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ABSTRACT

Two recent papers by Hansen and by Hansen and
--.

R. R. Smith have shown how interval arithmetic

(I.A.) can be used effectively to bound errors in

matrix computations. This paper compares a method

proposed by Hansen and R. R. Smith to straight-

forward use of I.A. in determinant evaluation. Com-

putational results show what accuracy and running

times can be expected when using LA. for deter-

minant evaluation0 An application using LA.

determinants in a program to test a set of functions

to see if they form a Chebyshev system is then

presented.
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In Testing For A Chebvshev Svstem

. .
1. Introduction

Recently Hansen [l] and Hansen and R. R. Smith [2] have shown how

interval arithmetic (I.A.) can be used effectively to bound errors in

matrix computations. In [2] a method for evaluating the determinant

.- of a real square interval matrix, AI J was proposed0 An interval

matrix, A1 , has elements which are closed intervals

A=
ij = 6u. .>v. .I .

iJ iJ

Here we present the results of an implementation of that method and

compare it to a straightforward use of interval arithmetic in deter-

minant evaluation. First we give an algorithm for determinant evalu-

ation which simply uses LA. for all computations. Then we detail the

method given in [2] and give results which compare the effectiveness

of the two methods. Finally, interval determinant calculations are

used to mathematically test a set of functions for the property of being

a Chebyshev system of functions.

For the purpose of comparision with Hansen% method for determinant

evaluation we chose a previously published algorithm [3] and inserted

calls on I.A. routines where appropriate. This algorithm evaluates a
d
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L determinant by triangularization with searching for pivot in row and

with row equilibration. The 1-A. routines are similar to those given

in [4], and are described in detail in 163. The calls are implemented

as shown in Table 1, where in each-case the resultant interval is

[CL,CRl and the left and right operand intervals are [AL,AR] and

I.A. Routines

L

operation

addition

subtraction

multiplication

division

name of routine Parameters

IADD (cL,cR,A.L,AR,BL,BR,L)

ISUB (cL,CR,AL,AR,BL,BR,L)

IMPY (cL,~R,~~,AJx,BL,BR,L)

IDIV (cL,~R,~,AR,BL,BR,L)

Table 1

[BL,BRl respectively. The label L is for an error return when

overflow is likely or if the denominator interval contains zero when

IDIV is called. Thus a call of ISUB(CL,CRjAL,AR,BL,BR,L)  will give

CCL,CR] t CAL& - [BL,BR~ with the subtraction done in I.A. and a

transfer of control to the label L if overflow is likely0

The algorithm given in [3] as modified to use I.A. is now given:
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L
Al.gor-ithm 269 with Interval Arithmetic---

PRDCEDUKE IOETERMINANT(ALEFT,ARIGHT,N,DLEFT,DRIGHT~LBL~~/
VALUE NJ

L ARRAY AC~FTC0~03~ARIGHTCO,Ol  ;
INTEGER W

/ REAL DLtFTdRIGHT; LABEL LBLi
i BEGIN WMMkNT  CQMPUTES THE INTERVAL VALUE OF AN

INTEKVAL DETEKMINANT.  SEE ALGORITHM 269 XN
I COMMU~UICATIDNS OF THE A.C.M. NOV.1965 ;
t/i LABEL RETURN;

REAL PHUDUCTL~PRDDUCTR,TEMPL~TEMPR~TEMLL~TEMRR~
INTEGER IrJ#RpSjF! ARRAY MULTLIO~NI,MULTRCO:Nl;

L REAL PROCEDURE MAX(XIY)I
VALUE XIY;

f -_. HEAL XIY;1
i MAX X= IF X 1. Y THEN Y ELSE Xj

PRDCEDURE  EQUILIBHATE(ALIARIN~ULTL~MULTR~LBL~
I OLEFTIDKIGHT~RETURN)~:

VALUE N,i INTEGER Ni LABEL LBLf
i AKRAY ALCO~OlrARCO~OI~MULTL[Ol~MULTRCOl;

REAL DLEFT,DRIGHTJ LABEL RETURN;

i BtAIN
i INTEGER I,Ji KEAL MXLpMXR;

FOH I t= 1 STEP 1 UNTIL N D O
It BLGIN/
i MXL t= 01Oi MXR 1= 0.0 ;

