F  T H E  DECOMPOSfTION  I F
M A T V  HAS BEEN S E T  T O  .TRUE. OTHERwISE  V  I S  N O T  R E F E R E N C E D .
V  M A Y  A L S O  C O I N C I D E  WXTY  A I F  U  I S  N O T  NEECED. I F  A N  E R R O R
E X I T  I S  M A D E . T H E  COLUh4NS  O F  V COFRESPT)ND?NG  T O  I N D I C E S  O F
CCtFRf-CT  SIhCULAR V A L U E S  S H O U L D  RE C O R G E C T :

Z COhTAIbS  Tt-E M4TRIX  X  I N  T H E  S I N G U L A R  V A L U E  D E C O M P O S I T I O N
T

O F  R=XsY, I F  T H E  M O D I F I E D  A L C O F I T H M  IS U S E D .  I F  T H E
G O L U B -  F E I N S C H  PROCF_DURE  I S  USE@, T H E N  I T  IS NOT  RFFERENCED.
I F  M A T U  H A S  OEEN  S E T  T O  .FA.LSE. 9 2 M A Y  COINCIt?E
W I  T H  A  O R  V A N D  XS N O T  fXFERENCEDt

iERR  I S  S E T  T C
ZERO F C R  NORVAt  R.ETURNe
K I F  T H E  K-TH  SINGtJLAR  V A L U E  H A S  N O T  B E E N

OETTRMINED  A F T E R  3 0  I T E R A T I O N S :
. . 1 IF IRHS .LT. 0 l

- 2 IF M .Lf. N l

- 3 IF NAU .LT. M l

4 IF NV .LT. N .
5 IF NZ .LT. N l

FV1 I S  A  TZMFDRAPY  S T O R A G E  A R R A Y .

P R O G R A M M E D  E Y  : T O N Y  CHAN,  CCIMP.  SC?. DEPTee
STANFORD UN1 V. 9 C A  9 4 3 0 5  a

LAST M@r,IFIEC:  1 2  SEPTEYSER.  1 9 7 6 .

.-. a.- .- --.- - ..ew.-.. - -  mI c-Fi...-.Y- -.-r--e-*--  *law--c.-  w-2 -.d.LC-ed----*wC  - -
IEF?G=@
I F  (TGHS .GEo C) G O  T O  2
IEFR=-  1
9ETUPN

2 I F  (M .GE. h 1 GO TO 3
IEEE= 2
R E T U R N

3 IF (N4U .GE. Ml GO TO 4
I EC!!?=-  3
RETURN

4 IF (NV .GE. N) CC TO 5
IEFC=  .4
FETURN

5 IF (NZ  .GE. N) CO TO 6
IEKR=  5
fiETUPN

6 COP1  TI N U E

S E T  VALCE F C R  C. T H E  V A L U E  FOi?  C GEr:PENDS  O N  T H E  R E L A T I V E
E F F I C I E N C Y  C F  FCCATING  PC)INT  VULTIPL  ICAT  IONS, FL’3ATING  P O I N T
ACCJITIONS  AI\0 TkC D I M E N S I O N A L  4RR.1Y INDfYXINGS  O N  T H E
CCIMPUTEG  YHEAiZ  Tl-‘IS  SUBROlJTINE  I S  T O  BE R U N . C SHOrJLD
UStJALLY  BE !?ETUEEN  2  A N D  Q. FOR D E T A I L S  O N  C H C O S  ING C, S E E
(2). T H E  A L G O R I T H M  I S  N O T  S E N S I T I V E  TO T H E  V A L U E  0 =  C
A C T U A L L Y  USED A S  LC’NG A S  C I S  RETWEEK  2 A N D  4 .

C =  4 . 0 0 0 .

