ITERAT IVE REFINEMENTS OF LINEAR LEAST SQUARES SOLUTIONS BY HOUSEHOLDER TRANSFORMATIONS

BY Å. BJÖRCK G. GOLUB

TECHNICAL REPORT NO. CS 83

JANUARY 19, 1968

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UN IVERS ITY

Iterative Refinements of Linear Least Squares Solutions

by Householder Transformations.*

Contributed by A. Björck and G. Golub.**

Theoretical background

, Let A be a given $m \times n$ real matrix with m > n and of rank n and b a given vector. Let A and b be partitioned

$$A = \left(\frac{A_1}{A_2}\right) \sum_{m_2 \times n}^{m_1 \times n} , \qquad b = \left(\frac{b_1}{b_2}\right)$$

where $\mathbf{m_1} \leq n$ and assume that $\mathbf{A_1}$ has rank $\mathbf{m_1}$. We wish to determine a vector x subject to the linear constraints

$$A_1x = b_1$$

such that

$$\|\mathbf{r}_2\| = \min.$$
, $\mathbf{r}_2 = \mathbf{b}_2 - \mathbf{A}_2 \mathbf{x}$,

where \parallel ... \parallel indicates the euclidian norm.

^{*}This work was supported by the Swedish Natural Science Research Council.

^{**}The work of this author was in part supported by NSF and ONR.

Using Lagrange multipliers it is easily shown that the solution satisfies the system of equations

$$\begin{pmatrix}
0 & 0 & A_1 \\
\hline
0 & I & A_2 \\
\hline
A_1^T & A_2^T & 0
\end{pmatrix}
\begin{pmatrix}
\lambda \\
r_2 \\
x
\end{pmatrix} = \begin{pmatrix}
b_1 \\
b_2 \\
c
\end{pmatrix}$$
(1)

where λ is the vector of Lagrange parameters and c=0 . For reasons which later will become evident we develop a method for solving (1) which works for an arbitrary vector c .

Let ${\tt P}$ be a permutation matrix which permutes the columns of ${\tt A}$ so that

$$AP = \begin{pmatrix} A_{1}' \\ \overline{A_{2}'} \end{pmatrix} = \begin{pmatrix} A_{11}' & A_{12}' \\ \overline{A_{21}'} & \overline{A_{22}'} \end{pmatrix}$$

where A' is square and nonsingular. We now determine an orthogonal matrix \mathbf{Q}_{11} so that

$$Q_{11}A_1' = (R_{11} | R_{12}),$$
 (2)

where R_{11} is $m_1 \times m_1$ and upper triangular. Next we put

$$Q_{12} = R_{11}^{-T} A_{21}^{T}$$
, $A_{22} = A_{22}^{T} - Q_{12}^{T} R_{12}$ (3)

and determine an orthogonal transformation \mathbf{Q}_{22} so that

$$Q_{22}A_{22} = \left(\frac{R_{22}}{O}\right)_{(m-n) \ X \ n}$$
 (4)

where again R_{22} is upper triangular. Denote by R the nXn upper triangular matrix

$$R = \begin{pmatrix} \frac{R_{11}}{O} & \frac{R_{12}}{R_{22}} \end{pmatrix}$$

Then it is easily verified that

$$APR^{-1} = \left(\begin{array}{c|c} Q_{11} & Q_{12} \\ \hline 0 & Q_{22} \end{array}\right)^{T}$$
 (5)

where

$$Q_{22} = (I_{n-in} | 0) Q_{22}$$
 (6)

and \mathbf{I}_{n-m_1} is an $(n-m_1)$ X $(n-m_1)$ unit matrix. Thus if we define the-vectors

$$y = \left(\frac{y_1}{y_2}\right)_{n-m_1}^{m_1} , \quad d = \left(\frac{d_1}{d_2}\right)_{n-m_1}^{m_1}$$

by the relations

$$x = PR^{-1}y$$
 , $d = PR^{-T}c$ (7)

then (1) can be written

$$\begin{pmatrix}
0 & 0 & Q_{11}^T & 0 \\
0 & I & Q_{12}^T & \widetilde{Q}_{22}^T \\
Q_{11} & Q_{12} & 0 & 0 \\
0 & \widetilde{Q}_{22} & 0 & 0
\end{pmatrix}
\begin{pmatrix}
\lambda \\
r_2 \\
y_1 \\
y_2
\end{pmatrix} = \begin{pmatrix}
b_1 \\
b_2 \\
d_1 \\
d_2
\end{pmatrix}$$
(8)

Using the orthogonality of Q_{11} and Q_{22} we get the following algorithm for solving (1):

$$y_{1} = Q_{11}b_{1}$$

$$g = Q_{22}(b_{2} - Q_{12}^{T}y_{1}) = \frac{g_{1}}{g_{2}} \}^{(n-m_{1})}$$

$$y_{2} = g_{1} - d_{2}$$

$$r_{2} = Q_{22}^{T} \left(\frac{d_{2}}{g_{2}}\right)$$

$$\lambda = Q_{11}^{T}(d_{1} - Q_{12}r_{2}).$$

Here d is defined from (7) which $\ensuremath{\boldsymbol{\mathsf{i}}} \ensuremath{\boldsymbol{\mathsf{s}}}$ also used for computing x .