FUff J 1= 1 STEP 1 UNTIL N D O
BEGIN

IF AWi(AL11~31)  ) MXL THEN MXL 4~ ABS(ALCI,JI)I
L IF” ARSCARCbJJ)  > MXL THEN MXL t+ ABStARCIrJl);

END; MXR := MXL;
IF MXL = 010 THEN

c . BEGIN
DLEFT t= 0.0; D R I G H T  := 0.0;

I, - GO TO RETURN;

L END;
MULTLIII  t= MXL i
MULTKCIJ  := MXR i
IF MXL # 1.0 T H E N

L FUR J t= 1 STEP 1 UNTIL N DO
K~IV(ALCI,JJ,ARII,JI,ALII,Jl,AR~I,JJ~MXL~MXR~LBL~;

END;/
L- END EWUILIKRATE i

EQUILiBRATE(ALEFT,AKIGHT~N,MULTLrMULTR,LBL,DLEFT~DRIGHT~RETURN);
PRDDUCTL t= 1.0;
PRQDWTK t= 1.01
FOR K t= 1 STtf' 1 UNTIL h-1 DO
BEGIN

s := H i
TEMPL := MAX(ABS(ALEFTCRIR~)~ABSCARIGHT~R~RI))  i
FUK J $= R+l STEP 1 UhTIL N DO
If- TEMPL ( MAX(ABS(ALEFTCR,Jl)rABS(ARIGHl[RfiJl>1 THEN
BtGIN

z



St~~LJt5MAX(A~S(ALEFT[RIJl)rARS(ARIGHT[H0J~))  i

END i
IF TkMPL = 0.0 THEN
BtAIN

DLEFT I= 0.0; . .
DHIGHT := 010;
GU TO HETURN 3

ENU;
It S C R THEN
OttiIN

RMPY~PRUDUCTL*PRODUCTR~n~,O~~~,O~PROOUCTL~PRODUCTR~LRL~~
FOR I t= R STEP 1 UNTIL N DO
B E G I N

T E M P L  t= ALEFTCbRII
. TEMPH  t= AMCHTCI,RI;

ALEFTCI,RI  t= ALEFTCIdJ;
ARIGHTCIrRJ  t = ARIGHTIbSJI
ALEFTCIdl  t= T E M P L  ;
A-MIGHTtIrSJ ta TEMPR ;

END;
END;
RMPY(~RODUCTLrPRDDUCTAIPRQDUCTL,PRODUCTR~ALEFTtR~RJ~

AHIGHT[RIRJ~LBL)I
FUH I I= R+l S T E M  1  UNTIL N  D O
WGIN

RDIV~TEMPL~TEMPRrALEFTIIIRI,AR~GHT[I,R3r
ALEFTCR,RI,ARIGHTCR,Rl,LBL)I

FUR 3 := R+1 S T E P  1 U N T I L  N  0 0
B E G I N

RMPY~TEMLL~TEMRR~ALEFT[R,JlrARIGHT[R~JJ~TEMPL~lEMPR~L8L~~
RSUBCALEFftI,JlrARIGHT~I~JJ~ALEFT[rrJ1,A~IGHTCI~JJ~

TEMLLI TEMRbLBL  1;
END;

END;
e E N D  ;

RMPY~TEMYL,TE~PRrPRDDUCTL,PRODUCTR~ALEFT[~,~J~ARIGHTtN~NJ~LBL~;
FOR R t= 1 STEP 1 UNTIL h Do
RMPY(TEMPL,TEMPR,TEMPL~TEMPR,MULTL[RJ,MULlR[RJ,L6L)~
DLfFl := TEMPL;

. DHIGW $3 TEMPR ;
RETbRN t

END IDEIfiRMINANT  ;
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i 3* Hansen's Method

L

In [2] a method for determinant evaluation of an interval matrix,

A= 7 is proposed. It can be presented as 4 steps.

(i) Determine a lower triangular matrix, L, with unit diagonal

elements such that LAc = U, where A is the center of@

A1 and U is upper triangular. L will contain roundoff

errors but the determinant of L is exactly one.

(ii) Using I-A., multiply L times A1 obtaining B1 which will

in general have very small intervals below the main diagonal.

(iii) Perform Gaussian elimination on B
I

using-=.

result in an upper triangular matrix T1 .