DETF’FMI hE CRCSS-CVER  POXNT
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C

c
C
c
C

C
C
rL

C

s
8

10
C
C
C
C

C
c
C
C

3 0

ac
c
C
C
c

;:
C

c

C
P

z

YF (YATU .AhD. MATV)  X O V R P T  =  ~C+S.D0/3.DO)/C
I F  (MATU  .PhO. .hOT .MATV  1 XDVRPT = (C+S.OO/3.DO)/C
I F  (.NOT.MATU . A N D .  MATV)  XOVtiPT = 5.00/3.00
I F  (.NOT.MATU  .AND.  .NOT.MATV)  X O V R P T  =  5.00/3.00

D E T E R M I N E  WbETt-iEG  T O  U S E  GOLUB--REINSCH  O R  T H E  M O D I F I E D
ALGOQ  TTHM.

K = FLOrlTf  M)/FLCAT(N)
I F  (G . G E . XCVFPT)  G O  T O  8

U S E  GOLUB REINSCE  P R O C E D U R E

USE M O D  IFfED A L G C R I T H M

D O ‘!O I-1rM
D C  10 J=l*N

U(1 ,J)=AtT.J)

T R I  AMGULARX ZE  U BY  HOUSEHOLOER  T R A N S F O R M A T I O N S  v USI’qG
W  A N D  RV1 A S  TE1UFOPARY  ST3RAGEo

D O  ? C  I=I.N
G=G.Q@O
s=o .ooo
SC4LE=r!  .OD@

P E R F O R M  S C A L I N G  O F  COLUYNS  T O  A V O I D  UNNECSSAFiY O V E R F L O W
O R  lJNOERFLDW

00 3 0  K=I,M
S C A L E  = S C A L E  +  048S((J(KvI))

I F  ( S C A L E  .EQ. O.ODC) G O  T O  20
0 0  4 0  K=I,M

UfK,I) = U(K. I ) / S C A L E
- S  +  U(K,I)**2

CONT:N&

T H E  V E C T O R  E  QF T H E  H O U S E H O L D E R  T R A N S F O R M A T I O N  I  +  tTE’/H
WILL RE S T O R E D  I N  CnLUMN  I O F  U .  T H E  T R A N S F O R M E D  ELEMENT
U(I,I)  bILL BE S T O R E D  I N  W<I 1 AN0 T H E  SCALPR  H I N
RVL(I).

= U(f.1)
tF= -DSIGN(DSQGT(S) rF)

- F4G - S
%.I 1 =F. G
RV1(I) = H
w(1) = S C A L E  * G

I F  (I .EQ. h) GO TO 85

A P P L Y  TF;ANSFCRMATIONS T O  R E M A I N I N G  C O L U M N S  O F  A

I Pl =I+1
0 0  5 0  J=?Pf rN
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S = C.CIDC
DO fZ0 K=I.W

6 3 - S  +  Uo(.I)fU(K.Jl
F = &ii
00 7 0  K=I.M

U(K<,J) = U(KIJ) + f=*U(K,  11
7 0 C O N T I N U E
SC! C ONTI NUE

C
C A P P L Y  TFANSFCRMATIONS  T O  COLtMNS  O F  6 I F  I R H S  .GT.  0
C

Q5- - I F  (IFHS .ECo 0) G O  T O  20
D O  RO J=lrIEHS

- 0 . 0 0 0
~a-~0 K=I.P

9 0 S = I + lJ(K.f)*!3(K,J)
F =  S / H
D O  -00 K=IrM

B(K,J) = B(KeJl + F*U(K.I)
’ 03 CON-T INUE
PO C O N T I N U E
2 0 CONT I  hUE

C
c C C P Y  R  IN70 2 I F  M A T U  =  .VUE.
c

I F  (.NOT.MATU)  G O  T O  300
DO 110 I=l rh

D O  i10 J=:,N
I F  (J .CE. 1) GO TO 112

Z( I rJ) =  0 . 9 0 0
Gr) T O  210

: L 2 I F  (3 .EQ. I) GO TO 114
t( 1.J) = U(1.J)
G O  TC 110

: l

iZ
Z(I.1) = W(I)

