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ABSTRACT

Two recent papers by Hansen and by Hansen and
R R Smith have shown how interval arithnetic
(I.A) can be used effectively to bound errors in
matrix conputations. This paper conpares a nethod
proposed by Hansen and R R Smth to straight-
forward use of |.A in determnant evaluation. Com
putational results show what accuracy and running
tinmes can be expected when using I.A. for deter-
m nant evaluation. An application using I.A.
determnnants in a programto test a set of functions
to see if they forma Chebyshev systemis then

present ed.




Interval Arithmetic Determ nant Eval uation And Its Use

In Testing For A Chebyshev Svstem

1. Introduction

Recently Hansen [1] and Hansen and R. R. Snith [2] have shown how
interval arithmetic (I1.A) can be used effectively to bound errors in
matrix conputations. In [2] a method for evaluating the deterninant
of a real square interval matrix, A, was proposed. An interval

mat rix, AI, has elenments which are closed intervals

Here we present the results of an inplementation of that nmethod and
conpare it to a straightforward use of interval arithnetic in deter-
mnant evaluation. First we give an algorithm for determnant eval u-
ation which sinply uses I.A. for all conmputations. Then we detail the
met hod given in [2] and give results which compare the effectiveness

of the two nethods. Finally, interval determnant calculations are

used to mathematically test a set of functions for the property of being

a Chebyshev system of functions.

2. Straightforward Use O Interval Arithmetic

For the purpose of comparision With Hansen's method for determ nant
eval uation we chose a previously published al gorithm[3] and inserted

calls on I.A routines where appropriate. This algorithm eval uates a
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determ nant by triangularization with searching for pivot in row and
with row equilibration. The I.A. routines are simlar to those given

in [4], and are described in detail in [6]. The calls are inplenented

as shown in Table 1, where in each-case the resultant interval is

[cL,crR] and the left and right operand intervals are [AL,AR] and

I.A. Routines

operation name of routine Paraneters
addi tion TADD (CL,CR,AL,AR,BL,BR, L)
subtraction ISUB (CL,CR,AL,AR,BL,BR,L)
nul tiplication | MPY (CL,CR,AL,AR,BL,BR, L)
di vi sion | DIV (CL,CR,AL,AR,BL,BR,L)
Table 1

[BL,BR] respectively. The label L is for an error return when
overflowis likely or if the denom nator interval contains zero when
IDIV is called. Thus a call of ISUB(CL,CR,AL,AR,BL,BR,L) will give
[CL,CR] « [AL,AR] - [BL,BR] with the subtraction done in|.A and a
transfer of control to the label L if overflow is likely.

The algorithmgiven in [3] as nodified to use |.A is now given:



Algorithm 269 with Interval Arithmetic

PROCEDURE LDETERMINANT(ALEFT,ARIGHT»N,DLEFT,DRIGHT,LBL)S

VALUE N#
- ARRAY ALEFTL0»0]»ARIGHTLO0,01] 3
INTEGER N3
‘ REAL DLEFTs»DRIGHT; LABEL LBL3
- BEGIN CUMMENT COMPUTES THE INTERVAL VALUE OF AN

INTERVAL DETERMINANT, SEE ALGORITHM 269 IN

COMMUNICATIONS OF THE AsCeM, NOV.1965 3

LABEL RETURN;

= REAL PRUDUCTL,»PRODUCTR,TEMPL» TEMPR»TEMLL» TEMRR}
INTEGER IsJsR»S3

' ARRAY MULTLEOI!N],MULTRLOSIN]S

— REAL PROCEDURE MAX(X»Y)3}

VALUE X»Y3
3 REAL X,Y3
f MAX 3= |F X €Y THEN Y ELSE X3

PROCEDURE EQUILIBRATE(CAL»ARsN>MULTL,MULTR»LBL
DLEFT>DRIGHT,RETURN)
VALUE N’? [INTEGER N3 LABEL LBL3

— AKRAY ALLOs015ARC0,01»MULTLLOT,MULTRLIODS
REAL DLEFT,DRIGHT LABEL RETURN;
: BEGIN
- INTEGER 1»J5 REAL MXL,MXR}
FOR I $= 1STEP 1 UNTIL N DO

