ITERAT IVE REFINEMENTS OF

LINEAR LEAST SQUARES SOLUT IONS

BY HOUSEHOLDER TRANSFORMATIONS

BY
A․ BJÖRCK
G. GOLUB

TECHNICAL REPORT NO. CS 83
 JANUARY 19, 1968

COMPUTER SCIENCE DEPARTMENT
 School of Humanities and Sciences
 STANFORD UN IVERS ITY

Iterative Refinements of Linear Least Squares Solutions

by Householder Transformations.*

Contributed by A. Björck and G. Golub.**

Theoretical background

, Let A be a given $m \times n$ real matrix with $m>n$ and of rank n and b a given vector. Let A and b be partitioned

$$
\left.A=\left(\frac{A_{1}}{A_{2}}\right)\right\} \begin{aligned}
& m_{1} \times n \\
& m_{2} \times n
\end{aligned} \quad, \quad b=\left(\frac{b_{1}}{b_{2}}\right)
$$

where $m_{1} \leq n$ and assume that A_{1} has rank m_{1}. We wish to determine a vector x subject to the linear constraints

$$
\mathrm{A}_{1} \mathrm{x}=\mathrm{b}_{1}
$$

such that

$$
\left\|r_{2}\right\|=\min . \quad, \quad r_{2}=b_{2}-A_{2} x
$$

where II ... || indicates the euclidian norm.

[^0]Using Lagrange multipliers it is easily shown that the solution satisfies the system of equations

where λ is the vector of Lagrange parameters and $c=0$. For reasons which later will become evident we develop a method for solving (1) which works for an arbitrary vector c.

Let P be a permutation matrix which permutes the columns of A so that

$$
\mathrm{AP}=\binom{\mathrm{A}_{1}^{\prime}}{\hline \mathrm{A}_{2}^{\prime}}=\left(\begin{array}{l|l}
\mathrm{A}_{11}^{\prime} & \mathrm{A}_{12}^{\prime} \\
\hline \mathrm{A}_{21}^{\prime} & \mathrm{A}_{22}^{\prime}
\end{array}\right)
$$

where $A^{\prime}{ }_{11}$ is square and nonsingular. We now determine an orthogonal matrix Q_{11} so that

$$
\begin{equation*}
Q_{11} A_{1}^{\prime}=\left(R_{11} \mid R_{12}\right) \tag{2}
\end{equation*}
$$

where R_{11} is $m_{1} \times m_{1}$ and upper triangular. Next we put

$$
\begin{equation*}
Q_{12}=R_{11}^{-T} A_{21}^{i T} \quad, \quad A_{22}=A_{22}^{\prime}-Q_{12}^{T} R_{12} \tag{3}
\end{equation*}
$$

and determine an orthogonal transformation Q_{22} so that

$$
\begin{equation*}
\left.Q_{22} A_{22}=\left(\frac{R_{22}}{0}\right)\right\}(m-n) \times n \tag{4}
\end{equation*}
$$

where again R_{22} is upper triangular. Denote by R the $n \times n$ upper triangular matrix

$$
R=\left(\begin{array}{l|l}
\mathrm{R}_{11} & \mathrm{R}_{12} \\
\hline 0 & \mathrm{R}_{22}
\end{array}\right)
$$

Then it is easily verified that

$$
A P R^{-1}=\left(\begin{array}{c|c}
Q_{11} & Q_{12} \tag{5}\\
\hline 0 & \tilde{Q}_{22}
\end{array}\right)^{T}
$$

where

$$
\begin{equation*}
Q_{22}=\left(I_{n-m_{1}} \mid 0\right) Q_{22} \tag{6}
\end{equation*}
$$

and $I_{n-m_{1}}$ is an $\left(n-m_{1}\right) X\left(n-m_{1}\right)$ unit matrix. Thus if we define the-vectors

$$
\left.\left.\left.\mathrm{y}=\left(\frac{\mathrm{y}_{1}}{\mathrm{y}_{2}}\right)\right\}^{\mathrm{m}_{1}}\right\}^{\mathrm{n}-\mathrm{m}_{1}} \quad, \quad \mathrm{~d}=\left(\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}\right)\right\}^{\mathrm{m}_{1}}{ }^{\mathrm{n}-\mathrm{m}_{1}}
$$

by the relations

$$
\begin{equation*}
x=P R^{-1} y \quad, \quad d=P R^{-T} c \tag{7}
\end{equation*}
$$

then (1) can be written

$$
\left(\begin{array}{cc|cc}
0 & 0 & Q_{11}^{T} & 0 \tag{४}\\
0 & I & Q_{12}^{T} & \tilde{Q}_{22}^{T} \\
\hline Q_{11} & Q_{12} & 0 & 0 \\
0 & \tilde{Q}_{22} & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\lambda \\
r_{2} \\
\frac{y_{1}}{{ }_{2}} \\
y_{2}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\frac{d_{1}}{d_{2}}
\end{array}\right)
$$