CONTINUE
c

E-
A C C U M U L A T E  t-OUSEHOLDER  T R A N S F O R M A T I O N S  I N  U

D O  120 IBACK= rh
- N -

:Pi
IBACK + 1

= I + 1
G = W(T)
H = RVlfI)
IF (I .EQ. N) GO TO 130

C
D C  ‘4C J=IPl.N

140 UfI .J) =  0 . 3 0 0
C

* 3 0 I F  (H .EQo C.000)  G O  T O  150
I F  (1 .EQ. h) GO T O  1 6 0

C
D O  ‘.70 J=IPI,N

&I
= 0.GDC

‘, 8 0  K=IPlrM
180 S =  S  +  U(K,I)*U(K,J)

F = S/H
D O  170 K=IrM

L(K,J) = !J(Kr  3) + F*lJ(K,  11
7 0 CONTINUE
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C
’ 60 s = U(I.1) / H

D O
9 0

Iv�? ,�;i l Y

G O  T O  2&J
= U(J,l)*S

PL
50 D O  ?‘,Q J=I,M

2lC U(J.1) = O.CDO
2 oc* tJ( I ,I ) = lJ~I.1) +  1 . 0 0 0
’ 2C’ CONTIh;lJE

C
c COMPUTE  S V D  O F  F ( W H I C H  I S  S T O R E D  I N  2)
L

C A L L GGSVD(Nt,NV,N.N,Z.W,MATU.Z,~~TV,V~~~I~HS~IERR~RV~)

s
C F O R M  L+X T O  O B T A I N  U  (WHEQE  R=XWYT) . X IS RETUGNED IN 2
C BY GGSVD. T-FE MATEIX  M U L T I P L Y  I S  D O N E  ONF,  R O W  A T  A  T:= 9
C 1JSING  GVl A S S C R A T C H  SPACE.
C

D O  ,220 I=lrV
P O  2 3 0  J=t,N

S =  0 . 0 0 0
P O  240 K=1+N

?40 - S  +  U(I,K)*Z(KrJ)
230 RVt 6, - =  S

DC] 2 5 0  J=l .h
25f C( I ,J) = RV: (: J)
22c:  CnNT I hUE

GETURN
c
r

z
FOFL’  R I N  U  B Y  Z E R O I N G  T H E  L O W E R  TPIANGULAR P A R T  O F  R  I N  U

TLC: IF (N .EOo ‘-1 GC TO 280
D O  ZSC? 1=2,h

IM2 = I - 1
P O  27C' J=l 9 fhfJ1

270 Uf 1~3) = 0.000
U(I.1) = W(I)

,360 C O N T I N U E
?90 lJ(i 91) = W(i)

C
C&LL GR~VD~NAU,NV.N.N,U,W,MATU,U,MATV~V~~B~RHS~IERR~RV~)
GETURN

C T H E  B O D Y  O F  S U P R O U T I N E  GGSVT)  SHOULD  B E  I N C L U D E D  W I T H  HYeSVD

: l -�*-�*-**-::: LAST CARD Of= HYElSVD ::::::::::::::::..r . . ..t...
FND
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E
C

l o - - o * : : :  F I R S T  C A R D  O F  GRSVD  :::::::::. . . . . .
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

SUBROUTINE GRSVD(NAU,NV\IM,N,AA,W~YA~U~U,MATV,V.B~IRHS~I~PR,RV~~
C

iNfCGEf? I,J,Y,L.M~N~II rllrKK,Kl~LL,L2  .MN,NkU,NVeITS,IERR~IRHS
D~JBLE ~REcrsfoN  A~NAU~N~,W~V~,~~NAU,N~,V~NV,N~,R~NAU.:R~S~,RV~~N~
D O U B L E P R E C I S I O N  C~F.C,H,S,X~Y,Z,EPS.SCALEIMACHEP
OOU9LE  PRECISfOY  DSQ?frDMAXl  rOABSrDSIGN
L O G I C A L  YATUoYATV

C

cc

s

E
C

E
C

E
C

c”
C

E
C

cc_

E
C
C
C

t’

E

ct

:
C
C

c”
C

E .
C

:
C

E
C

T H I S  S U B R O U T I N E  I S  A TQANSLATTON  O F  T H E  A L G O L  P R O C E D U R E  SVDI
N U M . M A T H .  16, 403-42Qtl970)  BY GOLUB A N D  REIWSCH.
H4ND300Y  F39 AUT9.  CGMP.9  V O L  I f - L I N E A R  A L G E B R A ,  2340151(1972 1.

