CS 90

A MULTI-LEVEL COMPUTER. ORGANIZATION
DESIGNED TO SEPARATE DATA-ACCESS ING
FROM THE COMPUTATION

BY

VICTOR R. LESSER

TECHNICAL REPORT NO. CS 90
March 11, 1968

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

CGIM 37
January, 1968

AMilti-Level Conputer Organization Designed to Separate
Dat a- Accessing From the Conputation
by Victor R Lesser*

ABSTRACT

The conputer organization to be described in this paper has been dev-
el oped to overcone the inflexibility of conputers designed around a few fixed
data structures, and only binary operations. This has been acconplished by
separating the data-accessing procedures from the conputational algorithm
By this separation, a new and different |anguage may be used to express data-
accessing procedures. The new |anguage has been designed to allow the programer
to define the procedures for generating the names of the operands for each
conputation, and locating the value of an operand given its nanme.

* Supported in part by the National Science Foundation

[ntroduction

Il. Data Accessing

A Value Generation
Mechani sm
Exanpl es
Linitations

B. Nane Generation
Mechani sns
Exanpl es

[11. Conputer Organization
A Menory Layout

B. Instruction Format

CONTENTS

[V. Extensions and Further Research

V. Bibliography

. Introduction

In a conventional conputer organization, procedures for accessing non-
standard*l data structures are expressed in the same | anguage (same instruction
repertoire and instruction sequencing) as, and are intermixed with, the compu-
tational algorithm |f data-accessing can be decoupled from the conputational
al gorithm one can then inplenent themin different |anguages. This pernits
greater econony of representation and ease of programming for both the conputa-
tion and data-accessing procedures. This is particularly true for sophisti-
cated problens requiring data representations not anticipated by the conputer
desi gner

Conput ational operations perforned on these conplex data structures usually
involve multiple operands.*2 Therefore, the accessing nechani sm nust be able
to locate both single elements and ordered sets of elements contained in the
data structure. This capability can be acconplished through two formnalisns;
one which generates a list of names of operands, and the other which |ocates
the value of an operand given its nane. Using the above concepts hierarchic-
ally, a list of operand values can be extracted fromthe data structure to be
used as argunents for a conputational operation. |,

In nost conputer organizations, the machine |anguage instructions are
usual Iy binary or unary operations, and the names of the operand for instruction
are deternmined by the particular instruction format. In a single address
conputer, one operand name (an address) is contained in the instruction, and the
other operand is inplicitly defined as the accunulator; while in a conputer with:
a stack mechanism the operands are a few elenents' at the top of the stack.

*»L In nost conputers such comonly used data-structures as lists, matrices, and
stacks are considered non-standard.

*2-For exanpl e, nost operations performed on matrices can be nost éasixy
represented as operation on'rows (colums) rather than on individual elements
of matrix

£

T e,

The inportant point of these exanples is that the programmer has been given no
flexibility in defining the names of the operands for a conputation except
through the use of different instruction formats. Tye built-in mechanisms for
| ocating the value of an operand, such as indirect address, indexing, and
B5500 program reference table, are useful, but only for a small class of data
structures which are anticipated by the conputer designer,

The computer organization to be described in this paper has been devel oped
to overcone the inflexibility of computers designed around a few fixed data
structures, and only binary operations. This has'been acconplished by separat-
ing the data-accessing procedures from the conmputational algorithm By this
separation, a new and different |anguage may be used to express data-accessing
procedures. The new |anguage has been-designed to allow the programrer to
define the procedures for generating the names of the operands for each compute-
tion, and locating the value of an operand given its nane.

[1* Data Accessing

The program for data-accessing has been separated fromthe conputationa
instruction stream by integrating the function of data--accessing into the
conputer's menory organization. The key idea in this computer organization is
the ability of each nenmory register to be nmore than just a place to hold a.
value. Each nenmory register K (there are no special purpose registers) can be
thought of as representing two different entities depending on how the register
s accessed in the conputation:

1) the nane of an opernad K

2) the name of a computation K.

If the register is accessed as the name of an operand, then we are interest-
ed in obtaining the value of the operand, while if the register is the nane of
the conputation then we are interested in generating the nanes of the operands
used by the conputation. It is inportant to note the hierarchy: first we
generate the nanmes of the operands for the conputation, and then we determne'
the values of the operands" These two rfunctions of the register K are ac-
conplished by auxiliary information attached to the register (in the implementa-
tion to be described later, this will be through a pointer) which defines the

-

first step in an algorithm for performng the desired task.