| BEGIN
C MXL f= 0405 MXR 3= 0.0 3

FUR J t= 1STEP 1 UNTIL N DO

BEGIN
| IFABSCALLI»y1)> MXL THEN MXL #$=ABSCALEI,J1)S
L IFABSCARLI»J1)> MXL THEN MXL $=ABSCAR[I»J1)}

END; MXR $= MXL;
IF MXL = 0+0 THEN
“ . BEGIN
DLEFT 3= 0,03 DRIGHT 320,05
GO TO RETURN;
ENDJ

~ MULTLEIZS= MXL 3
MULTRCIJ$= MXR J
. IF MXL # 1.0 THEN
o : FUR J $= 1STEP 1UNTIL N DO
ROIVCALLI»J)»ARCI,JISALLI»JI»ARLI,JIsMXLoMXR2LBL)S
END;
. END EQUILIBRATE 3
EQUILIBRATECALEFT»ARIGHTsN,MULTLsMULTR,LBLsDLEFTsORIGHT»RETURN)}
PRODUCTL 8= 1.0;
L PRODUCTR 3= 1.0}
FOR K $= 1 STEP 1 UNTIL N=y DO
, BEGIN
; S ¢= R
- TEMPL 3= MAXCABSCALEFTCRsR1)»ABSCARIGHTCRsR1)) 3

FUK J 8= R+1 STEP { UNTIL N DO

| IF TEMPL < MAX(ABSCALEFTIR»JJ)sABSCARIGHTCLR,J1)) THEN
L BEGIN

zZ



TLMPLJS?MAXCAHS(ALEFT[R:JJ)»ABS(ARIGHT[R’JJ)) 3
S &=
END
IF TEMPL = 0.0 THEN
BEGIN
DLEFT 3= 0,03
DRIGHT t= 0.0/
GU TO RETURN 3}
ENDS
It S # R THEN
BEGIN
RMPY(PRODUCTL2PRODUCTR»=1,05=1,0,PRODUCTL,PRODUCTR,LBL)}
FOR | 8= R STEP 1 UNTIL N DO
BEGIN
TEMPL 8= ALEFTLIsR]}
TEMPR 8= ARIGHTI[I,R)}
ALEFTCI»,R] t= ALEFTL(I»S)}
ARIGHTILI»R] 1= ARIGHT[]I»S)3
ALEFT(I,SIs=TEMPL 3}
ARIGHT[I»S) t= TEMPR 3}
END;
END;
RMPY(PRODUCTL,PRUDUCTR,PRODUCTL»PRODUCTRSALEFTIR2R]»
ARIGHT(R,RI»LBL)S
FUR I 3= R#1 STEM 1UNTILN DO
BEGIN
RDOIVCTEMPL, TEMPRAALEFTIILRI>ARIGHTCISR]>
ALEFTCR,RI»ARIGHTIR,R1,LBL)}
FUR J8%= R#ISTEPIUNTIL N 00
BEGIN
RMPYCTEMLL,TEMRRLALEFTIR,J]sARIGHT(R»JJs TEMPL,TEMPR»LBL)}
RSUBCALEFTII»JI»ARIGHTIISJI»ALEFTLIsJ]sARIGHTIISJ]>»
TEMLL»TEMRR,LBL)S
ENOS
END S
END 3
RMPY(TEMPL,» TEMPR, PRUDUCTL» PRODUCTR,ALEFTIN,NI»ARIGHTIN,N]»LBL)}
FOR KRs$= {1 STEP 1 UNTIL N Do
RMPYCTEMPL s TEMPR, TEMPL» TEMPR,MULTLIR],MULTRLRI,LBL)J
DLEF! 3= TEMPL;
! DRIGHT 3= TEMPR 3
RETURN ¢
END IDETERMINANT 3
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3. Hansen's Method

In [2] a method for determ nant eval uation of an interval matrix,
AI, is proposed. It can be presented as L steps.
(i) Determine a |ower triangular matrix, L, wth unit diagonal
el enents such that A, =T, wher e AC is the center of
2 and Uis upper triangular. L will contain roundoff
errors but the determinant of L is exactly one.

