
PROGRAMMER’S MANUAL
* FOR

A COMPUTER SYSTEM FOR TR-ANSFORMATIONAL GRAMMAR

bY

--.

Joyce Friedman
Thomas H. Bredt
Robert W. Doran

Theodore S. Martner
Bary W. Pollack

This research was supported in part by the United
States Air Force Electronic Systems Division, under
Contract F196828-C-0035.

STANFORD UNIVERS ITY COMPUTER SCIENCE DEPARTMENT

COMPUTATIONAL LINGUISTICS PROJECT

AUGUST 1968

AF - 36

cs - 115

PROGRAMMERS MANUAL

FOR

A COMPUTER SYSTEM FOR TRANSFORMATIONAL GRAMMAR

bY

--. Joyce Friedman*

Thomas H. Bred-t;
jtjt

Robert W. Doran

Theodore S. Martner

Bary W. Pollack

*
Present-address: Computer and Communication Sciences Department

The University of Michigan, Ann Arbor, Michigan
*

Present address: Department of Mathematics
City University) London, ENGLAND

, ‘I

*..

Abstract

This volume provides programming notes on

a computer system for transformational grammar.

The important ideas of the system have been--.

presented in a series of reports which are listed

in Appendix B; this document is the description

of the system as a program. It is intended for

programmers who might wish to maintain, modify

or extend the system.

PROGRAMMING CREDIT

The principal programmers for each set of programs are listed below.

MAIN - Friedman and Martner

Free-field input/output - Doran

Trees - Doran and Friedman

Grammar input - Bredt, Doran (PSGINN), Friedman
I.

Phrase-structure generation - Bredt, Friedman, John H. Gilman,
Alan C. Tucker

Lexical insertion - Bredt

Analysis - Doran and Friedman (CXIN), and Martner (ANTEST - replacing
an early version by Doran)

Restrictions - Pollack

Structural change - Bredt, Friedman, Barbara Jackson

Complex symbol operations - Friedman

Control program - Pollack

ii

. . .
s-

‘,

Table of Contents

1. Introduction .

Page

l-l

2. Subroutine Structure%. 2-1

2.1 Main program

2.2 Free field input-output

2.3 Trees .

2.4 Grammar input

2.5 Phrase structure generation

2.6 Lexical insertion

2.7 Analysis .

2.8 Restrictions

2.9 Structural change

2.10 Complex symbol operations

2.11 Control program

30 Subroutine Descriptions . . . o , . . , . 3-l

3.1 Main program

3*2 Free field input-output

3.3 Trees .

3.4 Grammar input

3.5 Phrase structure generation

3.6 Lexical insertion

3.7 Analysis .

3.8 Restrictions

3.9 Structural change

. 3.10 Complex symbol operations

3.11 Control program

4. COMMONBlocks , . . . 4-l

5. BLOCK DATA Subprograms 5-l

2-l

2-l

2-2

2-2

2-3

2-3
2-4'

2-5
2-6

2-6

2-7

3.1-l

3.2-l

3-3-1
3.4-l

3@5-1

3.6-1

3.7-l
3.8-i

3.9-l
3.10-l

3.11-l

iii

Table of Contents (Continued)

6. Possible Extensions 6-1

6.1 Rule features :. 6-1

6.2 Tree pruning 6-5

6.3 n-ary features 6-6

6.4 Restrictions on skips . . . , . . . , 6-7

6.5 Analysis of skips 6-7

Appendices

A* Formal Syntax for Transformational Grammar A-l

B. Reports on the Computer Svstem for Transformational
Grammar e .* a es . .." . ..* .,.. . B-l

iv

Table of Figures

Page

1.1

3.391

3.302
3.4.1

3.4.2

3*4*3
3.4.4

.-3*7*J-

3.702
3.8.1

3.8.2

3.803
3.8.4

3.805
3.8.6

3*8-7
3.8.8

3.8-9
3.8.10

3a9*1
- 3.11.1

3.11-2

3?lL3

3ill.4

3011.5

Schematic Program Structure l-2

Example of Printed Tree Output" 3-3-5
Listing of Punched Tree Output 3.3-6
Macro-Flow Diagram of Expansion, Order 3.4-5
Initialize 3.4-8
Sburoutines Called by TRANIN 3.4-29
Storage of Transformations 3.4-32
Finding a Structural Analysis and Restriction

Pointer

Sample Use of ANNEX and ANPAR

Syntax of. Restrictions . l

Table of Allowable Arguments a . . .

Subprogram Call/Result Table

COMMON Blocks for Restrictions

SampleRun .

Truth Tables for RESTST

RESTST: Table of Arguments and Results

RESTUN: Table of Arguments and Results . . . l o .

RESTPR: Sample Output

Definition of Relations

Storage for Structural Changes

CPCOM, SYNCM

Block Data Statements

3-7-9
3.7-12

3.8-10

3.8-11

3.8-12

3.8-13

3.8-14

3.8-17

3.8-18

3.8-19

3.8-20

3.8-22

3*9-4
3.11-24

3.11-25
Stack . 3.11-27
Terminal Symbols 3.11-28
Syntax for SYNCHK. 3.11-29

1. INTRODUCTION

This Manual is written by and for programmers. Its purpose is to

make the code of the computer system for transformational grammar more

readily understandable to programmers who wish to maintain and use the

system, or to modify and extend it. Section 2 is a short outline of

the subroutine structure of the system. It is followed in Section 3 by

more detailed descriptions of the subroutines. Sections 4 and 5 are

listings of the COMMON blocks and BLOCK DATA statements, respectively.

Section 6 discusses possible extensions to the system.

The programs are written in FORTRAN IV for the IBM 360/67 compiled

under FoRTRAN H, OPT=2, under O.S. There are approximately 9000 lines

of FORTRAN code; the compiled code, with storage areas, requires ap-

proximately 300,000 bytes of storage.

The inputs to the system consist of

1. a grammar (described by the formal syntax of AF-24*)

2. a one-line driver for the MAIN program (see Section 2.1)

3. input trees or skeletons (see 2.3 and 2.5).

Extended examples are given in AF-33 (~~-108).

A simplified schematic diagram of Y-z basic structure of the system

is given in Figure 1.1. Arrows go from calling routine to called sub-

routine.

* References on the system are listed in Appendix B below.

l-l

&
H

e

E

Programming Conventions

Tnput/Output

Almost all of the input to the system is handled by the free-field

input/output package (FREEIO). The O&T

ternative fixed-field tree input format.

c

is handled by FREEIO, with exceptions in

debugging output and fixed-field trees.

.
Error messages

exception to this is the al-

Likewise, most of the output

certain cases of tabular

A uniform convention for error messages is used throughout the

system. The standard form is
--.

ERROR. Subroutine name. Message

Messages of the form

WARNING. Subroutine name. Message

are occasionally issued when a strong possibility of error exists, but

an internal correction has been made.

Output files

System output is written on several different logical units. The

minimum output for a standard run is placed on unit 6. Unit 7 contains

additional general output useful for a more detailed study of the run.

Units 8, 9 and 10 contain output for programmers concerned with

ANALYSIS, RESTRICTIONS, and CONTROL, respectively.

l-3

.

r

2. SUBROUTINE STRUCTURE

In this section we list the subroutines of the system. For each
. .

subroutine a brief discussion is given of its role. Further discussion

of each subroutine is given in the corresponding parts of Section 3.

2.1 Main program

'Routine Type Role

MAIN main MAIN reads the directions for the
current run. The input is in the form

2.2 Free field input-output

Routines

Entries

mD(#NE > R*8

INITLZ

- FR~UT(ISTART,Ll,...,L6) SR

K$UTWD(W@D,LEXGTH) R*8
f

EXPND(KTS,Wj?kD
LENGTH)

KEY@JT

LNG@JT

/ CNSTCM/

/FCSTCM/

Type Role

Free-field read. Returns a word or
special character.

Initializes FRFAD, @UTWD and /MAINCM/ .

Free-field output of KSUMP from ISTART
on.

Returns an abbreviated word to FRFAD

Expands an abbreviated word to a
long word.

Puts abbreviated words into KSUMP.

Outputs table of abbreviated words
and long words.

INTEGER*2 constants.

REAL*8 constants

2-l

2.3 Trees

Routine

TRIN

Entries
Type Role

Sii Inputs fixed-field tree

TROUT(NQl,NQ2) SR Outputs TREE starting at node NQl .
If NQ2 = -1, outputs the number
for each node.

//Z Short, miscellaneous block data,
includes NS, NERROR.

- FTRI(ARG) 1*2 Calls FTRIN with arguments for
input to TREE if ARG = 1, or
for addition to CHTREE if ARG = 2 .

FTRIN(FTREE,T_REE,CLIST,
MTREE,MCLIST,KA,KB,
ISTART,FWORD)

I++2 Inputs free-field tree. Returns
pointer to root of tree.

FTROUT(TOP,PJ) SR Free-field output of subtree
headed by TOP. PJ = 1 punches
output.

2.4 Grammar input

Routine Type Role

Entries

. INIT SR Initializes everything.

GRAMIN SR Reads in the phrase structure,
lexicon and transformations.

1 PSGINN SR Inputs phrase structure rules.
Expands, orders, and stores them.

PSGSMP

PSGOUT

LEXIN

PRELEX

Puts expanded phrase structure
rules into KSUMP.

SR Outputs tables of the phrase
structure rules.

SR Reads in a lexicon - calls PRELEX.

SR Reads in the prelexicon.

2-2

2,k Grammar input (continued)

Routine Type Role

Entries .

NUMNAM(FWORD,ARG)
NAMEIN(FWORD,ARG)

I"2 Returns the number for the feature. .
WORD. Stores WORD as the name of
the contextual feature with the
number ARG.

LEXSMP

LEXOUT

-TRANIN SR Reads in the transformations.

TRANj!kJ Outputs the table of transformations.

2.5 Phrase structure generation

Routine

Entries

GEN

IFIND(M,N)

IAFIND(1)

NSRCH(N)

2.6 Lexical insert ion

Routine

Entries

LEXINS

SR

Type

SR

1*2

R*8

1*2

Type

SR

2-3

Copies the lexicon into KSUMP.

Outputs the internal tables for the
lexicon.

Role

Generates a directed random tree,

Subroutine for GEN. Returns 1,
0, -1 if M must, may, or cannot
dominate N . IFIND(N,N)=l .

Called by IFIND. Returns I, if
I is a terminal symbol. Otherwise,
returns position of first rule which
expands I .

Called by IFIND. Returns position
of last rule which introduces sym-
bol N, 0 if none.

Does lexical insertion.

2.6 Lexical insertion (continued)

Routine

Entries

LSRCH(CATN#,N#DE,Wj&D,TCS)

TSRCH(CAT,N$DE)

-

CSTEST(N$DE,M,N) I"2

SIDEFF(NODE,N)

CSC@P(M,N,IND)

.
2.7 Analysis

Type

SR

1*2

Routine Type
Entries--WC -I-* . -.. .

. CXIN(KDUMMY) I"2

SLFEAT(KDUMMY) 1*2

ANALIN(KDUMMY) 1*2

ANA@U(I)

Role

Finds entry of category CAT@
suitable for insertion at N@DE
which has complex symbol TCS and
W$RD (if non-blank).

Searches tree for lexical category
(CAT) - returns node number in @DE.
Returns N$DE = 0 if there are
none. Keep calling, TSRCH keeps
searching.

Returns number of compatible complex
symbol if complex symbol N is suit-
able for insertion at N@DE which
already has complex symbol M .

Does side-effects for each contextual
feature in complex symbol N .

Compatibility test for :omple;x symbols.
If M or N > 0 they are node num-
bers. If M or N C 0, they r -(
complex symbol numbers, If INT! - i.,
use nondistinctness test. If IND = 2,
use inclusion-l test, If IND = 3
return pointer to compatible complex
symbol found for node M o

Role

Reads in a complex symbol and returns
its number. If KDUMMY = 1, the
complex symbol is first expanded by
the redundancy rules.

Reads in a contextual feature and
returns its number.

Reads in a structural analysis and
returns its number.

Writes out the internal representa-
tion of structural analysis I.

2-4

2.7 Analysis (continued)

Routine

cssuMP

Entries
Type Role

.. Copies a complex symbol into KSUMP.

CSOUT Outputs the interval tables for
complex symbols.

,

ANTEST(TRANN~,TREETP,ANAIJ'@) L"1 Evaluates the structual description
of transformation TRANN@ or the
structural analysis ANALN# in the
subtree headed by TREETP.

--ANRTES(Pj&N) L*l Tests restrictions on the node as-
signed to P@N. If P@SN > 0,
test complex symbol also.

ANRUNS(P@SN) SH--. Unsets restrictions on node P$SN.
Also sets NUMNj6D and ANN@DE to Z~!FO~

NEXT(HERE,T#P,SIGN) SR Resets HERE to the next node after
HERE.

2.8 Restrictions

Routine

Entries
Type Role

RESTIN($NE) 1*2 Reads restriction . or
restriction > ; returns its number.

- RESTST(I,P@SN) L*l Tests and sets restriction designa-
ted by I or CREST. If P@SN = 0
resets the restriction first.

RESTUN(I,P#SN)
.

RESTPR(1)

GT@KEN(SYM)

SR

SR

SR

Unsets restriction I a If
P$SN = 0, sets CREST = I and
completely resets restriction I .

Outputs tables for restriction I .
I = 0 outputs all.

Returns a token, i.e.,, a logical
operator or condition.

/RESTCM/ Constants and storage.

2-5

2.9 Structual change

Routine

CHANIN

Entries
Type Role

I*2 . . Reads a structural change and returns
a pointer to it.

CHANTY Tidies up after all changes read,

CHAN$U Outputs the table of structural
change.

ERASE(NQ2)
SUBSE(NQl,NQ2)
ALADE(NQl,NQ2)j.
AF=JDE(NQl,NQ2)"‘
ARIAE(NQl,NQ2)
ALESE(NQlJVQ2)
ARISE(NQl,NQ2)
SUBST(NQl,NQ2)
ADRIS(NQl,NQ2)
ADLES(NQl,NQ2)
ADLAD(NQl,NQ2)
ADRIA(NQl,NQ2)
ADFID(NQl,NQ2)

SR Applies operator NW$RD to arguments
N&l, N&2 .

Entries for specific changes. IBM
operations are also done by EL&P,
but do not have individual entries.

CHANGE(ID,CNRNUM) SR Performs the structural change of
transformation ID using the
CNRNUM-th analysis found by ANTEST.

e 2.10 Complex symbol operations

Routine Type Role

Entries

R$DRUL(M) 1*2 Returns the number of the complex
symbol obtained on expansion of
complex symbol M using the redun-
dancy rules.

CS@P(TYPE,A,N,M) 1*2 If TYPE = 1 returns pointer to new
complex symbol created by doing
operation A on complex symbols N
and M . If TYPE= 2 returns value
of test A on complex symbols N, M ,

2-6

2,lC Complex symbol operations (continued)

Routine Type Role

Entries,

CSEXCH(N,M) I*2 . . Sets up calls to tests and operations
in C@P.

CSEQ(N,M)
tCSINCl(N,M)
CXINCl(N,M)

CSINC2(N,M)
CSNDST(N,M)

[CSMERG(N,M)
MERGEl(N,M)

CSMERR(N,M)
CSERAS(N,M)
CSSAVE(N,M)--.

2.11 Control program

Routine

CPIN

Entries

C@NTRL SR

SCAN(DMY)

e SCANl(DMY)

TRACE(TN@,TIM,ANF@

TAPPLY

APPLYl(TN$)

APPLY(TN$)

OUTTRN

Type

SR

1*2

1*2

SR

SR

SR

SR

SR

Role

Inputs a control program. Check
syntax.

Interprets the control program.

Inputs next symbol and generates
token.

Inputs next symbol and generates
token.

Generates TRACE output,

Invokes a transformation.

For IN-transformations,

General

Outputs the list of tranformations
which have applied.

APPLYI(TN$) SR When inside an IN construct.

2-7

2.11 Control program (continued)

Routine

SYNCHK

Entries
Type Role

IJ*1 . Checks syntax of the control program.

RECOG L-n1 Generates token and recognizes
symbols.

APPLYG(GN#) SR Invokes transformations of group
GNfl.

/cww Storage.

-/SYNCM/ Storage.

2-8

3* SQROUTINE DESCRIPTIONS

In this section we describe individually each subroutine of the

system. The reader will immediately notice that the level of detail in

the program descriptions varies greatly. In general, where the program-

ming is straight-forward we have simply described inputs, internal

r storage, and outputs, On the other hand, when more complicated algorithms
II

are involved we have gone into considerable detail in order to try to

make the programs easy to follow.

--.

3-l

3.1 Main program

The subroutines.of the system may be combined in various ways by

changing the main program (MAIN) . The current main program is given

below. It accepts an input in the form

$MAINE~~N)((n)CG~))(T~N) ,

The program first reads in a grammar. Then a tree is read by TRIN

or FTRIN . The integer n controls the number of times this tree
--.

will then be used. If GEN is specified, the input is treated as a

skeleton to be expanded by the generation routine GEN (which then

calls the lexical insertion program (LEXINS)) . If LEX is q>ecified,

the input is assumed to be a complete phrase structure tree and lexical

insertion is called directly. If TRAN is specified, the transforma-

tions will then be applied.

After n (or 1 if n is not specified) iterations a new tree

is input. The program terminates when there are no more inputs.

3.1-l

3.1-2

,

302 Free field input-outp$ut

A full description of the fred-field input/output subroutine

package is given by R. W. Doran in AF-14 (C&79) to which the reader

is referred. These programs are independent subroutines and may be

used outside of the present system.

3.2-l

3.3 Trees

COMMON/TREECM/FTREE,TREE,CLIST,MTREE,MCLIST
REAL*8 FTREE(400) - - - .
INTEGER*2 TREE(400,6), cmT(4oo)‘; MTREE,MCLIST

Example

?TREE TREE CLIST

i +F. . . [3-HVVAN

col. 2 3 4 6

0

1

5
1

1

2

3

5

MTREE=8

1 3 0

5 5 0
6 6 o

0 0 0

8 9 0
0 0 0

0 0 10

0 0 0

-

1

2

3
4

5
6

7
8

9

MCLIST=g

2

5
4

6

7

3

8

3*3-l

Discussion

FTREE is a list of the labels of the nodes of the tree. The numbering

of the nodes is arbitrary except that the root of the tree is always node 1.

TREE is a six-column array parallel to @TREE. Columns 1 and 5 are used

for work-space. Col. 2 is a pointer to the parent of the node (0 for the

root). Cal. 6 is a pointer to the complex symbol attached to the node (in

CSLIST), or 0 if none. Notice that the format thus allows complex sym-

bols to be attached to any node of the tree. Columns 3 and 4 point to the

first and last positions in CLIST which contain the daughters of the node,

CLIST gives the daughters in left-to-right order. MTREE is the current

--.
length of FTREE and TREE; MCLIST is the current length of CLIST.

The format is a compromise between case of search and ease of change.

The list of node names in FTREE allows a quick search for a particular

node name. The entries in TREE and FTREE need not be contiguous and CLIST

likewise can be expanded without recompression. (The example shows CLIST

as it might look after

The COMMON block

common block /CHANCM/
.

to FTREE, TREE, CLIST,

_ I/Z
.

various changes have taken place).

/SKELCM/ is structured like /TREECM/ ; in the

FCHTRE, CHTREE, CHCLIS, NCHT, NCHCL correspond

MTREE and MCLIST .

Block data /Z/ contains a few miscellaneous parameters used in

the system. The most important of these are NSS and NS which both

continue the sentence symbol 'S' and NERROR which can be used to

communicate an error condition. Some of the other parameters in /Z//

are no longer used.

3*3-z

External formats

The system has both fixed field and free field external representa-

tions for trees. TRIN and TROUT are the fixed field input and output

routines; FTRIN and FTROUT are the--corresponding free field routines.

TRIN and TROUT, fixed-field tree I/O

TRIN and TROUT(I,J)

format described above.

. readily punched. output

input and output trees to and from the internal

The external format is immediately readable and

may be printed or punched and may begin at any

selected node of the tree. A substitution feature allows subtrees to be

treated separately.
-b.

Figure 3.3.1 gives an example of the printed output of TROUT(l,O) .

Figure 3.3.2 is a listing of cards produced by TROUT(l,l) . The input

to TRIN is the same as the output of TROUT(l,l) .

Basic external format

The basic format is a representation in which the daughters of a

node in field L appear in field L+1 . The first (left-most) daughter

is in the same card as its parent. Daughters to the right appear on

a
lower cards. Thus

A B C

.
D E F

G

H

3* 3-3

represents the tree

Substitution feature

A potential difficulty in the basic format is that the depth of a

tree may exceed the maximum number of fields allowed. A substitution

feature avoids this by replace?:: I-' . :- c'!;r~y node by a subtree. This--.

is indicated by the use of a substitution card with XXX in the first

field and the dummy node in the second. Thus, the input cards

EXAMPLE

A B C

D E F

G

H
.

-XXX G

S B C

D

(blank)

represent the tree

. . .

BASE 25 I S T H E A U T O T H E C O N V E Y A N C E T H A T T H E H O R SE CJAS A T T H A T T I M E
ss +

S PRE Q
N P OET ART T H E

P S A R
NCM N C T
SG
T N S P R E S

N
N U

AbX A U X A
V P BE

PREO

+ TbE AOM
T H A T NBR ACM N C T

N P O E T

N
NU
s s

NCT SG *
SG AT

AOM

A R T T H E
P S A R

NCM N C T
SG
+
S N P

AUX
V P

AOM

O E T ART

N
N U
A U X A
BE
P R E O

NCM
SG
T N S

N P

T I M TM

P R E S B E
T H A T NBR

T H E
AOM

AOM
T I M E

(I

T H E
P S A R A O M
N C T

P S T

O E T

N
NU
A T
N P I

N C T
SG

A R T OEM WH
T H A T
NBR

P S A R A O M
NCM N C T
SG

O E T A R T OEM T H A T
NBR

P S A R A O M
T I M E
NU SG

SG +
+ +

T H E AOM NCT SG PST BE

Figure 3.3.1 Example of Printed Tree Output

BASE 25 IS THE AUTO THE
ss +

s PRE
NP

AUX
VP

. .
0
DLT ART

N NW
NU SG
AUXA TNS
BE
PREO NP

OET ART

AUX
VP

N NCM
NU SG
AUXA T N S
8E -
PREO NP

TIH TM

FIGURE 3.3.2

-CW’EYANCE THAT THE HORSE WAS AT THAT TIME

THE
FSAR ADM
hCT

PRES

DE1 ART THE
PSAR AOM !

h NCM WT
hU SG
SUB0 1

THE
PSAR AOM
MT

PST

OET ART

N NCH
NU SG
AT
NPI OET

fiC1E
NU

DEH UH
THAT
N8R

PSAR AOM
NCT

,

ART OEM THAT
NBR

PSAR ADM

SG

BLANK

LISTING OF PUNCHED TREE OUTPUT

The only restriction on the use of the substitution feature on input

is that a unique name be given to the dummy node for which the subtree

is to be substituted. Substitution will be made only for the first occur-

rence of that name.

In output, substitution is made for all occurrences of the sentence

symbol which occur at or beyond the field MAXSS . Thus, MAXSS should '

be set, on the basis of the grammars being processed, so that the maximum1

depth of a kernel tr:e does not exceed MAXJ - MAXSS, where MAXJ is

the number of fields. If MAXSS is set too high to avoid overflow,

substitution will be made for the rightmost field. For the MITRE

Junior grammar the values of MAXSS = 5 and 13, for punch and print

' respectively, are acceptable for all but a few trees.

Alternative formats

Jane Robinson's PARSE program* uses an output format for binary

trees in which the first daughter appears to the right and the second

daughter, if any, appears below. Robinson's trees contain numbers asso-

ciated with each node and the lines of the tree are put in. A simple

e example is the tree

RlO

I’\
WHY R20

l
\

u 2 GO

DIAE

* J. Robinson, Preliminary codes and rules for the automatic parsing
of English, RAND RM-3339.PR, 1962.

3*3-7

which is output as

F. Blair* uses an input form which is inverse to ours since the

rightmost daughter occurs on the highest card. His input is free field

except that all daughters of a given node must begin in the same column.

As an example, the tree

1108
RIO
*
*

lW
R2Q.
*
*
*
*
*
*
1001
GO

-S-H* 0130
WHY

*a-** 93rl
U52
*
*
2005
HE

can be input as

A B

R

G E D

C D

E

E

F G

S

T

* D. Lieberman, Design of a grammar tester, and F. Blair, Programming of
the grammar tester, in D, Lieberman, Ed. Specification and Utilization
of a Transformational Grammar, AFCRL-66-2‘70, 1966.

*

3.3-8

This limited use of free field seems to us to be no easier to punch

than fixed field. Its major advantage is that, since his program is in

LISP, atoms.of arbitrary length can be used. Blair's output is the

standard LISP S-expression form.
. .

Discussion of the format

The printed version of this format is easy to read; it seems to us

at least as intuitive as the alternatives discussed above. It is not

-hard to punch an input tree directly from the graphic representation,

although it may be easier to use coding sheets.

Corrections and modifications to a tree are very simple to make.
--.

An interesting by-product of the form is that a small set of card

types can be used to obtain all the trees possible within a given gram-

mar. For the IBM Core Grammar* a set of 42 basic card types wouid

suffice to give all the possible kernel trees. About ten additional

card types would suffice to take advantage of the substitution feature

for embedded sub-trees. Additional punching would be required only for

input of lexical items.

a

TROUT

Output of trees is controlled by the two parameters of TROUT(I,J) .

The first parameter controls the starting point of the output. If I=1

the entire tree will be output, preceded by its title and followed by
.

the terminal string. If I is not 1, the sub-tree headed by node

number I will be output. This feature can be useful in testing trans-

formations, with I set in turn to each of the nodes of the proper

*P. Rosenbaum and D. Lochak, The IBM Core Grammar of English, Ibid.

3.3-Y

analysis. If I is negative, an error indication is given; if 0,

$NIL is output; if greater than MTREE, it is reset to 1 .

The parameter J controls the punch option and numbering. If
. .

J = 0 the tree is printed only; if J = 1 it is printed and punched

offline; if J = -1 each node name will be preceded by the node number.

The parameters are protected so that the call is essentially by

value.

-- TRIN

For input by TRIN the tree must be preceded by a title card. The

first card must have a node in field I . The format is 1.2~6 . The

tree is terminated by a blank card. .

Conversion of decks

Conversion to this format of trees in another format is simple.

They can be read in by the old input routine and then punched out by

TROUT(l,l) . The output deck is ready for input to TRIN .

Error checks

* If TROUT is called with I negative, an error (301) results,

In TRIN error 210 occurs when the dummy node for which a substitu-

tilon is to be made cannot be found in the tree. A final check on the

input tree detects trees in which the root is not the sentence symbol

(error YO), or which have multiple roots (error 93). Otherwise the

routine assumes that the input tree is good. It is therefore recommended

that TRIN be immediately followed by a call to a checking routine to

verify that the tree is in fact a correct tree of its grammar.