Using the orthogonality of Q_{11} and Q_{22} we get the following algorithm for solving (1):

$$
\begin{aligned}
& y_{1}=Q_{11} b_{1} \\
& \left.g=Q_{22}\left(b_{2}-Q_{12}^{T} y_{1}\right)=\frac{g_{1}}{g_{2}}\right\}(m-u)^{\left(n-m_{1}\right)} \\
& y_{2}=g_{1}-d_{2} \\
& r_{2}=Q_{22}^{T}\left(\frac{d_{2}}{g_{2}}\right) \\
& \lambda=Q_{11}^{T}\left(d_{1}-Q_{12} r_{2}\right) .
\end{aligned}
$$

Here d is defined from (7) which \ddagger s also used for computing x.
A very effective method to realize the decompositions (2) and
is via Householder transformations [4]. Let $A^{\prime}=A^{(1)}$, and let
$A^{(k+1)}, k=1,2, \ldots, n, k \neq m_{1}$ be defined as follows

$$
A^{(k+1)}=P^{(k)_{A}(k)}
$$

$P^{(k)}$ is a symmetric, orthogonal matrix of the form

$$
p^{(k)}=I-\beta_{k} u^{(k)} u^{(k) T}
$$

where the elements of $p^{(k)}$ are derived so that

$$
\begin{aligned}
& a_{i, k}^{(k+1)}=0, \quad i=k+1, \ldots, m(k) \\
& m(k)= \begin{cases}m_{1}, & k<m_{1} \\
m, & k>m_{1}\end{cases}
\end{aligned}
$$

It follows that

$$
A_{1}^{\left(m_{1}\right)}=\left(R_{11} \mid R_{12}\right)
$$

and if we finally define

$$
A^{\left(m_{1}+1\right)}=\left(\begin{array}{l|l}
\mathrm{R}_{11} & \mathrm{R}_{12} \\
\hline 0 & \mathrm{~A}_{22}
\end{array}\right)
$$

where A_{22} is computed from (3 then $A^{(n+1)}=\left(\frac{R}{0}\right)$

It can be shown cf. [5] that $\mathrm{P}^{(\mathrm{k})}$ is generated as follows:

$$
\begin{aligned}
& \sigma_{k}=\left(\sum_{i=k}^{m(k)}\left(a_{i k}^{(k)}\right)^{2}\right)^{1 / 2} \\
& \beta_{k}=\left(\sigma_{k}\left(\sigma_{k}+\left|a_{k k}^{(k)}\right|\right)\right)^{-1} \\
& u_{i}^{(k)}=0 \text { for } i<k, \quad i>m(k) \\
& u_{k}^{(k)}=\operatorname{sgn}\left(a_{k k}^{(k)}\right)\left(\sigma_{k}+\left|a_{k k}^{(k)}\right|\right),
\end{aligned}
$$

$$
u_{1}^{(k)}=a_{i k}^{(k)} \text { for } k<i \leq m(k)
$$

The matrix $\mathrm{p}^{(\mathrm{k})}$ is not computed explicitly. Rather we note that

$$
A^{(k+1)}=\left(I-\beta_{k} u^{(k)} u^{(k) T}\right) A^{(k)}=A^{(k)}-u^{(k)} y_{k}^{T}
$$

where

$$
\mathrm{y}_{\mathrm{k}}^{\mathrm{T}}=\beta_{\mathrm{k}} \mathrm{u}^{(\mathrm{k}) \mathrm{T}_{\mathrm{A}}(\mathrm{k})}
$$

In computing the vector y_{k} and $A(k+1)$, one takes advantage of the zero components of $u^{(k)}$

- The permutation of the columns of A to obtain $A^{\prime}=A P$ is conveniently done at the same time. At the $k^{\text {th }}$ stage the column is chosen which will maximize $\left|a_{k k}^{(k+1)}\right|$. This will ensure that the matrix R_{11} is non-singular. Let

$$
s_{j}^{(k)}=\sum_{i=k}^{m(k)}\left(a_{i j}^{(k)}\right)^{2}, \quad j=k, k+l, \ldots, n .
$$

