
cs 113

THE* IMPACT OF STORAGE MANAGEMENT

ON PLEX PROCESSING LANGUAGE IMPLEMENTATION

BY

WILFRED J. HANSEN

TECHNICAL REPORT NO. CS II3

JULY 1969

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

THE IMPACTOF STORAGEMANAGEMENT
ON PLEX PROCESSING IANGUAGE IMPLEMENTATION

Wilfred J. Hansen*--.

STANFORD GRAPHICS PROJECT

Professor William F. Miller,

Principal Investigator

J u l y 1 9 6 9
.

Computer Science Department

Stanford University

‘*Present address: Applied Mathematics Division, Argonne National Laboratory

This work was supported in part by National Science Foundation Grant GP-7615.

Abstract

A plex processing system is implemented within a set of environments whose

relationships are vital to the system's time/space efficiency:
-.

Data Environment

Stack Structures

Data Structures

Subroutine Environment

Routine Linkage

Variable Binding

--. Storage Management Rnvironment

Memory Organization for Allocation

Storage Control

This paper discusses these environments and their relationships in detail.

For each environment there is some discussion of alternative implementation

techniques, the dependence of the implementation on the hardware, and the

dependence of the environment on the language design. In particular, two

language features are shown to affect substantially the environment design:

variable length plexes and 'release' of active plexes. Storage management

is complicated by the requirement for variable length plexes, but they can

substantially reduce memory requirements. If inactive plexes are released,

a garbage collector can be avoided; but considerable tedious programming

may be required to maintain the status of each plex.

Many plex processing systems store numbers in strange formats and

compile arithmetic operations as subroutine calls, thus handicapping the

computer on the only operations it does well. Careful coordination of the

system environments can permit direct numeric computation, that is, asingle

instruction for each arithmetic operation. This paper considers with each

environment, the requirements for direct numeric computation.

To explore the techniques discussed, a collection of environments. .

called Swym was implemented. This system permits variable length plexes and

compact lists. The latter is a list representation requiring less space than I

chained lists because pointers to the elements are stored in consecutive

words. In Swym, a list can be partly compact and partly chained. The gar-

bage collector converts chained lists into compact lists when possible.

Swym has careful provision for direct numeric computation, but no compiler

has been built. To illustrate Swym, an interpreter was implemented for a

c

small language similar to LISP 1.5. Details of Swym and the language are in

a series of appendices.

TABLE OF CONTENTS

Page

PREFACE .

INTRODUCTION .

SywmandSTUTTER .

Plex Processing Language Implementation

Environments of a System Implementation

I. Data Environment .

I.1 The Stack

I.2 Data Structures.
.=.

II* Modular Programming and the Subroutine Environment

II.1 Routine Linkage

II.2 Variable Binding

III. Storage Management

III.1 Memory Organization for Allocation

III.2 Storage Control.

Fixed-Release

Fixed-No-Release

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

Variable-Non-Relocating

Variable-Relocating

. Hierarchical , . .

Basic Swym Garbage Collector Algorithm

CONCLUSION. .

Summary of Swym Environments

Implications for Hardware Design

BIBLIOGRAPHY .

iv

1

3

6

9

11

11

14

27

33

37

48

50

53

54

56

57

59

63

65

73

74

75

77

i

A.

B.

c.

D.

E.

APPENDICES

Details of Swym Structures

A.1 Free Storage Structures
. .

A.2 Stack Structures

SFJYrnMacros .

B.1 LISP . The Basic LISP Operations

B.2 Atom . Operations on Atom Fields

B.3 Freest . Free Storage Creation

B.4 Stack . Stack Manipulation

B.5 Bit . Named-Bit Operations
--.

B.6 Link . Subroutine Linkage

B.7 Control . Flow of Control

B.8 Mist . Miscellaneous

READ Routines and Syntax.

c.1 TheSyntax .

c.2 Internal Routines

c.3 CSSWYM Fields used by READ Routines

c.4 Flow Charts .

EVAL and the STUTTER Interpreter

D-1 Defining Functions to the Interpreter

D.2 STUTTER Variable Binding

Dm3 STUTTER Interpreter Internal Routines

Swym Garbage Collector

E.l The Complete Garbage Collector Algorithm

E.2 Garbage Collector Internal Routines

E.3 Information Stored in CSSWYM
s

ii

82

82

89

91

95

97

98

103

107

109

113

117

121

121

126

132

134

142

142

144

145

151

152

159

164

F. STUTTERFunctions 165

F.1 Basic Routines 167

F.2 Input Routines 168

G.

H.

F.3 Output Routines 171

F.4 STUTTER R o u t i n e s 172

F.5 Utility Routines 174

Miscellaneous Swym Routines 176

swym - STUTTER Initial Free Storage 1-79

H.1 Character Objects 179

H.2 Subroutine Objects 179

H. 3 --. Special Structures 179

I.

J.

Swym Register Assignments 183

SW- STUTTER Output and Error Messages 184

J.1 Normal Output. 184

J.2 Read Errors 184

K.

L.

M.

5.3 Computation Errors 186

5.4 ABEND - Abnormal Terminations 187

Proposed Instructions for the 1~M/360 l . . l 188

Demonstration of the Correctness of the Swym Garbage l l 196

Collection Algorithm

Description of Control Section CSSWYM l 225

. N. Adding Routines to Swym - STUTTER 229

N.l Adding Assembled Routines 229

N.2 Compiling Functions for Swym 230

N.3 Defining Routines to be Interpreted 232

0. S W - Control Sections 234

l!d☺⌧EMoNIc INDEX . 236

iii

PREFACE

Plex processing is an effective technique for attacking graphical

problems. The Stanford Graphics Project conducted project Swym to examine

current techniques and develop new techniques. An important result is that

plex processing cannot be viewed as simply another high-level language

facility. Instead, it must be viewed as having an impact on the most vital

components of a language implementation. Introduction of plex processing

into a language has far-reaching repercussions in the design of implementations

of that language.

Many graphics

cessing. An early

projects have based their implementations on plex pro-

effort was Sutherland's Sketchpad thesis reported in

[Suth 633 and [Jopin 631. More recent are [vDam 671 and the interactive dis-

play project at General Motors [Joyc 671. A review of several systems imple-

mentations useful for graphics is [Gray 673.

This paper can be considered as an outline for a course entitled 'Semantics

of Plex Processing Languages.' Knowledge of Fortran and assembly language would

be prerequisite and the course would cover six languages in detail: ALGOL

[R&R 641 - the arithmetic mother, LISP [MCar 621 - the plex father, and their

offspring - ALG$LW [BBG 681, GEDANKEN [Reyn 691, PL/I [IBM 68b], and

- Swym/STUTTER (this paper and appendices). As far as possible, the course

should ignore the syntax of the languages since there exists a superabundance

of literature on that field. Instead the course should cover the fundamental.

semantics of data structures and program control.

The author would have preferred to continue making additions to Swym

rather than write it up. There came a point, however, where the goals of the

project had been met and further effort would not add useful information.

This paper, especially the appendices, represents a system in an arrested

state of development. This is not because there are conceptual difficulties in

iv

making STUTTERa practical programming system, but rather because there do

not appear to be any such difficulties. Swym serves its purpose: it is a

framework within which systems can be implemented.

The body of the paper is an abstract discussion of language implementation

and storage management. The appendices give complete details of the Swym

system, while the bibliography indicates previous work in implementing storage

management. Unfortunately, some of the papers referenced, especially

in section 111.2, describe programming languages with no description of the
. .
implementation details being discussed in this paper. In such cases, the

implementation details have been ferreted out in private communication.

Bibliographic references are in the form,

[name yrl

where name is four reasonably mnemonic characters from the author's name

and yr is the year the work was published. If the information was a private

communication, the year is coded 'PC'.

The author is indebted to all those who have taken their time to explain

and discuss the intricacies of various plex processing implementations, notably

- the 'system didlers' at the Stanford Artificial Intelligence Laboratory and the

Computer Based Laboratory. Thanks are due to Dr. J. Reynolds, creator of

@GENT, for discussion of that system and language implementation in general.

F.L. Morris acted as an invaluable sounding board for descriptions of the

evolving Swym system. A special debt is owed my adviser, Dr. William Miller,

for his advice and encouragement.

INTRODUCTION

The term "plex" may have been first proposed in [Ross 611. D.T. Ross

invented the term to mean a structure composed of 'n-component elements'

just as a binary tree is composed of 2-component elements. It has become

more common, though, to use the term plex to mean 'n-component element'

and to call a structure of these a 'plex structure.' One main characteristic

of plex processing is the pointer - a data item that encodes the location

of some other data item. Most con.unonly, a pointer is the address of a plex

in memory. In short:

plex - one ormore data fields of computer memory, usually
consecutive.

pointer- data coding the location of other data (usually
a pointer is the address of a plex.)

plex structure - a group of plexes connected in the sense that starting
from one or more of the plexes, all other plexes can
be reached by means of pointers, either directly or
through a sequence of pointers.

plex process - a program using plexes to represent a substantial
amount of its data. (An almost equivalent and more
determinate definition is: any program that requires
storage management beyond a stack.)

A list is an important special case of a plex structure. Basically, it

is an ordered set of plexes. Normally a list is realized with 2-plexes in

thlis way: the first component of each 2-plex points at an element of the

ordered set of plexes; the second component points at the next 2-plex in the

list. Usually, the second component of the last 2-plex points at some

standard list terminator. Lists were treated mathematically by John McCarthy

[MCar 601 and implemented in the plex processing language LISP 1.5 [MCar 621.

[Knth 681 includes a complete discussion of plex data structure implementation.

1

Other good reviews of the literature on plex implementations are in [Schr 671

and [Lang 681. The most promising work is reported in [Ross 673, [Hawk 671,

and [Styg 671. The last two are part of the ambitious SDC LISP 2 for the 360,

described in the SDC TM - 3417 series. _.

When plexes are created and destroyed during execution of the program,

some storage management technique must keep track of the occupied and un-

occupied memory. Some storage management schemes require a garbage collector.

This is a routine that processes all memory, identifies the occupied and un-

occupied areas of memory, and makes the latter available for reallocation.

Although this is a time consuming process, other storage management techniques

ma.y involve extens-ive bookkeeping.

Satisfactory computer languages must also provide numerical computation.

In plex systems numbers must be distinguished from pointers. Often this means

that numerical operators must retrieve their arguments from plex structure;

and this sometimes requires several memory accesses and one or more shifts.

Since plex languages usually permit more than one type of number, the

operators must also test the types of the arguments. But lengthy access

sequences and type-testing can seriously slow down a numeric calculation.

- Solving this problem requires some form of compilation process and a

declaration structure in the language. The compiler can then determine

at compile time the types of operators and compile the appropriate machine

instructions. The problem of directly accessing nwnbers that is, direct

numeric computation - requires that the stack and memory be permitted to

contain arbitrary bit pattern numbers. This means, for example, that a

garbage collector cannot assume that all words on the stack are pointers;

nor can it distinguish pointers from other information on the basis of a

bit in the word. s

2

Swym and STUTTER

To examine plex processing from the practical level, Swym - a general

plex processing memory management system - was implemented. As an illustra-
. .

tion of the capabilities of this system, an interpreter for a small LISP-like

language called STUTTER was also implemented.

The central focus of the Swym project was a particular plex structure

called a compact list. This form of list can reduce memory requirements by

up to half; essentially compact lists do not always require the second pointer

in the 2-plex for lists. The details of compact lists are in the section on

Swym data structures (1.2) and in the Appendices.
--.

The compact list was derived from and suited for the needs of LISP 1.5.

Consequently, STUTTER is similar to that language and has the same basic

operations, (though new names, the LISP 1.5 names are in parenthesis):

fst (cm argument must be a list; fst returns the first element- -

of that list;

rst (CD@ argument must be a list; rst returns the rest of that- -

list after the first element; if the list has only one element,

rst returns an atom;
a

talk2 (CONS) there must be two arguments, both pointers; tak2 takes

2 words from free storage and &c&s the 2 arguments together so

. first is fst of result and second is the rst;

atom (ATOM) predicate - true if argument is an atom, false other-

wise;

eq @Q> predicate - true if both arguments point at the same

plex; false otherwise;

rplf~ (RPLACA) there must be two arguments and the first must be a

list; the Qrst pointer in that list is ze&aced with a pointer

at the second argument.
. .

Unlike many LISP implementations, an interrupt results if fst~ or rst is taken

of an atom. Like LISP, the mnemonics ffst, frst, rfrrst, etcII can be defined

(lending credibility to the name STUTTER). As indicated above, tak2 always

makes a 2-plex. STUTTER relies on the Swym garbage collector to make compact

lists where possible.

Super-parentheses are an important feature of the STUTTER input syntax.

Represented by the characters 'cc and '> ', a pair of super-parentheses can be--.

substituted for any pair of normal parentheses (of which there are many in

LISP and STUTTER input). When the input routine finds the right super-

parenthesis (>) matching a left super-parenthesis (<), the enclosed ordinary

parentheses are forced to balance, either by creating right parentheses or

by ignoring characters* If characters are added or deleted, an error message

is printed.

Swym has been carefully designed to permit direct numeric computation.

. Special care was taken in several areas: the stack and free storage permit

thirty-two bit numbers, and the value of a STUTTER atom is directly

accessible, given the address of the atam, The subroutine linkage mechanism

and the storage management techniques also take into account the possible

presence of numbers.

Swym was programmed for an II@4 360 under oS/360. This was not only

because of the wide availability of the 360, but also because it was some-
. .

thing of a challenge to adapt the 360 for efficient plex processing. The

Stanford 360 is a model 67 with 32 bit addressing and paging facilities.

Swym was designed to test these facilities on a plex processing system, but

the operating system did not support them and moreover, Swym was

moved to SLAC. Nonetheless, the lessons learned from Swym may have important
._.

implications for machine design, as is discussed in the conclusion. Details

of Swym and STUTTER are in the Appendices.
--.

Plex Processing Language Imp,lementation

Several interesting languages have been designed primarily for plex

processing. The *best known examples are LISP [MCar 621, SN$B#L [Farb 641,

L
6

[Know 661, and the earlier IPL-V [New1 641 and COMIT [Yngv 623. An

excellent review of such languages is in [Bohr 681. The promise shown by

these languages has led to many attempts to define and implement plex

processing facilities for existing high-level languages, For instance:

SLIP [Weiz 631, Pecords for Algol [Hoar 66, Wrth 663, and the 'based variable'_-

feature in PL/l [IRM 68b]. Unfortunately, adding a plex processing feature

is very unlike adding a new function (say SINE) or even a whole new arithmetic
--.

(say complex). Plex processing not only requires appropriate additions

to the compiler or interpreter, but can also require extensive revision of

the code compiled for all other features. The major problem is that plex

processing requires some form of storage management, either by the user,

or by the system. This paper surveys the problems encountered if a system

is to manage storage. These problems are encountered in the very basic

areas of data representation, subroutine linkage, and storage management

itself.

In most computer installations, program compilation is a frequent

event. Like other non-numeric computation, compilers can make advantageous

use of plex processes. For this reason, the concepts and techniques discussed

in this paper apply not only to the code generated to implement the features

of a language, but also to the features required in the compiler itself.

This paper assumes that the language being implemented includes plex

processing and consequently requires storage management* It is also assumed

that the language permits definition of subroutines (procedures) and that

6

programs written in the language will make substantial use of subroutines

and modularity. For two reasons , Swym sheds some light upon the functions

required during the execution of a plex processing program. First, Swym

is an investigation of plex processing; second -- and less obvious --

Swym required construction of plex processes. The garbage collector,

input/output routines and the STUTTER interpreter are all examples of

plex processes.

A programming system will be used by many programs over an extended
--

period of time. It is important in the design of such a system to avoid

decisions that will slow execution substantially, expecially when a practical

alternative is available. Usually many decisions must be based on the trade-

off between memory space and execution speed. Before .multiprogramming and

timesharing the answer was to optimize by saving time at the expense of space

since the memory was there. In modern systems there is an expense not only

for execution time, but also for memory space. The ratio between these two

expenses is critical to the choice of an efficient set of alternatives for

a language implementation. One of the goals of this paper is to point out

the alternatives. A major effort was made to reduce the size of the data

structures as far as possible and to reduce the time and space required

for the most basic system functions.

One approach to the definition of execution efficiency is that of the

I? systems [Know 661. That language and system is designed for 'low-levelness'.

This has been defined [Mnch pc] as producing code that is no more than ten

percent slower than equivalent hand code. STUTTER was designed with a

slightly different criteria in mind: the principle of 'relative difficulty

of specification.' This principle declares that a language facility should

take proportionately as much effort to specify as it does to execute. In

this way the programmer can have some feel for how much time the program

will take simply from the amount of code he writes.

Several problems contribute to slow running of high-level languages

with plex processing facilities. Most of these, however, are inherent,

not in the plex processing facilities, but in the implementations. Many

plex processing users see only the interpretive LISP or SNpB@L systems.

Compiled LISP, however, runs much faster than when interpreted. SN@B@L IV

- has plexes, and should run faster than SNJ6BflL III (because string

matching can now be avoided in plex operations). While interpreters have

their place, they are simply too slow to be used on any problem big enough
--.

to justify the use of a computer. But there exist plex processing systems

that meet these problems adequately. The ALGOLW [BBG 681 system at Stanford

implements plexes , yet is so fast a total system that student programs can

be compiled and executed on a 360 in less than a second. In short, the

presence of storage management facilities need not automatically mean

slow execution.

Although written in terms of language implementation, this paper is

really directed toward any program that can be more efficiently implementedw

by first implementing some tools. These tools might be any one of,

a) write a few macros

b) write macros to interface with an existing memory management
system like Swym

c) design a special purpose language

d) design a full general purpose language

The author believes that the most useful approach is probably (b), and he

would probably design many more data-specific macros than might another

programmer.