I

(ii) Using I.A., multiply L times AT obtaining B

which will
in general have very small intervals below the main diagonal.
(iii) Perform Gaussian elimination on BI using |.A  This wll
result in an upper triangular nmatrix ™ It is noted in
f2] that an exact zero for a zeroed elenent can not be conputed
during the elimnation but it is correct to insert such zeros

(iv) Conpute the determinant as the I.A. product of the diagonal

el enents of T°. That is,

The inplenmentation of this technique was acconplished by using an
algorithm given by Ralston [5, p. 4111 for determnation of the appro-
priate lower triangular matrix L with unit diagonal elements. The
algorithmin [5] takes a matrix A and reduces it to two matrices L
and U such that A = LU where L is lower triangular with unit
di agonal elenments and U is upper triangular. It is then sinple to

determ ne L'l which is the lower matrix required by Hansen's method.
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The deconposition was inplenented both with col um pivot selection and

without any pivot selection. It is interesting to conpare the results

of Hansen's method with and without pivot selectiont 1NiS comparison
is presented in the next section.
A Burroughs Extended Algol inplenentation of Hansen's method is

now given:



PRCCEDURE HANSENSMETHODCAL,ARs»DLsDRsN,IAERR) 3

VALUE Nj; INTEGER N3}

REAL DL sDRj

LAREL LAERR;

REAL ARHRAYAL,AR[Q0,0];

BEGIN CUMMENT

o THIS PRUCEDURE COMPUTES THE-INTERVAL DETERMINANT

UF AN INTERVAL MATRIX USING THE METHOD DESCRIBED
IN SIAM JOURNAL UN NUMERICAL ANALYSIS»VOL 4C1967),N0,1,
By ELDUON HANSEN AND R+R4SMITH,

THE INPUT IS ALsAR» AND N, WHERE
AL XS THE LEFT END POINTS OF AN INTERVAL MATRIX»

§

L AH IS THE RIGHT END PQINTS, AND
N IS THE ORDER OF THE MATRIX,

1| THE OUTPUT IS DL AND DR »THE LEFT AND RIGHT END POInNTS
UF THE DETERMINANT,

L IF A DIVI§‘IDN BY Z_{’;RU!FQR EXAMPLE, OCCURS DURING THE
INTERVAL ARITHMET CALCULATIONS, CONTROL 1S TRANSFERRED
1y THE LAHEL IAERR 3

L COMMENT PUT UECOMP»INVLOWER» AND INTDET HERES

PROCEDURE UECOMPC(CAsN,P)»
{ VALUE N 3
L INTEGER N3

ARRAY ALO0,01;

INTEGER ARRAY P[0}

BEGIN CUMMENT SEE RALSTON (1ST COURSE IN NesA¢)P,414}
— INTEGER RsKsIlsJsDMAXS

ARRAY DLOIN] 3
| LABEL ZRU,D0ONE}
. REAL TMP;
FOR K 3= 1STEP 1 UNTIL N DO
BEGIN
FUR K 3= 1 STEP 1 UNTIL N DO

—
DLK] 3= A[K,R) 3
FUR J 3= 1 STEP 1 UNTIL R-I1 D0
, BEGIN
— . ALJsRY = DIPLUY] 3
DIPCJI] 2= DCJ] 3.
f FOR I 3= J+1 STEP 1 UNTIL N DO
. DLI) ¢= DCI) =A[I»Jlx ALJ,R1 }
END3 DMAX = R3S
FUR | 3= R STEP 1 UNTIL N DO
O IFABS(DII]) > ABS(DIDMAX)) THEN DMAX 3= I 3}
ALR,R]} t= D[CDMAX]) 3}
PLR] = DMAX}
DLUMAX] 3= DIR] 3
—~ Fun I = R+{ STEP 1 UNTIL N DO

BELGIN
| FA[LR»R] = O-THEN GO TO ZRO;

r—
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AtI,R)Y §=2 DLIJ /7 ALR,R1 3
END S
ENDJ
GO TU DONEs
ZROS WRITE(S"A[R,RI=0,0"»110>»R)}

DUNE?

FOR | 8= 1 STEP 1 UNTIL N=1DO.
FOR J 8= I+1STEP1 UNTILNDO
IF PrJ) #J THEN
BEGIN
TMPs=ALJs1]3
ACJs1) 8= A[P(JI»1] 3
ALPLJ1s1] 3= TMP 3}
END?