Then since $\left|a_{k k}^{(k+1)}\right|=\sigma_{k}$, one should choose that column for which $s_{j}^{(k)}$ is maximized. After $A^{(k+1)}, k \neq m_{1}$, has been computed, one can compute $\mathrm{s}_{\mathrm{j}}^{(\mathrm{k}+1)}$ as follows:

$$
s_{j}^{(k+1)}=s_{j}^{(k)}-\left(a_{k j}^{(k+1)}\right)^{2}
$$

since the orthogonal transformations leave the column lengths invariant. Because of the influence of rounding errors the first computed solution may not be sufficiently accurate in an ill-conditioned case. Provided the columns of A are not almost linearly dependent to working accuracy, the solution may be improved by the following iterative procedure. Put

and let ${ }_{z}(0)=$. The $s^{\text {th }}$ iteration involves the three steps:

$$
\begin{aligned}
& \text { (i) } f^{(s)}=h-B z^{(s)}, \\
& \text { (ii) } \delta z^{(s)}=B^{-1} f^{(s)}, \\
& \text { (iii) } z^{(s+l)}=z^{(s)}+\delta z^{(s)}
\end{aligned}
$$

It is essential that the residuals $f^{(s)}$ are computed using double precision accumulation of inner-products. We then solve for $\delta z^{(s)}$ by the method developed above, using the same decompostion in all iterations. Note that $f^{(s)}$ generally differs from zero also in the last n components, which explains why we did not assume $\mathrm{c}=0$ in (1).

It has been shown in [1] that if the iterations 'converge' then for sufficiently large s the accuracy in $\left(\frac{(}{z}\right)_{j}+\delta z^{(s)}$, will be approximately the same as if double precision had been used throughout without refinement.

Let the number of operations needed for the decomposition resp. one iteration step for a single right hand side be N_{d} resp. N_{s}. Then a simple calculation shows that

$$
\begin{aligned}
& N_{d}=\left[n^{2}\left(m-\frac{n}{3}\right)-m_{1} m_{2}\left(n-\frac{m}{2} 1\right)\right]\left(1+0\left(\frac{1}{n}\right)\right) s \cdot p . \\
& N_{s}=\left[\ln \left(m-\frac{n}{4}\right)-2 m_{1} m_{2}\right]\left(1+0\left(\frac{1}{n}\right)\right) \mathrm{s} \cdot \mathrm{p} \cdot+2 m n d \cdot p .
\end{aligned}
$$

where s.p. refers to single precision operations and d.p. to operations performed with double precision accumulation

Applicability

The algorithm least squares solution may be used to compute accurate solutions and residuals to linear least squares problems with or without linear constraints. It may also be used to compute accurate
solutions to systems of linear equations where A is a square matrix and to compute accurate inverses of such matrices. The procedure will fail when A_{1} or A modified by rounding errors has rank less than m_{1} or n respectively. It will also fail if A is so ill-conditioned that there is no perceptible improvement in the iterative refinement. The matrix A is retained in order to form the residuals. When $m \gg n$ the large storage requirement of this procedure might make it preferable to use instead a double precision version of the Householder decomposition without iterative refinement. Note that in the linear equation case the calculation of residuals may be suppressed by putting $m_{1}=m=n$.

Formal parameter list

	Input to procedure least squares
m_{1}	number of linear constraints $m_{1} \leq n$.
m	total number of equations
n	number of unknowns $\mathrm{n}<\mathrm{m}$
a	an $m x(n+1)$ array having the given matrix as first n columns
P	number of right hand sides
b	an mxp array containing the given right hand sides
eta	the largest number for which $1+$ eta $=1$ on the computer
singular	exit used when A_{1} or A modified by rounding errors has rank less than m_{1} or n respectively
fail	exit used when the iterative refinement fails to improve the solution

Output of procedure least squares
an $n x p$ array consisting of the p solution vectors res an $m_{2} x p$ array consisting of the p residuals vectors

ALGOL Program

procedure least squares solution(ml) data: (m,n,a,p,b,eta) failure exits: (singular, fail) result: (x, res);
value ml,m,n,p,eta;
integer $\mathrm{ml}, \mathrm{m}, \mathrm{n}, \mathrm{p}$; real eta;
array $a, b, x, r e s ; ~ l a b e l ~ f a i l, ~ s i n g u l a r ; ~$
comment The array $a[1: m, 1: n+1]$ contains in its first n columns the given matrix of an overdetermined system of m linear equations in n unknowns ($\mathrm{m} \geq \mathrm{n}$), where the first $m \mathrm{l}$ equations ($\mathrm{ml} \leq \mathrm{n}$) are to be strictly satisfied. For the p right hand sides given as columns of the array $b[1: m, 1: p]$ the least squares solution and the residuals are computed and stored in the columns of the arrays $x[1: n, 1: p]$ and res[ml+l:m,l:p] respectively。 If rank(a) < n or rank(al) < ml the emergency exit singular is used. If the iterative refinement fails to improve the solution sufficientily the exit fail is used. In either case b and the first n columns of a are left intact. The ($n+1$)st column in a is used as temporary storage for the sucessive right hand sides. Eta is the relative machine precision;

```
begin integer i,j,\ell;
    array x\ell[l:n+1], res\ell[l:m], alpha[l:n], qr[0:m,l:n];
    integer array pivot[l:n];
    real procedure innerprod(i,m,n,ai,bi,c);
    value m,n,c;
    real ai,bi,c; integer i,m,n;
begin real sum;
        sum:-0;
        for i:=m step 1 until n do sum:=sum+aixbi;
        innerprod:=sum+c
end innerprod;
    real procedure innerproddp(i,m,n,ai,bi,c);
    value m,n,c
    real ai,bi,c; integer i,m,n;
comment This procedure accumulates the sum of products aixbi
        and adds it to the initial value c in double precision.
        The body cf this procedure cannot be expressed in ALGOL.
        begin real sl,s2,(sl,s2):=0,
            for i:=m step 1 until n do
            (sl,s2):=(sl,s2)+aixbi, comment dbl.pr.acc.
            innerproddp:=((sl,s2)+c) rounded
        end innerproddp;
procedure decompose(ml)data:(m,n,eta) data and result:(qr)
    result: (alpha,pivot) failure exit:(singular);
value ml,m,n,eta;
integer ml,m,n; real eta; array qr, alpha;
```