8

Environments of a System Implementation

A program is executed on a computer in a set of environments including

not only the hardware, but also service routines and conventions for data

representation and program linkage. The environments most directly affected by

the requirement for plex processing can be divided into:

Data Environment

Stack Structures

Data Structures

Subroutine Environment

Routine Linkages

Variable Binding

Storage Management Environment

Memory Organization for Allocation

Storage Control

All of these environments interact with the system storage management facility.

Not only must they be designed to make storage management possible, but many

require plexes for their own implementation.

The relations between the environments must be carefully worked out before
e

system construction is begun. A hasty decision on one environment can be

AIGOLW did not provide for

required that the garbage

expensive in the implementation of some other.

marking pointers on the stack. This eventually

collector be rewritten. [Baur PC]. Other decisions in AIGOLW require that a

2-plex occupy sixteen bytes. But if a set of environments is well coordinated,

more than one language can be implemented within

This provides for very efficient linkage between

more languages.

that set of environments.

routines written in two or

Each section below describes one environment of a language implementation.

The discussion will center around the effect of the storage management

scheme on that environment but will also cover alternative implementations
. .

and the relationship of the environment both to the language being implemented

and to the machine being used. Each section concludes with a discussion of the

relevant features of Swym and STUTTER. This serves for comparison and to

illustrate one choice of solutions for the problems posed.

10

I. Data Environment

Data structures range in complexity from the single bit to organiza-

tions covering large quantities of direct access storage. To a certain

extent, the data structures in a system are dictated by the needs of the

higher level language. But the physical structure of the data may differ

from the logical structure manipulated by the higher language programmer.

In any case, the data requires storage space and this must be provided by some

form of memory management mechanism, either during compilation or during
-
execution. The discussion below separates stack data structures from other data

structures for two reasons. First, the stack is the simplest form of execution '

time memory management. Second, a stack is usually included in a system for

program control purposes. In most languages routines exit in the reverse

order of entry, so the stack is the natural analog of the progress of the

program.

I.1 The Stack

A stack (sometimes called a push down list) is a simple but important

system component. Among the advantages of a stack are that few instructions
-

are required to allocate and release space and there is no possibility of frag-

mentation of space, because there is only one contiguous area of unused space.

A; stack permits recursive procedures: by allocating temporary variables and

saving return addresses on the stack, a procedure can call itself directly or

indirectly. Each invocation refers to the correct variables and returns con-

trol correctly. Even if there is no recursion in an entire program, a stac'k

is a flexible and efficient method of storage allocation.

There are three basic operations on a stack: addition, deletion, and

reference to items; all are-easily implemented. One pointer to the stack

is maintained; additions and deletions move the pointer, while items are

referenced relative to it. Sometimes a test is made for the bottom of the

stack when items are deleted. Other systems assume that the program is

correct and that no more deletes will be-executed than additions. Several

methods have been implemented for ensuring that the stac'k does not grow beyond

its bounds. The most common is to simply test the stack pointer against a

pointer to the end of the stack. A possible hardware method is to check the

low order 5 bits of the stack pointer; if all are zero, the stack is exhausted.

This method means that stacks must end on certain boundaries; a restriction

that complicates memory allocation. With the PDP-6 hardware stack commands,

a stack pointer inc-ludes a count that is decremented when the stack increases

and incremented when items are deleted. If the count reaches zero, the stack

is exhausted.

Stack exhaustion poses peculiar problems; one simple solution is to

terminate execution. In paging systems or systems with more than one stack,

it may be possible to continue. The difficulty is that the stack is changing

most rapidly near the top. If a new page is allocated for the stack, only

one or two words may be used before the stack goes bac'k to the old page. If

. the new page is released, it may need to be reallocated again very shortly.

If the new page remains part of the stack, the stack may grow large during

one-portion of a program and eat up valuable space during later portions.

At the least, paging algorithms must recognize that the bottom of the stack

will not be accessed for a reasonably long time while the top of the stack

must never be paged out.

When a computer implements a stack in the hardware, it is common to

keep the top stack items in faster access memory. The B-5500 had two high

speed stac'k locations; the Atlas had sixteen. In these cases, special

12

logic can be incorporated to minimize memory accesses due to fluctuation of

the stack pointer. When an item is deleted from the top of the stack, the

hardware must decide whether or not to initiate a memory fetch to load the next

item of the stack. The answer dependson the expected ordering and frequency

of additions and deletions.

In most Algol implementations, a block of temporary storage on the

stack is allocated at procedure entry and deleted upon exit. The stack

fluctuates more rapidly for B-5500 and Euler-like [Wrth 651 implementations:

the top elements of the stack are the implied operands for an operation and

the result replaces those operands on the stack. Swym permits an in-between

method; stack storage is allocated only when it is needed, not necessarily

for the duration of the routine.

In plex processing systems three classes of items can be stored on

the stack: pointers, return addresses, and non-relocatable data. These

must be distinguished because the garbage collector must find all structures

referenced by pointers on the stack. It is possible to associate type bits

with every word on the stack to identify those that are pointers. But if

those bits are in the word itself, it will not be possible to store arbitrary

words on the stack as is required for direct numeric computation. (A number

might have the pointer bit set wrong.) Numbers could be treated by creating

a plex containing the numeric value and storing a pointer to that plex on

the stack. But this seriously slows numeric computation by unnecessarily

invoking the storage management facilities. LISP 2 proposes that each routine

call include a 'stack map' of the storage allocated for the calling routine.

This map could be accessed relative to the return address, which would also

be on the stack.

13

Swvm Stack

The Swym stack is one 360 word wide and grows downward. That is,

additions are made at the lowest addressed end of the stack. In this way,

the latest entries to the stack can be addressed relative to the stack

pointer. Provision has been made for three varieties of entry on the stack:

pointers, return addresses, and stack plexes. The high and low order bits

of the word are used to distinguish between these varieties so that the

garbage collector can treat each correctly. Every plex has a one-word
_-

plexhead specifying its length and type. Numbers and other arbitrary bit

pattern words may only be stored in plexes; but note that a compiler can take
--.

the plexhead into account and generate code to directly reference numbers

stored on the stack.

I.2 Data Structures

Data structures that have been implemented include:

Class I. bits, words, arrays, strings, stacks, queues, and

connection matrices.

Class II. Lists, plexes, rings, and hash-coded associative struc-

tures.

Class III. Variants of the above for tapes, cards, direct access

devices, and transmission.

All classes are alike in that they require memory space to store information.

If this space is allocated during execution, there must be some form of

execution-time storage management.. Section III of this paper concentrates

primarily on management for Class II.

14

The elements of Class I are simple in that they do not necessarily

involve pointers, although they may involve dynamic storage allocation.

The data structures in Class I are well covered by [Kn-th 671. Stacks have

been discussed in Section 1.1. Queues are simply push-through (FIF$ or

first-in-first-out) stacks. A connection matrix represents a graph by

having one bit for each possible connection between the nodes. If the bit

is one, that connection exists. Ordinarily arrays are used to contain in-

formation concerning the nodes connected by the matrix.

-- The data structures in Class II generally involve pointers. These

structures are described in [Schr 673 and [Gray 671. It is interesting to

compare LISP lists with connection matrices for describing networks. If
--,

there are n nodes, the connection matrix requires n2 bits. If there are p

connections and each list element requires b bits, then the list structure

requires pb bits. The density (number of connections/number possible

connections) of the graph for which the two representations take the same

2
number of bits is p/n2 where p'b = 2 .- - For greater densities, the matrix

requires fewer bits than the list. The breakeven density is then l/i.

For b_ = 64, the break even density is 1.5%. That is, if more than that

e percentage of the possible paths exist, then the connection matrix is a

smaller representation. Connected graphs under 66 nodes always exceed

-1.5% density because there are at least ~-1 paths. The trouble with matrices

is that their allocation is very machine dependent. For example, an increase

from less than 32 nodes to more than 32 nodes might mean substantial re-

programming.

Two strange schemes have been proposed for LISP list structures, but

not implemented. In one, C#NS would hash its arguments and store the dotted

pair in a hash bucket. If the pair was already in the bucket, a pointer

15

to the existing pair would be returned. This scheme would make EQ and EQUAL

the same simple operation, but would prohibit the efficiencies possible with

RPLACA and RPIND. The major bar to implementation (the IBM 44X was proposed)

seemed to be the lack of a suitable garbage collection algorithm. The

second scheme was the n-cube addressing scheme. Every word would have

associated with it 2n-1 other words. These can'then be addressed with just

2 bits in the pointer field. (It was proposed that the addresses of the words

associated with word 2 be formed from the address of 2 by modifying each bit

Fn turn. Thus the associated words would be those connected to 2 along the

edges of the n dimensional hypercube.) In this scheme, though, any function

that will build a-plex must tell its arguments where to put their result;

the consequences are staggering: in general, the computation must terminate

before any results are stored.

The CORAL system [Suth 663 is one example of a system based on rings.

Essentially, each ring is a list with an explicit ring head; the end of

the list points back to the head. In addition, alternate elements of

the list contain pointers to the ring head and the reverse pointers that

point back to the preceeding reverse pointer. A ring element is a plex,

called a block. The pointers constituting the ring are physically stored

in these plexes and the beginning of the plex is marked with a word with

a special bit pattern (all ones). CORAL is a set of macro statement for

the TX computers at Lincoln Laboratories.

Other ring systems are described in [Gray 671. [Per1 603 describes

'threaded lists'; these are similar to rings but derived from LISP lists.

The end of the list is marked by a special bit, and the pointer there points

back to the beginning of the list.

16

An elegant notation for plex processing in higher level languages is

the 'record' feature described in [Hoar 663 and [Wrth 661. Essentially, the

declaration of a 'record class' defines a possible type of plex. The class

name is implicitly declared as a procedure for generating members of the
. .

class. Identifiers attached to the fields of the plex are implicitly declared

as procedures to access the contents of records of the class. The arguments

to such procedures are records of the proper class. Other identifiers can

be declared to be pointers to members of one or more record classes.

Before direct access devices and on-line systems, Class III structures

were usually sequential files. But modern Class III structures have been

forced to include elaborate indexing and addressing structures. Indeed,

there is need for space management in most systems with Class III structures.

The most comprehensive existing system for managing file storage is os/360.

Its great flexibility has prompted user grumbles about having to specify too

many parameters. For example, one of the facilities offered is a relocating

garbage collector for disk packs. This collector is not called automatically,

but must be invoked by a special procedure.

One goal in on-line systems is to build a filing system capable of

maintaining any file of data. An experimental unified file system was
-

reported in [Frnk 663. This system encoded the value of each data item as a

pointer into a table of possible values for the item. Variable length

pointers appear to be necessary to make the scheme work; and even then it

seems to entail substantial I/O. Another, more analytic approach to file

design is discussed in [Benr 673.

Some systems have used Class III data structures for graphic applica-

tions. The MULTILANG file system is the basis for the PENCIL system

reported in [vDam 671. Plexes are stored on a disk and contain keys and

17

elements. A plex may be specified by specifying logical combinations of

keys. The LEAP system [Rovn 67b] stores 'triples' of associative information.

Each triple is stored three times on the disk; once for each of the components.

Thus triples can be retrieved based on any part of their contents.

Several factors must be taken into account when designing a data structure

for a language implementation. These include the host computer, the basic oper-

ations to be implemented, and the amount of data description that must be avail-

able to general purpose run-time routines.

_- The host computer affects data structure design at the lowest levels.

For example, the size of pointer fields depends on the amount of free storage

to be addressed. J.lso, most computers favor certain portions of words by

having instructions for manipulating those portions. A physical structure

design should take advantage of such natural access aids. The danger in such

designs is that a 'cleverness' in some portion of a representation will not

save as much space and/or time as is required to get the information into

the peculiar form required. In keeping with the principle of relative

difficulty of specification, the physical structure should bear some resem-

blance to the logical structure. For example, variable length plexes could

be represented physically as a list of fixed length plexes. But the

programmer may reference the last item in the plex frequently, expecting it

to be found with address arithmetic, rather than list searching. Numbers

should be stored so as to be accessible for the hardware arithmetic operations;

.1. e., on the appropriate storage boundaries so shifting is avoided.

A large proportion of the time in a plex process is spent accessing the

correct piece of data. Since data access can mean descending through many

levels of (logical) data structure under control of the program, the best

measure of the efficiency of data access is the effort to descend one levelI

18

in the data structure. In Swym, these 'descent' operations are rst and

fst; requiring five and one instruction executions, respectively. Access

to a fixed length element of a Swym plex requires one instruction. The 7090

implementation of Lisp required 8 instructions each for CAR and CDR, the only

available descent operations. Lisp implementations using temporary storage

[Bobr 671 [Cohn 671 typically must test page tables and perform address

arithmetic to descend one level in the data structure. Such processing is

time consuming and has led to the definition of hardware 'paging' systems

like that on the 360/67.
--

There are several reasons why data structure designs often include

descriptive information along with the data. A primary reason is that the

garbage collector must determine certain properties of structures before it

can collect them. Other reasons might be that each operator checks its

argument to see that it is the correct type, or that the operators must know

the specifications of the data in order to completely specify the operation.

For example, a general print routine must know the type of the data and a

string move routine must know the length of the string. The garbage

collector needs the location and length of each active data item and the

position(s) of any relocatable information in the item.

A data item can be described by its location, length, type, and zero

or more type dependent parameters. This information may be specified

explicitly or implicitly and may be located with the item, with the

reference, or remotely. Information stored with the item usually takes

the form of explicit fields referenced relative to the pointer at the item.

Storing descriptive information with a reference to an item means that

the item can be a part of some other item. The XPL string mechanism

[MKee pc] permits two strings to share memory. Remote storage of descrip-

tors has been proposed by D'. McLaren [MCla PC]. Plex storage would be

19

allocated from the bottom of a free storage area, while fixed length

descriptors were placed in the top. The descriptor corresponding to a

pointer could be found by a binary search on the descriptor area. Presum-

ably, the descriptor would be infrequently referenced in that system.

Implicit data description is information derived from other characteristics

of a data item. For example, the length may be implicit in the type, that

is, all items of that type are the same length. The type may be implicit

in the fact that the item is within some area of memory. J. Reynolds

[Reyn pc] has proposed a minimal encoding scheme having type explicit

and implicit with the reference. If the compiler determines (from declarations

or by analysis) that a certain field can only point at a plex of one of

2 types, then the type information can be coded with the reference and requires

only rlog2Ei bits.

Sm Data Structures

Very complex plexes can be realized under Swym, but this section con-

siders only those implemented for the STUTTER interpreter: lists and atoms.

A list is a sequence of pointers. Each pointer is the address of an element

- of the list. An element, in turn, can be either a list or an atom. An

atom is a plex with arbitrary internal structure. Note that Swym lists are

special plex structures because the garbage collector can compact them.

The difference between conventional lists representations and com-

pact lists parallels the difference between the IBM 650 and most other

computers. 650 instructions had two address fields: one for the operand

and one for the next instruction. Most other computers save memory by

assuming that the instructions are sequential. When the instruction se-

quence is broken a 'branch'* instruction continues execution elsewhere.

20

Like the 650, many list representations use two pointers for each element

of a list: one to the element and one to the rest of the list. On the

other hand, list storage can be conserved by storing lists sequentially

in memory; then only the pointers at the elements are required. But if

that is the only way lists can be stored, certain list operations can be

time consuming. The Swym solution is to allow a 'list branch' pointer.

Lists are normally sequential, but when a list cannot be sequential, it is

continued with a 'list branch' pointer. Figure I.1 illustrates several

list structures in both the old and new representations. Note that a 'list

-- branch' pointer is called a rst pointer because it points to the Leg of

the list.

An earlier -system permitting compact lists intermixed with chained

lists has been reported by N. Wiseman [Wise 661. This system provides

for creation of compact lists, but the garbage collector does not rearrange

storage to remove rst pointers. Unlike Swym, variables may point at rst pointers

and there may be more than one rst pointer between element pointers. But the

user must program extra checking to avoid treating rst pointers as list

pointers. Wiseman presents no data on the effectiveness of his system.

Swym list words have the format shown in Figure 1.2a. If the rst bit

- is zero, the word points at an element of the list. If the rst bit is

one, this pointer is so-called 'list branch' pointer; it points not at an

element of the list, but at the continuation of the list. The atom bit is

on in a pointer at an atom; this is the distinguishing characteristic of an

atom in the Swym system. If both the atom and rst bits are zero, the pointer

points at a sublist of the given list. If both the atom and rst bits are one,

the end of the list has been reached. A list ending with a pointer at the

atom NIL is a normal list; otherwise, it is what LISP 1.5 sometimes calls a

general s-expression. The atom NIL is treated as a list with no elements.

.
21

a.

b .

c .

d .

A l l

I.

2.

3 .

4 .

B 1nCl AIB@C

AlBl Cl

Possible Mixed Rijresentations of C:

BI C c 1

A pointer at an atom is represented by a character string. (The ‘print name’ of the atom.)

A ‘list branch’ pointer is indicated by @ (f o r @I.

EEI ElN I L i s w r i t t e n to indicate the end of a normal list.

Any other rst pointer at an atom is the end of a ‘general s-expression’list.

F I G U R E 1 . 1

2 2

a . L i s t W o r d
. .

I I Address Field I I I

0 I 2 9 3 0 3 1

t
Reserved for
Garbage Collector (Ml)

tt
Atom bit

I
rst bit

also used by
Garbage Collector (M2)

b. P lexhead

1 Type 1 I

‘8 b 1 4 1 5 1 6

$
always 1 in an
atom head

Type of atom

Reserved for
Garbage Collector (M 1)

Reserved for
Garbage Collector (M2)

F I G U R E 1 . 2

23

Associated with each atom is a plexhead - a word containing the type

of the atom and two marking bits for the garbage collector. The format of a

plexhead is shown in Figure 1.2b. The twenty-two unused bits may be used

for different purposes for different atom types. Depending on what is
-.

desired, a plexhead may be located almost anywhere with respect to any

other words in the atom, but usually it is the first word in a plex.