621 that an exact zero for a zeroed element*

during the elimination but it is correct to

(iv) Compute the determinant as the IOA. product

elements of T" l That is,

N

d= = I-I t1
ii 'i=l

I.A. This will

It is noted in

can not be computed

insert such zeros

of the diagonal

The implementation of this technique was accomplished by using an

algorithm given by Ralston [5, p. 4113 for determination of the appro-

priate lower triangular matrix L with unit diagonal elements. The

algorithm in [5] takes a matrix A and reduces it to two matrices L

and U such that A = LU where L is lower triangular with unit

diagonal elements and U is upper triangular. It is then simple to

determine L
-1

which is the lower matrix required by Hansen's method.
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The decomposition was implemented both with column pivot selection and

without any pivot selection. It is interesting to compare the results

of Hansen's method with and without pivot selection* This comparison

is presented in the next section. ..

A Burroughs Extended Algol implementation of Hansen's method is

now given:
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PHCCEDUHE ~ANSENS~WT~~O~~(AL,ARIDL,DL,DR,~,IAERR)  ;
VALUE h; IluTtGEi4  N;
REAL OL,DHJ
LAREL 1AEWi
R E A L  AWAY  ALIAUOPOJ;
BEGIN CUMMENT

THIS PRUCEDURE  CUMHUTES THE-INTERVAL DETERMINANT
UF AN INTERVAL MATHIX USING THE METHOD DESCRIBED
IN SlAM JOURNAL UN NUMERICAL ANALYSTS,VOL 461967),N[1,1,
By tLDUN HANSEN AND R.&SMITH,

THEA:NPUT 13 AL,AR, AND N, WHERE
IS THE LEFT END POINTS OF AN INTERVAL MATWb

AH IS THE RIGHT END PDINTSp AND
N 1s THE WER OF THE MATRIX,

THE OUTPUT IS DL AND OR ,THE LEFT AND RIGHT END POIilTS
uF THE DETERMINANT,

IF A DTVIS,IDN BY ZERO,FCR EXAMPLE, OCCURS DURING,TtlE
ANTLRVAL ARITHMLT CALCULATIONS, CONTROL rS TRANSFERRED
111 THE LAHEL IAEHR )

COMMLNl PUT UECOMP,INVLOtiEH,  AND INTDET HEREi
PROCEDURE DLCOMP(A,N,P)i

VALUE N i
INTEGER hi
ARRAY ALOrOl;
INTEGEH  AWAY Pt0J;
BEGIN CUMMLNT SEE RALSTON (IST COURSE IN N.A.) P.414  I

INTEGER HrK,I,J,OMAX;
ARRAY OfO:Nl ;
LABEL ZRU,DflNE;

REAL TMP;
FOR H t= 1 STEP 1 UNTIL h DO

e BEGIN
FUH K I= 1 STEV 1 UNTIL N DO
DlKJ := A&RI ;
FUH J a= 1 STEP 1 UNTIL R-l DO
l&GIN

. AtJ,Rl a= DtP[JJJ ;
DCRCJII t= D[Jl ;.
FOH I t= J+l STEP 1 UNTIL N DO
DIII a= DC11 -AtIdJx AT&RI ;

PWi DMAX :a R; .
FUH I := R STEP 1 UNTIL N DO
It A~SCDCII) > ABSWCUMAXl)  T H E N  DMAX tr 1 ;
AItbHJ := DCDMAXJ ;
PLHI t= DMAX;
DLUMAXJ I= D[RJ i
Ft.& i t= H+l STEP 1 UhTIL N DO
BUIN

I F  ACRrRJ = O-THEN GO TO ZRO;

i
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AkI,HJ 8% DtIJ / AIR,RJ i
ENU;

END;
GO TU DON~;~

ZHOI WRITt~c”A[~fRJ~O,O”,IIO,,H)I
DOhE:

FOR I :a 1 STEP 1 UNTIL N-1  DQ.
FOR J :J I+1 S T E P  1 UNTIL  N DO
IF P[JJ # J THEN
BEGIN

T M P  II= ACJ,IJ b
AlJ,IJ l= ACPCJJrIJ  )
A[PCJJ,lI  t= TMP i

ENW

END DECUMP;

P R O C E D U R E  lNVLUWERCLIN,LOUT,N);
V A L U E  NJ INTEGER NI
A R R A Y  LlN,LOUTCO,O)t
BEGIN --.