integer array pivot; label singular;
comment Decompose uses essentially a sequence of elementary orthogonal transformations (I - beta $u u^{T}$) to determine a qr-decomposition of the matrix given in the array $\operatorname{qr}[1: m, I: n]$. The diagonal elements of the upper triangular matrix r are stored in the array alpha[l:n], the offdiagonal elements in the upper right triangular part of qr. The nonzero components of the vectors u are stored on and below the leading diagonal of qr. Pivoting is done by choosing at each step the column with the largest sum of squares to be reduced next. These interchanges are recorded in the array pivot[l:n]. If at any stage the sum of squares of the column to be reduced is exactly equal to zero then the emergency exit singular is used;
$\underline{\text { begin }}$ integer i,jgjbar,k,mr,s; boolean fsum;
real beta, sigma,alphak,qrkk, smax,y;array sum[1:n];
$m r:=m l ;$ fsum:= true;
for $j:=1$ step 1 until n do pivot $[j]:=j$;
for $k:=1$ step 1 until n do
begin comment k-th hpuseholder transformation;
if $k=m I+1$ then
begin fsum: $=$ true; mr:=m end;
if fsum then
piv: for $j:=k$ step 1 until n do
$\operatorname{sum}[j]:=i n n e r p r o d(i, k, \operatorname{mr}, \operatorname{ar}[i, j], \operatorname{qr}[i, j], 0) ;$
sigma:=sum[k]; jbar:=k;

```
for j:=k+1 step 1 until n do
if sigma < sum[j] then
begin sigma:=sum[j]; jbar:=j end;
if fsum then smax:=sigma; fsum:=sigma < etaxsmax;
if fsum then gote piv;
if jbar }\not=k\mathrm{ then
begin comment column interchange;
    i:=pivot[k]; pivot[k]:=pivot[jbar]; pivot[jbar]:=i;
    sum[jbar]:=sum[k];
    for i:=1 step 1 untilm do
    begin sigma:=qr[i,k];qr[i,k]:=qr[i,jbar];
        qr[i,jbar]:=sigma
    end i
end column interchange;
sum[k]:=sigma:=innerprodii,k,mr,qr[i,k],qr[i,k], 0);
if sigma = 0 then goto singular;
grkk:=qr[k,k]; alphak:=alpha[k]:='
if qrkk < 0 then sqrt(sigma) else -sqrt(sigma);
qr[k,k]:=qrkk-alphak:
beta:=qr[0,k]:=alphakXqr[k,k];
for j::=k+l step 1 until n do
begin y:=innerprod(i,k,mr,qr[i,k], qr[i,j], 0)/beta;
    for i:=k step I until mr do qr[i,j]:=qr[i,j]+yXqr[i,k];
    sum[j]:=sum[j] - qr[k,j]\uparrow2
end j;
if k-ml then
for j:=ml+l step I until m do
```

for $s:=1$ step 1 until n do
begin $m r:=$ if $s>m l$ then $m l$ else $s-l ;$
Y:"-innerprod(i,l,mr,qr[i,s],qr[j,i],-qr[j,s]);
$\operatorname{qr}[j, s]:=$ if $s>m l$ then y else $y / a l p h a[s]$
end s
end k-th householder-transformation
end decompose;
procedure accsolve(ml)data: (m,n,a, qr, alpha, pivot,eta) result: (x, res)
failure exit:(fail);
value ml,m,n,eta;
integer $\mathrm{ml}, \mathrm{m}, \mathrm{n}$; real eta; array a , qr,alpha,x,res;
integer array pivot; label fail;
comment Accsolve uses the decomposition of a stored in the array qr[1:m,l:n] by decompose for the iterative refinement of the least squares solution. The right hand side b is given in the $(n+1)$ st column of the array $a[1: m, 1: n+1]$. The residuals of the augmented system of $(m+n)$ equations are computed using the procedure innerproddp which forms accurate inner-products. As initial approximation is taken $x=r=0$, and the two first. iterations are always executed. The iterations are repeated as long as the norm of the correction at any stage is less than $1 / 8$ of that at the previous stage until the norm of the correction is less than epsilon times the norm of the solution. Exit to label fail is made if the solution fails to improve sufficiently;