A very effective method to realize the decompositions (2) and (4) is via Householder transformations [4]. Let $A' = A^{(1)}$, and let $A^{(k+1)}$, $k=1,2,\ldots,n$, $k\neq m_1$ be defined as follows

$$A^{(k+1)} = P^{(k)}A^{(k)}$$

 $P^{(k)}$ is a symmetric, orthogonal matrix of the form

$$P^{(k)} = I - \beta_k u^{(k)} u^{(k)T}$$

where the elements of $_{\text{P}}^{(k)}$ are derived so that

$$a_{i,k}^{(k+1)} = 0$$
, $i = k+1,..., m(k)$,
 $m(k) = \begin{cases} m_1, & k < m_1 \\ m, & k > m_1 \end{cases}$

It follows that

$$A_1^{(m_1)} = (R_{11} | R_{12})$$

and if we finally define

$$A^{(m_1+1)} = \left(\frac{R_{11} | R_{12}}{0 | A_{22}}\right)$$

where A_{22} is computed from (3 then $A^{(n+1)} = \left(\frac{R}{O}\right)$

It can be shown cf. [5] that $P^{(k)}$ is generated as follows:

$$\sigma_{k} = (\sum_{i=k}^{m(k)} (a_{ik}^{(k)})^{2})^{1/2}$$

$$\beta_{k} = (\sigma_{k}(\sigma_{k} + |a_{kk}^{(k)}|))^{-1}$$

$$u_{i}^{(k)} = \mathbf{0} \quad \text{for } i < k, \quad i > m(k)$$

$$u_{k}^{(k)} = \text{sgn}(a_{kk}^{(k)})(\sigma_{k} + |a_{kk}^{(k)}|),$$

$$u_{1}^{(k)} = a_{ik}^{(k)} \quad \text{for } k < i \le m(k).$$

The matrix $P^{(k)}$ is not computed explicitly. Rather we note that

$$A^{(k+1)} = (I - \beta_k u^{(k)} u^{(k)T}) A^{(k)} = A^{(k)} - u^{(k)} y_k^T$$

where

$$y_k^T = \beta_k u^{(k)T} A^{(k)}$$

In computing the vector \mathbf{y}_k and $\mathbf{A}^{\left(k+1\right)}$, one takes advantage of the zero components of $\mathbf{u}^{\left(k\right)}$

The permutation of the columns of A to obtain A' = AP is conveniently done at the same time. At the kth stage the column is chosen which will maximize $|a_{kk}^{(k+1)}|$. This will ensure that the matrix R_{11} is non-singular. Let

$$s_{j}^{(k)} = \sum_{i=k}^{m(k)} (a_{ij}^{(k)})^{2}$$
, $j = k, k+1, ..., n$.

Then $\text{since}|a_{kk}^{(k+1)}| = \sigma_k$ one should choose that column for which $s_j^{(k)}$ is maximized. After $A^{(k+1)}$, $k \neq m_1$, has been computed, one can compute $s_j^{(k+1)}$ as follows:

$$s_{j}^{(k+1)} = s_{j}^{(k)} - (a_{kj}^{(k+1)})^{2}$$

since the orthogonal transformations leave the column lengths invariant.

Because of the influence of rounding errors the first computed solution may not be sufficiently accurate in an ill-conditioned case. Provided the columns of A are not almost linearly dependent to working accuracy, the solution may be improved by the following iterative procedure. Put

$$B = \begin{pmatrix} 0 & 0 & A_1 \\ \hline 0 & I & A_2 \\ \hline A_1^T & A_2^T & 0 \end{pmatrix} , \quad z = \begin{pmatrix} \lambda \\ \hline r_2 \\ \hline x \end{pmatrix} , \quad h = \begin{pmatrix} b_1 \\ \overline b_2 \\ \hline 0 \end{pmatrix} .$$

and let $z^{(0)} = 1$. The sth iteration involves the three steps:

(i)
$$f^{(s)} = h - Bz^{(s)}$$

(ii)
$$\delta z^{(s)} = B^{-1} f^{(s)}$$
,

(iii)
$$z^{(s+1)} = z^{(s)} + \delta z^{(s)}$$
.

It is essential that the residuals $f^{(s)}$ are computed using double precision accumulation of inner-products. We then solve for $\delta z^{(s)}$ by the method developed above, using the same decompostion in all iterations. Note that $f^{(s)}$ generally differs from zero also in the last n components, which explains why we did not assume c=0 in (1).

It has been shown in [1] that if the iterations 'converge' then for sufficiently large s the accuracy in $(z^{(s)} + \delta z^{(s)})$ will be approximately the same as if double precision had been used throughout without refinement.