A Value GCeneration

The mechani sm (formalisn for describing how the value of an operand is
located, given its name, will be discussed first. The mechanism for generating
the names of the operands for a conputation is nmore conplex but it essentially
is just an extension of the value generation nechanism In locating the value
of an operand, it is desired to generate an access path between the name of the
operand and its value. This is acconplished by attaching to each register K
the follow ng auxiliary infornation:

1) £ - the name of a function;

2) N - the name of a register whose value defines the nunber of primry
| evel s of indirectness;

3) Fy - the nane of a register whose value is used as one of the
argunents for fk.

Let us define C(K) as the contents of register K If the name of an operand
is considered to be an address of a nemory register, then the value of operand X,
V(K) ., is defined by the following recursive definition:

v(0)=0

v(1)=1

V(K)=B(V(:) ,K)
B(M,K)=V(B(M~1,K))=VM(B(O,K))

B(O;K)=‘Tfk (%,0(x),v(c(x)),V(F))

-This recursive definition for the value of a register is a generalization
and conbination of the concepts of indirect addressing, and mult:i-leveling
indexing. At each level in an indirect chain, a conputation may be performed to
determine the address of the next register in the chain, and the number of
further levels of indirectness is a data paraneter contained in the auxiliary
i nformation, l\k In the normal inplementation of indirect addressing either
the number of levels of indirectness is-fixed, or the length of "chain is
conpletely controlled by the indirect bits contained in the registers of the
cHai ned list. Both of these schemes do not allow operations such as retrieving
the Ith element of a chained |ist where the nunber I may vary each tine the'

P

chain is accessed. The value generation mechanism previously described allows
the above operation, and nuch nore sophisticated data accessing operations
through the use of the parameter N,. |f N =0, then the recursive nechanism

k k
resenbl es an addressing schema wth no indirection, while N, =1 corresponds

to the normal concept of indirect addressing. The conput ation;:l capability
represented by the above recursive definition for V(K) is very simlar to the
representation of an algebraic expression in Cheatham's pseudo code when

N, =0- Let us consider an example of the pseudo code resulting fromthe al-

gebraic expression:

A + 25x(B+C)

Li ne Oper at or Qperand Descriptors
1 D, DA,D2
2 Dy D25’D3
3 D, Do D

If we define the follow ng functions for T:
T+(X:Y721W)=Y+W
Tx(x,y,z,w)=Y><w

then one possible' representation of the above algebraic expression in the
recursive structure defined for value generation is:

Regi ster K agK) £§ ._1\.75 P
Val ue of A + 0 3
3 25 X 0 4

4 Val ue of B + 0 address of C

Iet us consider V(2):
v(2)=B(V(N,),2)=B(V(0),2)=B(0,2)
B(o,2)=Tf2(2,c(2),V(c(e)),v(Fz))

=, (2,¢(2),v(c(2)),v(3))
=C(2)+V(3)=Value of A+V(3)
v(3)=B(0,3)=T, (3,¢(3),v(c(3)), V(L))
=C(3)+V(4)=25xv (%)

v(4)=Value of B+V(address of C)

f

. r .

if V(address of C)=Value of C
then v(2)=Value of A+(25x(Value of B+Value of C))
If we define two additional functions:
Tzw+(X,Y,Z,W)=Z+W
T.ZWX(X,Y,Z,W)=Z><W
the conputation of the algebraic expression could be represented in a different

manner :
Regi ster K c(K) fK WK FK

2 address of A Z\W 0 3

3 25 X 0 L

4 address of B ZWXx 0 address of C

if V(address of A)=Value of A then
v(2)=V(address of A)+V(3)
V(3)=25xv (L)
V(4)=V(address of B)+V(address of C)
t heref ore v(2)=A+25x(B+C)

These two fornulations of the algebraic expression both have their ad-
vantages. The first method is faster since menory references to find the value
of A and B are unnecessary, but by having the value of A and B interconnected
with the conputation there is no way to isolate the value of A unless the
auxiliary information is altered. The second nethod does not have this problem
since the value of Ais not part of the conpuf ation but only an operand. This
alternate format also allows us to exploit parallelism* Let us consider the
fol l owi ng conputation (A+B)-(c+D). Then it can be represented by the follow ng
tree structure which is duplicated in the register configuration.