begin integer $i, j, k, s ;$

real $c, n x, n r, n d x 1, n d x 2, n d r l, n d r 2, \in t a 2 ;$
array $f[1: m], g[1: n]$;
procedure householder (p, q, r, m);
value p, q, r, m; integer $p, q, r, m ;$
for $s:=p$ step q until r dc
begin :=innerprod(i,s,m,qr[i,si, f[i],0)/qr[0,s];
for $i:=s$ step 1 until m do $f[i]:=f[i]+\operatorname{CXqr}[i, s]$
end householder;
eta2: $=($ eta 2$) \uparrow 2 ; x[n+1]:=-1 ;$
comment initial values;
for $j:=1$ step 1 untiln do $x[j]:=g[j]:=0$;
for $i:=1$ step 1 until m do
begin $\operatorname{res}[i]:=0 ; f[i]:=a[i, n+1]$ end
for $k:=0,1, k+1$ while ($64 \times n d x 2<n d x l$ A $n d x 2>$ eta2xnx) V
(64×ndr2 < ndrl \wedge ndr2 > eta2Xnr! dc
begin comment k-th iteration step;

$$
\begin{aligned}
& \text { ndxl: }=n d x 2 \text {; ndri: }=\text { ndr2; ndx2: }=n d r 2:=0 \text {; } \\
& \text { if } k \neq 0 \text { then } \\
& \text { begin comment-new residuals; } \\
& \text { for } i s=1 \text { step } 1 \text { _until } m \text { do res } i j:=r e s[i]+f[i] ; \\
& \text { for } \mathrm{s}:=1 \text { step } 1 \text { until } \mathrm{n} \text { do } \\
& \text { begin } j:=\text { pivot }[s] ; x[j]:=x[j]+g[s] ; \\
& g[s]:=-\operatorname{innerproddp}(i, 1, m, a[i, j], r e s[i], 0) ; \\
& g[s]:-i n n e r \operatorname{prod}(i, 1, s-1, q r[i, s], g[i],-g[s]) / \\
& \text { alpha |s! }
\end{aligned}
$$

end;

$$
\begin{aligned}
& \text { for } i:=1 \text { step } 1 \text { until } m \text { do } \\
& f[i]:=-i n n e r p r o d d p(j, l, n+l, a[i, j], x[j], \\
& \underline{i f} i>m l \text { then } \operatorname{res}[i] \text { else } 0)
\end{aligned}
$$

end new residuals;
householder (l, l, ml, ml);
for $i:=m l+1$ step 1 until m do

$$
f[i]:=-i n n e r p r o d(s, l, m l, q r[i, s], f[s],-f[i])
$$

householder $(m l+1, l, n, m)$;
for $i:=1$ step 1 until n do
begin $c:=f[i] ; f[i]:=g[i] ;$
$g[i]:=i f$ i>ml then $c-g[i]$ else c
end;
for $\mathrm{s}:-\mathrm{n}$ step -1 until 1 do
begin $g[s]:=i n n e r p r o d(i, s+l, n, \operatorname{qr}[s, i], g[i],-g[s]) /$ alpha[s]; ndx2: $=n d x 2+g[s] \uparrow 2$
end;
householder $(\mathrm{n},-1, \mathrm{ml}+1, \mathrm{~m})$;
for $s:=1$ step 1 until ml do
$f[s]:=-i n n e r p r o d(i, m l+l, m, q r[i, s], f[i],-f[s]) ;$
householder (ml,-l,l,ml);
for $i:=1$ step 1 until m do
ndr2: $=n d r 2+f[i] \uparrow 2 ;$
if $k=0$ then begin $n x:=n d x 2 ; n r:=n d r 2$ end
end k-th iteration step;
if ndr2 $>$ eta2xnr A ndx2 $>$ eta2xnx then goto fail
end accsolve;
for $j:=1$ step 1 until n do
for $i:=1$ step 1 until m_do $q r[i, j]:=a[i, j]$;
decompose(ml,m,n,eta, qr,alpha, pivot, singular);
for $\ell:=1$ step 1 until p do
begin comment ℓ-th right hand side;
for $i:=1$ step 1 until m_do $a[i, n+1] ;=b[i, l]$;
accsolve(ml,m,n,a, qr,alpha, pivot,eta, $x \boldsymbol{\ell}$, res ℓ,fail);
for $j:=1$ step 1 until n do $x[j, \ell]:=x \ell[j]$;
for $i:=m l+1$ step 1 until m do res[i,l]:=resl[i]
end ℓ-th right hand side
end least squares;

