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Abstract

This volume provides programmng notes on
a conputer system for transformational grammar.
The lnportant ideas of the system have been
presented in a series of reports which are l|isted
in Appendix B; this document is the description
of the systemas a program |t is intended for
programmers who mght wish to maintain, nmodify

or extend the system
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1. | NTRODUCTI ON

This Manual is witten by and for programrers. Its purpose is to
make the code of the conputer system for transformational grammar nore
readi |y understandable to programrers who wish to maintain and use the
system or to nodify and extend it. Section 2 is a short outline of
the subroutine structure of the system It is followed in Section 3 by
nmore detailed descriptions of the subroutines. Sections 4 and 5 are
listings of the COMON blocks and BLOCK DATA statenents, respectively.
Section 6 discusses possible extensions to the system

The programs are witten in FORTRAN |V for the |BM 360/67 conpiled
under FORTRAN H, OPT=2, under O S. There are approximtely 9000 |ines
of FORTRAN code; the conpiled code, with storage areas, requires ap-
proxi mately 300,000 bytes of storage.

The inputs to the system consist of

1. a grammar (described by the formal syntax of AF-2Lx)
2. a one-line driver for the MAIN program (see Section 2.1)
3. input trees or skeletons (see 2.3 and 2.5).

Ext ended exanples are given in AF-33 (CS-108).

A sinmplified schematic diagram of txe basic structure of the system
is givenin Figure 1.1.  Arrows go fromcalling routine to called sub-

routine.

* References on the system are listed in Appendix B bel ow.
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Programi ng Conventions

Input/Output

Alnost all of the input to the systemis handled by the free-field
i nput/out put package (FREEIQ. The oriiy exception to this is the al-
ternative fixed-field tree input format. |[jkewise, nost of the output
is handled by FREEIOQ with exceptions in certain cases of tabular
debugging output and fixed-field trees.

Error nessages

A uniformconvention for error messages is used throughout the

system  The standard formis

ERROR.  Subroutine nane. Message
Messages of the form

WARNING.  Subroutine nane. Message

are occasionally issued when a strong possibility of error exists, p
an internal correction has been made.

Qutput files

System output is witten on several different logical units. e
m ninum output for a standard run is placed on unit 6. \pnit 7 contains
additional general output useful for a more detailed study of the run.
Units 8, 9 and 10 contain output for programmers concerned with

ANALYSI'S, RESTRICTIONS, and CONTROL, respectively.
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2. SUBROUTINE STRUCTURE

In this section we list the subroutines of the system For each

subroutine a brief discussion is given of its role. Further discussion

of each subroutine is given in the corresponding parts of Section 3.

2.1 Main program

'Routine Type
VAl N mai n
2.2 Free field input-output
Rout i nes Type
Entries
FREAD(@NE ) R*8
NI TLZ
FROUT( ISTART,L1,...,L6) SR
KOUTWD (WORD , LENGTH ) R*8
EXPND(KTS ,WHRD
LENGTH)
KEYPUT
LNGAUT
/ CNSTCM/
/ FCSTCM/

2-1

Rol e

MAIN reads the directions for the
current run. The input is in the form

$waTn {3 3 ((n) (S0 ) (TRAN)

Rol e

Free-field read. Returns a word or
special character.

Initializes FREAD, KSUTWD and /MAINCM/ .

Free-field output of XSUMP from ISTART
on.

Returns an abbreviated word to FREAD

Expands an abbreviated word to a
| ong word.

Puts abbreviated words into KSUMP.

Qutputs table of abbreviated words
and | ong words.

| NTEGER*2 constants.

REAI*8 constants




2.3 Trees

Rout i ne

Entries

TRIN

TROUT(NQ1,NQ2)

/2/

FTRI(ARG)

FTRIN(FTREE, TREE,CLIST,
MTREE,MCLIST,KA,KB,
ISTART, FWORD)

FTROUT(TOP,PJ)

2.4 Gammar input

Rout i ne

Entries

INIT

GRAMIN

PSG NN

PSGSWP

PSGOUT

LEXIN
PRELEX

Type

SR

SR

Ix2

I>2

SR

Type

SR
SR

SR

SR

SR
SR

2-2

Rol e

Inputs fixed-field tree

Qut puts TREE starting at node NQl .
If N = -1, outputs the nunber
for each node.

Short, miscellaneous block data
i ncludes NS, NERRCR

Calls FTRIN With argunents for
input to TREE if ARG = 1, or

for addition to CHTREE if ARG = 2

Inputs free-field tree. Returns
pointer to root of tree.

Free-field output of subtree
headed by TOP. PJ = 1 punches
out put

Rol e

Initializes everything.

Reads in the phrase structure,
| exi con and transformations.

Inputs phrase structure rules.
Expands, orders, and stores them

Puts expanded phrase structure
rules into KSUMP.

Qutputs tables of the phrase
structure rules.

Reads in a lexicon - calls PRELEX

Reads in the prelexicon.




2.4 Grammar input (continued)

2-3

Routi ne Type Rol e
Entries
NUMNAM( FWORD , ARG ) "2 Returns the number for the feature
NAMEI N( FWORD, ARG) FWORD. Stores FWORD as the nanme of
the contextual feature with the
nunber ARG
LEXSMP SR Copi es the lexicon into KSuMp.
LEXQUT Qutputs the internal tables for the
| exi con.
- TRANIN SR Reads in the transformations.
TRANSU Qutputs the table of transformations.
2.5 Phrase structure generation
Rout i ne Type Rol e o
Entries
GEN SR Cenerates a directed random tree,
|FIND(M N) I*2 Subroutine for GEN. Returns 1,
0, -1 if Mnust, may, or cannot
dominate N . IFIND(N,N)=1 .
IAFIND(I) R*8 Call ed by IFIND. Returns |, if
| is a termnal symbol. Qherwise,
returns position of first rule which
expands |
NSRCH( N) I*2 Call ed by IFIND., Returns position
of last rule which introduces sym
bol N, O if none.
2.6 Lexical insert ion
Rout i ne Type Role
Entries
LEXI NS SR Does |exical insertion.




2.6 Lexical insertion (continued)

Rout i ne

Type

Rol e

Entries

LSRCH(CATNY ,NODE ,WHRD, TCS )

TSRCH(CAT,NADE )

CSTEST(NODE,M,N )

SIDEFF(NODE,N)

cscpMP(M,N, IND)

2.7 Analysis

Rout i ne

Entries __
CXIN( KDUMMY)

SLFEAT( KDUMWY)
ANALIN( KDUMMY )

ANATIPHU(T)

SR

I*2

I*2

Type

"2

I*x2

I*x2

2-4

Finds entry of category CATNG
suitable for insertion at N¢DE
whi ch has conpl ex synbol TCS and
WPRD (if non-bl ank).

Searches tree for |exical category
(cAT) - returns node nunber in NODE.
Returns NgDE = 0 if there are

none. Keep calling, TSRCH keeps
searching

Returns nunber of conpatible conpl ex
symbol if complex synbol Nis suit-
able for insertion at NGDE which

al ready has conplex synbol M.

Does side-effects for each contextua
feature in conplex symbol N .

Conpatibility test for -omplex synmbols.
If Mor N> 0 they are node num
bers. If Mor N< O, they --
conpl ex synbol nunbers, If IND - i,
use nondistinctness test. |If IND = 2,
use inclusion-l test, If IND = 3
return pointer to conpatible conplex
synbol found for node M.

Rol e

Reads in a conpl ex symbol and returns
its number. If KDUMW = 1, the
conpl ex symbol is first expanded by
the redundancy rul es.

Reads in a contextual feature and
returns its number

Reads in a structural analysis and
returns its nunber.

Wites out the internal representa-
tion of structural analysis I.




2.7 Analysis (continued)

Rout i ne Type Rol e
Entries

CSSUMP _ Copies a conpl ex synbol into KSUMP,
csadt Qutputs the interval tables for

conpl ex synbol s.

ANTEST( TRANNQ , TREETP , ANALNY ) IL*1 Eval uates the structual description
of transformation TRANNY or the
structural analysis ANAINA in the
subtree headed by TREETP.

- ANRTES (P@SN) I*1 Tests restrictions on the node as-
signed to PgsN., |If PgsN > O,
test conplex synbol also.

ANRUNS (PYSN ) N SR Unsets restrictions on node P@SN,
’ Al so sets NUMNGD and ANNADE t O zero.
NEXT(HERE, TP ,SIGN) SR Resets HERE to the next node after
HERE.

2.8 Restrictions

Rout i ne Type Rol e
Entries
RESTIN(@NE) I*2 Reads restriction . or
restriction >; returns its nunber.
RESTST(I,PPSN) I*1 Tests and sets restriction designa-

ted by I or CREST. |f PgsN = O
resets the restriction first.

RESTUN(I,PPSN) SR Unsets restriction | ., If
PpSN = 0, sets CREST = | and
conpletely resets restriction |

RESTPR(I) SR Qutputs tables for restriction |
| = 0 outputs all.

GTPKEN( SYM SR Returns a token, i.e.,, a logical
operator or condition.

/RESTCM/ Constants and storage.
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2.9 Structual change

Rout i ne Type

Entries

CHANIN e,

CHANTY

CHANPU
ELEM@P ( NWORD,NQ1,NQ2) SR

ERASE(NQ2)
SUBSE(NQ1,NQ2)
ALADE(NQ1, NQ2):
AFIDE(NQ1, NQ2)*
ARIAE(NQ1,NQ2)
ALESE(NQ1,NQ2)
ARISE(NQ1,NQ2)
SUBST(NQ1,NQ2)
ADRIS(NQ1,NQ2)
ADIES(NQ1,NQ2)
ADIAD(NQ1,NQ2)
ADRIA(NQ1,NQ2)
ADFID(NQ1,NQ2)

CHANGE( ID,CNRNUM ) SR

2.10 Conpl ex synbol operations

Rout i ne Type

Entries
REDRUL(M ) I*2

CSPP(TYPE,A,N,M) I*2

2-6

Rol e

Reads a structural change and returns
a pointer to it.
Tidies up after all changes read,

Qutputs the table of structura
change

Applies operator NWARD to arguments
NQl, NQ2 .

Entries for specific changes. |BM
operations are also done by ELEMfP,
but do not have individual entries.

Perfornms the structural change of
transformation ID using the
CNRNUM th anal ysis found by ANTEST.

Rol e

Returns the nunber of the conplex

synbol obtained on expansion of
conmpl ex synmbol M using the redun-
dancy rul es.

[f TYPE = 1 returns pointer to new
conpl ex symbol created by doing
operation A on conplex synbols N
and M. If TYPE= 2 returns val ue
of test A on conplex symbols N, M




2,10 Conpl ex synbol

operations (continued)

Rout i ne Type Rol e
Entries,
CSEXCH(N, M I¥2 . Sets up calls to tests and operations
in CSPP.
CSEQ(N,M)
{CSINCl(N,M)
CXINC1(N,M)
CSINC2(N,M)
CSNDST(N, M
{CSMERG(N,M)
MERGE1(N,M)
CSMERR(N, M
CSERAS(N, M
CSSAVE(N, M
2.11 Control program
Rout i ne Type Rol e
Entries
CPI'N SR Inputs a control program  Check
synt ax.
CONTRL SR Interprets the control program
SCAN( DY) I*2 I nputs next synbol and generates
t oken.
SCAN1(DMY) I*2 I nputs next synbol and generates
t oken.
TRACE( TNg , TIM, ANFG ) SR Generates TRACE out put,
TAPPLY SR I nvokes a transformation.
APPLY1(TND) SR For IN-transfornmations,
APPLY(TND) SR Gener al
OUTTRN SR Qutputs the list of tranformations
whi ch have appli ed.
APPLYI(TND) SR When inside an IN construct.

2-7




2.11 Control program (continued)

Rout i ne

Entries

SYNCHK
RECOG

APPLYG (GNP)

/cpepM/
-/ SYNCM/

Type

I*1 .

I*1

SR

2-8

Rol e

Checks syntax of the control program

Cenerates token and recogni zes
synbol s.

I nvokes transformations of group
GNO.

Storage

Storage




3. SUBROUTINE DESCRI PTI ONS

In this section we describe individually each subroutine of the
system, The reader will imediately notice that the level of detail in
the program descriptions varies greatly. |n general, where the program
mng is straight-forward we have sinply described inputs, internal
storage, and outputs, On the other hand, when nmore conplicated algorithns
are involved we have gone into considerable detail in order to tryto

make the programs easy t o f ol | ow.
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3.1 Main program

The subroutines.of the system may be conbined in various ways by
changing the main program (MAIN) . The current nain programis given

below. It accepts an input in the form

SMaTN T 1((n) (S} ) (TRAN)

The program first reads in a grammar. Then a tree is read by TRIN
or FTRRN . The integer n controls the nunber of times this tree
will then be useJ.' If GENis specified, the input is treated as a
skeleton to be expanded by the generation routine GEN (which then
calls the lexical insertion program (LEXINS)) . If LEX i S specified,
the input is assumed to be a conplete phrase structure tree and |exical
insertion is called directly. If TRAN is specified, the transforma-
tions will then be applied.

After n (or 1 if nis not specified) iterations a new tree

is input. The program termnates when there are no nore inputs.

3.1-1




QOO OOO0O0

C

WE

MALN PROGRAM

Xeszole sk, MAIN TT1  sedolsor L SUBROUTINE  destesteatols e A
MAIN PRAIGRAM FOR TESTING GEN - 3653/67T = 1/19/67 -
VERSINN FAR TESTING GEN - 11 8/18/67
INPUT CARD SEZQUENCE '

INITIALIZATION TS DOND BY GRAMIN

P5Gy LEXICON, AND TRANSFORMATIONS ARE READ IN ARBITRHL:

ORDER RY GRAMIN E

GRAMIN RETURNS VHEN 3 IS READ.,.

THEN ...

READ I (WHETHER TU CALL FTRIN CR TRIN),

ITERATIONS FOR GEN, CALL TO GEM, LEX, CONTRL.
IMPLICIT INTEGER®2 (£-1) :
CCM™MON /Z/ LAHK NXXXgNSSyNS,NAND MNOR, NANDOR y NFRROR
REAL%:S LANK yNX XXy NSS NS, NAND ,NDR , NANDOR
SCOMADN /TREECHY/ FTREEZTFEEZCLIST MTREE ¢ MCLIST,NCODE
REAL*HE FTREEL(47() )
INTEGER#2 TREE (40 5496) o CLIST(40T ) yMTREE,MCLIST WNCODELLG)
COMMON/SKELCM/FISKEL s TSKELySKLISTy ISKELT yMSKLST

>

D...Al-’;; jog | IICI")‘.A’\\
N L i1 LAY S N WY 4 !

INTEGER%*2 lSKkL(Zb\96)rSKLIST(2”q’vISKrLT' ISKLST
CCHMIN yCSCM/
1 AMALKIZCSLIST(4,2000) oAMALPT(500) JANALWPI2CCC Yy ANALSTH220C ),
2 TEMPAN{23ZC )y SLCTRT(ALC) 2ANALTP, S LCTTP,CSFF,CSFDD s ENALWT
REAL*R ANALWD({2:3)

COMMON/ MAINCH/ CHRTQ,KSUNF,ISUNP,NCHQTR

REAL#8 CHRTRKSUMP(20 ()

CCMMON/ IROCM/ NUMyISPEC,0ORDFLyMUMFL

LOGICEHL*1 ORDFL JNUMFL .
REAL%S8 IMAIN/* ¢MAINY/ ZFTRIN/*FTRINY/LZTRIN/YTRINY/,
1 ZGEN/*GEN'/4y7LEX/'"LEX"/y7TRAN/YTRANT/, FREAD
INTEGER %22 ONE/1/

Nl=1

N2=-1

N2y =2

WRITE(H,1T721)

NERRNR=1

CALL GRAMIN

CSFSAV=CSFRPT -

HAVE THZ $, IF IT ISN'T US, ZUIT NOW,

IF (CHRTR NE&. ZMATN)  STOP

50 1‘2




C IT IS US. NO#W IS IT TRIN OR FTRIN FOR TREES?

NGEN = 1 -
KKTREE =

KKTRAN = 3

KKGEN = 7

CHRTR = FREAD{ONE

IF (CHRTR LED. ZFIRIN) GO TO 4
IF (CHRTR LFQ. Z2TRIN) GO TN B
G TO 9
4 KKTREE = 1
C NOW LODOK FIR GEN FACTOR QR MARKERS FOUR CALLS TO GEM, LEXINS, CONTRL .
8 CHRTR = FREADI(ONE)
9 IF (NUMEL) GOTO 1é
IF (ISPRC. NE. 7)) GOTO 15 :
10 IF (CHKRTR LEQ. ZGEN) GO TO 11
IF (CHRTR LFED.~ ZLEX) GO TO 12
IF {CHRTR JE?. ZTREN) GO TO 13
WRITE (6,1805) CHRTR

G3J TO 8
C REMINDER TJ3 CALL GEN
11 KKGEN = 1
G3 70 8

C PREMINDER T7 CALL LEXINS .
12 IF (KKGEN JNE, 1) KKGEM = 2
GO 70 8
C KEMINDER TD CALL CONTRL
13 KKTRAN =1
GO TOU 3
14 NGEN = CHRTR -
GO 10 8
15 CSFRPT=LSFSAV .
© IF (KKTREE +EN. T) CALL TRIN
IF (KKTREZ LEQ. 1) CALL FTRI(ONE)
SAVLSFE = CSFRPT
IF (ORDFL) RETURN
TFINERRZIRGNES") WRITE(6y16(%) NERROR.
NERROR=)
co 22 1
FISKEZL(
Do 27 K

i

MTREE
FTREE(T)
6

it -

I

1
)
1, :
24 ISKEL{T,K)=TREE(I,K)
[SKELT=4TRE
DO 3. T=1,MCLIST
3. SKLIST(I)=CLIST(I)
ASKLSTV=ACLIST

T
E
¢
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3.2 Free field input-output

A full description of the free-field input/output subroutine
package is given by R W Doran in AF-1k (CS-79) to which the reader

is referred. These prograns are independent subroutines and may be

used outside of the present system

3.2-1






3.3 Trees

COVMMON/ TREECM FTREE, TREE, CLI ST, MTREE, MCLI ST
REAL*8 FTREE(400) .
| NTEGER*2 TREE(400,6),CLIST(400), MTREE,MCLIST

Exanpl e

N

AN

e —t

+F
'[-HUMAN]
FTREE TREE CLI ST
col. 2 3 L4 6
1|8 0 1 3 o] 1]2
2 |B 1 5 5 01]2]5
3 | E 5 6 6 03|k
y | H 1 o0 0 Ok
51D 1 8 9 o0]|5]|6
6 |C 2 0 o0 O\ 6|7
7 |F 3 0 0 10| 7
8 1G 5 0 0 01|8]3
MTREE=8 1 918
MCLIST=9
3.3-1



Di scussi on

FTREE is a list of the labels of the nodes of the tree. The nunbering
of the nodes is arbitrary except that the root of the tree is always node 1.
TREE is a six-colum array parallel to @REE. Colums 1 and 5 are used
for work-space. Col. 2 is a pointer to the parent of the node (0 for the
root). Cal. 6 is a pointer to the conplex synbol attached to the node (in
CSLIST), or O if none. Notice that the format thus allows conmplex sym
bols to be attached to any node of the tree. Colums 3 and 4 point to the
first and last positions in CLIST which contain the daughters of the node
CLI ST gives the daughters in left-to-right order. MIREE is the current
length of FTREE and TREE; MCLIST is the current length of CLIST.

The format is a conpronise between case of search and ease of change
The list of node names in FTREE allows a quick search for a particular
node nane. The entries in TREE and FTREE need not be contiguous and CLI ST
l'i kewi se can be expanded without reconpression. (The exanple shows CLIST
as it mght [ook after various changes have taken place).

The COMWON block /SKELcM/ is structured |like /TREECM/ ; in the
common bl ock /CHANCM/ FCHTRE, CHTREE, CHCLIS, NCHT, NCHCL correspond
to FTREE, TREE, CLIST, MIREE and MCLI ST .

égé

Bl ock data /z/ contains a few miscel |l aneous paraneters used in
the system The nost inportant of these are NSS and NS which both
continue the sentence symbol 'S' and NERROR which can be used to
conmuni cate an error pondition. Some of the other paraneters in /z/

are no |onger used.




External formats

The system has both fixed field and free field external representa-
tions for trees. TRIN and TROUT are the fixed field input and output

routines; FTRIN and FTROUT are the” corresponding free field routines.

TRIN and TROUT, fixed-field tree I/0O

TRIN and TROUT(I,J) input and output trees to and from the internal
format described above. The external format is inmediately readable and
readily punched. output may be printed or punched and may begin at any
selected node of the tree. A substitution feature allows subtrees to be
treated separat eI\y.

Figure 3.3.1 gives an exanple of the printed output of TROUT(1,0) .
Figure 3.3,2 is a listing of cards produced by TROUT(1,1) . The i nput

to TRIN is the sane as the output of TROUT(1,1) .

Basi ¢ external format

The basic format is a representation in which the daughters of a
node in field L appear in field 1+1. The first (left-nost) daughter
is in the same card as its parent. Daughters to the right appear on

| ower cards. Thus

A B C
D E F
G
H
5.3-3




represents the tree

o

Q—1x
| S

Substitution feature

A potential difficulty in the basic format is that the depth of a
tree may exceed the maxi mum nunber of fields allowed. A substitution
feature avoids this by replacems “ . = cummy node by a subtree. This
is indicated by the use of a substitution card with XXX in the first

field and the dummy node in the second. Thus, the input cards

EXAMPLE
A B C
D E F
G
H
- XXX G
S B C
D
(bl ank)
represent the tree
A
/B/§>\H
d ¢
A
F ? D
C
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BASE 25 IS THE AUTO THE CONVEYANCE THAT THE HORSE NAS AT THAT TIME

SS +
S PRE Q
NP DET  ART THE
PSAR ADM
N NCM NCT
NU SG
AUX AUXA TNS PRES ‘
VP BE ‘
PRED NP OET ART THE
PSAR AOM
N NCM NCT
NU SG
Ss +
S NP OET  ART THE
PSAR AOM
N NCM NCT
NU SG
AUX AUXA TNS PST
VP BE
PREO NP OET ART OEM WH
THAT
NBR
PSAR AOM
N NCM NCT
NU SG
TIM ™ AT
NPI OET ART OEM THAT
N8R
PSARAOM
TIME
NU SG
+
+
+ Q THE ADM NCT SG ' PRES BE THE AOM NCT SG + THE AOM NCT SG PST BE WH
THA TNBR ACM NCT SG AT THATNBR AOM TIME SG + +

Figure 3. 3.1 Example of Printed Tree Output




9-¢°¢

BASE 25 IS THE AUTD THE CONVEYANCETHAT THE HORSE WAS AT THAT TIME

Ss +
S PRE Q
NP DETY ART THE
PSAR ADM
N NCM NCT
NU SG
AUX AUXA TNS PRES
ve BE
PRED NP DET ART THE
PSAR ADM
N NCM NCTY
NU SG
SUBO1
¢
XXX sSuBo1l
$S +
S NP DET ART THE
PSAR ADM
N NCM NCTY
NV SG
AUX AUXAT N S PST
vP BE -
PRED NP DET ART DEM WH
THAT
NBR
PSAR ADM
N NCM NCTY
NU SG
TIM ™ AT
’ KPI DET ART DEM THAT
NBR
PSAR ADM
TIME
NU SG
+

BLANK

FI GURE 3.3.2 LI STING OF PUNCHED TREE QUTPUT




The onyrestriction on the use of the substitution feature on input
is that a unique nane be given to the dummy node for which the subtree
is to be substituted. Substitution will be nmade only for the first occur-
rence of that nanme.

In output, substitution is nmade for all occurrences of the sentence
synbol which occur at or beyond the field MAXSS .  Thus, MAXSS shoul d
be set, on the basis of the grammars being processed, so that the maxi mum
depth of a kernel trée does not exceed MAXJ - MAXSS, where MAXJ is
the nunber of fields. If MAXSS is set too high to avoid overflow,
substitution will be made for the rightnost field. For the MTRE
Juni or grammar the values of MAXSS = 5 and 13, for punch and print

' respectively, are acceptable for all but a few trees.

Alternative fornats

Jane Robinson's PARSE progrant uses an output format for binary
trees in which the first daughter appears to the right and the second
daughter, if any, appears below  Robinson's trees contain nunbers asso-
ciated with each node and the lines of the tree are put in. A sinple
example is the tree

R10

VAN
WY Rzo

o8 e
of e

* J. Robinson, Prelimnary codes and rules for the automatic parsing
of English, RAND RM-3339-PR, 1962.
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which is output as 1108  **%x 0130

R10 VHY

*

*

1107  *%%% Q37 *xx%  g30]
R2Q us52 DID
* *

* *

* 2005

* HE

*

*

1001

&0

F. Blair* uses an input formwhich is inverse to ours since the
rightmost daughter occurs on the highest card. Hs input is free field

except that all daughters of a given node nust begin in the sanme col um.

As an example, the tree

N

can be input as

* D. Lieberman, Design of a grammar tester, and F. Blair, Programing of
the granmmar tester, in D. Lieberman, Ed. Specification and Uilization
of a Transformational G ammar, AFCRL-66-270, 1966.