R E A L  SUM;  I N T E G E R  I,J,P;
FOR 1 r=l STEP 1 UNTIL N DO
B E G I N

LUUTCIdJ  t= IrOi
FUR J :s 1 STEP i UNTIL 1-l DO
BtGIN  SUM l= O.Oi

.FDR P 88 3 STEP 1 UNTIL f-1 00
SUM t= S U M  +  LINTI,PJ x LOUTtP,JI1
LUUTlIrJl  := -SUMJ

E N D ;
END)

E N D  1NVLUWERI

L P R O C E D U R E  lNTDET(L,AL,AR,DL,DR,N)i
V A L U E  Ni I N T E G E R  Ni

tr
e A R R A Y  L,AL,ARIO,O];

L R E A L  DL,l)Ri
B E G I N  CUMMENT  T H I S  P R O C E D U R E  T A K E S  A  L O W E R  TRIANGLE

i S U C H  T H A T  LxA =
t

U(UPPER),WHERE  A IS INTEfiVbL  SO
L USING  IrA,,U  I S  N O T  R E A L L Y  U P P E R  AND  ‘i,A. OAUSSIAh.

E L I M I N A T I O N  I S  T H E N  D O N E  T O  G E T  T H E  INTERVAL DETERMIN*AhTj

I
I N T E G E R  I,J,K ;

L
R E A L  SUML~SUW?,MULTLdWLTH,TL~TR  ;
AHRAY  ULCO:N,O:N],UHCOtN,OtNl) LABEL LBLdlONE~
FUR 1 I= 1 STEP 1 UNTIL k DO

i
FOR J := 1 STEP 1 UNTIL k DO
BEGIN

S U M L  I= ALII,JJ  i SUMR  := AF?[I,JJ  ;

I
FUH K 1= 1 STEP  1 UNTIL I-l D O BEGIN

E,$ ~~~Y~TL~TR~LlI~KJ~LII~KJ~ALtKrJlrARtKrJ1~L~~~~
RADDCSUML,SUMR,SUML,SUMR,TL,TR,LBL)jENDj

f ULLI,Jl  $0 SuMLi
1 URLIrJJ O=  SUMRi
L

8
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ENDi
CaMMkNT  N O W  Or3 G A U S S I A N  E L I M I N A T I O N  ON ULdJR