T H I S  SU3ROUTINE  DETERMINZS  T H E  S I N G U L A R  VALtJE  D E C O M P O S I T I O N
T

A = U W V O F  A  R E A L  M 9Y N F;ECTANCULAR  M A T R I X . H O U S E H O L D E R
3131450YALIZATI3Y  A Y D  A V A R I A N T  O F  T H E  O R  A L G O R I T H M  A R E  U S E D .
GRSVD  A S S U M E S  M .CE. N . I F  u .LT. N ,  T H E N  C O M P U T E  T H E  S I ’ J G U L A ?

f T T T
V A L U E  DECOM’OSITION  O F  A  . IF A =uwv 9 T H E N  A = V W U  .

CPSVD  C A N  A L S O  BE U S E D  T O  C O M P U T E  T H E  MINIMAL  L E N G T H  L E A S T  SQUAQES
S O L U T I O N  T O  T H E  3VE2DETERMINSD  L I N E A R  S Y S T E M  A+X=B.

O N  1N”UT:

N A U  M U S T  BE S E T  T O  Tt-E ROW  D I M E N S I O N  O F  T H E  TWO-DIYENSIONAL
ARQAY  P A R A M E T E R S  ArU A N D  8  A S  D E C L A R E D  I N  T H E  C A L L I N G  P R O G R A M
DIMEN  I@N S T  A T E M E N T . NDTE T H A T  N A U  M U S T  B E  4T L E A S T
A S  L A R G E  A S  M;

N V  MtJST  BE S E T  T O  T-t-E  RCW  D I M E N S I O N  O F T H E  T W O - D I M E N S I O N A L
4QRAY P A R A M E T E R  V  A S  OECLARED  I N  T H E  C A L L I N G  PROGQAM
UIMENS  I O N  S T A T E M E N T . N V  cJluST BE A T  L E A S T  A S  L A R G E  A S  f’J:

M I S  T H E  NIIMBER  O F  RCwS O F  A ( A N D  U):

N 1 S THE NUvf3ER  !YF C O L U M N S  O F  A  ( A N D  U) A N D  T H E  O R D E R  DF V ;

A  C O J T A I N S  THE RECTAhGULAR  I N P U T  M A T R I X  T O  RE DECOJ4=3SED;

8 C O N T A I N S  T H E  I R H S  RIGHT-HAND-STDES  O F  T H E  O V E R D E T E R M I N E D
LTNE.4R  S Y S T E M  A*X=Bo I F  I R H S  .GT.  9,
TYEY OY 3UT’UT, T H E S E  :RHS COLUYNS

WILI, CONTAIV  UTB.  T H U S 9 T O  C O M P U T E  T H E  M I N I  M A C  L E N G T H  L E A S T
+

S Q U A R E S  S O C U T I  O N . O N E  w’UST  C O M P U T E  VSW T I M E S  T H E  C O L U M N S  O F
+

R, W H E R E  W I S  A OfPGChAL  M A T R I X ,  W* (I)=(! I F  W(  I) I S
NF’GL IGIRLE s O T H E R W I S E  I S  2/W(I),  I F  IRHS=T),  B M A Y  C O I N C I D E
W I T H  A  O R  U  A N D  WTLL  r\lOT BE R E F E R E N C E D :

I P H S  I S  Tq-rE NUYBEH  O F  ?IGHT-HAND-SSDES  O F  T H E  O V E R D E T E R M I N E D
S Y S T E M  AtX=B. I R H S  SHDULD BE S E T  T O  ZEPO Ii= O N L Y  T-l? S I  N G U L A ?
V9LUE DECDMPOSITION  O F  A  IS D E S I R E D ;
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C
C
C

c”
C

:
C
C
C
C
C

E
C
C
C

:
C
C
C
C
C
C
C
C
C
C

:
C
C

:
C
C
C
C
C
C
C

:
C
C

:

s
C
C

:
C

C

YATU S H O U L D  B E  S E T  T C  .TRUEo IF T H E  U M A T R I X  I N  T H E
D E C O M P O S I T I O N  I S  DESIRED,  AND T3 .F4LSE. O T H E R W I S E :