3.3-8




This limted use of free field seens to us to be no easier to punch
than fixed field. Its mgjor advantage is that, since his programis in
LISP, atoms.of arbitrary length can be used. Blair's output is the

standard LISP S-expression form

D scussion of the fornat

The printed version of this format is easy to read;, it seems to us
at least as intuitive as the alternatives discussed above. It is not
hard to punch an input tree directly fromthe graphic representation,
although it may be easier to use coding sheets

Corrections and modifications t0o a tree are very sinple to make.

An interesting by-product of the formis that a small set of card
types can be used to obtain all the trees possible within a given gram
mar. For the IBM Core Gammar* a set of 42 basic card types wou.d
suffice to give all the possible kernel trees. About ten additiona
card types would suffice to take advantage of the substitution feature
for embedded sub-trees. Additional punching would be required only for

input of Iexical itens.

TROUT

Qutput of trees is controlled by the two paraneters of TROUT(I,J)
The first paranmeter controls the starting point of the output. If 1I=1
the entire tree will be output, preceded by its title and followed by
the termnal string. If I is not 1, the éub-tree headed by node
nunber | will be output. This feature can be useful in testing trans-

formations, with I set in turn to each of the nodes of the proper

*p, Rosenbaum and D. Lochak, The IBM Core Grammar of English, Ibid.
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anal ysi s. If I is negative, an error indication is given, if 0
SNIL is output; if greater than MIREE, it is reset to 1
The paraneter J controls the punch option and nunbering. If
J=0the tree is printed only; if J‘= 1 it is printed and punched
offline; if J = -1 each node name will be preceded by the node nunber
The parameters are protected so that the call is essentially by

val ue

TRIN
For input by TRIN the tree nust be preceded by a title card. The
first card nust have a node in field 1. The format is 1246 . The

tree is termnated by a blank card.

Conversion of decks

Conversion to this format of trees in another format is sinple.
They can be read in by the ol d input routine and then punched out by

TROUT(1,1) . The output deck is ready for input to TRIN .

Error checks

If TRQUT is called with | negative, an error (301) results,

In TRIN error 210 occurs when the dummy node for which a substitu-
tion is to be made cannot be found in the tree. A final check on the
Input tree detects trees in which the root is not the sentence synbol
(error 90), or which have multiple roots (error 93). O herwi se the
routine assumes that the input tree is good. It is therefore recomended
that TRIN be immediately followed by a call to a checking routine to

verify that the tree is in fact a correct tree of its grammar.
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The prograns are set up for 6-character words. |f B8-character
words are desired, the format statenments, as well as the values of MAXSS
and MAXJ nust be changed. In the case of a-character words, it would
be desirable to use the full 8o-column“card, so the format statenents
nmust be changed accordingly. The word BLANK can then no |onger be wit-

ten on the final blank card as it is in the 72-column version of TROUT(1,1).

FTRIN, FTRI, and FTROUT, free-field tree |/0O

Free-field tree inputs are primarily used to read into /TREECM/
and /CHANCM/ . To avoid the necessity for specifying all the paraneters
in these cases, FTR can be used. FTRI(I) calls FTRRNwith the
correct parameters for reading a tree into /TREECM/ . FTRI(2) calls
FTRIN to add a tree to CHTREE in /CHANCM/ .

FTRIN(FTREE, TREE, CLI ST, MIREE, KA, KB, ISTART, FWORD) reads a
free-field tree into a block strutured |ike /TREECM/ in which KA is
t he maxi mum si ze of FTREE and TREE, and KB the size of CLIST.
I f ISTART = O, an entire tree will be read, if ISTART = 1, FWORD
wll be taken as the root of the tree.

In the FTRIN code a single subtree i S Sstored using a recursive
algorithmwith a pushdown. KNPUSH(I) contains a pointer to the parent
of the Ith level of the subtree in array TREE and the daughters of
this parent so far found are from MPUSH(KMPUSH(I)) to MPUSH(KMPUSH(I+1)-1).
The recursion is depth first and whenever it is known that all the daughters
of a given node have been found they are dunped into CLIST . Substitution
is done by finding the node to be substituted for (pointers to term nal
nodes are stored in NODES(50)) and then initializing the pushdown by

retrieving the left sisters of the substituted node and placing them on
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the pushdown. The substituted sub-tree is then expanded until a period
or coma is encountered whence the right nost sisters of the substituted
node are retrieved from CLIST and then all of the new |ist of daughters
stored back in CLIST . This causes waste space in CLI ST and TREE
but there is no waste space if there is no substitution,

FTROUT(TOP, PJ) outputs the subtree of TREE which has root TOP .
PJ = 1 causes it to also punch the output. The code for FTROUT is a
~very sinple recursion. KMPUSH(I) tells us where in TREE the Ith

level of the tree is and. KNPUSH(I) points to the daughter of KMPUSH(I)

in CLIST with which we are dealing.
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3.4 Grammar i nput
This section discusses the input routines for grammars and for the

three conponents of a grammar.

INIT, initialization

Subroutine INIT initializes everything in the system including

the free-field input routine. |t is called by GRAMIN .

GRAMIN, grammar i nput

GRAMIN first initializes the system by calling INIT and then
reads in a grammar, Since each of the nmjor conponents begins with an
i denti fyl Nng word and ends with $END, GRAMIN is able to read either

a full grammar or just one or two conponents. GRAMIN returns when it

encounters the order $ which ends the grammar, |eaving the ordar

itself to be read by the MAIN program

PSA NN, phrase structure grammar input

PSG NN reads conpactly witten context-free phrase structure rules
fromthe input stream expands and orders them and stores themin the

rule storage area /PsSGcM/ .

Storage of phrase structure rules

COMMON/PSGCM/NSGAL, NSGC, NSGA2, NSGB, KA, KB, KC
REAL*8 NSGA1(200), NSGC(2000)
INTEGER*2 NSGA2(200), NSGB(300), KA, KB, KC

NP AUX VP.
((WEG, AFF))(ADV)TNS.

1

S
AUX
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Expanded form

S =NPAUXVP.
AUX = TNS,
NEG TNS,

NEG ADV TNS,

ADV TN,
AFF TN,

AFF ADV TNS.

Internal form

NSGAL | NSGA2

1 S 1

3. 42

NSGC

—~N e

o N o= WO

O o N o I W oo

H H PP
T &= W N e O

NP
AUX

NS
NEG
TNS
NEG
ADV
TNS
ADV
TNS
AFF
NS
AFF
ADV
NS




Di scussion of internal form

NSGAL contains left-hand sides of rules.
NSGC contains right-hand sides of the (expanded) subrules,

NSGB(j) contains a pointer to the position in NSGC of the first
word of the jth subrule.

NSGA2(i) contains a pointer to the position in NSG which points
to the beginning of the first subrule of rule i

KA is the current |ength of NSGA1 and NSGA2
= nunber of rules + 1

KB is the current length of NSGB
= nunmber of subrules + 1

KC is the current length of NSGC

= total nunber of words on RHS's + 1

Al gorithms for Expanding and Ordering P.S. Rules

Task

To read a set of conpactly witten Phrase Structure Rules, to

expand, order, and store them

e.g., the rule Aux = ((NEG,AFF))(ADV)TNS. will be expanded to

AUX = NEG ADV TNS,
NEG 1INS |,
AFF ADV TNS,
AFF TNS ,
ADV TNS ,
TNS .
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then ordered algebraically to AUX = TNS,
NEG TNS ,
NEG. ADV TNS,
ADV TNS ,
AFF TNS ,
AFF ADV TNS .

and then stored as described above.
The overall logic of the program PSG NN is illustrated in Fig. 3.k.1.

The main (nunbered romantically) steps are now described.

I/. The expansion of rules was broken down into 2 steps. An
"abbreviated node list" (i.e., a conpactly witten part of a rule,
e.g., "(PAST, PRES)" in the rule "TNS = (PAST, PRES) is first »f all
scanned and a table of linkages built up and then expanded using the
linkage table. Nodes are stored in array "NODES' and |inkages in the

2 dimensional "LINKS'" e.g., (NEG, AFF))(ADV)TNS is firstly converted

into:
NCDES LINKS 1.2.3.h4
1. - 23 45
2. NEG 2 45
3. AFF 3 ks
4, ADV L
5. TNS 5 0

Every expanded node l|ist may be obtained by chasing pointers until a 0

is found.
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ENTER
INITIALIZE

READ & LINK

I ( ABBREVIATED
NODE LIST
EXPAND
II LINKED

NODE LIST

ERROR CONDI TI ONS

SKIP TO NEXT RULE

R EXIT

Figure 3.4.1 Macro-flow Diagram of Expansion,
O der and Storage A gorithm
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e.g. LINKS(1,2) — NODES(3) = AFF
LINKS(%,1) — NODES(4) = ADV
LINKS(L4,1) — NODES(5) = TNS

LINKS(5,1) —» O

so ‘AFF ADV TNS is one of the expanded node |ists.

This first linkage section is the nost conplex. It was found
possible to expand an abbreviated node list using a sinulated pushdown
stack, only having imrediate know edge of the character being scanned
at present and the one previous.

There are 2-basic types of |inkage between nodes in an abbreviated
node |ist:

a/. A-links as between A and B, A and C of A(B,OD

v/. B-links as between B and D, C and D of A(B,OD

A-links are links into parentheses, B links are links out of parenthe-
ses.

The idea of the algorithm of part | is then to scan the abbreviated
node list, when parentheses are opened storing the A-type links for that
| evel of the pushdown and when closing parentheses fixing the B-type
links. O course, links are also storad and -fixed when commas or nodes
are encountered.

Nodes are stored linearly in NODES(I) when they are encountered,
INODES points to the |ast node stored. LINKS are stored in LINKS(I,J),
there being KLINKS(I) links in the Ith row

The push down is rather conplex. TIPUSH indicates the |evel of

operation. At level | the A-links are stored in MPUSH from
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KMPUSH(I) to KMPUSH(I+1)-1 and the B-1inks in NPUSH from KNPUSH(I)
to KNPUSH(I+1)-1 . |MPUSH and INPUSH point to the tops of MPUSH and
NPUSH respectively.

KTR hol ds the character being scanned.

| SPEC indicates the type of the scanned character, ILAST the type

of the previous character scanned.

.we will go through the |inkage of our exanple "((NM, AFF))(ADV)INS"
describing what occurs at each stage. The internal configuration of the

system at each stage is illustrated in Fig. 3.4.2.

$t age

The systemis initialized as if the last character was a common

(ITAST = 2) and an A-link fromthe 1st node (there is no first node,
but a link fromthe first node indicates the beginning of an expanded
node list) is placed into MPUSH at the IPUSH = 1 level. KNPUSH(1) =

KNPUSH(2) indicates that level 1 of NPUSH is enpty.

Stage 2

A parenthesis is scanned and causes the pushdown to be pushed
" down (IPUSH is increased by 1) and the links in MPUSH for the |ast

|l evel are copied into this level. NPUSH is also enpty for this level.

Bt age

Simlar to stage 2.

Bt age
"NEG " is entered into the table of nodes at NODES(2) and the

A-links in this level of MPUSH are fixed onto "NEG" i.e., a pointer "2"

3.4-7



KTR
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-

O ©W 00 N o Ol A W N -

FI GURE 3.4.2
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2.

3
4.
5

T

gl B WP

IPUSH

1

KNPUSH

O N A WN
I

StAcE 1 - INTIALI ZE

LINKS 1.

=
. o
(e
(%2}
T

[N
o
- ..

INPUSH




is placed in LINKS(1,1) indicating that the first expanded node Ii st

starts with the contents of NODES(2)

Stage

A comma preceded by a word causes a B-link fromthe word to be
placed into NPUSH at this present level. In this exanple, INPUSH
is increased by 1 to 1, KNPUSH(IPUSH+1) becones INPUSH+1 (i.e.,

KNPUSH(L4) becomes 2) and KNPUSH(IPUSH) has "2" placed in it.

Stage 6
The word "AFF" is placed in WOoDES(3) . A word preceded by a

comma is nuch the same as a word preceded by a left parenthesis so the

MPUSH link is fixed -"3" is placed in LINKS(1,2) .

Stage 7

A right parenthesis is preceded by a word (like a comma, slash, or
period preceded by a word) causes a B-link fromthe word to be placed
into NPUSH for this level,, The pushdown is popped (IPUSH is de-
creased by 1), but the links of the old level are still current, the

next character determnes the action to be taken.

Stage 8
Another right parenthesis.,

Firstly as at this |evel (IPUSH=2) we have KNPUSH(IPUSH)=KNPUSH
(rpusH+1) it follows that there have been no commas at this level and
consequently the nodes of this level are optional. So the A-links into
this level (just "1") become B-links out of this level (i.e., the Alinks
skip over the contents of this level). A transfer is made from MPUSH

i nto NPUSH,
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FI GQURE 3.L.2 STAGE 2

KTR ISPEC 1 |LAST 2
1 2 3 4 5 6
INODE NODES 1. KLINKS 1.0 LINKS |2 —
1 . 2 | '
3. 3, 3., —
4, 4, b o o
5, 5, 5.
IPUSH IMPUSH IPUSH INPUSH
2 2 2. 0
KMPUSH MPUSH KNPUSH NPUSH
1. -1 1. 1 L1 1.
2. 2 2. 1 2. 1 2.
3. 3 3. 3. 1 3.
4. 4, 4. 4,
5. 5. 5. 5. .
6. : 6.
7. 7.
8. 8.
9. 9.
10. 10.
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FI GURE 3.k4.2 STAGE 3
KTR ISPEC 1 ___ ILAST 1
INODE NODES 1. KLINKS 1. 0
1 2. 2.
3. 3.
4, < S —
5. 5. —
IPUSH IMPUSH IPUSH
2 z z
KMPUSH MPUSH KNPUSH
1 1 1. 1 1. 1
2. 2 2. 1 2. 1
3. 3 3. 1 3. 1
4. 4 4, 4, 1 '
5. 5. - 5
6.
7.
8.
9.

O 00 ~N O O NH W N =

LINKS 1.

[EY
©

INPUSH

=
v
o
wn
x

U b w N
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FI GURE 3.4.2 STAGE 4

KTR __NEG ISPEC _© ILAST _1
1 2 3 4 5 6
INODE NODES 1. KLINKS 1. — 1  LINKS 1.2 __ __
2 2. _NEG 2. 9% 2.
3. 3. 3,
4. 4o 4., __ _
5, 5. 5.
IPUSH IMPUSH IPUSH INPUSH
3 = = 0
KMPUSH MPUSH KNPUSH NPUSH
1 1 I 1 1. 1 i,
2. 2 2. 1 2. 1 2.
3. 3 3. 1 3 1 3.
4. 4 vy 40 1 4
5. 5, 5 5.
6. 6.
7. 7.
8. 8.
9. 9.
10, 10.
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" FI GURE 3.h4.2 STAGE 5

KTR ISPEC _2

ILAST —©
1 2 3 4 5 6
INODE NODES 1. KLINKS 1. —% LINKS 1. 2 __ ___ ___ ___ ___
2 2. _NEG 3 o f 2. . . . .
3. 3. / 3. o
4, 4, ______ 4, __
5. 5. 5.
IPUSH IMPUSH ' IPUSH INPUSH
3 3 3 1
KMPUSH MPUSH KNPUSH NPUSH
1. 1 1. 1 l. 1 1. 2
2. 2 2. 1 2. 1 2.
3.3 3. 1 3. 1 3.
4 4 4 . 4. 2 4,
5. 5. 5. 5,
6. 6.
7. 7.
8. 8.
9. 9.
10. 10.




H~%°¢

FI GURE 3.4,2 STAGE 6

KTR_AFF ISPEC _° ILAST 2
2 3 4 5 6
INODE NODES 1. KLINKS 1._2 LINKS1. -2 3 m - - -
z 2. NEG 2. , 2. '
3. _AFF 3. 2 3.
4, 4, b\ o e
5. 5., — 5
IPUSH IMPUSH IPUSH INPUSH
_3 _3 | _3 1
KMPUSH MPUSH "~ KNPUSH NPUSH
1. 1 1. 1 1: 1 1. 2
2. 2 2. 1 2. 1 2.
3.3 3. 1 3. 1 3.
4. 4 4. 4, 2 4.
5. 5. .5, 5.° .
6. 6.
7. 7.
8. 8.
9. 9.
1Q_ 10.




Secondly, as the preceding character was a right parenthesis, the
B-links for the preceding level are added to the B-1inks of this level.
We now have links from2, 3, 1 in NPUSH for this |evel.

Thirdly, the pushdown is popped“ agai n (IPUSH=1) .

Stage 9

A | eft paren. is scanned so the pushdown is again pushed. Now all
the B-links out of the previous parenthesis |evel become A-links into
the new parenthesis level., So NPUSH for this level is transferred to

MPUSH and is itself elimnated by putting KNPUSH(IPUSH+1) = KNPUSH(IPUSH) .

Stage 10
"AD'" is entered into NODES(4) and the A-links for this level are

fixed to "4",

Stage 11
As in stage 7, the MPUSH A-1inks become B-links in NPUSH . First

of all a B-link is entered from "ADV" in NODES(L4). The push down is

popped to level 1,

Stage 12

"INs" is entered in NODES(5) . As the preceding character was a
right parenthesis the B-links in NPUSH for the preceding level are

fixed to "s".

@age

A period firstly causes a link from"INS" in NODES(5) to be
placed in NPUSH . Then links in NPUSH for this first level are fixed
to "0" indicating the end of an expanded node list. Control is passed to

the expansion section,
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FIGURE 3.4.2 STAGE 7

KTR ) ISPEC __6 ILAST —©
1 2 3 4 5 6
INODE NODES 1. KLINKS 1 2 LINKS 1. 2 3
> 2. _LES 2. O I 2.
3. _AFF 3. 0 3. —
4, 4, 4. __ ‘
5. 5 —_— b.
IPUSH IMPUSH IPUSH INPUSH
2 2 2 . 0
KMPUSH MPUSH . KNPUSH NPUSH -
1. 1 1. 1 1., 1 1. 2
2. 2 2. 1 2. 1 2. 3
3. 3 3 _1 3. _1 3.
4. & 4, 4, 3. 4.
5 5 5. 5.
6. 6.
7. 7.
8. 8.
9. 9
-0, 0.
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KTR. ISPEC
INODE NCDES 1.
3 2. NEG
3, _AFF
4.
5
IPUSH IMPUSH
1 1
KMPUSH MPUSH
1. 1 1. 1
2. 2 2. .1
3. 3 3. 1
4. b 4.
5 5.
6.
.
8.
9.
10.

6 ILAST

FI GURE 3.4.2
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INPUSH
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FI GURE 3.k.2 STAGE 10

KTR __ 22V iIspec __© ILAST _*
1 2 3 4 5 6
INODE NODES 1. KLINKS| . —3 __  LINKS 1. 2_3 _&
_k 2. _NEG 2 1 2. & —_
3. __AFF 3 1 3.
4, __ADV 4 0 4.
5. 5 5
IPUSH IMPUSH IPUSH INPUSH
o 2 4 2 0
-
o
KMPUSH MPUSH KNPUSH NPUSH
1. 1 1. 1 1. 1 1. =2
2. 2 2. 2 2. 1 2. 3
3. 5 3. 3 3. 1 3. 1
4. 4 4. 1 4. 3 4.
5. 5. b. .
6. 6.
7. 1.
8. 8.
9. 9.
10. 10.




Fol | owi ng through the above exanple should give the reader a good
feel for the algorithnt

During this stage a nunber of errors such as "(" followed by ","
are checked for. If an error is encountered, the rule or context being

expanded is skipped entirely.

[1/, Expansion Al gorithm

This is a straight-forward chasing of |inks and can best be under-
stood by reading the appropriate section of the program The Ith
expanded node tist is stored in MEXPND from KEXPND(I) to KEXPND(I+1)-1 .
IEXPND points to KEXPND, JEXPND points to MEXPND . KMPUSH and KNPUSH
are used during the expansion to keep track of how nuch has been expanded
so far, The Ith word of an expanded node sublist at a given tine is in

NODES ( LINKS ( KMPUSH(I),KNPUSH(I))) .

[11/. Odering Sections

The ordering algorithmis sinple. The smallest expansion is taken
out of MEXPND and stored, being replaced by a large non-word (") . "
inthis case) and then the smallest expansion renoved again and SO on.

Duplicate expansions are removed. (The procedure is conplicated by

“the requirenment that "A B" when conpared with "A" actually has to be

conpared with "A blank". )

IV/. Context Checker

Foul contexts like "-" or "A " or "A - B -" are removed and

null contexts are accounted for, FError messages are issued.
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V/. Error Recovery

The general philosophy has been to try and continue after an error

is found so as to check for further blunders. In later nodels, expanded

and non-expanded node lists will be mxable so partial expansions will

be val uabl e.

VI/. Denouenent
Wien all rules have been read, the expanded rules are listed or

hunched if desired and other odds and ends tidied up.

PSGSMP

The entry PéGSlVP of PSA NN places the expanded phrase structure

rules into KSUMP, which can be printed by calling FROUT .

PSGOUT

PSGOUT is a short subroutine which prints out the phrase structure

rule tables.

LEXIN, |exicon input routine

Internal Formats
W describe here only the storage of category features as used by
| exical insertion and the storage of the lexical entries. The storage
of inherent features, contextual, feature |abels and descriptions, and
redundancy rules are treated el sewhere.

Lexicon data is stored in the common bl ock | abel ed /1EXCM/ defi ned

as bel ow.
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COMMON/  LEXCM/
1 LEXWD,LEXWDS,LEXCS,LEXCSS,LXCPTR,CATLST,NIXC,
2 NLEX,NLEXW,NLEXCS,NCATL

REAL*8 LEXWD(500),CATIST(20)

| NTEGER*2 LEXWDS(300),LEXCSS(300),LEXCS(500),
1 LXCPTR(100,20),NLXC(20),NLEX,NLEXW,NLEXCS,
2 NCATL

The category feature list is stored in the order input in the
array CATLST . The paraneter NCATL gives the nunber of entries in
the category list.

A lexical entry is defined as a list of vocabulary words and a Iist
of conplex synbols. Internally each entry is conposed of two lists of
pointers. One 1ist (LEXWDS) contains pointers to the array LEXWD
where the vocabulary words for the entry are stored. The other |ist
(LEXCSS) contains pointers to the array LEXCS where nunbers cf the
conpl ex synmbols for tne entry are stored (these nunbers are pointers to
the array CSLIST)

Toillustrate, if the ith and i+lst | exical entries are as
defined bel ow.

entry

i JOHN BILL SAM |+N +HUMAN|

i+l IOVE |+V + TRANS|

then the storage woul d be as shown bel ow.
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LEXWDS LEXWD

: JOEN
: _/ BILL
i G SAM

i+l 0—-—'—'_“-\._”,’ LOVE

141 :_s: = CSLIST(-,n)

To simplify searching ior Lexica. entrics during the |exical inser-
tion process, the entries are linked by lexical category; that is, all
nouns are linked together, all verbs, etc.

For the jth entry in CATLST

NIXc(3) = nunber of lexical entries in that category

IXCPTR(k,j) = pointer (to LEXWDS and LEXCSS) for
the kth lexical entry in category CATLST(j)

(1 <k < NXK(j))

LEXIN. | exicon input

When LEXIN is entered, it imediately calls the subroutine
PRELEX to read in the prelexicon portion of the lexicon. After
PRELEX returns, the lexical entries are processed, The subroutine
FREAD is used to read vocabulary words and special synbols
("2 """ "|") . Conplex symbols are read by the subroutine CXIN .
The flag ENTFL=.true. is used to indicate that an entry nust be |inked
to the appropriate category list, The flag ENDEF=.true. indicates
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that entry has been conpleted and thus the pointers in LEXCSS and

LEXWDS must be specifi ed.

if the array limts specified for the |exicon are exceeded.

Error comments are produced by LEXIN

The array

limts are specified in the comon block /LEXCM/

PRELEX, prel exi con input

Calling sequence: CALL PRELEX

Description:

goto" statenent to transfer control to the appropriate place

the integer variable STAGE is used in a "conputed

[f errors

occur, such as illegal punctuation or the omission of punctuation, error

conments are generated and recovery is attenpted

functions called by PRELEX are

Type Nanme and Args.
FUNCTI ON FREAD( ONE)

FUNCTI ON NUMNAM( CHRTR, ZERO )
FUNCTI ON SLFEAT(ONE)

SUBR NAMEIN(CWORD,I)
FUNCTI ON RESTI N( ONE)

FUNCTI ON CXI N( ONE)

LEXSMP, | exi con out put

calling sequence: CALL LEXSMP

description:

The subroutines and

Purpose
free field input

store category and inheren:
features

read contextual feature
description (not including
restriction)

store contextual feature
| abel

read restriction in con-
textual feature description

read in conplex synbol
appearing in redundancy
rul es.

This subroutine puts the lexical entries into the

array KSUMP. They may then be printed or punched as desired by the
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appropriate call to FROUT . The output format is suitable for use as
input. The subroutine CSSUMP is used to put conplex symbols into

[ f KSUWP Dbeconmes full the contents are printed by calling
FROUT and then the remaining entries are stored. The lexical entries

are put into KSUW is category order as specified in CATLST .

LEXOUT, | exi con debuggi ng

calling sequence: CALL LEXQUT

description: This subroutine generates a printout of the storage
arrays for the lexicon described earlier. This printout is intended for
debuggi ng purposes only. The code for this subroutine is found in the

subroutine LEXSMP .

NUMNAM, feature nunber and nane

NUWNAM FWORD, ARG returns the feature nunber for the feature name
FWORD . |If ARG i s nonzero, and FWORD has not previously been assigned
a nunber, FWORD is assumed to be the name of an inherent feature, and
a warning to that effect is printed.