QH USE IOET  ON IT;
F U R  1 := 1 STEP 1 UNTIL h DO
FOR J := I+1 STEP 1 UNTIL N Dtl
8EGW

~~~V~M~LTL,MULTR~ULCJ~I~~~JR~J~I~~UL[lrII~~R~I~I~~L~L~~
= I+1 STEP 1 UhTTL  N I)0

kkGIN
RMPY(TLcTRrMULTLrMULfR,UL[I~K~~UR~I~K~~L~L);
RSUB~ULCJrKlrUR~J~K3,UL~J,Kl,URIJrK3,tCITR~LBL~~

ENDi
Ekgi
C O M M L N T  N O W  C O M P U T E  T H E  D E T E R M I N A N T ;
DL If ULtlIlJJ
l.,lH t= UH~1913~--
FOR A 1= 2 STEP 1 UNTIL N DO
RMPY~~L~UR~DLrDR,ULtI~~l~URfI,I3rLBL~;
GO TU DONE j

LBL# WHITk(<"I,A. T R O U B L E  IN INTDET”>)i
DOttEa --.

E N D  INTUET;

R E A L  ARRAY A,LIfO:NtOtNJI
INTLGER  A R R A Y  P[OsNl;
INTLGER  IIJ i
REAL TLMPL,TEMPRdGN  ;

FOR I $= 1 STEP 1 UNTIL N 09
FOR J'4= 1 STEP 1 UNTIL N DO

ALIrJJ:=(ALtItJl  + AACT,JI) 12.0 I
COMMENT A  H A S  T H E  MIOPtlINTS.  N O W  DECOMP  W I L L  FIND L AND U

SUCH THAT A=LxU AND PUT L IN A ;

RECUMPCArNd');
COMMLNT NOW INVLOWER WILL INVERT THE LOWER TRIANGLE  IN A

ANO  PUT T H E  INVERSE I N  LII

INVLUWERCA,LI,N)I

COMMENT I F  I N T E R C H A N G E S  O C C U R R E D  DURING OECOMP  NE NQw
INTERCHANGE A L  A N D  A R  ACCORDINGLY~

FQR I t= 1 STEP 1 UNTIL N D O
t3ECdN

IF PC11  f I THEN
FUR J := 1 STEP 1 UNTIL N 00
B E G I N

T E M P L  := ALCIbJl  )
T E M P R  I= AHtbJI  3
ALfbJ3  t= ALIPIIl~J3I
ALIPCIJ,JJ~=  T E M P L  ;
AH[I,J3 t= AHIP~IIPJI~
AHCPII3rJl-4’  T E M P R  ;.

kND
E N D  )

Y
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COMMENT N O W  INTDET C O M P U T E S  BI = LIxA(INTERVAL)  AMI
rERFi)HllS  G A U S S I A N  E L I M I N A T I O N  O N  I31 TQ FI&D T H E
DETEHMINANT  A S  TH E  PGODUcT  O F  T H E  D I A G O N A L  E L E M E N T S )

i

L:
INTUET(LI,AL,ARIDL,DRIN)I
C0MMLN.f  N O W  A D J U S T  T H E  S I G N  A C C O R D I N G  T O  T H E  I N T E R C H A N G E S ;
SGN := 1.0 i

1
1 i

FOR I 1= 1 STEP 1 UNTIL N 0-D
iF PC13  # I THtN SGh t= “SGNI

IF SW < 0 THEN
, ~MPY(DL,DH,DL,DH,-lrOlllrO,fAERR)Ik
i END HANSENSMETHUD  i
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4. Comparison of results

I L

L

i

i

L

i
L,

L

4

:
i
L

I

i

The test matrices were generated using a mixed congruential  method

of generating uniform pseudo-random numbers in the interval (OJ) as
. .

implemented on a Burroughs B5500 computer. A matrix A was filled

with random numbers, then a small positive number, 5, was added to

and subtracted from each element of A to obtain the right and left

end points respectively of the interval elements of
I
A .

Various values of (: were tried for a range of values of N, the

order of the test matrices. Selected results are shown in Table 2.

Note that the Burroughs B5500 can hold approximately 11 decimal digits
--.

of accuracy so the input interval widths are quite significant compared

to machine accuracy.

The value of pivot selection is strikingly illustrated by columns

four and five of Table 2. For the case N=5, 6=10
-6

no pivoting was

necessary and the results are identical as expected. However, at the

other extreme, the case N=g, c=IO
-6

without pivoting shows an interval

width of over 600 times the interval computed with piuoting.

Table 2 also shows that Hansen's method can retain correct signi-

ficant digits for matrices of order at least 20 whereas the straight-

forward use of I.A. begins to lose all correct significant digits for

matrices whose order approaches 20. Consider the case N=17, g=lO -8
.

Hansen's method gives a result which can be expressed as dI =
- l 00334

2 l 0000075, leaving two correct significant digits. However for the

same case the straightforward approach gives d1 = -.00334 + .0004

which has no correct significant digits. The case N=20, 540
-8

.

L

L

11



provides a similar comparison. Hansen's method yields d1 = -CL00776

+ .0000065 (2 correct significant digits) and the alternate method

f
L

.L

ibm?

t
L

EL

L
1.
L

i

i

gives d1 = -0.00776 + .OOO23 (barely 1 correct significant digit).

. .

Comparison of Interval Determinant Widths

(26 is the width of the elements in the original matrix)

7

7
8

8

9e
9

10

_ 10
.
15

17
20

5

-8
10

10
-6

10
-8

10
-6

10
-8

10
-6

10
-8

10
-6

10
-8

10
-6

10
-8

10
-6

10
-8

10
-6

10
-8

10
-6

10
-8

10
-8

10
-8

Value of
Determinant

0.01311. *
-0.25862..

OL2517..

-0.18143. m

-0.01023..

0.02672. o

0.02365.a

-0.09218..

0.02758..

-0.008180.

0.03106. o

0.00680..

0.07876.0

0.02018..

0.01337..

0.00023..

0~00087..

-0.00334..

-0.00776..

Width
Hansen's
w/pivot

2a8

5.0

1.4

0.95

0.7
0.69

1.44

0~26

1080

0081

502
0.13

1.09

0.29

1.05

1*75
0.47

0.15

0.13

Table 2

Width
Hansen's