M A T V  S H O U L D  BE S E T  T O  .TRUE.  IF T H E  V M A T R I X  I N  T H E
D E C O M P O S I T I O N  I S  DESIRFD,  A N D  T O  .FALSEo  O T H E R W I S E .

O N  OUTPUT:

A TS UNALTERZD  ( U N L E S S  O V E R W R I T T E N  BY U O R  VI:

W ;;“A’;o”;;S T H E  N  (N2N-NEGATIVE)  S I N G U L A R  V A L U E S  O F  A  ( T H E
- E L E M E N T S  O F  WI.

ERPOF  EiIT I S  ‘dADEr
T H E Y  A R E  IJNORDERED. I F  A N

T H E  S X N G U L A R  V A L U E S  SHDU,D  8E C!J?RECT
F O R  INDICES  IERR+l*IERRti?.... rN;

U  C O N T A I N S  T H E  M A T R I X  U ( O R T H O G O N A L  C O L U M N  V E C T O R S 1  OF T H E
DECOYPOSITIDN I F  M A T U  H A S  BEEN  S E T  T O  .TRUE. OTHERWXSE
U  K S  U S E D  A S  A  TEMPflHARY  A R R A Y . U  M A Y  C O I N C I D E  W I T H  A .

,IF A N  E R R O ?  E X I T  I S  M4DEs T H E  C O L U M N S  O F  U  COPRESPINDING
T O  If’!DICES  O F  C O R R E C T  S I N G U L A R  V A L U E S  SHDULD  @E CD??ECT;

V COVTAIYS  T H E  M A T R I X  V  ( O R T H O G O N A L )  O F  T H E  DECOMP3SITION  I F
M A T V  H A S  REEN S E T  T O  .TPUE. O T H E R W I S E  V  I S  YOT ?EFERENCED.
V MAY A L S O  CqINClDE  W I T H  A  I F  U  I S  N O T  N E E D E D . I F  A N  E R R O R
E X I T  I S  M A D E , T H E  C O L U M ’ J S  O F  V  C O R R E S P O N D I N G  T O  I N D I C E S  O F
C O R R E C T  S I N G U L A R  V A L U E S  S H O U L D  BE C O R R E C T ;

IEPR I S  S E T  T O
ZER 0 F O R  N D R F A L  R E T U R N ,
K I F  T H E  K - T H  S I N G U L A R  V A L U E  H A S  N O T  B E E N

- 1
DETERMIKED  AF;ER 30 ITERAT!ONS;

:$

;‘F FHS .LT. # l

.LT. N l

I F  ‘\(AU .LT.Y l

- 4 IF NV .LTo N l

QVl IS A TFJl!‘O5lARY  STO?AGE A R R A Y .

T H I S  S U B R O U T I N E  H A S  B E E N  C H E C K E D  BY T H E  P F O R T  V E R I F I E R
(RY3ER.B.G. “ T H E  P F O R T  V E R I F I E R ” ,  S O F T W A R E  - P R A C T I C E  A N D
EXPERTENCE.  VOL.4.  353-377e 1974) FDR A D H E R E N C E  T O  A  L A R G E ,
C A R E F U L - Y  D E F I N E D ,  POQTAf3L.E  S U B S E T  OF A M E R I C A N  NATXON4L  S T A N D A R D
F O R T R A N  C A L L E D  P F O R T .

ORIG:;~pA~~RSIOY  O F  T H T S  C O D E  I S  S U B R O U T I N E  SVf, I N  PELEASE  2 CF

MOD1 FI E D  BY.T”NY C H A N . CTJ’AP.  S C I .  D E P T .  STANFORD  U N I V .  rCA943pS.
L A S T  YnOIFIED : 2 SEPTEFqER,  1 9 7 6 .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

..a  . . . . l . .

