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Iterative Refinements of Linear Least Squares Solutions

by Householder Transformations.*

Contributed by A. Bj'drck and G. Golub.**

Theoretical background

, Let A be a given mXn real matrix with m> n and of rank

n and b a given vector. Let A and b - be partitioned

where ml< n and assume that Al has rank ml . We wish to determine

a vector x subject to the linear constraints

Alx = bl

;
i

t
L

i
i

such that

II IIr2 = min. ) r2 = b2 - A2x >

where .-. 11II indicates the euclidian norm.

*This work was supported by the Swedish Natural Science Research Council.
**The work of this author was in part supported by NSF and ONR.
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Using Lagrange multipliers it is easily shown that the solution

satisfies the system of equations

:(
0

0

T
Al

0

I

T
*2

Al h bl

3Cj I)

*2 r2 = b2

0 X C

(1)

where h is the vector of Lagrange parameters and c = 0 . For

reasons which later will become evident we develop a method for solving

(1) which works for an arbitrary vector c .

Let P be a permutation matrix which permutes the columns of A

so that

+)=(*)
where A'

11
is square and nonsingular. We now determine an orthogonal

matrix
Qll

so that

QllA;, = $1 I R12)  t (2)

where Rll is mlXml and upper triangular. Next we puttt
1

Q12
= R-T IT

11 *21 J *22 = AL2 T
- Ql2 R12 (31
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and determine an orthogonal transformation Q22
so that

%2 A22 = ( )R22-0 )(m-n) X n (4)

where again R22
is upper triangular. Denote by R the nXn upper

tri+ngular  matrix

.

Then it is easily verified that

-1
APR = (5)

where

L

Q2
= (1n m lo> a22

2 :1
(6)

I

c
and In-m1 is an (n-m ) X1

(n-m ) unit matrix.1
Thus if we define

the-vectors
.

y1 mly= -
(>

)
5 )n-ml

d=

L- ,
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by the relations

L
L
L

c

1

L
L
L

x = PR-‘y ) d = PR-Tc

then (1) can be written

Using the orthogonality of
Ql1

and
a2

2 we get the following algorithm

for solving (1):