w/o pivot

2024

13el

12.0

V-1

3.4
0.69

2.51

1.03

8038

1*5

83.2

2.3
282.

178.6

13.1

23025
-mm

Width
Algorithm
269 w/LA.

3.28
5066

2.1

2.0

0.9
0.78

306
0~52

6.8

108

1307
0.28

r.79
lo 14

0.66

2.19

4043

8.15

4059

Multiplicative
factor for all

3 widths

x10
-8

x10
-6

x10-7

x10-5

x10-7

x10-5

x10-7

x10
-4

x10-7

x10-5

x10-7

x10-4

x10-6

x10
-4

x10
-6

x10-5

x10
-6

x10
-4

x10
-4

f
t 12



5. Average Relative Widths using Hansen% Method

In an attempt to generate some useful guidelines as to what accuaracy

to expect when using Hansen 's method for determinant evaluation we have. .
iI done tests using random matrices with elements in the interval (-lJ1) 0*

Thus, if a matrix is scaled so that all elements are less than one in

modulus the results given in Table 3 will provide an estimate of the

L size of interval determinant value that can be expected when using Hansen's

-- method. A relative width of 1.0 X lOem means that at least m-l sig-

nificant digits are correct in the interval determinant value.

L
Consider, for example> a problem involving the determinant of a

--.

matrix of order 8 with interval elements of maximum width 10
-6

.,

L If the matrix elements are scaled to lie in the interval [-l,l] and

Hansen's method is used to evaluate the determinant, a crude interpolation

L

in column 4 of Table 3 will provide an estimate of the accuracy that

For this example a relative width of about 10 X 10
-4

can be achieved.

can be expected which means at-least three correct significant digits

L in the interval determinant value.

L

13
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i

Average Relative Widths of LA. Determinants

using Hansen*s Method (averages calculated for 3 matrices)

= width of interval determinant
= true value of determinant
= half the width of origjnal elements of matrices

N

3

5

7

9

11

;, c=lO-lo

0.65~10 -8

2.02x10 -8

4.84~10'~

&34xlo-8

35.46x10-~

;, p-lo-8

0.21x10 -6

-61.17x10 -

4.84x10-~

9.51x10-6

4L~xlO-6

Table 3

14



6. Comparison of Running Times

Table 4 gives average times for de-terminant eval.uati.on  on the

.Burroughs  B55000 AU, loA calcul.at:ions  are performed with the J0A.
. .

subroutines coded in Burroughs Extended Algol and are obviously quite

slow compared to noninterval arlthmetico

Hansen's method is significantly slower than the loA version of

algorithm 269. Thus in any applxation a study of Tables 2, 3, and 4,

together with a knowledge of the input element widths and the accuracy

desired, should indicate which routine to use from the standpoint of

efficient machine time utilization0
--.

Average Times to Evaluate Determinants

using various Methods (Times in seconds)

I

L

L

i

i

3
4
5
6
7
8
9

10
15
l?
20

85~

.0183
00200
"0250
00483
00778
0 1000
d67
~667
04166
05833
"8500

269(1.~.)

07100
10 4450
205933
4o0817
60 2222
903667

120 9167
170 2000
56,8500
84.7167

128~~333

HansenFs

0 961.7
2, w3’j
4o2917
1.4350
1~8056
18.9500
26.3500
36.6833
12504333
185u8333
30903333

Number of matrices
used in averaging

85~ is Stanford Library program number 85~ which
- uses Gaussian elimrnatlon  with row equilibra-

tion and row interchanges0

2691.~~ is COAoCOMU algorithm 269 as modified to
use interval arlthmetL

Hansen's is the method of Hansen described in
this report.

L

i

Table 4
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L 70 An Application - Testing for a Chebyshev System

i

i
7.1 Introduction

Given that a set of functions form a Chebyshev system, certain

algorithms in approximation theory can be proved to converge. In

L particular, the second algorithm of Remez [7] can be applied to find

the best approximation in the Chebyshev (minimax) sense to a continuous

L

s

function by a linear combination of the functions forming the Chebyshev

system. However, in some cases it is not known a priori whether a

given set of functions form a Chebyshev system or not. In these cases

L the program-to be described can be used to indicate the presence or

absence of the desired property. In case the set does not form a

Chebyshev system the use of interval determinants can possibly prove

this fact.

L
7.2 Definition of a Chebyshev system of functions

Given a set of linearly independent continuous functions,

-4, (x) defined on a closed interval [a,b], form a function

L

(7.2.1

L

> F(x) = f
i=l

hi(Pi(x)  '

L
If any such function, which is not identically zero on [a&l j has

not more than n - 1 zeros in k4d with double zeros counted twice,