* This type of local parallelismintroduced in conputing the data-accessing
mechanismis easily inplenented since there is not the probl em of side
effects, since no registers are nodified in the process.

e

6
X Regi ster K c(K) f N F
' 7N 2 wK oK *
+ 3 ZWX 4
/ \ /\
A B C D 3 address of A ZW 0 address of B
4 address of C ZW 0 address of D

The three examples which follow indicate how the conputational capability
represented by the above, conbined together with the level of indirectness, can
be used to locate elenments in data structures. Before considering the exanples,
let us define the followi ng additional functions:

XY, Z, W=Y
X W

TI (X,Y,Z,W)=X
X

Tpy (X, Y,2,W)=Y+1

EX 1: We would like register Kto represent the matrix elenent [I, J].
Let us suppose the value of A[Il, J]for particular I, Jis the value
of the followng cell:
V(BASEA+ | x D, +1J)

Let us define the following nmenory configuration:

Regi ster L c(L) I, X y
K BASEA + 1 K1
K1 J + 0 K2
K2 | X 0 K3
K3 D, | Y 0
Then

" V(K = B(V(1),K) = B(1,K)
B(1,K) = v(B(0,K))
B(0,K) = BASE,+V(K1)
V(K1) = B(V(N,),K1)) = B(V(0),K1) = B(0,K1)
B(0,K1) = J+V(k2)
v(k2) = B(0,K2)
B(0,K2) =1 x V(K3)

v(k3) = B(0,K3) = D,
V(K2) = I x D,
V(K1) =T + I X Dp

B(0,K) = BASE, + J + | x Dy

V(K) = V(BASE, + J + | X D,)

o

list

7
Ex 2. W would like register K to represent the Jth element of an ordered list.
Each element of the list is represented by a consecutive pair of
registers; the first register contains the address of the first register
of the next pair, and the second register contains the value of the list
elenent. The register configuration is nore difficult than in (EX 1)
since there are two separate actions which need to be perforned:
1) getting the address of Jth element of the list;
2) using the address of Jth elenment to get its value: the value
is the second elenment in the register pair.
Let us suppose that L = address of the first elenents of the list,
and each pointer element of the list contains the followng auxiliary
i nformation: f=ly, N=0-
Let us define the follow ng menory configuration
Register P c(P) ' yg 22
K 1 + 1 K1
K1 L Iy K2
K2 J Iy 0.
Then
V(K) = B(1,X) = V(B(QOK))
B(0,K) = 1+V(K1)
Note V(KI) = V(K1) = V(B(V(X2),K1))
address of the |V(K2) =7
Jth el ement V(K1) = V(B(J,K1)) = v’ (B(0,K1))

B(0,K1) = L; V(K1) = vI(L)
LPut'V(M) = C(M), for each M = the first element of list pair
V(K1) = CJ(L) = CCC -- C(L)
J tines

S0 we get that

V(K = V(I + ¢’(n))

which is the value of the Jth el ement of 1list.

r—

Notice that if the second register was not an operand whose
value was the contents of the register :then the recursive iteration
woul d continue. |f the second register was itgelf a pointer to a
list structure, we could, for instance, get the value of the Ith
el enent of the Jth sublist.

Let us consider the accessing of a LISP data structure (a binary tree)
by an arbitrary string of CARS and CDR S.

]
l

o |
B’ < &/ <

o
e v
bos oo sacoman

Performng a CAR operation at a node neans to take the left branch while
a CDR operation takes the right branch. If we have a sequence of these'
instructions, we then have a sequence of left and right branchings
starting at the top node. Let us represent each node as in (EX 2),
where the content of, the first register is now a pointer to the |eft
node,. and that of the second register a pointer to the right node. Let
theauxiliary information at the Mh level of the treebe the follow ng:

fM=+,NM:0, FM:M+D
Then if at the Mlevel we want to performa CAR or CDR we set:
_ {=0CAR
VIM+D = {_1 cor