END DECUMP}

PROCEDURE INVLUWERCLIN,LOUT,N)}
VALUENIINTEGERNS
ARRAY LIN,LOUT(O0,013
BEGIN ~.
REAL SUMJ INTEGER I»JsP3}
FOR l#=1 STEP 1 UNTIL N DO
BEGIN
LUUTLILI) 1= 1403
FUR J s= 1 STEP 1 UNTIL I=1DO
BLGIN SUM t= 0,0/
FORP$=J STEP 1 UNTIL 1I=1D0
SUM 1= S UM +LINLI,PIXLOUTIP,JI)
LOUTEI»J] 8= =SUMJ
END;
END3
END INVLOWER}

PROCEDURE INTDETC(L»AL»ARsDL,DRsN)}

VALUE N} INTEGER N}J

ARRAY LoAL»ARI[O0»0)3

REAL DL»URJ

BEGIN CUMMENT THIS PROCEDURE TAKES A LOWER TRIANGLE
SUCH THATLxA= UCUPPER)»WHERE A IS INTERVAL SO
USINGI«A4»U IS NOT REALLY UPPER AND T1,A¢ GAUSSIAN
ELIMINATION IS THEN DONE TO GET THE INTERVALDETERMINANTS
INTEGER I»JsK3}
REAL SUML,SUMR,MULTLsMULTR,TL»TRS
ARRAY ULLOSNs»OSNI»URLOSN,OIN]S LABEL LBLsDONE}
FOR 1 = 1 STEP 1 UNTIL N DO
FOR J 8= 1 STEP 1 UNTIL NbDO

BEGIN
SUML = ALLI»J1l J} SUMR s= AR(I,J] }
FOR K 3= 1ISTEP 1 UNTIL Il DO BEGIN

RMPYCTLoTRALLI»KIsLLIoKI»ALIKsJI»AR[K2JI»LBLYS
RADDCSUML» SUMR» SUML»SUMRsTL,TR>LBL)SEND}
ULLI»Jd]) 8= SUMLS

URLIsJ] §= SUMRJ
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LBL?
DONE s

END/
COMMENT NOW DD GAUSSIAN ELIMINATION ONULsUR
OR USE IDET ON IT3
FURL! ¢=1STEP 1 UNTIL h DO
FOR Jt= I4% STEP 1 UNTIL N DO
BEGIN
RUIV(MULTLsMULTRAULLJ»TIHURLJ»TIIULLI»T)»URLI»II»LBL)YS
FUR K 3= Td+ISSTEP { UNTILL W DO
BEGIN
RMPY(TL»TRoMULTLsMULTRAULTI»KIsURLI»KIoLBL)S
RSUBCULCLJsKI»URIJsKI,ULLJsKI»URLJ2KI»TL»TRsLBL)S
END3S
ENDJ
COMMLNT NOW COMPUTE THE DETERMINANT;
DL 83 ULC1»,113
DR 8= UR[1,113
FOR 1lt= 2 STEP 1 UNTIL NDO
RMPY(UL»ORsDLsDRsULLI»I1sUR[I»TI1»LBL)}
GO TU DONE 3
WRITEC(<"I,As TROUBLE IN INTDET">)}

END INTUET)

REAL ARRAYA,LI[OtN,QOSN]3
INTEGER ARRAY P[OSN];
INTEGER 1»J 3 '

REAL TEMPL,TEMPR»SGN 3

FOR | 8= 1 STEP 1 UNTIL N DN

FOR J 8= 1 STEP 1 UNTIL NDO
ALT»J)i=CALLI»J] + AR[I»J1) /72,0 3}

COMMENT A HAS THE MIDPOINTS«NOWDECOMP W ILL FINDLAND U
SUCH THAT A=LXU AND PUT L IN A 3

DECUMP(A,N»P)}
COMMENT NOW INVLOWER WILL INVERT THE LOWER TRIANGLE IN A
ANDPUTT H EINVERSE | N LI}

INVLUWER(CALLI,N)}
COMMENT IF INTERCHANGES OCCURRED DURINGDECOMPWENOW

INTERCHANGE AL AND AR ACCORDINGLY3
FOR | $= 1STEP 1 UNTIL NDO

BEGIN
IFPLII# | THEN
FUR J 3= 1 STEP 1 UNTIL N DO
BEGIN

TEMPL t= ALLIsJl 3
TEMPR t= AR[I,J] 3
ALTI»J] t= ALIPCIT»J))
ALIPLI)»JIt=TEMPL }
AR[I»J] 3= ARIPLI)»JUI3
AR[IPLII,JIt=TEMPR 3.
END
END J
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COMMENT NOw INTDETCOMPUTESBI = LIXACINTERVAL)AND
PERFURMS GAUSSIAN ELIMINATION ONBITOFIND THE
DETERMINANT AS THE PRODUCT OF THE DIAGONAL ELEMENTS)