The entry NAMEI N(FWORD, ARG) stores FWORD as the name of the
contextual feature whose feature nunber is ARG.

The entry FEATOU prints out the internal tables for features,

redundancy rules and calls CSQUT for the internal conplex synbol tables.

TRANIN, input routine for transformations

TRANIN reads in a set of transformations and stores the infornation
for later use. TRANIN is called by GRAMIN . TRANIN calls subroutines
ANALIN (an entry to CXIN), RESTIN, CHANIN, and CPIN which read

and store parts of the transformation specification, as shown in Figure 3.4.3.
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subroutine

ANALIN(@NE)
RESTIN(SNE)
CHANIN(@NE)

CPI'N

Figure 3.4.3 Subroutines called by TRANIN

resul t

returns pointer to-the structural analysis

returns pointer to the restriction

returns pointer to the structural change

stores the control program for use by the contro
subroutine
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The only information which is analyzed by TRANIN itself is the

identification. The following comments explain the use of the parts

of the identification. (1) The optional integer is solelv for the
conveni ence of the user and is ignored by the program the transformation
nane i s always used in referring to the transformation. (2) The group

nunber is used by the control programto refer to a set of transforma-

tions. If the group nunber is onmtted on input, it will be taken to

be the same as the group number of the preceding transformation, or |

in the case of the first transformation. (3) Repetition deternmines if
and how the transformation will be reapplied to the sane subtree. The
choices are AC\Eanalyze once and change), ACAC (anal yze, change and
repeat), AACC (find all analyses, then do all changes, and AAC (find
all analyses, do one randony-selected change). The null option is AC.
(4) The choices for optionality are option (OP) and obligatory (OB)
The null option is OB . (5) The keywords nust be present in the tree
to which the transformation applies; this is a technical non-1inguistic
device to speed up the program by avoiding the analysis routine, (Renark:
At sone later tinme we may wish to expand the notion of keyword to allow
Bool ean conbinations of keywords, or possibly even key-subtrees.) An
enbeddi ng parameter which would allow a search to go bel ow any sentence
synbol was originally planned but has not been inplenented; a tree wll

be searched bel ow a sentence symbol only if the analysis explicitly nen-

tions a sentence synbol and gives an analysis for it.

Internal storage. Transformations are stored in the comon bl ock

/TRANCM/ .  The present capacity is 100 transformations. The I|-th

transformation read is stored as foll ows:
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FTRAN(T)

1]

nanme of transformation

TRAN(I,1) = group nunber (stored as an integer 1-7)
TRAN(I,2) = repetition (1 for Ac, 2 for ACAC, 3 for AACC

and 4 for AAQ

TRAN(I,3) = optionality (O for obligatory, 1 for optional)

TRAN(I,4) = (currently unused)

TRAN(I,5) = pointer to the structural analysis of structura
description

TRAN( I,6) = pointer to the restriction of the structura
description

TRAN(I,7) = pointer to the structural change

The keywords for the |I-th transformation are stored in KEYS from
KEYPT(I)+1 t hrough KEYPT(I+1) . The nunber of transformations (hence
the current length of both FIRAN and TRAN) is NTRAN . The total
nunber of keywords is NKEYS .

Qutput of transformations. The transformations should be followed

by the order $E8D . This causes the programto output FTRAN and
TRAN in tabular form followed by the list of keywords. Control is
then returned to the main program  CALL TRANOU will al so produce this

output, which is illustrated in Figure 3.bk.h.
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3.5 Phrase structure generation

This section describes the routines GEN,IFIND,IAFIND, and NSRCH
which are used to expand tree skeletons into base trees. A genera
description of this process is given in €s-80 (AF-15).

The main programis GCEN and is called each time a skeleton is to
be expanded. The skeleton is expanded, starting with the sentence
symbol S, by selecting at random from the set of applicable phrase
structure rules. The skeleton may contain restrictions which require
doni nance (DOM), nondomi nance (NDOM), equal ity (EQ), and special
node synbols, null expansion (NL), or variable numbers of daughters
(Xor Y) . Restrictions DOM NDOV and EQ appear in the skeleton

as daughters of nodes as shown in the exanple bel ow.

RESK)’I)\

M boy

The special node synbols NL, X, and Y appear directly in the skeleton.

The appearance of NL as the leftnost daughter of a node indicate that

no daughters are to appear to the left of the daughter to the right of NL,

that is the skeleton
NP

NL N
could not be expanded to

NP

A
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but could be expanded to

The appearance of NL as the rightnost daughter in the skeleton
simlarly limts expansion to the right.

The special node X indicates that 0 or nore daughters nust
appear in its place and the special node Y indicates that 1 or nore
daughters nust appear,

The restrictions DOM,NDOM,EQ may refer to nodes or vocabul ary
words (vocabulary words are handled during lexical insertion),, DOM
and NDOM may al so refer to conplex synbols with the node symbol a bl ank.
CGEN uses the subroutine LSRCH (described in Section 3.6) with a node
nunber of 0 to determine if there is a conpatible conplex synbol in
the lexicon, The DOM restriction allows subtrees to be specified as

wel | as single nodes and these subtrees may contain further restrictions.

/\
ot s Sombins

The function' subprogram IFIND(MN) is used by GEN in testing

For exanpl e

DOM and NDOM restrictions to determine if a node of type M nust,
mght, or cannot dom nate a node of type N. IFIND calls |AFIND(N)
to find the first PSG rule (in PSGA1) which expands a node of type N .
IFIND calls NSRCH(N) to find the last PSG rule which could expand

to a node of type N.
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GEN
The follow ng storage arrays are used by GEN in building the base

tree and handling restrictions

type
STRING(200,2) R*8
| TRACK( | 00) I*2
NEQLST( 20) I*2
EQTRAN( 20) R*8
NRESRS(10) I*2
NRES( 10,3) R*8
NCK( 20) I*2
NTEM(50,2) R*8
NTEM3(50) I*2
NTEMCS (50) I*2
NOK( 20) I*2

STRING

The array STRING contains a parallel list of the term nal node
synbol s and the termnal node nunbers for the tree e.g., for the I-th
element in termnal string

STRING(I,NSTA) = node numnber

STRING I, NSTB) = node synbol

During expansion the new elenents are inserted in the appropriate side
of the array. After expansion of an element the rest of the string is
copi ed over

The pointers NSTA and NSTB are then reversed which in effect

"flips" the array. 5.5-3




ITRACK
This array contains pointers to the acceptable rul e expansions of
a given node, The nunber of entries in ITRACK is given by the param-

eter MTRACK.

NEQLST

This array is used for handling equality restrictions, The first
appearance of a node with an equality restriction is expanded and the
node nunber is placed in NEQLST(I) where I is the equality restric-
tion nunber, For each succeeding appearance of a node with the sane
equal ity restrictiony the resuriction namber 1s saved in  TREE(NODE,5)
and the node is not expanded further at that time, \Wen the base tree
has been conpletely specified (including lexical insertion) then the
subtree headed by the original node (with restriction 1) replaces each

appearance of a node with TREE(NODE,5) = |

EQTRAN
The routine TRIN does not convert integers to integer format,

This conversion is performed by table | ook-up in the array EQTRAN,

NRESRS

!f a DOM restriction contains a subtree (nore than a single node),
or if a conplex synbol appears in a restriction then the tree node which
is the top of the subtree (or has the conplex synbol) is saved in
NRESRS(MRES) where MRES is the nunber of restrictions (DOM or NDOM)
detected thus far., Qherwise NRESRS(MRES) = 0 .
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NRES

For each DOM or NDOM restriction
NRES(__ ,1) = DOM or NDOM
NRES (___,2)

NRES( __ ,3) = tree node of the first daughter making up
the restriction (RES)

top node synbol of the restriction

NOK

NOK(MK) = result of IFIND for the MKth daughter of a node with

DOM or NDOM restriction.

NTEM NTEM3, NTEMCS

For each possible (MKth) daughter of a node with a DOM or NDOM

restriction
NTEM __ ,1) = node synbol
NTEM(  ,2) = DOM or NDOM
NTEM3( ) = NOK(MK)
NTEMCS(_) = conpl ex symbol pointer if a conplex symbol was

specified in the restriction.

The actual operation of GEN may be summarized as follows.
1. If there is a skeleton, store it in TREE .

If there is no skeleton, start with SS(SS=S) in TREE .

2. Pick a PSGrule (linear pass through NSGAl) .

If no nore rules, go to step 11.

3. Mtch elenment of STRING with the left part of the rule.

If no nore entries in STRING go to step 2.
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L, If there are no daughters specified in the skeleton, put pointers

to the possible rule expansions in ITRACK and go to step 6.

5. |If there are daughters in the skeleton
5a. Search daughters for a restriction. |f there is a RES and
-if it is an EQ
- put first node nunber in NEQLST and continue
W th step 5a.
- for subsequent occurrences of the restriction put

the restriction nunber in TREE (node, 5) and go to

-if it is a DOMrestriction with daughters or a conpl ex
synbol, save the node nunber in NRESRS

-if it is a DOMor NDOM of an SS put this as the
first entry in NRES, otherwise put restriction in next

NRES entry.,

5b., Put pointers to the possible rule expansions in ITRACK
replacing X and Y nodes and treating the NL . If

there were DOM or NDOM restrictions, use IFIND to
determne the effect of the rules in ITRACK for each
restriction and save the results in NTEM. |f the
restriction contained a conplex synbol, consult LSRCH
as well. Delete those rules from ITRACK which are not

desi red.

6. Pick a rule from ITRACK entri es.
7. Put rule expansion in TREE (if not already there) and in STRING
Unlink RES, X Y, and NL daught ers.
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8. Save the remaining STRING entries.

9. If there were restrictions, then for each restriction
- test each daughter and find the one corresponding to the
NTEM entry.
- for a DOMrestriction
-if satisfied, set indicator (MK) and if DOM has
daughters or a conplex synbol attach them
if not satisfied yet, put the DOM restriction (wth
conpl ex synbol or daughters, if any) on one of the new
daughters which could possibly neet the restriction.
- for a\I‘\lDO\/I restriction, if still could be violated, add
the restriction to each new daughter which could be expanded

into a node of the type not desired.

10. Fill and flip the STRING array and go to step 3 (pick up
where we left off in STRING.

11. If there are any SSes or Ses in STRING and if an SS or
S appeared in a DOMrestriction, then put the leftnost S
inthe first entry in STRING and go to step 2 (this wipes out

the old STRING.
.12. Do lexical insertion (call LEXINS),

13. If there were EQrestrictions, search tree for nodes narked
with a restriction nunber (in TREE (__ ,5)) and substitute
the subtree headed by NEQLST(TREE( _ ,5)) .
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IFIND (M,N)

IFIND i s an I NTEGER*2 function with two REAL*8 argunents M
and N which are node synbols that appear in the tree and in a DOM

or NDOM restriction, respectively.

IFINDCMN) = -1 if a node of type M never can domi nate a node
of type N
IFINDOMN = 0 if a node of type Mmnmight dom nate a node of

type N

IFIND(M,N) = 1 if a node of type M nust doninate a node of type

N~

The result of IFTND is obtained by examination of the phrase structure
rules stored in the arrays NSGAl, NSGA2, NSGB, and NSGC . Th: array
ISTACK is used for pushdown to save internediate parameters and the
array CATRES is used to save internediate results

A heuristic has been introduced to increase the efficiency of the
search process. Any node synbol examined to see if it dom nates another
node synbol is tested only once. |If the search is perforned exhaustively
a given category may be examined several times if it appears nore than

once in the phrase structure rules. For exanple:

1. S - NP VP
2. VP -V NP

3. NP -»N S

For IFIND(S,N), the NP will be examned only once even though it ap-
pears on the right-hand side of rules 1 and 2. The array BADST is used

to remenber rules which have been previously exam ned.
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TAFIND(I)

IAFIND i s a REAL*8 function with a REAL*¥8 argunment. The
value of | is a node synbol. If I is the sentence synbol (SS=S5)
or a termnal synbol of the phrase structure grammar then the value of
IAFIND(I) is | . Oherwise the value of IAFIND is the index to the

first rule in the phrase structure grammar pointer to (NSGAl) that

expands the synbol |

NSRCH(N)
NSRCH is an INTEGER*2 function with a REAI*8 argunent, N .
N is a node symbel. The value of NSRCH is the index to the last rule
in the phrase structure grammar that introduces the symbol N. [f no

rule introduces the synbol N, the value of NSRCH is O .
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3.6 Lexical insertion

The main subroutine for lexieal insertion is LEXINS.  This program
calls the subroutine TSRCH to |ocate lexical category nodes in the tree.
LEXINS calls the subroutine LSRCH to |locate conplex synbols and vocabul ary
words that are suitable for insertion at a specified lexical category node
LSRCH calls the subroutine CSTEST to test if the |exicon conplex synbols
are suitable for insertion in the tree. CSTEST calls the subroutine
CSCOW to determne if a tree conplex synbol and a |exicon conplex synbol
are conpatible. CSCOWP will assign values (either to + or -) to al
features with the value *. CSCOW nerges conplex synbols and expands
the result using the subroutine REDRUL. The result of CSCOWP is either
a conpl ex symbol nunber or the integer value zero to indicate that the two
conpl ex synbols are inconpatible. |f CSCOW indicates that the conplex
synbol s are conpatible, CSTEST then calls the subroutine ANTEST to test
each contextual feature specification in the conplex synbol returned by
CSCawp

The follow ng common blocks contain arrays and variables used in |ex-
ical insertion.

COMMON/LINSCM/

1 SRCHL, ELI ST, NSRCHL, NELI ST

| NTEGER* 2 SRCHL(2,50),ELIST(2,50),NSRCHL,NELIST

wher e

SRCHL(2,50) is a stack of parent and daughter pointers that

s used by the subroutine TSRCH in searching for nodes of a particu-
lar lexical category. This array is initialized by the subroutine
LEXINS.  The nunber of entries in SRCHL is given by the paraneter

NSRCHL
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ELIST(2,50) is an array used to hold the lexical items found
by the subroutine LSRCH
ELIST(1,-) = index to vocabulary word in the array LEXWD
.ESIST(2,-) = pointer to the conplex synbol in the array
CSLI ST
NELI ST gives the nunber of items in ELIST. |If nore than one item
is found, an item is selected at random for insertion,.

COMMON/CONFCM/
1 CFVALS(100)

-~.

The array CFVALS is used to save the value for a contextual feature
when it has been determined by the subroutine ANTEST. This array
is ihitialized by the subroutine LSRCH and data is entered into
the array by the subroutine CSTEST. Before CSTEST calls ANTEST to
analyze a contextual feature, it first checks to see if the value
has al ready been 'obtained.

if Mis the feature nunber (CSLIST(Il, ))

0 =» no value determned for this
feature.
CFVALS(M-MXEXP) = 1 = feature is positively specified.

2 =» feature is negatively specified.

LEXINS, lexical insertion

calling sequence: CALL LEXINS

description: lexical insertion is perforned in tw passes. n the
first pass restrictions and vocabulary words introduced by the directed
random generation of the tree-are considered. On thesecond ‘pass, the

remai ning |exical category nodes are treated. The operation of the
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program may be sunmarized by the followi ng sequence of actions
1. initialize EQLST for equality restrictions
2. search tree, breadth first (right to left) and top down. Mke
a list (SSLIST) of the appearances of the sentence symbol (SS)
3. do pass 1
3.1 take SS from SSLIST (last first) if no nore go to step 4.
3.2 search tree for category synmbols in the order specified
in CATLST if no nore entries in CATLST go to step 3.1.
3.3 call TSRCH(CA T,CNODE) to get next category node.
CNODE = 0 = no nore nodes in this category so get next
- CATLST entry and go to step 3.2
CNODE = 0 = if not a restriction or vocabulary word go
to step 3.3.
3.4 if equality restriction
- convert restriction nunber to integer (TRIN doesn't
do this). W require 1< restriction nunber < 20.
i f EQLST(restriction no.) = 0 then
EQLST(restriction no.) = node of |exical category
(CNODE)
CALL LsrcH (LC,CNODE, vocabulary word, tree
conpl ex synbol)
IC = lexical category nunber in CATLST
CNCDE = node of lexical category symbol
if there is an entry - attach the conplex synbol and
treat the side effects CALL SIDEFF
(CNODE,LECS )goto step 3.3.

if no entry - error comment go to step 3.3.
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-- if EQLST(restriction no.) # 0 then
substitute vocabulary word and conplex synbol
CALL SUBST(EQLST(1), CNCDE)
go to step 3.3.
3.5. If dominance restriction, erase RES and DOM daughters and go
to step 3.6.
3.6, Vocabulary word is specified
CALL LSRCH(LC,CNODE,WORD, TREE(CNODE,6) )
if there is an entry

attach new conpl ex symbol - treat side effects

go to step 3.3.
if no entry
wite error comrent
go to step 3.3.
4. do pass 2.
4.1. take SS from SSLIST (|ast first)
if no nore RETURN
L.2. get entry in CATLST
if no nore go to step 4.1.
4.3. search tree for node in proper category
CALL TSRCH( CAT, CNCDE)
return
CNODE = 0 = no nore in this category; go to step 4.2.
CNCDE # 0 = if daughter on node (from pass 1)
go to step 4.3,

L.L. search lexicon for vocabulary word and conpl ex synbol
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L3e

CALL LSRCH(LC,CNODE,FBLANK , TREE (CNODE,6))
if no entry
error coment
go to step 4.3.
if entry
attach conpl ex synbol
attach vocabul ary word
CALL ALADE(MTREE,CNODE)
treat side effects
CALL SI DEFF(CNCDE, conpl ex synbol no.)

-~

go to step k4.3.

TSRCH, tree search for l|exical category nodes

cal ling sequence: CALL TSRCH( CAT, NODE)
where CAT(REAL*8) = node type desired
NODE(INTEGER¥2) = return paraneter
return paraneter
NCDE = 0 = no nore nodes in the category CAT
NCDE # 0 = nunber of category rule in TREE.
description:
The initial tree top and first daughter are stored in SRCHL(1,1)
and SRCHL(2,1) respectively by LEXINS. The search is depth
first and left to right in the tree but never goes bel ow any
SS or below a lexical category node. The depth of search
is recorded by the paranmeter NSRCHL. On subsequent calls to

TSRCH, the search is resumed where it left off.

3.6-5




LSRCH, search |exicon
calling sequence:
CALL LSRCH(CATNO,NODE,WORD,TCS)

where CATNO = nunber of category of interest (pointer to CATLST)

0 special call by GEN
NODE =
tree node location for lexical item
blank if no vocabulary word is yet associated
VWORD = < wi th node vocabul ary word
- if a particular vocabulary word has already
been specified in the tree
(0 if no conpl ex synbol is defined in tree
TCS = < pointer to conplex symbol in CSLIST if lexica
- category node in tree has a conplex synbol
attached.
\

description:

LSRCH has several nodes of operation depending on the val ues

of its operands. In all cases the basic function is to find a lexica
item (vocabulary word and conplex symbol) which are suitable for

insertion in the tree. The acceptable itemis returned in the COWN

array ELIST.
ELIST(1,NELIST) = pointer to vocabulary word in array LEXWD
ELIST(2,NELIST) = pointer to conplex synbol in CSLIST.

if there is no lexical itemsuitable for insertion then NELIST = 0
on return to the calling program (LEX NS).

If a vocabulary word has been specified LSRCH searches the |exicon
in the appropriate category for that word. |f the word is found the
conpl ex synmbols associated with the entry are tested by using the function
CSTEST(NODE,TCS,LcS) just as in the case when no vocabulary word is

specified
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If no vocabulary word has been specified, then lexical entries are
examned in the proper category but in a random manner (random selection
without replacement). |If the entry selected contains acceptable conplex
synbols (this is determned by using the function CSTEST(NODE,TCS,LCS))
then the search termnates. |f the entry does not contain acceptable entries,
then the entry is marked as unacceptable (LBAD(j) = true where j = jth
entry in the category specified by CATNO) and a new randomentry is
_ sel ected.

W illustrate this process below. N is the nunber of entries

remaining to be tested. | is the increment used to obtain an entry.

Initially, N equals the nunber of entries in the category.

conpute | (I = randominteger, 1 <I| <¥)
get |th entry not yet tested

test the entry--if acceptable, then exit

mark entry not acceptable

N=N-1 if N=20, exit--no entry is acceptable
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Suppose N = 8, conpute I = 6 and

@
test entry 6 . Entry 6 is not \

acceptable, so mark entry, decre- \ (\l
ment N, conpute I, = L. Step | 2 X
3

L untested entries to entry 2. Test ©)

entry 2. Not acceptable. Mark entry, 4| acceptable

decrenent N, conpute I3 _ 2. \‘5
Step 2 entries. Test entry 4 This

entry acceptable, so exit.

This nmethod of selection weights lexical entries equally. Since
an entry may have nore than one conplex synbol, conplex synbols do not
have exactly equal probabilities of being selected. If this is an
i mportant consideration, the lexicon should be defined so that each
entry consists of a single conplex symbol with its associated vocabul ary
words. If lexical itenms are to receive equal probability of selection,
the |exicon should be defined so that each entry is a single vocabul ary

word and a single conplex synbol.

CSTEST, test conplex symbol for lexical insertion

CSTEST is a function subprogram the value of which is an integer
vari abl e (INTEGER*¥2). The function is referenced as shown in the
exanpl e bel ow.

CSR = CSTEST( NODE, TCS, LCS)

wher e
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the node in the tree if doing lexical insertion

NCDE 0 for atest in the generation of the base
tree by the program LSRCH GEN.
TCS = pointer to a conplex synbol (usually the conplex synbol
B ' associated with the tree)... |
ICs = pointer to a conplex synbol from the |exicon.

These results are

CSR =0 if the conplex synbol is not suitable for insertion in the
tree.
CSR = conpl ex synbol pointer if the conplex symbol in the Iexicon

Is suitable for insertion. In this case, the variable CSR
points to the new conpl ex synbol which is to be inserted in

the tree.

description:  The basic test used to determne if a conplex synbol is
suitable for insertion in the tree has two parts. The first part

is the conpatibility test. This test is perforned by the program CSCOWP.
If the tree conplex synbol and the l|exicon conplex symbol are not
conpatible, the lexicon conplex synbol is rejected and the value of CSTEST
is zero. If the conplex synbols are conpatible, then the program CSCOW
returns a new conplex synbol that is the result of the conpatibility

test. The second part of the test performed by CSTEST involves the
analysis of each of the contextual features that appear in the new conpl ex
symbol.  This part of the test is performed in two passes. On the first
pass, the value of each contextual feature is conmpared with the entry

in the array CFVALS. If the array entry is defined, then the value of this
feature has already been deternmined by an earlier call to CSTEST (for

a conplex synbol which was rejected). W require that the values of the
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contextual feature in the array and the value in the conplex synbol be

the same. On the second pass contextual features whose values do not appear
in the array CFVALS are treated. The program ANTEST is used to anal yze

the tree for each such feature. Before ANTEST is called the node in the
tree which corresponds to the top of the contextual feature description

nust be determined. This is done by getting the node type (e.g. S,VP)
fromthe contextual feature description (in ANALWD). The tree is then
searched up from the node for which lexical insertion is to be perforned
-and the first occurrence of a synbol of the proper type is used as the top
node for the analysis process. O course if the node is not found the tree
does not match the feature description and the value of the feature is

mnus (2). If the tree matches the feature description (ANTEST returns

the logical value true), the value of the feature is + (1). If tree

does not match the feature description (ANTEST returns false.) the value

Is mnus (2). Again we require that the tree value and the |exicon val ue
be the same. The val ue deternined for the contextual feature is saved

in the array CFVALS so that the analysis program will not be called twce
for the same contextual feature in the search for a lexical itemfor the
same tree node. If the tree neets all the contextual feature specifications
the conplex symbol number is returned indicating that the conplex symbo

is acceptable for insertion in the tree

SIDEFF ( a separate entry point in CSTEST), side effects

Wien a vocabul ary word and conpl ex synbol are inserted in the
tree, side effects nust be considered and if necessary treated. For
a definition and discussion of side effects see Cs-103.. The program
whi ch handl es side effects is called SIDEFF(NODE,N) where NODE is the

tree node where a lexical itemwas just inserted and Nis a pointer
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to the conplex symbol just inserted. A rigorous treatment of side

effects is not performed, however the cases which usually occur in

practice are handled correctly. W describe here what is actually

done by the program not what shoul d be done. The program performs

as outlined bel ow

L.

Side effects for negatively specified contextual features

are ignored.

For each positively specified contextual feature.

2.1 If the contextual feature description does not contain
a conpl ex synbol, there are no side effects for this
feature so look for another contextual feature.

2.2 If the contextual feature does contain a conplex synbol
the analysis routine is called to examne the tree for
the feature description. Wen the program ANTEST tests
as a conplex symbol enbedded in a contextual feature
description it uses the program CSCOW. CSCOW saves
the result of the conpatibility test. Wen ANTEST
returns, SIDEFF examines the array ANNODE and retrieves
the tree node which matched the node in the contextua
feature description. SIDEFF then uses the function
CSCOMP(NODE,0,3) to retrieve the conpl ex symbol derived
by cscomp during the analysis of the tree and attaches
the conplex synbol to the node. This is done for every
conpl ex symbol appearing in the contextual feature
description. W use the result of the conpatibility test
rather than the conplex synbol that appeared in the

contextual feature description to insure that features
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with the value *(3) will not appear in the tree.