Organizational and Notational Details

The array a containing the original matrix A is transferred to the array qr which serves as storage for $A^{(k)}$, The non-zero components of the vectors $u(k)$ and the derived matrix Q_{12} are stored on and below the leading diagonal of qr. The diagonal elements of R, the reduced matrix, are stored in the array α, and the elements β_{k} on row number zero in q.

The column sum of squares, ${\underset{j}{j}}_{(k)}^{(k)}$ is stored in the array sum. Naturally, the elements of this array are interchanged whenever the columns of $A^{(k+1)}$ are interchanged. The array pivot contains the order in which the columns are selected.

The recursive computation of ${\underset{j}{j}}_{(k)}^{(k)}$ will fail if A is sufficiently ill-conditioned. To prevent this ${ }_{{ }_{j}}^{(k)}$ are recomputed every time the condition

$$
\max _{k \leq j \leq n}{ }_{s}{ }_{\dot{j}}^{(k)}<\eta \cdot \max _{k^{\prime} \leq j \leq n} s \dot{j}^{\left(k^{\prime}\right)}
$$

is satisfied, where k^{\prime} is the last step at which this was done. Since the number of iterations needed is dependent on the right hand side the iterative refinement is executed for one right hand side at a time. During the refinement the current right hand side is transferred to the $(n+l)$ st column of A.

In accsolve the first set of solutions is taken to be null vectors, and the two first iteration steps are always executed. The iteration for the current right hand side is terminated when the conditions
(i) and (ii) below are simultaneously satisfied:
(i) $\quad\left\|\delta x^{(s)}\right\|_{2}>0.125\left\|\delta x^{(s-1)}\right\|_{2}$ or $\left\|\delta x^{(s)}\right\|_{2} \leq \eta \|_{x^{(1)}}^{\|_{2}}$
(ii) $\left\|\delta r^{(s)}\right\|_{2} \geq 0.125\left\|\delta r^{(s-1)}\right\|_{2}$ or $\left\|\delta r^{(s)} \leq \eta\right\|_{2}^{(1)} \|_{2}$.

If the iteration has been terminated and at the same time

$$
\left\|\delta x^{(s)}\right\|_{2}>2 \eta \|_{x^{(1)}}^{\|_{2}} \text { and }\left\|\delta r^{(s)}\right\|_{2}>2 \eta\left\|r^{(1)}\right\|_{2}
$$

then the exit fail is used.

Both a single precision and a double precision inner product routine are used. On a computer where double precision accumulation of inner products is fast, the double precision routine can be used throughout, Discussion of Numerical Properties

The procedure has been analyzed in $[1]$ for $m_{1}=0$ under the assumption that all inner-products are accumulated in double precision. (If single precision inner-products are used where possible, the bounds given below for the rate of convergence and the error will increase by a factor less than m.)

Let t_{1} and t_{2} be the number of binary digits in our single and double precision floating point mantissas. Put

$$
\alpha=32.6 \mathrm{n}^{3 / 2} 2^{-\mathrm{t}_{K}(\mathrm{~A})}
$$

where

$$
k(A)=\max _{\|x\|_{2}=1}\|A x\|_{2} / \max _{\|x\|_{2}=1}\|A x\|_{2}
$$

and assume that $\alpha<1$. If the errors made in computing the residuals and in adding the corrections can be neglected, then
where

$$
\kappa^{\prime}=(1-\alpha)^{-1 / 2} \kappa(A),
$$

and the "initial rate of convergence' ρ is bounded by

$$
\rho<38.7 n^{3 / 2}\left(k^{\prime}+\frac{1}{2}\right) 2^{-t} 1
$$

The process 'converges' if $\rho<1$. Then for sufficiently large s the errors will satisfy

$$
\binom{\left\|r-r^{(s)}\right\|_{2}}{\|A\|\left\|_{2}\right\| x-x^{(s)} \|_{2}}<(1-\rho)^{--_{k}}\binom{1}{k^{\prime}}=2^{-t_{1}}\binom{\|r\|_{2}}{\|A\|\left\|_{2}\right\| x \|_{2}},
$$

where-

$$
\begin{gathered}
K=14.4 n^{3 / 2} 2^{-2 t_{1}}\left(\left(\kappa^{\prime}+\frac{4}{3}\right)\|r\|_{2}+\frac{5}{3}\|A\|_{2}\|x\|_{2}\right)+ \\
1,0222^{-t t_{2}}\left(\kappa^{\prime}(\mathrm{m}+4)\|r\|_{2}+(n+5)\|A\|_{2}\|x\|_{2}\right)
\end{gathered}
$$