Atoms are addressed by pointing six bytes in front of the first byte

of their plexhead. This means that they point at a half word boundary

which is not a

at a full word

by the pointer

full word boundary. A pointer at a list always points

boundary. Thus, Swym distinguishes a list from an atom

pointing at the item (the atom bit is just part of the
---.

address). Because atoms are addressed six (not two) bytes in front, the rst

operator examines a bit in the middle of the plexhead. Since this particular

bit is always on, rst causes a specification error. fst also causes a speci-

fication error if applied to an atom. But the components of an atom can

easily be referred to with special Swym macros that assemble only one

instruction. From a paged memory standpoint, the atom bit has a small

advantage: whether or not an element is an atom can be decided without

accessing that element. The advantages of the atom bit suggest its use even

in a 249bit address machine.

All atom types are alike in having a plexhead and in being addressed

in a strange manner. Only two atom types are defined in the basic Swytn

system: symbols and strings. But the user may define other types of atoms

simply by coding the primitives to create, manipulate, and garbage collect

the new atom types. Since the contents of a plex can be addressed directly

if the address of the plex is known, operations on plexes are no more costly

than operations on statically allocated storage.

24

The symbol atom corresponds to the normal Lisp atom. In Swym, such an

atom has three components: the plexhead, a value cell, and a property list.

The plexhead contains control bits describing the contents of the value cell

and the atom's definition as a function. The value cell contains the atom's

variable binding as discussed in Section 11.2. The property list is similar

to that for LISP 1.5, but the r . ..rst is a pointer to the print name (a

string atom).

_- There are currently three sub-types to the string atoms. All are alike

in containing no relocatable information (addresses) and in being stored in

a consecutive block following the plexhead. The three sub-types are string,
--.

fixed point number, and hexadecimal number. The major difference between

these subtypes is in how the print routine handles them; they are not dis-

tinguished by the garbage collector. The plexhead of a string atom contains

the subtype field and a length field. The string and hexadecimal number may

be any number of bytes up to 32767. A fixed point number currently always

has a length of four bytes.

Swym free storage is one contiguous block, and new plex structure is

created from one end of that block. This storage allocation scheme has

proven advantageous in the Cogent system [Reyn 651. Lists can be created

in compact form if all their elements are known. Atoms of any size can

easily be created; for example, bit string atoms are always stored in con-

secutive bytes. Note that the garbage collector requires only two bits

in the plexhead; all other words in an atom structure may be full words.

Thirty-two bit addressing is supported by Swym. A pointer may occupy

the full word except for three bits: the two low order bits and the high

25

order bit (bits 0, 30, 31). Because the 360 addresses bytes and all Swym

pointers point at words, the low order two bits of a pointer are not used

for addressing. The high order bit cannot be used either. Difficulties

will arise as soon as address arithmetic (especially BXI& and BXH) is

attempted on full thirty-two bit addresses; addresses in the upper half of

memory are negative and are thus algebraically smaller than zero. Swym uses the

three circumscribed bits to good advantage. The low order bit is the rst bit,

and it marks a rst pointer. The next to low order bit (bit 30) marks a

pointer at an atom. Both the high and low order bits are used for marking

by the garbage collector. These same bits have other meanings in control

words on the stack.

26

II. Modular Programming and the Subroutine Environment

Plex processing implies a structured approach to data; the corresponding

structured approach to programming is modularity. If a large program is. .

broken down into a series of smaller programs, the latter are easier to

write, debug, and modify. Moreover, if the program is carefully divided

along functional lines, the large program can often be redesigned simply

by rearranging the sub-programs. Modularity is evidenced at many levels.

There is always a set of basic operations available to the programmer,and

usually there is a mechanism for defining and invoking subroutines. Basic opera-

tors can range from machine instructions, to interpreter 'syllables', to sets
--.

of macro instructions. Each specifies a set of operations considered by the

designer to be convenient and comprehensive for describing the steps of a

task. A subroutine mechanism permits the programmer to design his own set of

basic operations tailored to the task at hand. While implementing Swym, it was

necessary both to modularize the system itself and to provide efficient and con-

vient mechanisms for modularity in languages implemented under Swym.

The most basic example of modularity is the hardware instruction set

- of the computer. Each instruction is a modular description of a sequence

of gating registers onto buses and operating on those buses. On the 360,

-yet another level of basic operations called the micro-instructions is

introduced between the programmed instructions and the hardware manipulation.

W. McKeeman has pointed out [MKee 671 that computer designers must

consider the problems of language design in order to optimize computer

functions. His work, however, usually emphasizes the design of computers

for specific languages. The discussion in this paper attempts to isolate

basic operations common to all languages that provide plex facilities.

27

Most LISP 1.5 implementations provide an interpreter to execute list

structure read by the same read routine that reads S-expression data.

This provides a simple way to begin building a LISP system. In fact, most

LISP compilers are written in LISP and compiled interpretively. The

availability of an interpreter also permits treating programs as data and

then executing the processed program. The LISP interpreter can be described

\ in LISP itself, a feature that can lead to better understanding of the

language. But the most common reason for providing an interpreter is

really the design of special purpose computers. By coding an interpreter,

the programmer provides a set of operation suitable to implementing the

language. Interpreters often have syllabic operation structures like

B-5500 machine language. Such code structures provide high code density -

thus saving space - because the operands are implied to be the top of the

stack and thus need not be addressed explicitly. The only commercial

computer specifically designed for implementing languages by making highly

efficient interpreters is the ~-8502, tantalizing details of which

are beginning to leak out. how well suited the ~-8502 is to variable

length plex processing remains to be seen.

a For Swym, a pseudo-machine was implemented by writing a set of macros

for the 360 assembler. The facilities offered by this pseudo-machine include

those desirable for plex process implementation - both data manipulation and

program control. Macros are suitable for designing pseudo-machines because

it is not necessary to design a whole machine. Just as much as is desired

can be formalized, while other processing is done in terms of hardware opera-

tions. In this sense, macros provide more freedom than the interpreted micro

operator approach to pseudo-machines.

28

For a variety of reasons , plex processing programs tend to include many

subroutine calls.* Probably the primary reason is that programmers who think

in terms of structured data tend to think in terms of structured programs. At

the same time, the fact that the data may have similar structure at different
. .

levels seems to lead not only to subroutines, but even to recursive subroutines.

For instance, in a graphical problem a routine to find all connected nodes

might easily be written by finding all nodes adjacent to a given node and

then applying the same subroutine to each of these adjacent nodes. Another

important reason for subroutines and modularity in plex processing programs

is that such programs are usually experimental and subject to change

(because non-experimental programs usually cannot afford the overhead

currently implicit in many plex processing systems). Since subroutine-call

is often the most frequent operation in plex processing programs, attention

must be paid to its optimization. This problem is considered at length

below.

There are several goals and advantages in modular programming. These

are synonymous, because meeting the goals successfully implies taking

full advantage of the potential saving in time and effort (in total time,

not just initial program writing time). Modularization offers:

(1) Ease of writing. It is very convenient to code an operation by

writing the name of a routine or macro that will perform that

operation. Not only is total writing reduced, but repetitive

writing is eliminated; both reduce the chance of clerical error.

*7090 LISP even compiled subroutine calls for CAR and CDR. Even now
most LISP implementation compile arithmetic operations as subroutine calls.
ALGOLW demonstrates that with a suitable declaration structure, such basic
operation can indeed by compiled in-line. Swym has provided the mechanisms
necessary for compiling such in-line code while maintaining communication
between compiled and interpreted functions.

29

(2) Ease of modification. Since clearly defined modules perform specific

functions, changes in these functions can be made simply by changing

the appropriate module. Modules often provide good 'hooks' for adding

debugging output or statistics gathering routines. The modularity

built into the Swym system was of use on more than one occasion. The

subroutine calling conventions were changed several times. The code

in all routines was changed by modifying the macros and reassembling.

It was also simple to change register usage to communicate better with

OS and ~~360. The flexibility demanded by the Swym programming standards

should prove invaluable in implementing other languages within Swym.

Ease of debugging. Modules are easily tested independently, so
-=.

that errors can be isolated. LISP is especially amenable to modular

debugging for two reasons. First, all data is represented in S-expressions,

so the inputs and outputs of a routine can be represented without driving

routines. Second, LISP facilitates and even encourages subroutine

organization so that less thought is required to put the program into

modular form.

Some system design time should be specifically devoted to breaking the

'system into program modules. Likewise, some program design time should be

specifically devoted to breaking the program into appropriate subroutine mod-

ules-. Likewise, some subroutine design time should

Time so spent will be returned with interest in the coding and debugging

phases and will probably be returned many times over during modification of

the program. In designing Swym, subroutine modularization was not difficult

because several LISP implementations demonstrate not only a good system

modularization, but also the basic operation that should be provided to the

programmer. Nonetheless several guidelines were discovered.

30

An important guideline for modularization is to restrict each module

to a single definable function. This function need not be very basic, but

its definition should be consistent with the single definable function of

all other modules. Consistency means that the set of modules implementing

a higher level module should have mutually exclusive functions, and those

functions should be directed toward accomplishing the function of the higher

level module. Thus a data accessing module could be defined to also update

a counter or set a bit, but only if in the encompassing module the counter

or bit was always associated with that data access operation. On the other

hand, operations should be divorced if they only occur together accidentally.

If "accidental neighbors" are combined in a single module, sooner or later

they will be needed separately. It is better to err in the direction of

too much separation since change is such a common feature of programs.

One compromise is to introduce another modular level. A macro (for

instance) could be defined to call two accidental neighbors, leaving the

two as separate modules.

Another important guideline in the construction of modular systems,

is to provide for transparency. A completely transparent subroutine can be
e
called at any point in a routine with no resulting change in the output of

the routine. For example, the LISP PRINT routine prints its argument, but

does not modify any location in memory. Ordinarily, a routine will not

be completely transparent, but will affect one or more variables in the

calling routine, or will produce output (doing both might also satisfy the

well-definedness guideline); but the quantities modified by a routine should

be implicit in its well defined single function. One example of transparency

is the block structure limitation of the scope of variables in ALGOL 60.

31

A pre-coded routine can be included in any program and will not create

conflicts with existing identifiers in that program (the same is not true

of most assemblers). A good exa,nple of the need for transparent code is in

the definition of debugging packages to be executed when required in the

program.

Since routines must preserve the state of the computer system in order

to be transparent, the system must make this a convenient operation. Some

systems facilitate state preservation by automatic stacking, or at least

provide other ready access to the system variables. Other systems do not

even provide the capability to determine parts of the current state of the

system. Satterthwaite has a discussion of coding transparent routines under

os/360 [Satt PC]~ Swym attempts to provide the facilities necessary for

writing transparent routines; the stack can be used for storing arbitrary

information. Also, the 'internal variable' convention [Reyn 651 has been

adopted for accessing and controlling the state of system variables (for

example STIVQ,M$ and STIVCCH control the READ routine, see Appendix C.).

Two system components are vital to modular programming: routine linkage

and variable binding. The efficiency of these operations dictate the level

- of modularity permissible. The PL/I macro facility is necessary not only for

compile time computation, but also to provide modularization that would not

be -practical using the cumbersome PL/I procedure invocation mechanism

(involving two subroutine calls for storage management). Routine linkage

and variable binding are each discussed in detail below. There is a two

fold relation between these system components and the storage management

mechanism: (1) they require storage for control information; (2) if there

is a garbage collector, they must identify pointers and distinguish them

from non-pointer information.-

32

II.1 Routine Linkage

The code required to call a subroutine and return is critical to system

efficiency. The speed of any individual routine is far less critical because

it is executed less frequently than subroutine linkage; the latter is required

between all subroutines. Routine linkage includes several functions:

.
save return address and status

.
locate and execute subroutine

.
restore status and continue at return address.

The primary interaction between routine linkage and storage management is

control of the space for the status information. This information can

include control bits-and register contents. It also includes current

variable bindings, but this is considered in the next section. The space

management must be coordinated with the storage management required for data

plex operations. In particular any pointers that are saved must be available

to the garbage collector.

Ordinarily, status information can be saved on a stack because routines

exit in exactly the reverse of the order in which they are entered. But some

languages like Gedanken [Reyn 693 permit labels as values of variables. A

routine may store a local label in a global variable; after the routine exits,

it may be reentered in the middle by a branch to that global variable. Not

onlyImust the routine be entered, but the status must be restored to the

status existing when the label was stored in the variable. Thus, for Gedanken,

status information (and variable binding) must be stored in plexes just as

data. Storage for both can be managed with the same plex mechanisms.

Labels can introduce problems even in Algol implementations. Algol

permits a routine to branch to a label in an outer block (this label may

even be specified as an argument to the current routine). If status infor-

33

mation is stored on the stack and includes the stack pointer for the dynam-

ically enclosing block, then a goto to an outer block must interpretively

unwind the stack to find the correct status for the outer block, That is,

the goto must keep restoring the stack pointer until the storage for the

correct block is found. This problem can be solved for Algol with the

DISPLAY mechanism mentioned below. In EULER [Wrth 651, though, all operators

take their operands from the stack and replace them with a value. This means

that the DISPLAY mechanism is much more cumbersome for the goto problem.

The implementation computer can influence routine linkage. The PDP-6

has a single instruction to store the return address on a stack and pass

control to a routine; The routine can branch to the return address and delete

it from the stack with a complimentary instruction. The 360, on the other

hand, has no stack instructions and requires provision for the addressability

of the calling and called routine.

Two common techniques should be avoided in designing routine linkages.

1) Routine linkage should be in-line rather than a call on a service routine.

The latter technique effectively doubles the number of routine linkages. Also,

service routines often waste time retrieving linkage parameters from a para-

-meter list, while parameters can be implicit in in-line code. 2) Not all

registers should be saved on entry to a routine. The time expenditure is small

but the storage expense is large. Although it is possible for the called rou-

tine to save and restore only those registers it destroys, the calling routine

usually has an even smaller number of active registers. Moreover, the calling

routine has the information needed to mark each register as pointer or not-

pointer.

It is not necessary for the called routine to return to the instruction

immediately following the call. In the 360, a call might be:

34

L 15, Address of called routine

14, 15

C@TINUE DS O H

. .

The called routine exits with BR 14. But other information may be included

between the BALR and CONTINUE with little extra cost. The called routine

would simply have to return with B ~(l'c), where n depends on the amount_

of included information. This information can be used for several purposes.

Cj6GENT conditional execution is based on the FAILURE mechanism. The failure

return point is an extra branch instruction in the calling sequence, executed

by the called routine if it fails. The calling sequence could also include

information to facilitate debugging. Pointers to the name of the routine and

the values of its variables could be referenced by information in the calling

routine. This is also the place for the pointer to the stack map discussed

in Section 1.1.

Swym -- Routine Linkage

In Swym, three instructions are required to call a routine,

are used for routine entry, and three are used for routine exit.

three more

These instructions provide for:

(1) establishing addressability for the called routine
\

: (2) branching to the new routine

(3) marking the return address so it won't be garbage collected

(4) storing the return address in the stack (two instructions)

(5) recovering the return address from the stack (two instructions)

(6) returning to the calling program

(7) re-establishing addressability for the calling routine

35

One register (B) is designated as the base register for all routines.

Before branching to the routine, this register is loaded from a 'transfer

vector.' This area is always addressable (via register S) and contains the

entry point addresses for all routines. Thus establishing or re-establishing

addressability requires one load instruction. Space is saved because only one

address constant is required for the address of each routine.

Strict conventions govern saving and restoring the eight registers

available for general use. (Eight is enough if BXLE and BXH are avoided,)

If-an assembled routine wants a register saved it must save it itself or be

certain that the called routine preserves that register. In the latter case,

a comment in the called routine must describe the calling routines and registers

which must be left intact. Compiled functions must save the active registers

when calling another function.

Swym provides some debugging information with no extra storage in the

call. The return address is the stack makes it possible to find the BCD

name of the calling routine. The BCD name is assembled just before the entry

point to a routine. The entry point can be found because the instruction at

the return address refers to the location in the transfer vector table of the

entry point address.

A Gedanken interpreter was designed to run under Swym. The label

variables mean that an interpreter like the LISP EVAL cannot use a stack

because the status at any point might have to be restored. Consequently, the

designed interpreter used plexes to contain status information and return

addresses for the interpreter. A second type of plex contained status information

for routines being interpreted. The latter also contained variable bindings.

36

II.2 Variable Binding

To refer to items of data, a routine has variables. Usually, each

variable is named with an identifier (a character string). But two identifiers

may refer to the same variable (Fortran_ECE) and one identifier may

refer to different variables in different routines, so an identifier is not

the same as a variable. The binding of a variable at a given time is the value

that variable would have if it were referenced and the information changed if

a value were assigned to the variable. Along with more complicated data struc-

tures and program control, higher-level languages have introduced more compli-

cated relations between variables and their values. Variable binding affects

the garbage collec_tor both because most variable binding schemes require

memory and because the garbage collector must find all active structures that

are poini;ed at by variables. This section will cover three topics: types

of variables, types of bindings, and the special problems introduced with

LISP global variables.

Types of Variables:

The variables of a routine may be local, argument, or global.A v a r i a b l e

is local to a routine if it is declared in that routine. Space is allocated

on entry to the routine and the routine uses the local to hold a value. A

compiler can usually compile straightforward code to access a local variable.

An argument to a routine also establishes a local variable, but the value

and/or storage allocation may be supplied by the calling routine. Arguments

are passed to routines in at least four different ways: value, result,

reference, name. A value argument is treated exactly like a local variable

except that it is initialized to the value of the actual parameter. A result

argument is treated like an uninitialized local, except that when the routine

exits the final value is assigned back to the actual parameter, which must

37

be a variable. Value and result variables are like locals in that storage

is allocated for them during execution of the routine. Reference arguments

refer directly to the allocation of storage in the calling routine. If an

actual parameter for a reference argument is an expression, a temporary variable

is created in the calling routine and the argument refers to that created

variable. Call by name arguments are evaluated each time the argument variable

is referenced. Name arguments can slow execution substantially because a

complex expression may be repeatedly evaluated, and because each evaluation

requires reestablishment of the environment for evaluation of the name

argument.