T
&ll

0 h

QT2 $2 r2

~~~

=
0 0

-yl

0 0
y2

(7)

yl = Qllbl

Q = Q2(
g1 p-ml)

2 b2 - <2yl) = g2 )(m-u)
0

y2 = 631 - dg

T d2
r2 =

+z! g2
0

h = Q;,(d, - Q12r2) 0

Here d is defined from (7) which +s also used for computing x l

4
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A very effective method to realize the decompositions (2) and (4)

is via Householder transformations [4]. Let A’ = A(l),
and let

Ack+') z k--1,2,-., n, kfm1 be defined as follows

Atk+‘) = p(k)A(k) .

P 04 is a symmetric, orthogonal matrix of the form

04P =I-pku(k)$dT

where the elements of P 04 are derived so that

ack+‘) = 0
i,k J i = k+l ). *. 9 m(k) t

I
t
L

It follows that

m j1 k < ml

m(k) = .

m > k>
ml.

( 1
Al

ml
= (Rll 1 RL2)

and if we finally define

A (ml+l) Rll 52.T

t. ->
0

%2
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It can be shown cf. [5] that P 04 is generated as follows:

(,(k) )2)1/2
ik

odtii =o for i < k, i> m(k)

( >k
uk

= 04
'dakk >bk + Ia 04kk 1) ?

( 1k
U. =a (k)
1 ik for k < i 2 m(k) .

The matrix P od is not computed explicitly. Rather we note that

Ack+l) = (I _ fy(k)u(k)T)A(k) z Ack) _ uck)y;

where

T
'k k

= f.j Us, .

In computing the vector yk and A (k+l) > one takes advantage of the

zero components of u (k) .

- The permutation of the columns of A to obtain A' = AP is

conveniently done at the same time. At the k
th

stage the column is

chosen which will maximize ja(k+l)l
kk '

This will ensure that the

matrix R
11

is non-singular. Let

6
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04
2

9 2 = k,k+l,..., n .

P

Then since kklack+')) = 0
k'

one should choose that column for which

04
'2

is maximized. After ACk+'), k#ml , has been computed, one can

compute s @+1>
J

as follows:

s(k+l) 04
3

= s. (,(kt1))2
J - kj

since the orthogonal transformations leave the column lengths invariant.

Because of the influence of rounding errors the first computed

solution may not be sufficiently accurate in an ill-conditioned case.

Provided the columns of A are not almost linearly dependent to working

accuracy, the solution may be improved by the following iterative

procedure. Put

and let (0) th
z =

0 l The s iteration involves the three steps:

( >i fS( > =h -BzS ,( )

(ii) 6~~‘) = B-l f(S) ,

(ii-j) z(‘+‘) = ~(‘1 + bzCs) .
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It is essential that the residuals f '( > are computed using double

precision accumulation of inner-products. We then solve for 6z '( >

by the method developed above, using the same decompostion in all

iterations. Note that f '( 1 generally differs from zero also in the

last n components, which explains why we did not assume c=O in (1).

It has been shown in [l] that if the iterations 'converge' then

for sufficiently large s the accuracy in (z ' + 6z ' ) will be( 1 ( >

approximately the same as if double precision had been used throughout

without refinement.

I
Let the number of operations needed for the decomposition resp.

c one iteration step for a single right hand side be Nd resp. Ns q

t

Then a simple calculation shows that

L
L

Nd =
c
n2(m - n3) - mlm2(n - fl)

3
(1 + O(i)) s.p+

Ns = &n(m - 2> - 2mlm2
c 3

1
(1 + O(G)) sop. + 2m.n d.p.

F

L

where s.p. refers to single precision operations and dep. to operations

performed with double precision accumulation

L
Applicability

The algorithm least squares solution may be used to compute

accurate solutions and residuals to linear least squares problems with

or without linear constraints. It may also be used to compute accurate

8
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solutions to systems of linear equations where A is a square matrix

and to compute accurate inverses of such matrices. The procedure will

fail when Al or A modified by rounding errors has rank less than

ml Or n
respectively. Jt will also fail if A is so ill-conditioned

that there is no perceptible improvement in the iterative refinement.

The matrix A is retained in order to form the residuals. When

m >> n the large storage requirement of this procedure might make it

preferable to use instead a double precision version of the Householder

decomposition without iterative refinement0 Note that in the linear

equation case the calculation of residuals may be suppressed by putting

ml
=m=nO

“1
m

n

a

i
L

P

b

eta

i

I
L

i
L

singular

fail

Formal parameter list

Input to procedure least squares

number of linear constraints ml<nO

total number of equations

number of unknowns n<m

an mX(n+l) array having the given matrix as first

n columns

number of right hand sides

an mXp array containing the given right hand sides

the largest number for which 1 + eta = 1 on the

computer

exit used when A
1

or A modified by rounding

errors has rank less than m
1

or n respectively

exit used when the iterative refinement fails to