Then we can performa string of N CAR'S and CDR'S on any LISP data
structure by specifying L - the position of the first node -, setting
the V(M + D) appropriately, and setting up the following menmory con-

figuration: ‘ |

}
L

-

NP

—

Regi ster P c(P) I N, Fo
K L
N

K1l

Limtations

The basic limtation in the value generation nechanismis that it "cannot"*
be used to express data-accessing procedures which contain in some form the
concept of conditional branching. An exanple of a data structure which cannot
be accessed efficiently is that of a symetric matrix

if 127, C(BASEA+I 5‘<DA+J)
AlI,J] =

ifI<J,C(BASEA+JxDA+I)

There is no way to define this data-accessing mechanismw thout conparing | with
J and nmaking a decision on the conparison or wthout using an extrenely |arge
amount of excess storage which defeats the whole purpose

W could program accessing of a symmetric matrix by the algorithm described
above, but the main computational program would have to nake the decisions
about which data-accessing mechani sm should be activated. There is a way of
adding conditional branching to the value generation mechanism but this addition
I's dependent on using the auxiliary information required by the nane generation
schene. Therefore, a discussion of this new addition will be delayed until the
nane- generation nechanism is introduced.

B. Name Ceneration
The concept of a name generation mechani sm has appeared in many higher
| evel |anguages. Language formalism such as the FOR statenent in AIGOL, the

generator function in IPL-V, and the mapcar function in LISP are examples
of the inplementation of the concept of name generation. This section describes.
one way in which the facility of name generation can be incorporated into a

* Cannot is a little too strong here since in many cases conditional branching,
may be replaced by the use of pre-stored data in the menory. The trouble isS
that in nost cases the extra storage is so prohibitively |arge that this
approach is ruled out.

e

10

conputer organization and be conmbined with the value generation mechani sm pre-
viously described. The nechani sm of name-generation gives the programmer the
definitional capability to specify the operands for the conputation (including
the operands to contain the result). Inplicit in the above definitional capa-
bility is the ability to specify the nunmber of operands.

The name- generation nmechanismis especially advantageous in a nicroprogram
conputer where macro instructions involving non-binary operators are easily
constructed, In addition, it would be unnecessary to have variability in a
macro-instruction format since information concerning data-accessing is not
part of the instruction format: there is no need for conplex decoding of the
instruction format. Pipeline conputers also provide a place where name-genera-
tion-can be enpl oyed advantageously since creating streams of operands is very
useful in this type of conputer organization.

In the introduction, it was discussed how separating data-accessing from
the conputation allowed for greater econony of representation (higher code
density) in the program for the conputation. This statement can be verified
by considering the use of the name generation mechanismin a conventional
conputer organi zed around binary operations. |t has been found that for nost
problens it is unnecessary to have the three operands for a binary operation
explicitly specified in the instruction. Therefore, in order to increase code
density, instruction formats have been devel oped in 'which one or nore of the

operands are inplicitly specified: no address instructions for stack computers,,

and single address instructions for conputers with accumulators. The incorpor-
ation of a nane generation mechani sm gives the programer the ability to specify
the names of the operands inplicitly rather than as part of the instruction.
Therefore, the programmer can construct (simulate) through the name generation

mechani sns the instruction format or formats which give the highest code density
for the particular problem

Nanme Generation Mechani sm

Based on the previous discussion the name generation nust be able to gener-

ate a list of argunent operand nanes and result operand names. |n order tO

generate a list of names, there nust be a parameter which specifies the number
of operands, and a parameter which is nodified after each name is generated to'

=

. (.‘.,4-...

11

prepare for the generation of the next name. In addition, it is felt that the
mechani sm shoul d handl e the degenerate case of the three address instruction
format, and inner product type calculations. The following name generation
mechani sm was devel oped based on the above requirenments, and the desire for
this mechanismto be simlar to the value generation nmechani sm

As in the value generation schene, auxiliary information is attached to
each register K

gk**- a function used in parsneter adjustment after each cycle of iteration;

- a register which generates the name of the second operand

Sk

D, -2 regi ster which generates the name of the result operand
.1 1 ,

£ Fo - defined anal ogously to f0 B

Nkl - defines the nunber of operands generated by register K.