3.3-10

The programs are set up for 6-character words. If 8-character

words are desired, the format statements, as well as the values of MAXSS

and MAXJ must be changed. In the case of a-character words, it would

be desirable to use the full 8&column~card, so the format statements

must be changed accordingly. The word BLANK can then no longer be writ-

ten on the final blank card as it is in the 72-column version of TROUT(l,l),

FTRIN, FTRI, and FlYROUT., free-field tree I/O

. . Free-field tree inputs are primarily used to read into /TREECM/

and /CHANCM/ . To avoid the necessity for specifying all the parameters

in these cases, FTRI can be used. FTRI(l) calls FTRIN with the-..

correct parameters for reading a tree into /TREECM/ . FTRI(2) calls

FTRIN to add a tree to CHTREE in /CHANCM/ .

FTRIN(F'TREE, TREE, CLIST, MTREE, KA, KB, ISTART, FWORD) reads a

free-field tree into a block strutured like /TREECM/ in which KA is

the maximum size of FTREE and TREE, and KB the size of CLIST e

If ISTART = 0, an entire tree will be read, if ISTART = 1, IWORD

will be taken as the root of the tree.

a In the FTRIN code a single subtree is stored using a recursive

algorithm with a pushdown. KNPUSH(1) contains a pointer to the parent

of the Ith level of the subtree in array TREE and the daughters of

this parent so far found are from MPUSH(KMPUSH(1)) to MPUSH(KMPUSH(I+l)-1).

The recursion is depth first and whenever it is known that all the daughters

of a given node have been found they are dumped into CLIST . Substitution

is done by finding the node to be substituted for (pointers to terminal

nodes are stored in NODES(50)) and then initializing the pushdown by

retrieving the left sisters_of the substituted node and placing them on

3*3-11

the pushdown. The substituted sub-tree is then expanded until a period

or comma is encountered whence the right most sisters of the substituted

node are retrieved from CLIST and then all of the new list of daughters

stored back in CLIST . This causes waste space in CLIST and TREE,

but there is no waste space if there is no substitution.

FTROUT(TOP,PJ) outputs the subtree of TREE which has root TOP . ‘

'PJ = 1 causes it to also punch the output. The code for FTROUT is a

very simple recursion. KMPUSH(1) tells us where in TREE the Ith. .

level of the tree is and. KNPUSH(1) points to the daughter of KMPUSH(1)

in CLIST with which we are dealing.
--.

3.342

3.4 Grammar input

This section discusses the input routines for grammars and for the

three components of a grammar.

-.

INIT, initialization

Subroutine INIT initializes everything in the system, including

the free-field input routine. It is called by GRAMIN .

GRAMIN, grammar input

GRAMIN first initializes the system by calling INIT and then

reads in a grammar, Since each of the major components begins with an

identifying word-and ends with $END, GRAMIN is able to read either

a full grammar or just one or two components. GRAMIN returns when it

encounters the order $ which ends the grammar, leaving the order

itself to be read by the MAIN program.

from

rule.

.

PSGINN, phrase structure grammar input

PSGINN reads compactly written context-free phrase structure rules

the input stream, expands and orders them and stores them in the

storage area /PSGCM/ .,

Storage of phrase structure rules--llllllll

COMMON/PSGCM/NSGAl, NSGC, NSGA2, NSGR, m, m, KC *
RRAL*~ NSGA1(200), NSGC(2000)
INTEGER*? NSGA2(200), NSGB(300), m, m, KC

Example

Input

S =NPAUXW.
AUX = ((NEG, AFF))(ADV)TNS.

3.4-l

Expanded form

S =NPAUXVP.
AUX = TNS,

NEG TNS,
NEG ADV TNS, --
ADV TNS,
AFF TNS,
AFF ADV TNS,

Internal form

NSGAl NSGA2

s-.

AUX

n

6

7
8

NSGB 1 NSGC-

7
8

9
10

11

12

13
14

15

16

17
L

KC = 17

NP

A";'ux

VP

TNS

NEG

TNS

NEG

ADV

TNS

ADV

TNS

AFF

TNS

AFF

ADV

TNS

n

3.4-2

Discussion of internal form

NSGAl contains left-hand sides of rules.

NSGC contains right-hand sides of the (expanded) subrules,

NSGB(j)
. .

contains a pointer to the position in NSGC of the first
word of the jth subrule.

NSGA2(i) contains a pointer to the position in NSGB which points
to the beginning of the first subrule of rule i .

KA is the current length of NSGAl and NSGA2

= number of rules + 1

Kl3

KC

is the current length of NSGB

= number of subrules + 1

is -the current length of NSGC

= total number of words on RHS's + 1

Algorithms for Expanding and Ordering P,S, Rules

Task

To read a set of compactly written Phrase Structure Rules, to

expand, order, and store them,

e.g., the rule Aux = ((NEG,AFF))(ADV)TNS. will be expanded to

AUX = NEG ADV TNS,

NEG 'TNS ,

AFF ADV TNS,

AFF TNS ,

ADV TNS ,

TNS .

3.4-3

then ordered algebraically to AUX = TNS 9

NEG TNS ,

NEG.. ADV TNS,

ADV TNS ,

AFF TNS ,

AFF ADV TNS o

and then stored as described above.

The overall logic of the program PSGINN is illustrated in Fig. 3.4.1.

The main (numbered romantically) steps are now described.
--.

I/ l
The expansion of ruies was broken down into Z steps. An

'abbreviated node list" (i.e., a compactly written part of a rule,

e.g., "(PAST, PRES)" in the rule 'TNS = (PAST, PRES) is first ?f all

scanned and a table of linkages built up and then expanded using the

linkage table. Nodes are stored in array "NODES" and linkages in the

2 dimensional "LINKS" e,g., (NEG , AFF))(ADV)TNS is firstly converted

into:

NODES LINKS 1.2.3.4

1. 1 yT45

2. NEG 2 45

30 AFF 3 45

4. ADV 4 5

5. TNS 5 0

Every expanded node list may be obtained by chasing pointers until a 0

is found. *

3.4-4

. .

0N 4
I

I I

we-

I
I1

i
I
I- m - - w , - - -

\’
I ERROR CONDITIONS
I

---+----I SKIP TO NEXT RULE

I
I OR EXIT

- -
l
I
i
I
I
I
I
I
I
I
I
I- -

Figure 3.4.1 Macro-flow Diagram of Expansion,
Order and Storage Algorithm.

3.4-5

e.g. LINKS(1,2) +NODES(3) = AFE

LINKS(~,~) +NODES(4) = ADV

LINKS&l) -+NODES(5) = TNS

LINKS(5,l) -+ 0

so ‘AFF ADV TNS' is one of the expanded node lists.

This first linkage section is the most complex. It was found

possible to expand an abbreviated node list using a simulated pushdown

stack, only having immediate knowledge of the character being scanned

at present and the one previous.

There are 2'basic types of linkage between nodes in an abbreviated

node list: -

a/ o A-links as between A and B, A and C of A(B,C)D

bl l
B-links as between B and D, C and D of A(B,C)D

A-links are links into parentheses, B links are links out of parenthe-

ses.

The idea of the algorithm of part I is then to scan the abbreviated

node list, when parentheses are opened storing the A-type links for that.

level of the pushdown and when closing parentheses fixing the B-type

links. Of course, links are also sto~*~=ld. and -fixed when commas or nodes

are encountered.

Nodes are stored linearly in NODES(I) when they are encountered,

INODES points to the last node stored. LINKS are stored in LINKS(I,J),

there being KLINKS(1) links in the Ith row.

The push down is rather complex. IPUSH indicates the level of

operation. At level I the A-links are stored in MPUSH froms

3.4-6

KMPUSH(1) to KMPUSH(I+l)-1 and the B-links in NPUSH from KNPUSH(1)

to KNPUSH(I+l)-1 . IMPUSH and INPUSH point to the tops of MWSH and

NPUSH respectively.

KTR holds the character being scanned.

ISPEC indicates the type of the scanned character, ILAST the type

of the previous character scanned.

l NOW we will go through the linkage of our example "((NM;, AFF))(ADV)TNS"

describing what occurs at each stage. The internal configuration of the

system at each stage is illustrated in Fig. 3.4.2.

1Stage --.

The system is initialized as if the last character was a common

(ILAST = 2) and an A-link from the 1st node (there is no first node,

but a link from the first node indicates the beginning of an expanded

node list) is placed into MPUSH at the IPUSH = 1 level. KNPUSH(1) =

KNPUSH(2) indicates that level 1 of NPUSH is empty.

Stage 2

A parenthesis is scanned and causes the pushdown to be pushed

* down (IPUSH is increased by 1) and the links in MPUSH for the last

level are copied into this level. NPUSY is also empty for this level.

3Stage

Similar to stage 2.

4Stage

"NM: " is entered into the table of nodes at NODES(2) and the

A-links in this level of MPUSH are fixed onto "NM;" i.e., a pointer "2"

3.4-7

I, ,

FIGURE 3.4.2 STAGE 1 - INITIALIZE

ILAST 2KTR ISPEC
1 2 3 4 5 61

NODES 1.INODE
1

KLINKS 1 . 0 LINKS 1 .
1) 2 .

3 .
4 .
5 .

2.

3 .
2 .
3 .
4.
5 .

4 .
5 .

IPUSH IMPUSH IPUSH

1

INPUSH

01 .. w 1
.c-

I &

KMPUSH MPUSH KNPUSH NPUSH

1 .1 . 1
2 . -‘y
-3 .

4 .
5 .
6 .

1. 1
2 . 2

3 .
4.
5 .

2 .
3 .
4 .
5. l

6. \
7 .
8.

7.
8 .
9;

1 0 .
9 .

1 0 . .

is placed in LrNKS(l,l) indicating that the first expanded node list

starts with the contents of NODES(2) .

5Stage . .

A comma preceded by a word causes a B-link from the word to be

placed into NPUSH at this present level. In this example, INPUSH

is increased by 1 to 1, KNPUSH(IFUSH+l) becomes INPUSH+l (i.e.,

KlYPUSH(4) becomes 2) and KNPUSH(I.PUSH) has "2" placed in it.

Stage 6

The word "AFF" is placed in lYTODES(7j) . A word preceded by a
-=.

comma is much the same as a word preceded by a left parenthesis so the

MRJSH link is fixed -‘3’ is placed in LINKS(1,2) .

Stage 7

A right parenthesis is preceded by a word (like a comma, slash, or

period preceded by a word) causes a B-link from the word to be placed

into NPUSH for this level,, The pushdown is popped (IPUSH is de-

creased by l), but the links of the old level are still current, the

. next character determines the action to be taken.

Stage 8

. Another right parenthesis.,

Firstly as at this level (IPUSH=2) we have KNPUSH(IPUSH)=KNPUSH

(IPUSH+l) it follows that there have been no commas at this level and

consequently the nodes of this level are optional. So the A-links into

this level (just "1") become B-links out of this level (i.e., the A-links

skip over the contents of this level). A transfer is made from MPUSH
,

into NPUSH,

3 -4-g

. I

FIGURE 3.4.2 STAGE 2

ILAST 2KTR ISPEC 1
1 2 3 4 5 6

L I N K S I . . m m e 7 - -
2. ------.

3 . --e---.

INODE
1

KLINKS 1. *s

2 . !

3,

NODES 1.
3

4 .4 .
5 . 5 .

[PUSH IMPUSH ’

2

IPUSH INPUSH

02.2w
I=-
&0

M P U S HKMPUSH KNPUSH NPUSH .

I. 1 1 .x. 1

2. 1

3 .
4 .

1. ‘1
2 . 2

3. -2-
4 .

2. 1 2 .
3 . 1 3 .
4 . 4 .

l5 . 5 .5, +
6, s

5 .
6 .
7 .
8 .

7 .
8 .
9 . 9 . I

1 0 .x0.

b

FIGURE 3.4.2 STAGE 3
. . I

K T R - ISPEC 1 LAST 1
12 3 4 5 6’

INODE
1 .

IPUSH

z

NODES 1 . KLINKS 1. 0 LINKS 1 . m m - - - -
2 . 2 . 2. -‘-----

3. !

JMPUSH -

z

IPUSH

KMPUSH MPUSH KNPUSH NPUSH

1 . - 1

2 . 2
3. 3

4. 4
5.

1. 1
2. 1
3. 1
4 .
5 .
6 ..
7,
8.
9 .

10.

1.’ 1
2. 1
3. 1

4. 1 '

Y5.

INPUSH

0

1.
2 .
3 .
4.
5 .
6 .
7 .
8 .
9 . L

10.

. . I FIGURE 3.4.2 STAGE 4

KTR hqc;: ISPEC 0

INODE
2

NODES 1.

IPUSH

KMPUSH

1. 1

2, 2

. 3, 3
4. 4
5 .

4 .
5 .

IMPUSH ’

MPUSH

I. 1

2, 1

3 . 1

’ 4.
5 .
6.
7,
8 .
9 .

10,

ILAST 1

KLINKS 1. 1
.2, O !

3 .
4 .
5 .

IPUSH

z

KNPlkH* NPUSH *

1 2 3 4 5 6
L I N K S 1 . 2 m - - m -

INPUSH

0 I

1. 1 1,
2. I 2 .
3 . i 3 .
4 . ’ 1 4 .

’5 . 5 .
6 .
7 .
8 .
9 .

1 0 .

' FIGURE 3.4.2 STAGE 5

KTR 3.

., ,

ISPEC 2

INODE
2

\’

IPUSH

3
w

”
G KMPUSH MPUSH KNPUSH NPUSH

1 . 1
2. 2

a 3* 3
4 : 4
5 .

NODES 1.

2. KEG

3 .
4 .

. 5 .

IMPUSH ’

3

1. 1
2. 1
3. 1

4 .
5. .
6 .
7 .
8.
9 .

1 0 .

ILAST o
1 2 3 4 5 6

KLINKS 1 . 1 LINKS 1 . 2 - - - - -
2 . O 1 2. - - - - - -

IPUSH INPUSH

3 1

I. 1 1. 2
2. 1 2.

3 . 1 3 .
4 . 2 4 .

.* 5 . 5 .
6 .
7.
8 .
9.

10.

. FIGURE 3.4.2 STAGE 6

INODE
2

IPUSH

3

KMPUSH

1 . * 1
2 . 2
3 . 3
4 . 4
5 .

NODES 1.
2. mG .
3.m *
4 .
5 .

KTR JQQ? .ISPEC o ILAST 2

!MPUSH

3

MPUSH

1. 1
2. 1
3 . 1
-4 .

5 .
6 . . .
7 .
8 .
9 .

10.. -

KLINKS 1. 2
2. O
3. O
4 .
5 .

iPUSH
. 3
9 -

* KNPUW

1: 1

2, 1
*3 . 1

4 . 2 '

*. 5 .

LINKS 1.

? 2 .
3,
4 .
5 .

INPUSH

1

NPUSH

1. 2
2.
3 .
4 .
5 . ’
6 .
7 .
8 .
9 .

12 3 4 5’6.
2 3- - m - - -

,
-m----:

-- ---

1 0 .

Secondly, as the preceding character was a right parenthesis, the

B-links for the preceding level are added to the B-links of this level.

We now have links from 2, 3, 1 in NPUSH for this level.
. .

Thirdly, the pushdown is popped again (IPUSH=l) .

Stage 9

A left paren. is scanned so the pushdown is again pushed. Now all

the B-links out of the previous parenthesis level become A-links into

the new parenthesis level., So NPUSH for this level is transferred to

MPUSH and is itself eliminated by putting KNPUSH(IPUSH+l) = KNPUSH(IPUSH) .

Stage 10 ='

"AD"" is entered into NODES@) and the A-links for this level are

fixed to "4" ,,

Stage 11

As in stage 7, the MPUSH A-links become B-links in NPUSH e First

of all a B-link is entered from "ADV" in NODES(&) o The push down is

popped to level 1 .,

Stage 12

“TNS ” is entered i-n. NODES(5) . As the preceding character was a

right parenthesis the B-links in NPUSH for the preceding level are

fixed to "5" .

13Stage

A period firstly causes a link from "TNS" in NODES(?) to be

placed in NPUSH . Then links in NPUSH for this first level are fixed

to “0” indicating the end of an expanded node list. Control is passed to

the expansion section,

3.4-15

K T R - ISPEC 6 ILAST o

INODE NODES 1.
3 2, mx.2

3. EF

4.

g KMPUSH MPUSH

.IPUSH IMPUSH *

2 2

1. 1 1 . 1

2.2 2. 1'
3. 3 3. 1 .
4. .4 4.
5. 5.

6.
7
1.

8. -
9.

l-o.

KLINKS 1 . 2
2. 0 !

3. o
4.
5.

IPUSH
2 .

. KNPUSH NPUSH '

1 2 3 4 5. 6
LINKS 1 . 2 3 m - - -

-----,2.
3.------

5.

.
-.-m---

-mm---

INPUSH
0 !

8.
'- 9.
10.

* FIGURE 3.4.2 STAGE 8

KTR)
,. ,

ISPEC 6

INODE
3

IPUSH iMPUSH -

1 1

NODES 1.
2. . NEG

3.MF -
4 .
5,

ILAST 6

KLINKS 1. 2
.2. O
3. O /
4 .
5 .

IPUSH INPUSH
1

1 2 3 4 5 6
LINKS 1. 2 m?- v m - -

2.
3 .
4 .

0

w
f *

s KMPUSH MPUSH KNPiJSH NPUSH

1. 1
2. -s-

. 3. 3
4. 4
5 .

1. 1
2 . .1
3. 1
4 .
5 .
6 .
7 .
8 .
9 .

10.

1. 1
2. 1
3. 4
4. 3
5 .

1. 2 '
2. 3
3. 1
4 .
5 .
6 .
7 .
8 .

_. _ ..___ -- .-_ - ---_ ----____I-~--.-_- ~ _

-- .-LI-

1

.

911111 ’
q I I I I I
* I I I I I
el I I I I I
-1 I I I I
-4 I I I I

0

.

I. , FIGURE 3.4.2 STAGF, 10

.

w

KTR Am iSPEC O ILAST '

INODE
4

IPUSH

2

KMPUSH

1. 1
2. 2

3. 5
4. 4
5 .

NODES 1.

IMPUSH

4

MPUSH KNhJSil NPUSH s
I. 1

2. 2

3. 3
4 . 1
5.
6.
7 .
8.
9.

1 2 3 4 5 6
KLINKS I . 3 LINKS 1 . 2 .?- 4-p-e

-2. IL ! 2, L-----
3. 1 3. I;-----
4 . O 4 . - - - - - -
5. 5 . - - - - - -

IPUSH iNPUSH
2 0

1. 1 1. 2
2. 1 2. 3
3. 1 3. 1
4. 3 4 .
5. 5.

6.
7.
8.
9.

10.10.

- --- . .

Following through the above example should give the reader a good

feel for the algorithm*

During this stage a number of errors such as 11((1 followed by ","

are checked for. If an error is encountered, the rule or context being

expanded is skipped entirely.

II/, Expansion Algorithm

This is a straight-forward chasing of links and can best be under- .

stood by reading the appropriate section of the program. The Ith

expanded node 1ist is stored in MEXPND from KEXPND(1) to KEXPND(I+l)-1 .

IEXPND points to KEXPND, JEXPND points to MEXPND . KMPUSH and KNPUSH

are used during the expansion to keep track of how much has been expanded

so far, The Ith word of an expanded node sublist at a given time is in

NODES(LINKS(KMFUSH(I),~USH(I))) .

III/. Ordering Sections

The ordering algorithm is simple. The smallest expansion is taken

out of MEXPND and stored, being replaced by a large non-word (") . '
a

in this case) and then the smallest expansion removed again an8 so on.

Duplicate expansions are removed. (The procedure is complicated by

the requirement that "A B" when compared with "A" actually has to be

compared with "A blank".)

Iv/. Context Checker

Foul contexts like U-11 or "A 'I or 'A - B - ' are removed and

null contexts are accounted for, Error rnerssages are issue&

3.4-20

. FIGURE 3.4.2 STAGE 11

KTR) iSPEC 6 ILAST ’

1 2 3 4 5 6
LINKS 1. 2 ?m i: m - -KLINKS 1 .

2 .
3 .

3INODE
L

NODES 1.

2 . Dn?JG

3 . Al??

4 . PJV

5 .

2. L------
/ 3 . - i - - - - - -

I

1

4. O 4 . - - - - - -

5 .5 .

,

iPUSH f MPUSH . IPUSH INPUSH

1 1 1 0
w

i=-
E KMPUSH MPUSH KNPUSH NPUSH

1. 1

2. 2
1. 1

2. 2
1. 1

2. 1

lb 4
2. 2
3. 3- 3. 5

4, 4

3. 3
4. 1

3. 5
4. 3

5 .
4. 1
5.5 . 5. *

6. 6.
7 .
8.
9.

10.

7.
8.
9.

10.

6

FIGURE 3.4.2 STAGE 13., ,

KTR . . ISPEC 7 ILAST ’

INODE
c

IPUSH

1
w
k
w

KMPUSH
.

1, ‘1
2. 2-

* 3. 5
4i.r
-5.

. 1’2 3 4 5 b
NODES 1. KLtNKS 1. 4 LINKS 1, 2 2 4 -?m'i-

2.m 2. 2 ,
--m,

!
,

2.45-

3.m - 3. 2
.4.mJ ’ .

3.4s---- .
4. l 4, z--w--

. 5. TNs 5. l 5, AL-----

IMPUSH

1

.

IPUSH INPUSH

1.

MPUSH

1. 1
2. 2
3. J
4. -Y-
5.
-6:

7.
8.

9.
10.

KNPUSH

1. 1

2. 2
3. 5
4. 3’
5.

1.
2.
-3.
4.
5.
6.
7.
8.

.9.
10.

l -
.1

I

NPUSH

5
2

. . . .

FIGU&-E 3.4.2 STAGEi 12

KTR ‘sms ISPEC ’ ILAST 6

123456’
LINKS ,I. 2 3 4 -k - -KLINKS 1. 4

2. 2

INODE
r;

NODES 1.
2. NIX+
3. m.- -
4. ADv
5, TNs

IPUSH IMPUSH IPUSH INPUSH

1 01

i

G

KMPUSH M P U S H KNPUSH

1.’ 1

NPUSH

1. 41. 1

2, 2..
3. 3
4. 1

5 .
6 . -
7 .
8.
9 .

10.

1. -1
2; 2
3. 5

2. 2
3. 3

2. 1
3. 5
4. 3’
5.

4. 4 4. 1
5.5 .
6.
7.
8.
9. 4

1 0 .

v l

The

is found

Error Recovery

general philosophy has been to try and continue after an error

so as to check for further blunders. In later models, expanded

and non-expanded node lists will be mixable so partial expansions will

be valuable.

VI/. Denouement /

When all rules have been read, the expanded rules are listed or

hunched if desired and other odds and ends tidied up.

PSGSMP

The entry PSGSMP of PSGINN places the expanded phrase structure

rules into KSUMP, which can be printed by calling FROUT .

PSGOUT

PSGOUT is a short subroutine which prints out the phrase structure

rule tables.

LEXIN, lexicon input routine

Internal Formats

We describe here only the storage of category features as used by

lexical insertion and the storage of the lexical entries. The storage

of inherent features, contextual, feature labels and descriptions, and

redundancy rules are treated elsewhere.

Lexicon data is stored in the common block labeled /LEXCM/ defined

as below.

3.4-24

COMMON/ LEXCM/

1 IEX~D,LEXWDS,LEXCS,LEXCSS,IXCPTR,CATLST,N~C,
2 NLM,NLEXW,NLEXCS,NCATL
REAL*8 LEXWD(500),CATLST(20)
INTEGER*2 LEXWDS(3OO),LEXCSS(3OO>,LarCS(500),

1 LxcPTR(100,20),NIXC(20),NLEX,NLE~,N~CS,
2 NCATL

The category feature list is stored in the order input in the

array CATLST . The parameter NCATL gives the number of entries in

the category list.

A lexical entry is defined as a list of vocabulary words and a list

of complex symbols. Internally each entry is composed of two lists of

pointers. One list (LEXWDS) contains pointers to the array LEXWD

where the vocabulary words for the entry are stored. The other list

(LEXCSS) contains pointers to the array LEXCS where numbers cf the

complex symbols for tne entry are stored (these numbers are pointers to

the array CSLIST) .

TO illustrate, if the ith and i+lst lexical entries are as

defined below:

entry
-

i JOHN BILL SAM I+N +HUMANI

i+l IOVE I+V + TRANSI

then the storage would be as shown below.

3.4-25

i+l

LEXWDS
0

CSLIST(-,n)

To simplifysearching iL,1 rIt")rizaA ~~lzicU 5!.uring the lexical inser-

tion process, the entries are linked by lexical category; that is, all

nouns are linked together, all verbs, etc,

For the jth entry in CATLST

NWj) = number of lexical entries in that category

IXCPTR(k,j) = pointer (to LEXWDS and LEXCSS) for

the kth lexical entry in category CATLST(j)

(1 < k < NLXC(j))- -

LEXIN. lexicon input

When LEXIN is entered, it immediately calls the subroutine

PRELEX to read in the prelexicon portion of the lexicon. After

PRELEX returns, the lexical entries are processed, The subroutine

FREAD is used to read vocabulary words and special symbols

(
I1 11 11. II. !I lf
22 >P I 1 0 Complex symbols are read by the subroutine CXIN .

The flag ENTFLF.true. is used to indicate that an entry must be linked

to the appropriate category list, The flag ENDEF=.true. indicates

3.4-26

-

that entry has been completed and thus the pointers in LEXCSS and

LEXWT% must be specified. Error comments are produced by LENIN

if the array limits specified for the lexicon are exceeded. The array

limits are specified in the common block /LFXCM/ .

PRELEX, prelexicon input

Calling sequence: CALL PRELEX

Description: the integer variable STAGE is used in a "computed

goto" statement to transfer control to the appropriate place. If errors

occur, such as illegal punctuation or the omission of punctuation, error

comments are generated and recovery is attempted. The subroutines and-m.

functions called by PRELEX are

Type Name and Args.

FUNCTION FREAD(ONE)

FUNCTION NUMNAM(CHRTR,ZERO)

FUNCTION SLFEAT(ONE)

SUBR NAMEIN(CWORD,I)

FUNCTION RESTIN(ONE)

. FUNCTION CXIN(ONE)

LEXSMP. lexicon output

calling sequence: CALL LEXSMJ?

Purcose

free field input

store category and inheren
features

read contextual feature
description (not including
restriction)

store contextual feature
label

read restriction in con-
textual feature description

read in complex symbol
appearing in redundancy
rules.

description: This subroutine puts the lexical entries into the

array KXJMP. They may then be printed or punched as desired by the

3.4-27

appropriate call to FROUT . The output format is suitable for use as

input. The subroutine CSSUMP is used to put complex symbols into

K S U M P l If KSUMP

FROUT and then the

are put into KSUMP

becomes full the contents are printed by calling

remaining entries are stored. The lexical entries

is category order as specified in CATLST l

LEXOUT, lexicon debugging

calling sequence: CALL LEXOUT
-

description: This subroutine generates a printout of the storage

arrays for the lexicon described earlier. This printout is intended for

debugging purposes only. The c&e for this subroutine is found in the

subroutine LEXSMP l

NUMNAM, feature number and name

NUMNAM(FWORD,ARG) returns the feature number for the feature name

FWORD l If ARG is nonzero, and FWORD has not previously been assigned

a number, FWORD is assumed to be the name of an inherent feature, and

a warning to that effect is printed.

The entry NAMEIN(FWORD,ARG) stores FWORD as the name of thee

contextual feature whose feature number is ARG b

The entry FJ3ATOU prints out the internal tables for features,

redundancy rules and calls CSOUT for the internal complex symbol tables.