Let the number of operations needed for the decomposition resp. one iteration step for a single right hand side be $\rm ^N_d$ resp. $\rm ^N_s$. Then a simple calculation shows that

$$N_{d} = \left[n^{2}(m - \frac{n}{3}) - m_{1}m_{2}(n - \frac{m}{2}1)\right] (1 + O(\frac{1}{n})) \text{ s.p.}$$

$$N_s = \left[l_n(m - \frac{n}{4}) - 2m_1 m_2 \right] (1 + O(\frac{1}{n})) \text{ s.p.} + 2mn \text{ d.p.}$$

where s.p. refers to single precision operations and d.p. to operations performed with double precision accumulation

Applicability

The algorithm least squares solution may be used to compute accurate solutions and residuals to linear least squares problems with or without linear constraints. It may also be used to compute accurate

solutions to systems of linear equations where A is a square matrix and to compute accurate inverses of such matrices. The procedure will fail when A_1 or A modified by rounding errors has rank less than m_1 or n respectively. It will also fail if A is so ill-conditioned that there is no perceptible improvement in the iterative refinement. The matrix A is retained in order to form the residuals. When $m \gg n$ the large storage requirement of this procedure might make it preferable to use instead a double precision version of the Householder decomposition without iterative refinement. Note that in the linear equation case the calculation of residuals may be suppressed by putting $m_1 = m = n$.

Formal parameter list

Input to procedure <u>least squares</u>

b an mxp array containing the given right hand sides eta the largest number for which 1 + eta = 1 on the computer

singular exit used when A_1 or A modified by rounding errors has rank less than m_1 or n respectively exit used when the iterative refinement fails to improve the solution

Output of procedure least squares

x an nXp array consisting of the p solution vectors

res an $m_p x_p$ array consisting of the p residuals vectors

ALGOL Program

procedure least squares solution(ml) data: (m,n,a,p,b,eta) failure

exits: (singular, fail) result: (x, res);

value ml,m,n,p,eta;

integer ml,m,n,p; real eta;

array a,b,x,res; label fail, singular;

comment The array a[1:m,1:n+1] contains in its first n columns the given matrix of an overdetermined system of m linear equations in n unknowns $(m \ge n)$, where the first ml equations $(ml \le n)$ are to be strictly satisfied. For the p right hand sides given as columns of the array b[1:m,1:p] the least squares solution and the residuals are computed and stored in the columns of the arrays x[1:n,1:p] and res[ml+1:m,1:p] respectively. If rank(a) < n or rank(al) < ml the emergency exit singular is used. If the iterative refinement fails to improve the solution sufficiently the exit fail is used. In either case b and the first n columns of a are left intact. The (n+1)st column in a is used as temporary storage for the successive right hand sides. Eta is the relative machine precision;

```
begin integer i,j,l;
      array x\ell[1:n+1], res\ell[1:m], alpha[1:n], qr[0:m,1:n];
      integer array pivot[l:n];
      real procedure innerprod(i,m,n,ai,bi,c);
      value m,n,c;
      real ai,bi,c; integer i,m,n;
     begin real sum;
            sum:-0;
            for i:=m step 1 until n do sum:=sum+aixbi;
            innerprod:=sum+c
      end innerprod;
      real procedure innerproddp(i,m,n,ai,bi,c);
     value m,n,c
     real ai, bi, c; integer i, m, n;
      comment This procedure accumulates the sum of products aiXbi
              and adds it to the initial value c in double precision.
              The body of this procedure cannot be expressed in ALGOL.
              begin real sl,s2, (sl,s2):=0,
                    for i:=m step 1 until n do
                    (s1,s2):=(s1,s2)+aixbi, comment dbl.pr.acc.
                    innerproddp:=((sl,s2)+c) rounded
              end innerproddp;
     procedure decompose(ml)data:(m,n,eta) data and result:(qr)
                result: (alpha, pivot) failure exit: (singular);
     value ml,m,n,eta;
     integer ml,m,n; real eta; array qr, alpha;
```

integer array pivot; label singular;