INTUETC(LI»AL»AR»DL»DR,N)}
COMMENT NOW ADJUST THE SIGN ACCORDING TO THE INTERCHANGES;
SGN = 1,0
FOR I 8= 1 STEP 1 UNTIL w~DD
IF PLIY # | THEN SGN 3= =SGN3
IF SGN <O THEN
KMPY(DLsDR,OL»DRs»=1,05=1.0,IAERR)}

END HANSENSMETHOD 3

10



r—

L. Conparison of results

The test matrices were generated using a mxed congruential nethod
of generating uniform pseudo-random nunbers in the interval (0,1) as
i npl emented on a Burroughs B5500 conputer. A nmatrix A was filled
with random nunbers, then a small positive nunber, ¢, was added to
and subtracted from each elenent of A to obtain the right and left
end points respectively of the interval elements of A

Various values of ¢ were tried for a range of values of N, the
order of the test matrices. Selected results are shown in Table 2.

Note that the Burroughs B5500 can hold approximately 11 decimal digits
of accuracy so the input interval widths are quite significant conpared
to machine accuracy.

The value of pivot selection is strikingly illustrated by colums
four and five of Table 2. For the case 1\I=5,t:,=1o'6 no pivoting was
necessary and the results are identical as expected. However, at the

6 wi t hout pivoting shows an interva

other extreme, the case N=9, (=10
width of over 600 times the interval conputed with piuoting.

Table 2 also shows that Hansen's nethod can retain correct signi-
ficant digits for matrices of order at |east 20 whereas the straight-
forward use of I.A begins to lose all correct significant digits for

matrices whose order approaches 20. Consider the case N=17,g=1o'8

Hansen's method gives a result which can be expressed as at = -.0033h
+.0000075, leaving two correct significant digits. However for the
sane case the straightforward approach gives at = -.00334 + .0004

which has no correct significant digits. The case N=20, §=1O'8

11
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provides a simlar conparison.

+ .0000065 (2

correct

Hansen's method vyiel ds

significant digits)

af = -0.00776

and the alternate method

gi ves at = -0.00776 + .00023 (barely 1 correct significant digit).

Conparison of Interval Determnant Wdths
(2¢ is the width of the elements in the original natrix)
Wdth Wdth W dth Ml tiplicative
Val ue of Hansen's | Hansen's A gorithmj factor for al

N| ¢ | Deternminant |wpivot |wo pivot |269 w/I.A. 3 wi dths
3 10'8 0.01311. . 2,18 2.24 3.28 xlo’8
3 10'6 -0.25862. . 5.0 13.1 5.66 x10’6
51078 o.azs17.. | 1.k 12.0 2.1 x1077
L 10"6 -0.18143. . 0.95 9.1 2.0 1077
511078 | -0.01023.. | 0.7 3.4 0.9 x107 7
5 10'6 0.02672. . 0.69 0.69 0.78 ¥107°
6 10"8 0.02365. . 1.44 2.51 3.6 <1077
6 10'6 -0.09218.. 0.26 1.03 0.52 xlO_u
71108 o.02758.. | 1.80 8.8 6.8 x1077
7 10'6 -0.00818. . 0.81 1.5 108 X107
8 10'8 0.03106. . 5.2 83.2 13.7 x1077
8 10'6 0.00680. . 0.13 2.3 0.28 104
9 10'8 0.07876. . 1.09 282. 1.79 x10'6
9 10'6 0.02018.. 0.29 178.6 1. 14 xlo'l+
10 10'8 0.01337.. 1.05 13.1 0.66 x10‘6
10 10’6 0.00023. . 1.75 23.25 2.19 x107°
15 10”8 0.00087. . 0.47 —— 4o 43 xlo'6
17 10'8 -0.00%33k. . 0.15 - 8.15 xlO_u
20 10’8 ~0.00776. . 0.13 ——— 4,59 xlo'LL