TRANIN, input routine for transformations

'IRANIN reads in a set of transformations and stores the information

for later use. TRANIN is called by GRAMIN . TRANIN calls subroutines

ANALJN (an entry to CXIN), RESTIN, CHANIN, and CPIN which read

and store parts of the tran'sformation specification, as shown in Figure 3.4.3.

3.4-28

subroutine

ANALIN(P)NE)

RESTIN(#NE)

CHANIN(#NE)

CPIN

Figure 3.4.3 Subroutines called by TRANIN

result

returns pointer to-the structural analysis

returns pointer to the restriction

returns pointer to the structural change

stores the control program for use by the control

subroutine

3.4,29

The only information which is analyzed by TRANIN itself is the

identification. The following comments explain the use of the parts

of the identification. (1) The optional integer is solelv for the

convenience of

name is always

number is used

tions. If the

be the same as-

in the case of

. I I. ”

. .

the user and is ignored by the program; the transformation

used in referring to the transformation. (2) The group

by the control program to refer to a set of transforma-

group number is omitted on input, it will be taken to

the group number of the preceding transformation, or I

the first transformation. (3) Repetition determines if

and how the transformation will be reapplied to the same subtree. The
--.

choices are AC (analyze once and change), ACAC (analyze, change and

repeat), AACC (find all analyses, then do all changes, and AAC (find

all analyses, do one randomly-selected change). The null option is AC .

(4) The choices for optionality are option (OP) and obligatory (OB) .

The null option is OB o (5) The keywords must be present in the tree

to which the transformation applies; this is a technical non-linguistic

device to speed up the program by avoiding the analysis routine, (Remark:

At some later time we may wish to expand the notion of keyword to allow.

Boolean combinations of keywords, or possibly even key-subtrees.) An

embedding parameter which would allow a search to go below any sentence

symbol was originally planned but has not been implemented; a tree will

be searched below a sentence symbol only if the analysis explicitly men-

tions a sentence symbol and gives an analysis for it.

Internal storage. Transformations are stored in the common block

/TRANCM/ . The present capacity is 100 transformations. The I-th

transformation read is stored as follows:

3.4-30

F'TRAN(1)

TRAN(I,l)

TRAN(I,2)

TIN

TRAN(I,4)

TmN(Ip5)

TRAN(1,6)

TmN037)

name of transformation

group number (stored as an integer l-7)

repetition (1 for AC2 2 for ACAC, 3 for AACC

and 4 for AAC) -*

optionality (0 for obligatory, 1 for optional)

(currently unused)

pointer to the

description

pointer to the

description

pointer to the

structural analysis of structural

restriction of the structural

structural change

The keywords for the I-th transformation are stored in KEYS from

KEYPT(I)+l through J&PT(I+l) . The number of transformations (hence

the current length of both FTRAN and TRAN) is NTRAN . The total

number of keywords is NKEYS .

Output of transformations. The transformations should be followed

by the order $END . This causes the program to output FTRAN and

TRAN in tabular form, followed by the list of keywords. Control is

.
then returned to the main program. CALL TRANOU will also produce this

output, which is illustrated in Figure 3.4.4.

3.4-31

1
2
3
4
5
6
7
8
9

10

::
13
14
15
16
1.7
1.8
1 9
20
21
22
23
24
25
2h
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

-43

.

r\)4+IF

lXJ’4’J1V
CPl
CP ?
CP3
I F
IO I
TO
PASSTVF
E Y T R 4
PROREP
ti?JHh
YCLPL4CF
AIJ Xi= l& L
AG
*EVER
RFGOEL I
REGDEL 2
OEFI
WHAG
PRT)GiX L
R E L D E L
A!lJPLACE
C D U P
C N E G
C T E N S E
T S
CD
T A G
N E G P L A C E
NEGTAG
NEGAUX
OU ES
YESNO
AF
PREPDEL
PD
AGDFL
T H A T
VPCOMP
BEOEL
MC DEL
QnEL
E R A S E

GRflUP

1
1
1
1
1
1
1
1
1
1
8

;
1
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1.
1
1
1
1
1
1

FIGURE 3.4.4

TRANSFORMATIONS

CYCC

0
1
1
1
1
1
I

ii
1
i
1
1
1
1
1
1
1
1
1
1
I.
1
1
1
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

s o SC

2 0 0
3 0 1
4 3 4
5 P 5
c 0 r!
6 0 6
7 0 7
n 3 R

10 0 12
11 r) 13
12 0 14
13 r! 1. 5
1 4 0 16
15 0 17
16 (! 30
17 5 21
18 6 22
19 0 23
20 ? 7 24
21 9 27
22 Q 2 8
23 0 31
24 0 32
25 0 33
26 0 34
27 0 36
38 0 37
29 0 38
30 0 41
31 0 42
32 0 43
73 0 44
34 0 45
35 0 46
36 10 47
37 0 48
38 0 4 9
3 9 0 50
40 0 51
41 0 54
42 0 55
43 0 56
4fi 0 57

3. h-32

4 4 P A S T 2
45 MTflEL 2
46 PCunffL ?
47 NIlM 2
48 hllJAG 2
49 CONTQ 3
5 0 NEGSPE LL 2
5 1 ml 2

’ 52 002 2
53 003 2
54 REl 2
55 RE2 3
56 BF3 2
57 BE4 2
58 HAVE1 3I...
59 HAVFZ

--’
2

6 0 HAVF3 2
61 WHPDI 2
62 WHPD2 3
6 3 WHDEL 3
64 DEFTHAT 2
65 WH1 2
66 WH2 2
67 WH3 2
68 P L A D E L 2
69 Cl 2
70 c 2 2
71 c3 3
72 c 4 2
73 BY 2
74 INDEF 2
75 DEF 2

T R A N S KEYWORDS

FIGURE 3.4.4 (part 2)

1
1
1
1.
1
1
1
1
1
1
l.
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

-1.
L
1
1
1
1

0
r!
0
Q
0
0
0
0
0
0
0
0
0
0
P
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0

4 5
46
47
48
4 r)
50
51
52
53
54
55
56
57
58
59
150
bl
62
63
64
65
66
67
bS
69
70
71
72
73
74
75
76

0
P
0
0
r)
0
0
0
0
0
0
0
0
0
0
n
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

50
6q
hl
63
6 3
h4
h5
fib
h7
b,R
69
71
73
75
77
79
81
n3
54
85
Rh
57
89
91
93
94
95
96
97
98
99

100

3 9 4-33

3.5 Phrase structure generation

This section describes the routines GEN,IFIND,IAFIND, and NSRCH

which are used to expand tree skeletons into base trees. A general. .

description of this process is given in ~~-80 (AF-15).

The main program is GEN and is called each time a skeleton is to

be expanded. The skeleton is expanded, starting with the sentence

symbol S, by selecting at random from the set of applicable phrase

structure rules. The skeleton may contain restrictions which require

dominance (DOM), nondominance (NDOM), equality (EQ), and special

node symbols, null expansion m), or variable numbers of daughters--.

(X or Y) . Restrictions DOM, NDOM, and EQ appear in the skeleton

as daughters of nodes as shown in the example below.

N

The special node symbols NL, X, and Y appear directly in the skeleton.,

The appearance of NL as the leftmost daughter of a node indicate that

- no daughters are to appear to the left of the daughter to the right of NL,

that is the skeleton

could not be expanded to

NP

3.5-l

but could be expanded to

N-P
I
N

The appearance of NL as the rightmost daughter in the skeleton

similarly limits expansion to the right.

The special node X indicates that 0 or more daughters must

appear in its place and the special node Y indicates that 1 or more

daughters must appear,

The restrictions DOM,NDOM,EQ may refer to nodes or vocabulary

words (vocabulary words are handled during lexical insertion),, DOM

and NDOM may also refer to complex symbols with the node symbol a blank.

GEN uses the subroutine LSRCH (described in Section 3.6) with a node

number of 0 to determine if there is a compatible complex symbol in

the lexicon, The DOM restriction allows subtrees to be specified as

well as single nodes and these subtrees may contain further restrictions.

For example

The function'subprogram IFIND(M,N) is used by GEN in testing

DOM and NDOM restrictions to determine if a node of type M must,

might, or cannot dominate a node of type N . IFIND calls IAFIND(N)

to find the first PSG rule (in PSGAl) which expands a node of type N .

IFIND calls NSRCH(N) to find the last PSG rule which could expand

& a node of type N 0

39 5-2

GEN

The following storage arrays are used by GEN in building the base

tree and handling restrictions
. .

type

STRING(200,2) R*8

ITRACK(lOO) 1*2

NEQLST(20) 1*2

EQTRAN(20) R*8

NRESRS(l0) 1*2

NRES(103) R”8

NOK(20) 1*2

N=(50,2) R*8

NTm3(50) 1*2

NTEMCS(50) 1*2

NOK(20) 1*2

STRING

The array STRING contains a parallel list of the terminal node
.
symbols and the terminal node numbers for the tree e.g.? for the I-th

element in terminal string

STRING(I,NSTA) = node number

STRING(I,NSTB) = node symbol

During expansion the new elements are inserted in the appropriate side

of the array. After expansion of an element the rest of the string is

copied over,

The pointers NSTA and NSTB are then reversed which in effect

"flips" the array.
39 5-3

ITRACK

This array contains pointers to the acceptable rule expansions of

a given node, The number of entries in ITRACK is given by the param-
. .

eter MTRACK,

NEQLST

This array is used for handling equality restrictions, The first

appearance of a node with an equality restriction is expanded and the

node number is placed in NEQLST(1) where I is the equality restric-

tion number, For each succeeding appearance of a node with the same

equality restrictlonp. the r-eti~*ic-~~~/n ricl:llber' I:, saved in TREE(NODEJ)

and the node is not expanded further at that time, When the base tree

has been completely specified (including lexical insertion) then the

subtree headed by the original node (with restriction 0 replaces each

appearance of a node with TREE(NODE,s) = I e

EQTRAN

The routine TRIN does not convert integers to integer format,

This conversion is performed by table look-up in the array EQTRANo
e

NRESRS

If a DOM restriction contains a subtree (more than a single node),
.

or if a complex symbol appears in a restriction then the tree node which

is the top of the subtree (or has the complex symbol) is saved in

NRESRS(MRES) where MRES is the number of restrictions (DOM or NDOM)

detected thus far., Otherwise NRESRS(MRES) = 0 0

3.5-4

For each DOM or NDOM restriction

NRJ=(A = DOM or NDOM
. .

NRES (92) = top node symbol of the restriction

NRES(,3> = tree node of the first daughter making up
the restriction (RES) .

NOK

NOK(MK) = result of IFIND for the MKth daughter of a node with._

DOM or NDOM restriction.

NTEM, NTm,-;WTEMCS

For each possible (MKth), daughter of a node with a DOM or NDOM

restriction

NTEM(J> = node symbol

NTEM(A = DOM or NDOM

NTEM3() = NOK(MK)

NTEMCS(-) = complex symbol pointer if a complex symbol was

specified in the restriction.

The actual operation of GEN may be summarized as follows.

1. If there is a skeleton, store it in TREE .

If there is no skeleton, start with SS(SS=S) in TREE .

2. Pick a PSG rule (linear pass through NSGAl) .

If no more rules, go to step 11.

3* Match element of STRING with the left part of the rule.

If no more entries in STRING, go to step 2.

3* 5-5

4. If there are no daughters specified in the skeleton, put pointers

to the possible rule expansions in ITRACK and go to step 6,

5. If there are daughters in the skeleton

5a. Search daughters for a restriction. If there is a RES and-

- if it is an EQ

- put first node number in NEQLST and continue

with step 5a.

- for subsequent occurrences of the restriction put

the restriction number in TREE (node, 5) and go to

_,step 3.

- if it is a DOM restriction with daughters or a complex

symbol, save the node number in NRESRS

- if it is a DOM or NDOM of an SS put this a; the

first entry in NRES; otherwise put restriction in next

NRES entry.,

5b* Put pointers to the possible rule expansions in ITRACK

replacing X and Y nodes and treating the NL . If

there were DOM or NDOM restrictions, use IFIND to

determine the effect of the rules in ITRACK for each

restriction and save the results in NTEM . If the

restriction contained a complex symbol, consult LSRCH

as well. Delete those rules from ITRACK which are not

desired.

6. Pick a rule from ITRACK entries.

7. Put rule expansion in TREE (if not already there) and in STRING.

Unlink RES, X, Y, *and NL daughters.

3* 5-6

8. Save the remaining STRING entries.

94 If there were restrictions, then for each restriction

- test each daughter and find the one corresponding to the

NTEM entry.

- for a DOM restriction

- if satisfied, set indicator (MO and if DOM has

daughters or a complex symbol attach them

- if not satisfied yet, put the DOM restriction (with

complex symbol or daughters, if any) on one of the new

daughters which could possibly meet the restriction.
--.

- for a NDOM restriction, if still could be violated, add

the restriction to each new daughter which could be expanded

into a node of the type not desired.

10. Fill and flip the STRING array and go to step 3 (pick up

where we left off in STRING).

11, If there are any SSes or Ses in STRING and if an SS or

S appeared in a DOM restriction, then put the leftmost S

in the first entry in STRING and go to step 2 (this wipes out

the old STRING).

- 12. Do lexical insertion (call LEXINS),

13* If there were EQ restrictions, search tree for nodes marked

with a restriction number (in TREE (,5)) and substitute

the subtree headed by NEQLST(TREE(,511 l

3* 5-7

IFIND is an INTEGER*2 function with two REAL*8 arguments M

and N which are node symbols that appear in the tree and in a DOM
. .

or NDOM restriction, respectively.

IFIND(M,N) = -1 if a node of type M never can dominate a node

of type N

IFIND(M,N) = 0 if a node of type M might dominate a node of

type N.

IFIND(M,N) = 1 if a node of type M must dominate a node of type

N --,'

The result of IFTND is obtained by examination of the phrase structure

rules stored in the arrays NSGAl, NSGA2, NSGB, and NSGC . Th? array

ISTACK is used for pushdown to save intermediate parameters and the

array CATRES is used to save intermediate results.

A heuristic has been introduced to increase the efficiency of the

search process. Any node symbol examined to see if it dominates another

node symbol is tested only once. If the search is performed exhaustively

a given category may be examined several times if it appears more than

oncelin the phrase structure rules. For example:

1. s ~N-PVP

2. vF-,v NP

3* NE +N S

For IFIND(S,N), the NP will be examined only once even though it ap-

pears on the right-hand side of rules 1 and 2. The array BADST is used

to remember rules which have been previously examined.

3* 5-8

IAFIND(1)

IAFIND is a REAL*8 function with a RE/-&*8 argument. The

value of I is a node symbol. If I is the sentence symbol (SS=S)

or a terminal symbol of the phrase structure grammar then the value of

IAFIND(1) is I . Otherwise the value of IAFIND is the index to the

first rule in the phrase structure grammar pointer to (NSGAl) that

expands the symbol I .

NSRCH(N)

NSRCH is an INTEGER*2 function with a RF&U?8 argument, N .

N is a node symbsl. The value of NSRCH is the index to the last rule

in the phrase structure grammar that introduces the symbol N . If no

rule introduces the symbol N, the value of NSRCH is 0 .

d

3* 5-9

3.6 Lexical insertion

The main subroutine for lexical insertion is LEXINS. This program

calls the subroutine TSRCH to locate lexical category nodes in the tree.

LEXINS calls the subroutine LSRCH to locate complex symbols and vocabulary

words that are suitable for insertion at a specified lexical category node.

LSRCH calls the subroutine CSTEST to test if the lexicon complex symbols

are suitable for insertion in the tree. CSTEST calls the subroutine

CSCOMP to determine if a tree complex symbol and a lexicon complex symbol

are compatible. CSCOMP will assign values (either to + or -) to all

features with the value * l CSCOMP merges complex symbols and expands

the result using the subroutine REDRUL. The result of CSCOMP is either

a complex symbol number or the integer value zero to indicate that the two

complex symbols are incompatible. If CSCOMP indicates that the complex

symbols are compatible, CSTEST then calls the subroutine ANTEST to test

each contextualfeature specification in the complex symbol returned by

CSCOMP.

The following common blocks contain arrays and variables used in lex-

ical insertion.

COMMON/LINSCM/
1 SRCHL,ELIST,NSRCHL,NELIST

INTEGER*2 SRCHL('&5O),ELIST('&'jO),NSRCHL,NELIST

where

SRCHL(2JO) is a stack of parent and daughter pointers that

is used by the subroutine TSRCH in searching for nodes of a particu-

lar lexical category. This array is initialized by the subroutine

LEXINS. The number of entries in SRCHL is given by the parameter

NSRCHL.
3* 6-1

ELIST(2,50) is an array used to hold the lexical items found

by the subroutine LSRCH

ELIST(l,-) = index to vocabulary word in the array LEXWD

.ESIST(2,-) = pointer to the complex symbol in the array

CSLIST

NELIST gives the number of items in ELIST. If more than one item

is found, an item is selected at random for insertion,.

COMMON/CONFCM/
1 CFVALS(100)

The wray CFVALS is used to save the value for a contextual feature

when it has been determined by the subroutine ANTEST. .This array

is ihitialized by the subroutine LSRCH and data is entered into

the array by the subroutine CSTEST. Before CSTEST calls ANTEST to

analyze a contextual feature, it first checks to see if the value

has already been 'obtained.

if M is the feature number (CSLIST(l,))

. 0 3 no value determined for this
feature.

CFVALS(M-MXEXP) =
l* feature is positively specified.

2* feature is negatively specified.

LEXINS, lexical insertion

calling sequence: CALL LEXINS

description: lexical insertion is performed in two passes. On the

first pass restrictions and vocabulary words introduced by the directed

random generation of the tree-are considered. On thesecond 'pas++.the

remaining lexical category nodes are treated. The operation of the

3.6-2

program may be summarized by the following sequence of actions.

1. initialize EQ,LST for equality restrictions

2. search tree, breadth first (right to left) and top down. Make

a list (SSLIST) of the appearances of the sentence symbol (SS).

39 do pass 1

3.1 take SS from SSLIST (last first) if no more go to step 4.

3.2 search tree for category symbols in the order specified

in CATLST if no more entries in CATLST go to step 3.1.

3.3 call TSRCH(CA,T,CNODE) to get next category node.

CNODE = 0 * no more nodes in this category so get next

--. CATLST entry and go to step 3.2.

CNODE = 0 * if not a restriction or vocabulary word go

to step 3.3.

3.4 if equality restriction

-- convert restriction number to integer (TRIN doesn't

do this). We require 15 restriction number < 20.

-- if EQJST(restriction no.) = 0 then

EQJ,ST(restriction no.) = node of lexical category

(cNODE)

CALL LSRCH (Lc,CNODE, vocabulary word, tree

complex symbol)

LC = lexical category number in CATLST

CNODE = node of lexical category symbol

if there is an entry - attach the complex symbol and

treat the side effects CALL SIDEFF

(cN~DE,LECS) go to step 3.3-

if no entry - error comment go to step 3.3.

3.6-3

3*5*

3.6.

-- if

If dominance restriction, erase RES and DOM daughters and go

to step 3.6.

EQLST(restriction no.) # 0 then

substitute vocabulary word and complex symbol

CALL SUBST(EQLST(I),CNODE)

Vocabulary word is specified

CALL LSRCH(LC,CNODE,WORD,mE(CNODE,6))

if there is an entry

attach new complex symbol- treat side effects
1.

go to step 33.

if no entry

write error comment

go to step 303.

4.1.

4.2.

4.3.

4.4.

go to step $3.

4. do pass 2.

take SS from SSLIST

if no more RETURN

get entry in CATLST

(last first)

if no more go to step 4.1.

search tree for node in proper category

CALL TSRCH(CAT,CNODE)

return

CNODE = 0 * no more in this category; go to step 4.2.

CNODE # 0 * if daughter on node (from pass 1)

go to step 4.3.

search lexicon for vocabulary word and complex symbol

3.6-4

CALL LSRCH(LC,CNODE,FBLAN'K,TREE(CNODE,6))

if no entry

error comment

..go to step 4.3.

if entry

attach complex symbol

attach vocabulary word

CALL ALADE(MTREE,CNODE)

treat side effects

CALL SIDEFF(CNODE, complex
%.

go to step 4.3.

symbol no.)

TSRCH, tree search for lexical category nodes

calling sequence: CALL TSRCH(CAT,NODE)

where

return

CAT(REAL*8) = node type desired

NODE(INTEGER"2) = return parameter

parameter:

NODE = 0 * no more nodes in the category CAT

NODE # 0 * number of category rule in TREE.

description:

The initial tree top and first daughter are stored in SRCHL(l,l)

and SRCHL(2,l) respectively by LEXINS. The search is depth

first and left to right in the tree but never goes below any

SS or below a lexical category node. The depth of search

is recorded by the parameter NSRCHL. On subsequent calls to

TSRCH, the search is resumed where it left off.

3.6-5

LSRCH, search lexicon

calling sequence:

CALL LSRCH(CATNO,NODE,WORD,TCS)

where CATNO = number of category of interest (pointer to CATLST)

0 special call by GEN
NODE =

tree node location for lexical item\
blank if no vocabulary word is yet associated

WORD =
with node vocabulary word

if a particular vocabulary word has already
been specified in the tree

I 0 if no complex symbol is defined in tree

TCS = pointer to complex symbol in CSLIST if lexical
-=. category node in tree has a complex symbol

attached.

description:

LSRCH has several modes of operation depending on the values

of its operands. In all cases the basic function is to find a lexical

item (vocabulary word and complex symbol) which are suitable for

insertion in the tree. The acceptable item is returned in the COMMON

array ELIST.

. ELIST(l,NELIST) = pointer to vocabulary word in array LEXWD

ELIST(2,NELIST) = pointer to complex symbol in CSLIST.

if there is no lexical item suitable for insertion then NELIST = 0

on return to the calling program (LEXINS).

If a vocabulary word has been specified LSRCH searches the lexicon

in the appropriate category for that word. If the word is found the

complex symbols associated with the entry are tested by using the function

CSTEST(NODE,TCS,LCS) just as in the case when no vocabulary word is

specified. s

3.6-6

If no vocabulary word has been specified, then lexical entries are

examined in the proper category but in a random manner (random selection

without replacement). If the entry selected contains acceptable complex

symbols (this is determined by using the function CSTEST(NODE,TCS,LCS))

then the search terminates. If the entry does not contain acceptable entries,

then the entry is marked as unacceptable (LBAD(j) = true where j = jth

entry in the category specified by CATNO) and a new random entry is

selected.._

We illustrate this process below. N is the number of entries

remaining to be tested. I is the increment used to obtain an entry.
--.

Initially, N equals the number of entries in the category.

compute I (1 = random integer, 1 < I < N)- -

get I
th

entry not yet tested

test the entry--if acceptable, then exit

mark entry not acceptable

N = N - 1 if N = 0, exit--no entry is acceptable

Suppose N = 8, compute I~ = 6 and

test entry 6 . Entry 6 is not
\

acceptable, so mark entry, decre-
1. .

ment N, compute I2 = 4 . Step

4 untested entries to entry 2. Test

entry 2. Not acceptable. Mark entry, \
\ c;

decrement N, compute
I3 = 2 ' L/

,
Step 2 entries. Test entry 4. This

b
-.

entry acceptable, so exit. 7

8

--.

acceptable

This method of selection weights lexical entries equally. Since

an entry may have more than one complex symbol, complex symbols do not

have exactly equal probabilities of being selected. If this is an

important consideration, the lexicon should be defined so that each

entry consists of a single complex symbol with its associated vocabulary

words. If lexical items are to receive equal probability of selection,

the lexicon should be defined so that each entry is a single vocabulary

word and a single complex symbol.

CSTEST, test complex symbol for lexical insertion

CSTEST is a function subprogram the value of which is an integer

variable (INTEGERs2). The function is referenced as shown in the

example below.

CSR = CSTEST(NODE,TCS,LCS)

where

the node in the tree if doing lexical insertion

NODE = 0 for a test in the generation of the base
tree by the program LSRCH-GEN.

TCS =
pointer to a complex symbol (usually the complex symbol
associated with the tree)... I

LCS = pointer to a complex symbol from the lexicon.

These results are

CSR = 0 if the complex symbol is not suitable for insertion in the

tree.

CSR = complex symbol pointer if the complex symbol in the lexicon

is suitable for insertion. In this case, the variable CSR
--.

points to the new complex symbol which is to be inserted in

the tree.

description: The basic test used to determine if a complex symbol is

suitable for insertion in the tree has two parts. The first part

is the compatibility test. This test is performed by the program CSCOMP.

If the tree complex symbol and the lexicon complex symbol are not

compatible, the lexicon complex symbol is rejected and the value of CSTEST

a is zero. If the complex symbols are compatible, then the program CSCOMP

returns a new complex symbol that is the result of the compatibility

test* The second part of the test performed by CSTEST involves the

analysis of each of the contextual features that appear in the new complex

symbol. This part of the test is performed in two passes. On the first

pass, the value of each contextual feature is compared with the entry

in the array CFVALS. If the array entry is defined, then the value of this

feature has already been determined by an earlier call to CSTEST (for

a complex symbol which was rejected). We require that the values of the

3.6-g

contextual feature in the array and the value in the complex symbol be

the same. On the second pass contextual features whose values do not appear

in the array CFVALS are treated. The program ANTEST is used to analyze

the tree for each such feature. Before ANTEST is called the node in the

tree which corresponds to the top of the contextual feature description

must be determined. This is done by getting the node type (e.g. S,VP)

from the contextual feature description (in ANALWD). The tree is then

searched up from the node for which lexical insertion is to be performed

.and the first occurrence of a symbol of the proper type is used as the top

node for the analysis process. Of course if the node is not found the tree

does not match the feature description and the value of the feature is

minus (2). If the tree matches the feature description (ANTEST returns

the logical value true), the value of the feature is + (1). If tree

does not match the feature description (ANTEST returns false.) the value

is minus (2). Again we require that the tree value and the lexicon value

be the same. The value determined for the contextual feature is saved

in the array CFVALS so that the analysis program will not be called twice

for the same contextual feature in the search for a lexical item for the

. same tree node. If the tree meets all the contextual feature specifications,

the complex symbol number is returned indicating that the complex symbol

is acceptable for insertion in the tree.

SIDEFF (a separate entry point in CSTEST), side effects

When a vocabulary word and complex symbol are inserted in the

tree, side effects must be considered and if necessary treated. For

a definition and discussion of side effects see CS-103., The program

which handles side effects is called SIDEFF(NODE,N) where NODE is the

tree node where a lexical item was just inserted and N is a pointer

3.6-10

to the complex symbol just inserted. A rigorous treatment of side

effects is not performed, however the cases which usually occur in

practice are handled correctly. We describe here what is actually
. .

done by the program, not what should be done. The program performs

as outlined below:

1. Side effects for negatively specified contextual features

are ignored.

2. For each positively specified contextual feature.

2.1 If the contextual feature description does not contain

a complex symbol, there are no side effects for this

feature so look for another contextual feature.