A global variable is any variable that is referenced, but not declared in

a routine. It may have been either a local or an argument in the routine where

it was declared, In block structure languages like Algal, a global variable

must have been declared in a typographically enclosing block. The compiler

must compile a reference to the variable that will be created in that outer

block. Because it has no block structure, LISP global references (called

free variables in LISP) are references to the nearest dynamically enclosing

declaration of the same identifier. (A routine dynamically encloses all

routines called during its own execution.)

In a given implementation, global variable binding may be either static

or ~amic. The distinction is based on the treatment of variables during

exe&tion of functions that have been passed as values. Static binding .means

that variables always have their most recent binding. Dynamic global binding

means that variables have the binding they had at the time the functional

value was created. LISP is defined to require dynamic global variable

binding. Examples of the problems involved are given below.

38

Types of Binding

.

There are four types of binding: register, static storage, stack, and

free storage.
-.

Register variable binding is often used for system functions. The

arguments are placed in registers and the function is called. This technique

is used even for compiled functions in PDP-6 LISP and can be used for compiled

functions in other language implementations. Register binding is convenient

because the calling routine usually must compute the arguments and the result

is in a register. Moreover, the argument may stay in the register until a

subroutine is called. Problems arise when a subroutine is called: the
--.

registers must be saved. If any sub...subroutine globally refers to a

quantity bound in a register, then the reference must be not to the register,

but to the location where the register is stored. Usually this is either

static storage or the stack. Furthermore, if the subroutine might invoke

a garbage collector, any variable that is a pointer must be stored in a

location accessibie to the garbage collector and must be identified as a

pointer.

Register binding of variables is satisfactory for direct numeric computa-

tion (i.e. the value in the register might be a number). Suitable declarations

in the called routine enable the compiler to treat the number correctly. But

when the number is saved across a subroutine call, it must be identified so

that it cannot be mistaken for a pointer.

If a routine is not recursive and not reentrant, space for variables can be

allocated by the compiler. Such variables are statically bound, that is, their

binding never changes and all references are to the same location in memory.

Fortran variables are allocated in this manner. This binding technique can

39

require excess space because storage is allocated for all variables even though

several sets of routines may never call each other. (They could use the same

variable storage space.) One problem with static binding is that the garbage

collector must find all plexes that are pointed at from static storage. This

can be handled either by allocating all pointers together or by building a

list of statically allocated pointers. A second problem is that a large

structure can be referenced by a single static variable and will remain active

even if it is no longer needed.

__ To provide for recursive and reentrant code and to ensure that variables

are allocated only as long as they are needed, variables can be allocated on

a stack. In Algal, all variable storage (except the controversial dynamic
-m.

own arrays) can be allocated either statically or on a stack. When stack

storage is allocated on%ntry to a routine, care must be taken that any

variable marked as a pointer contains a valid pointer. Otherwise the gar-

bage collector may become confused and the program may have a bug that ,

depends on the previous contents of memory. The garbage collector does not

need to determine which quantities on the stack are variables; all it needs

is to determine which are pointers.

ALG#LW utilizes an elegant extension of the DISPLAY mechanism discussed
.

in [R&R 643. The variables for each routine are allocated on the stack

when the routine is entered. One pointer to the stack is maintained (in

the general registers) for each typographically enclosing block. With this

technique, code can be compiled to reference any global variable directly.

Moreover, the environment for an argument called by name can be established

by simply loading the stack pointer registers.

Free storage must be used for binding the variables of complex

languages like LISP and Gedanken. The original reason for this in LISP was

40

that the technique was easy to describe in the LISP formalism and easy to

Gnplement for the interpreter. However, the discussion of the global

variable problem below will show that given the features of LISP, free

storage variable binding cannot be avoided. Several techniques have been

employed including the A-list, the APVAL, and the VALUE cell.

The A-list was used in the early LISP 1.5 implementation. It is

described implicitly in the description of E3U.L in [MCar 621. Basically,

each time a routine is entered a dotted pair is created for each variable;

the CAR is the variable name and the CDR is the value. These dotted pairs

are CONSed onto the front of the current A-list. When the interpreter must

find the value ofa variable, it scans the A-list looking for a pair whose

CAR is the variable name. Note that this handles global variables as a

straightforward extension. When a function is passed as an argument, both

the expression for the function and the A-list current at the time the

function was passed are passed. Thus, when that passed function is invoked,

the old A-list is used so that global variables have their correct values.

A major disadvantage of the A-list, besides search time, is the fact that it

is continually allocating and releasing free storage and thus increases the

- frequency of garbage collection.

It is possible to improve on the structure of the A-list and still use

the A-list. As suggested by John Reynolds [Reyn PC], this method would create

a plex on the A-list for each function invocation. The method is best illustrated

with an example. Suppose a routine binds the variables A, B, and C. The new

portion of the A-list would be (with compact lists):

41

-old A-list

. .

The new method would create this plex:

Hd t-

A
vA

B vB

C vC

- old A-list

The searching procedure would be slightly more complex, but there would

be a saving of space.

In a block structured language, a function can only address variables

declared in itself or in statically enclosing blocks. The A-list can take

advantage of this structure by pointing not at the A-list formed for the

calling routine but at the A-list for the smallest statically enclosing block.

This is another extension of the DISPLAY mechanism. A Swym interpreter for

-Gedanken [Reyn 691 was designed to take advantage of the block structure of

that language.

- In LISP 1.5 some frequently referenced atoms such as T and NIL are only

bound at the outermost level. This would mean searching the entire A-list

to get the appropriate value (*T* for T and NIL for NIL). To avoid this,

Lisp 1.5 permitted the APVAL property on property lists (usually a shorter

list than the A-list). If an atom had an APVAL, that was its permanent binding.

Thus evaluation of variables meant searching first the property list for an

APVKL and then searching the A-list.

42

More recent Lisp systems have extended the APVAL concept by always

storing the value of an atom in a cell on the property list (under the

property VALUE in PDP-6 Lisp). As the atom is rebound, the old binding is

stored on a special push down list. Thus interpreted functions need only

search the property list for variables. Moreover, the location of the VALUE

cell never changes so the compiler can compile code refering to it directly.

By reducing the number of types of binding in LISP, the VALUE cell reduces

the complexity of the language. All variables are the same, whether they

.are declared in a PR@G or a LAMBDA or are undeclared but have been given a

value external to all routines. But as discussed below, there are valid

LISP programs that the VALUE cell cannot implement.x.

Global Variables in LISP

Global variables (LISP uses the term 'free variables') contribute both

the best and worst features of LISP. The global reference scheme defined

by the A-list mechanism is neat and simple, and yet very general. But the

A-list is time consuming; it requires list searching time and garbage

collection time. The worst features of LISP are the problems of compiling

functions to interface with interpreted routines and the contortions

necessary when attempting to replace the A-list.

Compiled LISP routines usually use the stack for variable binding

because that is the most efficient technique. But if a variable is to be

used globally in some other routine it must be accessible. LISP 1.5 pro-

vides two types of global bindings for compiled routines: SPECIAL and

COMMON. A SPECIAL variable is bound to a special cell on the property list

of the atom representing the variable. (PDP-6 LISP uses the VALUE cell.) This

special cell never moves so code is compiled to access it directly. Bute

43

if the variable must be referenced by both compiled and interpreted functions,

it must be bound on the A-list. This is precisely the treatment given to any

variable declared to be COMMON. But SPECIAL and COMMON are attributes of

variables and all references to the same variable are treated the same. Thus
-.

if X is declared COMMON, all routines referencing X must refer to it on the

A-list, even though only two or three routines use it as a global variable.

Primarily this problem is a fault of the LISP syntax because there is no

place for declarations in the S-expressions that are interpreted.

- The most difficult problems are introduced into LISP by the provisions

for allowing functions as arguments and values of routines. The difficulty

is that a function is a pair consisting of a piece of code and an environment
-m.

for interpretation of that code. Consider these functions:

MAP[a;x] = if null [x] then NIL- -

else cons [a[fst[x]]; map[a;rst[xl]]

ACONS[a;x] = MAP[function[~x.cons[x;a]];x]

The call ACONS [NIL; (A B C)] should return ((A) (B) (C)). Note that the

a inside the function must refer to the first argument of ACONS. The A-listw

treats this case properly because function returns a FUNARG. This is a list

withthree elements:

:(FUNARG {function S-expression] {A-list]).

When a[fst[x]] is interpreted, the A-list used is the A-list current when

function was executed. The binding for a on this A-list is indeed the first

argument to ACONS. The SPECIAL cell or VALUE cell would not work because

the most recent binding for a is the value returned by function.

44

PDP-6 LISP avoids the problem in MAP by having function save both the

code and a pointer to the stack. When the function is invoked, the stack is

unwound down to that level; that is the old bindings are taken from the stack

and placed in the VALUE cells of the appropriate atoms. To remember the

current environment9 however, as each binding is unwound the current binding

is saved on the binding stack. Thus the mechanism for function is very

clumsy using the VALUE cell approach. This certainly violates the principle

of relative difficulty of specification.

The VALUE cell mechanism does not work at all if functions are permitted

to return functions as values. Consider this valid LISP function:

--. PLuSX(x) = function [hy.x+y]

The value of PLUSX is a function containing the global variable x0 This

global variable must be evaluated in the environment existing when the

function operator was applied. Subsequently the value of,

should be five. In short, the variable 2 must retain its value after PLUSX

exits so that that value can be referenced by the function returned by PLUSX.

(The problem of global variables in functions that return functions is care-

fully explained in [Weiz 681 >.

There is such a wide diversity of requirements for variable binding that

it seems necessary to consider a comprehensive declaration structure like

PL/I. Variables can usually be bound on the stack efficiently, but other

techniques must be available to handle those cases that cannot be so simply

handled.

I

45

Swym Variable Binding

Swym uses many of the variable binding techniques described above and can

support all them because it has variable length plexes. Arguments are passed

to system functions in the general registers and remain there unless it is

necessary to call a sub-routine. A few variables controlling input/output

are bound in statically allocated storage. Six general registers are used

for passing arguments to compiled functions; no compiled function may have more

than six arguments. Swym provides a comprehensive set of macros for storing

and accessing information on the stack. The standard Swym approach is to save

a word on the stack when it must be saved and remove it when it is no longer

needed. --.

The STUTTER variable binding scheme is similar to that used for PDP-6

LISP. Every symbol atom has a value cell (the word following the plexhead in

memory). When the interpreter is asked to evaluate a single symbol atom, it

simply returns the contents of the atom's value cell. Before entering a routine

defined by an S-expression, the arguments supplied are appropriately evaluated

and the values are placed in the value cells of the formal argument atoms in the

LAMBDA expression. The old contents of the value cells are stored in a block

- on the stack. This block contains alternately the formal argument atoms and

their old values. When the routine terminates, the block is removed from the

stack and the old values are restored to the atom's value cells. Currently,

only static global variable binding is implemented. To communicate with inter-

preted code, compiled code would store the required value in the value cell of

the appropriate atom.

A compiler could compile code to access numeric operands directly, either

in the registers or in the value cells. The values in the register could be

stored on the stack in a staqk-plex indicating the presence of one or more

46

full words. A non-relocatable value can be stored in a value cell by re-

setting the relocatability bit in the plexhead for the atom. The cost of

these features is a little additional bit testing in the interpreter and

the garbage collector. . .

III. Storage Management Environment

Fortran is a static language; all storage can be allocated at compile

time or loading time. More complex languages require more complex memory

allocation mechanisms. Algol 60 has dmamic array sizes, but still its

memory allocation can be handled with a stack mechanism. Plex processing

routines, however, create structures that can be referenced after the

routine exits. Moreover, plex processes create and delete plexes of

various sizes at random times throughout the computation. The bookkeeping
._
necessary to keep track of the allocation of memory to the different plexes

is called storage management. A plex remains active as long as it can be

referenced by theprogram either directly or via a series of pointers. The

memory not allocated to any plex is called free memory., free pool, free

storage or free plexes. An active plex cannot be deleted because that would

destroy the program's data. Under some systems and high-level languages the

programmer must write code to keep track of the active plexes and to free

those that are no longer active. In other systems, a routine called the

garbage collector traces through all active structures and returns to free

storage any inactive plex. Use of a garbage collector demands disciplined

- use of pointers because it must be able to find all active structures and

must be able to distinguish a pointer from other data items.

- Storage management schemes can be classified as relocating or non-

relocating. In a relocating system, a garbage collector moves all the

active plexes so they occupy a contiguous area of memory and leave a

contiguous free area. This process is time-consuming, but the process of

allocating a plex is simple: one end is allocated from the free area.

Non-relocating systems do not move the active plexes; they simply keep

track of the plexes that are-free and can be allocated. In such systems

48

the process of allocating a plex can be time-consuming because it involves

a search of the free plexes to find one that is large enough. If a free

plex of the required size cannot be found, a larger plex is split; part

filling the request and part being returned to the free list.

Non-relocating systems risk encountering the fragmentation problem.

If a request is made for a plex larger than any free plex but smaller than

the total of all free plexes , then core is said to be fragmented. When this

OCCurS~ a system may

(1) terminate execution

(2) relocate all active storage as an emergency procedure

(3) call-a user routine to free any little-needed plexes.

Since (3) is highly problem dependent, its use can only be considered in

special situations. Some research seems to indicate that the probability of

fragmentation is low enough to justify solution (1). The argument is that

if fragmentation occurs, then all of storage will soon be exhausted anyway.

The compromise approach (2) above is often suggested, but this combines the

disadvantages of both relocating and non-relocating systems merely to guaran-

tee that the system will fill memory before terminating. The extensive

bookkeeping for the non-relocating system is required, as well as the

disciplined use of pointers for the relocating system. D. Knuth [Knth 671

has collected numerous storage management techniques and analyzed many. His

emphasis is on non-relocating systems that terminate when fragmentation

OCCurS~ The current paper concentrates on relocation schemes, both because

the non-relocating are covered by Knuth and because the Swym garbage collector

is a relocator.

49

Possibly, there are more storage control techniques than languages.

Language implementers often discard several techniques before selecting

the one that best suits their language. (On the other hand, system

implementers often discard several languages before selecting the one that

best suits their storage control technique.) But all systems have two

components, a memory organization suitable for storage allocation and a

mechanism for control of that allocatable storage. The memory allocator

is the part of the memory management system that provides a plex on request.

This mechanism is vital to the efficiency of a system because, typically,

plexes are created frequently. The storage control mechanism has the respon-

sibility of structuring memory for allocation. In some systems, this is a--.

continuous bookkeeping problem. In other systems a garbage collector is

called when the allocatable space is exhausted.

III.1 Memory Organization for Allocation

There are three classes of memory organization for allocation: fixed-

size, variable-size, and hierarchical. The fixed-size organization is very

simple. Memory is structured into a list of free plexes, all of the same

0 size. An allocation request is met by taking the first element from this

'free list'. Since all plexes are the same size, their relative position and

the ordering of the free list is unimportant. Consequently fixed-size systems

do'not usually have relocation. Variable-size systems permit requests for

plexes of different sizes. Such systems have been built both with and without

relocation. The choice of fixed or variable for a system depends on the data

structures being implemented. Fixed organization is simpler, but data usually

comes in units of more than one size. Fixed techniques are important, though,

for the part they play in hierarchical organizations.

50

The newest and most promising class of memory organizations for

allocation are the hierarchical schemes. In these, a large plex is allocated

for some purpose and smaller plexes are allocated from within the large one.

In advanced schemes, the smaller plexes are themselves suballocated. There

are several advantages to hierarchical allocation schemes. If a large plex

holds smaller plexes of only one size, then within the large plex the garbage

collector can use simple fixed-size collection techniques. Hierarchical

allocation schemes can be useful for segregating the frequently changing from

the seldom changing. The garbage collector ought to ignore the latter as

much as possible. One possible approach is suggested by the lifetime block

concept which has been proposed but not yet implemented. If a language has

begin-end blocks like Algol and also has structure class declarations, all

structures of a class can be deleted when control exits from the block con-

taining the class declaration. Thus, the 'outer lifetime block' of an

element of a structure class is that block containing the class declaration.

Hierarchical structures might be used for life time blocks by simply releasing

the large plex. Structures have a second kind of lifetime block; those blocks

within which the structure will always exist. This might be, for example, an

0 inner block making no operations on structures of a certain class. The gar-

bage collector can assume that any structure is active if control is within this

'inner lifetime block'. Constant list structure is a limiting case; it always

exists, so the entire program is its inner lifetime block.

There are not yet many hierarchical allocation systems.
6

The L [Know 661

allocation scheme, sometimes called the 'buddy system', is a cross between a

hierarchical and a variable-non-relocating system. Each plex is the size of

a power of two (up to 128 words on the 7090). Allocation may, if necessary,

divide a free plex into two plexes half the size; these two plexes are calledd

51

'buddies'. A separate free list is maintained for eakh plex size. When a

plex is freed, it is recombined with its buddy if possible. UNCLLL [Mnch 671

is a version of L
6

for the 360. Its allocation scheme distinguishes large

(>8) and small (q) plex requests. Small requests are met by suballocating

fixed sized plexes from within a single large plex. The large plex size

chosen for a given small plex size is such that these large plexes are about

the same size. Both L
6
and UNCLLL maintain a bit table indicating free plexes.

This permits rapid recombination of plexes. ALGOLW allocates pages of 4096

bytes (the 360/67 page size, although paging is not otherwise particularly l

facilitated). Each page is restricted to containing records (plexes) of only

one record class,--and thus, only one size. Within each page standard fixed

plex length garbage collection is employed. Two important hierarchical systems

are those defined for LISP 2 and AED; they are described in Section III.2 under

hierarchical garbage collectors.