CSCOMP(M,N,IND), conpatibility test

This programis an integer*2 function whose basic task is to
determne the conpatibility of two conplex symbols. The test for
conpatibility is described in general terms in CS-103. The paraneter
IND indicates the function CSCOW is to perform

if IND=1: perform conpatibility test using nondistinctness

as the subordinate test. (This modeis used in
| exical insertion.)
IND :&2: perform conpatibility test using inclusion as
the subordinate test. (This node could be used in
the analysis process for transformations.)

IND = 3: then Mis a tree node for which a conpatible

conpl ex synbol has been obtained on a prior call
to CSCOW. The purpose of the current call is to
retrieve the number of the conpatible conplex synbol
fromthe array TREECS(M) where it has been saved.
(Thismode is used in treating side effects.)
The parameters Mand N point to either a tree node or to a conplex
synbol in the array CSLIST.
MN > 0 = tree node
MN <0 = point'to a conplex synbol
[f Mor N point to a tree node then CSCOW uses the conplex synbol
attached to the tree node. If there is no conplex synbol attached to
the tree node, then CSCOW creates a conplex synbol which contains

a single feature specification, a positive feature specification for
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the category designated by the tree node. If the tree node has a

conpl ex synbol attached but this conplex synbol does not contain a category
feature specification, then CSCOW creates the proper category feature
specification and links it to the tree conpl ex synbol. At this point
CSCOWP has two conplex synbols to test for compatibility, each of which
contains a category feature specification if it is possible to deternine
one.

CSCOWP checks if each conplex symbol has a category feature
specification and, if both do, checks to see that the same feature
appears in both conplex symbols. This is necessary because category
features are exééptions to the test for nondistinctness. |f this check
fails, CSCOW returns the value O to indicate incompatibility.

If IND = 1, the nondistinctness test ismade (CSNDST(MM,NN))

where MM and NN are the conplex synbols derived fromMand N

If IND=2, the inclusion test is node (CSINC1(MM,NN)), MM and NN

as above.

If these tests fail, the return value is 0 .

If the appropriate test succeeds, the conplex synbols are nerged to
form a new conplex synbol. (NNEW = CSMERG(MM,NN)).

Next asterisks which may appear in the conmplex synbol pointed to
by NNEW nust be considered. Asterisks appearing as values of features in
a conpl ex synmbol indicates that the value of the feature may be either +
or - wth equal probability. Thus a conplex synbol with k asterisks

for feature values is really an abbreviation for ok

conpl ex symbols.  The
result of the compatibility test (if successful) is a conplex symbol which

does not contain the asterisk value. Therefore at this time we select at
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random wi thout replacenent from the possible ok conpl ex synbol s and
test each conplex synbol for conpatibility by expanding the conplex
synbol using the function REDRUL(NNEW') where NNEW' is the conpl ex synbo
NNEW with asterisk values changed to either + or - . |[|f the
redundancy rule expansion is successful, then the conplex synbol pointer
NNEW' i s returned as the value of CSCOMP. |f the expansion is unsuccessful
a new val ue assignnment is conputed and the expansion repeated with the
new conpl ex symbol NNEW'. The process continues until either a successful
expansion is obtained or until all value assignnents are exhausted. In
the latter case, the return value of CSCOW is 0 to indicate incompatibil-
ity. Value assignments are computed so that each possible value assignnent
has equal probability of selection. The limt on the nunber of asterisks
that appear in a conplex synmbol has been arbitrarily set at four. To
increase this limt, increase the size of the array ASTLST and increase the
test value at statement |abel 121

If the conplex synbol pointed to by NNEW does not contain any asterisk
values, then the conplex synbol is expanded by the redundancy rules
(REDRUL(NNEW)) and the appropriate result generated

In summary, the value of CSCOWP is zero if the conplex synbols are
incompatible. If the conplex synbols are conpatible the value is a
pointer to a new conplex symbol obtained by merging the originals, selecting
a value assignment for any asterisk values, and expanding by the redundancy
rul es.

If paranmeter M pointed to a tree node then the result of the conpati -
bility test is saved in the array TREECS(M) (1 < M < L400) so that it may

be retrieved on a later call to CSCOWP with IND = 3.
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3.7 Anal ysis

CXIN, input routine for conplex synbols, structural analyses and

contextual features

CXIN is a somewhat involved inpui routine which is used to read
three different types of objects. Since conplex synbols may contain
contextual features, and structural analyses may contain conplex
synbol s, this program would have been much easier in any |anguage which
al lowed recursive subroutine calls.

There are three entry points to the subroutine. The norma
entry CXIN is for conplex synbols, SLFEAT is for selectiona
features and ANiiIN is for structural analyses. At each entry |ogica
flags are set so that it is always possible to tell which entry was

cal | ed.

Data Storage

Conpl ex synbol storage

The function of CXINis to store the input object in the
appropriate arrays for later use. W first describe these arrays
Conpl ex synbols are stored in CSLIST which is a k-row, 2000
colum array, with current length = CSFRPT - 1.  (This structure
was chosen so that a single feature specification would be | ooked
at either as four INTEGER*2 entries, or as one REAI*8 entry). Each
colum of CSLIST contains a feature specification consisting of
feature nunber, feature type, and feature value and also a pointer to
the next feature specification. A conplex synbol nunber is a pointer
to the first feature specification of the conplex symbol, Subsequent

feature specifications in the conplex synmbol are found by follow ng the
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pointers. The last feature specification of the conplex synbol has a
pointer of 0. The feature specifications of a single conplex synbol
are ordered by feature number. (The list structure of CSLIST was not
exploited in nost of the code; actually the feature specifications
for any one conplex synbol form an adjacent block in CSLIST.)

The feature nunber of a category or inherent feature (herein
called explicit features) is obtained by a call to NuMNAM. Nunbers
are assigned in the order in which the features were first encountered.
Explicit features not given in the prelexicon, but encountered |ater,
are assumed to be inherent features.

The feature nunber of a contextual feature is 100 plus its
position in the list of contextual features.

The type of a feature is O for category features, 1 for inherent
features, and 3 for contextual features.

The value of a feature is 1 (+), 2 (-),3(*).

Storage of structural anal yses

Structural analyses are stored in the parallel arrays ANALWP
and ANALST with subsidiary arrays ANALWD (current |ength = ANAIWT)
and ANALPT (current length = ANALTP).  ANALPT contains pointers to
-ANATWP and ANALST. The current length of ANALWP and ANALST is
"ANALPT(ANALTP). Structural analysis | is stored from ANALPT(I-1)+1
through ANALPT(1), (I >2). ANALWD is a REAL array containing first
"¥" and " " and then the words which occur in analyses. Each synbol
or group of symbols in the structural analysis goes into an entry in

ANALPT. ANALWP contains pointers and other information:
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Anal ysis item ITYPE ANALST ANALWP

wor d 1 poi nter to ANALWD pointer to preceeding
i nteger or.0

_ 8 2

* 1 1

% 10 0

i nteger 2 -(100+integer)

conpl ex synbol 3 -5 pointer to CSLIST

< L4 -1 pointer to >

—« ) 18 -2

/< 17 -3

—/< 16 -4

> 5 -6 pointer to word preced-
ing <

( of an option 6 -7 pointer to )

) of an option 7 -8 pointer to (

( of a choice 19 -9 pointer to ,

, of a choice 13 -10 pointer to , or )

( of a choice 20 -11 pointer to (

STORAGE OF A STRUCTURAL ANALYSI S

The values in ANALST and ANALWP are chosen for the convenience
of the analysis routine (ANTEST). In CXIN the values for ANALST are
stored in the array TTYPE, which is indexed by ITYPE, the interna
numbers in CXIN for the symbols. This allows CXIN to be changed with

relative ease
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Storage of contextual features

A contextual feature is a (special) structural analysis, enclosed
within angul ar brackets. Contextual features are stored in
SLCTPT(200,2), in which the first colum contains a pointer to the
structural analysis. * The second colum is set to 0 by CXIN, but
will bf: used by PRELEX to store a pointer to the restriction on the
structural analysis. The current length of SLCTPT is SLCTTP. In
order to be able to use the same sequence of nunbers for all features,
the feature nunber of a contextual feature is its position in
SLCTPT + MXEXP (the maxi num al | owabl e nunmber of explicit features).

(Nanes of~contextual features appear only in the array SLNAVE

which is internal to subroutine NUVNAM )

Initialization of Storage

The storage arrays of CXIN are initialized by the subroutine
INIT which is at the beginning of every run. INIT does the follow ng
for CXIN:

FSTAR """
FLINE " "

ANALW( 1)
ANATWD( 2)
ANAIWT = 2
ANALPT(1) =0

ANALTP = 1
SLCTTP = 0
CSFRPT =1

Tenporary storage areas in CXN

Entities read by CXIN are not stored in the above arrays until
they have been conpletely read in. Tenporary storage is used during

the read-in process.

* :
The menonics for contextual feature storage were created when we were
calling them "sel ectional features", hence the "SL".
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LEVEL and SLEVEL are used to record the current levels of conplex
synbol s, and of analysis and contextual features. (Recall that the
basic difficulty is that conplex synbols may contain structural
anal yses which may contain conplex symbols.. @ ) Initially both LEVEL
and SLEVEL are set to 1. SLEVEL is increnented by 1 when the |eft
bracket of a new contextual feature is encountered; it is decrenented
by 1 when a contextual feature is finished and stored into SLCTPT.
LEVEL is increnented by 1 when a conplex symbol is encountered in a
contextual feature; it is decremented by 1 when a conplex synbol
is finished and stored into CSLIST.

SLPUSH and™sLPUSN hold the values which will go into ANALST and
ANALWP.  The SLEVEL-th analysis is stored in" SLPUSH and SLPUSN from
SLPHPT(-1) + 1 through SLPHPT(SLEVEL).

CSPUSH hol ds the values which will be stored in CSLIST. The LEVEL-th

conpl ex synbol is stored in CSPUSH from CSPHPT(LEVEL-1) + 1 t0 CSPHPT(LEVEL).

PUSH is a two-colum array used as a push-down for terms in
an analysis which will be needed to set up the backwards pointers
in ANALWP. For the SLEVEL-th contextual feature, PUSHPT(SLEVEL)
points to the first entry in PUSH for that feature, VLPUSH(SLEVEL)

is the value of the feature,

Reading in a conplex synbol

The above explanation of storage is intended to help explain
how the three uses of CXIN for conplex synbols, contextual features
and analysis are interrelated. W now describe the behavior of the
subroutine in each of these uses.

Wien CXIN is called, initialization steps set up the tenporary

arrays.  SLFLAG and ANALFL are both set to false, so that the entry point
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can be recalled. The paraneter STAGE indicates what is expected next
from FREAD. When STAGE = 1, the routine expects either a feature val ue,
or a "|" which will ternminate the conplex symbol When STAGE = 2,

a feature is expected. |If the feature is a word, the associated feature
nunber is retrieved from NUMNAM. The feature type is conputed and the
val ue, type and nunber are stored in CSPUSH |f the feature is a
contextual feature, STAGE is set to 3 and a contextual feature is read

(see below). (stAece = 4 is an error skip.) Wen the conplex synbol

“ has been terminated by a "|", the feature specifications are sorted on
feature nunber, a check is nade to see that there is only one category
feature, and the-conplex synbol is nmoved into CSLIST. LEVEL is reduced
by 1. If LEVEL = 1, ANALFL is FALSE and SLFLAG is FALSE, the parameter
of CXINis tested, and if = 1, the conplex synbol is expanded by a

call to REDRUL. CXIN then returns control. If the triple test above
is not met, then we have just conpleted a conplex synbol within an

anal ysis, so the routine continues.

Reading in a structural analysis

In reading a structural analysis (either on a call of ANALIN or
SLFEAT or within a conplex synbol), SLEVEL is first increased by 1,
STAGE is equal to 3, and then FREAD is used to read the entities of
the analysis. As each entity is read a branch is made on the val ue
of I SPEC returned by FREAD, and ITYPE is set to the internal nunber
for the entity (in sorting it in CSPUSH and later in ANALST, TTYPE
(ITYPE) will be used).

For each value of ITYPE the process is essentially the sane.

A check is made to see that-the entity can correctly follow the
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previous ITYPE (now stored as NLAST). The value of SLPUSH (and hence
of ANALST) is conputed, from ANALWD for ITYPE=1l, (100 + the integer)
for ITYPE=2, and otherwi se TTYPE(ITYPE). The val ue of SLPUSN (and
hence of ANALWP) is conputed by backi‘ng up in PUSH for entities which
poi nt backwards. Entities which are to be pointed to by subsequent
entries are stored in PUSH which contains in the first colum a pointer
to SLPUSH and in the second colum a code for the type, KEEP(ITYPE). The
entity is then stored in SLPUSH and the pointer in SLPUSN
If a conplex symbol is encountered, it is read as described above.
An analysis is termnated when either the ™" which corresponds to
the initial "<"kof a contextual feature or a period is found. The analysis
Is then conpared with previous analyses so that it wll not be stored
twice. If it is newit is stored in ANALST and ANALW and the routine

continues if within a conplex synbol, or otherw se term nates.
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ANTEST, anal ysi s

ANTEST is the subprogram which perforns anal ysis (see AF-3k4 for
a description of the analysis procedure; equivalent know edge will be
assuned in the current description). It is called with three argunent s:
TRANNO, TREETP, and ANALNO. Either TRANNO (for transformations) or
ANAINO (for contextual features) is used to locate a structural analysis
whi ch has been coded into ANALST and ANALW by subroutine CXIN, this
structural analysis is copied into arrays ANLIST and ANVDPT in positions
1 to TPOSN. The nethod of finding the structural analysis and a pointer
to its associated restriction is diagrammed in Figure 3.7-1. TREETP
I's a nunber indica\‘f;ing the location in TREE/ FTREE of the top node of
the sentence tree which is to be tested for analyzability.

ANTEST returns the value TRUE if the given sentence tree is analyzable
as the given structural description, and FALSE if not. For a TRUE return,
it further supplies (in the 50-position array NUMNOD) the positions of
tree nodes which have been associated with nunmbered structural description
nodes. Since sonme transformations require that all possible analyses be
found, NUWMNOD is dimensioned 50x10 so that ANTEST can return up to ten
different analyses; in this case, NUMCNT will be the number of analyses
actual l'y found.

- To sinplify this description, we will use several words in unusual
senses. A defnode will be anything in a structural description —— word,
underline, asterisk, or boundary symbol —— which matches a single
sentence node. This will free the word node to refer to only sentence-tree
nodes. An option will be a choice with only one structural analysis

inits clist of structural analyses; fromhere on, a choice will be a
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(-,5) (-,6) ANALPT ANALST/ANAIWP
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N /é//
Y
SLCTPT
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_7/ / pointer to associated
ANAINO ————> | & = restriction.

Figure 3.7-1

3.7-9



choice (in the usual sense) which is not an option.
Anal ysis is probably the nost conplex single operation performed
in this program system because of the elaborate procedure that mnust
be followed for matching and for backt r acki ng when no match is possible.
To sinplify this procedure as much as possible, an elaborate system of
pointers is set up during analysis. The backbone of this systemis the
five vectors ANSKIP, ANNODE, ANPREV, ANNEX, and ANPAR, which parall el
the two vectors ANLIST and ANWDPT in which the structural analysis is stored.
Skips are ignored when first encountered; after the next defnode has
been matched, a range nust be assigned to preceding skips. For this
purpose, the variable SKIP and vector ANSKIP are used. SKIP indicates
the position of the |ast bypassed skip; ANSKIP points back to other
preceding skips. ANSKIP is defined for all bypassed skips, matched
def nodes, and the ( of options (in case it is later decided that
the option should not be taken) and choices. It always points to a
preceding skip, and equals zero if there is no preceding skip. The skip
routine (statement nunmbers 500-599) uses ANSKIP to find skips after a
node has been matched, or at the end of an analysis level,
For backtracking when a match cannot be found, the variable PREV
and vector ANPREV are used. PREV points to the previous significant
item —— defnode or ( or < — preceding the current item
ANPREV .continues the chain. ANPREV is defined for each defnode and
( and < and > which is currently active (e.g., an option
which has been bypassed is not active). It equals zero for the first
significant item of the structural analysis and for every < . Using
ANPREV, the backtracking routine (statenment nunbers 700-799 in the program

can thus easily find where it-is to restart the search after a nisnmatch.
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The matching of a choice is aided by the vectors ANNEX and ANPAR and
the variable PAR  PAR points to the opening ( of the choice while
a search is made for a match to the first defnode of the choice, and
is zero otherwise; its mgjor use is as ha flag. ANNEX is used to chain
toget her those defnodes which are possible first-defnodes of a choice.
(See Figure 3.7-2 for a sanple use of ANNEX and ANPAR). ANNEX of the

( points to the first possible first-defnode, ANNEX of this defnode

points to the next, and ANNEX of the last points to the ) of the

choice. If there is a choice within the choice which may be first,
ANNEX points to the ( of this inner choice, which is then chained
as usual; the ) of this choice then continues the chain. ANPAR is

used for skips, since ANSKIP does not sufficiently define skips wthin
choices; note, for exanple, that in Figure 3.7-2 the defnode C may
be preceded by no skip or by the skip in position 1, depending on whether
or not defnode B has been matched. ANPAR is defined for a defnode
or ( or s or skip, and points to the chain of skips which wll
precede a defnode if it is first in a choice. It is set negative when
pointing to a ( or , and positive when pointing to a skip.
Wien a choice is encountered, the choice-setup routine (statement nunbers
300-399) sets PAR if this choice has not previously been seen, it also
sets up the ANNEX and ANPAR chains. The skip routine uses ANPAR as wel |
as ANSKIP to find skips; the matching routine (statenent nunbers L400-
499) uses ANNEX to nmove through the chain of defnodes for a choice,

and ANPAR to set up the proper pointers in ANSKIP. The backtracking
routine uses ANPAR to aid the restart when it backs up into a choice.

The correspondence between defnodes and tree nodes is handled by the
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Sanpl e Use of ANNEX and ANPAR

Structural description % ( A : ( B ) ( C s % D ) )
position 1 2 3 4 5 6 7 8 9 10 11 12 | 13 14
/
ANLIST 0 -9 3 -10 | -7 4 -8 -9 5 -10 0 6 -11 ] -11
ANWDPT 0 4 0 14 7 0 5 10 0 13 0 0 8 2
—_— T~
—|» ~ 3 "9 \A/ﬂ //_x\ -~ PN e
ANNEX 3 6 8 9 12 13 14
L \
— TN~ Nz Ve g
ANPAR ~E T [Ty | B 1 & |01 1
1 . 3 t

Figure 3.7-2




mat ching routine and by subprograms ANRTES, ANRUNS, and NEXT.  The arrays
NUWNOD and SKPNOD, vector ANNODE, and variables HERE and LAST contain
pointers to tree nodes. ANNODE i s defined for defnodes and skips. For
defnodes, it contains the position of the matching tree node; it is assigned
on a match, and reset during backtracking. For skips, it points to
SKENOD, a 200x2 array which points to the preceding and follow ng matched
tree nodes, or is set to -1000 for a null skip; it is assigned in the skip
routine and reset during backtracking. HERE points to the tree node
‘currently being tested for a match; it is advanced in NEXT (see bel ow)

and reset on a backtrack. LAST is the |ast matched tree node, used only
to appropriately -set\the first colum of SKPNOD.

Subprogram ANRTES is called after a match has been found. |t checks
restrictions and conplex synbols, and sets NUMWNOD. The first step is to
move through the chain of pointers to nunbers set in ANWDPT by the input
routine CXIN. For each number, it copies the tree node pointer into
the nunber-th position of NUMNOD and calls RESTST to test any restrictions
associated with that nunber. If all succeed, and if there is a conplex
synbol, it calls CSCOW to check that it corresponds to the tree conplex
synmbol (inclusion for transformations, conpatibility for contextual features).
ANRTES then returns TRUE if all tests succeed and FALSE on failure.

Subpr ogram ANRUNS reverses the procedure of ANRTES; it calls RESTUN
instead of RESTST and restores NUWCD. It is called by ANRTES on failure
and by the backtracking routine. The miscellany wth-1000 in ANRTES
and ANRUNS i s occasioned by the problemof telling whether a defnode
has sinply not yet been reached, or has been bypassed (and thus made
explicitly null). ANNODE will be zero for not-yet-reached defnodes and

skips, -1000 for null skips, -2000 for bypassed skips (set during the
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final routine (statenent nunbers 800-899)), and 1000 for bypassed defnodes.
NUWMNOD conbines the -1000 and -2000 into -1000. Since a number nay be
assigned to several defnodes or skips (particularly in the case of choices),
no testing or reassignment in NUWOD should take place during the final
routine if NUWOD has already been set. Finally, in ANRUNS it is inpossible
to tell, if NUMNCD and ANNODE are both -1000, whether NUWNCD shoul d be re-
set; for this reason, ANNEX of a skip (not otherw se used, thus usually
zero) is set to 1 if this skip's ANNODE i s not to unset NUWNOD

Level s shoul d be discussed before proceeding to NEXT. For these,
the vector LEVIOP and variables LEVEL, TOP, and HERE are used. LEVEL
is initially zero? one is added to it every time the program enters an
angl e-bracketed subanalysis, and one is subtracted at the end of proces-
sing the subanalysis. TOP is initially set equal to TREETP (the top
node of the tree under consideration); every time a subanalysis is entered
the current TOP is saved in LEVIOP and a new TOP is created pointing to
the tree node which matches the defnode heading the subanalysis; at
the end of the subanalysis, the old TOP is restored. TOP is set-negative
if the < of the subanalysis does not have a / preceding it
(an imediate constituent analysis). HERE is set negative at the beginning
of a subanalysis to flag the beginning. This processing takes place in
the levels routine (statement numbers 600-699). The |evels routine
al so checks success or failure of subanalyses. |If the < was
preceded and analysis reaches the > either at the righthand side
of the subtree or with a skip preceding, the subanalysis succeeds and
analysis continues. Qherwise, the subanalysis fails, and backtracking is

begun at the defnode heading the subanalysis.
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Subprogram NEXT finds the next node in the tree. It has three
argunents:  HERE, the previous node, TOP, the top node of the tree under
consideration, and SIGN, a flag which takes on the values -2, -1, 0,

1, 2. The new node is returned as a new HERE; HERE is set to zero if
there is no next node. NEXT is conplicated by several features. The
very first node that should be examned is the topnost node in the tree
this is indicated by HERE=0. This, however, is true only for the first
| evel of analysis; for subanalyses, the first daughter of the top node
is the first node to be tried. Thus all subanalyses commence with HERE
set negative and equal in absolute value to TOP. Thereafter, the procedure
depends on whether there was a / preceding the subanalysis. |f
so, or if this is the topmost level, TOP will be positive and a search
will be made for daughters of HERE (the |eftnost of which will be taken
as a new HERE), and if there are no daughters the search will continue
to the right of HERE, but not going above TCP. If there was no /
then TOP is negative; in this case, the search will be immediately for
right sisters of HERE. If no next node exists, HERE is set to zero

Skips introduce a further conplication. If there is a skip
preceding the current defnode, it is all right to |eave dangling tree
branches behind, but not if there is no skip. SIGNis used for this
purpose. Wen matching is first attenpted, SIGNis set to zero and
remains zero;, after a failure to match, SIGNis set to 1 and changes to
-1 when a branch is skipped (that is, when the old HERE has no daughters).
Al'so, the fact that SIGN=0 indicates that no attenpt should be made to
find daughters of HERE; HERE has already been matched, so its daughters

are unavailable. SIGNis set to 2 when no next node exists.
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Choices require nore machinery. After skipping a branch during
a choice search, it is fairly easy to thereafter examne only those
first-defnode candidates which are preceded by skips; however, it
woul d be much nicer to quit imediately if none of themare preceded
by skips. For this reason, SIGNis set to -2 if it is -1 and a first-
def node preceded by a skip is about to be tested; if SIGNis still -1
after ckecking all candidates, the match routine exits imediately to
backtrack instead of fruitlessly advancing HERE through the rest of the
tree.

The end of a level requires a check to see if any nore nodes
exist to the right of the |ast-matched one, plus an assignnent of range
if a skipis rightmost in the level. For this purpose, NEXT is entered
Wi th SIGN=2. |f no next node exists, SIGNwll still be 2 and HERE
will be zero; any skip will have null range. |If one exists, SIGN wll
be set to -1 and HERE will be set to mnus the absolute value of TCP
which is the appropriate value to insert into SKPNOD to indicate a
| evel - endi ng skip.

M nor points not yet covered include POSN, which points to the
current position of the AN--- arrays. The scan section (statenent
nunbers 200-259) decides which other section of the programis to be
call ed next, on the basis of what kind of (WASFUR) thing is at the
current POSN.  DEFNOD, set to ANLIST of the current defnode in the match
section, points to ANALWD, which contains nanmes of defnodes; the first
two entries in ANALWD are permanently set to be * and —_—
CYCL indicates cyclicity of transformations; as used by ANTEST, a val ue

of 0 (contextual feature) or 1 or 2 neans to find at nmost one analysis,
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while a value of 3 or 4 means to find all possible analyses. [f the

paraneter TRANNO is negative, it means that the current structural descrip-

tion and top tree node are the same, but the tree has been shuffled around

since last time, this is sinply to save setup tine, since vectors ANLIST,

ANWDPT, ANNEX, and ANPAR are already in place.
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3.8 Prograns for Restrictions

This section describes a set of subroutines (RESTIN, RESTST
RESTUN, and RESTPR) which manipul ate restrictions. They input, test
and set, unset and print restrictions, respectively, GIOKEN is a "work
routine” for RESTIN. Input includes translation into internal format
and storage of the restrictions.