comment Decompose uses essentially a sequence of elementary orthogonal transformations (I - beta u u T) to determine a qr-decomposition of the matrix given in the array qr[l:m,l:n]. The diagonal elements of the upper triangular matrix r are stored in the array alpha[l:n], the offdiagonal elements in the upper right triangular part of qr. The nonzero components of the vectors u are stored on and below the leading diagonal of qr. Pivoting is done by choosing at each step the column with the largest sum of squares to be reduced next. These interchanges are recorded in the array pivot[l:n]. If at any stage the sum of squares of the column to be reduced is exactly equal to zero then the emergency exit singular is used;

```
begin integer i,j,jbar,k,mr,s; boolean fsum;
    real beta,sigma,alphak,qrkk,smax,y;array sum[l:n];
    mr:= ml; fsum:= true;
    for j:=l step 1 until n do pivot[j]:=j;
    for k:=l step 1 until n do
    begin comment k-th hpuseholder transformation;
        if k=ml+l then
        begin fsum:=true; mr:=m end;
        if fsum then
    piv: for j:=k step 1 until n do
        sum[j]:=innerprod(i,k,mr,qr[i,j], qr[i,j], 0);
        sigma:=sum[k]; jbar:=k;
```

```
for j:=k+l step 1 until n do
if sigma < sum[j] then
begin sigma:=sum[j]; jbar:=j end;
if fsum then smax:=sigma; fsum:=sigma < etaXsmax;
if fsum then goto piv;
if jbar ≠ k then
begin comment column interchange;
      i:=pivot[k]; pivot[k]:=pivot[jbar]; pivot[jbar]:=i;
      sum[jbar]:=sum[k];
      for i:=1 step 1 until m do
      begin sigma:=qr[i,k]; qr[i,k]:=qr[i,jbar];
            qr[i,jbar]:=sigma
      end i
end column interchange;
sum[k]:=sigma:=innerprod(i,k,mr,qr[i,k], qr[i,k], 0);
if sigma = 0 then goto singular;
grkk:=qr[k,k]; alphak:=alpha[k]:=
<u>if</u> qrkk < 0 then sqrt(sigma) else -sqrt(sigma);
qr[k,k]:=qrkk-alphak;
beta:=qr[0,k]:=alphakxqr[k,k];
for j:=k+l step 1 until n do
begin y:=innerprod(i,k,mr,qr[i,k], qr[i,j], 0)/beta;
      for i:=k step 1 until mr do qr[i,j]:=qr[i,j]+yxqr[i,k];
      sum[j]:=sum[j] - qr[k,j]^2
end j;
if k-ml then
for j:=ml+l step l until m do
```

```
for s:=1 step 1 until n do
            begin mr:= if s>ml then ml else s-l;
                  y: "_innerprod(i,l,mr,qr[i,s],qr[j,i],-qr[j,s]);
                  qr[j,s]:= if s>ml then y else y/alpha[s]
            end s
      end k-th householder-transformation
end decompose;
procedure accsolve(ml)data:(m,n,a,qr,alpha,pivot,eta) result:(x,res)
            failure exit: (fail);
value ml,m,n,eta;
integer ml,m,n; real eta; array a,qr,alpha,x,res;
integer array pivot; label fail;
comment Accsolve uses the decomposition of a stored in the array
        gr[l:m,l:n] by decompose for the iterative refinement of the
        least squares solution. The right hand side b is given in
        the (n+1)st column of the array a[1:m,1:n+1]. The
        residuals of the augmented system of (m+n) equations are
        computed using the procedure innerproddp which forms accurate
        inner-products. As initial approximation is taken x=r=0,
        and the two first iterations are always executed. The
        iterations are repeated as long as the norm of the correction
        at any stage is less than 1/8 of that at the previous stage
        until the norm of the correction is less than epsilon times
        the norm of the solution. Exit to label fail is made if the
        solution fails to improve sufficiently;
```

```
begin integer i,j,k,s;
      real c,nx,nr,ndx1,ndx2,ndr1,ndr2,eta2;
      array f[1:m], g[1:n];
      procedure householder(p,q,r,m);
      value p,q,r,m; integer p,q,r,m;
      for s:=p step q until r dc
      begin :=innerprod(i,s,m,qr[i,s], f[i], 0)/qr[0,s];
            for i:=s step l until m do f[i]:=f[i] + cXqr[i,s]
      end householder;
      eta2:=(eta12)12; x[n+1]:=-1;
      comment initial values;
      for j:=1 step 1 untiln do x[j]:=g[j]:=0;
     for i:=l step l until m do
      begin res[i]:=0; f[i]:=a[i,n+1] end
      for k:=0,1,k+1 while (64x n dx^2 < n dx 1 A n dx^2 > eta2x nx) V
      (64xndr2 < ndr1 \land ndr2 > eta2xnr) dc
     begin comment k-th iteration step;
            ndxl:=ndx2; ndrl:=ndr2; ndx2:=ndr2:=0;
           if k \neq 0 then
            begin comment-new residuals;
                  for is=1 step 1 until m do res[i]:=res[i] + f[i];
                  for s:=1 step 1 until n do
                  begin j:=pivot[s]; x[j]:=x[j] + g[s];
                        g[s]: =-innerproddp(i,1,m,a[i,j], res[i], 0);
                        g[s] = innerprod(i,l,s-l,qr[i,s], g[i], -g[s])/
                        alpha s
```

```
end;
                  for i:=1 step 1 until m do
                  f[i]:=-innerproddp(j,l,n+l,a[i,j], x[j],
                  <u>if</u> i > ml then res[i] <u>else</u> 0)
      end new residuals;
      householder(1,1,m1,m1);
      for i:=ml+l step 1 until m do
      f[i]:=-innerprod(s,1,ml,qr[i,s], f[s], -f[i]);
      householder(ml+l,1,n,m);
      for i:=1 step 1 until n do
      begin c:=f[i]; f[i]:=g[i];
            g[i]:=if i>ml then c-g[i] else c
      end;
      for s:-n step -1 until 1 do
      begin g[s]:=innerprod(i,s+l,n,qr[s,i], g[i], -g[s])/
            alpha[s]; ndx2:=ndx2+g[s]†2
      end;
      householder(n,-1,ml+1,m);
      for s:=1 step 1 until ml do
      f[s]:=-innerprod(i,ml+l,m,qr[i,s], f[i], -f[s]);
      householder(ml,-1,1,ml);
      for i:=1 step 1 until m do
      ndr2:=ndr2+f[i]†2;
     if k = 0 then begin nx:=ndx2; nr:=ndr2 end
end k-th iteration step;
     if ndr2 > eta2Xnr A ndx2 > eta2Xnx then goto fail
```

```
end accsolve;
for j:=l step 1 until n do
for i:=l step 1 until m do qr[i,j]:=a[i,j];
decompose(ml,m,n,eta,qr,alpha,pivot,singular);
for l:=l step 1 until p do
begin comment l-th right hand side;

for i:=l step 1 until m do a[i,n+l];=b[i,l];
accsolve(ml,m,n,a,qr,alpha,pivot,eta,xl,resl,fail);
for j:=l step 1 until n do x[j,l]:=xl[j];
for i:=ml+l step 1 until m do res[i,l]:=resl[i]
end l-th right hand side
```