Table 2
12



— 5. Average Relative Wdths using Hansen's Method

— In an attenpt to generate some useful guidelines as to what accuaracy
to expect when using Hansen' S Met hod for determinant evaluation we have
done tests using random matrices with elements in the interval (-1,1).
Thus, if a matrix is scaled so that all el enents are | ess than one in
modul us the results given in Table 3 will provide an estinmate of the

— size of interval determnant value that can be expected when using Hansen's

method. A relative width of 1.0 X 107 means that at |east ml si g-
nificant digits are correct in the interval determnant val ue.
Consi der, for example, @ probl em involving the determnant of a
matrix of order 8 with interval elenents of maxi num w dth 10 .
— If the matrix elements are scaled to lie in the interval [-1,1] and
Hansen's nethod is used to evaluate the determnant, a crude interpolation
in colum 4 of Table 3 will provide an estimate of the accuracy that
can be achieved. For this exanple a relative width of about 10 X 10°
can be expected which neans at least three correct significant digits

- in the interval determ nant val ue.
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Average Relative Wdths of I.A. Determnants
usi ng Hansen's Method (averages calcul ated for 3 matrices)

width of i

nterval determ nant

el ements of rratrices}

d; true value of determ nant
¢ = half the width of origjnal
-10 - -6 i

N4, 61070 12 100 |4, 107 |8, g0

3 o.65x10‘8 0.21x10’6 1,58x10‘LL o.l+9xlo"2

5| 2.0ex107® | 117007 | 1.74x107H | 1.64x1072

7 u.84x10'8 u.8ux10"6 5,98x10—h 15.19xlo“2

9 z,5uxlo'8 9.51x10'6 24.57;;1_0'LL 19,1;0x10‘2

11 55.46x10'8 41.97x10‘6 52.69x10'” 58~25x10‘2
Table 3

1L

—
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6. Conparison of Running Tinmes

Table 4 gives average tines for determinant evaluation On the

Burroughs B5500.

subroutines coded in Burroughs Extended Algel and are obviously quite
sl ow conpared to noninterva

Hansen's nethod is significantly slower than the I.A. version of

al gorithm 269.

together with a know edge of the input element widths and the accuracy

desired, should indicate which routine to use from the standpoint of

All 1.A. calculations are perforned with the I.A.

efficient nachine tinme utilization.

aritkmetic.

Thus in any application a study of Tables 2, 3, and &,

Average Times to Evaluate Determnants
using various Mthods (Tines in seconds)

Nurmber of matrices

N | 85C |269(T.A.)|Hansen's | used in averaging
3 1.018% . 7100 . 9017 10
L 1 00200 1. 4450 2.1233 10
5 | .0250 2.593%3 4.2917 10
6] .0483% 4,0817 7.-4%50 10
71.0778 6. 2222 | 11.8056 3
8 | . 1000 9.3%3667 | 18.9500 1
9|-1167 | 120 9167 | 26.3500 1
10 | 1667 | 17. 2000 | 36.6833 1
15| - 4166 ] 56,8500 [125.4%33 1
17 1 .5833 ] 84,7167 |185.8333 1
20 | .8500 | 128.13%3 }309.3333 1

85¢ is Stanford Library program nunber 85C which
uses Gaussian eliminaticn with row equilibra-

tion and row interchanges.

269I.A.

Hansen's

Table L

15

is C.A.C.M. algorithm269 as nodified to
use interval arithmetic.

is the method of Hansen described in
this report.



7. An Application - Testing for a Chebyshev System

7.1 Introduction

Gven that a set of functions forma Chebyshev system certain
algorithms in approximation theory can be proved to converge. In
particular, the second algorithm of Remez [7]) can be applied to find
the best approximation in the Chebyshev (mninmax) sense to a continuous
function by a linear conbination of the functions formng the Chebyshev
system  However, in some cases it is not known a priori whether a
given set of functions form a Chebyshev systemor not. In these cases
the programto be described can be used to indicate the presence or
absence of the desired property. In case the set does not forma
Chebyshev system the use of interval determnants can possibly prove

this fact.

7.2 Definition of a Chebyshev system of functions

Gven a set of linearly independent continuous functions,

q)l(x), ...,cpn(x) defined on a closed interval [a,b], forma function

I

(7.2.1) F(x) =iZ1 Ao, (x) -
If any such function, which is not identically zero on [a,b] , has
not nore than n - 1 zeros in [a,b] with double zeros counted twice,

then the set {cpi(x)};l forms a Chebyshev system For more an Chebyshev

systems see [9] for exanple.