Swym Memory Allocation

Swym employs a relocating variable-sized allocation organization. A

garbage collector relocates all active plexes to one end of free storage.

- Plexes are allocated by moving a pointer that points to the beginning of the

unallocated area. An additional advantage of this organization is demonstrated

by- the Swym input routines. Arbitrary length strings can be read; each

character is put into the next available location of free storage. When the

end of the string is reached, a plexhead is provided and the string is auto-

matically a character string atom. The same technique could be used when

computing multi-word integers.

52

P”----- --

III.2 Storage Control

A language permitting dynamic storage allocation must have some form of

storage control. The type required can depend on other language features:. .

is there a 'release storage' instruction?

are common sublists and common tails permitted?

are circular lists permitted?

are variable length plexes implied in the language?

Based on the answers to these questions, storage control techniques can be

divided into classes similar to the classes for Memory Organization for
--.

Allocation:

fixed - release

fixed - no-release

variable - non-relocating

variable - relocating

hierarchical

where

'fixed' and 'variable' refer to the size of plex allocated,

'release' refers to the presence of a 'release allocated storage'

instruction in the language,

'relocating' refers to moving the plexes in storage.

Systems without 'release* usually depend on a garbage collector to find all

active storage. Variable-non-relocating systems usually have 'release',

because they are designed to have a minimum system. Variable-relocating systems

53

do not have 'release' because they must do a large amount of processing any-

way to relocate all of memory. Before the description of each class below,

there is a list of systems in that class and suitable references.

Fixed-Release

IPL-v [New1 641

SLIP [Weiz 631

REFC$-111,SAC [Co11 601 [MBth 631 [con 673

& LEAP [Feld 653 [Rovn 66, 67a, 67b]

TSA [Toll pc]

In all these systems, except AL and LEW, a list is an entity with a

controlling list head; it is not possible to point at a part of a list without

a list head. A list is released by pointing at the list head and issuing the

release instruction. Storage is also released by deleting an element from a

list. Lists can be pointed at by other lists or by the program variables. If

a given list is pointed at by two or more pointers, the release operation is

ill-defined: one routine may release a list that is still required by some

other routine.

0 The systems solve this multiple-reference problem in different ways.

IPL-V, the earliest popular system, required that the programmer be sure that

a iist was no longer required before releasing it. To aid in this task,

programmers assigned certain bits in IPL-V structures as 'responsibility bits.'

Routines could pass responsibility for lists by changing these bits. The

REFC#-III and SAC systems associated a *reference count' with each list head.

This count kept track of how many pointers were pointing at a given list.

The release process reduced a list's reference count by one. When the count

reached zero, the list was purged. Unfortunately, the reference counts

54

require a substantial amount of memory. In TSA, no list is ever referenced

by more than one pointer. All operators destroy their arguments and make a

new copy of any information to be saved. This applies to procedures as well:

when a procedure is called, the arguments passed to the procedure are copies

of the actual arguments. When a procedure exits, the storage for its argu-

ments is released. TSA avoids garbage collection and bookkeeping at the

expense of frequent list copying. In fact, none of these systems has a

garbage collector, primarily because they are designed to be minimal and

conceived of the garbage collector as detrimental to efficiency. But each

of the above systems has a fault: programmer bookkeeping, memory consumption,

or copying. -m.

SLIP introduced a form of rings, two way connected lists. The programmer

still must keep track of what list can be referenced and release any no

longer needed. But the task is somewhat easier because lists can be

traversed either forward or backward. SLIP discovered that it was not best

to tiediately scan a released structure and reduce it to a linear list on

the free list. Instead it was more efficient to put the whole structure on

front of the free list. The allocation mechanism is then designed to handle

0 a structured free list rather than a linear one.

AL and LEXP are unlike any other languages in this report although they

are intended for the same kinds of programs. They use plex processing inter-

nally but only to chain together the elements of hash buckets. Otherwise,

the language is phrased in terms of attribute-object-value triples. These

are stored in hash coded form on direct access storage. There is an operation

to destroy a triple, but this simply means deletion of the link from the hash

bucket. No garbage collector is required during execution, but if a file is

saved it can profitably be reorganized.

55

Fixed-No-Release

LISP 1.5 [MCar 60, 621

WISP [Schr 671

ALGj8LW [BBG 681

LISP 2 Cstyg 671

In these systems the language designer relied on a garbage collector

to find all inactive storage and create a new free list. Typically such

routines are two passes: a marking pass finds allactive storage, a scanning

pass finds all unmarked storage and structures it into a new free list. The

marking pass may mark each active element with a bit either in the word
--.

itself or in a bit table. If a bit table is used, extra computation is

required to relate bits in the table to addresses in free storage. But

marking words themselves complicates direct numeric computation. [Schr 671

has an excellent review of scanning and marking techniques. It proposes a

technique that avoids using the stack for temporary storage.

The ALG$LW garbage collector is included in this section because it is

primarily a fixed-no-release system. Free storage is allocated in pages of

1024 words. Each page contains plexes of one fixed size, and there is a
0

separate free storage list for each page. Each plex contains a marking bit

for the garbage collector. The marking pass goes through all plex storage

tracing and marking the active storage. The scanning phase creates a new

free list on each page. If a page is empty, it is returned to the operating

system; on the other hand, if a plex must be put on a full page, a new page

is created for the required structure class. One problem with this scheme

occurs when a class is nearly full and a process is creating and deleting

members of that class. The garbage collector may be called several times

56

before a new page is created. But the garbage collector blindly rescans all

active storage even if only one class is changing. Insufficient experience has

been gained with ALG#LW plexes to propose a better garbage collection strategy.

Only one portion of the LISP 2

rest is discussed in the section on

a requirement in LISP 2 to relocate

garbage collector fits in this section; the. .

hierarchical garbage collectors. There is

the fixed length list cells so they only

occupy the bottom of their free storage area, After the marking pass, the

lowest free word is swapped with the highest active word. The new address

of the active word replaces its old location. This process, called folding

compaction, continues until all active words are at the bottom, A final

pointer correction pass is required. Any pointer into the free area is--.

replaced with the new address stored in that location.

Variable-Non-Relocating Systems,

L6 [Know 663

ASP bay 671 [Lang 681

APL [Dodd 663

UNCLLL fmch 671

CgRAL [Suth 661 [Kant 663
0

+/360 [IBM 684

Knuth concentrates on systems in this class [Knth 673, so the discussion in

this section is brief. His analysis and simulations indicate that fragementa-

tion occurs with a tolerable low frequency, Given that assumption, the tech-

niques in this class are to be preferred for their low overhead. If the

language permits co-n sublists or circular lists and requires the programmer

to release inactive plexes, then he must write code to keep track of how many

pointers point at each plex. But some problems seldom require co-n sublists,*

57

For such problems the variable-non-relocating systems are attractive.

ASP and APL use the L
6

buddy system for allocation, but, like CORAL,

they organize the data into rings. Nodes of a ring are plexes, and each may

have several ring connections and several data fields. Nodes can only be

accessed along the rings, so the only delete operation needed is to delete a

node from a ring. When a node is connected to no rings, it can be returned to

the free storage list. There is the problem that circular structures may

never be freed even though inaccessible.

When a requested plex is larger than the largest free area, the schemes

in this class must try combining adjacent free plexes into larger free

plexes. In some systems, recombination is attempted every time a plex is

freed. In an application with many plexes of about the same size, however,

the likelihood is that the recombined plex will soon be broken up again.

Recognition of neighboring free plexes is not always trivial. One tech-

nique is to sort the free list according to core location and then compute

adjacency from locations and lengths. CORAL has a plexhead marked by

containing one field of all ones. Checking for a free neighbor in the upwards
i

direction is easy (the next plexheaa follows the current plex); but finding a

'preceeding neighbor means searching back to find a plexhead. UNCLIL associates

a bit table with free storage. A bit is set for the first and last word of

each active plex.

Operating System/360 dynamically allocates variable length blocks (GET-

MAIN and FREEMAIN macros) and requires some form of storage management.

Relocation is impossible because programs manipulate absolute addresses and

the system cannot know where a problem progrem has stored an address. Free

storage is structured in blocks chained together in sequence by their size.

Allocation is accomplished by-finding an appropriately sized block or dividing

58

a larger block. When a block of storage is returned to free storage, it is

placed on the chain according to its current size. When a sufficiently large

block is not available, OS tries to combine adjacent free blocks into larger

free blocks. This is accomplished by maintaining an additional chain pointing

to the blocks in sequence by core address. The garbage collector scans this

second chain trying to combine each block with the next higher block in memory.

If no sufficiently large block is built to satisfy the user request, he is either

terminated or given a return code indicating his request was not met.

Variable-Relocating

COGENT
-m.

EPL

EULE33

MUTANT

XPL (strings)

SWYM

by-n 651

[Hadd 661

[MCla pc]

[Wrth 651

[MKee 663

Wee pcl

(this paper)

A variable-relocating garbage collector completely ignores the garbage.

* Instead, it builds a new structure isomorphic to the old with respect to

the permitted data access operations. The time for this process depends on

the size of the active structure and sometimes on the incidental arrangement

of the elements of that structure. Many systems relocate storage by coalescing

the active plexes; that is, moving them all toward one end of memory, without

rearranging them. Others, like SWYM, not only move all plexes, but also change

their order. In SWYM this process tends to move together lists and their

elements$ an important property for paging systems, But there is a disadvan-

tage in rearranging memory. In non-relocating and simply coalescing systems,

59

the address of a plex can be used as an arbitrary ordering function. Such

functions have utility when manipulating otherwise unordered sets. In

systems that rearrange storage, such pseudo-ordering functions are difficult

to define. . .

Most variable-relocating garbage collectors have four phases in some

order or another. As identified in [Styg 671 these are Find, Plan, Fix,

and Move. The Find phase is responsible for finding all active structures.

The new address of each structure is computed by the Plan phase. During the

-Fix phase all pointers are changed to point at the new locations of the

structures. Finally, the Move phase relocates all structures.

In the Find phase,-. a tracing algorithm goes down all chains of pointers

starting with the pointers on the stack and in the static variables. To

identify the active plexes and to avoid processing a plex more than once, a

visited plex is usually marked in some way. If bits are available in each

plex, the plexes can be marked within themselves. Otherwise, a bit table

can be used. In the latter case, extra computation is required to find the

relation between a word address and a bit in the table. If a plex contains

more than one pointer, the tracing algorithm must be applied to all of these.

. There must be some way to remember those pointers that have not yet been traced.

One simple solution is to put all the pointers from the plex on the stack.

The tracing routine always takes the top pointer off the stack. But this

system can use large amounts of stack space. Space requirements can be

reduced by stacking a pointer to the plex and a counter indicating how many

of the pointers in the plex have been collected. If room for this counter

can be found in the plex itself, then the WISP technique [Schr 671 can be

used to eliminate the need for a stack.

60

The other three phases must also be designed with care* During the

Plan phase, the new address of each plex must be saved for succeeding phases.

Some plex encodings leave room in each plex for the garbage collector to store

this new address. Others use the free-areas to store information to compute

the new addresses. In a system that merely collapses storage by moving it

all down, it is sufficient to compute the change between the old address and

the new address. Systems, like SWYM, that rearrange the plexes must be

prepared to associate an entire new address with each plex. The Fix phase,

like the Find phase, must locate all pointers. Processing a pointer twice,

however, is not only time consuming as it is in the Find phase, but is also

fatal as the second update might access erroneous data. Some systems create. .

a list of pointers during the Find phase for use by the Fix phase; ordinarily,

though, this is an exhorbitant waste of space. The most comon solution is

some form of marking bit. During Move, care must be taken that no plex is

overwritten with a new plex before it itself has been moved. In push down

relocation, this is accomplished simply by moving plexes starting with the

lowest in memory. SWYM, on the other hand, relies on secondary storage to

hold the new contents of memory.

e The COGENT system uses a bit table for marking the active words of

storage. Each plex contains a type field, Depending on the type, the gar-

bage collector determines exactly which components in the plex are pointers.

The yet-to-be-traced pointers are remembered by stacking a pointer to the

plex and a count of the number of pointers that have been traced. The relo-

cation factor for each block of storage is stored in the first word of the

next free area. The Fix phase precedes the Move phase.

Haddon and Waite [Hadd 661 have described a push down garbage collector

that creates a table of relocation factors during the Move. This table is*

61

then sorted on the 'old address' field. The Fix phase is last: each pointer

is found in the table by binary search and the associated relocation factor

is applied to correct the pointer.

Don McClaren [MCla pc] proposes to..use a modification of the preceeding

plan. Descriptors for each plex are stored not with the plex but in the

upper portion of free storage. (His system is PL/l-like and the assumption

is that the descriptors are infrequently referenced.) The garbage collector

can find the descriptor for each plex by a binary search on the table. The

'descriptors contain room for the relocation address of each plex. The point

of this approach is that the garbage collection features have very low cost

if they are not used. Indeed, the descriptors can be removed altogether

with little reprogramming (if the garbage collector is not used).

W. McKeeman has written several garbage collectors, including those for

EULER, MUTANT, and XPL (strings). These systems rely on descriptors and

store all lists (strings) as a plex of pointers (characters). A descriptor

contains the beginning location of the item and its length. In XPL, a por-

tion of a string can be identified'as a separate string by simply specifying

a different beginning and length; this corresponds neatly to PL/l SUBSTR

e expressions. The MUTANT and EULER garbage collectors are similar; each

beginning by scanning all active structure and abstracting all descriptors.

These descriptors are stored in a newly created array (using B-5500 Algal).

Note that this requires a substantial amount of temporary storage. This

descriptor array is then sorted by the location of the list. In the Move

phase, active blocks are moved down; the new address of each block is stored

in a field of the descriptor reserved for this purpose. The last step is to

scan through memory and update the address fields of all descriptors. The

XPL string garbage collectors improves on this process by creating a list of

62

pointers to the descriptors, rather than a list of the descriptors. Since

only the string area is being garbage collected, the descriptors will not

move. This list of pointers to descriptors is sorted based on the address

fields in the descriptors.

strings are moved downward

Hierarchical

Finally, in a, single pass all active portions of

and the new addresses are stored in the descriptors.

LISP 2 [SW@; 671 [Hawk 671

LISP 1.5 [Barn 681

[ROSS 671

Hierarchical%torage control schemes are characterized by allocating

plexes within larger plexes, called super-plexes. In the more general

schemes, super-plexes are allocated within larger super-plexes. Hierarchical

schemes can use different garbage collection techniques for different super-

plexes. This approach permits each type of data to be collected by a routine

specifically written for that data type. Such specific routines can avoid

type testing and can thus reduce garbage collection time.

A major problem in a hierarchical system is deciding the size of the

space that should be allocated to each super-plex. One approach is that

used by AJXOLW and described above. But this system can call the garbage

collector frequently if pages are nearly full. One solution to this problem

is to attempt to determine the rate of change in the storage requirements

for each class. Garwick has proposed and implemented such a scheme for the

array feature of GPL [Garw 68 and Knth 681. In that system, array declarations

must specify an upper bound but the current upper bound dynamically depends

on how many of the cells are full. At garbage collection time, a new length

63

is calculated for each array as a function of its current length and its

length at the time of the preceeding garbage collection. A similar system

is used in the SDC LISP 1.5 for the 360 -[Barn 681 to assign to each storage

area an appropriate number of 256 word blocks.

One other serious problem can occur in an allocation scheme like that used

by ALG#LW: two large structures can be created simultaneously and occupy many

pages. If only one of these structures is required later in the program and

ifno other structure is created in the given storage class, then all pages

remain active for the storage class although they are only partially occupied.

The probability ofthis problem occurring is program dependent, but the loss

of storage can be large. This can be avoided by relocation, or by splitting

the class into two classes. The problem is more complex when pages

are being swapped; the decision must be made as to whether the time to -

relocate memory is less than the time spent in swapping the inactive portions

of pages.

Memory is allocated hierachically in both LISP 2 and AED that is, plexes

are allocated from within other plexes. But the details differ; LISP 2 per-

- mits only a system defined hierarchy and garbage collects it very efficiently,

AED sacrifices some efficiency to permit complete user control of allocation.

_ In the LISP 2 system, different types of program values are stored in

different areas of memory. Some areas contain only fixed length plexes,

others contain variable length plexes. The areas are paired; each pair is

assigned a super-plex and one member grows up from the bottom while the other

grows down from the top. Thus the folding compaction described above is

64

necessary for the fixed length areas. Provision is also made for changes

in the size of the plex assigned to each pair. No indication is given of

the basis for these size changes.

The AED system defines an allocation scheme that is essentially non-

relocating. However, provision is made for the user to write routines to

be called when storage is exhausted in a super-plex. Thus the user can

define his own garbage collector. The system provides a plethora of primi-

tives to assist in writing this garbage collector. Adding to the confusion
._
in the field, the AED system defines a GARBCOLL mode. This mode can be set on

for a super-plex that controls sub-plexes with a variable-non-relocating

(with release) scheme. When GARBCOLL is in effect, a released plex is auto-

matically combined with any adjacent free plexes. When GARBCOLL is off, freed

plexes are merely kept on a list (which AED calls a string).

Basic Swym Garbage Collector Algorithm

Swym contains a variable-relocating garbage collector that creates a

set of structures isomorphic to all active structures with respect to rst

and fst. Most unnecessary rst pointers are eliminated. This set of struc-

a
tures is in a new core image, created sequentially and written to a temporary

storage device. After collection, the new core image is read into one end of

the plex storage area and the remainder of that area becomes the new free

storage area.

The idea of using external storage was suggested by Marvin Minsky in

an internal MIT memorandum [Mnsk 631. But the algorithm reported there

would not work for even the simplest cases (for instance, the structure in

Figure III.2). The Swym garbage collector works not only for the simplest

65

cases, but also for the most complex cases of mutual circularity. The

complete garbage collector is described in Appendix E; the current section

presents a minimal version of the garbage collector to illustrate the

central ideas. This minimal version is satisfactory only for structures

that never have more than one pointer at any given word of the structure.