Organizational and Notational Details

The array a containing the original matrix A is transferred to the array qr which serves as storage for $A^{(k)}$. The non-zero components of the vectors $u^{(k)}$ and the derived matrix Q_{12} are stored on and below the leading diagonal of qr . The diagonal elements of R, the reduced matrix, are stored in the array α , and the elements β_k on row number zero in qr .

The column sum of squares, $s_{\hat{j}}^{(k)}$, is stored in the array sum. Naturally, the elements of this array are interchanged whenever the columns of $A^{(k+1)}$ are interchanged. The array pivot contains the order in which the columns are selected.

The recursive computation of $s_j^{(k)}$ will fail if A is sufficiently ill-conditioned. To prevent this $s_j^{(k)}$ are recomputed every time the condition

$$\max_{k \le j \le n} s_j^{(k)} < \eta \cdot \max_{k' \le j \le n} s_j^{(k')}$$

is satisfied, where k' is the last step at which this was done. Since the number of iterations needed is dependent on the right hand side the iterative refinement is executed for one right hand side at a time. During the refinement the current right hand side is transferred to the (n+1)st column of A .

In accoolve the first set of solutions is taken to be null vectors, and the two first iteration steps are always executed. The iteration for the current right hand side is terminated when the conditions

(i) and (ii) below are simultaneously satisfied:

(i)
$$\|\delta x^{(s)}\|_{2} > 0.125 \|\delta x^{(s-1)}\|_{2} \text{ or } \|\delta x^{(s)}\|_{2} \le \eta \|x^{(1)}\|_{2}$$

(ii)
$$\|\delta r^{(s)}\|_{2} \ge 0.125 \|\delta r^{(s-1)}\|_{2}$$
 or $\|\delta r^{(s)}\|_{2} \le \eta \|r^{(1)}\|_{2}$.

If the iteration has been terminated and at the same time

$$\|\delta x^{(s)}\|_{2} > 2\eta \|x^{(1)}\|_{2}$$
 and $\|\delta r^{(s)}\|_{2} > 2\eta \|r^{(1)}\|_{2}$,

then the exit fail is used.

|-

Both a single precision and a double precision inner product routine are used. On a computer where double precision accumulation of inner products is fast, the double precision routine can be used throughout,

Discussion of Numerical Properties

The procedure has been analyzed in [1] for $m_1 = 0$ under the assumption that <u>all</u> inner-products are accumulated in double precision. (If single precision inner-products are used where possible, the bounds given below for the rate of convergence and the error will increase by a factor less than m.)

Let t_1 and t_2 be the number of binary digits in our single and double precision floating point mantissas. Put

$$\alpha = 32.6 \, \text{n}^{3/2} \, \text{2}^{-\text{t}_1} \kappa(A)$$

where

$$\kappa(A) = \max_{\|x\|_{2}=1} \|Ax\|_{2} / \max_{\|x\|_{2}=1} \|Ax\|_{2},$$

and assume that $\alpha < 1$. If the errors made in computing the residuals and in adding the corrections can be neglected, then

$$\begin{pmatrix} \|\mathbf{r} - \mathbf{r}^{(s)}\|_{2} \\ \|\mathbf{A}\|_{2} \|\mathbf{x} - \mathbf{x}^{(s)}\|_{2} \end{pmatrix} < 14.4n^{3/2} 2^{-t_{1}} \rho^{s-1} \begin{pmatrix} \kappa' + \frac{4}{3} & \frac{5}{3} \\ \kappa' (\kappa' + \frac{4}{3}) & \kappa' \frac{5}{3} \end{pmatrix} \begin{pmatrix} \|\mathbf{r}\|_{2} \\ \|\mathbf{A}\|_{2} \|\mathbf{x}\|_{2} \end{pmatrix}$$

where

$$\kappa' = (1-\alpha)^{-1/2} \kappa(A) ,$$

and the "initial rate of convergence' $\boldsymbol{\rho}$ is bounded by

$$\rho < 38.7 \text{ n}^{3/2} (\kappa' + \frac{1}{2}) \text{ 2}^{-t_1}$$
.