..*..a . . . . YACHE=  I S  A  M A C H I N E  D E P E N D E N T  P A R A M E T E R  SPECIFYTNG
T H E  R E L A T I V E  PQECISION  O F  F L O A T I N G  POlVT  ARITiMETIC.
M A C H E P = 16.GDC**r(-13)  F O R  L O N G  F O R M  A R I T H M E T I C
ON 5369 ::::::::::

D A T A  MACHEP/2.220-15/

IERR = 3
IF (IRHS .GEo 0) GC TO 2
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2

3

4

5
C

C

1 0 0
C

C

c”

:

120
C

C

136
C

C
C
C

C

1 4 0
C

C

IERR=-
R E T U R N
If= (M .GE. N 1 C3 TO 3
I ERR=-2
R E T U R N
IF (NAU .GE. M) GO TO 4
I E R R = -  3
RETURN
IF (NV .GEo N) GO Tt-l 5
ffRR=-4
R E T U R N
C O N T I  N U E

DO 1G: I = 1, M

DO 190 J = 1, N
U(I.J) = A(1.J)

C3NTfNUZ
..*..w*...
. . . . . . . . . . HOJSEHOLOFR  REDUCTfON  T O  B I D I A G O N A L  F O R M  ::::*--*--.  .  . . . *

G = 0.0D0
S C A L E  =  O.CDO
X = O.000

DO 303 I = 1, N
I

gLvL  I)
+ 1

= SCALE t G
G = 0.003
S = 0.009
SC4LE  = @.(4D’)

COWJ;E&EFT  TRANSF3QYAffONS  T H A T  Z E R O S  T H E  SURDIAGONAL  E L E M E N T S
E I - T H  C O L U M N .

Or) 120 K = I. M
SC4LE = S C A L E  + OAEiS  (U( K. I) )

I F  ( S C A L E  .EQ. 0.000) G O  T O  2 1 0

DO 130 K = 19 M
U(KeI) = UtK.1)  / S C A L E
S =  S  t lJ(K,I)*42

COYTTNUE

F = tJ(1.f)
G = -DSIGY(DSQRT(  S) rf)

F*G-S
%.I 1

I
=F-G

I F  (I .EQ. N) GO TO 1 5 5

A=PLY L E F T  T R A N S F O R Y A T T O N S  T O  R E M A I N I N G  C O L U M N S  O F  A

DO 150 J = t-9 N
s = G.ODC

DC1 14tZ’ K = 11 M
s = S t UtK.1) + U(K<JJ)

F = s / H

DO 150 K = fr M
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1 5 0

E
C

1 5 5

170

180
160

E
C

190
2GO

C
2 1 0

C

2 2 0
C

C

2 3 0
C

C

2 4 0
C

C

C

250
C

2 6 0
C

273
280

C
2 9 c

COYTI
U(K

)r;UE
,J) = Uo(rJ) + F 4 U(K.1)

A P P L Y  L E F T  T R A N S F O R M A T I O N S  T O  T H E  COLUVNS

I F  (IRHS .ED. 0) G O  T O  190
03 1 6 0  J=l,IQHS

S = O .  00’3
D O  1 7 0  K=IrM

S S + lJ(K,l)~*R(K,J)
F = s/i
D O  1 8 0  K=I,M

E3(Kw J) = R(K,J)  + F*U(K.I)
C O N T I N U E

CDMPUTE  R I G H T  TRAN~FORMATIONS~

DO 200 K = f, Y
U(K,I) = S C A L E  * Ut )<*I)

W(l) = S C A L E  * G
G = 0 .CDO

0 .303
Z&E = 0.1300
IF (I .GT.  M .OR. I .EC)o Nb GO TO 290

DC’ 220 K = LI N
SCAtE = S C A L E  + DABS(U( 1.K))