The description of a restriction is given in Figure 1" bel ow.  The
description of the internal format and the conposition of restriction
storage ( /RESTCM/ - restriction conmmon block) is given below.

RESTIN i S caiied by any routine requiring a restriction input. The
primary routine calling RESTIN is TRANIN.  Input to RESTIN is conpletely
free field and is read by FREAD. RESTIN calls GIOKEN and CXI N which
generate the next token and read in a conplex synbol, respectively.

RESTIN returns the nunber of the restriction it just read in.

RESTST is called by a routine which needs to know if an analysis
satisfies a particular restriction or not. It returns true or false,
although internally it may find a restriction to be "undefined (as a
result of a reference to a node which has yet to be assigned). "Undefined"
values are interpreted as true. RESTST calls CXEQ and CXINC to determine

if conplex synbols are equal or included in one another, respectively.

“The references to figures in section 3.8 are to figures 3.8.1 to
3.8.10. These figures are found at the end of this section.
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RESTUN is called by any routine which needs to unset (reset) a node
wi thout unsetting (resetting) the whole restriction. Uneetting neans .

setting to undefined all conditions which refer to the given node. RESTUN

may also be used to conpletely reset a restriction,

RESTPR will print a given restriction or print all the restrictions,

It is essentially a dunp of /RESTCM/ .

GTOKEN is described in the description of the operation of RESTIN

1

bel ow.
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- INTERNAL STORAGE -

Restrictions are stored in the commn bl ock /RESTCM/ givenin
Figure 4. The present capacity is about 150 restrictions. Capacityis
determined by the size aswell as nunmber of restrictions. The I-th

restriction read is stored as follows:

RESTS(I*4-3) = value of restriction I:
0 =false, 1 = true, 2 = undefined
RESTS(I*4-2) = pointer to first entry in RESTR

RESTS(I*4-1) = pointer to last entry in RESTR

RESTS(I*4+) = pointer to first entry in CONDS
RESTR(J) =if >0: a pointer to first entry inCONDS
if <O0: -1 = logical OR

-2 = logical AND
-3 = | ogical NOT
CONDS (K) = val ue of the conditiou:
0 = false, 1 = true, 2 = undefined
CONDS(K+1) = coded type of condition:
type = N¥100+L, for the L-th N-ayrestriction
(at present there are only |-ary and2-ary
restrictions, so all types arein therange
100 < type < 300 )
CONDS (k+2) = first argunment of restriction, it is awaysanumber

> 0 which refers to a particular node
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CONDS (K+3) = if > 0: the nunber of a particular node
if< O: a pointer into WD (designating a
CONDS (K+1+N) word e.g~, "S", "PRED", or "ADS' )(in
particular, to the .-cONDS(M)'th wor d)
if <mwD: a pointer to a conplex symbol which has
been read in by CXIN . (Inoparticiar,
to the ~CONDS(M)+NWD'th conpl ex symbol.)

WD is currently 100.

1) RESTS (restrictions) is always a multiple of 4 times the nunber
of restrictions in length; i.e., each restriction takes exactly four
| ocations in RESTS.

2) RESTR (restriction tree) is of arbitrary length for each restric-
tion, but will always be at |east one location long. The contents of
RESTR is the Polish postfix for the restriction read in. It is conposed
compl etely of references to conditions (the basic primtives, e.g., "TRM",
“NUL" , "NDOM", etc.) and references to |ogical operators (e.g., "AND",
SORY, O UNOTY)

3) ¢conps (conditions) 1s the list of prinmtives which conprise
the restriction. Each condition is always at |east 3locations |ong,

and "in general will be W2 |locations long for each N-.ary condition.

5' 8"')"‘




-~ RESTIN: OCPERATION . .

CALL:  REST IN ( ONE;

RESTIN is self-initializing: it initializes/RESTCM/ the first
time it is called. RESTIN provides checks to see that the capacity of
/RESTCM/ is not exceeded.

RESTIN utilizes the "railway shunt algorithm" to create a restriction
in storage, It runs using a token generator to provide the next token.
Tokens are of two types: conditions and operators. (Conditions are
returned by the token generator in an array called "TOK'. Operators
are returned as nunbers > 0 in "OPFG".

The effect is to "conpile" a |ogical expression conposed of conditions
the logical relations and pointers to the conditions appear in RESTRK ir
Poiish postfix, and the conditions thensel ves appear in CONDS.

RESTIN will input an arbitrarily conplex |ogical combination of
restrictions.

GIOKEN generates the next token for EESTIN., It operates as follows:

1; Read the next synbol (by calling FREAD)

2) Test to see if it is a nunber, if so, go to (6)

'3) Test to see if it is a "reserved word", if so, go to (5)
4) Find which logical operator it is and return
5) Find which 1l-ary operator this is, generate the array TCK:
containing the index of the condition followed by its argument;
return

6) Find which N-ary operator this is, generate the array TOK:

containing the index of the condition followed by its N argu-

ments; return
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Every tinme GIOKEN encounters a "reserved word" (e.g., "ADJ", "PRED",
"NOUN', etc.) it searches the ar-ray WC for a copy. If it finds one,
it uses the negative of the index into wb. |f it does not find a copy,
it generates one and uses the negative of the new index into Wb. Every
time GIOKEN encounters a conpl ex symbol, i % calis CXIN to input it, . XN
returns the nunber of the conplex symbol. GrOKEN fills in TOK with minus
this number minus N\WD. NwD is presentiy set at 100. If there is any
possibility of there being nore than 100 "reserved words", NWD shoul d be
made larger: the test routine discrimnates between words and co-npl ex
synbol s by comparing their indices with wwr.

The lengths of RESTS, RESTR and CONDS are currently 500 each, LRESTS,
LRESTR and LCONDS (data initialized varia'bles in RESTIN) shoul d al ways be
set to the lengths of their respective arrays at conpile time. Ths capacity

of /RESTCM/ is approximately L0ONDS/3.5 restrictions.
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- RESTST : OPERATIONS =~

CALL. RESTST(I,PCSN)

RESTST both sets and tests the rsstriction designated 'by | or
CREST (CREST = current restriction;, this variable i s in /RESTCM/ ), and
it returns true or false accordingly.

Every tinme the current restriction is changed, RESTST automatically
resets it before testing, If the current restriction is the same as the
one at the last call to RESTST, RESTST saves time by not resetting the
restriction firsﬁ;

If POSNis zero, CREST is set to | and restriction ‘T is conpletely
reset before it is tested, If PCSN is non-zero, RESTST tests restriction
CREST.

RESTST interprets the Polish postfix in RESTR: it acts |ike a Polish
postfix machine. Each reference to a condition is interpreted to nean:

1) If the condition 'has value true or false, load the value stack

with this value.

2) If the condition is undefined, evaluate the condition

3) Load the stack with the value of the expression,

RESTST condenses each pair of conditions whose nanes are (NAME)
and n(vaME) (referring to the normal and negative fornms of a condition)
into one evaluation via the varia hie "'NORMAL". The value of a cordition
winds up in the variable "cvar",

RESTST will evaluate an arbitrarily conplex |ogical conbination of
conditions. It uses the truth tavles in Figure 6 to evaluate the restric-
tior. |If the final value is undefined, RESTST will return true. Figure 7

gives a ta' ble of argunents and actions for RESTST.
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- RESTUN: OPERATICN -

CALL:  RESTUN(I, POSN)

RESTUN unsets the condition designated by I.I1f POSNis zero, it
will set CREST to | and then conpletely reset restriction | . grITUN
does this by setting RESTS(CREST*4+-3) to undefined, and then setting
.each conponent condition of the restriction to undefined.

If POSN is greater than zero, the argument refers to a node in the

anal ysis using the current restriction, Al. conponent conditions which

reference this node are set to undefined,

RESTUN acconplishes the unsetting by going down cONDS and utilizing

the coded information therein.

Figure 8 gives a table of argunents and results for RESTUN,
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- RESTPR - OPERATION -

CALL: RESTPR(T)
RESTPR prints the restriction designated by the parameter | . If

this paraneter is zero, it prints all the restrictions. See Figure 9

for sanmple output.
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- . FIGURE 3.8.1 -

SYNIAX OF RESTRI CTI ONS

RESTRICTIONS ::= *RES RESTRICTION .

RESTRICTION ::= BOOLEANCOMBINATION ( CONDITION )

CONDI TI ON ti= CONDITION].ICONDITIONQ!CONDITION3
CONDI T1 ON1 ::= RELATIONL RI GHT- PART
CONDI T1 ON2 ::= | NTEGER RELATI ON2 RIGHT-PART

CONDI T1 ON3 t:= | NTEGER RELATI ON3 RI GHT- PARR, RIGHT-PART

RIGHT-PART  ::= INTEGER|®ORDYCOMPLER O L

RELATIONL ~ ::= TRM|NTRM|NUL|NNUL

RELATI ON2 ::= EQ|NEQ|DOM|NDOM|HAS | NHAS | EQCS | NEQCS

RELATI ON3 ::= EMPTY (There are no 3-ary conditions as yet.)

NOTE 1. The definitions of the relations are found in Figure 3.8.10.

ROTE : Athough the syntax will allow the creation of alnmpst arbitrary
constructs, not all of them have neaning, The input routine
(RESTIN) will not detect any neaningless constructs: it will
accept any syntactically correct restriction, Only during the

evaluation of the restriction (via RESTST) will the error be

det ect ed,

BOTE Additional relations will be included as they are found to be

usef ul

3.8-10



TABLE CF ALLGWABLE ARGUMENTS

- FIGUEKE 3.8.2 -

RESTRIC- CCDE # ARGS ARGUMENT 1 ARGUMENT 2
TION INTGR WCRD C-SM INTGR WORD -C-SYM
TRM 101 1 X
NTRM 102 1 x
NUL™ 103 1 X
NNUL 10k 1 X
EQ 201 2 x x
NEQ 202 2 X X
DOM 203 2 x ple
NDOM 204 2 X X
HAS 205 2 X x X
NHAS 206 2 X x X
EQCS 207 2 X X X
NEQCS 208 2 X X X
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SUBPROGRAM

RESTIN(ONE)

RESTST( I, POSN)

RESTUN( I, POSN)
RESTPR(I)

GTOKEN( SYM)

NOTE 1: TYPE

NOTE 2: ONE
1
POSN

SYM

i

- FIGURE 3.8.3 -

SUBPROGRAM CALT/RESULT TABLE

TYPE  CALLS RESULTS

I*2 GTOKEN Returns nunber of the restriction it
reads in and stores restriction.
I*1  CSEQ Returns true/fal se depending on whether
CSINC the restriction is satisfied or not.
.S --- Unsets a restriction; returns nothing
S —-—- Prints a restriction; returns nothing.
S FREAD Returns a token: logical operator or

CXIN condi tion

I¥2 - INTEGER¥2 function
L#¥1 - LOd CAL*1 function

S - subroutine

dummy ar gument
restriction nunber
position in an anal ysis

array internal to RESTIN
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- FIGURE 3.8.4 -

COMWDN BLOCK FOR RESTRICTIONS

COMMON /RESTCM/ WD,CREST, PS, PR, PC, PW, RESTS (500) , RESTR(500) ,
CONDS {500)
REAL*8 WD(100)

COMMON_BLOCK FOR GTOKEN

-

COMMON /RTOKEN/ OPFG,LTH, TOK(10)

DATA VAR ABLES | N RESTIN

| NTEGER* 2 LRESTS/500/,LRESTR/500/, LCONDS/500/, NWD/100/
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EXAVPLE 1:

RESTS()
RESTR( )
CONDS ()

wD( )

ptrl

ptr2

ptr3

ptrh

EXAMPIE 2:

RESTS( )
RESTR( )
CONDS ()

-WD()

ptrl -
ptre -
ptr3 -

ptré -

. = FIGURE 3.8.5 -

SAMPLE RUN
NUL 5
2 1 1 1 undf‘d,ptrl,ptr2,ptr3
1 ptrk
2 103 5 undf 'd,NUL, 5
enpty

poi—'nts at the 1 in RESTR()
points at the 1 in RESTR()
points at the 2 in CONDS()
)

points at the 2 in CONDS(

3 DOM &4

2 2 2 4 undf‘’d,ptrl,ptr2,ptr3
b ptrk

2 205 3 &4 undf'd,DOM,3 , 4

empty

points at the 4 in RESTR() .
points at the 4 in RESTR()
points at the 2 in CONDS()

points at the 2 in CONDS()
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EXAMPLE 3:

TRM 7 & 6 HAS |=+HUMAN]|
RESTS( ) 2 3 5 8 undf'd,ptrl,ptr2,ptr3
RESTR( ) 8 11 -2 ptri;ptrs5,&

CONDS( ) 2 101 7 2 205 6 -101

undf'd,TRM,7,undf 'd,HAS, 6, | =+HUMAN|

WD() empty

ptrl - points at the 8 in RESTR()

ptr2 - points at the -2 in RESTR()

ptr3 - points at the first 2 in CONDS()

ptrl - points at the first 2 in conDs()

ptr5 - points at the second 2 in CONDS{)
EXAMPLE b4:

-~ ( ( 6 DoM PRED |5 NDOM VP ) &8 NEQCS |=-Human! ) .
RESTS() 2 6 11 15 undf'd,ptrl,ptr2,ptr?
RESTR( ) 15 19 -1 235 -2 -3
ptrh,ptrs,| ,ptr6 & ,—
CONDS( ) 2 205 6 -1 2 204 5 -2 2 208 8 -102
undf'd,DOM,6,PRED,undf 'd,5, VP,

undf 'd,NEQCS, 8, | = -HUMAN|

T wWD() PRED VP
ptrl - points at the 15 in RESTR()
ptr2 - points at the -3 in RESTR()
ptr3 - points at the first 2 in coNDs()
ptrh - points at the second 2 in CONDS()
ptr5 - points at the third 2 in CONDS()
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Note that positive nunbers in CONDS() refer to nodes in the analysis
and that negative nunbers are pointers. Pointers of nmagnitude |ess .

than 100 refer to WD(); pointers of magnitude greater than 100 refer

to conplex synbol storage.

Al restrictions go in wth value undefined,
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-'FIGURE 3.8.6 -

TRUTH TABLES-- FOR RESTST

fal se (coded as 0)

true (coded as 1)

undefined (coded as 2)



RESTST:

- FIGURE 3.8.7 -

TABLE OF ARGUVENTS AND RESULTS

=0 >0 <0
>0 CREST=I test & set il'legal
test & set using current
=0 il egal il egal il egal
<0 illegal illegal illegal
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-.FI GQURE 3.8.8 -

RESTUN: TABLE OF ARGUMENTS AND RESULTS

POSN
L =0

>0 <0
>0 CREST=1I reset all refs illega
reset restrct to node POSN
I inrestrct |
=0 i legal illegal illega
%5 i Il egal i Il egal illega
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- FIGURE 3.8.9 -

RESTPR: SAMPLE OUTPUT
RESTRICTICNS IN
8 LUUM SS | & EG S
JUST REALC KESTRILCTIUN 9
- RESTS -
REST # VALUE PTR 1 PTR 2 PTR 3
G 2 24 26 48
- RE£STR
REST # TREE
9 48 52 -1
- CCNDS -
REST # VALUE TYPtE ARGUMENTS
9 2 204 3 -4
2 2C1 5} 5
- WORECS =~
/S /ALPHA /FGC /SS
- RESTS -
REST # VALUE PTR 1 PTR 2 PTx 3
1 2 1 4 1
2 2 5 5 8
3 2 6 10 12
4 2 11 i2 24
5 P4 13 15 28
6 2 lo 21 32
7 2 22 22 4Q
8 2 23 23 44
G 2 24 26 48

.
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KESJ

REST #

/5

LW N e~

VDo~~~ W

1

[ IR ¥, RN =N

© ©

#

- REgSTR -
T REE
1 ) -2 -1
3
12 lo -1 20 -1
24 .3
28 -3 -1
-3 32 -3 36 -3
40
44
48 52 -1
- CUNCS -
vatLUk TYPE ARLUMENTS
2 201 L -1
P 103 -1
2 205 5 =101
2 2C4% 6 -2
2 2¢7 7 —-1C2
2 203 17 -3
2 205 4 -1c3
2 2C6 8 -104
2 207 4 -1C5S
2 2C7 5 7
2 203 3 5
2 203 7 -3
2 2C4 3 -4
2 2C1 6 5
- WURES -
/ALPHA /F 0L /SS
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- Figure 3.8.10 -

DEFI NI TION_OF RELATI ONS

FGRVE

RELATI ON1 | NTEGER1L

| NTEGER2 RELATI ON2 | NTEGER3

| NTEGER? RELATI O\2 WORD1

| NTEGER2 RELATI ON2 COMPIEX SYMBOL

wherd& RELATIONL i s one of the unary relations and

RELATION2 is one of the binary relations

DEFI NI TI ON
RESULT

TRM

NTRM

NUL

NNUL

EQ

true if node INTEGERL is term nal

false if node INTEGERL is not term nal

sanme as - TRM

undefined if node INTEGERL has yet to be assigned
fal se if node I NTEGERL has been assigned

never true

undefined if node INTEGERL has yet to be assigned
true i f node INTEGERL has been assigned

never false

true if node INTEGER? is equal to node_INIEGER3:
has sanme substructure and conplex synbols are equal
(uses CSEQ to test conplex synbols)

false if not equal
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NEQ

- NDOM

HAS

NEQCS

sane as - EQ

true if substructure of node INTEGER2 inciudes a WORD equal
to WORD1. Does not search bel ow an S

false if not equal

same as -~ DOM

true if node INTEGER2 and node |NTEGER3 have non-conflicting

conpl ex synmbols or if node INTEGER2 and COVPLEX SYMBOL

are non-conflicting. (Uses CSINC to test conplex synbols)
false if not

sane as - EQCS

All relations (except NUL & NNUL) are undefined if at |east

one operand is undefined
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3.9 Structural change

CHANIN, Input routine for structural change

CHANIN is an INTEGER¥2 function of one dummy INTEGER¥2 argument

CHANIN reads in the instruction part of a structural change, stores it,

and returns a pointer to the instruction.

The syntax of structural change is given in Appendix A (5.01 -

5.10). The formats restriction, tree, and conpl ex symbol are given

el sewhere in the descriptions of the subroutines which read and
store them CHANIN is cal | ed by TRANIN after it reads an SC. CHANIN

reads the structural change and stores it, and returns after reading

a period. CHANIN calls RESTIN(ONE), FTRI(TWO), and CXIN(ONE) to read

a restriction, tree, or conplex synbol
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I nternal storage

A pointer to the structural-change for the J-th transformation
is stored by TRANIN in TRAN(J,7) . The instruction is stored by CHANI N
in the COWON bl ock /CHANCM/.

Initialization: /CHANCM/ is initialized by a BLOCK DATA pro-

gramgiven in section 5. CHAN, CHWORD, FCHTRE, CHTREE, and CHCLIS are
initially enpty. OPLIST is initialized to contain the list of operators
and conplex operators. The current sizes of CHAN, CHWORD, CHTREE, CHCLIS,

and OPLIST are NCHAN, NCHW NCHT, NCHCL, and NOPL; the maxinmum sizes are
MXCHAN, MXCHW MXCHT, MXCHCL and MXOPL.

Each change instruction is stored in a line of CHAN. A change is

stored in CHAN as foll ows:

CHAN(I,1) = type of first argunent

if none

i f integer

if word

if ‘(tree)

if complex synbol

FUW PR, O

CHAN(I,?2)

first argunent

if type 1 then the integer

if type 2 then a pointer to CHAORD
if type 3 then a pointer to CHTREE
if type & then a pointer to CSLIST

CHAN(I,3) = index of the operator or conplex operator in OPLIST

CHAN(I,4) = type of first second argunent 0, 1, or 2 as above

CHAN(I,5) = second argument
as for first argunent

CHAN(I,6) = pointer to next instruction to be done (0 if none)

A conditional change is also stored in a line of CHAN, but the allocation

is different:
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CHAN(I,1) =6
CHAN(I,2) = pointer to the restriction

CHAN(I,3) = pointer to the next instruction to be done if the
restriction is met (0 if none)

CHAN(I,4) = pointer to the next instruction to be done if the
restriction is not met (0 if none)

CHAN(I,5) = CHAN(I,6) = O

CHWORD i s sinply a REAI*8 |ist of words. FCHTRE, CHTREE, and
CHCLI S store trees as described in section 3.3.

The final setting of the pointers to the next instruction is not
done by CHANIN proper, but by the entry CHANTY, which tidies up the table
CHAN. This entry is called by TRANIN after all the structural changes
for the grammar have been read. A call to CHANQU causes the structural
change tables to be output.

The output of CHANQU is shown in Figure 3.9.1.
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CHANGE, control program for structural change

Wien a transformation is to be applied, CONTRL calls CHANGE. CHANGE
makes a subroutine call for each of the change operations in the structural
change. If the operation is a tree operation, ELEMOP is called; if it is
a conpl ex symbol operation, CSEXCH is called. Wen all of the change

operations have been performed, CHANGE relinquishes control to CONTRL.

ELEMOP, el enentary tree operations

ELEMOP perforns one tree operation for each call from CHANGE, and then
returns. ELEMOP also contains separate entries for a subset of the tree
operations and is occasionally called by other subroutines. For exanple,
CGEN call's the entry AIADE in building a tree.

The elementary tree operations of ELEMOP are those of the MTRE
grammars and those of the IBM core grammar. The M TRE operations are:

SUBST  SUBSE  substitution

ADRIS ARISE add as right sister

ADLES ALESE add as left sister

ADFID AFIDE add as first daughter

ADLAD ALADE add as |ast daughter

ADRIA ARI AE add as right aunt
ERASE  erase

The operations in the left-hand colum first make a copy of the
subtree to be adjoined, and then adjoin the copy; those in the right-
hand col umm nove the original subtree to the new position, thus
effectively erasing the original. The IBM operations are:

SUBSTI SUBSE!
ADRISTI  ARISEl
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ADLESI  ALESE
ADLIADI  ALADEIL
_ERASEI
The IBM operations differ fromthe MITRE operations in that in
general in the |1BM operations chain upward from the named nodes.

Description of the individual 1BM operations follow.

Substitute: SUBSTI (v1,N2) and SUBSEl (N1, N2)

Both SUBSTI and SUBSElI substitute the subtree headed by N1 for
the subtree headed by N2; in addition, SUBSEL erases the original
occurrence of NL.

Gven the tree:

F G* I

SUBSTI (E,D) whil e SUBSEl (E,D)

produces: produces:

|f inmmediately above N1 there is a non- branchi.ng chain of nodes, the

top of that chain is used instead of Nl; simlarly, the top of any
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non-branching chain above N2 is used instead of N2.  Thys SUBSTI(E, F)

applied to A
produces
and SUBSTI(I,D) applied to
- A
produces
D E
F G H

Add as right sister: ADRISI(N1,N2) and ARISEI(N1,N2)

Add as left sister: ADLESI(N1,N2) and ALESEI(NI,N2)

These operations add the node N1 as the left or right sister of

“the node N2; in addition, ARISEl and ALESEl erase the original occurrence

of N1.

ARISEI(G,B) applied to
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N1 will be replaced in these operations by the head of any non-branching
chain above N1, but N2 will not be so replaced. Thus, ADLESI (F,B)

applied to

but ADLESI (F,D) applied to

produces

Add as daughter: ADLADI (W1,N2) and ALADEI (N1,N2)

ADLADI adds N1 as the onty danghyer ofoM2; be used i f N2

al ready has descendants. ALADEl adds N1 as the only daughter of N2 and
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al so erases the original occurrence of Nl. The operations chain upward

fromNL but do not chain from N2. ALADEI (F,B) applied to

A ) A
B
¢ produces : C
E E D
F _F

while
ATADEI (F,D)
applied to
A
A
B C
B v pr oduces
D E
F

Erase: ERASE1 (N1)
This operation deletes froma tree the subtree headed by N1 as

wel | as any non-branching chain above Nl.

ERASE1 (E) applied to

A A
produces A
Beed p B C
E
F G
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3.10 Conpl ex synbol operations

CSEXCH(N,M
CSEXCH (Compl ex Synbol Exchange) is an INTEGER*2 function which
sets up calls to CSOP and returns the results of CSOP. The argunents
N and M are conplex symbol nunbers (i.e. pointers to CSLIST).
CSEXCH is never entered from the beginning but always from one of
the entries which deternmne the test or operation to be performed. The
- entries are:
For tests
CSEQ
CSINC1 (or equivalently, CXINC1)
CSI NC2
CSNDST

For operations

CSMERG

CSMERR

CSERAS

CSSAVE
For each entryexcept CSMERR CSEXCH makes a prelimnary test and an
inmediate return if the test or operation is trivial (N=M). Ctherwise it
makes the appropriate call to CSOP by setting TYPE to 1 for operations
and 2 for tests, and selecting the array A which defines the test or
operation as the second argunment of CSCP.

Each of the matrices defines a function of feature val ues and

is of the form
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N ++++- - - - xxx*x AAAA (A= absent)
M + - FA+- A+ A+ A
A(N, M)

For tests the values in ACINM are 1 if true, and in general 2 if
false. An exception is CSINCL where 2 and 3 are both false, 2 in the
case of noninclusion because of the absence of the feature in M and
3if the values in N and Mconflict. (This distinction is used by
. REDRUL.)