The process 'converges' if $\rho < 1$. Then for sufficiently large s the errors will satisfy

$$\begin{pmatrix} \|\mathbf{r} - \mathbf{r}^{(s)}\|_{2} \\ \|\mathbf{A}\|_{2} \|\mathbf{x} - \mathbf{x}^{(s)}\|_{2} \end{pmatrix} < (1-\rho)^{-1} \mathbf{K} \begin{pmatrix} 1 \\ \mathbf{k'} \end{pmatrix} \div 2^{-t_{1}} \begin{pmatrix} \|\mathbf{r}\|_{2} \\ \|\mathbf{A}\|_{2} \|\mathbf{x}\|_{2} \end{pmatrix},$$

where-

$$K = 14.4 \text{ n}^{3/2} 2^{-2t_1} ((\kappa' + \frac{4}{3}) \|\mathbf{r}\|_2 + \frac{5}{3} \|\mathbf{A}\|_2 \|\mathbf{x}\|_2) +$$

$$1,022 \ 2^{-t_2} (\kappa'(m+4) \|r\|_2 + (n+5) \|A\|_2 \|x\|_2) .$$

If $t_2 \ge 2t_1$ then the first term in K usually dominates, and $X^{(s)} + \delta x^{(s)}$ will ultimately have t_1 more correct binary digits than $x^{(1)}$. Note however that the process may well converge even if $x^{(1)}$ has relative error greater than 1. To get full benefit of the refinement we ought to have $t_2 \approx 2t_1$, but there is nothing to be gained by taking t_2 much greater than $2t_1$.

Since it is possible to have x=0 or r=0, it is obvious that even when p<1, we cannot guarantee that $\begin{pmatrix} x \end{pmatrix}$ s or $r^{(s)}$ ultimately will have a small relative error. Let

$$Y = (\kappa' + \frac{4}{3}) \frac{\|r\|_2}{\|A\|_2 \|x\|_2}$$

and assume that $\rho < 1/4$ and that the second term in $\, \, K \,$ can be neglected. If

$$\gamma < 1.58 \frac{1}{\rho}$$

then we will ultimately have

$$\|x - x^{(s)}\|_{2} < 2.2^{-t_1} \|x\|_{2}$$
.

Similarly if

$$1,61p < \gamma$$

then ultimately

$$\|\mathbf{r} - \mathbf{r}^{(s)}\|_{2} < 202^{-t_{1}} \|\mathbf{r}\|_{2}$$

Note that $r^{(s)}$ will converge to the exact residual corresponding to the correct solution x. When $\|r\| \ll \|A\| \|x\|$ these may be very different from the residual corresponding to x rounded to single precision. In many cases the later may be the more relevant.

Test Results

The procedure was tested on the CD 3600 (University of Uppsala) which, has ${}^t1=36$ and ${}^t2=84$, with $\eta=2^{-36}\approx 1.5\ 10^{-11}$. The matrix A consists of the last six columns of the inverse of the 8×8 Hilbert matrix. For $m_1=0$ two right hand sides were treated. The: first, b_1 is chosen so that the system $Ax=b_1$ is compatible i.e. r=0. The second, b_2 , is obtained by adding to b_1 a vector orthogonal to the columns of A, the length of which was adjusted so that

$$(\kappa' + \frac{4}{3}) \frac{\|\mathbf{r}\|_2}{\|\mathbf{A}\|_2 \|\mathbf{x}\|_2} \approx \frac{1}{2} \cdot 10^6$$

Thus in both cases the exact solution is the same, namely

$$x = (1/3, 1/4, 1/5, 1/6, 1/7, 1/8)^{T}$$
.

Due to the large residuals in the second case however, this system is much more ill-conditioned cf.[1]. For $m_1=2$ the same matrix A and the right hand sides b_1 and b_3 was used where b_3 was obtained by changing b_2 in its first two components so that the exact solution x remains the same. Note that all problems are so ill-conditioned that $t_1 > 32$ is required for convergence.

The results for $m_1 = 0$ confirms that the initial rate of convergence" is independent of the right hand side. In fact (disregarding the first step) the errors in the components of x and r decreases initially with a factor approximately equal to 10^{-3} . For economy of presentation, we have given only the last six components of $r^{(s)}$; the behavior of the other components is exactly analogous. For the right hand side b_1 , $x^{(4)}$ is already correct to working accuracy. The iteration is terminated after the computation of $6x^{(5)}$ and $\delta r^{(5)}$ when the condition $\|\delta r^{(5)}\|_2 < \eta \|r^{(1)}\|_2$ is satisfied. For the right hand side b_2 , $x^{(1)}$ is in error by a factor almost equal to 10³: The iteration is again terminated after $\delta x^{(5)}$ and $x^{(5)}$ is correct to working accuracy. This accuracy which seems to be more than could be expected is explained by the fact that the residuals (b_2 -Ax) are integers which can be represented exactly in the machine. In fact (s) r exactly equals r for $s \ge 4$ which makes the problem no more ill-conditioned when s > 4 than for the r.h.s.b₁ .

The behavior when $m_1=2$ is exactly analogous. Note however that the rate of convergence is faster almost by a factor of 10^2 compared to the case $m_1=0$. For the right hand sides b_1 and b_3

five respectively four steps of the iteration are executed. For b_1 , already $x^{(3)}$ is correct to working accuracy and for b_3 , $\overset{(4)}{x}$ is almost correct.