Let us define oflun as the ith operand name (address) generated by the
register M If i > V(NFM), then the operand name OPl@D'is consi dered to be null.
Let the register K be accessed as the name of a conputation, then the follow ng
sequential string of names* is generated:

or'(x), op™(s,), OP'(D,), OB°(K), OF°(s)),
5 o . .
OB"(D), + -+ - ., oP" (K), OPl(Sk), 0P (D,)
where the string continues unti
X 1 1
1=mu(ng,wN%»vmgg)
Ve define oP*(K) in the fol | owing way:

P (1) = T,L (K,C(K), V(C(K)), V()

** Note the 6 pieces of auxiliary information can be grouped into 2 groups
of 3, such that each group has the same format as val ue-generation infor-
mation.

* There is a difficult problem in deciding where the result operand names

appear in the generated list of names: intermixed or at the end of the
string. This really depends on the nature of the conputations to be per-
formed on the argunment operands. It is believed the best solution is for

the nenory organization to generate a result operand name only when the
conputation desires to store a result. For the sake of exanple, the
interm xed case is represented.

where after each stage

C(K){"'Tg (k,c(x), v(c(x)), V(K))
k
so that if ¢xis the original C(K) then

0p'(K) = T L (KL V(L), V(ER)
k
wher e

L =T Yk, 0%, v(c*),v(K))
N

The nane-generation scheme for one step is exactly the sane as value-
generation where there is no indirection. Instead of using the paraneter
N% to specify the level of indirectness it is used to specify the nunber of
operands to be generated. The contents of register K is the paraneter which
is nodified after each cycle, and is nodified by the same schene used to generate
the operand nane at each cycle.
The following exanples illustrate how the name-generation nechanism can
be used to generate the names of the operands of sonme commonly used computation-
al operations:
EX 1. A stack Address Mechanism Let us define a stack by 2 registers.
The first register holds the contents of the top of the stack
and the second contains the address of the second elenent of the
stack. (It is assumed the remaining stack entries are the se-
quential cells followi ng the second element). Consider the follow
ing register configuration

Reg P P f N F
Reg P (P) L oy K
K - value of the top el enent of stack Ty 0
K1 address of the second elenent of stack ly 0
Reg P S D f! N' F!
== &% S 3 S 3 2

K Iy K1 K Ix 1

K1 Pl Iy 1

Let us reference register K as the nane of the conputation; ther the
following operand names are generated:

[

r—

13

oP(R) = TI (K, C(K), V(C(K)), V(F (K)) = K

oK =T (K, c(k), v(c(x)), v(k)) = c(k)
Y

opl(sk) = OPl(Kl)

op™(k1) = T, (K1, C(KL), V(C(KL)), V(F' (K1))) = C(K1))
Y
OPl(Ki) = (K1) = address of second el ement of stack

QK1) = T (K1, c(x1), v(c(KL)), V(K1) = C(K1) + 1

address of third elenment of stack

1}

Q(K1)
OPl(Dk) = OPl(K) = K
W get that conputation K is a binary operation in which its argunent
operand names are K and the address of the second el ement of the stack, and the

result operand is also register K If the value function is now applied to
the argument operands, we get V(K), V(address of second element of stack),
but V(K) = value of the top elenent of stack. The value of the second operand
cannot be predicted since we don't know the auxiliary information attached
to the second el enment of stack, but note that it could be itself an operand
name which points into a conplex data structure: it" could be in the form of
the nane of a matrix elenment, as discussed in example 1 in the value generation
section.

So we have seen that the correct operand nanes are generated for stack
operations,, and the addressing mechanismis set up properly for future stack
oper ations.

Ex 2: Let us generate the names of the elenents of a vector A of length N
There are two ways that this can be done, one in which the bese
address of A is destroyed, and the other in which a cell must be
initialized to zero at the beginning of the procedure. Let us
consider the former case; consider the following register configur-

ations:

!
(-

14

Regi ster P chQ f N 'F
2 2 2
K BASE A
Kl N Iy 0
Regi ster P S D ! N' !
= % 2 p 2 B 1
K Pl 0 ? Iy K1

Then OPY(K) = TIy(K, c(x), v(c(x)), V(Flk))
= Q(K) = BASE,

renenber C(K) = TPl(K, c(x), v(c(x)), v(x))

O(K) + 1 =BASE, + 1

SO

T (K ™ (K, o(K), V(c(K)), V(K)), V(c(K)), V(X))
Y

5 (%, C(K), V(C(K)), V(K))
aK + (i -1)

- BASE, + i - 1
So we generate the names

op' (K)

BASE,, BASE, + 1, .e..e BASE, + N -1

which are the elements of the vector A

This exanples is not exactly right since the string of names generated
does not include any names generated for the result operands. As nentioned in
a previous footnote, where the result operand nanes appear is a function of
the type of conputation performed, and therefore in order to sinplify the
exanpl e they have been i gnored.