COLLECT (x), the portion of the garbage collector presented here, has

as its argument a pointer at a piece of list structure. It then writes that

list structure sequentially to the new core image. Other functions exist to

call COLLECT for each possible pointer at active structure, to collect atoms,

and to read in the new core image.

The contents of a list are address pointers to the elements of that list.

When a list is written to new core9 the contents of that list must be the

new-core addresses of the elements of that list. Consequently, the elements

of a list must be COLLECTed before the list itself can be written to the new

core. COLLECT (2) proceeds in two recursively intertwined passes. The first

pass applies COLLECT to each element of the list x0 The second pass writes

the new representation of the list 2 to the new core image. To remember

where a piece of list structure is in new core> its fst is replaced (rplf)

-with the address of that structure in the new core. The head of an atom is

used to store the address of that atom in new core.

Three operators must be defined in order to describe the garbage

collector:

ATCOL (2) 2 must be an atom. If tf has not been garbage

collected, it is collected and written to the new core image. The

plexhead of tf is replaced with the address of tf in the new core.

ATCOLcalls separate routines to garbage collect each type of atom.

66

GCPUT (2) 2 is any full word. This word is written to the next

available location in the new core image. The value of GCPVT is the

address of that location. An internal variable is advanced to point

at the next available location in the new core image. GC!PU!T handles. .

' I/O and writes buffers to the external device when necessary.

HD (IC) tf must be an atom. HD returns the plexhead of that atom;

after ATCOL, the plexhead contains a pointer to x in the new core.

If 2 is non-atomic, processing is interrupted.
._

The basic garbage collection algorithm is given in Figure 111.1 in a

notation similar to Algal.-L. The declarator list declares a variable which

may point at a piece of list structure. The declarator word declares a

variable whose value is one full word. Note that rstbit is initialized to

the value 1. This corresponds to the value of a word with just the rst bit

on. rstbit is used to 'or' the rst bit into a word written to the new core

image, The result of applying COLLECT to a simple structure is shown in

Figure III.2.

'Garbage collection' is truly a misnomer for this algorithm. COLLECT

j whilethe garbage is completely. examines only the active list structures

ignored and has no effect on the processing. 'Storage reclamation' describes

the process no better. Possibly better terms might be 'storage reorganiza-

tion' or 'garbage control'. But the term 'garbage collection' is so widely

used and so colorful as to preclude replacement.

Some limited experiments have beenconducted with the Swym garbage

collector. On one list structure, representing a program, there was a 25 per

cent saving of storage using compact lists instead of standard lists. This

corresponds to an average list length of only two elements. The correspondence

67

Figure III.1

Simplified Swym Garbage Collection Algorithm

COLLECT (x) = begin list& t; word rstbit := 1;

r := x;

chkloop: t := fst (r);

if atom (t) then ATCOL (t) else COLLECT (t);- -

t := rst (r);

if atom (t) then ATCOL (t)- -

_ else begin r := t; got0 chkloop end;

r := x ;

wrloop: t := fst (r);

rplf (r, if atom (t) then GCPUT (HD (t))- -

else GCPUT (l(t)));

t := rst (r);

if atom (t) then GCPUT (HD (t) V rstbit)- -

else begin r := t; got0 wrloop end

end COLLECT

68

Figure III.2

Example of Swym Garbage Collection

I n i t i a l S t r u c t u r e :

At wrloop on the highest level:

O l d M e m o r y

x:

‘.
----------v-. ‘L

‘\

“\
\

a

L=

? B
\

\

f I

\
NC ---e-e\

‘\

\

FQew M e m o r y \ I
w

A *new
” c

new
R t

tEW

69

Figure III.2 (Cont)

Example of Swym Garbage Collection

At completion:

O l d M e m o r y

‘A,,-- I I I 1’
‘\ ! ,-./ y---T-/

I
I

I
I

‘\
-\

New \
)MzKTry

i

e

N o t e : - new pointer

pointer unchanged from preceding diagram

-1-m
1

pointer at location a word will occupy after the new core image has
. - - - - been read in.

70

is easy to compute: A normal list of length 2 requires 2r-1 pointers. The
n+l

corresponding compact list requires n+l pointers, for a saving of 1 - &- ;

when 2 is 10, the saving is 45

four words of storage plus the

symbol atoms is also a factor.

For every active word of

per cent. Every symbol atom takes at least

length of the print name, so the number of-.

storage, roughly forty instructions were executed

during garbage collection. This was computed by dividing execution time into

amount of active storage. The experimental system did not use external

storage; instead, memory was shuttled between two alternate core areas. Thus

the time to write out memory is the maximum of the time to write out the active

structure and the time to execute forty instructions for each active word. The
--.

time to read in memory is dependent solely on the number of active words. The

Swym garbage collector speed can be contrasted with the speed of that routine in

the Stanford ~1~~360 system. This is a standard LISP 1.5 implementation with a

fixed-no-release garbage collector. LxsP cells are stored in double wards.

The garbage collector executes approximately fifteen instructions for each active

double word. In addition, the linear scan through free storage requires four

instructions for each of the double words in free storage. These rates were

computed based on execution of several large programs on a 360/75..

Several applications for the Swym garbage collector are conceivable,

even apart from compact list structure. The Swym garbage collector could be

valuable in a system with roll out and roll in. If the monitor set a signal

for the program to roll itself out, the program could garbage collect for

free the next time a cons was executed. Even without memory swapping, external

storage of structures has always been a problem for plex processing systems.

The Swym garbage collector provides analgorithm for scanning lists and storing

them in a compact form on an external device. Another application for this

71

,

algorithm is in the transmission of list structures between two machines over

a slow channel. If the new storage is written starting at location zero, the

address fields can be small. Only as the size of the structure passes a power

of two would the length of each address “field have to increase.

The implemented garbage collector stores partially collected structures

on the stack, but uses a trick to avoid saving return addresses during

recursion. It would be possible to use the WISP technique [Schr 671 to

avoid using the stack during collection. This was not done because it would

involve at least two more passes over the data. In a memory sharing en-

vironment, it is sometimes possible to acquire temporarily the needed extra

storage for a stack; otherwise, sufficient stack must be available to hold at

least twice the length of the longest fst chain.

72

CONCLUSION

The best conclusion to this paper would be to point to a specific set

of environments and say, "These are the best for implementing a plex processing

language." But this cannot be done because storage management is highly

problem dependent. A set of environments satisfactory for one language may

be very poor for some other language. For completeness, four storage manage-

ment schemes are necessary: fixed-release, fixed-no-release, variable-

relocating, and variable-non-relocating. The most universal approach is a

hierarchical system offering each of these types of storage control; current

work holds the promise of making this approach as efficient as the least

efficient of the facilities actually used. That is, it seems possible to

'charge' the user the 'cost' (time or memory) of only the storage management

technique he uses. Alternatively, large projects should consider implementing

a language and system suited to their own particular needs. Since all environ-

ments can be conveniently implemented with a combination of a stack and variable

length plexes, a general storage management system like Swym is a suitable basis

for the development of specialized languages.

The paper will close with (1) a summary of the SWYM solution to a
e

variable-relocating storage management system and (2) the implications

of plex processing languages for hardware design.

73

Suquiary of Swym Rnvironments

Stack: The Swym stack stores pointers, return addresses, and stack plexes.

The three are distinguished by the hi@ and low order bits of the word.

For plexes these bits are in a plexhead and all other words in the plex

can be full 320bit words. The stack grows toward lower addresses so

routines may address local variables they store on the stack.

Data structures: To permit compact lists , Swym distinguishes between lists

and all other plex structures. The distinction is based on the pointer

at the item, plexes being addressed six bytes in front of their plexhead.

List operators will not work on plexes and vice versa. But this is advan-

tageous in debugging, and neither type of operation is slowed because this

checking is done by hardware. All plexes have a plexhead, which is

memory consuming if many small plexes are used.

Routine linkage: The stack is essential to routine linkage: return addresses

are stored on the stack, and the calling routine stores any active regis-

ters on the stack. The address of each routine is available from a

. transfer vector table.

Variable binding: STUTTER variables are bound in a value cell associated

with the atom representing the variable. A bit in the plexhead indicates

whether the value is a pointer or a full word of informationt so a

compiler can compile direct numerical operations. When an atom is re-

bound, the current binding is saved on the stack and the new binding

placed in the cell. Dynamic free variables are not permitted.

74

Memory allocation: Memory is allocated from one end of a single large free

area. This could be used like a stack, but this is rare in STUTTER.

Storage management: The Swym garbage collector creates a representation of
1.

all active structures on secondary storage. This representation is then

read into one end of the free storage area. In this process lists are

compacted, and related structures are relocated near each other.

Implications for Hardware Design

Because storage management is very problem dependent, hardware design

should not favor one technique over others. But three features would

facilitate storage'management and language implementation: 1) extra bits in

every word, 2) stack operations, 3) subroutine operations. Other operations,

like data access and program control, seem to be adequately handled by the

360 hardware. Appendix K contains one proposal for instructions implementing

these proposals.

Extra bits in every word: Swym utilizes high and low order bits of

pointers in many ways. But careful control is necessary to avoid confusion

with numbers. Much bit testing and indfrection could be avoided if each word

included two or more bits that did not participate in arithmetic operations.

This idea has been implemented in at least the B-5500 and other Burroughs

machines. But very careful design would be required to integrate extra bits

into the design of the 360, because so many different kinds of instructions

can access different portions of each word. One approach would be to associate

four bits with each word that could be set and tested with special storage

immediate instructions but would not otherwise participate in arithmetic opera-

tions. These bits could be considered as one per byte to mark the ends of

75

strings, or could be considered as four per word with different configurations

marking pointers, integers, floating point numbers, or other data types. One.

or two of the bits with a word could be used for marking by a garbage collector.

In a carefully worked out language implementation, the special bits would only

have to be set when memory was allocated.

Another possible approach to associating bits with every word would be to

prdvide an instruction that translates a word address into a bit address (and

possibly tests or alters that bit). With this approach the user would have no
-

expense if he did not use the facility. But if he did, memory allocation would

be required both for data and for any associated bit tables.
--.

Stack operations: A stack can be invaluable in many progras and is

essential in implementation of plex processing languages. Moreover, the

required operations are relatively simple and non-controversial: add an item,

delete an item, and reference an item. With no provision for checking the

ends of the stack, the add and delete operations can be placed in micro-code,

and the reference operations can use ordinary base-displacement addressing.

End checking is a little more complex. One approach is to make the stack

pointer a pointer at a descriptor giving the ends and the current location
.

of the stack. But this prevents using the stack pointer to reference items

on the stack. An alternative is to use special settings of the special bits

to indicate the ends of the stack. The special bits would then be checked

by the micro-code.

Subroutine operations: Like stack operations, these are easy to

implement and are of general utility. The basic subroutine operations are

call and return, using the stack to store the return address6 Storage of

registers and other status information is more language dependent and should

be controlled by the calling routine.

76

[Barn 681

[BBG 681

[Baur PC]

[Be= 673

[Bobr 673

[Bobr 681

Ccohn 671

[co11 601

Cc011 671

[cons 641

- [Dodd 663

[Farb 641

[Feld 651

[Frnk 661

BIBLIOGRAPHY

Barnett, J.A. and Long, R.E. The SDC LISP 1.5 System for IBM
System Development Corporation Document SP-

'm&8).

Bauer, H.R., Becker, S. and Graham, S.L. ALGAL W Language
Description , Computer Science Department, Stanford University,
(Jan, 1968).

Bauer, H. Stanford University, Stanford, California.

Benner, F.H. On designing generalized file records for manage-
ment information systems. AFIPS V. 31, 1967 FJCC. Thompson Books,
Washington, D.C., pp. 291-303.

Bobrow, D.G. and Murphy, D.L. Structure of a LISP System Using
Two-Level Storage. Comm. ACM 10, 3 (Mar, 1967) pp. 155-159.

Bobrow,-.D.G. (Ed.) Symbol Manipulation Languages and Techniques.
North-Holland Publishing Co., Amsterdam, Netherlands, 1968.

Cohen, J. A use of fast and slow memories in list processing
languages. COG. ACM lo, 2 (Feb, 1967) pp. 82-86.

Collins, G.E. A method for overlapping and erasure of lists.
Conme ACM 3, 12 (Dee, 1960) pp. 655.

Collins, G.E. The SAC-1 list processing system. Computer
Science Department and Computing Center, University of Wis-
consin, (JW, 1967).

Comfort, W.T. Multiword list items. Comm. ACM 7, 6 (June 1964),
PP. 357*

Dodd, G.G. APL, a language for associative data handling in
PL/l. AFIPS Conf. P. V. 29, FJCC, Spartan Books (Wash, 1966)
PP. 677-689.

Farber, D.J., Griswold, R.E., and Polonsky, 'I.P. SNOBOL, A string
manipulation language. J. ACM ii, 1964, ppo 21-30.

Feldman, J.A. Aspects of associative processing. TN 1965-13
Lincoln Lab MIT 1965.

Franks, E.W. A data management system for time-shared file
processing using a cross-index file and self-defining entries.
AFIPS Conf. P. v. 28 1966 SJCC pp. 79-86.

77

lJ----- -..--
-.__ -_

[Garw 683

[Gerl 601

[Gray 671

[Gris 671

[Hadd 663

[Hawk 671

[Hoar 661

[IBM 68al

[IBM 68bl

[Ilif 621

Qohn 631

(Joyc 671

[Kant 661

[Know 663

[Knth 683

cL=G?i 681

Warwick, J.V. GPL, a truly General Purpose
Am 11~ 9 (Sex% 1W3), PP~ 634-638.

Language. comm

Gerlernter, H., Et Al. A FORTRAN-compiled list-processing
language. J. ACM 7, 1960, p. 87.

Gray, J.C. Compound data structure for computer aided design;
a survey. Proc. ACM 22nd Nat. Conf. 1967, Thompson Books,
Washington, D.C., ppe 335-365.

Griswold, R.E., Poage, J.F., and Polonsky, I.P. Preliminary
Report on the SNOBOL 4 Programming Language II, Bell Telephone
Laboratories, Holmdel, New Jersey (Nov, 1967).

Haddon, B.K. and Waite, W.M. A compaction procedure for variable-
length storage elements. Computer J. 10, 8 (Aug, 1966).

Hawkinson, L. Lisp 2 Internal Storage Conventions. Systems
Development Corp. TM-3417/550/00 (Apr, 1967).

--.
Hoare, C.A.R. Record handling. IFIP working conference, Pisa
(Septy 1966).

International Business Machine&IBM System/360 Operating System
MVT Supervisor, Form Y28-6659-Z Kingston, New York, (Jan, 1968).

International Business Machines. IBM System 360 PL/I Reference
Manual. Form ~28-8201-1, Kingston, New York, (March, 1968).

Iliffe, J.K. and Jodeit, J.G. A dynamic storage allocation
scheme. Comput. J. 5, 10 (Ott, 1962) p. 200.

Johnson, T.E. Sketchpad III 3-D graphical communication with a
computer. ESL-TM-173 M.I.T., Cambridge, Mass., 1963.

Joyce, John D. and Cianciolo, Marilyn, J. Reactive displays:
improving man-machine graphical communication. AFIPS Conf.
P. V. 31, FJCC (Sept, 1967) pp. 713-721.

Kantrowitz, W. CORAL - A Questionnaire for language consultants.
ACM Special Interest Committee on Symbolic and Algebraic Mani-
pulation, Comparison of Languages Subcommittee (May, 1966).

Knowlton, K.C.
6

A programmer's description of L . Comm. ACM No. 8,
9 (Aw, wW.

Knuth, D.E. The Art of Computer Programming, Vol. I. Addison-
Wesley, Menlo Park, California, 1968.

Lang, CaA., and Gray, J.C. ASP - A ring implemented associative
structure package. comm. ACM 11, 8 (Aug, 1968) pp. 550-555.

78

bf=h 631 McBeth, J.M. On the reference counter method. Comm. ACM 6, 9
(Seth 1963) P* 5750

[MCar 601 McCarthy, J. Recursive functions of symbolic expressions and
their computation by machine, part I Comm. ACM 3, 4
p. 184.

(April, 1960)

[MCar 621 McCarthy, J., et. al. LISP 1.5 Programmer's Manual.
Press, Cambridge, Mass., 1962.

The MIT

[MCla pc]

[MKee 661

McClaren, M.D., Argonne National Laboratory, Argonne, Illinois.

McKeeman, W.M. An Approach to Computer Language Design.
Technical Report CS48, Computer Science Department, Stanford
University, (Aug, 1966).

[kee 671

[Eee pcl

Cmch 671

[mch PC]

[msk 631

[New1 641

[Per1 601.

b&R 641

[Reh 651

km 691

[Reyn PC]

McKeeman, W.M. Language directed computer design. AFIPS
conf. P. V. 31 FJCC 1967, Thompson Books, Washington, D.C.
PP. 413-417.

McKeeman, W. University of California at Santa Cruz, Santa Cruz,
California.

Manacher, G.K. and Dewar, R.B.K. The UNCLLL List-Processing
Language: A Preliminary Description. University of Chicago, 1967.

Manacher, G.K. University of Chicago, Chicago, Illinois.

Minsky, M.L. A LISP garbage collector using serial secondary
storage. MIT Artificial Intelligence Memo. No. 58, Cambridge
Mass., (act, 1963).

Newell, A. (Ed.) Information Processing Language-V Manual,
2nd ed. Prentice Hall, Englewood, N.J., 1964.

Perlis, A.J. and Thornton, D. Symbol Manipulation by Threaded
Lists. Comm. ACM 3, 4 (Apr, 1960), pp. 195-204.

Randell, B. and Russell, L.J. Algol 60 Implementation. Academic
Press, London, 1964. I

Reynolds, J.C. Cogent Programming Manual. Argonne National Lab.
report no. ANY7022. Argonne, Illinois, (Mar, 1965).