Example

	1,24976 82424 ₁₀ -1	1,25000 04414 10-1	1.25000 00001 ₁₀ -1	1.25000 00000 10-1
	1.42834 14088 ₁₀ -1	1,42857 1863810-1	1.42857 14287 ₁₀ -1	1,42857,14286 $_{10}^{-1}$
$x^{(s)}$, $s=1,2,3,4$.	1.99979 68894_{10}^{-1} 1.66644 47493 ₁₀ -1 1.42834 14088 ₁₀ -1	$2.00000\ 03809_{1\odot} - 1 1.66666\ 70842_{10} - 1\ 1.42857\ 18638_{10} - 1$	$ 2.00000\ 00001_{10}1 \qquad 1.66666\ 66668_{10}1 \qquad 1.42857\ 14287_{10}1 $	$2.00000\ 000000_{10}-1 \qquad 1.66666\ 66667_{10}-1 \qquad 1.42857\ 14286_{10}-1$
	1.99979 68894 10-1	$2.00000 03809_{10}^{-1}$	2.00000 0000110-1	$2.00000 \ 00000_{10}^{-1}$
	$2.49983\ 36160_{10}^{-1}$	2,50000 0312410-1	2.50000 00001 ₁₀ -1	$2.50000\ 00000_{10}^{-1}$
$m_1 = 0$, rhs b_1	3,33323,2526910-1	3.3333 35247 ₁₀ -1	3.3333 3333410-1	3.3333 33334 ₁₀ -1 2.50000 00000 ₁

 $-1.25607\ 41336_{10}-10\ -2.09271\ 44739_{10}-10\ -2.52288\ 19034_{10}-1\circ\ -2.73216\ 93519_{10}-1\circ\ -2.81694\ 14023_{10}-10$ $2.51362\ 10252_{10}^{-13}$ $4.37027\ 04750_{10}^{} - 15\ - 7.43763\ 51683_{10}^{} - 15\ - 8.15470\ 18418_{10}^{} - 15\ - 8.40092\ 32237_{10}^{} - 15\ - 7.77909\ 61723_{10}^{} - 15\ - 7.37817\ 06343_{10}^{} - 15$ 2,33348 99208 10-04 **-6.75178** 33458₁₀-07 9.11843 16499 $_{10}^{-14}$ 1.68927 42630 $_{10}^{-13}$ 2.19246 26557 $_{10}^{-13}$ $-2.65944\ 32257_{10} - 07\ -4.67148\ 08377_{10} - 07\ -5.95081\ 64441_{10} - 07$ $2.46137\ 01049_{10} - 04 \ 2.50505\ 06480_{10} - 04 \ 2.43935\ 32104_{10} - ^{-04}$ r(s), s=1,2,3,4,5. 4 58496 31646 10-08 $-2.68782\ 76487_{10}^{-14}$ 2.12487 75112₁₀-04 1,95300 70174₁₉-13 3.65217 71718₁₀-11 5.05114 03416₁₀-07 9.32626 $24303_{10} - 05$