2.2 If the contextual feature does contain a complex symbol,

the analysis routine is called to examine the tree for

the feature description. When the program ANTEST tests

as a complex symbol embedded in a contextual feature

description it uses the program CSCOMP. CSCOMP saves

the result of the compatibility test. When ANTEST

returns, SIDEFF examines the array ANNODE and retrieves

the tree node which matched the node in the contextual

feature description. SIDEFF then uses the function

CSCOMP(NODE,0,3) to retrieve the complex symbol derived

by CSCOMP during the analysis of the tree and attaches

the complex symbol to the node. This is done for every

complex symbol appearing in the contextual feature

description. We use the result of the compatibility test

rather than the complex symbol that appeared in the '

contextual feature description to insure that features

3.6-11

with the value *(3) will not appear in the tree.

CSCOMF(M,N,IND), compatibility test

This program is an integer*2 function whose basic task is to-.

determine the compatibility of two complex symbols. The test for

compatibility is described in general terms in CS-103. The parameter

IND indicates the function CSCOMP is to perform

if IND = 1: perform compatibility test using nondistinctness

as the subordinate test. (This mode is used in

lexical insertion.)

IND = 2: perform compatibility test using inclusion as
-b.

the subordinate test. (This mode could be used in

the analysis process for transformations.)

IND = 3: then M is a tree node for which a compatible

complex symbol has been obtained on a prior call

to CSCOMP. The purpose of the current call is to

retrieve the number of the compatible complex symbol

from the array TREECS(M) where it has been saved.

. (Thismode is used in treating side effects.)

The parameters M and N point to either a tree node or to a complex

symbol in the array CSLIST.

.
M,N > 0 * tree node

M,N < 0 * point'to a complex symbol

If M or N point to a tree node then CSCOMP uses the complex symbol

attached to the tree node. If there is no complex symbol attached to

the tree node, then CSCOMP creates a complex symbol which contains

a single feature specification,* a positive feature specification for

3.6-12

the category designated by the tree node. If the tree node has a

complex symbol attached but this complex symbol does not contain a category

feature specification, then CSCOMP creates the proper category feature
. .

specification and links it to the tree complex symbol. At this point

'CSCOMP has two complex symbols to test for compatibility, each of which

contains a category feature specification if it is possible to determine

one.

CSCOMP checks if each complex symbol has a category feature
-

specification and, if both do, checks to see that the same feature

appears in both complex symbols. This is necessary because category
--.

features are exceptions to the test for nondistinctness. If this check

fails, CSCOMP returns the value 0 to indicate incompat$bility.

If IND = 1, the nondistinctness test ismade (CSNDST(MM,NN))

where MM and NN are the complex symbols derived from M and N .

If IND = 2, the inclusion test is mode (CSINCl(MM,NN)), MM and NN

as above.

If these tests fail, the return value is 0 .

If the appropriate test succeeds, the complex symbols are merged to

form a new complex symbol. (NNEW = CSMERG(MM,NN)).

Next asterisks which may appear in the complex symbol pointed to

by NNEW must be considered. Asterisks appearing as values of features in

a complex symbol indicates that the value of the feature may be either +

or - with equal probability. Thus a complex symbol with k asterisks

for feature values is really an abbreviation for 2k complex symbols. The

result of the compatibility test (if successful) is a complex symbol which

does not contain the asterisk value. Therefore at this time we select at

3.6-13

random without replacement from the possible 2k complex symbols and

test each complex symbol for compatibility by expanding the complex

symbol using the function REDRUL(NNEW') where NNEW is the complex symbol

NNEW-with asterisk values changed to either + or -. If the

redundancy rule expansion is successful, then the complex symbol pointer

JXQW is returned as the value of CSCOMP. If the expansion is unsuccessful,

a new value assignment is computed and the expansion repeated with the

new complex symbol NNEW'O The process continues until either a successful

expansion is obtained or until all value assignments are exhausted. In

the latter case, the return value of CSCOMP is 0 to indicate incompatibil-
--.

ity. Value assignments are computed so that each possible value assignment

has equal probability of selection. The limit on the number of asterisks

that appear in a complex symbol has been arbitrarily set at four. To

increase this limit, increase the size of the array ASTLST and increase the

test value at statement label 121.

If the complex symbol pointed to by NNEW does not contain any asterisk

values, then the complex symbol is expanded by the redundancy rules

(REDRUL(~EW)) and the appropriate result generated.
.

In summary, the value of CSCOMP is zero if the complex symbols are

incompatible. If the complex symbols are compatible the value is a

pointer to a new complex symbol obtained by merging the originals, selecting

a value assignment for any asterisk values, and expanding by the redundancy

rules.

If parameter M pointed to a tree node then the result of the compati-

bility test is saved in the array TREECS(M) (12 M 5 400) so that it may

be retrieved on a later call to CSCOMP with IND = 3.

3.7 Analysis

CXIN, input routine for complex symbols, structural analyses and

contextual features
. .

CXIN is a somewhat involved input routine which is used to read

three different types of objects. Since complex symbols may contain

contextual features, and structural analyses may contain complex

symbols, this program would have been much easier in any language which

allowed recursive subroutine calls.

There are three entry points to the subroutine. The normal

entry CXIN is for complex symbols, SLFEAT is for selectional

features and ANALIN is for structural analyses. At each entry logical

flags are set so that it is always possible to tell which entry was

called.

Data Storage

Complex symbol storage

The function of CXIN is to store the input object in the

appropriate arrays for later use. We first describe these arrays.

- Complex symbols are stored in CSLIST which is a b-row, 2000

column array , with current length = CSF'RPT - 1. (This structure

was chosen so that a single feature specification would be looked

at either as four INTEGER*2 entries, or as one REALTY entry). Each

column of CSLIST contains a feature specification consisting of

feature number, feature type, and feature value and also a pointer to

the next feature specification. A complex symbol number is a pointer

to the first feature specification of the complex symbol, Subsequent

feature specifications in the complex symbol are found by following the

3.7-l

pointers. The last feature specification of the complex symbol has a

pointer of 0. The feature specifications of a single complex symbol

are ordered by feature number. (The list structure of CSLIST was not

exploited in most of the code; actually the feature specifications

for any one complex symbol form an adjacent block in CSLIST.)

The feature number of a category or inherent feature (herein

called explicit features) is obtained by a call to NUMNAM. Numbers

are assigned in the order in which the features were first encountered.
--

Explicit features not given in the prelexicon, but encountered later,

are assumed to be inherent features.

The feature number of a contextual feature is 100 plus its

position in the list of contextual features.

The type of a feature is 0 for category features, 1 for inherent

features, and 3 for contextual features.

The value of a feature is 1 (+), 2 (-), 3(*)@

Storage of structural analyses

Structural analyses are stored in the parallel arrays ANALWP

and ANALST with subsidiary arrays ANALWD (current length = ANALWT)-

and AHALPT (current length = ANALTP). ANALPT contains pointers to

-ANALWP and ANALST. The current length of ANALWP and ANALST is

%'WLPT(ANALTP). Structural analysis I is stored from AlYALPT(L-l)+l

through ANALPT(I), (I 12) ANALWD is a REAL array containing first

tf*tf and " " and then the words which occur in analyses. Each symbol

or group of symbols in the structural analysis goes into an entry in

ANALPTo ANALWP contains pointers and other information:

3*7-2

Analysis item ITYPE ANALST ANALW

word 1 pointer to ANALWII pointer to preceeding

. . integer or0

2

integer

complex symbol

<

4 -=.

/<

-I</

>

8

1

10

2

3

4

18

17

16

5

.

(of an option 6

) of an option 7

(of a choice 19

> of a choice 13

(of a choice 20

1

0

-(lOO+integer)

‘-5

-1

pointer to CSLIST

pointer to >

-2

-3

-4

-6

-7

pointer to word preced-

ing <

pointer to)

-8 pointer to (

-9 pointer to ,

-10 pointer to , or)

-11 pointer to (

STORAGE OF A STRUCTURAL ANALYSIS

The values in ANALST and ANALWP are chosen for the convenience

of the analysis routine (ANTEST). In CXIN the values for ANALST are

stored in the array TTYPE, which is indexed by ITYPE, the internal

numbers in CXIN for the symbols. This allows CXIN to be changed with

relative ease.

3e7-3

Storage of contextual features

A contextual feature is a (special) structural analysis, enclosed

within angular brackets. Contextual features are stored in

SLCTPT(200,2), in which the first column contains a pointer to the

*
structural analysis. The second column is set to 0 by CXIN, but

will b
e

used by PRELEX to store a pointer to the restriction on the

structural analysis. The current length of SLCTPT is SLCTTP. In

order to be able to use the same sequence of numbers for all features,

the feature number of a contextual feature is its position in

SLCTPT + MXEXP (the maximum allowable number of explicit features).

(Names of'contextual features appear only in the array SLNAME

which is internal to subroutine NUMNAM.)

Initialization of Storage

The storage arrays of CXIN are initialized by the subroutine

INIT which is at the beginning of every run. INIT does the following

for CXIN:

ANALWD(l) = FSTAR lI*"

ANALWD(2) = FLINE "_('
ANALwT=2
ANALPT(l) = 0
ANALTP =l
SLCTTP = 0
CSFRPT = 1

Temporary storage areas in CXIN

Entities read by CXIN are not stored in the above arrays until

they have been completely read in. Temporary storage is used during

the read-in process.

The mnemonics for contextual feature storage were created when we were
calling them "selectional features", hencethe "SL".

3.7-4

LEVEL and SLEVEL are used to record the current levels of complex

symbols, and of analysis and contextual features. (Recall that the

basic difficulty is that complex symbols may contain structural

analyses which may contain complex sykbols, a l) Initially both LEVEL

and SLEVEL are set to 1. SLEVEL is incremented by 1 when the left

bracket of a new contextual feature is encountered; it is decremented

by 1 when a contextual feature is finished and stored into SLCTPT.

LEVEL is incremented by 1 when a complex symbol is encountered in a

contextual feature; it is decremented by 1 when a complex symbol

is finished and stored into CSLIST.

SLPUSH and'SLPUSN hold the values which will go into ANALST and

ANALWP. The SLEVEL-th analysis is stored in' SLPUSH and SLPUSN from

SLPHPT(-1) + 1 through SLPHPT(SLEVEL).

CSPUSH holds the values which will be stored in CSLIST. The LEVEL-th

complex symbol is stored in CSPUSH from CSPHPT(LEvEL-1) + 1 to CSPHPT(LEVEL).

PUSH is a two-column array used as a push-down for terms in ;

an analysis which will be needed to set up the backwards pointers

in ANALWP. For the SLEVEL-th contextual feature, PUSHPT(SLEVEL)
.

points to the first entry in PUSH for that feature, VLPUSH(SLEVEL)

is the value of the feature,

.
Reading in a complex symbol

The above explanation of storage is intended to help explain

how the three uses of CXXN for complex symbols, contextual features

and analysis are interrelated. We now describe the behavior of the

subroutine in each of these uses.

When CXIN is called, initialization steps set up the temporary

arrays. SLFLAG and ANALFL are both set to false, so that the entry point

3.7-5

r

can be recalled. The parameter STAGE indicates what is expected next

from FREAD. When STAGE = 1, the routine expects either a feature value,

or a " "I which will terminate the complex symbol When STAGE = 2,

a feature is expected. If the feature-is a word, the associated feature

number is retrieved from NUMNAM. The feature type is computed and the

value, type and number are stored in CSPUSH. If the feature is a

contextual feature, STAGE is set to 3 and a contextual feature is read

(see below). (STAGE = 4 is an error skip.) When the complex symbol
--
has been terminated by a "IrrI the feature specifications are sorted on

feature number, a check is made to see that there is only one category

feature, and the-complex symbol is moved into CSLIST. LEVEL is reduced

by 1. IfLEvEL= 1, AJ$ALFL is FALSE and SLFLAG is FALSE, the parameter

of CXIN is tested, and if = 1, the complex symbol is expanded by a

call to REDRUL. CXIN then returns control. If the triple test above

is not met, then we have just completed a complex symbol within an

analysis, so the routine continues.

Reading in a structural analysis

a In reading a structural analysis (either on a call of ANALIN or

SLFEAT or within a complex symbol), SLEVEL is first increased by 1,

STAGE is equal to 3, and then FREAD is used to read the entities of

the analysis. As each entity is read a b,ranch is made on the value

of ISPEC returned by FREAD, and ITYPE is set to the internal number

for the entity (in sorting it in CSPUSH and later in ANALST, TTYPE

(ITYPE) will be used).

For each value of ITYPE the process is essentially the same.

A check is made to see that-the entity can correctly follow the

3.7-6

i

previous ITYPE (now stored as NLAST). The value of SLPUSH (and hence

of ANALST) is computed, from ANALWD for ITYPE=l, (100 + the integer)

for ITWE=& and otherwise TTYPE(ITYPE). The value of SLPUSN (and
. .

hence of ANALWP) is computed by backing up in PUSH for entities which

point backwards. Entities which are to be pointed to by subsequent

entries are stored in PUSH, which contains in the first column a pointer

to SLPUSH and in the second column a code for the type, KEEP(ITYPE). The

entity is then stored in SLPUSH and the pointer in SLPUSN.

If a complex symbol is encountered, it is read as described above.

An analysis is terminated when either the '3" which corresponds to
-v.

the initial It<" of a contextual feature or a period is found. The analysis

is then compared with previous analyses so that it will not be stored

twice. If it is new it is stored in ANALST and ANALWP and the routine

continues if within a complex symbol, or otherwise terminates.

3-7-7

ANTEST, analysis

ANTEST is the subprogram which performs analysis (see AF-34 for

a description of the analysis procedure; equivalent knowledge will be
. .

assumed in the current description). It is called with three arguments:

TRANNO, TREETP, and ANAIJXO. Either TRANNO (for transformations) or

AN&NO (for contextual features) is used to locate a structural analysis

which has been coded into ANALST and ANALWP by subroutine CXIN; this

structural analysis is copied into arrays ANLIST and ANWDPT in positions

1 to TPOSN- The method of finding the structural analysis and a pointer

to its associated restriction is diagrammed in Figure 3*7-l. TREETP

is a number indica<ing the location in TREE/FTREE of the top node of

the sentence tree which is to be tested for analyzability.

ANTEST returns the value TRUE if the given sentence tree is analyzable

as the given structural description, and FALSE if not. For a TRUE return,

it further supplies (in the 50-position array NUMNOD) the positions of

tree nodes which have been associated with numbered structural description

nodes. Since some transformations require that all possible analyses be

found, NUMNOD is dimensioned 50X10 so that AJ!JTEST can return up to ten

different analyses; in this case, NUMCNT will be the number of analyses

actually found.

: To simplify this description , we will use several words in unusual

senses. A defnode will be anything in a structural description - word,

underline, asterisk, or boundary symbol - which matches a single

sentence node. This will free the word node to refer to only sentence-tree

nodes. An option will be a choice with only one structural analysis

in its clist of structural analyses; from here on, a choice will be a

3.74

. .

TRANNO

(-1- , . . .
TFUN

5) C-96) ANALPT ANALST/ANALMP

ANALNO:. -zs:

1

Figure 3.7-l

3*7-g

choice (in the usual sense) which is not an option.

Analysis is probably the most complex single operation performed

in this program system, because of the elaborate procedure that must
. .

be followed for matching and for backtracking when no match is possible.

To simplify this procedure as much as possible, an elaborate system of

pointers is set up during analysis. The backbone of this system is the

five vectors ANSKIP, ANNODE, ANPREV, AHNEX, and ANPAR, which parallel

the two vectors ANLIST and ANWDPT in which the structural analysis is stored.

Skips are ignored when first encountered; after the next defnode has

been matched, a range must be assigned to preceding skips. For this

purpose9 the variable SKIP and vector ANSKIP are used. SKIP indicates

the position of the last bypassed skip; ANSKIP points back to other

preceding skips. ANSKIP is defined for all bypassed skips, matched

defnodes, and the (of options (in case it is later decided that

the option should not be taken) and choices. It always points to a

preceding skip, and equals zero if there is no preceding skip. The skip

routine (statement numbers 500-599) uses ANSKIP to find skips after a

node has been matched, or at the end of an analysis level,

For backtracking when a match cannot be found, the variable PREV

and vector ANPREV are used. PREV points to the previous significant

item - defnode or (or < - preceding the current item.

ANPREVcontinues the chain. ANPREV is defined for each defnode and

(and < and > which is currently active (e.g., an option

which has been bypassed is not active). It equals zero for the first

significant item of the structural analysis and for every < l Using

ANPREV, the backtracking routine (statement numbers 700-799 in the program)

can thus easily find where it-is to restart the search after a mismatch.

3.7-10

The matching of a choice is aided by the vectors ANNEX and ANPAR and

the variable PAR. PAR points to the opening (of the choice while

a search is made for a match to the first defnode of the choice, and
. .

is zero otherwise; its major use is as a flag. ANNEX is used to chain

together those defnodes which are possible first-defnodes of a choice.

(See Figure 3.7-2 for a sample use of ANNEX and ANPAR). ANNEX of the

(points to the first possible first-defnode, ANNEX of this defnode

points to the next, and ANNEX of the last points to the > of the

choice. If there is a choice within the choice which may be first,

ANNEX points to the (of this inner choice , which is then chained
--S.

as usual; the > of this choice then continues the chain. ANPARis

used for skips, since ANSKIP does not sufficiently define skips within

choices; note, for example, that in Figure 3.7-2 the defnode C may

be preceded by no skip or by the skip in position 1, depending on whether

or not defnode B has been matched. ANPAR is defined for a defnode

or (or) or skip, and points to the chain of skips which will

precede a defnode if it is first in a choice. It is set negative when

pointing to a (or , and positive when pointing to a skip.

When a choice is encountered, the choice-setup routine (statement numbers

300-399) sets PAR; if this choice has not previously been seen, it also

sets up the ANNEX and ANPAR chains. The skip routine uses ANPAR as well

as ANSKIP to find skips; the matching routine (statement numbers 400~

499) uses ANNEX to move through the chain of defnodes for a choice,

and ANPAR to set up the proper pointers in ANSKIP. The backtracking

routine uses ANPAR to aid the restart when it backs up into a choice. -

The correspondence between defnodes and tree nodes is handled by the

3.7-11

Structural description

position

ANLIST

ANWDPT

Sample Use of ANNEX and ANPAR

A

3

3

0

b -H
6

(

5

-7

7

B

6

4

P

-/
8

\
-4

t

Figure $7-2

> (

7 8

!

-8 -9

5 10

4 -
b,

9

“52
-4

C 9

9 10

5 -10

0 13

0
12

t

4
11

0

0

D

12

>

--l$t-

1

14

6 -11 -11

0 8 2

'y,
14

matching routine and by subprograms ANRTES, ANRUNS, and NEXT. The arrays

NUMNOD and SKPNOD, vector ANNODE, and variables HERE and I&ST contain

pointers to tree nodes. ANNODE is defined for defnodes and skips. For

defnodes, it contains the position of the matching tree node; it is assigned

on a match, and reset during backtracking.. For skips, it points to

SKPNOD, a 200x2 array which points to the preceding and following matched
39

tree nodes, or is set to -1000 for a null skip; it is assigned in the skip

routine and reset during backtracking. HERE points to the tree node

.-currently being tested for a match; it is advanced in NEXT (see below)

and reset on a backtrack. LAST is the last matched tree node, used only

to appropriately -set the first column of SKPNOD.\

Subprogram ANRTES is called after a match has been found. It checks

restrictions and complex symbols, and sets NUMNOD. The first step is to

move through the chain of pointers to numbers set in ANWDPT by the input

routine CXIN. For each number, it copies the tree node pointer into

the number-th position of NUMNOD and calls RESTST to test any restrictions

associated with that number. If all succeed, and if there is a complex

symbol, it calls CSCOMP to check that it corresponds to the tree complex

a symbol (inclusion for transformations, compatibility for contextual features).

ANRTES then returns TRUE if all tests succeed and FALSE on failure.

Subprogram ANRUNS reverses the procedure of ANRTES; it calls RESTUN

instead of RESTST and restores NUMNOD. It is called by ANRTES on failure

and by the backtracking routine. The miscellany with-1000 in ANRTES

and ANRUNS is occasioned by the problem of telling whether a defnode

has simply not yet been reached, or has been bypassed (and thus made

explicitly null). ANNODE will be zero for not-yet-reached defnodes and

skips, -1000 for null skips,- -2000 for bypassed skips (set during the

3.743

final routine (statement numbers 80~@g)), and 1000 for bypassed defnodes.

NUMNOD combines the -1000 and -2000 into -1000. Since a number may be

assigned to several defnodes or skips (particularly in the case of choices),

no testing or reassignment in NUMNOD should take place during the final

routine if NUMNOD has already been set. Finally, in ANRUNS it is impossible

to tell, if NUMNOD and ANNODE are both -1000, whether NUMNOD should be re-

set; for this reason, ANNEX of a skip (not otherwise used, thus usually

zero) is set to 1 if this skip's ANNODE is not to unset NUMNOD.-

Levels should be discussed before proceeding to NEXT. For these,

the vector LEVTOP and variables LEVEL, TOP, and HERE are used. LEVEL
--.

is initially zero; one is added to it every time the program enters an

angle-bracketed subanalysis, and one is subtracted at the end of proces-

sing the subanalysis. TOP is initially set equal to TREETP (the top

node of the tree under consideration); every time a subanalysis is entered,

the current TOP is saved in LEVTOP and a new TOP is created pointing to

the tree node which matches the defnode heading the subanalysis; at

the end of the subanalysis, the old TOP is restored. TOP is set-negative

if the < of the subanalysis does not have a I preceding fit

(an immediate constituent analysis). HERE is set negative at the beginning

of a subanalysis to flag the beginning. This processing takes place in

the levels routine (statement numbers 600-699). The levels routine

also checks success or failure of subanalyses. If the < was

preceded and analysis reaches the > either at the righthand side

of the subtree or with a skip preceding, the subanalysis succeeds and

analysis continues. Otherwise, the subanalysis fails, and backtracking is

begun at the defnode heading the subanalysis.

3.7-14

Subprogram NEXT finds the next node in the tree. It has three

arguments: HERE, the previous node, TOP, the top node of the tree under

consideration, and SIGN, a flag which takes on the values -2, -1, 0,

1, 2. The new node is returned as a new HERE; HERE is set to zero if

there is no next node. NEXT is complicated by several features. The

very first node that should be examined is the topmost node in the tree;

this is indicated by HERE=O* This, however, is true only for the first

level of analysis; for subanalyses, the first daughter of the top node

is the first node to be tried. Thus all subanalyses commence with HERE

set negative and equal in absolute value to TOP. Thereafter, the procedure
--.

depends on whether there was a / preceding the subanalysis. If

so, or if this is the topmost level, TOP will be positive and a search

will be made for daughters of HERE (the leftmost of which will be taken

as a new HERE), and if there are no daughters the search will continue

to the right of HERE, but not going above TOP. If there was no /

then TOP is negative; in this case, the search will be immediately for

right sisters of HERE. If no next node exists, HERE is set to zero.

Skips introduce a further complication. If there is a skip

preceding the current defnode, it is all right to leave dangling tree

branches behind, but not if there is no skip. SIGN is used for this

purpose. When matching is first attempted, SIGN is set to zero and

remains zero; after a failure to match, SIGN is set to 1 and changes to

-1 when a branch is skipped (that is, when the old HERE has no daughters).

Also, the fact that SIGN=0 indicates that no attempt should be made to

find daughters of HERE; HERE has already been matched, so its daughters

are unavailable. SIGN is set to 2 when no next node exists.

3.745

Choices require more machinery. After skipping a branch during

a choice search, it is fairly easy to thereafter examine only those

first-defnode candidates which are preceded by skips; however, it

would be much nicer to quit immediately if none of them are preceded

by skips. For this reason, SIGN is set to -2 if it is -1 and a first-

defnode preceded by a skip is about to be tested; if SIGN is still -1

after ckecking all candidates, the match routine exits immediately to

backtrack instead of fruitlessly advancing HERE through the rest of the

tree.

The end of a level requires a check to see if any more nodes

exist to the right of the last-matched one, plus an assignment of range

if a skip is rightmost in the level. For this purpose, NEXT is entered

with SIGN=2 If no next node exists, SIGN will still be 2 and HERE

will be zero; any skip will have null range. If one exists, SIGN will

be set to -1 and HERE will be set to minus the absolute value of TOP,

which is the appropriate value to insert into SKPNOD to indicate a

level-ending skip.

Minor points not yet covered include POSN, which points to the

current position of the AN---- arrays. The scan section (statement

numbers 200-259) decides which other section of the program is to be

called next, on the basis of what kind of (WASFUR) thing is at the

current POSN. DEFNOD, set to ANLIST of the current defnode in the match

section, points to ANALWD, which contains names of defnodes; the first

two entries in ANALWD are permanently set to be * and - .

CYCL indicates cyclicity of transformations; as used by ANTEST, a value

of 0 (contextual feature) or 1 or 2 means to find at most one analysis,

3.746

while a value of 3 or 4 means to find all possible analyses. If the

parameter TRANNO is negative, it means that the current structural descrip-

tion and top tree node are the same , but the tree has been shuffled around

since last time; this is simply to save setup time, since vectors ANLIST,

ANWDPT, ANNEX, and ANPAR are already in place.

e

3.8 Programs for Restrictions

This section describes a set of subroutines (RESTIN, RESTST,
. .

RESTUN, and RESTPR) which manipulate restrictions. They input, test

and set, unset and print restrictions, respectively; GTOKEN is a "work

routine" for RESTIN. Input includes translation into internal format

and storage of the restrictions.

The description of a restriction is given in Figure I* below. The

description of the internal format and the composition of restriction

storage (/RESTCM/ - restriction common block) is given below.

RESTIN is cayled by any routine requiring a restriction input. The

primary routine calling RESTIN is TRANIN. Input to RESTIN is completely

free field and is read by FREAD. RESTIN calls GTOKEN and CXIN which

generate the next token and read in a complex symbol, respectively.

RESTIN r$urns the number of the restriction it just read in.

RESTST is called by a routine which needs to know if an analysis

satisfies a particular restriction or not. It returns true or false,

although internally it may find a restriction to be "undefined' (as a
a

result of a reference to a node which has yet to be assigned). "Undefined"

values are interpreted as true. RESTST calls CXEQ and CXINC to determine

if complex symbols are equal or included in one another, respectively.

The references to figures in section 3e8 are to figures 3.8.1 to
3.8.10. These figures are found at the end of this section.d

3.8-1

RESTUN is called by any routine which needs to unset (reset) a node

without unsetting (resetting) the whole restriction. Uneetting means .

setting to undefined all conditions which refer to the gimn node. RESTUN

may also be used to completely reset a restriction.

RESTPR will print a given restriction or print all the restrictions,

It is essentially a dump of /RESTCM/ .

GTOKEN is described in the description of the operation of RESTIN
1

below.

-3.8-2

- INTERiV&STORAGE

Restrictions are stored in the common block /RESTCM/ given in

Figure 4. The present capacity is about 150 restrictions. Capacity is

. determined by the size as well as number of restrictions. The I-th

restriction read is stored as follows:

RESTS(I*b-3) = value of restriction I:

0 = false, 1 = true, 2 = undefined

RESTS(I*4-2) -G pointer to first entry in RESTR

RESTS(I*4-1) = pointer to last entry in RESTR

RESTS(I*b) = pointer to first entry in CORDSI

RESTR(J) = if > 0: a pointer to first entry in CONDS

if < 0: -1 = logical OR

-2 = logical AND

-3 = logical NOT

CONDS(K) = value of the conditioil:

0 = false, 1 = true, 2 = undefined

CONDS(K+l) = coded type of condition:

WPe = N*lOWL, for the L-th N-ary restriction

(at present there are only l-ary and 2-ary

restrictions, so all types are in the range:

100 C type < 300)

CONDS (K+2) = first argument of restriction, it is always a number

> 0 which refers to a particular node

3# 833

CONlX(K+?)

corns (K+~+N)

f=if>O: the number of a particular node

if< 0: a pointer into WI, (designating a

word e.g;, 'I IfS , "PRlZD", or "ADS")(in

particular, to the q-CONDS(M)'th word)

if < NWDr a pointer to a complex sym'bol whic'h has

been read in by CXIN a (In pa rt ic:i a I ,

to t?le -COHIX(M)+NWD'th complex sjrm'bol.)