Reynolds, J.C. GEDANKEN - A Simple Typeless Language which permits
Functional Data Structures and Coroutines. Argonne National Lab-
oratory, (my, 1969).

Reynolds, J.C. Argonne National Laboratory, Argonne, Illinois.

79

[Ross 611 Ross, D.T. A Generalized Technique for Symbol Manipulation and
Numerical Calculation. Comm. ACM 4, 3 (Mar, 1961) pp. 147-150.

I.
[ROSS 671 Ross, D.T. The AED free storage package. Comm. ACM 10, 8

(Aug, 1967) pp. 481-492. .- c

[Rovn 663 Rovner, P.D. Investigation into paging a software simulated
associative memory system. Document No. 40 10 90, University
of California, 1966.

[Rovn 67a] Rovner, P.D. and Feldman, J.A. An Associative Processing System
for Conventional Computers. Lincoln Laboratories, TN l$'j'-lg.

[Rovn 67b] Rovner, P.D. and Feldman, J.A. The Leap Language and Data
Structure. Lincoln Laboratories, November 1967.

[Sat% pc] Satterthwaite, E. Computer Science Department, Stanford University.

[schr 671 Schorr, H. and Waite, W.M. An efficient machine - independent
procedure for garbage collection in various list structures.
comm. ACM,lO, 8 (Aug, 1967) pp. 501-506.

Cstyg 671 Stygar, P. LISP 2 garbage collector specifications. systems
Development Corp. TM=3417/5OO/OO, Santa Monica, Calif., (April,
1967) l

[Suth 633 Sutherland, I.E. Sketchpad: a man-machine graphical communication
system T 296, Lincoln Lab., M.I.T., Lexington, Mass., 1963.

[Suth 663 Sutherland, William R. The Coral Language and Data Structure
(Appendix C) from Lincoln Laboratory, TR No. 405, May 1966.

[Tou PC] Tolliver, B.L. Computer Based Laboratory, Stanford University,
Stanford, California.

[vDam 671 Van Dam, A. and Evans D. A compact data structure for storing,
. retrieving and manipulating line drawings. AFIPS P. v. 30

SJCC 1967, pp. 601-610.
[Weiz 631 Weizenbaum, J. Symmetric list processor. Comm. ACM 6, 9 (Sept,

1963) pm 524.

[Weiz*68] Weizenbaum, J. The Funarg Problem Explained. MIT, Cambridge,
Mass., (Mar, 1968).

[Wilk 64a] Wilkes, M.V. An experiment with a self-compiling compiler for a
simple list-processing language. Annual Review in Automatic
Programming, Vol. 4. Pergamon Press, N.Y., 1964, pp* l-48.

[Wilk 64bI Wilkes, M.V. Lists and why they are useful. .Proc. ACM 19th Nat.
Conf., (Aug, 1964).

[Wise 661 Wisaan, N.E. A simple list processing package for the PDP'j'.
Second European Seminar of DEWS, (Ott, 1966).

80

[Wrth 651 Wirth, N. and Weber, H. Euler: A generalization of Algol and its
Formal Definition. Technical Report CS20, Computer Science Depart-
ment, Stanford University, (April, 1965).

[Wrth 661 Wirth, N. and Hoare, C.A.R. A contribution to the development
of ALGOL, comm. ACM 9, 6 (June, 1966), ppe 413-431.. .

[Wrth 681 Wirth, N. ~~360, A programming language for the 360 computers,
ACM 15, 1968, PP. 37-74.

CYWV 623 Yngve, V.H. et. al. COMIT Programmer's Reference Manual, the
MIT Press, C-bridge, Mass., 1962.

81

Appendix A. Details of Swym Structures

There are many different information structures in Swym. Free. .

storage contains lists and plexes (also called atoms), while the stack

contains pointers, return addresses, and plexes. All currently implemented

varieties of these structures are described below.

A.l. Free Storage Structures

a. Lists

A list word has the structure

ADDRESS.

1 29 1 1

Address
C-
bc AT@Md &ST

May point at another list element, or at an atom.

GC. Is used by the garbage collector for marking (bit Ml).

RST. Is on to indicate that the continuation of the list is at

location ADDRESS. RST is also used by the garbage collector

(bit M2).

-ATOM. Is on to indicate that ADDRESS points at a plex (or atom).

ATOM is on automatically because a pointer at a plex points six

bytes in front of the plex.

In the following examples, the two low order bits of each pointer

are indicated explicitly. A pointer at an atom is indicated by the

82

printname of the atom and the presence of the ATOM bit. The list

(A B C) may be represented by

A l
. 10 01

or

Note ‘that the rrrst of either structure is a pointer at the atom NIL.

That is,rst of

but is the pointer at NIL (contents of the second word). It is important

to note that no valid pointer will point at a list element with the RST bit

on.

The Swym list structure can represent both circular lists - which

cannot be printed, and lists with common subelements - which are not

printed correctly.

Circular list:

List with common subelements: The example below would print as

((A (t(B) B) (B) B) ((B) B) (B) B) ((B) B) (B) B)

but note that B occurs exactly once in all representations of the structure.

83

or

Lists may use any mixture of adjacency and list continuation elements.
--.

The last example might also be

v -

A 0 6
10 00 10

or even

-The garbage collector would rearrange this structure to occupy memory as:

b. Plexes (or atoms)

Two types of plexes have been implemented: one similar to the LISP

1.5 atom, the other a vakiable length string. Other types may be

84

implemented as required by an application. ~11 plexes have a plexhead

aligned on a full word boundary; a pointer at a plex points six bytes in

front of

the atom

pointers

The

1

the first byte of this plexhead. This offset ensures that

bit is on in a pointer at a plex and thus distinguishes between

at lists and pointers at plexes.

standard fields of a plexhead are

7 7 1 15 1

Type 1
4

GJ Lx--.

GC. These two bits are reserved for the garbage collector.

1 in bit 15. This bit, in conjunction with the offset addressing of

plexes forces the RST routine to make a specification error if its

argument is a pointer at a plex.

TYPE. This field distinguishes between different plex types.

Currently types 0 and 1 are implemented.

The blank fields may be defined for individual plex types.

Plex Type 0 - Symbol (LISP atom)

This plex is a three part entity: plexhead, value cell, and

property list. The plexhead has the format

1 5 11 7 1 15 1 .

FCN 0 1
l

Gd vALf(kREL
VAL. If this bit is a one, the atom is bound to the value

currently in the value cell. If 0, the atom's function definition

is in the value cell.

85

REL. If this bit is a one, the contents of the value cell are

relocatable, that is, the garbage collector will treat them like

a pointer.

FCN. If the atom is not a function name this field is zero. Other-

wise, this field encodes what type of function definition exists. The

coding is

r 1 SUBR

2 FSUBR

-==.

The fifteen bit blank field can be used as required. It is proposed to

use these bits as marker bits indicating the presence or absence of

properties on the property list.

Thus routines could find out if the indicator were present without

searching the property list. Also the extra bits can be used to replace

the "flag" feature of Lisp 1.5.

The atom's value cell is the next word after the plexhead. This cell

-holds the current binding of the atom, that is, the value that is to be

returned for EVAL of this atom. There is 8 unique string atom with the

printneme WNB~UND', that is only pointed at by value cells. If an atom

has'no function value and is not bound, the value cell points at lUNB@ND1.

When EVAL finds an atom with this value anerror is indicated and control

returns to the top level. If an atom has WNB@ND' in its value cell, VAL

and REL are both one, because the atom is bound to a relocatable value.

Note that given 8 pointer at the atom, the value cell c8n be addressed

directly. s

86

This means that no searching must be done to find the value of a

routine's argument. Normally, when the STIETER interpreter iti running,

the Value cell contains 8 relocatable value, a pointer at either 8 list

or another atom. Provision is made, however, for compiled functions to. .

store non-relocatable quantities in the value cell. This means that

compiled functions can, indeed, do direct numeric computation.

If an atom is not currently bound, the value cell may instead contain

the function definition of that atom. For FEXPR and EXFR, the REL bit is

_- on and the value cell points to the list defining the function. For SUBR

and FSUBR, the REL bit if off, and the value cell contains the entry

point of the subroutine. Since function names are not usually variable
-m.

names, the interpreter normally does very little searching to find function

definitions. Regardless of where the function definition is stored, bits

are set in the atomhead to indicate what kind of definition it is; that is

EXPR, FEXPR, SURR, FSUBR. Thus when the definition is sought on the

property list only the correct indicator need be used.

87

The property list of an atom is a standard Swym list, except that

ther...rst- - is not NIL, but a pointer to the printname of the atom (a

character string atom (type l)).There is no PNAME indicator. The first word

of the property list is the word after the atom's value cell. If there is no

property list, the word following the value cell is a pointer to the print-

name with the RST bit on. By convention, the property list always consists

of indicator value pairs; there are no flags as there are in LISP 1.5.

GET, PUTPROP, REMPROP, and EVAL all obey the above conventions for

the value cell and the property list. BINDERY, however, will not bind
-=.

a value to an atom having a function definition. See the description

of BINDERY in Appendix D.3.

Plex Type 1 - Strings

This plex type illustrates Swym variable length plexes. The plex

format is

1 7 7 1 15 1

.

I

Subtype 1 1 Length
c

Gc) =Gc

LENGTH. Number of bytes in string. String is right padded to occupy

. an integral number of full words.

SUBTYPE. This describes further the type of string. Currently, it

affects only the print routine. Three subtypes are defined:

0 character string

4 fixed point number

8 hexadecimal number

Fixed point numbers are restricted to length four.

88

A.2. Stack Structures

The garbage collector must be able to scan the stack collecting

those structures which are currently active. Thus, it must be possible

to distinguish pointers from numbers and other random bit patterns. The

high and low order bits of each stack word are used for this purpose and

are interpreted as:

00 pointer (collected)

01
1-I I

return address (not collected)

10
--.

stack plex (collected by special routine)

Any non-relocatable infomtion which may have a zero low-order bit must

be stored on the stack in a stack plex. A plex head is stored after

the plex on the stack because the garbage collector scans the stack from

latest entry to earliest. The stack plexhead format is:

1 23 7 1t
1 Type 0

.

TYPE. Determines what type of plex this is. The garbage collector

invokes an appropriate type dependent routine. Two types of stack

plex are implemented: the non-relocatable plex and the binding plex.

Stack Plex Type 0 - non-relocatable

1 15 8 7 -1

1 Length 0 0

LENGTH. This many prior words in the stack are non-relocatable.

They are igrZqred by the garbage collector.

Stack Plex Type 1 - Binding

This type of plex is used by BINDERY to store the old bindings of atoms

89

before changing them. The plex must be removed

for proper stack synchronization. Bindings are

thus the stack binding plex looks like-

Stack
~Growth

FFFF I I .

from the stack by UNBIND

stored in atom-value pairs,

val I pair 4

'Type 1 stack plexhead

The plexhead format is:

1 15 8 7 1

1 reloc bits length 1 0

IENGTH number of pairs in plex.

RELOC BITS These define the relocatability of the value member of
.

each pair. Bit 15 corresponds to pair 1. If the bit is on,

the value is relocatable, that is, it must be collected. Up

. to fifteen pairs with a relocatable value may be stored. The atom

pointers are always assumed to be relocatable.

90

Anpendix B. SWYM Macros

An essential factor in the development of the Swym system was the

creation of a collection of macros. In effect, these macros create a

machine suitable for processing Swym data structures. The operands to

most macros are register names, therefore a knowledge of Appendix I,

"Swym Register Assignments", will be useful. For purposes of description,

the macros have been divided into eight classes. An index indicates the

. class to which an individual macro belongs. The classes are

1. LISP - The Basic LISP Operations.

FST, RST, NULL, ATOM, RPLF, EQ

2. Atom - Operations on Atom Fields.

CELL, RPGCEL, HEAD, TAIL, RPLHD

3. Freest - Free Storage Creation.

STRAT, MATOM, SUBR, FSUBR, CHAR, &CHAR, VALUE

4. Stack - Stack Manipulation.

PUSH, POP, POPN, TOP, TOPN, RPLTOP, RPLTOPN

5. Bit - Named-bit Operations.

BIT, SETBIT, RESETB, INVERTB, TESTB

6. Link - Subroutine Linkage.

SUB, RET, CAL, TVMAK, XB
.

7. Control - Flow of Control.

IF, THEN, ELSE, ENDIF, AND, ORX, NOT, BCMAC, GOT0

8. Mist - Miscellaneous

CHTBL, SWEAR, INST4, GCPUT, FIXUP

Also in the Swym macro library is a piece of code which must be COPY'ed

during a Swym assembly. Called SWYM, this code is described in Appendix M.e

91

Unless otherwise indicated, the label field of a macro is attached

to the first executable instruction.

MACRO INDEX

Macro

ATOM

BCMAC

BIT

BITTBLMK

CAL

CEIL

CHAR

CHTBL

ELSE

ENDIF

EQ

EVCH

FINDBIT

FIXUP

FST

FSUBR

GWUT

GETNAME

GETNUM

GmJ

Class

Control-7

LISP-1

Control-7

Bit-5

St-5

Link-6

Atom-2

Freest-3

Mist-8

Control-7

Control-7

LISP-1

Freest-3

Bit-5

disc-8

LISP1

Freest-3

Mist-8

Atom-2

Atom-2

Control-7 .

Number of Positional Keyword
Operands Operands

0

1 TG/dY FGPr

0 TBR,FBR,TG@,FG#

1

0

2 PYW

2+

SYSLIST

SYSLIST

0

0

2 W&F@

1

1

2

2 4

SYSLIST

1

1

2 4

1

92

Macro

. HASH

IF

INST4

INVERTB

MAT#M

N@

NULL

e=

p@

P@PN

PUSH

QCHAR

RESETB

RET

RPGCEL

RPLF

RPLHD

RPLT#P

. RPLTOPN

RST

RSTMAK

SETBIT

STRAT

SUB

Number of Positional
Class Operands

Freest-3 1

Atom-2 2 4

Control-7

Mist-8

Bit-5

Freest-3

Control-7

LISP1

Control-7
--.
Stack-4

Stack-4

Stack-4

Freest-3

Bit-5

Link-6

Atom-2

LISW

Atom-2

Stack-4

Stack-4

LISP-1

LISP-1

Bit-5

Freest-3

Link-6

. .
0

3

2

3

0

1

0

1

2

1

SYSLIST

2

1

2+

2+

2+

1

2

2+

1

2

1

0

Keyword
Operands

ATHD

W&W

P

P

P

ATHD

R, EY p, B

P

P

ATHD

w,p,B

.

93

Macro

SUBR

SWEAR

TAIL

TESTB

THEN

T@

TeN-.

TVMAK

VALUE

XB

Class

Freest-3

Misc.8

Atom-2

Bit-5

Control-7

Stack-4

Stack-4

Link-6

Freest-3
-m.

Link-6

Number of Positional Keyword
Operands Operands

SYSLIST

1

2+ --

2

0

1

2

SYSLIST

2

1

TG#,FG@,ATBD

P

P

NOTES:

1. The number following class name is the section number of that class

in this appendix.

2. 3. Both arguments must be register names. If this macro has one

argument, it computes the function of that argument and assigns the

value back to that argument, If a second argument is supplied, the r

value is assigned to this second argument and the first argument

is unaffected.

3;. +. Always has two arguments. Value of second is stored in location

referred to by first.

4. SYSLIST. The &SYSLIST(i) feature is used to reference up to 256

arguments.

94

B.l. LISP - The BasicLISP Operations

FST, RST, AT@, NULL, EQ, RPLF, RSTMAK

FST3&. (This is theLISP 1.5 CAR). 5 and b, must be register

names. FST finds the first element of the list pointed at by z.

If b, is present, the result is placed in register 5, otherwise, the

result is placed back in register &. Assembles as either

RST &Q. (This is theLISP 1.5 CDR). 2 and b must be register

names. RST finds the list formed by deleting the first element

from the list pointed at by the register a-. The result is placed

in & if present, otherwise in a. Assembles as either BAL L,RSTxx

where xx is & or LR &,a; BAL L,RSTxx where xx is b. The

routine RSTxx is created by the macro RSTMAK. In the current swym

system there exist RSTAl, RSTA2, RSTA3, RSTT, and RSTTT; these are

the only registers whose RST can be taken. Note that if b is

specified, it must be among Al, A2, A3, T, TT while 5 need not be.

If b is not specified, 5 must be among that restricted set.

AT#M sT@=sFG$=fgo. This is a predicate macro; see section 7

of this Appendix, especially the description of BCMAC. 5 must be

a register name; its contents are tested to see if they point at

a plex (or atom). The code generated is

LA TTy2

NR TTY5

BCMAC TBR=BM,FBR=B!Z,TG#=tgo,FG#=fgo

Note that AT#M destroys the contents of register TT.#

95

NULL, fi,TG#=tgo,FG#=fgo. This is a predicate macro; see section 7 of

this Appendix, especially the description of BCMAC. 2 must be a

register name; its contents are tested to see if they point at the

atom NIL. The code generated is

CR %N

BCMAC TBR=BE,FBR=BNE,TG&tgo,FG@=fgo

EQ &,TG#&go,FG#=fgo. This is a predicate macro; see section 7 of

this appendix, especially the description of BCMAC. 5 and b, must

be register names. They are tested to see if they both point at

the same identical entity. The code generated is

BCMAC TBR=BE,FBR=BNE,TG#=tgo,FGO=fgo

RPLFsb. (This is the LISP 1.5 RPLACA). 2 and b must be register

names. The list structure pointed at by 5 is modified so that

the first element of the list is the structure currently pointed

at by &. Neither 5 nor b, is changed. The code is ST b,O(a).

RSTMAKz. This macro generates the routine needed by the RST macro.

Note that this routine must appear in an addressable section when

a RST calls it. The code generated is

RSTE

RSTLDZ

TM 7(z) SC '1' is there a RST bit?