L then the set (q~(x)]y forms a Chebyshev system. For more an Chebyshev

systems see [9] for example.
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An equivalent definition is the following: given the set 7nC~i(x)Il

n
if for any set of n arbitrary distinct points (x ]

i 1' xi da&, the

determinant whose i, j element is 'pi(xj) is non-zero, then the set

(T,(X)}: forms a Chebyshev system.* That is, the determinant, D,
I I

given by

(7.2.2) D =

-v.

cplbl) (Plb2)  l  l  a cp,(⌧,)

cpr&) (P2(x2)  l  l  l  cp,(x,)

. .

. .

. .
.
.
.

(pn(xl > (p,!x2) l l l Pn(�☺  1

must be non-zero for any set of n distinct points in [a,b] .

The second definition is used in this program to test for a

Chebyshev system. The determinant is tested to see if it has a zero

for any possible set of distinct points (xi]; + It can be shown that

D, given by (7.2.2) is a continuous function of (xi]: l Thus, if we

order the (xi] by requiring that x1< x2 < l e. < xnJ we know that

if there exists two sets, (x:] and {x%1
such that D((x!$ > 0 and

D(b,3) < 0, then D must be equal to zero for some other set {xy] .

This property is used in conjuction with interval determinant calculations

to prove that a system is not a Chebyshev system.

Two examples of Chebyshev systems for any closed interval of the

real line are the set with cpi(x) = xi-', and the set

with qi(x) = Timl(x), where Ti(x) represents the Chebyshev

polynomial of the first kind of order i . That is,

17
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(7*2*3) Ti(x) = cos(i0), cos 8 = x .

A third example is the set CL ~OS(X), sin(x), cos(2x), sin(2x), ...t

COD, sin(nx)] on the interval . LO, 2311 e

An example of a set of functions that is not a Chebyshev system

is (q,(0) = co,s(2i0), i=1,2, Ooag n] on the interval 0 < 0 5 rr/2 e

This can be seen easily since as 0 varies from 0 to 1r/2 the argu-

ment of the cosine varies, from 0 to ilr, thus passing through i odd

-_
integer multiples of n/2 where the cosine takes the value zero. 'Hence,

we have that 'pi(B) possesses i distinct zeros in the interval KM/23

which contraSets  the requirement of no more than i - 1 zeros set

forth in the definition.

7.3 The problem

Assume that we are given a set of functions (vi(x)]:  defined on

an interval hbl e We ask whether the functions form a Chebyshev

system on that interval or not.

7.4 Description of the method

The method utilizes the determinant definition of a Chebyshev

system to test a set (rp.(x)$ for that property in an interval hbl e
1

The steps involved can be outlined as follows:

(i) Choose an arbitrary initial set of n distinct points (x.}~
3 1

in [a,b] .

18



(ii) Knowing a priori the errors in calculating the functions
6

9; WY i=L . . . ) ny create an interval matrix which contains

the matrix shown in (7.2.2). Calculate the interval deter-

minant of this matrix. -The interval obtained will be greater

than zero, less than zero or contain zero. If it contains

zero, minimize or maximize D until the interval determinant

(Always require that x1
< x2 < .a.does not contain zero.

<q o

(iii) Depending on whether the interval determinant is positive or

negative, then minimize or maximize D((xi}) . When (if) a

change in sign of D((x$) occurs, use the interval deter-

minant calculation again to see if the interval has changed

sign. If so, it is proved that the {'pi] does not form a

Chebyshev system. If not, try to minimize (maximize) D

further and use the interval determinant calculation again.

If no further minimization or maximization is possible and

the interval determinant contains zero, this may indicate

a zero determinant and thus not a Chebyshev system but it

does not prove anything. However,, if both positive and

negative interval values of the determinant can be found,

. it is proved that the ((pi} do not form a Chebyshev system.

In practice, there are an infinite number of choices for a new

set c 3xj
in the interval, therefore a direct <computation  is impossible,

To surmount this problem we use an approximate minimization technique

on the determinant, D, as a function of n parameters, the set

c I nxj 1 l

Thus, if an interval change in sign is found, we can be sure



- that the set of functions does not form a Chebyshev system, however,

if an interval containing zero or an interval of the same sign as the

-
starting point is found, we can not be positive that 'we do not or do

have a Chebyshev system. This dichotomy of certainty is due to the

fact that any known numerical procedure for minimiz$ation  can fail to