NWD is currently 100.

1) RESTS (restrictions) is always a nrultiple of 4 times the number

of restrictions in length; i.e., each restriction takes exactly fo.lr

locations in RESTS

2) RESTR (restriction tree) is of arbitrary length for each restric-

tion, but will always be at least one location long. The contents of

RESI'R is the Polish postfix for the restriction read in. It is composed

completely of references to conditions (the basic primitives, e.g., "TRM",

"AL" 9 "mOM't, etc.) and references to logical operators (e.g., "AND",

e "OR", "NW") .,

3) CONES (conditions) 1s the list of primitives which comprise

the restriction. Each condition is always at least 3 locations long,
.

and 'in general will be N+2 locations long for each N-.ary condition.

. ., 1 ‘.,,

* .I

- RESI!lN: GPERAT'.LOY * '- -

CALL: RES'T IN (OTW)

RESTIN is self-initializing: it il,itiaiIzes/RESTCM/' t,he first

time it is called. RESTIN provides checks to see t4at the capacit;y of

/'RESTCM/ is not exceeded.

RESTIN utilizes the "railway shunt aigorithm" to create a restriction

512 storage, It runs using a token generator to provide the next token.

Tokens are of two types: conditions and operators. Conditions are

returned by the token generator in an array called "TOK". Operator,5

are returned as numbers '> 0 in "OPFG".

The effect is to "compile" a logical expression composed of conditions:

the logical relations and pointers to %he conditions appear in .RESTR ic.

Poiish postfix, and the conditions themselves appear in CONDS.

RESTIN will input an arbitrarily complex logical combination of

restrictions.

GTOKEN generates the next token for FcF;STIN. It operates as follows:

e 1) Read the next symbol (by calling FREAD)

2) Test to see if it is a number, if so, go to 6)

1 3) Test to see if it is a "reserved wordltg if so, go to (5)

4j Find which logical operator it is and return

5') Find wh,ich l-aary operator this is 3 generate the array TCK:

containing the index of the condition followed by its argument;

return

6j Find which 'N*.,ary operator this is, generate the array TOM:

containing the index of the condition followed by its N argu-

ments; return

3.8~5

Every time GTOKEN ericoilrrters a "reserved .go~'ti" (e.g., "ADJ"9 "PlqED"9

"NOUN", etc.) it searches the ar-ray WC r“or a copy0 If it finds one,

it uses the negative of the index into Wk. If it does not find a copy,?

it generates one and uses the negative of the new index into WI2 o Every

time GTOKEN encounters a complex synibol, j 1:, caL:is CXI'N to input it, u i: x:p:v

returns the number of the complex symbol. G:TOKEN fi1l.s in TOK with mi,~l:(s

this number minus NWD. NWD is presentiy set at 100, If there is any

possibility of there beS.ng more than 100 "reserved words", NWD should be

made larger: the test routine discriminates between words and co-mplex

symbols by comparin'g their indices with NWC.

The lengths of RESTS, RESTR and CONDS are currently 500 each, LRESTS,

LRESTR and LCONDS (data initialized varia'bles in RESTI.N) should always be

set to the lengths of their respective arrays at compile time" Ths capacity

of /RESTCM/ is approximately LC9IJDS/3.5 restrictions,

3.8-6

- ,J!?.iwrST :, OPERAXONS ----I

R%STST both sets and tests the r?strlctjlon designated 'by I or

CREST (CREST L- current restriction; r,'hls varid'ble is in /RESTCM/), and

it returns true or false accordinglye

- Every time the current restriction is changed, RESTST automatically

resets it before testing, If the current restriction is the same as the

one at the Las-t call to RFSTST, RESIST saves time .by not resetting the
. .

restriction first0

If POSN is zero, CREST is set to I and restriction J’L is completely

reset before it is tested, Xf POSN is non-zero, RESTST tests restriction

RESTST interprets th,e Polish postfix in RESTR: it acts like a Polish

postfix machine. Each reference to a condition is interpreted to mean:

1) If the condition 'has value true or false, load the value stack

with this value.

2) If the condition is undefined, evaluate the condition.

3) Load the stack with the value of the expression,

f
RESTST condenses each pair of conditions whose names are (N&&3)

and N(NAME) (referring to the normal and negative forms of a condition)

into one evaluation via the varia'bie "'NORMAL". The value of a condition

winds up in the variable "CVAL".

RFSTFT will evaluate an arbitrarily complex logical combination of

conditions0 It uses the truth ta'oles in Figure 6 to evaluate the restric-

tiono If the final value is undefined, RESIST 'wiil return true. Figure 7

gives a ta'ble of arguments and actions for RESTST.

3 ..8-7

- RESTUN: OPERATlON -

CALL: RESTUN(I,POSN)._

RJWLVN unsets the condition designated by I n If POSN is zero, it

will set CREST to I and then completely reset restriction I o RESTZN

does this by setting RESTS(CREST+&~) to undefined, and

.each component condition of the restriction to undefined.

If POSN is greater than zero, the argument refers to

then setting

a node in the

analysis using the current restriction, All. component conditions which--.

reference this node are set to undefined,

RESTUN accomplishes the unsetting by going down CONDS and utilizing

the coded information therein.

Figure 8 gives a table of arguments and results for RESTUN.

3: 8-8

- RESTPR: ~OPERATION -

CALL: RESTPR(1)
._

RESTPR prints the restriction designated by the parameter I . If

this parameter is zero, it prints all the restrictions. See Figure 9

for sample output.

RESTRICTIONS ::=

RESTRICTION

CONDITION

CONDITION1

CONDITION2

CONDITION3

RIGHT-PART

RELATION1

RELATION2

RELATION3

. .. .=

: :=

: :=

: :=

: :=

: :=

: :=

: :=

. ..-. .-

-*FIGURE 3.8.1 -

SYNTAX OF RESTRICTIONS

*RES RESTRICTION .

BOOLEANCOMBI,nJATION (CONDITION)

RELATION1 RIGHT-PART

INTEGER RELATION2 RIGHT-PABT.

INTEGER RELATION3 RIGHT-PARR, RIGHT-FART-b.

INTEGER1WCRD1COMPIEXS Y M B O L

TRM(NU?M(NULlNNUL- - - -

~lNEQIDOMINDOMlHAS!NHAS]EQCSI~QCS

EMPTY (There are no 3-ary conditions as yet.)

NOTE 1: The definitions of the relations are found in Figure 3.8.10.

NOTE2 : Although the syntax will aliow the creation of almost arbitrary

constructs, not all of them have meaning, The input routine

(RESTIN) will not detect any meaningless constructs: it will

accept any syntactically correct restriction, Only during the

evaluation of the restriction (via RESTST) will the error be

detected,

3:NOTE Additional relations will be included as they are found to be

useful.

3.840

RESTRIC-
T:i.ON

TRM 101

NTRM 102

NUL- 103
NN'tiL 104

EQ 201

NE& 202

DOM 203
NDOM 204

HAS 205

N-HAS 206

EQCS 207
NEQCS 208

CODE

TABLE OE' ,&Li';WAB:,E A.RGiJKElYTIS

ARGS

1

1

1

1

2 . .

2

2

2

2

2

2

2

t
X

X

X

x

X

X

X

X

X

x

X

X

WGRD

X

X

-C-SYM

3.8-11

SUBPROGRAM

RESTIN(ONE)

RESTST(I,POSN)

RESTUN(I,POSN)

RESTPR(1)

GTOKEN(SYM)

NOTE 1: TYPE: 1*2 - INTEGER*2 function

TYPE

SUBPROGRAM CACL/RESUiJ'II TABLE i/

CALLS-v

GTOKEN

CSEQ

CSINC

-m-

FREAD

CXIN

RESUIJTS

Returns number of the restriction it

reads in and stores restriction.
,

Returns true/false depending on whether

the restriction is satisfied ornot.

Unsets a restriction; returns nothing,

Prints a restriction; returns nothinga

Returns a token: Iogical operator or

condition.

I;+#1 - LOGICAL*1 function

s -I subroutine

NOTE 2: ONE = dummy argument

1 = restriction number

. POSN = position in an analysis

S'YM = array internal to RESTIN

3.842

- FIGURE 3i8.4 -

COMMON BLOCK FOR RES':L'RIi-"TIONS

COMMON /RESTCM/ WD,CREST,PS,PR,PC,FW,RESTS(~OO),RESTR(500)9 RESTCMl

CONDS (500) RJ3STCM2
T

REAL+8 WD(100) RESnM3

-

COMMON BLOCK FOR GTOKEN

COMMON /RTOKEN/ OPFG,LTH,TOK(lO)

DATA VARIABLES IN RESTIN

INTEGER*2 LRESTS/5OO/,LRESTR/5OO/,LCONDS/~OO/,~/lOO/

RTOKEN

3.8-13

’ m FIGURE 308.5 -

SAMPIJZRUN

EXAMPLE 1:

RESTS0

RESTR()

coNDs()

Wi

ptr1 -

ptr2 -

l?tr3 -

ptr4 -

EXAMXJZ 2:

RESTS(j

e RESTR()

CONDS(j

-WD(j

ptr1

pk.2

ptr3

ptr4

NUL 5 .

2 1 1 1 undf'd,ptrl,ptr2,pti

1 ptr4

2 103 5 undf'd,N&5

empty
--.

points at the 1 in RESTR()

points at the 1 in RESTR()

points at the 2 in CONDS()

points at the 2 in CONDS()

3 DOM 4

2 2 2 4 undf'd,ptrl,ptr2,ptr3

4 ptr4

2 203 3 4 undf'd,DOM,3,4

empty

points at the 4 in RESTR() .

points at the 4 in RJBTR()

points at the 2 in CONDS()

points at the 2 in CONDS()

EXAMPLE 3:

TRM 7 & 6 HAS !=+HUMANI .

RESTS()

RESTR()

CONDS()

WDO

ptrl -

ptr2 -

ptr3 -

ptr4 -

ptr5 -

EXAMPLE 4:

RESTS0

RESTR()

coNDs()

1 WD()

ptrl

ptr2

ptr3

ptr4

ptr5

2358 udf'd,ptrl,ptr2,ptr3

8 11 -2 ptr4;ptr5,&

2 101 7 2 205 6 -101

undf'd,TRM,7,undfTd,HAS,6,1=tMJMANI

empty

points at the 8 in RESTR()

points at the -2 in RESTR()

points at the first 2 in CONDS()

pckts at the first 2 in CgNDS()

points at the second 2 in CONDS()

1 ((6 DOM PRIED 1 5 NDOM VP j & 8 NEQCS]=-HlJMANf) o

2 6 11 15 Llndf'd,ptrl,ptr2,ptr3

15 19 -1 23 -2 -3

pthptr5,i &r6,&,1

2' 203 6 -1 2 204 5 -2 2 208 8 -102

undf'd,DOM,6,PRED,wndf:d,5,~,

undf'd,NEQCS,8,/=-HUMAN1

PRED VP

points at the 15 in RESTR()

points at the -3 in RESTR()

points at the first 2 in CONDS()

points at the second 2 in CONDS()

points at the, third 2 in CONDS()

3.8-15

1
:

_.

,’

Note that positive numbers in CONDS() refer to nodes in the analysis,

and that negative numbers are pointers. Pointers of magnitude less .

than 100 refer to WD(); pointers of magnitude greater than 100 refer

to complex symbol storage.

All restrictions go in with value undefined,

3.8-16

-'FIGURE' 3.8.6 _

TRUTH TABLES--FOR RESTST

NOT

t

AND F T U OR F T U

F T F F F F F F T U

T F T F T U T T T T

u u U F U U U U T U

--.
F = false (coded as 0)

T = true (coded as 1)

u = undefined (coded as 2)

5.8-17

-?

- FIGURX3=8.7 -

RESTST: TABIE OF ARGUMENTS AND RESULTS

\POSN

I\
x>

=o

co

. .

=o

CREST=1

test & set

illegal

illegal

xl

test & set

using current

illegal

illegal

<O

illegal

illegal

illegal

r 3.8-18

-* FIGURE 3.8.8 -

RESTUN: TABLE OF AQUMENTS AND RESULTS

POSN

\I =o

x

=o
--.
<O

CREST=1

reset restrct

I

illegal

illegal

x

reset all refs

ts node POSN

in restrct I

illegal

illegal

co

illegal

illegal

illegal

3;8-19

A c
c
VI
4

z
4 d

z1
4

xSt

-u
4
FN

0
r,‘ Iu

- 12iiSTl’c -
KESJ # T tt E’k

1 ,- 3 -L 4’
8

12 l o - 1 29 -I
24 - 3 -.

28 -3 - 1
- 3 32 - 3 3 6 - 3 -1
40
44
48 52 - 1

- CCNCS -
REST # VkLUE TYi'k A % 1.2 u F,l It N T S

1

2
.3

4
5
6

7
8
9

2
)
; . .

2
2
2
2
2
2
2
2
2
2
2

2Cl * - 1
I,(3 3 -;
205 5 -101
2c+ 6 - 2 -
2c7 7 -1G2
203 17 - 3
L 0 5 4 - 1 c 3
2C6 i3 -IQ4
207 4 -1c5
2i7 5 7
203 3 5
2,:3 7 - 3
2C4 8 - 4
2C1 6 5

- ‘dUHCS -
. /S / A L P H A /I= ot: /SS

3.8-21

NAME

TRM

NTRM

NULa

NNUL

EQ

I- Figure 3.8.10 -

DEFINITION OF RELATIONS

FORMS

RELATION1 INTEGER1

INTEGER2 RELATION2

INTEGER2 RELATION2

INTEGER2 RELATION2

WORD1 .

coMPm SYMBOL

where"RELATION1 is one of-the unary relations and

RELATION2 is one of the binary relations

INTEGER3

DEFINITION

RESULT

true if node INTEGER1 is terminal

false if node INTEGER1 is not terminal

same as II TRM

undefined if node INTEGER1 has yet to be assigned

false if node INTEGER1 has been assigned

never true

undefined if

true if node

never false

true if node

-

node INTEZERl has yet to be assigned

INTEGER1 has been assigned

INTEGER2 is equal to node INTW:

.has same substructure and complex symbols are equal

(uses CSEQ to test complex symbols)d

false if noti equal

A

3.8-22

NEQ

DOM

'NDOM

HAS

NEQCS

same as 1 EQ

true if substructure of node lXTEGEE2 inciudes a WORD equal
-.

to WORDlo Does not search below an S

false if not equal

same as 1 DOM

true if node INTEGER2 and node INTEGER3 have non-conflicting

complex symbols or if node INTEGER2 and COMPLEX SYMBOL

are non-conflicting. (Uses CSINC to test complex symbols)

false if not
i.

same as 1 EQCS

NOTE: All relations (except NUL & NNUL) are undefined if at least

one operand is undefined

3.8-23

3.9 Structural change

CHANIN, Input routine for structural change.

CKANIN is an INTEGERS function of one dummy INTEGER%? argument.

CHANIN reads in the instruction part of a structural change, stores it,

and returns a pointer to the instruction.

The syntax of structural change is given in Appendix A (5.01 -
.-

5.10). The formats restriction, tree, and complex symbol are given

elsewhere in the descriptions of the subroutines which read and

store them. CHANIP?is called by TMU,N after it reads an SC . CHANIN

reads the structural change and stores it, and returns after reading

a period. CHANIN calls RESTIN(ONE), FTRI(TWO), and CXIN(ONE) to read

a restriction, tree, or complex symbol.

Internal storage

A pointer to the structural-change for the J-th transformation

is stored by TRANIN in TRAN(J,T) . The instruction is stored by CHANIN

in the COMMON block /CHANCM/.

Initialization: /CHANCM/ is initialized by a BLOCK DATA pro-

gram given in section 5. CHAN, CHWORD, FCHTRE, CHTREE, and CHCLIS are

initially empty. OPLIST is initialized to contain the list of operators

and complex operators. The current sizes of CHAN, CHWORD, CHTREE, CHCLIS,

and OPLIST are NCHAN, NCHW, NCHT, NCHCL, and NOPL; the maximum sizes are

MXCHAN, MXCHW, MXCHT, MXCHCL and MXOPL.

Each change instruction is stored in a line of WAN. A change is

stored in CHAN as follows:

CHAN(I,l) =

cHAN(1,2) =

Cm(I,3) =

cHAN(I,4) =

CM&S) =

index of the operator or complex operator in OPLIST

type of first second argument 0, 1, or 2 as above

second argument

as for first argument

CHAN(I,~) = pointer to next instruction to be done (0 if none)

type of first argument

0 if none
1
2
3
4

if
if
if
if

‘(tree)
czex symbol

first argument

if type 1 then the integer
if type 2 then a pointer to CHWORD
if type 3 then a pointer to CHTREE
if type 4 then a pointer to CSLIST

A conditional change is also stored in a line of CHAN, but the allocation*

is different:

3* 9-2

CHAN(IJ) = 6

CHAN(I,2) = pointer to the

CHAN(IJ) = pointer to the
restriction is

cHAN(I,~) = pointer to the
restriction is

cm(1,5) = CHAN(I,~) = o

restriction

next instruction to be done if the
met (0 if none). .

next instruction to be done if the
not met (0 if none)

CHWORD is simply a ~*8 list of words. FCHTRE, C-E, and

CHCLIS store trees as described in section 3*3*

The final setting of the pointers to the next instruction is not

done by CHANIN proper, but by the entry CHANTY, which tidies up the table

CHAIN. This entry l"s called by TRANIN after all the structural changes

for the grammar have been read. A call to CHANOU causes the structural

change tables to be output.

The output of CHANOU is shown in Figure 3.9-l.

STRUCTUYAL C t-ANGFS 1
1
I
2
3
4
5
6
7
8
9

10
11
12
13
14

I;

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
37
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

TYPE ARG Of-J
h 1 ?
2 1 1
2 2 1
2 1 1
2 3 1
1 5 4
0 0 11
1 3 5
1 7 6
2 4 1
2 5 1
1 4 2
1 6 ti
1 6 2
1 4 4
1. 4 4
6 4 18
4 9 12
4 10 12
2 6 3
0 0 11
0 0 11
2 7 5
6 8 25
4 17 12
4 18 12
0 e 11
0 0 11
0 @ 11
0 0 11
1 4 2
1 3 3
1 5 2
2 5 3
2 8 -3
0 0 11
0 0 11
1 3 2
1 4 1
1 5 1
1 2 4
1 4 4
1 4 8
1 4 2
1 5 2
1 3 4

0 0 11
0 0 11
0 0 11
0 0 11
1 4 ?
1 5 2

ARGT AfJG N E X T
3
1
1
1
1
1
1
I.
1
?.
1
1
1
1
1
1

1 9
1
1
1
1
1
1

26
1
1
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

. .0
4
4
5
4
3
4

10
3
5
5
5
3
4
5
3
0
4
4
6
3
3
5
0
4
4--
5
4
5
4
3
4
3
3

s
5
7
7
7
5
9
3
2
3
4
3
3
3
5
3
3

0
0
0
c!
0
0
0
9

10
11 ‘,

I 0
0
0
c)
0
0
0
0
0
0
0
0
0
0
0
0
0

?9
30
0
0 "
0
0
35 *
0
0
0

39
40
0
0
0
0
0
0
0
0
0
0
0

52
53

3* 9-4

w

53
54
55
55
57
5R
59
6r
ci 1
62
63
5 4

65
56
h7
h’!
5’,
I -;

71
77
77
‘4

7 5
7 ‘1
77
73
74

$
4-3

cn
91
9?

1
1
1
1
I
1
1
1
1
f
1
1
1
1
1
1
1
1
1
!
1
1
\
1
1
1
1
1
I
1
1
1
1
1
I
i
1
1
1
1
1
1
1
1
1
1
1
1

3
4
4
1
1
3
2
3
7
2
3
1
?
7
3
1
3
3
7.-
7
7
7
2
-4
7
3
7
3
7
7
1
3
3
3
?
7
7
-4
2
3
2
2
?
I
1
7

;
7,

, ?
c.
CI

6
5P

n
h

0
n

c,
fl ,

.l

-> Tkf34’ 4 p? 5 Eh. b E V F R 7 r)CF i3 H A V E Q Fr)
l? fJ)In 1 3 D’1ES 14 fm 15 IS 16 asE 1 7 WAS 19 WFQE
71 JIJQ 2 2 W H I C H 2 3 WI-AT 3 4 F!-!I? zs T O 26 ING 77 RY

CHANGE, control program for structural change

When a transformation is to be applied, CONTRL calls CHANGE. CHANGE

makes a subroutine call for each of the change operations in the structural

change. If the operation is a tree operation, ELEMOP is called; if it is

a complex symbol operation, CSEXCH is called. When all of the change

operations have been performed, CHANGE relinquishes control to CONTRL.

--

ELEMOP, elementary tree operations

ELEMOP performs one tree operation for each call from CHANGE, and then

returns. ELEMOP also contains separate entries for a subset of the tree

operations and is occasionally called by other subroutines. For example,

GEN calls the entry ALADE in building a tree.

The elementary tree operations of ELEMOP are those of the MITRE

grammars and those of the IBM core grammar. The MITRE operations are:

SUBST SUBSE substitution

ADRIS ARISE add as right sister

ADLES ALESE add as left sister

ADFID AFIDE add as first daughter

ADW ALADE add as last daughter

ADRIA ARIAE add as right aunt

ERASE erase

The operations in the left-hand column first make a copy of the

subtree to be adjoined, and then adjoin the copy; those in the right-

hand column move the original subtree to the new position, thus

effectively erasing the original. The IBM operations are:

SUBSTI SUBSEI

* ADRISI ARISE1

3.94

ADLESI ALESEI

ADLADI ALADEI

The IBM operations differ from the MITRE operations in that in

general in the IBM operations chain upward from the named nodes.

Description of the individual IBM operations follow.

Substitute: SUBSTI (Nl,N2) and SUBSEI (Nl, IV2)

Both SUBSTI and SUBSEI substitute the subtree headed by Nl for

the subtree headed by N2; in addition) RJBSEI erases the original

occurrence of'N1.

Given the tree:

F

Ex .

I

SUBSTI (E,D) while SUBSEI (E,D)

. produces: A

B

A

E E

/
H 'H

produces:

C

I

.
If immediately above Nl there is a non-branching chain of nodes, the

top of that chain is used instead of Nl; similarly, the top of any

non-branching chain above N2 is used instead of N2. Thus, SUBSTI(E,F)

applied to

produces

--

and SUBSTI(I,D) applied to

A

4C
produces

E

B

11n E

H

I

Add as right sister: ADRISI(Nl,N2) and ARISEI(Nl,N2).

Add as left sister: ADLESI(Nl,N2) and ALESEI(Nl,N2)

These operations add the node Nl as the left or right sister of

the node N2; in addition, ARISE1 and ALESEI erase the original occurrence

of Nl.

ARISEI(G,B) applied to

3e 9-8

. .

produces
D

EH IF

Nl will be replaced in these operations by the head of any non-branching

chain above Nl, but N2 will not be so replaced. Thus, ADLESI (F,B)

applied to

A

B C$D E

F

but ADLESI (F,D) applied to

Add as daughter: ADLADI (Nl,N2) and ALADEI (Nl,N2)

ADLADI adds Nl as the only daughter of N2;i t m a y n o t b e u s e d i f N 2

already has descendants. ALADEI adds Nl as the only daughter of N2 and

3.9-P

also erases the original occurrence of Nl. The operations chain upward

from Nl but do not chain from N2. AIJQEI- (F,B) applied t9

while

mm (F,D)
--.

applied to

A

AB C

F

produces

produces

A

B-P C

E
D

4F

A

B0 C

D E

F

Erase: ERASE1 (Nl)

This operation deletes from a tree the subtree headed by Nl as

well as any non-branching chain above Nl.

ERASE1 (E) applied to

A

produces

B A C

E

3.940

3.10 Complex symbol operations

CSEXCH(N,M)

CSEXCH (Complex Symbol Exchange)_ is an INTEGER*2 function which

sets up calls to CSOP and returns the results of CSOP. The arguments

N and M are complex symbol numbers (i.e. pointers to CSLIST).

CSEXCH is never entered from the beginning but always from one of

the entries which determine the test or operation to be performed. The

-. entries are:

--.

For tests

CSEQ

CSINCl (or equivalently, CXINCl)

CSINC2

CSNDST

For operations

CSMERG

CSMERR

CSERAS

a CSSAVE

For each entry except CSMERR CSEXCH makes a preliminary test and an

immediate return if the test or operation is trivial (N=M). Otherwise it

makes the appropriate call to CSOP by setting TYPE to 1 for operations

and 2 for tests, and selecting the array A which defines the test or

operation as the second argument of CSOP.

Each of the matrices defines a function of feature values and

is of the form:

3.10-l

N + + + + - - - - * * * * A A A A (A = absent)

M +- * A + - * A + - * A + - * A

A@, M)

For tests the values in A(N,M) are 1 if true, and in general 2 if

false. An exception is CSINCl where 2 and 3 are both false, 2 in the

case of noninclusion because of the absence of the feature in M and

3 if the values in N and M conflict. (This distinction is used by

. REDRUL.)

For operations the values in A(N,M) are the values to be given

to the feature in the new complex symbol being constructed. They

are 1 (+), 20,“3 (*I, 4 (ba sent) and 5 (a random choice between

+ and -).

It should be noted that new operations and tests may easily be

defined, simply by adding to CSEXCH a new entry and a corresponding

new value for the matrix A .

CSOP(TYPE,A,N,M)

CSOP is an INTEGER*2 function of four arguments which is called by
a

CSEXCH. CSEXCH determines the function of a particular call to CSOP

and sets up the arguments. The arguments are:

. TYPE, an integer with value 1 is a new complex symbol is to be

created, or value 2 if a test on complex symbols is to be evaluated.

A is an integer array which represents the 4x4 matrix which defines

the operation or the test to be performed.

N and M are pointers to the complex symbols which are the

arguments of the operation or test.

3.10-2

Each test or operation on two complex symbols is computed from

the value of the test or operation on the individual feature specifica-

tions of the two complex symbols. The value of a test is the maximum
1.

of the values for individual feature specifications; thus, if a

test is to succeed it must be true (=l) for all pairs of feature

specifications. The value of an operation is the complex symbol

resulting from pairwise application of the operation to the feature

specifications in two complex symbolsl

In order to understand the flow of CSOP it is necessary first

to know the structure of the array CSLIST(4,2000) which contains the

complex symbols.% Each entry in CSLIST consists of (feature number,

feature type, feature value, pointer to the next feature specification

in the complex symbol (0 if none)). The entries in CSLIST for a

particular complex symbol are sorted on the first column (feature

number). This ordering is taken advantage of in going through the

complex symbol.