I F  ( S C A L E  .EO. 3.C?DO) G O  T O  2 9 0

DO 230 K = tr N
U( IeK 1 = u(1.K)  / S C A L E

- S  +  Ut?,K)**2
CON&E

F = U(1.L)
G = -DSICY(DS3RT(S),F)
H = F I G - S
lJ( T rL) = F - G

DO 240 K = L, N
PVltK) = U(1.K) / H

I F  (I .EQo M! GO TtIl  270

d0 260 J = le. “4
S = C.~DO

DO 250 K = I-9 N
s = S + U( J,K) * UtT rK)

DO 26C K = L, N
U(3.Y) = U(J,K)  +  S  * QVl(K)

CONTI N U E

DO 280 K = L, N
U(I .K) =  S C A L E  f U( IrK)

x = OMAXl(XrDA3S(W(f))+DA~S~~Vl~~))~

XF I R H S
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3 0 0
C

c

C

C
3 2 0

C

C

3 4 0
C

3 5 0
C

3 6 0

3RQ
C

3 9 0

- 4 0 0
C

4 1 c
C

C

C

4 2 0
C

4 3 0

c .

C

440
C

C

COY-I-  I N U E
*-----*-*-  A C C U M U L A T I O N  O F  R I G H T - H A N D  T R A N S F O R Y A T I O N S  ::::::::::. . . . . . l ..*

I F  ( .NOT. MATV)  G O  T O  4 1 0
:::::::::: F O R  I = N  S T E P  - 1  U N T I L  1 D O  - -  ---*-oogo-. . . . . . . . . .

DO 40C  I I = 19 N
N + 1 - IT

:F=fI .EQe N) GC TO 390
I F  (G .EQo C.UDn) G O  T O  3 6 0

30 32@ J = L, N
. . . . . . . .l - * ‘ = - * - : :  D O U B L E  D I V I S I O N  A V O I D S  P O S S I B L E  U N D E R F L O W  •*e--o~-*o. . . . . . . . . .

V(J.1) = (U(TIJ)  1 U(I.L)) 1 G

30 353 3 = Lw N
S =  C r . 0 0 0

DO 340 K = tr N
s = S  +  U(1.K)  * V(K,J)

DO 353 K = LI N
V(K.J) = V(K.3)  +  S  * VfK.1)

CONT I N U E

DC] 380 3 = l-9 N
V( 1.3) =  0 . 0 0 0
V( J.1) = @..T)Ds)

CON TX NUE

V(I*I) = l.ODr)
c = RVl(I)

,“,‘,I=,,:
:::::::::: A C C U M U L A T I O N  O F  L E F T - H A N D  TRANSF@RMATIONS  -------**-.  . . . * . . * . .
TF (.NOf. MATU)  GCl  T O  510
“““::::FOR I=MIN(M.N)  S T E P  -1 U N T I L  1  D O  - -  .  .  .  .  .  .  .  .  .  .. . . . . . .  . . * * . . . * .

MN = &
I= (M .LT. N) MN = N

DO SO? I I = 1. MN
I = MN + 1 - II
L = I + 1
G = W(X)
IF (I .EQ. N) GO TO 43@

DO 420 J = L, N
U( I .J) = tl.ODO

I F  (G .EQ. 0 . 0 0 0 )  G O  T O  4 7 5
I F  (I em. MN 1 Gi) TO 460

00 450 J = L, N
S = 6.CDc;

DO 44@ K = L, M
3 = S  +  U(K.1) f U(K,J)

. . . 9 . . . . . .. . . . . . . . . . D>UBLE  DIVXSICN  A V O I D S  P O S S I B L E  U N D E R F L O W  :--*---*-:. .  ..I...
F = ts / U(l.1)) / G