For operations the values in A(N,M) are the values to be given
to the feature iD the new conpl ex symbol being constructed. They
are 1 (+),2(-), 3 (*), 4 (absent) and 5 (a random choi ce between
+ and -).

It should be noted that new operations and tests may easily be
defined, sinply by adding to CSEXCH a new entry and a corresponding

new value for the matrix A .

CSOP(TYPE,A,N,M)

CSOP is an INTEGER*2 function of four argunents which is called by
CSEXCH  CSEXCH determines the function of a particular call to CSCP
and sets up the argunments. The argunents are:

TYPE, an integer with value 1 is a new conplex synbol is to be
created, or value 2 if a test on conplex synbols is to be eval uated.

A is an integer array which represents the 4x4 matrix which defines
the operation or the test to be perforned.

N and M are pointers to the conplex synbols which are the

argunments of the operation or test.
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Each test or operation on two conplex synbols is conputed from
the value of the test or operation on the individual feature specifica-
tions of the two conplex synbols. The value of a test is the maxi mum
of the values for individual feature specifications; thus if a
test is to succeed it nust be true (=1) for all pairs of feature
specifications. The value of an operation is the conplex synbol
resulting from pairwise application of the operation to the feature
specifications in two conplex symbols.

In order to understand the flow of CSOP it is necessary first
to know the structure of the array CSLIST(L4,2000) which contains the
conpl ex symbols. Each entry in CSLIST consists of (feature nunber,
feature type, feature value, pointer to the next feature specification
in the conplex synbol ( O if none)). The entries in CSLIST for a
particul ar conplex synbol are sorted on the first colum (feature
nunber).  This ordering is taken advantage of in going through the
conpl ex synbol .

The subroutine uses the same basic cycle to pick the current
feature specification pairs for both operations and tests. The main
difference in the treatment in operations and tests comes when a
feature specification pair has been selected. Then a branch is made
depending on TYPE and the operation or test carried out for the current
pair. TYPE is also tested in initialization and in finjshing up.

The discussion of how the matrix A determines the result of CSOP

will be found in the witeup of CSEXCH

REDRUL (M)

REDRUL i S an integer*2 function of the conpl ex symbol number M It
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returns the nunber of the conplex synbol obtained after expansion of
M by the redundancy rules, of 0 if a contradiction is found in doing
t he expansi on

The redundancy rule A= B has been stored in RULE as the pair
of conplex synbols (A,B). Parallel to RULE is a tenporary LOG CAL*1
array RULCHK

First RILCHK is initialized to FALSE, and FLAG is set FALSE

The main cycle is a pass through the rules in RULE. For the
Ith rule, the conputation is: If RUCHK is TRUE the rule is skipped.
Otherwise, the two parts A and B of rule | are conpared with the
conpl ex symbol M using CXINCl. If Ais included in Mand B
is not included in Mand B does not conflict wwth M, the new
value of Mis set to the result of nerging (MERGEL) M and B ,
RULCHK (1) is set TRUE and FLAG is set TRIE If A and B are both
included in M, the RULCHK (I) is sinply set TRUE. The next rule is
then considered. If Ais included in M, but B conflicts with
M (i.e. CXINCL returns 3), an error nessage is printed and the sub-
routine termnates. After all rules have been tried, FLAGis tested
and if TRUE, it is reset to FALSE and the main cycle is repeated. |f
FLAG is FALSE, no changes have occurred on the last cycle, so the
- expansi on process iS complete.

After the iteration of the main cycle is conpleted a space recovery
section of the code is executed to reduce waste space in CSLIST. Al
internmediate conplex synbols created by nerging are erased and only

the final result is retained.
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3.11 Control program

This section describes a set of subroutines (CPIN, SYNCHK, RECOG, CONTRL,
SCAN, TAPPLY, TRACE, APPLYG which input and interpret control prograns.

CPIN inputs acontrol program, checks syntax, and checks block
structure. It also builds the symbol table which associates symbols and
locations in CPBUF (the control program main storage area).

SYNCHK is ageneral context free grammar recognizer. It is called by
CPIN to check the syntax of the control program.

RECOG is a token generator/recognizer for SYNCHK. It uses SCAN to do
the actual token generation.

CONTRL interprets a control program residing in CPBUF. It checks
syntax as it executes. SCAN is a token generator for CONTRL.

SCAN is a token generator used primarily by CONTRL to determine what is
the next item in the execution sequence.

TAPPLY is the subroutine (with four entry points) which determines
whether a given transformation should be invoked and if so, invokes it.
It is driven by CONTRL and APPLYC and itself drives TRACE.

TRACE is the routine which does the outputting of trace infoxmation
. during the execution of the control program.

APPLYG is  driven by CONTRL. Its function is to invoke those
transformations of agroup (denoted by group number) which should be
invoked. It hands the members of a group to TAPPLY one-by-one.
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FORMAL, DEFINITION OF -A CONTROL PROGRAM

SYNTAX
CONTROL-PROGRAM : := CONTROL-PROGRAML .
CONTROL-PROGRAM : := SCLIST [ CONTROL-INSTRUCTION ]

CONTROL-INSTRUCTION ¢s:=  LABEL CONTROL- INSTRIJCTION OR
CONTROL-INSTRUCTION LABEL

[ NSTRU JCTION
LABEL ::= WORD : LABEL
= WORD :
INSTRUCTION : := CONTROL-ELEMENT OR

TRANSFORMATION-ELEMENT OR
CONTROL-LIST

CONTROL-LIST ::= ¢ SCLIST [ INSTRUCTION ]>

CONTROL-ELEMENT : := REPEAT-INSTRUCTION OR
IN- INSTRUCTION OR
IF-INSTRUCTION OR
FLAG-INSTRUCTON OR
GO- INSTRIJCTION OR
TRACE- INSTRIJCTION OR
STOP-INSTRIJCTION

TRANSFORMATION-ELEMENT ::= TRANSFORMATION-NAME OR
GROUP-NUMBER

REPEAT- INSTRUCTION ::=  RPT INTEGER < CONTROL-PROGRAM1 > OR
R P T < CONTROL-PROGRAM1 >

IN-INSTRUCTION : := IN TRANSFORMATION-NAME ( INTEGER )
DO < CONTROL-PROGRAM >
IF-INSTRUCTION ¢:= IF INSTRUCTION THEN GO-INSTRUCTION
OPT [ ELSE GO=-INSTRUCTION ]
FLAG-INSTRUCTION ¢ := FLAG-NAME TRASFORMATION= LIST
FLAG-NAME ::= FLAG OPT [ INTEGER ]
CO-INSTRUCTION ::= ‘6o T0 WORD OR
GOTO WORD
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TRACE-INSTRUCTION : :=

SPECIFICATION ;=

STOP- INSTRUCTION

TRANSFORMATION- LIST ::

TRACE TRANSFORMATION-LIST SPECIFICATION OR
UNTRACE TRANSFORMATION-LIST OR
TREE

BEFORE TEST OR
AFTER SUCCESS OR
AFTER FAILIJRE OR
AFTER CHANGE OR
RESULT

STOP OR

TRANSFORMATION-ELEMENT OR
< SCLIST [ TRANSFORMATION-ELEMENT ] >

5.11~3




SEMANTICS

A control program is a sequence of control instructions separated by
semi-colons’ and ending with a period.

Each control instruction may be labeled with an indefinite number of
labels.

A label is a word, whichis not a reserved word, followed by a colon.
-All terminal symbols of the syntax and all transformation names are
reserved words., Duplicated labels are not allowed.

There are two types of control instructions: those specifying control
elements (instructions to the interpreter] and those designating
transformations. ~ Control elements may be thought of as operators and
transformation elements as operands.

Instructions may be grouped for convenience by enclosing them in.
angular brackets, Nesting within angular brackets may occur to any
desired depth, Each pair of angular brackets serve to define a block (see
Block Structure below).

There are seven types of control elements. Each differs in its effect
on the interpreter and its effect on the tree.

A transformation element may be the name of a transformation or the
name of a transformation group (denoted by a Roman numeral).

Two forms of repeat instructions exist: definite and indefinite. Both
are similar in interpretation.

The definite repeat will execute the following control program INTEGER
number of times or until the control program has no effect (i.e. has value
false - see Values below), whichever occurs first.

The indefinite repeat will execute the following control program until
it has no ef fect (i.e. has value false - see Values below). The number of
iterations of the control program will not exceed INFNTY - a variable in
CPCOM,

The value of the repeat is true if any transformation was succcessfully
invoked and is false otherwise.

The IN-construct allows the user to fix a top node of the tree. This
node may or may not be the mot of the tree, allowing the transformations
in the control program following to operate on a subtree of the original
tree if desired. ’

Execution of an IN-construct proceeds as follows:
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Invoke the named transformation,
If successful, examine the node designated by the INTEGER,

If this node has never been used as the top node of the IN before,
exccute the control program using this node a s the top of the tree,

If this node has been the top node of the | N before, find another top
node by invoking the transformation again, If the invocation is
uasuccessful, the IN terminates, If it is successful, examine the node
designated by the INTEGER as above.

The value of the IN is true if any invoked transfomation succeeds and
is false otherwise.

The FLAG instruction provides the means by which a group of
transformations may be monitored, Flagging both establishes the group
and sets the flag to false, The value of a flag is true if any
transformation in its group has been successfully invoked since the fl a g
was last established and is false otherwise,

There are ten flags which may be referred to by number, The construct
FLAG with no INTEGER following is taken to mean FLAG O,

An IF-construct with FLAG means: if the current value of the
designated flag isS true then execute the first GOTO, if it is false then
execute the second GOTO if it exists (otherwise control passes to the next
instruction), If no INTEGER follows FLAG flag 0 is assumed. An IF
followed by any other instruction means: if the value of the instruction
IS true then execute the first GOTO, if it is false then execute the
" second GOTO if it exists (control passes to the next instruction if it
does not). Note that a group must be formed through an instance o f a
FLAG-construct before an IF-construct with FLAG h a s meaning,

Two forms of GOTOs exist, They are entirely equivalent in their
effect. Both force the execution of the control program to continue from
the point specified., Jumps into blocks are not -allowed (see Block
Structure below),

Three types of trace instruction exist: TRACE, UNTRACE and TREE.
UNTRACE resets the trace operation (turns off the output). TRACE turns on
a specified type of dump (see below)., TREE outputs the whole current tree
whenever it is executed.
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Five types of dumps are provided. Any combination, including all, are

possible. BEFORE TEST outputs the current tree before a call to ANTEST is
made but after all keywords have been satisfied. AFTER SUCCESS outputs
the current tree after ANTEST has returned true but before the tree has
been changed. AFTER FAILURE outputs the current tree after ANTEST has
returned false. AFTER CIIANGE outputs the current tree after a call to
subroutine CHANGE, RESULT outputs one line telling whether or not the
transformation was successfully applied.

The STOP instruction terminates execution of the control program. An
alternate way to terminate the” control. program is to "run off the end",
i.e, to try to execute the period.

A TRANSFORMATION-LIST is either a transformation element or a list of

transformation elements separated by semi-colons and enclosed. in angular
brackets.

VALUES

Each INSTRUCTION of a control program has a value. This value is
determined as follows : \

CONTROL ELEMENTSs:

RPT - true if any value of its control program is true;
false otherwise.

IN - true if the IN-transformation has value true;
false otherwise.

IF - true if its INSTRUCTION is true;

false otherwise.

FLAG - has no value. A FLAG within an IF has the
value of the FLAG designated.

GO - has no value.

TRACE - has no value.

STOP - has no value,

TRANSFORMATION-ELEMENTS ¢

TRANSFORMATION-NAME - true if the transformation
iIs successfully applied (i.e. a structural change
has been made or would have been if it were not void);
false otherwise.
GROUP-NUMBER - - true if any transformation in
the designated group is successfully applied,;
false otherwise.
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Lists :

CONTROL-LIST - true if any element of the list has
value true;
false otherwise.

TRANSFORMATION-LIST - true if any element of the
list has value true;
false otherwise.

CONTROL-PROGRAM1 - true if any element of the list
has value true;
false otherwise.

An undefined value is taken to be false throughout.

In general angular brackets serve to combine many values into one.
This combination is formed by taking a logical inclusive-OR of the values
of the elements within the brackets.

BLoCK STRUCTURE

A block may be formed by the usage of ang\nlar brackets. The elements
within a block form a unit and determine one value (see Values above).
Control may pass to a block only by executing the angular bracket at its
head. = Control may pass fmm a block either by executing the angular
bracket at its tail or by executing a GOTO, Any label within a block may
be thought of as being local to that block. However, throughout an entire
control program duplication of labels is'not permitted (even though the
duplicates may be in different blocks).

A block is formed by any of the following constructs: RPT, IN and IF.
The block formed is inherent to the construct - control may only pass into
such-.a block through its head. Control may pass from such a block through
its tail or by the execution of a COTO.

In fact the interpreter will allow GOTOs from one block into another so
long as the level of the destination is as low or lower than the level at
the GOTO. Thus it is possible to enter a block at a point other than its
head (but the stack will not have been set up by the block entry bracket,
so results other than those which were desired may be obtained).

Note that every entry into a block forces a push onto the stack, and
every departure forces a pop.
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STORAGE

The main storage area for the control program is CPCOM (see Figure 1¥).
Almost all communication is done via variables and arrays residing within
this region. The initialization of €CPCOM is done in three ways. Data
which never changes is loaded vi a BLOCK DATA subprograms (see Figure 2).
CPBUF and all symbol-related data are set up by CPIN. All other
initialization occurs within the first few statements of CONTRL.

The following variables and arrays are all in CPCOM:

CPBUF() - main control program buffer: contains the
symbolic control program as read in by CPIN.
pointer inte CPBUF: used by CONTRL to
indicate t he current instruction being
interpreted.

SYTB() - symbol table: contains the alphameric symbols
of the control program

SYTV() - synbol values: contains pointers into CPBUF,
Each entry of SYTB has an associated SYTV
entry showing at what point the symbol was
defined.

SYTL() -~ symbol levels : contains the level of each
symbol in SYTB., Used to detect errors during
execution.

SYTN - the number of entries in SYTB.

TERM() - contains the terminal symbols of the syntax
(see Figure 4).

CPPTR

i

STK() - execution stack (see Figure 3 and the
description of CONTRL below).

SPTR - points at the current first postion of STK.

OTOP() - points into OTOPS (see description of TAPPLY),

OTOPS() - contains old top nodes for a currently executing

IN-instruction (see TAPPLY description).
LVL - the current level
ZSCAN - auxilliary output from SCAN (see below).
ZINT ... 2UNT - tokens for the terminal symbols in TERM().

*The references to figures in section 3.11 refer to figures 3.11.1 to3.11.5.
These figures appear at the end of this section.
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INFNTY « the value taken to be infinity by RPT and TAPPLY.
FGN(,) - boolean array designating flagged
transformations.

FGV(,) - boolean array containing the values of flagged
transformations.
TRCF(,) - boolean array designating which transformations
are being traced and by what type of trace.
APFG - a flag set by TAPPLY used by CONTRL. It
is true when a transfomation which has been
invoked by a call to TAPPLY has
successfully attempted to modify the
current tree.
IFFG - used by CONTRL in the evaluation of

IF-statements. True if the IF will take the
first branch; false otherwise.

RFG -- true whenever the stack contains an
IN-instruction; false otherwise.

The following variables and arrays reside in SYNQM:

SNTX(,) - base syntax used by SYNCK.

CUR - current goal symbol.

SCN - set to semi-colon: error recovery symbol.

SPT - stack pointer for STAK.

STAK() - stack used by SYNCK in recognition
process.

IPT - pointer into CPBUF used by RECOG.

NEQN - number of syntax equations, set to 57.

TRCFG - trace flag for SYNCK, set to false.

DMPFG - dump flag for SYNCK, set to false.
RECFG = recovery flag for SYNCK, set to true.
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The following variables and arrays reside in local storage:

BLOK(,) -
OPTR
SLVL

TYP

TYP
TRCTYP
FLGN
TRM()

ROMAN() -

SO
TOP
cYc
OPT

GOAL
ANFG

TRNS()
TIM

contains a skeleton of the block structure of the
program. Used by CPIN.

points at the top element of OTOP, Used by
CONTRL,

used by CONTRL to keep track of levels when
scanning for semi-colons or angular brackets.
indicates the type of instruction in the stack.
May be set to zero, ZIF, ZIN or ZRPT

only. Used by CONTRL.

indicates the type of tracing. Used by TRACE.
indicates the type of tracing. Used by CONTRL,
holds the flag numbers Used by CONTRL.

an equivalenced array allowing SCAN to reference
the tokens parallel to TERM in CPCOM,

holds the Roman numerals | through X. Used by
SCAN.

array holding the marked S's in TAPPLY,

contains the top node for TAPPLY,

contains the cyclicity of a transformation

in TAPPLY,

contains the optionality of a transformation

in TAPPLY,

contains the goal S in TAPPLY,

contains the result of having called ANTEST

in TAPPLY,

contains the transformations which have success#fully
been invoked in order. Used by TAPPLY,

contains the time of call for TRACE,
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DESCRIPTION OF CPIN

CPIN inputs a control program into CPBUF and checks its syntax and
block structure. It also detects undefined and multiply defined labels
and undefined symbols. The program operates in two passes.

Pass 1 inputs the control program up to and including the period at its
end. It detects labels by the colon following them and enters them into
SYTB along with their location and level. LVL contains the current level:
. it is increased by one each time a ¢ is seen and decreased by one whenever
a > is seen. Concurrently a skeleton of the block structure is built in
BLOK,

-

The format of BLOK is:

BLOK(I,1) - number of labels in this block
BLOK(I,2) - parent of this block
BLOK(I,3) - labels in this block

ooe LR N J

BLOK(I,20)

Example: for this control program:

L1: TRANI ;
¢ L2: TRAN2 : L3: < L4: TRAN3 D> ; LS:> :
L6: STOP .

BLOK would appear as:

2 0 L1 L6
3 1 L2 L3 LS
1 2 1A

SYTB  SYTV SYTL

L1 3 0
L2 8 1
L3 12 1
L4 15 2
LS 20 !
L6 25 0
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Pass 2 scans CPBUF checking to see that each GOTO refers to a defined
symbol and that no jumps into blocks occur. It also checks to see that
each GO is followed by a TO. The number of errors detected is output at
the conclusion of Pass 2 if it is greater than zero.

CPIN then calls SYNCHK which checks the syntax of the input program
(see SYNCHK below).
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DESCRIPTION OF ' SYNCHK

SYNCHK is a top-down recognizer. It drives a stack attempting to
recognize a CONTROL-PROGRAM. It uses the syntax in SYNOM which is
equivalent to the syntax given above.

The program operates as follows:
Load the stack with CONTROL-PROGRAM.

If the stack's top element is non-terminal, find an equation with this
non-terminal as left-most symbol and stack-it, Examine stack’s top element
as above.

If the stack’s top element is terminal, call RECOG to see if the first -
element of the input stream is the same as this symbol. If it is,
continue examining this equation. Every time. a non-terminal is found it is
pushed onto the stack. Each time a terminal is found a call is made to
RECOG. If RECOG returns true it advances the input stream over the symbol
it just recognized. If RECOG returns false it does not.

Each time the recognizer finds that the input stream and the current
equation differ, it scans for another equation which has the same
left-most symbol as the current one. If it finds one it tries to use it
in the recognition process. If it is unable to find one or runs out of
new equations it will pop the stack if it has not advanced the input
stream and continue searching for valid equations. If it has advanced the
input stream then there is a syntax error at the current position.

When a syntax error is encountered the recognizer begins scanning until
it finds the symbol SCN (currently a semi-colon) in the input stream. It '
then assumes that it has successfully recognized the current equation and
continues.

Two types of trace output are available. Both are normally off.

TRCFG - if true, the recognizer will output the name of each
non- terminal symbol which it successfully recognizes.

DMPFG - if true, the recognizer will ouput the stack every time it
begins to examine the current symbol.

RECFG is normally true - it provides the error recovery described
above. If you wish to avoid the error recovery set RECFG to false.
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The syntax used by SYNCHK is given in Figure 5. This syntax is more
general than the syntax given above and better reflects the actual
operation of the control program although it is more complex.
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DESCRIPTION OF RECOG

RECOG is the recognizer/token generator for SYNCK. It calls SCAN to
generate the actual token and then compares this with the tokens in SNTX.
The input stream pointer IPT is advanced if the desired symbol and the
input symbol match, otherwise it is not,
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DESCRIPTION OF CONTRL

The first few statements of CONTRL initialize the various stacks and
variables which it uses.

The main loop begins at statement 10. It is at this point that the
program has just finished recognizing and interpreting a control
instruction and it is ready to look for the next. Wenow call SCAN for
the next token and go to the appropriate part of the interpreter depending
upon what SCAN returns. If the symbol is illegal or undefined, a branch
“is made to statement 9, the standard error recovery section.

Belov is a description of the actions of the control program for each
construct or symbol which it sees.

Syntax errors send the control to statement 9. At this point scanning.
fur the next semi-colon begins, The program keeps track of its level and
will stop scanning when it finds the next semi-colon at the current level.

INTEGER lllegal syntax, control passes to Error Recovery.

T-NAME  APPLY or APPLY1 is called depending upon whether or not the
control program is currently in an IN-construct. The result of the
invocation is inserted in the stack.

WORD  words, that is labels, are passed over. They have no effect on
the control program.

GROUP-NO APPLYG is called with this group number as argument. The
result of invoking the transformations of this group is inserted in the
stack.

<¢-A left angular bracket signals the beginning of a
TRANSFORMATION-LIST,  The level is increased by one, the stack is pushed
down, and the arrays OTOP and OTOPS are pushed down.

> A xight angular bracket signals the end of some type of
transformation- or control group. A test is made to see if the group is
an IN, an |IF, a RPT, or a TRANSFORMATION-LIST, If it is an IN, control
passes to statement 7500 (described below). If it & an IF, control
passes to statement 6500 (described below). If it is aRPT, the stack is
tested. If the value is false, the RPT terminates and control passes to
statement 10, If the wvalue is true, the value is reset to false, the
rencat ~ounter IS decremented (if it is zero, terminate the RPT), then the
RI'T is started again. If it is a TRANSFORMATION-LIST the stack is popped
and the value of the list is inserted into it.
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; Semi-colons have no effect.
( Parentheses are illegal. Control“ passes to Error Recovery.
) Parentheses are illegal. Control passes to Error Recovery.

« A period terminates the execution of the control program (see STOP
below),

: Colons are ignored.

. AFTER Illegal, control passes to Error Recovery.
BEFORE lllegal, control passes to Error Recovery.
CHANGE lllegal, control passes to Error Recovery.
DO Illegal, coﬁtrol passes to Error Recovery.
ELSE lllegal, control passes to Error Recovery.
FAILIJRE lllegal, control passes to Error Recovery.

FLAG Checks the stack to see if the control program is currently
executing an IF-construct. If it is, then it returns the value of the
designated flag. If an INTEGER follows the FLAG, that flag is used, if
not then flag zero is used. If the control program is not executing an
IF-construct, it checks the next symbol for INTEGER. If it finds one,
FLGN is set to that number, if not, FLGN is set to zero. Then the
following expression is read and each transformation designated (by name
or group number) is flagged by setting the corresponding entry in FGN to

. true. The corresponding values in FGV are all reset to false.

GO Scan the next symbol for T0o, if found go to GOTO; if not found, go
to Error Recovery.

~GOT0  Scan the next symbol for WORD. If not found, go to Error
Recovery., Look up the value of the label in SYTV and its level in SYTL.
If the new level is higher than the current one an attempt is being made
to jump into a block, complain and go to Error Recovery. Otherwise change
CPPTR to the value looked up.

IF Push the stack and put IF into the top, push OTOP and OTOPS,
THEN (statement 6500) Pop the stack. If the old value is true go to

statement 10. If the old value is false scan to an ELSE (if it exists or
a semi-colon if it does not) and go to statement 10.
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IN Scan for the name of the IN-transformation, left parenthesis, an
integer, ri ght parenthesis, DO. Then initialize OTOP and OTOPS, Attempt
to invoke the IN-transformation by calling APPLY1, If it does not apply,
go to statement 10. If it does then push the stack, enter ZIN into the
stack and go to statement 10, Control passes to statement 7500 at the
right angular bracket of an IN-construct. We then call APPLY1, again
seeking anew S for top node. If APPLY1returnstrue then thestack is
pushed as above and control passes to statement 10 after resetting CPPTR
to thel eft angular bracket of theIN. If APPLY1 returns false the IN
terminates and conrol passes to statement 10,

- RESULT lllegal, control passes to Error Recovery.

RPT Scan for an integer, if one is found enter it as the repeat
counter value. If not, enter INFNTY. Scan to aleft angular bracket and
go to < above. )

STOP Terminate the execution of the control program. Print the number -
of instructions executed and the transformations which hae applied, then
return to the caling program.

SUCCESS Illegal, control passes to Error Recovery.

TEST lllegal, control passes to Error Recovery.

THEN lllegal, control passes to Error Recovery.

TO Illegal, control passes to Error Recovery.

TRACE Scantot ho specification after marking the current position.
Then rescan the TRANSFORMATION-LIST setting the TRCF entry for each
_transformtion Which is to be traced.

TREE Call TROUT to output the current tree.

UNTRACE Reset the TRCF entries for each transformation designated in
the ‘transformation |ist.