improve the solution

1

i
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res

Output of procedure least squares

an nip array consisting of the p solution vectors

an m2xp array consisting of the p residuals vectors

ALGOL Program

procedure least squares solution(m1)  data: (m,n,a,p,b,eta)  failure

exits: (singular, fail) result:

value ml,m,n,p,eta;

integer ml,m,n,p; real eta;

array a,b,x,res; label fail, singular;

(x, res);

comment The array a[l:m,l:n+l]  contains in its first n columns the

given matrix of an overdetermined system of m linear equations

in n unknowns 6-n > n>,- where the first ml equations

(ml< n) are to be strictly satisfied0 For the p right

hand sides given as columns of the array b[l:m,l:p] the

least squares solution and the residuals are computed and

stored in the columns of the arrays x[l:n,l:p:l  and

res[ml+l:m,l:p] respectively0 If rank(a) < n or

rank(a1) < ml the emergency exit singular is used. If the

iterative refinement fails to improve the solution sufficiently

the exit fail is used. In either case b and the first n

columns of a are left intact. The (n+l)st column in

a is used as temporary storage for the sucessive right hand

sides. Eta is the relative machine precision;

10



begin integer i,j,&;

array xl[l:ntlj,  res1[l:ml, alpha[i:n],  qr[O:m,i:n];

integer array pivot[l:nj;

real procedure innerprod(l,m,n,ai,bi,c);

value m,n,c;

real ai,bi,c; integer i,m,n;

begin real sum;

sum:-0;

for i:=m step 1 until n do sume=sum+aiXbi;

innerprcd:=sum+c

end innerprod;

real procedure innerproddp(i,m,n,ai,bi,c);

value m,njc

. Ireal al,bl,c; integer i,m,n;

comment This procedure accumulates the sum of products aiXbi

and adds it to the initial value c in double precision.

The body cf this procedure cannot be expressed in ALGOL0

begin real sl,s2, (sl,s2):=0,PI -

for k-m step 1 until n do_u__ -

(sl,s2):=(sl,s2)+aiXbi, comment dbl.pr.acc"

innerproddpz-((sl,s2)+c)  rounded

end innerproddp;

procedure decompose(ml)data:(m,n,eta)  data and result:(qr)

result: (alpha,pivot) failure exit:(singular);

value ml,m,n,etIa;.-

integer ml,m,n; real eta; array qr, alpha;- -

11
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,integer array pivot; label singular;

comment Decompose uses essentially a sequence of elementary orthogonal

transformations (I - beta u uT) to determine a qr-decomposition

of the matrix given in the array qr[l:m,l:n] e The diagonal

elements of the upper triangular matrix r are stored in the

array alpha[l:n], the offdiagonal elements in the upper

right triangular part of qr. The nonzero components of the

vectors u are stored on and below the leading diagonal of

qr* Pivoting is done by choosing at each step the column

with the largest sum of squares to be reduced next. These

interchanges are recorded in the array pivot[l:n7i  o If at

any stage the sum of squares of the column to be reduced is

exactly equal to zero then the emergency exit singular is

used;

begin integer i,j,jbar,k,mr,s; boolean fsum;

real beta,sigma,alphak,qrkk?smax,y;array  sum[l:n];

mr:= ml; fsum:= true;

for j:=l step 1 until n do pivot[j]:=j;.- -.

for k:=l step 1 until n do

begin comment k-th hpuseholder transformation;

if k=ml+l then

begin fsum:=true;  mr:==m end;

if fsum then

piv: for j:=k step 1 until n do- 7

sum[j]:=innerprod(i,k,mr9qr[i9j],  qr[i,j], 0);

sigma :==sum[k];  jbarr=k;

12
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for j:-k+l step 1 until n do- -

if sigma < sum[j] then-7

begin sigma::=sum[j]; jbar::=j end;

if fsum then smax:=sigma;  fsum:-sigma < etaxsmax;

if fsum then goto piv;- -

jbar # k then

begin comment column interchange;

i:=pivot[k]; pivot[k]:-pivot[jbar];  pivot[jbar]:=i;

sum[jbar]:=sum[k.$

for i:=l stee 1 until m do- D_

begin sigma:=qrii,k];  qr[i,k]:=qr[i,jbar];

qr[i,jbar]:=sigma

end i

end column interchange;

sum[k]:=sigmaz= innerprod$,k,m.r,qr&&  qr[i,k], 0);

0 then goto singular;

grkk:=qr[k,k]; alphak:=alpha[k]:=

if qrkk < 0 then sqrt(sigma) else -sqrt(sigma);

qr[k,k]:=qrkk-alphas;

beta:=qr10,k]:=alphakXqr[k9k];

for j:-k+l step 1 until n do_I_ __Y__ R_

begin y:=innerprod(i,k,mr,qrLi3k],,  qr[i,j], O)/beta;

for i:-k step 1 until mr1__1_ qr[i,j]:=qr[i,j]+yXqr[i,k];

sum[j]:-sumlj] - qr{k,j]t2

end j;

if k-ml then

for j :=ml+l step 1 until m dov- m

13



for s:=l step 1 until n do- m

begin mr:= if s>ml then ml else s-l;- -

Y:"- innerprod(i,l,mr,qr[i.7s?,9qr[j9i],-qr[j,s]);

qr[j,s]:- if sI%l then y else y/alpha[s]- -

end s

end k-th householder-transformation

end decompose;

procedure accsolve(ml)data:(m,n,a,qr,alpha,pivot,eta)  result:(x,res)

failure exit:(fail);

value ml,m,n,eta;

integer ml,m,n; real eta; array a,qr,alpha,x,res;

integer array pivot; label fail;

comment Accsolve uses the decomposition of a stored in the array