16
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An equivalent definition is the following: given the set {CP'1<X>}?
if for any set of n arbitrary distinct points (xi }?. %, ela,bl, the
determinant whose i, j element is cpi(xj) IS non-zero, then the set

{cpi(x)}iform; a Chebyshev system.- That is, the determ nant, D,

gi ven by
¢, (%) P (x) . L 9q(x))
(7.2.2) o = Pp (%, ) Polxy) . L ey(x))
- P, (%)) 2,0) L =)

nust be non-zero for any set of n distinct points in [a,b] .

The second definition is used in this programto test for a
Chebyshev system  The determinant is tested to see if it has a zero
for any possible set of distinct points {xi}rll- It can be shown that
D, given by (7.2.2) is a continuous function of {xi}il.Thus, if we
order the {xi} by requiring that X < x5 <.e. <x, W know t hat
if there exists two sets, {x;:} and {x;}', such that D({x;}) > 0 and

D({xfi}) < 0, then D nust be equal to zero for some other set {xc.l)} :

This property is used in conjuction with interval deterninant calculations

to prove that a systemis not a Chebyshev system

Two exanpl es of Chebyshev systems for any closed interval of the
real line are the set {CP.l(x)}rl1 with cp.l(x) - x*™1, and the set
Wi(x)Q with wi(x) = Ti_l(x), wher e Ti(x) represents the Chebyshev

pol ynom al of the first kind of order i . That is,

17
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(7.2.3) Ti(x) = cos(if), cos 6 = X .

A third exanple is the set {1, cos(x), sin(x), cos(2x), sin(2x), ...,
cos(nx), sin(nx)} on the interval . [0, 2x].

An exanmple of a set of functions that is not a Chebyshev system
is {wi(e) = cos(2i@), i=1,2, ..., n} on the interval 0 <6 < n/2.
This can be seen easily since as 6 varies fromO0 to =n/2 the argu-
nment of the cosine varies, from 0 to ix, thus passing through i odd
integer multiples of =/2 where the cosine takes the value zero. 'Hence,
we have that mi(e) possesses | distinct zeros in the interval [0,n/2]

whi ch contradicts the requirement of no nore than i - 1 zeros set

forth in the definition.

7.3 The probl em

Assume that we are given a set of functions {@ibd}i defined on

an interval [a,b] . W ask whether the functions forma Chebyshev

system on that interval or not.

7.4 Description of the nethod

The method utilizes the determ nant definition of a Chebyshev
systemto test a set {@ibd}i for that property in an interval [a,bl .

The steps involved can be outlined as foll ows:
(i) Choose an arbitrary initial set of n distinct points {x3}?

in [a,b] .
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(ii) Knowing a priori the errors in calculating the functions
Py (x), i=1, ..., n, create an interval matrix which contains
the matrix shown in (7.2.2). Calculate the interval deter-
mnant of this matrix. The interval obtained will be greater
than zero, less than zero or contain zero. If it contains
zero, mninmze or mximze D until the interval determ nant
does not contain zero. (Always require that x; <x, <...
<x ).
n
(iii) Depending on whether the interval determnant is positive or
negative, then mininize or maxinize D({xi}). Wen (if) a
change in sign of D({Xi}) occurs, use the interval deter-
m nant cal culation again to see if the interval has changed
sign. I so, it is proved that the f{o,} does not forma
Chebyshev system If not, try to minimze (maxinize) D
further and use the interval determ nant calculation again.
[f no further mnimzation or maximzation is possible and
the interval determnant contains zero, this my indicate
a zero determnant and thus not a Chebyshev system but it
does not prove anything. However,, if both positive and
negative interval values of the determnant can be found
it is proved that the {g,} do not forma Chebyshev system
In practice, there are an infinite nunber of choices for a new
set {xj} inthe interval, therefore a direct ‘computation i s inpossible,
To surmount this problem we use an approximate mnimzation technique

on the deterninant, D, as a function of n parameters, the set

{xj}g Thus, if an interval change in sign is found, we can be sure
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that the set of functions does not form a Chebyshev system however,
if an interval containing zero or an interval of the sane sign as the
starting point is found, we can not be positive that we do not or do
have a Chebyshev system  This dichotony of certainty is due to the
fact that any known nunerical procedure for minimization can failto
| ocate the absolute mninumof a function, thereby locating a non-zero
m ni num whereas in fact a zero mninmum exists.