Note that the syntax which describes the operation of the control

program is given i N Figure 5 below.
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DESCRIPTION oF SCAN

SCAN is the token generator for CONTRL. In addition it keeps track of
the current postion in CPBUF,

SCAN hastwo outputs:  the first is the token for the current symbol
(returned in SCAN). The second is ZSCAN - this is auxilliary information:
the integer, label, transformation number, etc.

Values for SCAN and ZSCAN are as follows;

SYMBOL ~ SCAN ZSCAN
undefined symbol 0 0
INTEGER 1 the integer
TRANSFORMATION-NAME 2 the transformation number
LABEL 3 pointer into SYTB
for this label
GROUP-NUMBER 4 integer representing the
Roman numeral
terminal symbol token ——e-

Terminal symbols are all "reserved words", The tokens for the
terminals are given in Figure 4. The tokens are referenced by index via
.thearray TRM - an equivalenced array. No transfoxmatfon may have the
same spelling as a terminal symbol.

The entry point SCAN1 is used by RECOG. It differs only in that no
trace infommation i S printed during the program's execution.
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DESCR PTI ON OF TAPPLY

TAPPLY is called to invoke a transformation, If it has applied APFG is
set to true and FGV is set to true. In addition, this transfommation is
entered into TRNS. Atransformation is said to have applied if it
successfully modified the tree (or at least called subroutine CHANGE) or
if it would have called CHANGE if the structural change had not been void.

The subroutine has four entry points which are described below. Each of
the first three are similar in all_but minor details. we now give a brief
description Of the operation of APPLY.

(Ij:irst, all s's are marked in the current subtree, If NO S's exist, we
aredone.

yThen we find the keywords for this transformation. |f noneexist then
we will be trying the transformation at every S, so set the appropriate

flag.

Find t he first Swhich has been marked which dominates all the keywords
(or usethe first Sif there are no keywords). If no such S exists, then
exit after updating TRNS if necessary.

Tracebef or @ ANTEST.

Call aNTEST (if the structural description is not zero, if it is, then
set ANFG = true), put the result into ANFG,

If ANFG is false, unmark the current S (so it will never be tried
again) and return to the process above.

| f ANFG is true, then if t he structural change is zero trace after
change,. unmark the S, and return to the process above. If the structural
change | S non-zero, then branch to one of the four segments dealing with
the. particular type of transformation,

Type 1-AC - non-cyclic: call CHANGE, then unmark the S and proceed
as above.

Type 2 - ACAC - cyclic: call CHANGE, then return to the above without
unmarking t he current s,

Type 3 -AAcC: call CHANGE NUMCNT times, then unmark the S and return
to the above.

Typed4 - MC: call CHANGE once picked from among the NUMCNT choices at
random and pr oceed as above.-
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we have not discussed optionality in the above. Optionality tests are
inserted before calling ANTEST for Type 1 (AC) transformations and within
the three subparts for the other three. -

APPLY is the entry point for general invocation of transformations. It
proceeds as above.

APPLY1 is the entry point for the execution of the IN-transformation,
It updates OTOP and OTOPS and uses APPLY or APPLYI depending upon whether
the current IN-construct is within another IN or not. For APPLY1 to be
successful the node found by ANTEST must be different from all nodes
already in OTOPS.

The formats of OTOP and OTOPS are: entries in OTOP are pairs of
pointers into OTOPS - there is one pair for each: level of -execution,
Entries in OTOPS are the actual nodes which have been used as top nodes
inside an IN-construct.

APPLY1 is the entry point for the execution of the program inside the
angular brackets of an IN-construct. It differs from APPLY in that there
is only one S which may be used as the goal and top node of the tree for
ANTEST and CHANGE - the node specified by the INTEGER of the IN-construct.

OUTTRN is the last entry point =« it is used by CONTRL to output the
contents of TRNS - the transformations which have successfully applied in
order of application.

Each of the entries to TAPPLY above will set APFG to true if the
invocation is successful and enter the transformation into TRNS,
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DESCRIPTION OF TRACE

TRACE outputs trace information which may be the tree (by a call to
TROUT) or just the result of invoking the transformation (true or false
depending upon whether or not the transformation was successful),

TRACE is called at three points during the inwcation of a
transformation: before calling ANTEST (but after all keywords have been

satisfied), after calling ANTEST but before calling CHANCE, and after
calling CHANGE.

The type of TRACE (there are five types) is determined by use of the
array TRCF (in CPCOM),

ANFG is a logical variable giving the value of the last call to ANTEST,

Values for TIM and TYP are:

TIM =1 befor e ANTEST
-2 after ANTEST, before CHANGE
=3 after CHANGE

TYP -1 BEFORE ANTEST
-2 AFTER FAILURE of ANTEST
=3 AFTER SUCCESS of ANTEST
-4 AFTERCHANGE
=5 RESULT
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DESCRIPTION OF APPLYG

APPLYG invokes the transformations in the group designated by GNO
one-by-one. If GNO referstoa non-existent group APPLYG comments to this
effect and returns false. Otherwise the value of APPLYG is an
inclusive-OR or the values of all transfonaations in the designated group.
Thevalueof APPLYG isreturned in APFG (a variablein CPCoM),

APPLYG will use APPLY or APPLY1 depending upon whether or not the
control program is currently executing an IN-construct. (It tests RFG to
détemmine this.)
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Figure 3.11.1

CPCOM  SYNCM
CPCOM
IMPLICIT INTEGER*2 (A-2) CPCOMO
COMMON /CPCOM/ CPBUF,SYTB, TERM CPCOM|
_ REAL*8 CPBUF (500) ,SYTB(100) , TERM(32) CPCOr
COMMON /CPCOM/ SYTV(100) ,STK(100) ,0TOP(20) ,0TOPS(50) , CPCOM3
1 CPPTR,SPTR,LVL,SYTN, ZSCAN, SYTL(100), CPCOr 4
2 ZINT,ZTRN,ZWRD,ZGRN, ZLAN, ZSMI, CPCOMN 5
3 ZLPR,ZRPR,ZPER,ZCOL, ZAFT, ZBEF, ZCHN, CPCOM'6
4 D0, ZELS, ZFAL, ZFLG, ZGO, ZGOT, ZIF, CPCOM7
S ZIN,ZRSL,ZRPT,ZSTP,ZSUC,ZTST, ZTHN, CPCOM§
6 ZT0,ZTRC,ZTRE,ZUNT, INFNTY CcPCOM 9
COMMON /CPCOM/ FGN,FGV, TRCF,APFG, IFFG,RFG CPCOM10

LOGICAL*1 FGN(100,10),FGV(100,10),TRCF(100,5) ,APFG,IFFG,RFG CPCOM11

SYNOM :
IMPLICIT INTEGER*2 (A-2) SYNOMO
COMMON /SYNQOM/ SNTX, CUR, SCN, SPT, IPT,NEQN, SYNOM1
1 TRCFG, DMPFG,RECFG SYNOM2
REAL*8 SNTX(57,8) ,CUR,SCN SYNOM3
LOGICAL+1 TRCFG,MPFG,RECFG SYNOM4
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BLOCK CATA

Fi

gure 3.11.2

BLOCK DATA STATEMENTS

IMPL IC It INTEGER®*2 (A-Z)
COMMUN /SYNCM/ SNTX+CURoSCNySPT IPToNEQNy
1 TRCFG+DMPFG,RECFG
REAL®8 SNTX(5748) 4CUR,SCN/* 3/

LOGICAL*L TRCFG/TRUE/ yNVMPFG/ +FALSE./+RECFG/ +TRUE./

INTEGER*2 NEQN/57/
ECUIVALENCE
1 (SNTX(191)eC1(1))y(SNTX(142),C2(1)) 4 (SNTX(143),C3(1)),
2 (SNTX(1,4)9Cal1))y(SNTX(19S),C5(1)Ds(SNTX(146),C6(L1)),
3 (SNTX(147),C7(1)), (SNTX(1,8),C8(1))
REAL*8 C I (5T)/

’
YSUCCESS* y'"FAILURE " y'CHANGE'y"*?,

1 *CTLPGM. 'y '"PGM,

2 ‘CP. RN S
3 ‘SC. '*y*SC.

4 "INST, Y9 P INST.

5 *CtLl. *y'CL1.

6 ‘CE. 'y'CE.

T *TE. ', 'RPT~1,

8 ‘'IF-1. Yy IF~-1I,

9 ‘GO-1l . ".GO-IO

1 *SPEC. 'y 'SPEC.

2 ‘STP-I. YHL'TL.

3 'TL 1. 'ytTLL.
REAL*8 C2(57)/

1 'PGM. Y, ‘SC.”

2 'Cles'y 'LBLey

3740 3%

4 'CLle%y 'TE Yy

S‘INST.” “INST.”

6'FLG=T4%y ‘'GO-1.°,

7 SLGRN.Y, ‘RPT”

8 'IFY, “1E

9 'GCTOY, ‘GO’

1'B8eFORE*y "AFTER ",

2 'STAOP?, <y,

2 'TEL Y, ‘*TEL'/
REAL®8 C3(57)/

1 'o" 'CP."

2 ' ‘Cf.*,

3‘SC.” 'Yy

& L} l’ L .'

5 ¢SCety LIS

b ¢ l’ ] C'

70, YZINT.Y,

8 ‘INST.*, ‘INST.”

G YZWRD.Yy 'TOY,

1 ‘TEST’,

2 Yy ‘SC.7»

3 ‘SC.” ' v

s "PGM.
v'Cl.
v "LBL.
+'CL,
+*'CE.
+'CE.

* TRACE' »
‘AFTER 'y
l<l'

\ ]

w

L}
Yy
.'
C.¢
. C'
(] !,
0(0'
.TLo'}
.TL."

"TLL. Y, 0

SYNCM

'y1CP. Y40CP,
'y!'Cl. "'Cf.
*,'LBL. 1,1INST,
ty0CL, 1,'CLL,
".CE. .O‘Cf.
'9'CE,. Yo' TF.
Yy 'IN=1I. ','pne,
'Y *FN, Y9 *FN.,
"'TRC’IQ 'o'TRC‘I.
"4y 'SPEC., ', 'SPEC.
tyfTL. WITLL,
'Cle'y 'Cle'y
‘INST.", ‘INST.",
1ZWRD. %y 'CE.'y
Y, VINST,*,
CIN=Te% ‘IF-1.",
‘STP-14"9*2ZTRN. Y,
"INy ‘DO,
‘FLAG’, '"FLAG',
*UNTRACE', *TREE?,
"AFTER'y ‘RESULT'y
'TE.'y  'TE.Y,
sc. 1SCaty
‘LBL.Yy, ' Y,
Ogl' ] !'
'CL1.'y  ‘SC.°,
L} .’ L} l'
LI LI I
PZTRN. 'y <Y,
“LINT.“, e,

'TLaety

Yy

sduﬂes

- o ® o o ® o ® & o
©® @@ ® @ e e W ® e e

FSYNCM
SYNCMO -
SYNCM1
SYNCM2
SYNCM3
SYNCMS
SYNCM6




1
2
3

SYNOM _ Cont' d
REALHB C4A(5T)/3%T ¥, 0CP, ¢ 48%1 ¢, 1 BL, " 4%t ¥,
PCLLete®>9 o CLLL Y, LL%® 0, 0C", PGM.*, " ( 'y 'PGM. ¢, THEN®
CTHEN® y4%® ¥ g0 ZWRD.* 4 SPEC,*48%0 ¢, 0T 1,0, 0>0,
\J "'TLl.O’U "i '/
REAL¥8 CS(5T)/LTH® *4 030,135 1,1pGM, ¥, >0,

1 vZINT 0D, 1G0=1.,°'G0-1,414%" * 0>, ,5%1 ¢/

1 *ZINT, "y ' ZTRN,

~No o wN

D BN

REAL*8 CO6(ST)/31%t ¢, 038, 0 o o) 0,08, 9 SE,21%0¢/
REAL*8 CT(57)/33%% *,¢DOP " y* ¢, 'GO=-1."921%* ¢/
REAL*B8CB(57)/5T*x*/

END

CPCOM

BLUCKDAT A

IMPLICITINTEGER*2 (A=Z)
COMMON/CPCUM/ CPBUF, SYTB,TERM
REAL*ACPBUF(500)/'STOP v/ +SYTB(L00) 4 TERM(32)/
"ZWRD. "'ZGRN. .|'<

'
[ v, ', 1,0) 1,0,
‘e 'y *AFTER ' 'BEFORE ' ‘CHANGE *','DO
"ELSE Y2'FAILURE ', 'FLAG 1,°GO V9 'GOTD
“IF 1y IN ', 'RESULT ' 'RPT ',*STOP
‘SUCCESS *+'TEST "y *THEN L' TO 'y *TRACE
‘TREE 'y "UNTRACE '/

L4

]

COMMON /CPCOM/ SYTV(100),STK(100),0TOP(20),0TOPS(50) CPPTR,ySPTR,

LVLsSYTNGZSCAN,SYTL( 100),
LINTSZTRNyZWRD yZGRN9ZLANyZRANy 2SMI,
ILPRIZRPRyZPERyICOL 9y ZAFT yZBEF9ZCHN,
IDC s LELSWZFAL,ZFLGyZ2G042GOTL21F,
ZINyZRSLyZRPT4ZSTP 4ZSUCsZTSTH,ZTHN,
ZTOWZTRCHZTRES ZUNT o INFNTY
INTEGER*2

L ZINT/1/+2ZTRN/2/+ZWRD/3/y2ZGRN/4/ s2ZLAN/S /4 IRAN/E /o ZSML/ T/
ZLPR/B/ ¢ IRPR/I/4yIPER/L1O/4ICOL/ 11/ 4ZAFT/12/ +2ZBEF/13/+1CHN/14/,

OB oo

I00/15/+2ELS/16/+ZFAL/LT/+2IFLG/18/4260/19/42G0T/20/42

IF/7217/,

LIN/22/4IRSL/23/ 4IRPT/24/+2ISTP/25/+42SUC/26/42TST/27/+2ZTHN/ 28/,

IT0/29/¢2ZTKRC/30/4ZTRE/31/+2ZUNT/32/4INFNTY/10/
COMMCN /CPCCM/ FGNFGV,TRCF,APFGy IFFGyRFG

LOGICAL*1 FGN(100,10)+sFGVL100+410)TRCF(100+5)4APFG,IFFG,RFG

ENG
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CPCOMO
CPCOM1
CPCOM2
cPCOM2A
cpcomes
cpCcom2c

* C PCOM2D
c PCOM2E
CPCOM2F
CPCOM26
CPCOM3
CPCOM4
CPCOMS
CPCOM6
CPCOM7
CPCOMB
CYCOM9
CPCOMSA
CPCOMYB
cpPCOM9B
cpPCOMSC
CPCOM9ID
CPCOM9IE
CPCOM10
cpCOM1l
4




STK -

CONTENTS:
POSN
VAL

RPT

IN

|F
RPT-CTR

T-NAME
IN-NODE

Figure 3.11.3

STACK-

POSN POSN POSN current position
in CPBUF

VAL VAL VAL current value of the
evaluation

TOP TOP TOP current top node

RPT IN IF type of operation

RPT-CTR T-NAME - see below

- IN-NODE - see below

= some Setting of CPPTR

= 0 for false

> 0 for true

= either one (by default) or sane value inserted
by an IN-construct

= flag indicating a CONTROL - or
TRANSFORMATION-LIST

= flag for RPT-construct (ZRPT)

= flag for IN-construct (ZIN .

= flag for IF-construct (ZIF

= repeat counter; set to INFNTY or the integer

following the RPT and counted’

down to zero

number of the IN-transfomation

« node number of the current top of the tree
for an IN-construct

Note that any instruction containing an angular bracket
always affects the stack. So does an |F-construct.
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Figure 3.11.k4
TERMINAL SYMBOLS

TERMINALS AND ASSOCIATED VALUES (ALL IN /CPCOM/) S-28-68

TERMINAL VALUE # STATEMENT
CUNDF*D SYMBOL> 0 9
CINTEGER) ZINT 1

{T-NAME)> ZTRN 2 1000
<WORD> ZWRD 3

<GROUP-NO> ZGRN 4 2000
< ZLAN 5 2050
> ZRAN 6 2060
H ZSMI 7 10
( ZLPR 8

) ZRPR 9

. ZPER 10 3000
: ZCOL 11

AFTER ZAFT 12

BEFORE ZBEF 13

CHANGE ZCHN 14

Do ZD0 15

ELSE ZELS 16 6550
FAILURE ZFAL 17

FLAG ZFLG 18 4000
GO ZGO 19 S000
GOTO ZGOT 20 5500
1= ZIF 21 6000
IN ZIN 22 7000
RESULT ZRSL 23

RPT ZRPT 24 8000
STOP ZSTP 25 3000
SUCCESS ZSUC 26

TEST ZTST 27

THEN ZTHN 28 6500
TO ZT0 29

TRACE ZTRC 30 9000
TREE ZTRE 31 9800
UNTRACE ZUNT 32 10000
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GD_I.
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Figure 3.11.5

SYNTAX FOR SYNCHK

cP.

SC. cP.
SC.

Cl.

LBL.

SC.

: LBL.
SC. CcLl.
cL1. >
SC. CLl.
SC.

ZINT. [«

< PGY .
ZTRN. (

C PGM.
INST. THEN
INST. THEN
TL.

ZINT.

IWRD.

TO ZWRD,
TL. SPEC.
TL.

TEST

SUCCESS
FATLURE

CHANGE

SC e TL1.
TLl. >
SC. TLL.
SC.

5011‘29

PGM. >
ZINT. )

G0-1.
GO-I.

ELSE

0OP .

GO-I.







4, COWON BLOCKS

IMPLIC| TINTEGER#*2 (A-Z)

C /CRECM/

CCMMAN /ORDCM/ NUM,y ISPEC,CROFL s NUMFL
INTEGER*2NUMy ISPEC
LCGICAL*1 CROFLyNUMFL

C IMA INCM/

CCM¥ON /MAINCM/ CHRTR,KSUMP, ISUMP,NCHRTR
REAL*8CHRTRKSUMP(20C))
INTEGER*2 ISUMP,NCHRTR

c /JCNSTCM/

COMMON/CNSTCM/ NBLANK NLAND oNMINUSyNSLASHyNCENT oNSTOP ,NLESS
1 NLEFTPyNPLUS oNLOR NXCLM oNDCLLRsNSTAR ¢NRITEP sNSCCLN¢NLNOT
i N12114NCOMMA,ZNPERC sNLINE o4NGREAT,NQUERY,NCOLON,NBOUND, NAT

3 NQUOTE,NEQUAL,NBQUCT

INTEGER*2 NBLANKy NLAND ¢NMINUS,NSLASH,NCENT ,NSTQP oNLESS
1 NLEFTFoNPLUS oNLOR oNXCLM oNDOLLRyNSTAR oNRITEPyNSCOLNyNLNOT
¢ N1211 ¢NCUMMASNPERC ¢NLINE JNGREAT,NQUERY,NCOLCN,NBOUND,yNAT
3 NQUOTEsNECUAL,NCQUOT

C /FCETCH/

CCMMON /FCSTCM/

LFELANK FLANC +FMINUS, FSLASK, FCENT #FSTOP »FLESS »FLEFTP,FPLUS
2FLUR  sFXCLM yFDOLLR,yFSTAR oFRITEP #FSCCLN,FLNQOT ,F1211 ,FCOMMA,
3FPERC sFLINE 4FGREAT,FQUERYFCOLON,FBOUND,FAT » FQUOTE,FEQUAL,
4FCQLGT4PAGE . 9RECORL

REAL*8

1FELANK,y FLAND oFMINUS,FSLASH, FCENT 4FSTOP +FLESS +FLEFTP,FPLUS ,
2FLUR  4FXCLM »FDOLLRyFSTAR yFRITEPy FSCOLN,FLNOT ,F1211 ,FCOMMA,
3FPERC H»FLINE ¢FGREAT,FQUERY,FCOLCN,FBCUND,FAT +FQUOTE JFEQUAL,
4FCQUCT 4PAGE |, RECORD

C /MAINCM/

CCMMON /MAINCM/ CHRTRyKSUMP,ISLMP,NCHRTR
REAL*#8 CHRTR,KSUMP(20UD)
INTEGER%2 | SUMFP4NCHRTR

C /PFSCCMm/

c /1/

COMMCN /PSGCM/ NSGA19yNSGC yNSGA24NSGBy KAWKByKC
REAL*8 NSGA1(2GC),NSGC(2CCNH)
INTEGER*2 NSGA2(2CG0)yNSGB(300) yKA,KByKC

CGMNVCN/T/ TITLE(F)
REAL*B TITLE
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/TREECHM/ ,
CCMMCON /TREECM/ FTREE.TREEJCLIST MTREE,MCLIST
REAL*8 FTREE(4u9)
.y INTEGER*2 TREE(400,6),CLIST(400) ,MTREE,MCLIST
COMMON /Z/ LANKoNXXX9¢NSSyNSsNAND,NOR,NANDCRyNERROR
REAL*8 LANKoNXXX9NSSeNSyNANCyNORy» NANDOR
INTEGER*2 NERROR
/WORK1l/
CGMMON /WORK1/ LINE,STRINGyNSUBS2,NSUBS1sN14N2
REAL*8 LINE(14)4STRING(12C)4NSUBS2(10)
INTEGER*2 NSUBS1(10)eN1{14)yN2{14)
/RESTCM/
CGMMON /RESTCM/ WDyCRESTyPSyPRyPCPW,RESTS{500) +RESTR(5J( ),
1 CONCS (500 )
REAL*8 WD(1C0)
/FRCCM/
COMMON /FRCCM/ OUTWELS+LNGFTSoLNGPT4PTPIyTHOSyHDSy TENS, UNI TS, WDF
1 LNGWDS
REAL*8 OUTWCS(139)
INTEGER*4 LNGPTS( 130)
INTEGER*2 LNGPTPTPT,THDS,HCSyTENS,UNITSy WCPT
LCG ICAL*1 LNGWCS (29¢C)
/CHANCM/ .
COMMON /CHANCM/CHAN{4C0,6) +CHWORD( 130) ,0PLIST(50),
I FCHTRE (2i0)y CHTREE(Z200C,6),CECLIS(20C), ,
2 NCHAN yMXCHANgNCHW9 MXCHWyNOPL ¢MXOPL yNCHT 3 NCHCL ¢yMXCHTy MXCHCL
REAL*8 CHWORD ¢FCHTRELOPLI ST
/FEATCM/
COMMON /FEATCM/ FTNAME MXEXP ¢NBCAT yNBEXP yNRULE,RULE(2,20C )
REAL*8 FINAME (190)
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/CSCM/
CGMMON /C SCM/ ,
1 ANALWESCSLIST(442000)s ANALPTI{SU0) s ANALWP(2000) JANALST(2CGO) ¢
2 TEMPAA(ZLQO).SLCTPT(ZOO,2),ANALTP;SLCTTP,CSFG,CSFRPT,ANALNT
REAL*3 ANALWD{ 2CQ)
JLEXCM/
CCMNMCON/LEXCM/
1 LEXWDoLEXWDS gLEXCS ¢y LEXCSSeLXCPTRyCATLSToNLXCyNLEXyNLEXWoANLEXCS
2NCATL :
REAL%8 LEXWC(500) yCATLST(2C)
INTEGER%2 LEXWCS(3G3) yLEXCSS(30G) yLEXCS{5CL)LXCPTR(100,42C) »
1 ALXC{20 ) g NLEXyNLEXWyNLEXCS¢NCATL
JLINSCM/
CCMMON /L INSCM/
1 SRCHLELISToNSRCHL ¢NELIST
INTEGER*2 SRCHL{2950)sELIST{2¢50) yNSRCHLyNELIST
JTRANCM/ -
CCHMNMCN/ZTRANCM/FTRANCICO) ¢ KEYS(2CO ), TRAN(LUO 7)o KEYPT(1CD)
1 NTRANyNKEYS
REAL*8 FTRANJKEYS
/RTCKEN/
CUMMGON /RTCKEN/OPFGsLTH,TCK( 10)
/SKELCM/
COMMCN/SKELCM/FLISKELy ISKEL, SKLI STsISKELT¢MSKLST
REAL#*8 FI SKEL( 200)
INTEGER#%2 ISKEL(20G)y6)e SKLIST(2C0) o ISKELT ¢MSKLST
JCCNFCM/
CUMMCN /CUONFCM/
L CFVALS(1oh3)




C /CECCM/
CGMMCN /CPCOM/CPBUF,SYTB,TERM

REAL*8 CFBUF(500),SYTEB( 1C0),TERM(32)
COMMON /CPCCM/SYTV(100),STK(1GC)0TOP(20)+0TGPS(50)4CPPTR,SPTR,
1 LVLeSYTN9ZSCAN,SYTL(L1CO)

2 2INT92TRN9ZWRDyZGRN9ZLANGZRANy ZSMI,

3 ILPR,yZRPRyZPER,ZCOLyZAFT+ZBEF,ZCHN,

4 ICC9ZELSyZFALyZFLGy2GO04ZGOTZIF,

5 ZINyZRSLsZRPT4ZSTPsZSUC,ZTST9ZTHN,

€ ITCoLTRC9yZTREYyZUNTy INFNTY

CCMMCN /CPCCM/ FGNyFCVsTRCF9APFGyIFFGyRFG
LOUGICAL*1l FGN(1G30,10),FGVI1GC91C)TRCF(100,5),APFG,IFFG,RFG

C /TRANCN/ |
COMMCN/TRANCM/FTRAN(1G0) 4 KEYS{2C0 ), TRAN(109,7),KEYPT(1CO),

1 NTRANyNKEYS
REAL*& FTRANKSKEYS

C /ANALCM/
CCMMON /ANALCM/ NUMNOD(50,41C)y SKPNOD(200+2) 4 NUMCNT ¢ SKPTCP

1 ANLIST(LCO)y ANWDPT (10009 ANNOCE( 160 )y TTPOSN,yUNDNGD, TOPNOC yRESTNU,
2 TNCyANSKIP(130) ANPREV{1C0) ANPAR(100) 4ANNEX(109)