L locate the absolute minimum of a function, thereby locating a non-zero

minimum whereas in fact a zero minimum exists.

In spite of the uncertainty involved in this method, if a reasonably
--

faithful minimization procedure is employed, a non-zero minimum or a

zero minimum with very close points is a very good indication of Chebyshev

-

L

L

system. A zero minimum (an interval containing zero), with well sepa-

rated points is convincing evidence that a Chebyshev system is not at

hand. A change in sign (a positive interval and a negative interval)

is proof that a Chebyshev system is not at hand.

The program to test for Chebyshev systems incorporates three basic

L

algorithms Algorithm 178 683 as coded for a Burroughs 135500 was

modified slightly and used to perform the minimization. A routine

similar to Algorithm 269 [3] was used to evaluate intermediate deter-

minants for the minimization and Hansen's method was used for the

interval determinant calculations. The interval ia&] and the functions

- ['Pi Cx) I:=1 must be specified for eacn particular problem..

'7'05 Examples

- The program as implemented on a Burroughs B5500 computer has been

used to test several sets of functionsv Some of these are given below

with the points chosen and the corresponding interval determinant values.
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The functions such as exp and cos which occur in the examples

L

L

L

w

L

L

were computed by the B5500 system routines to approximately 11 accurate

decimal digits. To ensure that the interval determinants that were

evaluated contained the mathematically correct values, we added (sub-

tracted) 10
-8

to each computed element of D (T"2.2) to obtain the

right (left) endpoint of the interval determinant.

example 1. Not a Chebyshev system

(Do, P* 551)

x1 x2
interval determinant

-v.

start 190 2.0 Ll.9524922, 1.95249261

finish 0.0 3*0 L-3.0000003, -2~99999971

example 2. Not a Chebyshev system

(Pi(“) = cos(2 69 i@ x), i = 1>2,3,4 on [O,q/"21 .

xl x2 x3 x4 interval determinant

start 0.3 0.6 0.9 1.4 D o343986, 0. o34399ol

finish 0.1 0.8 0.9 1.5 [-2.4g632g39 -2.49632861

example 3. A Chebyshev system

cpi(x) = xi-$ i = 1,2,3 on [-l,lJ .

i

L

L

x1 x2 x3
interval determinant

start -0.5 0.0 0.5 [0.2@99993, 0.25000007]

-12
finish -0oo40601 -0.0404 -0.0405 [-8.571x10  -12, +4.510x10 ]
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In this case the functions do form a Chebyshev system and we know that

there should be no set of distinct points for which the determinant,

DI is zero. The program is written to prevent points from becoming

closer than 10
-4

l As shown by-these results, the only way the

minimization routine could obtain smaller values for D was to use

points as close together as possible. This is typical of the results

obtained when the given set of functions does form a Chebyshev system.



L 8O Conclusions

L

__

The computational results show thasJ+ Hansen's method with pivot

selection provides a smaller interval fcr the determinant than straight-

forward use of I.A. for all but one of the test matrices. This is as

would be expected since the elements in the lower triangle of B1

are very small intervals and thus interval widths are kept small during

the elimination.

As is well known, and as shown dramatically by Table 2, the correct

selection of pivots during decomposition (or elimination) can produceL

a striking difference in the resultant accuracy of a determinant
-m.

evaluation. Table 2 also shows that for matrices of order as high as

t
L

L

1

L

L

L

L

20, and with original element widths less than or equal to 2.0x10 ,

Hansen's method will compute interval determinants which retain useful

significance0 However, the interval determinants computed by the

straightforward use of I.A. begin to lose significance for matrices

whose order approaches 20 e

The timing results given in Table 4 indicate that some trade-off

between accuracy and running time might be appropriate in particular

applicationsa That is, some a priori information about input widths

and order of the matrices, together with the information given in the

Tables,, might indicate that the straightforward use of I*A. would give

sufficient accuracy and save a considerable amount of machine time.

The application of interval determinant calculation in a program

to test for Chebyshev systems shows that this particular use of interval

arithmetic can be used in mathematical proofso
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