qr[l:m,lan] by decompose for the iterative refinement of the

least squares solution. The right hand side b is given in

the (n+l)st column of the array a[l:m,l:n+l] l The

residuals of the augmented system of (m+n) equations are

computed using the procedure innerproddp which forms accurate

inner-products0 As initial approximation is taken x-r=O,

and the two first.iterations  are always executed0 The

iterations are regeated as long as the norm of the correction

at any stage is less than lj8 of that at the previous stage

until the norm of the correction is less than epsilon times

the norm of the solution. Exit to label fail is made if the

solution fails to improve sufficiently;

14
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begin integer i,j,k,s;

real c,nx,nr,ndxi,ndx2,ndrl,ndr2,eta2;

array f[l:m], g[l:n:!;

procedure householder(p,qJrL:zj;,-

value p?q,r,m; integer p,q;r,m;

for s:=p step q unt.il r dc- -

cbegin ::=innerprod(i,s,,m,qr[i9sjJ  f[i], O)/qr[O,s];

for i:=s ste_l! 1 until m do fi.i]:=f[,i.]  + cXqr[i,s]<- -

end householder;

comment initial values;

for j:-1 step 1 untiln do x[j]:=g[j>:=O;_o_ - -

for i:=l step 1 until m do.- yu_y -

begin res[ij:-0; f[iJ:=a[i,n.+li  Cs

for k:-O,l,k+l while (64Xndx2  < ndxl A ndx2 > eta2Xn.x) V.-.

(64Xndr2 < ndrl A ndr2 > et'a2Xnr'I  dcb

begin comment k-th iceration  step;

ndxlz-ndx2; ndrsi:::=:ndr2;  ndx2:-ndr2:-0;

if k :i 0 then,-.

begin comment-new residuals;- -  <zs.

for i:,- 1,-- st7ep 1 until m do res[il:=res[i] -+ f[i];/P - -  -

for s:=l step 1 un?il n do--- I - - -

begin jb=pivot[s]; x[j]::=x[j] 4- g[s];- -

g [ s ; 1; r=.., innerproddp(i,l,m,a[i>j], res[i], 0);

g[s;~~:~,-innFrp~od(l,l,s-l,qr[i~s],  gfi], -g[s])/

alpha iT E ::

15



end;

for i:=l step 1 until m do- m -

f[i]:=- innerproddp(j,l,n+l,a[i,j],  x[j],

if i > ml then res[i] else 0)

end new residuals;

householder(l,l,ml,ml);

for i:=ml+l step 1 until m do

f[i]:=- innerprod(s,l,ml,qr[i,s],  f[s], -f[i]);

householder(ml+l,l,n,m);

for i:=l st.ep 1 until n do- -

begin c:=f[i]; f[i]:=g[i];

g[i]:=if i3ml then c-g[i] else c

end;

for s:-n step -1 until 1 do- -

begin g[s]:--innerprod(i,s+l,n,qr[s,i], g[i], -g[s])/

alpha[s]; ndx2:=ndx2+g[s]t2

end;

householder(n,-l,ml+l,m);

for s:=l step 1 until ml do

fCs1 :=-innerprod(i,ml+l,m,qr[i,s],

householder(ml,-l,l,ml);

for i:=l step 1 until m do

ndr2:=ndr2+f[i]t2;

if k = 0 then begin- - -

end k-th iteration step;

if ndr2 > eta2Xnr A

fbl, -fCsl>;

nx :=ndx2; nr:=ndr2 end

ndx2 > eta2Xnx then goto fail-r_

16
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end accsolve;

for j:=l step 1 until n do- -

for i:=l step 1 until m do qr[i,j]:=a[i,j];- 7

decompose(ml,m,n,eta,qr,alpha,pivot,singular);

for I:=1 step 1 until p do- m

begin comment I-th right hand side;

for i:=l step 1 until m do a[i,n+l];=b[i,l];- s

accsolve(ml,m,n,a,qr,aLpha,pivot,eta,xl,res~,fail);

for j:=l step 1 until n do x[j,a]:=xa[j];- I

for i:=ml+l step 1 until m do res[i,a]:=resl[i]- -

end I-th right hand side

end least squares;

Organizational and Notational Details

The array a containing the original matrix A is transferred

to the array qr which serves as storage for A04 . The non-zero

components of the vectors uod and the derived matrix
Q12

are

stored on and below the leading diagonal of qr . The diagonal

elements of R, the reduced matrix, are stored in the array a9

and the elements
'k

on row number zero in qr e

The column sum of squares, 04s.
J

) is stored in the array sum.

Naturally, the elements of this array are interchanged whenever the

columns of A(k+l) are interchanged. The array pivot contains the

i

i
17
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The recursive computation of 04s.
J

will fail if A is sufficiently

ill-conditioned. To prevent this (k)s.
3

are recomputed every time the

condition

-

max 04 /
s. < r\ * (k >max s.

k<j<n J- - k'<j<n J- -

L-

i

L

-

L

i

is satisfied, where k' is the last step at which this was done.

Since the number of iterations needed is dependent on the right hand

side the iterative refinement is executed for one right hand side at

a time. During the refinement the current right hand side is transferred

to the (n+ljst column of A .

~~-1 accsolve the first set of solutions is taken to be null vectors,

and the two first iteration steps are always executed. The iteration

for the current right hand side is terminated when the conditions

(i) and (ii) below are simultaneously satisfied:

( 1i IIS xqj2 > o.127~~x(s-l)1J2 or il6x(s)ii, 5 ,/lx(l)"
"2

( 1ii lb C S
r 1 II 2 2 0.12*l/6r(S-l)i~2  or i/Gr(S >

If the iteration has been terminated and at the same time

"2 < ,ib@ll, e

and

then the exit fail is used.

18



Both a single precision and a double precision inner product routine