C /SYNCM/
CCMMCN/SYNCM/ SN T X ¢STAKyCURySCNe SPTyIPToNEQN,
1 TRCFG,OMPFG,RECFG
REAL*8 SNTX(57,8)+CURySCN

INTEGEF*2STAK( 1000 ) ,
LCGICAL*]1 TRCFG+sDMPFGoRECFG
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5. BLOCK DATA SUBPROGRAMS

BLOCK CATA

IMPLICIT INTEGER*2(N) X

COMMCN/CNSTCM/ NBLANKyNLAND oNM INUSyNSLASH,NCENT 4NSTOP _,NLESS

1 NLEFTFoNPLUS yNLOR oNXCLM s NDCLLR,NSTAR ,NRITEP,NSCOLNyNLNOT |,

2 N1211 9NCUMMA,NPERC yNLINE yNGREAT,NQUERY,NCOLGN,NBOQUND,NAT ,
3 NQUOTE,NECUAL,NCQUQT ,

CATA NBLANKy NLAND ¢NMINUS yNSLASH,NCENT 4NSTOP 4NLESS

1 NLEFTPyNPLUS sNLOR oNXCLM ¢NDOLLRyNSTAR ¢NRITEPNSCOLNyNLNOT

2 N1211 ¢+NCCMMAZNPERC yNLINE yNGREAT,NCUERY NCOLONyNBOUNDyNAT |

3 NQULCTE.NEQUAL yNDQUCT
4/10040,2005C0420C060+2006192004A52004B,2004C,20040,2004E,2004F,2Z005A
SeZLUSB42005CZ005D 4 Z0C05E, Z005F ) Z006A, 20068,2006C,2006D42006E 4 2006F
6+ZUCTALZCCTByZO0TC+200T04+2ZCNTELZCOTF/

RETURN '

~END

BLGCK CATA

COMMON /FCSTCM/

1 FBLANKyFLAND FMINUS,FSLASH,FCENT ,FSTOP ,FLESS »FLEFTP,FPLUS

2 FLOR 4FXCLM 4FDOLLRF STAR yFRITEP,FSCOLN,sFLNOT oF 1 2 1 14 FCOMMA,
3 FPERC oFLINE »FGREAT,FQUERY,FCOLON,FBOUND,FAT  ,FQUOTE,FEQUAL,
4 FOGUOT PAGE ,RECORD

REAL*8 «

1 FBLANK,FLAND o FMINUS,FSLASH,FCENT +FSTQOP ¢FLESS »FLEFTP,FPLUS |
2 FLCR  4FXCLM ,FDOLLRyFSTAR sFRITEP,FSCOLNyFLNOT ,F1211 , FCOMMA,
3 FPERC o FLINE yFGREAT,FQUERY yFCOLON,FBOUND+FAT  ,FQUOTE,FEQUAL ,
4 FOCULOT,PAGE RECCRC

DATA

1 FBLANKy F L A N O yFMINUS,FSLASHyFCENT yFSTOP +FLESS +FLEFTPoFPLUS
2 FLOR ¢FXCLM o FDOLLR,FSTAR +FRITEP, FSCOLN,FLNOT ,F1211 , FCOMMA,
3 FPERC +FLINE yFGREAT,FQUERY,FCOLONy FBOUND,FAT  ,FQUOTE,FEQUAL,
4 FOQUOT, PAGE , RECORC
5 /Y VTRVt G 00 0,0 00, (0,040 ,74F40404040404040," * 080
6 l*',l)i,l;l'tql'i O’I’l.’gl,_l_!,')l’l"‘i'C:O’l#l’lal"
7 Z7C4040404C404040, =091, 1P$55$555°,°BS$5$8889/

END

BLOCK CATA .

COMMON /Z/LANKyNXXX9NSS9 NS+ NANDyNORy NANDORyNERROR

REAL*8 LANKyNXXXgNSSe NSy NANC+NOR o NANDOR

INTEGER#2 NERROR

CATA LANKoNXXXyNSS9NS9yNANDyNORy NANDCRyNERRQOR
1/7% "o "XXX0 9958 4°S*,%AND® ¢y*CR®, "ANDCOR?,0/

END
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ELOCK LATA

COMMCON/CHANCM/ CHAN (40046),CHWORL( 100 ) ,0PLIST(50),

1 FCHTRE (2€0)y CHTREE(2CC,6),CHCLIS(20),
2 NCHAN yMXCHANyNCHWy MXCHWy NOPL 9yMXGPL yNCHT 9 NCHCL yMXCHT ¢ MXCHCL 4NCOP
REAL*8 CPLIST/S5HSUBSESHARISE)SHALESE 5HALADE,SHAFIDE,SHARIAE,
1 SHERASE,S5HSUBST,SHADRIS SHADLES,SHADLAD,SHADF IDs5HADRIA,

1 6HSUBSEI6HARISEI 6FALESEI 6FALADEI(6HERASEL,)6HSUBSTI,

1 O6HADRISI,6HADLESI 6HADLADI 6HERASEF ¢SHSAVEF y6HMERGEF,

1 SHMOVEF/

REAL*8 CHWCRC,FCHTRE

INTEGER*2 CHANJCHTREECHCLIS

INTEGER*2 NUGPL/2674NCOP/23/

INTEGER#2 NCHAN/D/ ¢ NCHW/C/ 4 NCHT/0/ 9 NCHCL/O/

INTEGER*2 MXCHAN/40O0/¢MXCHN /1007 4MXCPL/50/ ¢yMXCHT/200/ yMXCHCL/200/
END

-

BLOCK CATA
IMPLICIT INTEGER*2 (A-2)

CCMMGON /CPCOM/ CPBUFy SYTB,TERM

REAL*8 CPBUF (500 )/*'STOP '/ySYTB(100),TERM(32)/
1 *zINT,

'PZTRN. 'y 0ZWRD.  ',PZGRN. < ‘,
2 *> I ’ l'!( l,l' .'l. l,
3 03 ' PAFTER  *,"BEFORE * ‘CHANGE *,'DO ',
4 ‘ELSE * W'FAILURE ', 'FLAG 'y¢G0 ', ¢GOTO '
5 ‘IF Y 'y 'RESULT "4 *RPT ', STOP '.
6 'SCCCESS * o TEST " 4 S THEN ', ¢TO "L 'TRACE ',
7 ‘TREE + "UNTRACE */

COMMGON /CFCCM/ SYTV(ICO),STK(IOO)yOTDP(ZO)'DTOPS(SG) CPPTRy SPTR,
1 LVLySYTN,ZSCAN,SYTL(100),
2 ZINT9ZTRNyZWROyZGRN9ZLAN9ZRANyZSMI |
3 ZLFRy ZRPRy ZPERy ZCOL 9 ZAFTyZBEF9ZCHN,
4 IDG9ZELSHIFALIZFLG+2G042GOT 421F,
S ZIN, ZRSL9ZRPT4ZSTP42ZSUCsZTSTyZTHN,
6 ZTC9ZTRCoyZTREWZUNT 4 INFNTY
INTEGER*2
1 ZINT/1/9 2T BN/2/+ZWRC/3/92ZGRN/4/9ZLAN/S5/9ZRAN/O6/9ISMIV/T/y
2 ZLPR/E/yIRPR/9/+IPER/LO/ 9yZCCL/11/yZAFT/12/ +IBEF/13/42CHN/L1G/,
3 IDC/15/4ZELS/16/4LFAL/1T/432FLG/18/4260/19/42G0T/20/421F/21/,
4 ZIN/22/92ZRSL/23/¢2ZRPT/24/425TP/25/+25UC/26/+12TST/27/+2THN/ 28/,
5 ZTC/2S/742TRC/30/42ZTRE/31/4ZUNT/32/41NFNTY/ 10/
COMMON Z/CPCOM/FGNyFGVy TRCFsAPFGo IFFG4RFG
LOGICAL*1 FGN(100,10),FGV(1CO,10),TRCF(100,5)+4APFG, IFFG,RFG
END
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6. POSSI BLE EXTENSI ONS

There are certain extensions to the Transformational G ammar System

whi ch we have considered, but which have not been inplenented. An

i nform

di scussion is given here of ways in which these extensions

m ght be made. The additions considered are:

A
B.

Rule features

Tr ee- pruni ng

n-ary features
Restrictions on skips

Anal ysis of skips,

6.1 Rul e features

This section discusses the changes which would be necessary to

include rule features. It is inconclusive in not defining where rule

features will appear and where they will be looked for. This is an open

linguistic question, as is the question of the need for rule features

-

|nput of rule features

A rule feature is sinply a transformation name used as a feature

However,

since the |exiconmay be read in before the transformations,

the program cannot recognize rule features as such. The lexicon con-

tains a list of category features, a list of inherent features, and a

list of contextual feature definitions. Any feature which does not

occur in those lists is now assumed by the program to be an inherent

feature,

and a nmessage "WARNING NUMNAM. FEATURE xxx ADDED AS INHERENT"
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is printed, In the table of feature names (FINAME) the entries from
1 to NBCAT are nanmes of category features, and from NBCAT+1 to
NBEXP nanes of inherent features. Names of contextual features are
stored in SLNAME .

To nodify the input to allow for rule features, the use of FTNAVE
woul d be nodified slightly so that the entries from 1 to NBCAT were
category features, the entries from NBCAT+L to NBSPEC were inherent
features given on the list of inherent features in thelexicon, and the
entries from NBSPEC+l to NBEXP were additional feature nanes encoun-
tered in reading the lexicon. At this point the programwoul d not know
if they were inherent features or rule features, so the message above
would be altered to "WARNING NUWNAM FEATURE xxx ADDED AS INHERENT OR
RULE?

After the transformations have been read in, the feature name
tabl e FTNAME coul d be searched from NBSPEC+1 to NBEXP to see which
transformation names occur there. The nunber of the corresponding rule
feature (i.e., the index in FTNAME ) can be stored in TRAN(L,4) .

This colum contained the EMB paraneter until EMB was aboli shed.

Effect of rule features

The possible cases in which rule features can affect the handling
of a transformation are shown in the table on the next page, where 1

indicates apply, 0 don't apply, and .5 apply with probability 0.5 .
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value of rule feature

transformation type + unmarked -
oPC 1.0 0.5 0.0
OBmajor - 1.0 1.0 0.0
OBminor 1.0 0.0 0.0
OPmajor 0.5 0.5 0.0
OPminor 0.5 0.0 0.0

(The use of major and mnor rules is discussed in Lakoff*. The sub-
division of each of these classes into OB and OP seens to be a
natural extension.)

The system now allows OB and OP as the only two optional

classes. The list could easily be extended to the five classes above

by inventing suitable mmenonics.

Testing rule features

Currently no tests are made of features except as they occur
within conplex synbols. The best approach to rule features would seem
to be to wite an integer*2 subroutine FTINC(csno,featno) which
woul d return the value of the feature specification for featno in
conmpl ex synmbol csno . Values are currently represented as 1 for
# and 2 for - . 0 could thus represent the unmarked case. In
testing the structural description of a transformation with a rule

feature, ANTEST could call FTINC to obtain its val ue.

¥Lakoff, G On the Nature of Syntactic Irregularity. NSF-16, The
Conputation Laboratory, Harvard University (1965).
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Where to look for rule features

The difficulty problemin incorporating rule features comes in
deciding where to look for them The follow ng possibilities occur:
(1) look for rule features on every-node used in the analysis,

(2) look for rule features only on nodes corresponding to nunbered
terns,

(3) look for rule features only on nodes corresponding to nunbered
terms with a small subset of special nunbers,

" (4) look for rule features only after encountering some special synbol
in the structural analysis.

Alternative (1)-1is bad because there is the possibility that the rule

feature mght be found nmore than once, with opposite values. Alternative

(2) is bad for this same reason. The linguist nust nunber terns for use

in restrictions and structural change. He mght thus be forced to

nunber two which would have the rule feature with opposite val ues.

Alternative (3) woul d notpresent any real problens, since the nunbers

are otherwise arbitrary (and between 1 and 50). Aternative (4) is

unpl easant because it would require some changes to CXIN .

Lakoff has suggested that the rule feature should be |ooked for
on the main verb. This does not solve our problem since we still need
-to indicate the main verb. However, it does lead us to think that
alternatives (1) and (2) above are too broad,

Note that we cannot require that the rule feature be explicitly
mentioned in the structural description because this would nean that
it must always be present for the transformation to work. This would

be acceptable only for OBminor and OPminor rul es.
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Suppose we were to create a new restriction RUL which would be
true if the node were marked for the rule feature of the current trans-
formation and fal se otherwise. Then the analysis would fail at that
point if the value of FTINC(csno,featno) iS -, but should it then

proceed to look for another analysis?

Wien should rule features be tested

In order that the rule feature test tie in properly with the
repetition parameters ( AC, ACAC, AACC, AAC ) and the optionality
paraneters ( OB, OP ) it would appear that the rule feature should be
tested only af[gr the anal yses have been found. Qtherw se an AC
transformation, for exanple, would go on to find a second analysis,
when the first fails, only because of the rule feature. This problem
needs to be thought about carefully, since it is not clear what is

linguistically correct in the various cases which arise

6.2 Tree-pruning

Sone linguists (notably Ross*) have discussed a notion of tree-
pruning. Tree-pruning is essentially an obligatory transformation
whi ch nmust be applied whenever the structural description is net, and
thus fails to fall into any linear ordering of transformations. Wthin
the systemas it stands tree-pruning could be handled by defining one
or nore tree-pruning transformations, PRUNEl, ..., PRUNEn, and witing

the control program for the transformations so that these transformations

*Ross, J. R. A proposed rule of tree-pruning. Presented to the
Li nguistic Society of America (1965).

6-5




are invoked after every successful application of another transformation.
This is somewhat awkward and it mght be desirable to handle this auto-
matically by an instruction in the control programitself, say TREEPRUN,
whi ch woul d automatically invoke the-tree-pruning transformations after
each change. To do this one would sinply add the new instruction to the
control language, and then incorporate the calls to the tree-pruning
transformations into the TRACE subroutine at the same point that

TRACE. ..AFTER CHANCGE is now tested. This would be nore elegant; it

woul d also be nore time-consuning in execution.

6.3 n-ary features

The recent attention to case in grammars of English mght be best
handl ed by the use of features with nore than 2 values. Fillnore*
has proposed that case be handled within the phrase structure, but
treatment by n-ary features is an alternative which should certainly
be explored. To do this would require sone fairly major changes in the
system both in the input routine for conplex synbols and in the various
tests and changes to conplex synbols. (ne possibility for external
format would be to allow small integers as values in addition to the
+, - and * nowallowed, viz., |+ N3 PREP - HUMAN| . There is
‘no basic reason why this could not be done, but it would take sone tine

to inplement it well.

*Fillmore, C. J. A proposal concerning English prepositions, Georgetown
Monograph Series on Language and Linguistics, 19(1966), pp. 19-3k4.
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6.4 Restrictions on skips

Al though the present syntax for structural analysis for the system
does not allow the nunbering of terms which are skips, the possibility
of doing so might be considered. This would make it possible to test
dom nance and nondom nance restrictions on skips. It is not clear what
equality of skips should mean. The main question here is whether |in-
guistically a skip should be treated as analyzable in any way. The
system of transformational grammar as it now stands is cleaner than
one which would allow this, and we have seen no exanples in which it is
required (although it mght have been used in the definition of
LONESTS ). )

The problem could be handl ed by an integer function
INSKIP*2(SKPPTR,WORD, ITEST) whi ch woul d decide whether there was a
node with the real *8 name WORD in the scope of the skip whose bounds
are in the SKPPTR-th. entry of SKPNOD . |If so, it returns that node's
position in the TREE, if not, it returns O . Wen ITEST = 0, the
entire range is searched. \Wen ITEST # 0, the range beyond node
nunmber ITEST i S searched.

This subroutine could be called by both the restriction tester
(RESTST) and the analysis tester (ANTEST) . For RESTST the call

"would be INSKIP(NUMNOD(N,NUMCNT),word,0) . |f the value is 0, there

is no dom nance; if nonzero, dom nance.

6.5 Anal ysis of skips

The syntax for skips which was originally considered for the

system was:
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Sk p % optlopt[—]opt[&]{clist[structure])]

The interpretation would be that the clist of structures referred to
structures within the range of the skip. & would nean that all nust
be present; = & would mean that none may be present; - would mean
that at least one nust not be present; and no preceding synbol would
mean that at |east one nust be present. For the reasons discussed in
D above we have not felt that this strong a definition was necessary.
To nmake the extension would require changes to the analysis routine,
ANTEST . The subroutine INSKIP described above could be used here.

The call f£rom ANTEST woul d be approxi nately

1=0

a | = |NSKIP(SKPPTR ANALWD( ANLI ST(POSN)), I)
IF (1J3Q0 & TO. .
IF(... ) GOTO «

6-8,




M FIED 23 AucUst 1968
COVPLETE SYNTAX FOR TRANSFORMATI ONAL GRAMMAR

TRANSFORVATI ONAL _GRAMMAR ::= PHRASE STRUCTURE LEXI CON TRANSFORMATIONS $END
T

TREE SPECI FI CATI ON ::= TREE opt[ , clist{ WORD TREE ]}
TREE ::= NODE optl com.mc SYMBOL ] optl[ 1ist[ TREE ]]]
NODE ::= _WORD or SENTENCE SYMBOL or BOUNDARY SYMBOL
SENTENCE . SYMBOL ::= S

BOUND&Y SYMBOL ::= #

STRUCTURAL DESCRIPTION ::= STRUCTURAL ANALYSIS opt[ , WHERE RESTRICTION ] .
STRUCTURAL" ANALYSIS ::= I|st1 TERM J .
TERM tim opt[ INTEGER )] STRUCTURE or opt[ INTEGER ] CHO CE or SKIP

= ELEMENT optl COMPLEX SYMBOL } optl opt[ = ] optl / ]} { STRUCTURAL ANALYSIS )]
m':' "NCODE or * or _ ’
CHOICE .:f (" clist{ STRUCTURAL ANALYSIS |)
SKIP :: .

RESTRI CTI ON ::= booleancombination[ CONDI TI ON |

CONDITION ::= UNARY CONDI TI ON or BI NARY CONDI Tl ON

UNARY CONDI Tl ON ::= UNARY RELATION INTEGER -

BINARY CONDI Tl ON ::= INTEGER Bl NARY TREE RELATI ON NODE DES|I GNATQR or
INTEGER Bl NARY COVPLEX RELATI ON COVPLEX SYMBOL DESI GNATOR

mm: DESIGNATOR ::= INTEGER or NUDE

ﬁ YMBOL DESIGNATOR sl COMPLEX SYMBOL or | NTEGER

UNARY RELATION ::= TRM or NTRM or NUL or NNUL or DIF or NBIF

BINARY TREE RELATION ::= EQ or NEQ or DOM or NDOM or DOMS or NDOMS or DOMBYoOTr

BINARY COMPLEX RELATION ::= INCL or NINCL or INC2 or NINC2 or CSEQ or NCSEQ or
or NNDST or coMP or NCOW

NDOMBY

NDST
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01
.02
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COVPLEX_SYMBOL ::= | list[ FEATURE SPECI FI CATION ] |
FEATURE_SPEC FI CATION ::= VALUE FEATURE

FEATURE ::= CATEGORY FEATURE or | NHERENT FEATURE or CONTEXTUAL FEATURE or RULE FEATURE

CATEGORY FEATURE ::= CATEGORY
CATECORY ::= WORD

| NHERENT FEATURE ::= WORD |

RULE FEATURE ::= TRANSFORMATI ON NANE

CONTEXTUAL FEATURE ::= CONTEXTUAL FEATURE LABEL or CONTEXTUAL FEATURE DESCRI PTI ON
CONTEXTUAL FEATURE DESCRI PTION ::= { STRUCTURE opt[ , WHERE RESTRICTION ])

VALUE: : =+0r -or *

STRUCTURAL CHANGE : : = clist[ CHANGE | NSTRUCTI ON 1

CHANGE | NSTRUCTI ON ::= CHANGE or CONDI TI ONAL CHANGE

CONDITIONAL CHANGE : := IF ( RESTRICTION ) THEN (STRUCTURAL CHANGE )

optl ELSE { STRUCTURAL CHANGE )]
CHANGE ::= UNARYOPERATOR | NTEGER or
TREE DESI GNATOR BI NARY TREE OPERATOR | NTEGER or
COVPLEX SYMBOL DESI GNATOR BI NARY COVPLEX OPERATOR | NTEGER
Or COMPLEX SYMBOL DESI GNATOR TERNARY OOVPLEX OPERATOR | NTEGER | NTEGER
COVPLEX SYMBOL DESI GNATCR . = COWPLEX SYMBOL or [ NTEGER
TREE DESI GNATOR ::= ( TREE ) or INTEGER or NODE

Bl NARYTREE OPERATOR ::= ADLAD or ALADE or ADLADI or ALADEI or ADFID or AFIDE or
ADRIS or ARISE or ADRISI or AR SE1 or ADLES or ~ALESE or ADLESI or ALESEI

or ADRI A or ARl AE or SUBST or SUBSE or SUBSTI or SUBSEI
Bl NARY COVPLEX OPERATCOR ::= ERASEF or MERGEF or SAVEF
UNARY OPERATOR ::= ERASE or ERASE1
TERNARY COMPLEX OPERATOR ::= MOVEF
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9.05
9.06
9.07
9.08
9.09
-9.10
9.11

E

t:= PHRASESTRUCTURE list¢ PHRASE STRUCTURE RULE 2 $EWD
ASE STRUCTURE ::= RULE LEFT = RULE RIGHT .

RULEL EFTz::=N

i

RULF RIGHT s:=} or | istfRULE RIGHT 20 f(list€ RULE RIGHT 2 ) o r{(c | istfRULE RIGHT ? )

LEX CON ::= LEXICONPRELEXICON LEXICAL ENTRIES $END
PRELEX1CON ::= FEATURE DEFI NITIONS opt{ RE

EEA URE " DEEITIONS =+ _ATEGORY DEFINIUIONS
CATEGORY DEFINITIOAS : :

J1HHERENT DEFINITIONS

= CATEGORY 1istC¢ CATEGORYFEATURE ».
= [NHERENT listf INHERENTFEATUREY.

QQNW':= CONTEXTUAL clistf C GITEXTUALDEFINITION ?

CON EXTUAI N1T1Qn::= CONTEXTUAL FEATURE LABEL= CONTEXTUAL FEATURF DESCRIPTION
COH EXTUAL FEATURE LABEL : :=HORD

REMDANLY_BHLE.S.H'R ULE SCllSt_B:..IlU.t{QAHLLRLLLE)

REDUHOANCY RULE ::= COMPLEX SYM3OL = 4

LEXICAL ENTRIES ::= ENTRIES list¢ LgxngAL ENTRY_ 2.

LEXICAL EWTRY ::= list€ VOCABULARY WORD » listf COMPLEX SYMBOL 2

YOCABULARY WQRD ::= WORD

IRANSFORMAT | QYS : := TRANSFORMATIONS 1 st IRANSFORMATION Y CP CONTROL PROGRAM . $END
IRA i ::= TRAHRS IDENTIFICATION SD STRUCTURAL DESCRIPTIONH optf SC

PARALETER ::3= GROYP _NUMBER or QPT|OfALITY OR
4 =} or It or {11} or IV or v or, VI or VIl
ONALITY ::=0 B o rOP

REPETITION :2=A C orA C A CoraACCor AAC
KEYWORDS ::= (1 i s t f HODE ¥
CONTROL PROGRAM ::=sclistf optfLABEL : > INSTRUCTION 2
LABEL ::= HORD
—STRUCTION :c=RPT I NS TRUCTION or JiSTRSTRUCTION o rIFINSTRUCTION

o r G_OLlHNSTRUCTECiH o r TRACE INSTRUCT {Oido r STOP | NSTRUCT |ON

or I INSTIRUCTION or <sclist€ INSTRUCTION » >
L_LUSTRUCTIQN : := TRANSFORI iATO? ° LKUGE GROMB H'MBER
RPITIHSTRUCTEION ::= RPT opt¢ i< CONTROD PROGRAL >
NIJASTRUCTIO N::=| N TRANSFORIAT | ON NAHME (INTEGER)D O < CONTRO! PROGRAK >

| F INSTRUCT 10N ::=1{F WHEIJWN(E L S EGOINSTRUCTION ?
Gu INSTRUCTION ::=G O
IR NSTRUCTION s:=T R A CE TINSTRUCTIONT R A C E SPECIFICATION or UWTRACE T INSTRUCTIONO O r
IRACE SPECIFICATION ::=BEFORE TEST or AFTER FAILURE or AFTERSUCCESS or AFTER CHANGE
SIOPINSTRUCTION::=STOP

HSFORMATION STRUCTURAL _CHANGE
IDE [TIFICATION : := opt¢ INTEGER Y TRANSFORMAT | OR HAKE opt¢ 1 i st¢ PARAMETER. ¥> opt{ KEYWORDS ¥ .
REPETITION

ODt( J.HH.UHE&).E.E_L!J_UM. ? optf CONTEXTUA] DEFINITIONS 2

.2
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