If $t_{2} \geq 2 t_{1}$ then the first term in K usually dominates, and $\left.\mathbf{X}^{s}\right)+\delta_{x}^{(s)}$ will ultimately have t_{1} more correct binary digits than $\mathrm{x}^{(1)}$. Note however that the process may well converge even if x_{x} (1) has relative error greater than 1 . 10 get full benefit of the refinement we ought to have $t_{2} \approx 2 t_{1}$, but there is nothing to be gained by taking t_{2} much greater than $2 t_{1}$ 。 Since it is possible to have $x=0$ or $r=0$, it is obvious that even when $p<1$, we cannot guarantee that (X) or $r^{(s)}$ ultimately will have a small relative error. Let

$$
\gamma=\left(k^{\prime}+\frac{4}{3}\right) \frac{\|r\|_{2}}{\|\mathrm{~A}\|_{2}\left\|_{\mathrm{x}}\right\|_{2}}
$$

and assume that $\rho<1 / 4$ and that the second term in K can be neglected. If

$$
\gamma<1.58 \frac{1}{\rho}
$$

then we will ultimately have

$$
\left\|x-x^{(s)}\right\|_{2}<2.2^{-t} l_{\|}\| \|_{2}
$$

Similarly if

$$
1,61_{p}<\gamma
$$

then ultimately

$$
\left\|r-r^{(s)}\right\|_{2}<202^{-t} 1\left\|r_{2}^{\prime \prime}\right\|_{2}
$$

Note that $r^{(s)}$ will converge to the exact residual corresponding to the correct solution x. When $\|r\| \ll\|A\|\|x\|$ these may be very different from the residual corresponding to x rounded to single precision. In many cases the later may be the more relevant.

Test Results

The procedure was tested on the CD 3600 (University of Uppsala) which, has $t_{1}=36$ and $t_{2}: 84$, with $\eta_{2}^{-36} \approx 1.510^{-11}$. The matrix A consists of the last six columns of the inverse of the 8×8 Hilbert matrix. For $m_{\perp}=0$ two right hand sides were treated. The: first, b_{1} is chosen so that the system $A x=b_{1}$ is compatible i.e. $r=0$. The second, b_{2}, is obtained by adding to b_{l} a vector orthogonal to the columns of A, the length of which was adjusted so that ${ }^{-}$

$$
\left(k^{2}+\frac{4}{3}\right) \frac{\|r\|_{2}}{\|\mathrm{~A}\|_{2}\|\mathrm{x}\|_{2}} \approx \frac{1}{2} \cdot 10^{6}
$$

Thus in both cases the exact solution is the same, namely

$$
x:=(1 / 3, \quad 1 / 4,1 / 5,1 / 6,1 / 7,1 / 8)^{\mathrm{T}}
$$

Due to the large residuals in the second case however, this system is much more ill-conditioned cf. [1]. For $m_{1}=2$ the same matrix A and the right hand sides b_{1} and b_{3} was used where b_{3} was obtained by changing b_{2} in its first two components so that the exact solution x remains the same. Note that ali problems are so ill-conditioned that $t_{1}>32$ is required for convergence.

The results for $m_{1}=0$ confirms that the initial rate of convergence" is independent of the right hand side. In fact (disregarding the first step) the errors in the components of x and r decreases initially with a factor approximately equal to 10^{-3}. For economy of presentation, we have given only the last six components of $r^{(s)}$; the behavior of the other components is exactly analogous. For the right hand side $b_{1}, x^{(4)}$ is already correct to working accuracy y_{0} The iteration is terminated after the computation of $6 x^{(5)}$ and $6 r^{(5)}$ when the condition $\left\|\delta r{ }^{(5)}\right\|_{2}<\eta\left\|r^{(1)}\right\|_{2}$ is satisfied. For the right hand side $b_{2}, x^{(1)}$ is in error by a factor almost equal to 10 : The iteration is again terminated after $\delta x^{(5)}$ and $x^{(5)}$ is correct to working accuracy. This accuracy which seems to be more than could be expected is explained by the fact that the residuals ($b_{2}-A x$) are integers which can be represented exactly in the machine. In fact (s) r exactly equals r for $s \geq 4$ which makes the problem no more ill-conditioned when $s>4$ than for the rohos.b ${ }_{l}$.