EX 3: Let us generate the names of the diagonal elenments of a matrix A of
dimension N x N. Let A[l, J]= loc (BASQA + (1 - 1) N+ J-1).
W then have A [I, I] = loc(BASEA + (1-1) x (N + 1)). ¥or setting
up this conputation there is a very inportant point which must be
consi dered: whether the quantity (N + 1) shoul d be conputed each

tine, or whether it is a constant conputed only once. This problem

i —

—

e rm

r—

r— r—— r -

— r—

r—

15

points up a limtation of the recursion conputation capability

since there is no way to generate intermediate results and save them
for future steps in the conputation, except for the contents of
register K but if the value is changed at one step then it is
changed at all steps. It appears that for conplex data structures
to be done efficiently the conputational algorithm nust interact
with the nane generation nechanismto set up constants. Two
register configurations will be set up to illustrate both of the
ways the problem can be attacked:

Case 1 (N+ 1) is defined previously
Regi ster P c(p f N F
: Y 2
K BASEA Iw 0 KN1
KN N Iy 0
KNl N+1 Iy 0
Regi ster P S D £ N !
S) “p - B R
K + 0 ? Iy KN

W get

OPl(K) = ((K) = BASE,

qK =T, =K + VK

v

SO C

() = 7., = v(KN) = (W% 1)
(K)

QK + (N+1)

Case 2: (N + 1) is conputed.

The-on
c

f

|y change is register Xnl:

(KNL) = 1

A=+, Ny =0, B = KN

then V(KNL) = C(KNL) + V(KN) = (N + 1)

The pr

obl em of conputing the names of a row of a matrix: A[l,,*] are

simlar to the above problemsince A[l, *] = loe of

(BASE A

+ (1 -1) N J),J =1, . . N The quantity (I = 1) x ¥ would

need” to be pre-conputed or generated at each stage.

r—— rm

e

16

[11. Conputer Organization

The next sections are concerned with how the value generation and name
generation nmechani sm already discussed can be integrated into the framework of
a total conputer organization. The first section discusses a possible technique
for adding the auxiliary information to a nenory structure; the second section

di scusses an instruction format which can advantageously use the val ue end neme
generation nechanisnms; the final section is concerned with possible extensions.

A. Menory Layout
Before discussing the instruction format, it is worthwhile to consider a
possi bl e schema for the nmemory organization:

register K ¢ (X) - : P (X)

B R, - J3

-

A it
el

Attached to each register K we have a pointer, P (K), which points to a table
entry which contains 3additional pointers. . 'Each of 'these poi nters

(Jl, 5 JB?) 0 (K points into table containing, for each entry, a function
and two operands. W then get that -

(£

x’ ‘Nk’ Fk) = (f: N, F)

J1 p(K)

1 1
(the Mo Pl L (6%, B o

(gk. S, D) = (f: N, F)JB, p(K)

This double level technique for determning the auxiliary information has been
used since the 9 pieces of auxiliary information can be broken up into 3 groups,
each having the sane format. ‘

- i

Fe

r— r—

-

17

B. Instruction Fornat

The instructim formats have been designed to nmake full use of the inplicit
nane generation capability and therefore get high code density whenever possible,
There are three pieces of data which nust be either inplicitly or explicitly
stated in each instruction format:

1) OP - operation code;

2) K - the name of the cell generating the nanes of the operands;

3) J -the entry in the table (31, J2, J3) which specifies the auxiliary
informat | 0N.