are used. On a computer where double precision accumulation of inner

products is fast, the double precision routine can be used throughout,

t

Discussion of Numerical Properties
,:
Ie

t

t

L
t

i

The procedure has been analyzed in [l] for ml = 0 under the

assumption that all inner-products are accumulated in double precision.

(If single precision inner-products are used where possible, the bounds

given below for the rate of convergence and the error will increase by

a factor less than m U )

Let tl and t2 be the number of binary digits in our single and

double precision floating point mantissas. Put

L
where

L
i

L
L.

o!= 32.6 n3/2 2-t1~(A)

and assume that cv < 1 u If the errors made in computing the residuals

and in adding the corrections can be neglected, then

i
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where

and the "initial rate of convergence' p is bounded by

The process 'convergesF if p < 1 U Then for sufficiently large s

the errors will satisfy

where-

1,022 2
-t2

20
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If t2 > 25-(s> .& 6~‘:’ rJ willx ”
than x"" u Notex !: 1) has relative

t
1

L
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then the first term in K usually dominates, and

ultimately have kt more correct binary digits

however that the process may well converge even if

error greater than 1 u 70 get full benefit of

the refinement we ought to have t2 w 2t.19 but there is nothing to

be gained by taking t2 much greater than 2tl 0

Since it is possible to have x z= 0 or r 1. OJ it is obvious

that even when p < lJ we cannot guarantee that x ' or r '( > ( >

ultimately will have a small relative error0 .Let

y ‘- (K’+

and assume that p -C l/b and that the second term in K can be

neglected. Jf

Y < 138 ;

then we will ultimately have

II is) -5
X - x” ,I2 < 202 II IIx 2 0

Similarly if

L61P < Y

21



then ultimately

II r - r c 1s. II 2 < 202-5 II IIr2°

I
f
L Note that b)r' will converge to the exact residual corresponding to

I
i

the correct solution x 0 When /Ir// << /A[/ l/xl/ these may be very

different from the residual corresponding to x rounded to single

precision0 In many cases the later may be the more relevant<,

L
L Test Results

I The procedure was tested on the CD 3600 (University of Uppsala)
i which, has tl = 36 and t2 :-, 84? with ?J -36 -11L=: 2 ~10510 0 The

matrix A consists of the last six columns of the inverse of the 8x 8

Hilbert matrix0 For m, = 0 two right hand sides were treated. The:

first, b
1'

is chosen so that the system Ax = b1
is compatible

t
i.eO r = 0 0 The second, bgJ is obtained by adding to bl a vector

e orthogonal to the columns of A, the length of which was adjusted so

I
L

that-

Thus in both cases the exact soluticn  is the same, namely

i
i .

x '-‘ (1/35 1/4, 1j5,  1j6, 1J75  l/W" 0

22
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Due to the large residuals in the second case however, this system
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is much more ill-conditioned cfO /:IL]. For ml = 2 the same matrix A

and the right hand sides b 1
and b

3
was used where b

3
was obtained

by changing b2 in its first two components so that the exact solution

X remains the same. Note that ali problems are so ill-conditioned

that tl > 32 is required for convergence0-

The results for ml := 0 confirms that the?inftial  rate of con-

vergence" is independent of the right hand side0 In fact (disregarding

the first step) the errors in the components of x and r decreases

initially with a factor approximately equal to 10 -3 0 For economy of

presentation, we have given cnly the last six components of r id ; the

behavior of the other components is exactly analogous. For the right

hand side blj x (4) is already correc t to wcrking accuracy0 The

iteration is terminated after the computation of 6x 0) and 6r (5)'

when the condition 116 r(5)112 < IjQ1)112 is satisfied0 For the right

hand side be, x (1) is in error by a factor almost equal to 103 I

WThe iteration is again terminated after 6x. and x (5)' is correct

to working accuracy0 This accuracy which seems to be more than could

be expected is explained by the fact that the residuals (b2-Ax) are

integers which can be represented exactly in t7he machine0 In fact

( S)
"I- exactly equals r for s > 4 which makes the problem no moreI-

iii-conditioned  when s>4 than for the r.hOsOb
lo

The behavior when ml =-: 2 is exactly analogous0 Note however

that the rate of convergence is faster almost by a factor cf 10'

compared to the case ml=.O. For the right hand sides bl and b
3
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five respectively four steps of the iteration are executed0 For bqS
1

already x (3) is correct tG working accuracy and for b P+)
3’ x is

almosx correct.
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