DC)  450 K = I l Y
U(K,J)  = U(K.3)  +  F  f U(K,ID



c
4 5 0 C O N T I  N U E

C

C

C

C

C

C
C

4 6 0 DO 470 3 = Ir M
470 U(J.1) = U(J.1) / G

47s DC 480 J = fe f4
480 U( JsI) =  0 . 0 0 0

4 9 0
5 0 0

5 1 0

lJ(I  .I 1 = U(I,I) + l.C’DO
C O N T I N U E
. . . 9 9 9 . . . 9 . . . . . . . . . .. . . . .a . . . . OIAG3N4LIZATIOV  O F  T H E  BIDIAGONAL  F O R M  .  .  .  .  .  .  .  .  .  .
E P S  = MACHEP f X
:::::::::: F O R  Y=N S T E P  - 1  UNTIL  1 D O  - -  :f::::::::
DO, 7Cd KK = lr N

Kl = N - KK
K = Kl + 1

5 2 0

C
C

C
5 3 0

5 4 0

G O  TO 4 9 0

I T S = 0
9 . 9 . . . 9 . 9 .9 . 9 9 9 . . 9 9 9 T E S T F O R S P L I 77-1 N C .

F O R L = K S T E P -1 UNTIL 1 DO - - ::::::::::
DO 53C  LL = 19 K

Ll = Y - LL
L = Ll + I
IF (OABS(RV1 (L) 1 .LE. EPS) G O  T O  5 6 5

9 . 9 . . 9 . . 9 9. . . . . . 9 . 9 . ?vl( 1) I S  A L W A Y S  Z E R O ,  S O  T H E R E  I S  YD E X I T
THPOUGH  T H E  B C T T O M  3F T H E  L O O P  ::::::::::

I F  (DAaS(W(t1))  .LE. EPS) G O  T O  S4b
CONT I N U E

. . 9 . 9 9 . . . .
9 . . . . . . . l . C A N C E L L A T I O N  O F  RVl(L) IF L G R E A T E R  T H A N  1 :::::::=::

c = 0 .OPO
S =  1  .I)00

C
DC!  560 I = t, K

F = S 4 RVI  (I 1
RVl(f) =  C  + RVl(1)
I F  ( D A B S ( F ) .LE. E P S  ) G O  TCI 565
G = W(I)
t-i = DSQRTf  FfF+G*G  1
W(I) = H
C =G/H
s = 0-F / H

APPLY  L E F T  TRANS~QRMATTONS  T o  a  IF IRHS .GT. c.

5 4 5
5 4 %

I F  (IRHS  .Erlo 0) G O  T O  542
D O  5 4 5  J=l,IRHS

Y=B(Ll  rJ)
z=au rJ)
f3(Ll,J)  = v*c + z*s
B(!.J) = -v*s + z * c

CONT TNUE
C O N T I  N U F

C
I F  (.VOT. MATU)  G O  TO 5 6 0

C
DO 550 J = 1, M

Y = U(J,L1)

=YSC+ZSS
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B(f,J)  = -ws + ZfC
5 8 5 COW : N U E
5 8 2 CON11 NUE

C
I F  (.NOf. MATU)  GO T O  600

C
00 590 3 = 1, M

z
= U<J*Il)
= U(J,I)

U(J.11) = y*c+z*s
U(J.1) = -y* s + z * c

590 CONT  I Y U E
C

600 CON11 NUE
C

RVl (l-1 = 0.000
RVl(K)  =  F

W(K)  = X
G O  T O  520

C . . . . . . . . . .. . . . . . . . . . C O N V E R G E Y C E  ::::::::::
650 I F  (Z .GEe 0.3~0)  ccl T O  701!

C . . . . . . . . . .. . . . . . . . . . W ( K )  1s :4ADE N O N - N E G A T I V E  ::::::::::
W(K)  = -Z
TF ( .NOTo MATV)  G O  T O  7 C 0

C
DO 590 J = 1. N

6 9 0 V(J.0 = -V(J,K)
C

7 0 0  CONTI  “JUE
C

GO TO  1001

:

. . . . . . . . . .. . . . . . . . . . SET E R R O R  - - N O  C O N V E R G E N C E  T O  A
SINGgLAR VbLUE A F T E R  30 I T E R A T I O N S  ::::::::::

1COO IERR  =  K
100 1 R E T U R N

C : ::: :: : : :: L A S T  C4RD O F  GRSVD .  .  .  .  .  . . . * .. . . . . . . . . .
END
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