The subroutine uses the same basic cycle to pick the current

feature specification pairs for both operations and
.

difference in the treatment in operations and tests

feature specification pair has been selected. Then

depending on TYPE and the operation or test carried

pair. TYPE is also tested in initialization and in

The discussion of how the matrix A

will be found in the writeup of CSEXCH.

determines the result of CSOP

REDRUL(M)

REDRUL is an integer-n2 *function of the complex symbol number M. It

3.10-3

tests. The main

comes when a

a branch is made

out for the current

finishing up.

returns the number of the complex symbol obtained after expansion of

M by the redundancy rules, of 0 if a contradiction is found in doing

the expansion.

The redundancy rule A* B has been stored in RULE as the pair

of complex symbols (A,@ l
Parallel to RULE is a temporary LOGICAL*1

array RULCHK.

-

First RULCHK is initialized to FALSE, and FLAG is set FALSE.

The main cycle is a pass through the rules in RULE. For the

Ith rule, the computation is: If RULCHK is TRUE the rule is skipped.

Otherwise9 the two parts A and B of rule I are compared with the

complex symbol>M using CXINCl. If A is included in M and B

is not included in M and B does not conflict with M , the new

value of M is set to the result of merging (MERGEl) M and B ,

RULCHK (I) is set TRUE and FLAG is set TRUE. If A and B are both

included in M , the RULCHK (I) is simply set TRUE. The next rule is

then considered. If A is included in M , but B conflicts with

M (i.e. CXINCl returns 3), an error message is printed and the sub-

routine terminates. After all rules have been tried, FLAG is tested

and if TRUE, it is reset to FALSE and the main cycle is repeated. If

FLAG is FALSE, no changes have occurred on the last cycle, so the

. expansion process is complete0

After the iteration of the main cycle is completed a space recovery

section of the code is executed to reduce waste space in CSLIST. All

intermediate complex symbols created by merging are erased and only

the final result is retained0

3.10-4

3 .ll Control program

This section describes a set of subroutines (CPIN, SYNCHK, REXOG, CONTRL,
SCAN, TAPPLY, TRACE, APPLYG) which input and interpret control programs.

CPIN inputs a control program, checks syntax, and checks block
structure. It also builds the symbol table which associates symbols and
locations in CPBUF (the control program main storage area).

SYNCHK is a general context free grammar recognizer. It is called’by
CPIN to check the__syntax of the control program.

RECOG is a token gencrator/recognizer for SYNCHK. It uses SCAN to do
the actual token generation.

CONTRL interprets a control program residing in CPBUF. It checks
syntax as it executes. SCAN is a token generator for CONTRL.

SCAN is a token generator used primarily by CONTRL to determine what is
the next item in the execution sequence.

TAPPLY is the subroutine (with four entry points) which determines
whether a given transformation should be invoked and if so, invokes it.
It is driven by CONTRL and APPLYC and itself drives TRACE.

TRACE is the routine which does the outputting of trace infoxmation
. during the execution of the control program.

APPLYG is driven by CONTRL. Its function is to invoke those
transformations of a group (denoted by group number) which should be
invoked. It hands the members of a group to TAPPLY one-by-one .

I 11 1

FORMAL, DEFINITION OF -A CONTROL PROGRAM

SYNTAX

.

CONTROL-PRO(;RAM : :-

CONTROL-PROGRAM : :-

CONTROL-INSTRUCTION ::-

LABEL ::- N.

INSTRUCTION : :-

CONTROL-LIST : :- < SCLIST [INSTRUCTION] >

CONTROL-ELEMENT : t- REPEAT-INSTRUCTION OR
IN- INSTRlJCTION OR
IF-INSTRUCTION OR
FLAG-INSTRUCTON OR
GO- INSTRIJCTION OR
TRACE- INSTRIJCTION OR
STOP-INSTRIJCTION

CONTROL-PROGRAM1 .

SCLIST [CONTROL-INSTRUCTION]

LABEL CONTROL- INSTRIJCTION OR
CONTROL-INSTRlJCTION LABEL
I NSTRt JCTION

WORD : LABEL
WORD :

CONTROL-ELEMENT OR
TRANSFORMATION-ELEMENT OR
CONTJtOL-LIST

TRANSFORbfATION-ELEMENT : := TRANSFORMATION-NAME OR
GROUP-NUMBER

REPEAT- INSTRUCTION : : - RPT INTEGER < CONTROL-PROGRAM1 > OR
R P T < CONTROL-PROGRAM1 >

IN-INSTRlJCTION : :- IN TRANSFORMATION-NAME (INTEGER)
DO < CONTROL-PROGRAM >

IF-INSTRUCTION ::- IF INSTRUCTION THEN GO-INSTR1JCTION
OPT [ELSE GO-INSTRlJCTION]

FLAG-INSTRUCTION ::- FLAG-NAME TRASFORMATION- LIST

FLAG-NAME : := FLAG OPT [INTEGER]

CO-INSTRUCTION ::= 233 To WORD OR
GOT0 WORD

3.11-2

TRACE-INSTRUCTION : := TRACE TRANSFORMATION-LIST SPECIFICATION OR
UNTRACE TRANSFORMATION-LIST OR
TREE

SPECIFICATION ::- BEFORE TEST OR
AFTER SUCCESS OR
AFTER FAILIJRE OR
AFTER CHANGE OR
RESULT

STOP- INSTRUCTION : :- STOP OR
.

TRANSFORMATION- &TST : : - TRANSFORMATION-ELEMENT OR
< SCLIST [TRANSFORMATWN-ELEMENT.] >

3.11-3

SEMANTICS
-.

A control program is a sequence of control instructions separated by
semi-colons’ and ending with a period.

Each control instruction may be labeled with an indefinite number of
labels.

A label is a word, which is not a reserved word, followed by a colon.
-All terminal symbols of the syntax and all transformation names are
reserved words. Duplicated labels are not allowed.

There are two types of control instructions: those specifying control
elements (instructions to the interpreter] and those designating
transformations. %’ Control elements may be thought of as operators and
transformation elements as orcrands.

Instruct ions m a y be grouped for convenience by enclosing them in.
angular brackets. Nesting within angular brackets may occur to any
desired depth. Each pair of angular brackets serve to define a block (see
Block Structure below).

There are seven types of control elements. Each differs in its effect
on the interpreter and its effect on the tree.

A transformation element may be the name of a transformation or the
name of a transformation group (denoted by a Roman numeral).

TWO forms of repeat instructions exist: definite and indefinite. Both
a are similar in interpretation.

The definite repeat will execute the following control program INTEGER
number of times or until the control program has no effect (i.e. has value
false - see Values below), whichever occurs first.

The indefinite repeat will execute the following control program until
it has no cf feet (i.e. has value false - see Values below). The number of
iterations of the control program will not exceed INFNTY - a variable in
cPcob4.

The value of the repeat is true if any transformation was succcessfully
invoked and is false otherwise.

The IN-construct allows the user to fix a top node of the tree. This
node may or may not be the mot of the tree, allowing the transformations
in the control program following to operate on a subtree of the originald
tree if desired.

Execution of an IN-construct proceeds as follows:

3.11-4

Invoke the named transformation.

If successful, examine the node designated by the INTEGER.

If this node has never been used as the top node of the IN before,
execute the control program using this node a s the top of the tree.

If this node h a s been the top node of the I N before, find another top
node by invoking the transformation again. If the invocat ion is
unsuccessful, the IN terminates. If it is successful, ex’amine the node
designated by the INTEGER as above.

T h e v a l u e of the IN is true if any invoked transformation succeeds and
is false otherwise.--.

The FLAG instruction provides the means by which a group of
transformations may be monitored. Flagging both establishes the group
and sets the flag to false. The value of a flag is true if any
transformation in its group has been successfully invoked since the f l a g
was last established and is false otherwise.

There are ten flags which m a y be referred to by number. The construct
FLAG with no INTEGER following is taken to rpean FLAG 0.

An IF-construct with FLAG means: if the c u r r e n t v a l u e of t h e
designated f lag is true then execute the first GOTO, if it i s f a l s e t h e n
execute the second GOT0 if it exists (otherwise control passes to the next
instruction). If no INTEGER follows FLAG flag 0 is a s s u m e d . An IF
followed by any other instruction means: if the value of the instruction
is true then execute the first GOTO, if it is false then execute the

- second GOTO if it exists (control passes to the n e x t i n s t r u c t i o n if it
does not). Note that a g r o u p must be formed through an instance o f a
FLAG-construct before an IF-construct with FLAG h a s meaning.

Two forms of GOTOs exist.
efflect.

They are entirely equivalent in their
Both force the execution of the control program to continue from

the point specified. Jumps into blocks a r e n o t .allowed (s e e B l o c k
Structure below).

Three types of trace instruction exist: TRACE, UNTRACE and TREE.
UNTRACE resets the trace operation (turns off the output). TRACE turns on
a specified type o f dump (see below). TREE outputs the whole current tree
whenever it is executed.

3*1-l-5

Five types of dumps are provided. Any combination, including all, are
possible. BEFORE TEST outputs the current tree before a call to ANTEST is
made but after all keywords have been satisfied. AFTER SUCCESS outputs
the current tree after ANTEST has returned true but before the tree has
been changed. AFTER FAILU RE outputs the current tree after ANTEST has
returned false. AFTER CIIANGE outputs the current tree after a call to
subroutine CUANGE. RESJJLT outputs one line telling whether or not the
transformation was successfully applied.

The STOP instruction terminates execution of the control program. An
alternate way to terminate the” control program is to “run off the end”,
i.e. to try to execute the period.

A TRANSFORMATION-LIST is either a transformation element or a list of
transformation elements separated by semi-colons and enclosed. in angular
brackets.

VALJJES

Each INSTRUCTION of a control program has a value. This value is
determined as follows : \

CONTROL ELEMENTS:

RPT - true if any value of its control program is true;
false otherwise.

IN - true if the IN-transformation has value true;
false otherwise.

IF - true if its INSTRUCTION is true;
false otherwise.

FLAG - has no value. A FLAG within an IF has the
value of the FLAG designated.

GO - has no value.
TRACE - has no value.
STOP - has no value.

TRANSFOWATION-ELEMENTS:

TRANSFOW!ATION-NAME - true if the transformation
is successfully applied (i.e. a structural change
has been made or would have been if it were not void);
false otherwise.

GROUP-NIElBER - - true if any transformation in
the designated group is successfully applied;
false otherwise.

3.11-6

Lists : . .

CONTROL-LIST - true if any element of the list has
value true;
false otherwise.

TRANSFORMATION-LIST - true if any element of the
list has value true;
false otherwise.

CONTROL-PROGRAM1
has value &e;

true if any element of the list

false otherwise.

An undefined value is taken to be false throughout.
-m.

In general angular brackets serve to combine many values into one.
This combination is formed by taking a logical inclusive-OR of the values
of the elements within the brackets.

BlDCK STRUCTURE

A block may be formed by the usage of angLlar brackets. The elements
within a block form a unit and determine one value (see Values above).
Control may pass to a block only by executing the angular bracket at its
head. Control may pass fmm a block either by executing the angular
bracket at its tail or by executing a GOTO. Any label within a block may
be thought of as being local to that block. However, throughout an entire
control program duplication of labels is’not permitted (even though the
duplicates may be in different blocks).

A block is formed by any of the following constr&s: RPT, IN and IF.
The block formed is inherent to the construct - control may only pass into
such-.a block through its head. Control may pass from such a block through
its tail or by the execution of a COTO.

In fact the interpreter will allow GOTOs from one block into another so
long as the level of the destination is as low or lower than the level at
the GOTO. Thus it is possible to enter a block at a point other than its
head (but the stack will not have been set up by the block entry bracket,
so results other than those which were desired may be obtained).

P
Note that every entry into a block forces a push onto the stack, and

every departure forces a pop.

3.11-7

The main storage area for the control program is CPCorCl (see Figure I*).
Almost all communication is done via variables and arrays residing within
this region. The initialization of CPCOM is done in three ways. Data
which never changes is loaded via BLOCK DATA subprograms (see Figure 2).
CPBUF and all symbol-related data are set up by CPIN. All other
initialization occurs within the first few statements of CONTRL.

The following variables and aylnays are all in CPCOM:
. .

CPBUF() -

CPPTR e

SYTB() -

SyJw -

SYTL() -

SYTN -
TERM0 -

STK() -

SPTR -
OTOP() -
OTOPS() -

LVL -
ZSCAN -

main control program buffer: contains the
symbolic cgntml program as read in by CPIN.
pointzP inra: CPB’f)F: used by CONTRL to
indicate the current instruction being
interpreted.
symbol table: contains the alphameric symbols
of the control program.
symbol values: contains p(ointers into CPBIF.
Each entry of SYTB has an associated SYTV
entry showing at what point the symbol was
defined.
symbol levels : contains the level of each
symbol in SETH. Used to detect errors during
execution.
the number of entries in SYTB.
contains the terminal symbols of the syntax
(see Figure 4).
execution stack (see Figure 3 and the
description of CONTRL below).
points at the current first postion of STK.
points into OTOPS (see description of TAPPLY).
contains old top nodes for a currently executing
IN-instruction (see TAPPLY description).
the current level
auxilliary output from SCAN (see below).

I;INT . . . 2UNT - tokens for the terminal symbols in TERM().

.

*The references to figures in section 3.11 refer to figures 3.11.1to 3.11.5.
These figures appear at the end of this section.

3.11-8

. INFNTY -
FCN(,) ‘-

FW.1 -

TRW,) -

APFG -

IFFC -

RFG --

the value taken to be infinity by RPT and TAPPLY,
boolean array designating flagged
transformations.
boolean array containing the values of flagged
transformations.
boolean array designating which transformations
are being traced and by what type of trace.
a flag set by TAPPLY used by CONTRL. It
is true when a transfozmation which has been
invoked by a call to TAPPLY has
successfully attempted to modify the
current tree.
used by CONTRL in the*evaluation of
IF-statements. True if the IF will take the
first branch; false otherwise.
true whenever the stack contains an
IN-instruction; false otherwise.

The following variables and arrays reside in SYNCH:

SNTu,) - base syntax used by SYNCK.
CUR
SCN
SPT
STAK()

IPT
NEQN
TRCFG
INPFG
RECFG

- current goal symbol.
- set to semi-colon: error recovery symbol.
- stack pointer for STAK.
- stack used by SYNCK in recognition

process.
- pointer into CPBlJF used by RECOG.
- number of syntax equations, set to 57.
- trace flag for SYNCK, set to false.
- dump flag for SYNCK, set to false.
- recovery flag for SYNCK, set to true.

3.11-9

The following variables and arrays reside in local storage:

BLOK(,) ‘-

OPTR -

SLVL -

TYP -

TYP -
TRCTYP -
FLGN -
TRM() -

RoMAN() -:

so -
TOP -
CYC -

OPT -

GOAL -
ANM; -

TRW) -

TIM -

contains a skeleton of the block structure of the
program. Used by CPIN.
points at the top element of OTOP. Used by
CONTRL,
used by CONTRL to keep track of levels when
scanning for semi-colons or angular brackets.
indicates the type of instruction in the stack.
May be set to zero, ZIF, ZIN or ZRPT
only. Used by CONTRL.
indicates the type of tracing. Used by TRACE.
indicates the type of tracing. Used by CONTRL.
holds the flag number4 Used by CONTRL.
an equivalenced array allowing SCAN to reference
the tokens parallel to TERM in CPCOM.
holds the Roman numerals I through X. Used by
SCAN.
array holding the marked Ss in TAPPLY.
contains the top node for TAPPLY.
contains the cyclicity of a transformation
in TAPPLY.
contains the optionality of a transformation
in TAPPLY.
contains the goal S in TAPPLY.
contains the result of having called ANTEST
in TAPPLY.
contains the transformations which have successfblly
been invoked in order. Used by TAPPLY.
contains the time of call for TRACE,

3. U-10

DESCRIPTION OF CPIN
. .

CPIN inputs a c o n t r o l program into CPBUF and checks its syntax and
block structure. It also detects undefined and multiply defined labels
and undefined symbols. The program operates in two passes.

Pass 1 inputs the control program up to and including the period at its
end. It detects labels by the colon following them and enters them into
SYTB along with their location and level. LVL contains the current level:

. it is increased by one each time a < is seen and decreased by one whenever
a > is seen. Concurrently a skeleton of the block structure is built in
BLOK.

The format of BLOK is:

BLOK(I,l) - number of labels in this block
BLOK(I,2) - parent of this block
BLOK(I,3) - labels in this block

.*. a.*
BLOK(I,20) - l o*

Example: for this contra1 program:

Ll : TRANl ;
< L2: TRANZ ; L3: < L4: TRAN3 > ; LS: > ;

L6: STOP .

BLOK would appear as:

2 0 Ll L6
3 1 L2 L3 L5
1 2 IA

SYTB SYTV sYTt

Ll 3 0
L2 0 1
L3 12 1
L4 15 2
LS 20 1

L6 25 0 .

3.11-11

Pass 2 scans CPBUF checking to see that each Con> refers to a defined
symbol and that no jumps into blocks occur. It also checks to see th’at
each GO is followed by a TO. The number of errors detected is output at
the conclusion of Pass 2 if it is greater than zero.

CPIN then calls SYNQiK which checks the syntax of the input program
(see SYNCHK below).

DESCRIPTION OF : SYNCHK

. .

SYNCHK is a top-down recognizer. It drives a stack attempting to
recognize a CONTROL-PROGRAM. It uses the syntax in SYNcTl which is
equivalent to the syntax given above.

The program operates as follows:

Load the stack with CONTROL-PROGRAM.

If the stack’s top element is non-terminal, find an equation with this
non-terminal as left-most symbol and stack.it* Examine stack’s top element
as above.

If the stack’s top element is terminal, call RECOG to see if the first
element of the input stream is the same as this symbol. If it is, W
continue examining this equation. Every time. a non-terminal is found it is
pushed onto the stack. Each time a terminal is found a call is made to
RECOG. If RECOG returns true it advances the input stream over the symbol
it just recognized. If RECOG returns false it does not.

Each time the recognizer finds that the input stream and the current
equation differ, it scans for another equation which has the same
left-most symbol as the current one. If it finds one it tries to use it
in the recognition process. If it is unable to find one or runs out of
new equations it will pop the stack if it has not advanced the input
stream and continue searching for valid equations. If it has advanced the
input stream then there is a syntax error at the current position.

When a syntax error is encountered the recognizer begins scanning until
it finds the symbol SCN (currently a semi-colon) in the input stream. It
then assumes that it has successfully recognized the current equation and
continues.

4

Two types of trace output are available. Both are normally off.

TRCFG - i f t r u e , the recognizer will output the name of each
non- terminal symbol which it successfully recognizes.

DMPFG - if true, the recognizer will ouput the stack every time it
begins to examine the current symbol. 4

RECFG is normally true - it provides the error recovery described
above. If you wish to avoid the error recovery set RECFG to false.

i

3.11-13

The syntax used by SYNCHK is given in Figure 5. This syntax is more
general than the syntax given above and better reflects the actual
operation of t h e control Parry although it is more complex.

3.11-14

DESCRIPTION OF RECOG
. .

RECK is the recognizer/token generator for SYNCK. It calls SCAN to
generate the actual token and then compares this with the tokens in SNTX.
The input stream pointer IPT is advanced if the desired symbol and the
input symbol match, otherwise it is nat.

3.1145

DESCRIPTION OF CONTR?.

. .

The first few statements of CONTRL initialize the various stacks and
variables which it uses.

The main loop begins at statement 10. It is at this point that the
program has just finished recognizing and interpreting a control
instruction and it is ready to look for the next. We tiow call SCAN for
the next token and go to the appropriate part of the interpreter depending
upon what SCAN returns. If the symbol is illegal or undefined, a branch
“is made to statement 9, the standard error recovery section.

i3elw~ is a description of the actions of the control program for each
construct 0’~ symbol which it sees.

--.
Syntax errors send ttrc control to statement 9. At this point scanning.

fur the next semi-colon bqins. The program keeps track of its level and
will stop scanning when it finds the next semi-colon at the current level.

INTEGER Illegal syntax, control passes to Error Recovery.

T~NfilE APPJ,Y or APPLY1 is called depending upon whether or not the
control program is currently in an IN-construct. The result of the
invocation is inserted in the stack.

WORl) words) that is labels, are passed over. They have no effect on
the control program.

CROJJP~NO APPLYC is called with this group number as argument. The
result of invoking the transformations of this group is inserted in the
stack.

< .A left angular bracket signals the beginning of a
TRANSFOJVJATION-LIST. The level is increased by one, the stack is pushed
d(ikm, and the arrays OTOP and OTOPS are pushed down.

> A Tight angular bracket signals the end of some type o f
transfonnation- or control group. A test is made to see if the group is
an IN, an IF, a R P T , or a TRANSFOJUATION-LIST. If it is an IN, control
passes to statement 7500 (described below). If. it is an IF, control
passes to statement 6500 (described below). If it is a RPT, the stack is
tested. If the value is false, the RPT terminates and control passes to
statement 10, If the value is true, the value is reset to false, t h e
reyc ;it. A-rjtalter is decremented (i f it is zero, terminate the RPT), then the
RPT is started again. If it is a TMNSFOJWATION-J,IST the stack is popped
and the value of the list is inserted into it.

3.11-16

; Semi-colons have no effect.

(Parentheses are illegal. Control“ passes to Error Recovery.

) Parentheses are illegal. Control passes to Error Recovery.

A period terminates the execution of the control program (see STOP
be&).

: Colons are ignored.

. AFTER Illegal, control passes to Error Recovery.

BEFORE Illegal, control passes to Error Recovery. I

CHANGE Illegal, control passes to Error Recovery.
--.

DO Illegal, control passes to Error Recovery.

ELSE Illegal, control passes to Error Recovery.

FAILIJRE Illegal, control passes to Error Recovery.

FLAG Checks the stack to see if the control program is currently
executing an IF-construct. If it is, then it returns the value of the
designated flag. If an INTEGER follows the FLAG, that flag is used, if
not then flag zero is used. If the control program
IF-construct,

is not executing an
it checks the next symbol for INTEGER. If it finds one,

FLGN is set to that number, if not, FLGN is set to zero. Then the
following expression is read and each transformation designated (by name
or group number) is flagged by setting the corresponding entry in FGN to

- true. The corresponding values in FGV are all reset to false.

GO Scan the next symbol for To, if found go to GOTO; if not found, go
to. Error Recovery.

- GOT0
Re’covery.

Scan the next symbol for WORD. If not found, go to Error
Look up the value of the label in SYTV and its level in SYTL.

If the new level is higher than the current one an attempt is being made
to jump into a block, complain and go to Error Recovery. Otherwise change
CPPTR to the value looked up.

IF Push the stack and put IF into the top, push OTOP and OTOPS.

THEN (statement 6500) Pop the stack. If the old value is true go to
statement 10. If the old value is false scan to an ELSE (if it exists o r
a semi-colon if it does not) and go to statement 10.

3.11-17

IN Scan for the name of the IN-transformation, left parenthesis, an
integer, right Farenthesis, DO. ‘Ihen, initialize OTOP and OTDPS. Attempt
to invoke the IN-transformation by calling APPLYl. If it does not apply,
go to statement 10. If it does then push the stack, enter ZIN into the
stack and go to statement 10, Control passes to statement 7500 at the
right angular bracket of an IN-construct. We t h e n c a l l APPLYl, a g a i n
seeking a new S for top node. If APPLY1 returns true then the stack is
pushed as above and control passes to statement 10 after resetting CPPTR
to the left angular bracket of the IN. If APPLY1 returns false the IN
terminates and conml passes to statement 10,

- RESULT Illegal, control passes to Error Recovery.

RPT Scan for an integer, if one is found enter it as the repeat
counter value. If not, enter INFNTY. Scan to a left, angular bracket and
go to < above. --.

STOP Terminate the execution of the control p-gram. Print the number-
of instructions executed and the transformations which hae applied, then
return to the calling program.

SUCCESS Illegal, control passes to Error Recovery.

TEST Illegal, control passes to Error Recovery.

THEN Illegal, control passes to Error Recovery.

To Illegal, control passes to Error Recovery.

TRACE Scan to tho specification after marking the current position.
Then rescan the TRANSFOl@fATION-LIST setting the TRCF entry for e a c h
transformtion which is to be traced.a

TREE Call TROUT to output the current tree.

UNTRACE Reset the TRCF entries for each transformation designated in
the -transformation list.

Note that the syntax which describes the operation of the control _
program is given in Figure 5 below.

3.1148

DESCRIPTION OF SCAN
. .

SCAN is the token generator for CONTRL. In addition it keeps track of
the current position in CPBJJF.

SCAN has two outputs: the first is the token for the current symbol
(returned in SCAN). The second is ZSCAN - this is auxilliary information:
the integer, label, transfomation nmber, etc.

Values for SCAN and ZSCAN are as follows: ,

SYMBOL -' SCAN ZSCAN

undefined symbol 0 0
fmECER 1 the integer
TRANSFOJ&fATION-NAME 2 the transformation n~ber
LABEL 3 pointer into SYTB

for this label
GROUP-NlBfBER 4 integer representing the

Roman nuneral
terminal symbol token m-m-

Terminal symbols are all 9eserved words”. The tokens for the
texminals are given in Figure 4. The tokens are referenced by index via

e the array TRM - an equivalenced array. No transfoxmatfon may have the
same spelling as a terminal symbol.

The entry point SCAN1 is used by RECOG. It differs only in that no
trace information i s printed during the program’s execution.

3.11-19

DESCRIPTION OF TAPPLY

TAPPLY is called to invoke a transformation, If it has applied APFG is
set to true and FGV is set to true. In addition, this transformation is
entered into TRNS. A transformation is said to have applied if it
successfully modified the tree (or at least called subroutine CHANGE) or
if it would have called CHANGE if the structural change had not been void.

The subroutine has four entry points which are described below. Each of
the first three are similar in all but minor details. We now give a brief
dbscription of the operation of APPLY.

,

First, all S’s are marked in the current subtree. If no S’s exist, we
are done.

,Then we find th; keywords for this transformation. If none exist then
we will be trying the transformation at every S, so set the appropriate
flag.

Find the first S which has been marked which dominates all the keywords
(or use the first S if there are no keywords). If no such S exists, then
exit after updating TRNS if necessary.

Trace before ANTEST.

Call ANTEST (if the structural description is not zero, if it is, then
set ANM; - true), put the result into AN&

If ANFG is false, unmark the current S (so it will never be tried
again) and return to the process above.

If ANFG is true, then if the structural change is zero trace after
change,. unmark the S, and return to the process above. If the structural
change is non-zero, then branch to one of the four segments dealing with
the. particular type of transformation,

Type 1 - AC - non-cyclic: call CHANGE,
as above.

then unmark the S and proceed .

Type 2 - ACAC - cyclic: call CHANGE, then return to the above without
unmarking the current S,

Type 3 - AACC: call CHANGE NUMCNI’ times, then unmark the S and return
to the above.

Type 4 - MC: call CHANGE once picked from among the NUMCNT choices at
random and proceed as above. ’

3 . 1 1 - m

We have not discussed optionality in the above. Optionality tests are
inserted before ’ calling ANTEST for Type 1 (AC) transformations and within
the three subparts for the other three. -.

APPLY iS the ent
proceeds as above.

ry point for g e n e r a l invocation of transformations. It

APPLY1 is the entry point ,for the execution of the IN-transformation,
It updates OTOP and OTOPS and uses APPLY or APPLYI depending upon whether
the current IN-construct is within another IN or not. For APPLY1 to be
successful the node found by ANTEST must be different from all nodes
already in OTOPS.