	$^{+2}$ 1.26358 19430 $_{10}^{+2}$ $^{-1}$ 1.32794 36156 $_{10}^{-1}$ $^{-1}$ 1.24950 15446 $_{10}^{-1}$ $^{-1}$ 1.24999 99598 $_{10}^{-1}$ $^{-1}$ 1.25000 000000 $_{10}^{-1}$ $^{-1}$	+6 1.04599 96339 10+6 +6 1.04599 96339 10+6 +6 1.05000 00008 10+6 +6 1.05000 00000 10+1	-1 1.24975 07088 ₁₀ -1 -1 1.25000 00030 ₁₀ -1 -1 1.25000 00000 ₁₀ -1	-03 -4.18894 04056 ₁₀ -03 -07 -9.35348 33922 ₁₀ -07 -11 -1.59359 23414 ₁₀ -10 -14 5.25629 00592 ₁₀ -15 -14 2.14979 05645 ₁₀ -14
	1.24798 36748 ₁₀ +2 1.50905 26268 ₁₀ -1 1.42807 94663 ₁₀ -1 1.42857 13875 ₁₀ -1 1.42857 14286 ₁₀ -1	1.19815 $74912_{10} + 6$ 1.19999 $96122_{10} + 6$ 1.20000 $00007_{10} + 6$ 1.20000 $00000_{10} + 6$	1,42857 14308 ₁₀ -1 1,42857 14308 ₁₀ -1 1,42857 14286 ₁₀ -1	-4.21736 74494 ₁₀ -03 -6.59523 94885 ₁₀ -07 -8.07926 91980 ₁₀ -11 1.95614 94080 ₁₀ -14 2.14757 15640 ₁₀ -14
	1.19973 52027 ₁₀ +2 1.74786 46338 ₁₀ -1 1.66619 41295 ₁₀ -1 1.66666 66257 ₁₀ -1 1.66666 66667 ₁₀ -1	1.39850 $07847_{10}+6$ 1.39999 95972 $_{10}+6$ 1.40000 00006 $_{10}+6$ 1.40000 000000 $_{10}+6$	1.6664 84069 ₁₀ -1 1.66666 66679 ₁₀ -1 1.66666 66667 ₁₀ -1 5.	-4.06513 18158 ₁₀ -03 -2.95920 01738 ₁₀ -07 1.48955 70888 ₁₀ -11 3.51856 16491 ₁₀ -14 2.04140 44723 ₁₀ -14
X(S), $S = 1,2,3$	1.09708 61620 ₁₀ +2 2.07823 90423 ₁₀ -1 1.99956 83846 ₁₀ -1 1.99999 99609 ₁₀ -1 2.00000 000000 ₁₀ -1 r(s), s = 1,2,3,4.	1.67905 65883 $_{10}$ +6 1.67999 96002 $_{10}$ +6 1.68000 000003 $_{10}$ +6 1.68000 000000 $_{10}$ +6 $_{x}$ (s), $_{s}$ = 1,2,3.	1.99981 23581 $_{10}^{-1}$ 2.00000 00002 $_{10}^{-1}$ 2.00000 00000 $_{10}^{-1}$ $_{r}^{(s)}$, $_{s}$ = 1,2,3,4,5	-3.50968 45825_{0} - 63 1.37349 84350_{10} - 07 1.15019 08106_{10} - 10 4.78313 47444_{10} - 10 1.70696 27914_{15} - 14
	9.02800 72549 ₁₀ +1 2.56809 75057 ₁₀ -1 2.49964 54446 ₁₀ -1 2.49999 99664 ₁₀ -1 2.50000 00000 ₁₀ -1	2.09994 38069 ₁₀ +6 2.09999 96497 ₁₀ +6 2.10000 00000 ₁₀ +6 2.10000 00000 ₁₀ +6	2.49985 84680 ₁₀ -1 2.49999 99994 ₁₀ -1 2.50000 00000 ₁₀ -1	1.99172 38410 ₁₀ -03 4.80542 04172 ₁₀ -07 1.59782 75647 ₁₀ -10 4.20185 43185 ₁₀ -14 8.33620 08075 ₁₀ -15
n o rhs b2	5,56259 01547 ₁₀ +1 3,37777 18060 ₁₀ -1 3,33333 33334 ₁₀ -1 3,33333 33334 ₁₀ -1	2.80130 $68864_{10} + 6$ 2.79999 $98248_{10} + 6$ 2.79999 $99995_{10} + 6$ 2.80000 $00000_{10} + 6$ $m_1 = 2$, rbs b_1	3,33325 69325 ₁₀ -1 3,33333 33323 ₁₀ -1 3,33333 33334 ₁₀ -1	2.13646 45736 ₁₀ -03 -7.38044 15024 ₁₀ -08 -1.65562 21882 ₁₀ -10 -4.65763 50023 ₁₀ -14 -1.48834 87916 ₁₀ -14

L

	9.20507 22402 ₁₀ -4 1.25285 50085 ₁₀ -4 1.25000 06000 ₁₀ -4 1.25000 06001 ₁₀ -4	1.04990 48262_{10}^{+6} 1.04999 99914 $_{10}^{+6}$ 1.05000 00000 $_{10}^{+6}$
$x^{(s)}$, $s = 1, 2, 3, 4$.	8.94072 75252 ₁₀ -4 1.43134 91136 ₁₀ -7 1.42857 20545 ₁₃ -1 1.42857 14287 ₁₀ -1	1,19994 83616 ₁₉ +6 1,29000 90910 ₁₀ +6 c,20000 00000 ₁₀ +6
	8.39395 19792 ₁₀ -1 1.66917 52116 ₁₀ -1 7.66666 72353 ₁₀ -1 1.66666 66668 ₁₀ -1	1,2,3. 1.40000 52065 ₁₀ +6 1.40000 00120 ₁₀ +8 (0000 00000 ₁₀ +8
	7.60691 80418 ₁₀ -1 2.00211 42052 ₁₀ -1 2.00000 04828 ₁₀ -1 2.00000 00001 ₁₀ -1	1.68006 97605 ₁₀ +6 1.40 1.68000 00222 ₁₀ +6 1.40 1.08000 00000 ₁₀ +6 1.40
	6.56346 90542 ₁₀ -1 2.50155 63628 ₁₀ -1 2.50000 03591 ₁₀ -1 2.50000 60901 ₁₀ -1	2.10010 54284 ₁₀ +6 2.10000 00226 ₁₀ +F 2.10000 60000 ₁₀ **
$m_1 = 2$, ths b_3	5,40942 34352 ₁₀ -1 3,33414 78920 ₁₀ -1 3,33333 35241 ₁₀ -1 3,33333 33334 ₁₀ -1	2.79993 42742 ₁₀ +6 2.79999 99780 ₁₀ +6 2.80000 00060 ₁₀ -6
		0-

References

- [1] Björck, A.: Iterative Refinement of Linear Least Squares

 Solutions I. BIT 7(1967), to appear.
- [2] Businger P. and Golub, G. H.: Linear Least Squares Solutions by Householder Transformations. Num. Math. 7, 269-276 (1965).
- [3] Golub,, G. H.: Numerical Methods for Solving Linear Least Squares

 Problems. Num. Math. 7, 206-216 (1965).
- [4] Householder, A. S.: Unitary Triangularization of a Nonsymmetric Matrix. Assoc. Comput. Mach. 5, 339-342 (1958).
- [5] Wilkinson, J. H.: Householders Method for Symmetric Matrices.

 Num. Math. 4,354-361 (1962).