The behavior when $m_{1}=2$ is exactly analogous. Note however that the rate of convergence is faster almost by a factor of 10° compared to the case $m_{1}=0$. For the right hand sides b_{1} and b_{3}

```
five respectively four steps of the iteration are executed. For b , ,
already x (3) is correct to working accuracy and for }\mp@subsup{\textrm{b}}{3}{},\mathrm{ , (4)
almost correct.
```

$$
\begin{aligned}
& \text { Example } \\
& \begin{array}{c}
B \\
8409945 \\
4159680 \\
3256120 \\
-1360 \times 0 \\
7279440 \\
-6095488 \\
6305100 \\
-339960
\end{array} \\
& 9 \vdash 6
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
0 \\
0 \\
0 \\
0 \\
\infty \\
0 \\
\\
1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
&
\end{aligned}
$$

$$
\begin{aligned}
& \\
& \mathrm{x}^{(\mathrm{s})}, \mathrm{s}=1,2,3,4 . \\
& \begin{array}{lll}
1.42834 & 14088_{10^{-1}} & 1.2497682424_{10^{-1}} \\
1.42857 & 18638_{10^{-1}} & 1.25000 \\
1.42857 & 14287_{10^{-1}} & 1.2500000001_{10^{-1}} \\
1.42857 & 14286_{10^{-1}} \\
1.1 & 1.2500000000_{10^{-1}}
\end{array} \\
& 2.3334899208{ }_{10}-04 \\
& -6.75178 \quad 3345810^{-07}
\end{aligned}
$$

$$
\begin{aligned}
& -7.779096172310^{-15}-7.3781706 .36310^{-15} \\
& I_{q} \operatorname{sqx} \quad{ }^{\prime} 0=1 w \\
& 1.9997968894_{10^{-1}} \quad 1.66644
\end{aligned}
$$

$$
\begin{aligned}
& 2.4613701048{ }_{10} 0.04 \quad 2.505050648010^{-04} \\
& \text { LU-OI LLE80 } 8
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
2.49983 \\
2.50000 \\
2.03124_{10} 1_{0}^{-1} \\
2.50000 \\
2.500001 \\
10^{-1} \\
2.500000 \\
10^{-1}
\end{array}
\end{aligned}
$$

$5.0 .5114 \quad{ }^{5} 3416_{10^{-07}}$
$3.6521771718_{10^{-11}}$
$\begin{aligned} & 1.953007017410^{-13} \\ & 4.3702704750,10^{-15}\end{aligned}$

$m_{1}=2$, rhs b_{3}			$x^{(s)}, s$	2, 2,4					
5.40912343520^{-1}	$6.56 .3469054210^{-1}$	7.60691	8041810^{-1}	8.39395	$19792{ }_{1} n^{-1}$	8.94072	75250^{-1}	9.29507	$234+30^{-4}$
$\therefore .35414 \quad 7892010^{-1}$	2.501556362810^{-1}	2.00211	4205210^{-1}	1.66917	$52116{ }_{10}{ }^{-1}$	1.4.3134	${ }^{0} 113610^{-1}$	1. 3585	$5^{6080} 19^{-4}$
$3.33333 \quad 3524110^{-1}$	2.50000035911^{-1}	2.00000	0482810^{-1}	\therefore, FGFG6	$72353_{10}{ }^{-1}$	1.42857	20540,1	1.25000	0G6:
3.33333 33334 10^{-1}	2.500000000110^{-1}	2.00000	0000110^{-1}	1.66666	6666810^{-1}	1.42857	${ }^{14287} 10^{-1}$	1.2500^{0}	00001.100^{-4}
			$x^{(s)}, \quad s$, 3					
2.79993427420^{+6}	$2.10010 \quad 54284{ }_{10}+6$	1.68006	$97605_{10}+6$	1.40000	5206510^{+6}	1.19994	836100^{+6}	1.04900	$48262+0+6$
$2.79999997 \times 0.10^{+6}$	2.10000902200^{+4}	1.68009	00222100^{+6}	1. 10000	$001200_{10}+6$	1.20000	0901010^{+6}	1.04999	$99914_{10}+6$
2.800000000^{-6}	$2.100000000010^{7 .}$	1.08000	00000_{10}	6. 1 (mi)	, bumen ${ }^{-6}$		(ivinu 10^{+6}	1. 195000	00000 10^{+6}

[2] Businger P. and Golub, G. H.: Linear Least Squares Solutionsby Householder Transformations. Num. Math. 7, 269-276 (1965).
[3] Golub,, Go Ho: Numerical Methods for Solving Linear Least SquaresProblems. Num. Math. 7, 206-216(1965).
[4] Householder, A. S.: Unitary Triangularization of a NonsymmetricMatrix. Assoc. Comput. Mach. 5, 339-342 (1958).
[5] Wilkinson, J. H..: Householders Method for Symmetric Matrices.Num. Math. 4, 354-361 (1962)。

[^0]: *This work was supported by the Swedish Natural Science Research Council. **The work of this author was in part supported by NSF and ONR.