In spite of the uncertainty involved in this nethod, if a reasonably
faithful mnimzation procedure is enployed, a non-zero mninum or a
zero mnimumwth very close points is a very good indication of Chebyshev
system A zero mninmum (an interval containing zero), with well sepa-
rated points is convincing evidence that a Chebyshev system is not at
hand. A change in sign (a positive interval and a negative interval)
is proof that a Chebyshev systemis not at hand.

The program to test for Chebyshev systens incorporates three basic
algorithms A gorithm 178 [8] as coded for a Burroughs 135500 was
nodified slightly and used to perform the mininization. A routine
simlar to Algorithm 269 [3] was used to evaluate internediate deter-
mnants for the minimzation and Hansen's method was used for the
interval determnant calculations. The interval [a,b] and the functions

{cpi (x) }?zl must be specified for eacn particular problem

7.5 Exanpl es

The program as inplemented on a Burroughs B5500 computer has been
used to test several sets of functicns. Some of these are given bel ow

with the points chosen and the corresponding interval determ nant val ues.
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The functions such as exp and cos Which occur in the exanples
were conputed by the B5500 system routines to approximately 11 accurate
decimal digits. To ensure that the interval determnants that were
eval uated contained the mathematically correct val ues, we added (sub-
tracted) 10'8 to each conputed elenment of D (7.2.2) to obtain the

right (left) endpoint of the interval determnant.
exanple 1. Not a Chebyshev system
(9, (0¥ =[x exp(x)} on [0,5] . ([20, p. 551)

R X, X, interval deterninant
start 1.0 2.0 [1.952k022, 1.9524926]

finish 0.0 3.0 [-3.0000003, -2.9999997]
exanple 2. Not a Chebyshev system
¢, (x) = cos(2 ® 1 ® x), i = 1,2,3,4 on [0,n/2] .

X X, X5 X), interval det erm nant
start 0.3 0.6 0.9 1.4 [0.0343986, 0.0343990]

finish 0.1 0.8 0.9 1.5 [-2.496329%, -2.4963286]

exanpl e 3. A Chebyshev system

CP-l(X) = Xi_l] | = 1;2)5 on [“l,l] .
X, X, X5 interval determ nant
start -0.5 0.0 0.5 [0.2499999%, 0.25000007 ]
finish -0.040601 -0.04Ok -0.0405 [-8.571x10'12, +A.510xlo'12]

21



%
-

r—-

r— - o

r—

In this case the functions do form a Chebyshev system and we know t hat
there should be no set of distinct points for which the determ nant,
D, is zero. The programis witten to prevent points from becom ng
cl oser than 10-4 . As shown by-these results, the only way the
minimzation routine could obtain smaller values for D was to use

points as close together as possible. This is typical of the results

obtai ned when the given set of functions does form a Chebyshev system
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8. Concl usi ons

The conputational results show that Hansen's nethod w th pivot
selection provides a smaller interval fcr the determ nant than straight-
forward use of |.A for all but one of the test matrices. This is as
woul d be expected since the elements in the |ower triangle of B
are very small intervals and thus interval widths are kept small during
the elimnation.

As is well known, and as shown dramatically by Table 2, the correct
selection of pivots during deconposition (or elimnation) can produce
a striking difference in the resultant accuracy of a determ nant

evaluation. Table 2 also shows that for matrices of order as high as
20, and with original elenment wdths |ess than or equal to 2-Ox10—8‘
Hansen's method wi |l conmpute interval determ nants which retain useful
significance. However, the interval determnants conputed by the
straightforward use of |.A begin to lose significance for matrices
whose order approaches 20 .

The timng results given in Table 4 indicate that some trade-of f
bet ween accuracy and running time mght be appropriate in particular
applications. That is, some a priori information about input w dths
and order of the matrices, together with the information given in the
Tables,, mght indicate that the straightforward use of I.A. would give
sufficient accuracy and save a considerable anount of machine tinme.

The application of interval determ nant calculation in a program

to test for Chebyshev systens shows that this particular use of interva

arithnmetic can be used in mathematical proofs.
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