Let us define KI, and JI as registers which contain values for K and J,
respectively. There are four basic instruction formats:

1) op - this instruction format is used when the name generation nechani sm
is fixed like a stack address nechanism 'The val ues of K.
are used for K J.
2a,b) OP-K - this instruction format is essentially a single address
instruction in which 5 = P(K). There could be another variation
withJ = JI.
3)OP-J-where K = x1. This instruction is advantageous when for one
instruction a different set of auxiliary informetion i s desired:
this is useful when the contents of a register is to be altered,
and the value of the register is not its contents.
4) OP-K-J, The justification for this format is simlar to that of
format 3.
There WII be other formats but they will be concerned with nodifying
poi nter variables P(K), KI, JI, entries (Jl,JZ,JB)*and(f,N,F)*.
Let us consider how the addressing schenes of conventional conputers can
be represented in this conputer organization.

* [t"is really not necessary to nodify these entries, therefore, they coul d
be located in a slow wite fast read memory.

18

Ex 1. Stack conputer - a conputer where instructions are just operation
codes and can be acconplished through the format OP, where Ki end J
point to a stack address nechanisnwprevioug;y di scussed.

Ex 2: Single address conputer - in this organization one operand is
contained in the instruction and the second and result operands
are the accunulator. Let us simulate this instruction format with
the format OP-K where J = J_. Let us define register A to be the

I

accumul ator. Consider the following auxiliary information for every
register

Sy = A Dy = A g =1y

Lo_ 1 1 _

Fp = N, =L =l
t hen CPl(K) = TI x, , |,) = K, first operand name

X

OPl(Sk) = OPl(A) =Tl (A , ,)=A second operand nane
X

In a simlar manner a conputer with an instruction format of single address
plus increnent can be inplemented using the format OP-K-J. 'If, in nost cases,
the index register associated with a variable is fixed, then the format
CP-K can be used. The format of the /360 with base registers can be acconplished
by using the format OP-J. The purpose of these exanples is to show how .
programmer could structure the generation of the nanes of the operand of a

computation so as to be nost efficient (high code density) for the particular
appl i cation.

V. Extensions and Further Research

In the section on value generation a limtation of this mechanism was
di scussed. This problem arises due to the inability to alter the value
generation al gorithm based on the conparison between two operands.. It is
bel i eved that this problemcan be remedied if the auxiliary information tied
to the nane-generation nechanism is used where conparisons are necessary. There
are 3 triplets of auxiliary information; |et one of these triplets be used to

nmake the conparison, and, based on the conparison, use one of the two remaining
triplets to generate the value of the register

r r r r— r—

 r—

e

r r— r r—

r—

r—

19

Another extension is oriented towards high code density. In the instruction
format previously nentioned the variable K which defined an address in nenory
was assuned to be large enough so as to address all of jrenory. In the B5500,

it was shown that through the use of a program reference table, the operand
address in an instruction could be méde to be much snmaller than the Iength of
memory, thereby increasing code density. The program reference table is an
address generation nechanismeasily simulated in this organization. -Therefore
it would seem reasonable to have instruction formats where the size of K was
smal ler than the length of menory. This smaller size K could also be used as
increnent quantity which would allow a sinulation of one of the IBM-360
instruction formats: RX
There are two inportant questions so far ignored, whose answers will
eventual |y decide the utility of the concepts developed in this paper:
1) Howcan the nane and val ue generation mechanisns be inplenented
in conputer hardware, and with what speed?
2) Can a conpiler for a higher |evel |anguage produce nachi ne code
whi ch takes tadvantage" of this data accessing nmechani sn?

Further research is intended to answer these questions.

r— r r—

r— r

r—

r

r—-

e

Bi bl i ogr aphy

1. McKeeman, WM Language directed conputer design. AFIPS Cont proc
1967 FICC pp 413-417.

2. lverson, KE A Programmng Language Wiley 1962,

3.Hol land, J.H A Universal Computer Capable of Executing an Arbitrary
Nunber of Subprograns Simultaneously. Proc. EJCC (1959).

4. Murtha, J. C Hghly Parallel Information Processing Systens.
Advances in Conputers, Vol. 7.

5. Standish, A A Data Definition Facility for Programmng Languages.
Ph.D Thesis, Department of Conputer Science, Carnegie-Mellon University.

6.Barton, R S., A New Approach to the Functional Design of a Digital Conputer
Proc. WICC 19, (1961) pp. 393-39%.

7. Cheatham T.E. The introduction of definitional facilities into higher
| evel programmng |anguages Proc. AFI PS FJcc(1966), 623-637.

8.Galler, B. and Perles, A J. A proposal for definitions in ArgoL
CACM 10(apri1 1967).