The formats of OTOP and OTOPS are: entries in OTOP are pairs o f
pointers into OTOPS - there is one pair for each, level of.execution.
Entries in OTOPS are the actual nodes which have been used as top nodes
inside an IN-construct.

APPLY1 is the entry point for the execution of the program inside the
angular brackets of an IN-construct. It differs from APPLY in that there
is only one S which may be used as the goal and top node of the tree for
ANTEST and CHANGE - the node specified by the INTEGER of the IN-construct.

OIJTTRN is the last entry point - it is used by CONTRL to output the
contents of TRNS - the transformations which have successfully applied in
order of application.

Each of the entries to TAPPLY above will set APFG to true if the
invocat ion is succes s fu l and en ter the transfomation into TRNS.

3. ii-21

DESCRIPTION OF TRACE

TRACE outputs trace information which may be the tree (by a call to
TROUT) or just the result of invoking the transformation (true or false
depending upon whether or not the transformation was successful),

TRACE is called at three points during the inwcation of a
transformation: before calling ANTEST (but after all kepords have been
satisfied), after calling ANTEST but before calling CHANCE, and after
calling CHANGE. .

The type of TRACE (there are f ive types) is determined by use of t h e
arriiy TRCF (in CPCOM).

ANFG is a logical variable giving the value of the last call to ANTEST.

Values for TIM and TYP are:

TIM -1 before ANTEST
-2 after ANTEST, before CHANGE
-3 a f t e r CHAFGE

TYP -1 BEFORE ANTEST
-2 AFTER FAILURE of ANTEST
-3 AFTER SUCCESS of ANTEST
-4 AFTERCHANGE
-5 RESULT

3.11-22

DESCRIPTION OF APPLYG

APPLYG invokes the transformations in the group designate&by CNO
one-by-one. If GNO refers to a non-existent group APPLYG comments to this
e f fec t and re turns fa l s e . Otherwise the value of APPLYG is an
inclusive-OR or the values of ail1 transfonaations in the designated group.
The value of APPLYG is returned in APFG (a variable in CPq1).

APPLYG will use APPLY or APPLY1 depending upon whether or not the
con.tml program is currently executing an IN-construct. (It tests RFG t o
d&ermine this.)

3.11-23

Figure 3.11.1

CPCOM, SYNCM

CPCUM:

IMPLICIT INTEGER*2 (A-Z) CPCOMO
CMlON /CPCGM/ CPBUF,SYTB,TERM CPCa

_ REAL*8 CPBUF(SOO),SYTB(lOO),TERM(32) CPCGb
COMMON /CPCW/ SYTV(100),STK(100),OTOP(20),OTOPS(50), CPCa

1 CPPTR,SPTR,LVL,SYTN,ZSCAN,SYTL(lOO), CPCG!
2- ZINT,ZTRN,ZWRD,ZGRN,ZLAN,ZSMf, cpca
3 ZLPR,ZRPR,ZPER,ZCOL,ZAFT,ZBEF,ZCHN, CPCob
4 ZDO,ZELS,ZFA~ZFLG,ZGO,ZGOT,ZIF, CPCOE
5 ZIN,ZRSL,ZRPT,ZSTP,ZSUC,ZTST,Z'lMN, CPCOF
6 ZTO,ZTRC,ZTRE,ZUNT,INFNTY CPCOE

COMMON /CPCW/ FGN,FGV,TRCF,APFG,IFFG,RFG CPCOE
~ICAL+l FGN(100,10),FGV(100,lO),TRCF(lOO,S),APFG,IFFG,RFG CPCOb

SYNOI4 :

1
'2
3

14
15
'6
'7
'8
'9
10
11

IMPLICIT INTWER+2 (A-Z) mm0
COMMON /SYNcM/ SNTX,CUR,SCN,SPT,fPT,NEQN, sYNm

1 TRCFG,DMPFG,RECFG sYNaY2a REAL*8 SNTX(S7,8),CUR,SCN sYNm3
LOGICAL+1 TRm,DMPFG,RECFC mm4

3. u-24

Figure 3.11.2

BLOCK DATA STATEMENTS

SYNCM
f3LCJCK CbTh %SYNCM
IWL I C I t INTkGEH*2 (A - Z 1 SYNCMO ’
CCMMUN /SYNCM/ SYfX,CUR’SCN’S3T’IPT,NEQN, SYNCM1

1 TRCFG,QWFG,RECFG SYNCM2
HEAL*8 S~TTX5?,8~,CURrSCN/‘:‘./ SYNCM3
LOGICAL*1 TRCFG/.THUE.f,O~PFG/.FALSE./,R&CFG/.TP,UE./ SYNCMS
I N T E G E R * 2 NFWJ/57/ SYNCM6
ECU IVbLmCE

1 (~~TX(~,1~,Cl~l~),ISNTX~l’2~,C2~l~~’~S~TX~~’~~tC~~~~~,
2 (S~!TX(l,4),CG(l)),(SNTX(l ,S~,CS(1H,(SNTX(l’6)rCbo),

' ,‘CP. "'CP.
“'CL " ' C f .
’ “LSL. ‘,‘IhlST.
‘,‘CL. ‘,‘CLl.
‘,‘CE. ‘, ‘ C f .
’ ,‘CE. “‘TF,
‘,‘IN-I. “‘DW.
‘,‘FFJ. ‘, ‘FN,
’ “WC-I[. ‘,‘TRC-I.
‘,‘SPEC* “‘SPEC.
’ ,‘TL. ‘,‘TLl.

REAL*8 C l t 57) /
1 ‘CTLPGH. ‘,‘PGM. ‘, ‘PGM.
2 ‘ C P . ’ g ‘.C I . --’ "'CL

- 3 ‘SC. @ r’SC* ’ “LRL.
4 ‘INSrr ‘0 I N S T . ’ ’ ‘CL.
5 ‘CLl. ’ ,‘CLl. “‘CL
6 ‘CL ’ ,‘CE. ‘OCE.
7 ‘TE. ‘,‘RPT-I. ‘, ‘ R P T - ‘ I .
8 ‘ I F - I . ’ ,‘fF-I. ‘,‘FLC-I.
9 ‘ G O - I 0 “‘W-f. ‘,‘TRC-I.
1 ‘SPEC. ‘,‘SPEC. ‘, ‘ S P E C .
2 ‘ S T P - I . “‘TC. ‘,‘TL.
3 ‘TLl. ‘,‘T&l. ‘1

REAL*8 C2(57)/
1 ‘PGY.‘, ‘ S C . ” ‘CP.‘,
2 8cI.” ‘LBL.‘, ‘LBL.‘,
3 z ’ ; 0
4 e’tL:’ a

‘:‘, ‘ZLIKC. “
‘TE.‘, ‘<‘,

5 ‘ I N S T . ” ‘ I N S T . ” ‘RPT-f . ‘,
6 ‘F&G-I.5 ‘ G O - I . ‘ , ‘TRC-‘f .‘,
7 ‘Z@?N.‘, ‘ R P T ” ‘ R P T ’ ,
8 ‘IF’, ‘ I F ” ‘FN. 0
9 ‘GC~O” ‘ G O ’ ’ ‘ TRACE’ ’
1 ‘BiFORE’, ‘ A F T E R ’ , ‘ A F T E R ‘,
2 ‘STQP’, ‘<‘, ‘<’ ’
? ‘TE.” ‘TE.‘/

HEAL*8 C3(571/
1 ‘2, ‘CP.’ ’ a ‘t
2 ’ ‘a ‘ C f . ‘ , ’ 0
3 ‘ S C . ” m ‘9 ‘3 0 a
4 ’ ‘0 ’ ‘a ‘ S C . ‘ ,
5 ‘SC.“ ‘ ’ t. ‘ ‘a
b ’ ” I ‘a 0 ‘a
7 ’ ” ‘ZINT.‘, W’,
8 ‘ I N S T . ‘ , ‘ I N S T . ” ‘TL.‘;
9 ‘ZkRfl.” ‘TO’ a ‘ft.”
1 ‘TEST’, ‘SlJCCESS’ ,‘FAI L U R E ’ ,‘CHANGE’ 9 ’ ‘9
2 ‘ ‘a ‘ S C . ’ ’ ‘TCL.‘, ’ ‘, ‘ S C . ‘ ,
3 ‘ S C . ” ’ ‘1

3.11-25

oCI.‘, ‘CI.‘,
‘ I N S T . ‘ , ‘ I N S T . ‘ ,
‘ZWRO;‘,b ‘CEA
‘(1,‘ ‘~NST.‘,
‘IN-I.‘. ‘ I F - I . ‘ ,
‘ S T P - I .‘, ‘ZTRN.‘.
‘ I N ‘ ’ ‘ D O ’ ,
‘ F L A G ’ , ' F L A G ' ,
‘lMTRACE’,‘TREE’,
‘AFTEd” ‘ R E S U L T ‘ 9
‘TE.‘, ‘TE.‘,

‘ S C . ” ‘SC~”
‘LRL.” 0 4’.
0:’ a ’ ‘t
‘Cll.‘, ‘ S C . ‘ ,
’ ‘4 ’ ‘t
‘ ‘9 ‘0 0,
‘ZTRN.” ‘<”
‘ L I N T . ‘ , ’ ‘,
‘TL.” 0 ‘4

‘t
‘t
‘t
‘t
‘?
‘t
‘a
0
’ .’
“9
‘9

. .

SYNCM, Cont'd

REAL*8 C4(57)/3+’ ‘,‘CP.‘,8*’ ‘,‘LHL.‘,4*:’ ‘,
1 ‘cLl.‘,‘>‘,‘CLl.‘,ll*’ ‘,‘<‘,‘PGM.‘,‘~‘,‘PG~.‘,‘THEN’,
j ‘~j-l~N’,4*’ ‘,‘Z’,dRD.‘,‘SPfC.‘,8*’ ‘,‘TLl.‘,‘>‘,
3 ’ ‘,‘TLl.‘,’ ‘,’ ‘/

REAL*8 C5(57)/17*’ ‘,‘>‘,13*’ ‘,‘PGY.‘,‘>‘,
1 'Z[NT.','>','GO-I.','GO-I.',14*a ',')',5*' '/
REAL*8 C6(57)/31*' ','>',' a,')',' ‘,‘ELSE’,21*’ ‘/
tq~/iL*8 C7(57)/33*’ ‘,‘DOP.‘,’ ‘,‘GO-1.‘,21*’ ‘1
R E A L * 8 C8(57) /57*’ ’ /
END

-k.

CFCOM

0LUCK OAT A
I~PLIC.11 I N T E G E R * 2 (A-2)
CClMlMON /CPCOX/ C P B U F , SYl8,TkRM
HEAL49 CPBUF (500) / ‘ S T O P
1 ‘ZINT. ’ “ZTRN.

@/,SYTB(1.00, rlERW~)/
‘,‘ZWkD. ’ ,‘ZGRN.

2 ‘> 1 t’; ‘,‘(“‘I ‘1’.
3 � l

4 ‘LLSE.
‘,‘AFTER ’ , ‘BEFOKE ’ , ‘CHANGE ‘,‘OO
‘,‘FAILUKE ‘,‘FLAG ‘,‘GO ‘r’GOT0

5 ‘ I F ‘,‘IN ’ , ‘ R E S U L T ’ ,‘RPT ','STOP
6 ‘ S U C C E S S ‘,‘TEST ‘,‘THEN ’ ,‘TO g ,‘TRACE
7 ‘ T R E E ‘,‘UNTRACE ‘/

‘.
‘T
‘t
0
‘t
‘.

XCONTROL
CPCOMO
CPCOFIl
CPCOM2
CPCOM2A
C PCUMZB
CPCOM2C

n C PCOM20
c PCOM2E

t C PCOMZF
C PCOM2G

COEMON /CPCOq/ SYTV~100~,STK~100~,0TOeotOTOPS~5O~,CPPTR,SPTR~ CPCOM3
1 LVL,SYTN,LSCAN,SYTC(100). CPCOM4
2 ZINT,ZTRN,ZWRD,ZGR~J,ZLAN,ZRAN,ZSMI, C PCOMS
3 ZLPK,ZKPK,ZPEH,ZCOL,ZAFT,ZBEF,ZCHN,, CPCOM6

a 4 ZDG,LELS,ZF4L,LFLG,ZGO,ZGOT,Z1F, CPCOM7
5 ZIN,ZRSL,ZRPT,ZSTP,ZSUC,ZTST,ZTHN, CPCOMB
6 ZTO,ZTRC,ZTKE,LUNT,INFNTY CYCOM9

INTEGEH*2 CPCOM9A
L ZIN7/L/,ZTR~/2/,ZWRD/3/,Z~RN/4~,ZLAN/S/,ZRAN/6~,ZSMi/?/, CPCOMYB
2 ZLPP/C/,ZRPR/9/,ZPEH/lO/,ZC~L/ll/,ZAFT/l2/,ZBEF/l3/,ZCHN/l4/, CPCOM98
3 L~O/15/,ZELS/lh/,ZFAL/l7~,ZFLG/l~/,ZGO/19/,ZGOT/2O/,~If/2l/, CPCOM9C
4 ZIN/22/,ZR3L/23/,ZRPT/2Q/,ZSTP/25/rZSTP/25/,ZSUC/2b/,ZTST/27/,ZTHN/28/, CPCOM90
5 ZTCl/29/,ZT~C/30/,ZTRE/3l/,ZUNT/32/,INFNTY/lO/ C PCOM9E

Ct‘MMCfi /CPC(lM/ FGN,FGV,TRCF,APFG, IFFG,RFG CPCOMLO
LOGICAL*1 FGN~100,10~,FGVt100,lO~,TRCF~lOO,S~,APfG,IFFG,RFG CPCClMll
ENG 9

3.11-26

STK - CONTENTS:

POSN

VAL

TOP
0
-
-

POSN
VAL

TOP

0

RI?
IN
IF
RPT-CTR

T-NNfE
IN-NODE

POSN POSN POSN current position
in CPBUF

VAL VAL VAL current value of the
evaluation

TOP TOP TOP current top node
RPT IN IF type of operation
RPT-CTR T-NAME - see below
- IN-NODE - see below

- same setting of CPPTR
- 0 for fa lse

> 0 for true
- either one (by default) or sane value inserted

by an IN-construct
- flag indicating a CONTROL- or

TRANSFORMATION-LIST
- flag for RPT-construct (ZRPT) e
- flag for IN-construct (ZIN) *
- flag for IF-construct (ZIF)
- repeat counter; set to INFNTY or the integer

following the RPT and counted’
down to zero

- number of the IN-transfomation
l node nmber of the current top of the tree

for an IN-construct

Note that any instruction containing an angular bracket
always affects the stack. So does an IF-construct.

3.11-27

Figure 3.11.4

TERMIBJAI; SYMBOLS

TERMINALS AND ASSOCIATED VALUES (ALL IN /CPCOM/) S-28-68

<INTEGER>
<T-NAME>

_ <WORD>
<GROUP-NO>
<
>
;
(
1
l

AFTER
BEFORE
CHANGE
Do
ELSE
FAILURE
FLAG
GO
GOT0
IF
IN
RESULT. RPT
STOP
SUCCESS
TEST
THEN
TO
TRACE
TREE
UNTRACE

TERMINAL VALUE #

<UNDF’D SYMBOL> 0
ZINT 1
ZTRN 2
ZWRD 3
ZGRN 4
ZLAN 5
ZRAN 6
ZSNI 7
-ZLPR 8
ZRPR 9
ZPER 10
ZCOL 11
ZAFT 12
ZBEF 13
ZCHN 14
ZDO 15
ZELS 16
ZFAL 17
ZFLG 18
ZGO 19
ZGOT 20
ZIF 21
ZIN 22
ZRSL 23
ZRPT 24
ZSTP 25
ZSUC 26
ZTST 27
ZTl-lN 28
ZTO 29
ZTRC 30
ZTRE 31
ZUNT 32

STATETIENT

9

1000

2000
2050
2060

10

3000

6550

4000
SO00
5500
600d-
7000

8000
3000

6500

9000
9800

10000

3.11-28

Figure 3.11.5

SYNTAX FORSYNCHX
1
2
3
4
S
6
7
8

1;
11
12
1 3
14
1 5
1 6
1 7
1 8
1 9
2p
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
30
31
3 2
3 3
3 4
3 5d
3 6
3 7

.38
3 9
41)

. 41
42
43
44
45
46
4 7
48
4 9
Sl‘
51
5 2
57
5 4
55
5 6
5 7

CTLf’%M.
P G Y .
PGM.
CP.
c*.

K:
CI.
CI.
C l .
S C .
S C .
L!+L.
L R L .
I N S T .
I N S T .
If’JST.
C L .
C L .
CLl.
CLl.
CLl.
C E .
C E .
C E .
C E .
C E .
C E .
C E .
T E .
T E .
R P T - I .
R P T - I .
I N - I 0
009.
I F - I .
I F - I .
FLG-I.
FY.
F Y .
G O - I .
GO-I.
T R C - I .
T R C - I .
T R C - I .
SPEC.
S P E C .
SOEC.
S P E C .
SPEC.
STP-I.,
T L .
T L .
T L .
TLl.
TLl.
TLl.

P G M .
s c-.
CP.
c r .
CI.
CI.
L R L .
L R L .
INST.
I N S T .
;.

: :=

: :=

: :=

::=

::=

::=

::=
: f=

::r

: :s

: :=

::=

: :t

: :=

: :r

::r

: :=

::=

: :=

: :=

::=

: :.s
. .=. .
: :=

: :=

::=

: :=

: :=

::=

: :=

::=

: :z

: :r

: :=

: f=

: :r

::=

: :=

::r

: :s

f :rz

::=

;:’

::r

: :=

: :=

::=

::=

::=
: :=

: :=

::=

::=
: :‘=

::=

: :z

: :=

~WRD.
7 WRD.
CE.
C L .
TE.
<
c
I N S T .
I N S T .
IYST.
R P T - I .
I N - I .
I F - I .
FCC,-I.
co-r.
T R C - I .
S T P - I .
Z T R N .
Z G R N .
R P T
RPT
IN
00
I f
I F
FN.
FLAG
f-LPG
GOT0
GO
TRACE
UNTRACE
T R E E
BEFORE
AFTER
AFTER
AFTER
R E S U L T
STOP
<
<
T E .
TE;
T E .
T F .

. .

iP.

S C .
S C .

CI.

LBL.

S C .

CP.

:
:

LBLi

S C .
CLL.
S C .
S C .

Cll. >
>
CLl.

Z I N T .
<
Z T R N .
C
I N S T .
I N S T .
T L .
ZINT.

c
PGY l
(

PGM.
T H E N
T H E N

P G M .
>

ZINT.

&-I.
G O - I .

ZWRD.
TO
T L .
T L .

ZWRO.
S P E C .

T E S T
SUCCESS
FAILIJRE
CHANGE

SC 0 TLl l >

TLl. >

S C .
S C .

TLl l

>

1 DOP l

E L S E G O - I .

3.11-29

4. COMMON BLOCKS

W’LIC I T IhTEGfW2 (A-2 1

I; KRCCW
CCWQN /ORDCM/ NUM,ISPEC,CXCFL,&UMFL *

INTEGER*2 WM, I S P E C
LGGICAl*l CRDFL,NUMFL

C / M A IhCM/
CCMIUCW /V/BINCW CHRTR,KSUMP, ISUMP,NCHRTR
R E A L * 8 CHRTR,KSUMP(2009)
INTEGEW2 ISUMP,NCHRTK

c /ChSICM/
COMHON/CNSTCM/ NBLANK,YLAND ,fWlNlJS,NSLASH,NCENT ,NSTOP ,NLESS

1 NLEFTP,NPCUS ,NLOR , N X C L M ,NDCLLR,NSTAR ,NRITEQ,NSCGLN,NLNOT
i hi1211 ,NCObMA,NPERC ,NLIhE ,NGRfAT,NCUERY,NCOLON,Nf3OUND,NAT
3 NUbOTE,NEOUAL,NDQtiCT

I N T E G E R * 2 NklLANK,NLAND ,NMINUS,NSLASH,NCENT ,NSTOP ,NLESS
1 hLEfTF,NPLUS ,NLOR ,NXCLM tNDOLLR,NSTAR ,NRITEP,NSCOLN;NLNOT
2 hi211 ,NCOMMA,NPERC ,NLfhE ,NGREAT,N~UERY,NCOLGN,NtjOUND,NAT
3 hQUOTE,NECUAL,NDCUOT

C /FCSTCM/
CCWON /fCSTCM/

lFf?LbhK,FLPhC ,FMINUS,fSLASH,fCENT ,FSTOP ,FLESS ,fLEFTP,FPLUS ,
2FLU.R ,FXCLI’f rFDOLLR,FSTAR ‘,FRITEf ,FSCCLN,FLNOT ,F1211 ,FCUMMA,
3FPEHC ,FLIIVE ,FGREAT,FQUERY,FCOLON,FROUND,FAT ,FQUOTE,FEQUAL,
4FCQLtX,PAGE . ,t?ECORC

e R E A L * 8
lFtiLANK, FLAhD ,FMINUS,FSLASH, FCENT ,FS’iOf’ ,FLESS ,FLEFTP,FPLUS ,
2FLUR ,FXCLP ,FDULLR,FSTAP ,FRITEP,FSCOLN,FLNOT ,FlZLl ,FCOMMA,
3FPEtiC &LINE ,FGHEAT,FQUERY,FCOLCN,FBC~hO,FAl ,FQbOTE,FECUAL,
4FCQUCT,PAGE , RECORD

:C /MAIhCM/
CCMtJON /MPINCM/~ CHRTR,KSLMP,IStMP,NCHRTR
REAL*8 Cl’RTR,KSUMP(20th))
If\17ECER*2 I SUMP,NCHRTR

C /FSGCW
CUMMCN /PSGCM/ NSGAI,NSGC,NSGA2,NSG0,KA,KB,KC
R E A L * 8 N5GA1(2Ge,,NSGC(2cC~,
I N T E G E R * 2 NSGA2(2W),NSGat3OW,KA,KEj,KC

c IT/
CGMWN /T/ T I T L E (F)
REAL*8 T I T L E

4-1

c /n?EECM/
CGMMGN ITREECM/ FTREE,T~EE,CLIST,MTHE~,KLIST
REALw FTREE(4d91

c /z/
I N T E G E R * 2 TREE(400,6),CLIST(40O),MTKEE,MCLlST

COMMON /Z/ LANK,NXXX,NSS,hS,NAND,NOR,NANDCR,NERRUR
R E A L * 8 LAhKr’NXXX,NSS,NS,NANC,NOR,hAtuDOK
I N T E G E R * 2 N E R R O R

C /hCRKl/
CWtidN /wOWl/ LlNE,STRI~G,hSUBS2,NSUt?SltNltN2

.

R E A L * 8 LINE(l41,STRING(12C),hSUBS2(10)
I N T E G E R * 2 NSU8Sl(l~)~N1~14~,N2O

C /RESICM/
CDMMON /RESTC.M/ WO,CREST,PS,f’R,PC,PW,RESTS(‘5DI)~ tRESTR(53C.1,

4, coNcs_,(5CG 1
R E A L * 8 WD(lCtl1

C /FRCCM/
COM!‘ON /FRCCM/ OUTWCS,LNGCTS,LNGPT,PTPT,THCS,HDS1TENS,HDS,TENS,UNITS,~Df

1 LNGhDS
R E A L * 8 OUThCS1133)
INTEGER*4 LhGPTS(1 3 0 1
INTEGER?2 LNGPT,PTPT,THOS,HCS,TENS,UNITS,hCPT
LCG ICAl*l LNGWCS (2000 1

C /CHAhCM/
COMMON/CHANCM/CHANt4C&6) ,CHI\ORO(1001 ,OPlISTt50),

k FChTRE (2t31, CHTREE(ZGG,6),C~CLIS(ZD~), ,
2 hiHAN,MXCHAN,NCHW,E1XCHW,NOPL,MXOPL~,hCHT,NCHCL,HXCHT,MXCHCL

R E A L * 8 CHWORO,FCHTRE,OPLI S T
C /FEPICM/

COMMON /fEATCM/. FTNAME,MXEXP,ftBCAT,NBEXP,NRULE,RULEt2,20~ 1
R E A L * 8 FTNAMEt 130)

4-2

c /cscw . .
CGMrmv /c SCM/

1 ~~PLwC,CSLISJ(~,~~QB)~ANALPT(S~~),A~AL~~(~~~~) ,ANALSJ(2CG0)‘,
2 TEYPPh(2i3S) rSLCTPT(203,2),ANALTP;sLCTTP,CSFG,CSFRPT,A~At~T

REAL*& AIUALWO~ 2061
C /lEXCY/

CCMFCN/LkXCM/
1 L~rkD,L~X#OS,LEXCS,LEXCSS,LXCPTR,CAlL~l,~LXC,~LEX,~LEX~,~LEX~~,
2hCATL’ .

RliAL*S LEXhCUOrC)) rCbTCSTt2O 1
IW’EGEW2 CExhHZS(31?ill ,CEXCSS(30C) ,LEXCS(SCC),LXCPTR(101!,26) I .

1 hLXC(2P),hLEX,NLEXW,NLEXCS,f’%CATt
C /LIhSCM/

CCHMON/LINSCM/
1 SRCHL,Ee,IST,~SRZHL,NELIST

I N T E G E R * 2 SHCHt(Z,SO),ELIST~2,5~),~SRCHCrKEtfST
C /TR4I\;CW

CC,ui~CN/JKPhCM/FTAA~(l~~),~EYS~2~~),TRbN(~~~,?~,~E~PJ(l~~),
1 NTKAN,NKEYS
REAL*8 FTRAfv,KEYS

C /PTCKEN/
CLJrWGN /KTCKEN/UPfG,tTH,TCKt 10)

c /SUECCM/
C?lMl”CN/SKELCM/F kiKE1, ISKEL, SKLI ST, lSKELJtMSKLST
lifAC*od Fl SKFIJ 230)
INTEGE)2*2 ISKEL~2C~,6~,SKLIS7f2~~~,,ISKfLfrMS~LS~

c /ccnFcM/
UM’CN /CtiNFCW

A CF~PLS(l:G~

c /CFCCR/ \
C G M M C N /CPCr3M/ CPBUF,SYTB,TEPM
R E A L * 8 CFeUf (SuO),SYT@(lC0h'TERb'(32~
C O M M O N /CPCCM/ SYTV~100~,SfK~1GC~,OTOP~20)10TGQS~5~~,CPP~R,SPTR,

1 LVL,SYTN,ZSCAN,SYTC(l~O~,
2 ZihT,ZTRN,ZWRD,ZGRN,ZLAh,ZR~NdSMI,
3 ZLPR,ZRPR,ZPER,ZCClL,ZAFT,ZBEF,ZCHN,
4 ZCO,ZCLS,ZfAC,ZFLG,ZGQ,ZGQitLIF,
5 LIhr.ZRSL,ZRPT,Z~iP~ZSUC;ZISJ,ZT~~,
t: LTC,ZTRC,ZTRE,ZUNb INFNTY

CCMPCh /CPCCM/ FGN1FGV,TRCf,PPFG,IFFG,RFG
LOGICAL*1 ~GN(~GS,~O~,FGV~.~~C,~C~,THCF~~~~,~~~APFG~IFFG,RFG

C /TR’PhClV(/
CCMCC~~THANCM/FTRAN(lG~~,K~YS(2CO)rTRPN(~O~~~~~KE~~T~l~~~,

1 NTRANthKEYS
R E A L * & FTRPhKEYS

C /AhPLCW
C C M M O N /ANALCM/ NUMNQDt 5~,11I,SKPNUD(20&2) ,NUMC&J,SKPTGP,

1 PNLfST(lO~),ANWDPT(l~~~,ANNOCE(lG0~,7JPOSN,UNDNOO,TOPN~~,RESTNO,
2 TNC,AhSKIP~l~0~,ANPHEV~l~~~,ANPAR~l~~~,AN~EX~l~~~

C /SYhCM/
CGWGN /SYNCM/ S N T X ,STAK,CUR,SCN,SPT, IPT,NEQN,
1 TRCFG,DMPFG,RECFG

R E A L * 8 SNTX(57,8),CUR,SCN
ihTEGEl;*2 STAKf 1000 1 s
lGGiCAL*l TRCFG,DMPFG,RECFG

4-4

5 . BLOCK DATA SUBPROGRAMS

BCCICK CATA
WPLICIT INTEGER*2fN)
COfWCN/ChSiCM/ N6LANK,NLANO ,-NM INUS,NSLdSti,NCENT ,NSfOP <,NLESS ,

1 NLEFTF,NPlUS ,NLOR ,NXCLM ,NDCLLR,NSTAR ,NRITEP,NSCOlN,NLNOT ,
2 N.l211 ,NCOMMA,NPERC ,NCIhE ,NGREAT,NQUERY~NCOLONtNBOUNU,NAT t
3 hWOTE,NECUAL,NCQUOf

CATP NBLAhK,NLAhO ,NMINUS,NSLASH,NCEN’i ,N,STOP ,NLESS ,
L NLEFTPtNPLUS ,NlOR ;NXCLM ,NOOLLR,NS’TAR ,WRIlEP,NSCCkN,NLNUT ,
2 It1211 ,hCCkMA,NPERC ,NLlNE ,NCREAT,NCUERV,NCOtON,NBOUNO,NAT ,
3 NWLOTE,NEQUAl,NDQUCT

t)LOCK CATA
COMMON /FCSTCM/

1 FBLANK,FLA&O ,FMINbS,FSLASH,fCENT ,FSTUP ,yLESS ,FtEFfP,FPLUS ,
2 FLOR ,FXCLM ,FDOLLR,F STAR ,FRffEP,FSCOClt,FLNOT ,f 1 2 1 1 ,FCOMMA,
3 FPERC ,fLShlE ,FGREAT,FQUERY,FCOLON,Ff3OUND;FAT ,FQUOTE,fEQUAL,
4 FDWO’T ,PAGE ,RECORO

REAL*8
1 FBLAkr,FLAkO ,FMINUS,FSLAW,FCENT ,FSTOP ,FCESS ,FLEFTP,FSLUS ,
2 FLCR ,fXCCM ,FOOLLR,FS’TAR ,fRITEP,FSCOLN,FiNClf ,F1211 ,FCOMMA,
3 FPEHC ,FLINE ,FGREAT,fQUERY ,FCOLGN,FBOlJNO,FAT ,FQUOTE,FEQUAL,
4 FDCliO?.,PAGE ,REC(3RC

OATA
1 FWLANK, F L A N O ,FMINU.S,FSLASH,FCENT ,FSTOP ,FCESS ,FLEFTP,FPLUS ,
2 FLOR ,FXCLM ,FDOLLR,FSTAR. ,FRITEP,fSCCLhJ,FLNOT ,F1211 ,FCOMMA,
3 FPERC ,FLINE ,FGREAT,FQUERY,FCOLON,F@OUN~;fAT ,FQUPTE,FEQUAL,
4 FOCUOT, PAGE , RECURC
.5 /’ ,,,&‘,L,,‘/‘,’ * ,‘*’ ,‘(‘,’ (‘,‘+’ ,7 ‘iF40404040404040, ’ ’ , ’ S+’ ,
6 ‘19r’ ,@)~,@;~,~-d,@ ‘,‘,‘,t~‘,.‘,‘,‘>‘,“~‘,~:‘,‘#~,‘a~,.

7 z7c4ij40444c4Q4~40, ,=@p@@, ,P%S55Sd$‘,‘B~%“rS’4~i’/”
- END

8LOCK CATA
C O M M O N /Z/ LANK,NXXX,NSS,hS,hANO,NOR,NANOCiR,NERROR
REAL*8 LANK,NXXX,~SS,hS,hANU,?4OW’iANOtlR
INTEGER*2 hERROR
CATA LANK,NXX%,NSS,NS,NANO,NOR,kANOGR,NERROR .

l/’ ‘,,XXX@,,‘S’ ,‘S’,‘ANO’,‘~R’,‘ANOUR’,,~/
END

5-l

E L O C K CATA
COM~GN/CHPNCH/CHAN(4~~,6),CH~OR~(l~~),OPLIST(5~~,

1 FCHTRE (<CO), CHTREE(2Gt,6),CHCLIS(20C),
2 hChPN,MXCHAN,NCHW,MXCHW,NOQL1MXOPL,M~~PL,NCHl,NCH~~,MXC~T,MXC~C~,NCOP

REAL*8 CPLIST/SHSUBSE,SHARiSE,5HALESEt5HALAOEISHAfI~E,5HAR~A~,
1 5HER4SE,5HSU8ST,5HADRIS,5HADlES,5HADLAD,5HADf 10,5HADRIA,

1 ~HSU~SEI,~HARISEI,~~A~ESEI,~~ALA~EI,~HERASEIT~HSU~ST~,
1 6HADRf SI ,6HADLESI ,6HADLADf ,6HERASEF,5HSAVEf ,6HMERGEF,
1 SbMO\Ef/
REAL*8 Ct+ORO,FChTRE
INTEGER*2 CHAN,CHTREE,CHCCIS
JNTEGEW2 NOPL/26/,NCOP/23/ .

INTEGER*2 ~CHAN/n/,~CHk/C/,NCHT/O/,NCHCL/O/
I N T E G E R * 2 MXCHAN/4QO/,MXCHH/lO~~,MX~PL/SO/1MXCHl/2~~~,MXCHCL/2@0~
E&O

-=.
BLOCK CbTA
IbJPLICIT INTEGER*2 (A-2)
CCMbQN /CQUlM/ CPBUF, SYT6,TERM
REEL*8 cPeuF(sw)/‘STOP '/,SYT8(~0~),fERM(32)/
1 ‘ZINT. ’ ,‘ZlRN. ’ ,‘ZkRD. ‘,‘LGRN. @, ‘< ‘t
2 ‘> a 9’: *t ‘(8,0 ‘,‘. ‘t
3 ‘: ‘,‘AfTER ,,‘BEFClRE ’ , ‘CHANGE ‘,‘OO ‘t
4 ‘ E L S E @ ,@FAXCURE ‘,‘FLAC ’ two ’ “GOT0 ‘t
5 ‘ I F ’ , ’ IN 0 ‘ R E S U L T ‘,‘RPT ‘,‘STQf 0
6 ‘ S C C C E S S ‘,‘TEST ’ ,‘T)iEh ‘,‘TO ','TRACE ',
7 ‘ T R E E ‘,‘UNTRACE ‘/

COM)JGN /CPCCM/ SYTV~lCO~;STK~100)r0TOP~20)rOTOPS~5C~,CPPTR,SPTR,
1 LVL,SYTN,tSCAN,SYTL(tOO), ’
2 ZINT, ZTRN,LWRtl,ZGRN,ZLAN,ZRANtLSMf ,
3 .ZLCP,ZRPR,ZPEH,LCOL,ZAFl,ZBEf,ZCHN,
4 ZOG,ZECS,ZFAC,ZFLG,ZGtJ,ZGOT,ZIF,
5 ZIN, ZRSL,ZRPT,ZSTP,ZSUC,ZTST,ZfHN,
6 ZTC,ZfRC,ZTRE,ZUNT,IiWuTY

I N T E G E R * 2
L -Z I hT/ I/, ZT RN/2/, LHRC/3/,ZGRh/4/, Zi.AN/S/, ZRAN/6/, ZSMI /7/,
2 ~ZLFH/e/,ZRPK/9/,ZPER~l~#,ZCC~jl~~,ZAFT~~2f ,Z0EF/13/,ZCHN/16/,
3 Z~C/1S/,ZECS/16/,ZFAL/17~,ZFLG/~0/,ZG~/19/,2G0Tf2~~,~1~/21/,
4 ZI~/2S/,ZRSC/23/,ZRPT/24/,ZSTP~25~,ZSUC/26~,ZTST~27/,ZT~N~20~,
5 Z7C/2S/,ZTRC/3~/,ZTRE/~l/,Z~~T/32/,~~~NT~/lO~

C O M M O N /CPCOM/ FGN,FGV,TRCF,APfG,IFFG,RFG
LOGICAL*1 FGN~1QO,lO~,fGV~100,lO~,TRCf~l~~,~~,APFG,IF~G,RfG
END

6. POSSIBLE EXTENSIONS

There are certain extensions to the Transformational Grammar System

which we have considered, but which have not been implemented. An

informal discussion is given here of ways in which these extensions

might be made. The additions considered are:

A. Rule features

B. Tree-pruning
-.

c. n-ary features

D. R,estrictions on skips

E. Analysis of skips,

6.1 Rule features

This section discusses the changes which would be necessary to

include rule features. It is inconclusive in not defining where rule

features will appear and where they will be looked for. This is an open

linguistic question, as is the question of the need for rule features.

Input of rule features

A rule feature is simply a transformation name used as a feature.

However,. since the lexiconmay be read in before the transformations,

the program cannot recognize rule features as such. The lexicon con-

tains a list of category features, a list of inherent features, and a

list of contextual feature definitions. Any feature which does not

occur in those lists is now assumed by the program to be an inherent

feature, and a message "WARNING. NUMNAM. FEATURE xxx ADDED AS INHEREJYT"

6-1

is printed, In the table of feature names (FTNAME) the entries from

1 to NBCAT are names of category features, and from NBCAT+l to

NBEXP names of inherent features. Names of contextual features are

. .
stored in LZNAME .

To modify the input to allow for rule features, the use of FTNAME

would be modified slightly so that the entries from 1 to NBCAT were

category features, the entries from NBCAT+l to NBSPEC were inherent

features given on the list of inherent features in thelexicon, and the
-

entries from NBSPEC+l to NBEXP were additional feature names encoun-

tered in reading the lexicon.

--.
if they were inherent features

would be altered to "WARNING.

RULE?

After the transformations

At this point the program would not know

or rule features, so the message above

NUMNAM. FEATURE xxx ADDED AS IJHERENT OR

have been read in, the feature name

table FTNAME could be searched from NBSPEC+l to NBEXP to see which

transformation names occur there. The number of the corresponding rule

feature (i.e., the index in FTNAME) can be stored in TRAN(l&) .

This column contained the EMB parameter until EMB was abolished.
.

Effect of rule features

The possible cases in which rule features can affect the handling

of a transformation are shown in the table on the next page, where 1

indicates apply, 0 don't apply, and .5 apply with probability 0.5 .

6-2

value of rule feature

transformation type

OPC

OBmajor

OBminor

ORnajor

OPminor

f unmarked -

1.0 0.5 0.0

*. 1.0 1.0 0.0

1.0 0.0 0.0

0.5 0.5 0.0

0.5 0.0 0.0

(The use of major and minor rules is discussed in Lakoff*. The sub-

division of each of these classes into OB and OP seems to be a

natural extension.)

The system now allows OB and OP as the only two optional

classes. The list could easily be extended to the five classes above

by inventing suitable mnemonics.

Testing rule features

Currently no tests are made of features except as they occur

within complex symbols. The best approach to rule features would seem

to be to write an integer*2 subroutine FTINC(csno,featno) which

would return the value of the feature specification for featno in

complex symbol csno . Values are currently represented as 1 for

4 and 2 for - . 0 could thus represent the unmarked case. In

testing the structural description of a transformation with a rule

feature, ANTEST could call FTINC to obtain its value.

*Lakoff, G. On the Nature of Syntactic Irregularity. NSF-16, The
Computation Laboratory, Harvard University (1965).

6-3

Where to look for rule features

The difficulty problem in incorporating rule features comes in

deciding where to look for them. The following possibilities occur:

(1) look for rule features on every-node used in the analysis,

(2) look for rule features only on nodes corresponding to numbered

terms,

(3) look for rule features only on nodes corresponding to numbered

terms with a small subset of special numbers,

- (4) look for rule features only after encountering some special symbol

in the structural analysis.

Alternative (1)~-.is bad because there is the possibility that the rule

feature might be found more than once, with opposite values. Alternative

(2) is bad for this same reason. The linguist must number terms for use

in restrictions and structural change. He might thus be forced to

number two which would have the rule feature with opposite values.

Alternative (3) would notpresent any real problems, since the numbers

are otherwise arbitrary (and between 1 and 50). Alternative (4) is

unpleasant because it would require some changes to CXIN 0

a Lakoff has suggested that the rule feature should be looked for

on the main verb. This does not solve our problem since we still need

-to indicate the main verb. However, it does lead us to think that

alternatives (1) and (2) above are too broad,

Note that we cannot require that the rule feature be explicitly

mentioned in the structural description because this would mean that

it must always be present for the transformation to work. This would

be acceptable only for OBminor and OPminor rules.

6-4

Suppose we were to create a new restriction RUI which would be

true if the node were marked for the rule feature of the current trans-

formation and false otherwise. Then the analysis would fail at that

point if the value of FTINC(csno,featno) is - , but should it then

proceed to look for another analysis?

When should rule features be tested

In order that the rule feature test tie in properly with the

- repetition parameters (AC, ACAC, AACC, AAC) and the optionality

parameters (OB, OP) it would appear that the rule feature should be

tested only after the analyses have been found. Otherwise an AC
=.

transformation, for example, would go on to find a second analysis,

when the first fails, only because of the rule feature. This problem

needs to be thought about carefully, since it is not clear what is

linguistically correct in the various cases which arise.

6.2 Tree-pruning

Some linguists (notably Ross*) have discussed a notion of tree-

a

pruning. Tree-pruning is essentially an obligatory transformation

which must be applied whenever the structural description is met, and

thus fails to fall into any linear ordering of transformations. Within

the system as it stands tree-pruning could be handled by defining one

or more tree-pruning transformations, PRuNEl, ..e, PRUNEn, and writing

the control program for the transformations so that these transformations

*ROSS, (7. R. A proposed rule of tree-pruning. Presented to the
Linguistic Society of America (1965).

6-5

are invoked after every successful application of another transformation.

This is somewhat awkward and it might be desirable to handle this auto-

matically by an instruction in the control program itself, say TREEPRUN,

which would automatically invoke the-tree-pruning transformations after

each change. To do this one would simply add the new instruction to the

control language, and then incorporate the calls to the tree-pruning

transformations into the TRACE subroutine at the same point that

TRACE . ..AFTER CHANGE is now tested. This would be more elegant; it

would also be more time-consuming in execution.

6.3 n-ary features

The recent attention to case in grammars of English might be best

handled by the use of features with more than 2 values. Fillmore*

has proposed that case be handled within the phrase structure, but

treatment by n-ary features is an alternative which should certainly

be explored. To do this would require some fairly major changes in the

system, both in the input routine for complex symbols and in the various

tests and changes to complex symbols. One possibility for externale

format would be to allow small integers as values in addition to the

+, - and * now allowed, viz., I+ N 3 PREP - HUMAN) s There is

:no basic reason why this could not be done, but it would take some time

to implement it well.

*Fillmore, C. J. A proposal concerning English prepositions, Georgetown
Monograph Series on Language and Linguistics, 19 (1966), pp. 19-34.

6-6

6.4 Restrictions on skips

Although the present syntax for structural analysis for the system

does not allow the numbering of terms which are skips, the possibility

of doing so might be considered. This would make it possible to test

dominance and nondominance restrictions on skips. It is not clear what

equality of skips should mean. The main question here is whether lin-

guistically a skip should be treated as analyzable in any way. The

__ system of transformational grammar as it now stands is cleaner than

one which would allow this, and we have seen no examples in which it is

required (although it might have been used in the definition of
=.

LOWESTS).

The problem could be handled by an integer function

INSKI~2(SKPPTR,WORD,ITEST) which would decide whether there was a

node with the real*8 name WORD in the scope of the skip whose bounds

are in the SKPPTR-th. entry of SKPNOD . If so, it returns that node's

position in the TREE; if not, it returns 0 . When ITEST = 0, the

entire range is searched. When ITEST # 0, the range beyond node

number ITEST is searched.

This subroutine could be called by both the restriction tester

and the analysis tester (ANTEST) . For RESTST the call

INSKIP(NUMNOD(N,NUMCNT),word,O) . If the value is 0, there

(RESTST)

Iwould be

is no dominance; if nonzero, dominance.

6.5 Analysis of skips

The syntax for skips which was originally considered for the

system was:

::=skip $ opt[opt[-Jopt[&](clist[structurel >I

The interpretation would be that the clist of structures referred to

structures within the range of the skip. & would mean that all must

be present; I & would mean that none may be present; 1 would mean

that at least one must not be present; and no preceding symbol would

mean that at least one must be present. For the reasons discussed in

D above we have not felt that this strong a definition was necessary.

To make the extension would require changes to the analysis routine,

-ANTEST . The subroutine INSKIP described above could be used here.

The call4Zrom ANTEST would be approximately

1 0=

a I = INSKIP(SKPPTR,ANALWD(ANLIST(POSN)),I)

IF (IJ3Q.O) GO TO . . .

IF (. . .)GOTO a

0.01 TRANSFORMATIONAL GRAMMAR ::= PHRASE STRUCTURE LEXICON TRANYFORMATIONS $END

1.01
1.02
1.03

-.< 1.04
1.05

TREE SPECIFICATION ::= TR$X opt[- , clist[WORD TREE]]
TREE ::= NODE optI C@fP&EX SYMBOL 1 opt[[list- 333
NODE ::= WORD or SEZJTEJh SYMBOL or BOUNDARYZ&3OL
SENTENCE--0L ::= s
BOUND&Y SYMBOL ::= #

G opt12.01 STRUCTURAL~DESCRIPTION ::= STRUCTURAL ANALYS
2.02 STRUCTURAGANALYSIS ::= list1 'EGRM J .
2.03 TERM ::- optI INTEaR 1 STRUCTURE or optI
2.04 zi55rJm ::= ELEMENTo<~SyMBOLl
2.05 iiXiiiE:= NODE or * or
2.06 CHOIR _t:y (crist[STRUCdANALysIS I)

WHERE RESTRICTION 1 .

lXJ!EGER
OptI

3
‘tr

CHOICE or SKIP
Alopt[/ ~(STRUWURAL AHALYSIS

f

+ 3.01
342

3.03
3.04

3.05
3.06
3.07
3.08
3.09

I MODIFIED 23 AUGUST 1968

COMPLETE SYNTAX FOR TRANSFORMATIONAL GRAMMAR

RESTRICTION ::= booleancombination[CONDITION I
cmIT1m ::= UNARY CONDITION or BINARY CONDITION
UIfARY CONDITION ::=UNARYREZATION IN!MZR
BINARy CONDITION ::= INTEaR BINARY TREE RELATION NODE DESIGNATQR or

IN!CFGER BINARY COMPLEX RELATION COMPLEX SYMBOL DESIGNATOR
~~DESIGNA!l!OR ::=INTEGER or NUDE
C@fPI&X'SYMBOLDESI~K-::GF COIiFiK SYMBOL (Dr INTEGER
UI'JARY-RELATION ::= TRM or hRM or NUL or NNUL or MF- or ffD=
B%@iiii! T= RE3
BINARYC(2fPLEXREL

M!IoN ::= EQ or N&Q or DOM or NDOM or DOMS or NDOMS
,ATION ::= INCl or NINCl or INC2 or NINC2 or CSEQ o
or NNDST or COMP or NCOMP

DOMEY o r ND-
ZSEQ or NDST

4.01 COMPLEX SYMBOL ::= 1 l&[FEATURE SPECIFICATION] \
4.02 FEATURE SPECIFICATION ::= VALUE FEATURE
4.03 FEATURE ::= CATEGORY FEATURE or INHERENT FEATURE or CONTEXTUAL FEATURE or RULE FEATURE
4.04 CATEGORY FEATURE ::= CATEGORY
4.05 CATEGORY ::= WORD
4.06 INHERENT FEATw::=WOlUI !
4.07 RULE FEATURE ::= TRANSFORMATION NAME
4.08 CONTEXTUAL FEATURE ::= CONTEXTUAL FEATURE LABEL or CONTEXTUAL FEATURE DESCRIPTION
4.09 CONTEXTUAL FEATURE DESCRIPTION ::= (STRUCTURE opt[, WHERE RESTRICTION],
4.10 V A L U E : : = + o r - o r * ’

5.01
5.02
5.03

5.04

>

lb 5.05
5.06
5.07

5.08 BINARY COMPLEX OPERATOR ::= ERASi5F or MERGEF or SAVEF
5.09 UNARY OPERATOR ::= ERASE or ERASE1
5.10 TERNARY COMPLEX OPERATOR ::= MOVEF

STRUCTURAL CHANGE : : = clistr CICANGE INSTRUCTION ?
CHANGE INSTRUCTION ::= CHANbE or CONDITIONAL C&GE
cormrroNAL CHANGE : := ‘IFSRESTRICTION) THEN (STRUCTURAL CHANGE >

op$ ELSE (STRUCTURAL CHANGE)]
CHANGE ::= UNARYOPERATOR INTEGER or
TREE DESIGNATOR BINARY TREE OPERATOR INTEGER or
COMPLEX SYMBOL DESIGNATOR BINARY COMPLEX OPERATOR INTEGER
or COMPLZX SYMBOL DESIGNATOR TERNARY COMPLEX OPERATOR INTEGER INTEGER

COMPLEX SYMBOL DESIGNATOR ::= COMPLEX SYMBOL or INTEGER
TREE DESIGNATOR ::= (TREE) or INTEGER or NODE
BINARYTREE OPERATOR ::=ADLAD or ALADE or ADLADI or ALADEI or ADFID or AFIDE or

ADRIS or ARISE or ADRISI or ARISE1 or ADLES or -ALESE or ADLESI or ALESEI
or ADRIA or ARIAE or SUBST or SUBSE or SUBSTI or SUBSEI

6 . 0 1
6.02
6.03
6.04

7.01
7;OZ
7.03
7.iJ4
7.05
7.06
7.07
7.08
7.03
7.10
7.11
7.12
7.13

8.01
8-.02

p 1.03

&I
8.04
8.05
8.06
8.07
8.08

9.01
9.02
9.33

.
9.04
9.05
9.0&
9.07
9.08
9.09

- 9.10
9.11

::= PHRASESTRUCTURE
!?!%+#% RUE

list< PHRASF STwCllJ& RUE b $EiJD

R;ILE L E F T : t- NODf
::- RAKLLEEI*r~

R U L F R I G H T ::- j-JODk o r l i s t f w film 3 o f (list4 &,&E RIGH’C 1 1 o r (c l i s t f &jJ& RIW 1)

LEX

g
CAT
3

CON

iii

CON ::: L E X I C O N PRELEXlCOt(L E X I C A L E N T R I E S $END
FCOIJ yTFE;TURF DEFI MITIGNS optf BFDUNDANCY RULE)
URE DEFI I IO S - l t

.GORY DEFINlTIO:JS-; := CATLGORY
TFJORY DF I ITIONS opt< f DFFIiJITIQNS 1 opt< COtJTFXTmI 0~lNlTlO1~ >

I;s!f C A T E G O R Y F&JR&) .
IRENT DEFINITIO;4S ::= I N H E R E N T l i s t f I N H E R E N T F E A T U R E 1 .

T U A L DFFINITION~ ::= C O N T E X T U A L c l i s t f C O JTFXTUAL DEFINITI~p ’ 1 .
‘FXTUAt DEF~NITI~~I ::= CONTFXTUAL F E A T U R E LABEL = C O N T E X T U A L F E A T U R F D E S C R I P T I O N
JXTUAL F E A T U R E LABE4 : :- MORQ

C Y RUW ::= R U L E S clist< j?FDUuCY RUE 1 .
CO! PLFX SYMBOL

,;:,,,I-’ E NTRY > .
Ex tJOBp 1 list< COUPJ&J SYWBO4 >

SFORMAT I OYS. : := TRANSFORMATIOIJS 1 I stf

E SFOhtlATION. ::a TRAlJS ~KTIFlCATlOt{
IT I F I’CAT I ON : := Optf It!TFGER > TRANSFOHf4AT I OM tJAt4L opt< 1 i St< PARAKETER

O
PT I Ot!A I I T Y OK REPETlTlON

Ill or IV or V or, VI or VI1
DNALlfr ::- O B o r 09
REP- ::* A C o r A C A C o r irACC o r A A C
KEYWORDS ::- (l i s t f m 1 1

::= s c l i s t f o p t f LABEL : > INSTRUCTlOt{ 1

.ION ::= jIPT I N S T R U C T I O N o r I N I JsTRUCTIOti o r 1F Ir4STRUCTIOil
o r G O f iJSTECICTt OiJ o r T&E INSTWCT 103 o r STOP I NSTRUCT I ON

NSTR r
). fT ‘7-i : :‘rTRZ?J!FORI i!?TAi ‘ti,49:

< s c l istf ItJSTiWCTIO ta b >
’ 8GROUP iJUa1BFR

R P T I STRUCTlOy ::- RPT 0ptf I KTFGE~~YCONTR~L PROGRAtd >1
I N I:JSTRUCTI O N : :* I N TRANSFORtdT I O>J IJAdE, (IljTEGER) D O < CONTROI PiiOGRAl4 >.I F INSTRUCT IO,4 ::= IF JfJSTRUCTION THEIJ GO It!STWCTIw opt< E L S E GO IiJSTRUCTIO~)

.* -
Ed I-fRUCfW ::= G O T O LABF,t

::= T R A C E T ItvSTkUCTIOtJ T R A C E SPECIFICATIOIJ Qr biJTRACE T ItJSTRUCTIGtJ o r T R E E ,
::= B E F O R E T E S T o r A F T E R F A I L U R E o r 4FTER S U C C E S S o r A F T E R CHAIJGE

S T O P lNSTRUCTlOt(::- S T O P

*r .,

APPENDIX B

Reports on the Computer System for Transformational Grammar

AJ?-14
cs-79

Al?-15
cs-80

360 OS. FORTRAN IV Free FPeld Input/Output
Package

Directed Random Generation of Sentences
(to appear, CACM)

AF-21
cs-84

a’-24
- cs-95

A Computer System for Transformational Grammar

A Formal Syntax for Transformational Grammar

AF-25 Lexical Insertion in Transformational Grammar
cs-103 --.

m-33
cs-108

Computer Experiments in Transformational Grammar J. Friedman, Ed.
September 1968

AF-34 Analysis in Transformational Grammar

m-35

R. W. Doran
October 1967

J. Friedman
October 1967

J. Friedman
January 1968

J. Friedman
R* W. Doran
March 1968

J. Friedman
T. Bredt
July 1968

J. Friedman
T. Martner
September 1968

A Control Language for Transformations J. Friedman
B. Pollack
September 1968

B-l