B# RSTID~ yes, branch

BXH a,C4,0(L) n o , incr ptr and return

L gY4(gl load list cant ptr

BCTR 3L remove RST bit and return

B.2. Atom - Operations on Atom Fields

HEAD, RPLHD, TAIL, CELL, RPLCELL; GETNAME, GETNUM

HEAD Sk. 5 and b must be register names. Accesses the plexheadI"

of the atom pointed at by 2. If & is present result goes in 5

otherwise into 2. Result is a bit pattern and is not relocatable.

2 may be a pointer at any plex (not just type 0). Assembles as

L ~&>’ or L 56(z).

. .
RPLHD Sk. _a and b must be register names. 2 must point at a plex.

b should contain a bit pattern which is a valid plexhead. The

result is that the plexhead pointed at by fi is replaced by the

contents of b. The contents of 2 and b are not changed. Assembles

as ST 36(g).

TAIL sb. _ _a and b must be register names. z must point at a type

0 atom (not checked). The result is a pointer to the property

list of the atom. If b is specified the property list is put in by

otherwise 2. Assembles as LA 310(g); RST 5 or LA &,mg ;

RST b. Note that the restriction to RST applies to the last argument

of TAIL.

CELL 3b_. 5 and b must be register names. 2 must point at type 0

atom (not checked). The result is the contents of the value cell

of 2 (not a pointer to the value cell). If 2 is specified, the

value cell is placed in 5 otherwise in a. Assembles as

L slO(fl) or L b,lO(&).

97

RPLCEL 32. 5 and b must be register names. g must point to a type

0 atom (not checked). The value cell of the atom is replaced by

the contents of b. Assembles as ST 510(z).

GETNAME 3b. 2 and b, must be register names. & must point at type 0

atom (not checked). The result is a pointer to the printname of

the atom. If 2 is specified, it receives the result, otherwise z

% receives the result. Assembles as

LA %10(a) or LA b,lO(&l

RST 5 or RST 2

AT#M sFGO=3c=lO or AT$M bFG@a-10
x.

GETNUM -.sb 2 and 11 must be register names. 2 must point at a

type 1 plex of subtype 4, that is, a string which is a fixed point

number. This is not checked. The result is the value of the fixed

point number. If b is specified the result replaces b otherwise

a. Assembles as L g,lO(gl or L 2,10(a).

B.3. Freest - Free Storage Creation

VALUE, SUBR, FSUBR, CHAR, QCHAR; MAT$M, STRAT, HASH, EVCH

There are three levels of free storage creation macros. The highest

level macros create atoms with properties required for the interpreter:

VALUE, SUBR, FSUBR, CHAR, and QCHAR. These macros call on MAT#M to

actually create an atom. The third level macros are called by MATaM

as utilities: HASH, EVCH, and STRAT,

In addition to assembling the structure required for an individual

atom, these macros create the object list and the character objects list,

98

r

These lists are the values of @BLIST and CHAR@S, respectively, as described

in Appendix H.

The macro MAT#M takes care of creating the fiBLIST. Each time an atom

is created using MAT@M, the print name is hashed (using the HASH macro),

and a bucket link is created. Created labels are used to link the members

of a bucket together. These labels have the form

BUC xx L nn

where xx is the hash number and nn is the number of the items in the

__ bracket. Thus the oblist itself is

~BLIST Dc A(BUClL0)

..Dc A(BUC2LO)
...

DC A(BUC~~LO)

DC A(NIIrtRBIT)

When an atom is created, two words are created to link the atom in the

porper bucket. They are

BUCxxLn DC A(atom)

DC A(BUCxxIm+RBIT)

where xx is the bucket number, n is the number of items already in this

bucket, m is n+l, and A(atom) is a pointer at the atom. RBIT has the

value 1 and is used to put in the BST bit where required.

. The initial contents of free storage are discussed in Appendix H.

nm VALUE pname,val. The structure for one atom is created. The

label nm is given the value by which the atom should be addressed.

The printname is pname. The value cell is a pointer to val. The

plexhead is marked to indicate that there is a quantity in the

99

value cell and

by calling

MATtiM

that it is relocatable. The assembly is performed

pname,RELB+VALB,A(val)

RELB and VALB are equated to the bits REL and VAL (see Appendix A.1.b).

SUBR pnamel, pname2, pnamen, An atom is created for each pname

in the list. The,printname is pname and the value cell is the

1 address of the SUBR with that name. The atom head is marked to

indicate that the atom has a function definition, it is a SUBR,

and the address of the routine is in the value cell. The pname

is declared EXTRN to communicate with the assembly in which the

SUBR is defined. For each pname on the list, the code assembled is:

SUBRB is equated to 1, the function definition code for SuBR's. '

EXTRNpname

MAT#M pname,SUBRB,A(pname)

Any label field on SUBR is ignored.

FSUBR pnamel, pname2,..., pnamen.

instead of SUBRB.

Same as SUBR, but FSUBRB is used

CHAR charl, char2,..., charn. An atom is created for each character

in the list of characters. The print name is just the character.

The value cell is set to point at the 'UNB@JND' error atom. The

plexhead bits are set to indicate that the value cell is relocatable

and has a value. In addition, the a~ppropriate entry in CHAR#BS is

set to point to the created character atom. Each atom is created by

MAT@ chari

If there is a label on the CHAR it will be equated to the atom for

the first character on the list.

100

The following characters are valid arguments to CHAR:

A-Z, O-g, blank, and these special characters

+ I $ 1 / %
? : # ” # _(>@-.;

0
note that 2 prints as -, while-.$[I8

QCHAR. Same as CHAR, but expects arguments to be quoted: viz.

tt tt
(Y > Y

nm MAT@M pnm,

The label

and *,*.

celbits, plist. Creates an atom with the print pnm.

nm is equated to the offset address of the atom's blockhead.

If celbits and plist are not specified, the atom head is marked to

indicate relocatable binding and the value cell is a pointer at the

special atom 'UNB@ND'. If celbits are specified, that quantity is

assembled (AL1 (celbits)) as the first byte of the atom head. The

rest of the atom head is 010000; indicating a normal type 0 atom.

The members of plist-which may be a 360 assembler sublist - are

assembled following the atom head. Thus the first element of plist

is the contents of the atom's cell. Other elements of plist must

be in indicator-value pairs for the property list. After the property

list, a pointer to the printname and the printname itself are

assembled. The code assembled for missing celbits and plist is

BUCxxLn DC A(* + 8 - AT) put atom in bucket

DC A(BUCxxIm+RBIT) link to nxt bucket item

EQU *-AT equate name to atom ptr

DC ALl(RELBtVALB),X '010000' assemble atom head

DC AmMuNIo value cell

DC A(++&AT + RBIT) null prop list is ptr

STRAT 'pm& print name

101

where

xx is hash code of pnm,

n is number of prior entries in bucket xx,

m is n+l, . .

AT is atom offset (6),

RBIT is rst bit (l),

RELB+VALB put in relocatable and variable-bound bits.

The code generated with celbits and plist is the same except the

atom head is

DC AL1(celbits),X'010000'

and the elements of plist precede DC A(*+4-AWRBIT).

nm STRAT 'string'. Creates a string atom (type 1). The atom head is

DC X*0003',AL2(2nL'string)

which indicates character string atom. Following words are four

character at a time chunks of string. s is equated to the offset

location of the string atom. That is, the first assembled instruction

would be n-m EQU *-AT. String atoms are not placed on the $BLIST

or CHARO'PQS.

BASH string. HASH evaluates the hash function for the string;.T h e

result is left in an assembly time global variable (GBLA &HVAL)-

whose value can be used by a calling macro. BASH calls on EVCH

three times to evaluate the three character values needed by the

hash function (first, third, and last).

102

EVCH &. Unbelievably with 360 assembler, there is no simple way to

determine from a character the number corresponding to that

character's EBCDIC code. EVCH performs this feat by a large test:

chval = if ch = 'A' then 193- -

else if ch = *By then 194-ms

else if ch = 'CT then 195- - -

. . .

else if ch = 'Z' then 233-mm

else if ch = '0' then 240- - -

else

l .0
⌧.

else error ('illegal character - evchr')

The value is left in a global variable (GBLA &CHVAL) whose value

can be used by a calling macro, for instance HASH. The following

characters are valid to EVCH: A-Z, O-9, blank, comma, >,), period,
0

<, L I, +, I Y L $Y *c, ;, 1, -, d, 5,) 7, i, #, a, =, �(Y 2 l

[18

B.4. Stack - Stack Manipulation

PUSH, P$P, @pN, T#P, T@W, RPLT@P, RP%T$PN

The stack is allocated in units of one word. The basic macros are

PUSH and Pj6P. The former puts one word on the stack, the latter removes

a word from the stack. A routine must do exactly as many PUSH'es as

P@P's unless very special care is taken.

Swym stack macros use negative stack growth. That is, the first

stack location allocated is the highest address and successive words are

in successively lower locations. This means that since the stack pointer

103

points at the last entry on the stack, all recent entries to the stack

can be addressed with simple displacement addressing. Thus a routine

may do three PUSH'es to allocate three words of temporary storage; then

it can address all three locations. -+

A Swym stack pointer must be in a register when the stack is referenced

by a stack macro. The standard Swym stack is always pointed at by register

P. All stack macros have a keyword parameter I)P=". If P= is omitted,

P=P is assumed.

Currently, no check is made for going off either end of a stack.

Several techniques are possible to ensure that other storage is not

destroyed or that too many P@'s are not executed. The simplest is to

generate code to check the stack pointer at each PUSH and P$P. This is

time consuming and inelegant. An elegant method would be to use a

PDP-6 which has hardware PUSH and P#P with built-in checking. (Unfortun-

ately, the 360 does not have PDP-6 mode). It is proposed for Swym that

the stack be first in the user partition. When the stack is exhausted, a

protection interrupt will terminate the computation.

All stack macros except PUSH have an 'N' form, indicated by N at the

. end of their name. The first argument to the N-form is a number in the

range l-1024. The action of the macro takes place but rather than

Iaffecting the top of the stack, it affects the Nth element of the stack.

The latest entry on the stack is N=l. Thus xxxN 1,y is equivalent

to xxx y although different code may be generated.

PUSH ~jP=n. 2 may be the name of a register or a sublist of register

names. If the former, as in

PUSH Al

104

then the stack pointer (P since none other is indicated by P=) is

incremented and the contents of Al are stored on the new top of the

stack. If a sublist is coded

PUSH (Al, A2, Al, T, A4)

then the required number of locations are allocated on the stack

and the named registers are placed on the stack. The last named

register is at the top of the stack. The first named register is

the first placed in the stack. Note that in the example, Al is

placed in the stack twice. A P#P TT immediately following the example

will put the old contents of A4 into TT. The code generated for

each element of the sublist ; is

SR $4

ST r,oo$

where C4 is a register whose contents are always 4.

F$P r,P%. Like PUSH, z may be simple or a sublist. If simple,

then the top element of the stack is placed in the named register

and the stack pointer is decremented. If a sublist,

then the registers are filled in the reverse order from PUSH. That

is, the right thing happens and this example will exactly restore

the contents of the registers as stored by

PUSH (Al, A2, Al, T, A4)

The code generated for each element of the sublist 2 is

L W(E)

AR ptc4

where C4 is a register whose contents are always 4.

105

PapN SIjP=& The r$h element of the push down list 2 is popped into

register r. Also the stacked is popped so that the current (r~+l)~~

element of the push down list is the new first element. The current

top of the stack is ;=l. The code generated is:

T#F 3pcP. The first element of push down list p is put in register ,

- re The code generated is

L &O(E)

T@'N ~~P=Eo- The ~~~ element of push down list 2 is put in register

r. The code generated is

L 34*(p1) (21

RPLT$P 9Pq. The first element of push down list 2 is replaced by

the contents of register 2. The code generated

RPLT@?N sr;Pf?~. The nth element of push down list 2 is replaced by

. the contents of register E. The code generated is

ST 34*(pl)(p)

106

B.5. Bit - Named-Bit Operations

BIT, SETBIT, RESETB, INVERTB, TESTB; BITTBLMK, FINDBIT

nm BIT bitno. Using this macro defines nm for all the other bit
-.

th
macros. s is defined as being the bitno bit of a word. Because

all the other functions use SI instructions both the bit within a

byte and the byte within a word must be stored for each BIT declared.

The former is stored by equating nm to

__ BITTBL(bitno-bitno/&%+l)

where BITTBL has the quantities

x*80-!., x*40’, x*20', x?o', x*8’, x*4’, x*2', XT .

The byte within a word is stored in an assembly time array

(GBIA &BITS (64)). It is computed by bitno/8.A corresponding

array (GBLC &BITNAMS(&)) contains the name of the bit so table

lookup can be performed.

SETBIT Gbit,ATHDrll. This macro sets a bit in a word in memory. g

must be the name of a register. The register will be assumed to

point to the required word.

with the BIT macro. If the

in 2 is assumed to point at

bit must be the name of a bit declared

ATHDfl parameter is present, the pointer

a plexhead and the pointer is suitably

. adjusted. The code generated is $1 E&bit or $I bl+AT(&

bit. In either case, FINDBIT is used to find the value & the

byte-within-the-word for bit.

RESETB r,bit,ATHD=T. Same as SETBIT but turns the bit off by using

NI bJ(r),.X'FF'-bit or NI bl-+AT(d;pFF'-bit.

107

INVERTB sbit,ATHDfl. Same as SETBIT but complements the bit by .

using XI bl(r),bit or XIb&AT(r),bit.

TESTB ~bit,ATHD=T,TGO=tgo,FGO=fgo. This is a predicate macro;

see section 7 and especially the"BCMAC macro. The word pointed at

by register ; is tested to see if bit bit is on.If it is control

goes to label tgo, if not control goes to label fgo.E i t h e r TG@

. or FG# or both may be specified. The omitted condition will simply

drop through. Between IF and THEN, both T@ and FG$ ma.y be omitted.

If ATHDG is specified, rwill be assumed to point at a plexhead

and the appropriate offset will be assembled. The code assembled

is either =.

TM bl(r),bit

BCMAC TBR=B~,FBR=BZ,TG@=tgo,FG@=fgo

or TM bl+AT(&u

BCMAC TBR=B@'BR=BZ,T@!&o,F@=fgo

The macro FINDBIT is used to compute bl, the byte-within-the-word

for bit. \

BITTBLMJS. This macro is called exactly once at the beginning of ane

assembly to create the array BITTBL used by the macro BIT. It

stores these character strings into the elements of BITTBL:

x’80’, x'40', x*20', x'lo', x*8’, x’4’, x'2', and x*1' .

The name field and any arguments are ignored. No code is assembled.

(BITTBLMX is coded in the BGSWkD! control section. See Appendix M.)

FDJDBIT bit. This macro finds the byte-within-the-field for the

bit named bit by a BIT declaration. The result is left in a global

108

variable (GBLA &BITL@C) for use by the calling macro (SETBIT,

RESETB, INVEKCB, 0rTESTB). The name bit is looked up in the array

BITNAMS created by BIT. Corresponding to the entry for bit is an

entry in the array BITS giving the correct byte-within-the-field.

No code is assembled.

B.6. Link - Subroutine Linkage

SUB, RET, CAL, TVMAK, XB

Subroutine linkage occurs at three points: the calling point, the

entry point, and the exit point. Swym has a macro for each point. Note

that for a given routine

routine, but the calling

s given routine.

the entry point and exit point occur within that

point occurs wherever some routine calls that

The basis of Swym subroutine linkage is a table of transfer vectors

which is always addressable via register S. This table contains the

address of each routine which can be called by any routine in another

module or by compiled functions. Entries in the table are created by the

TVMAK macro. TVMAK may also be used within a module to address routines
e
used only within that module.

Two conventions are assumed for subroutines. First, registers must

be saved by the calling program if it expects them to be saved. Second,

the entry point to a routine is the first byte of code and a base register

will contain that address during execution of the routine.

Three standard regis%ers are vital to subroutine linkage:

', S Swym base, base for transfer vectors

B base for all routines; must be loaded by calling routine

P push down list pointer.

nm SUB R=N&E=Nj?&P=p+~. This macro assembles subroutine entry

code. The parameters supplied should be identidal to the parameters

supplied for any corresponding RET macros. SUB must occur exactly

once and then only at the beginning of the subroutine it defines.

. The normal case has no parameters coded. If R=N# is coded, the

routine will not be recursive; that is, it will not push its return

address onto the stack. If EFN$ is coded, the subroutine name nm

will not be ENTRYted. In this case, no other module may refer to

the routine_,and a TVMAK for it must be included in its own module.

The P= parameter determines onto which push down list the return

address will be pushed. 2 must be a register name. If omitted,

the standard push down list pointed at by register P is used. b

must be a register name. It is the base register declared for

this routine. If omitted the standard base register B is assumed.

The standard case of no parameters generates:

USING nm_lb_

DC C'IlIU' supplied

ENTRY nm

nm BCTR L,O make odd so GC ignores

PUSH L, p'p

for debugging

If R=N# is coded, the last two lines are replaced by nm DS OH.

RET nm,R=NjZ&E=Nj?&P=p,B=&. This macro assembles subroutine exit code.

The s parameter must be the name on the nearest preceding SUB.

The other parameters must be the same as for that SUB. If'R=Np is

110

coded, the pushdown list is not popped and the return address is

assumed to be in register L. 2 is the register name of the push

down list pointer; if x is omitted, the standard push down pointer

register pointer P is assumed. h is assumed to be the name of the. .

base register of the current routine; if omitted, the standard base

register B is assumed. The standard case is with only s specified.

The code assembled is

_- B 1<$

If R=N$ is coded, the code is

BR L-C.

CAL nm,regs,Pq,B=.S=YES. This macro assembles subroutine calling

code. nm is the name of the routine to be called. It is also

possible to specify registers to be saved before the call and

restored afterward. The operand regs may be any name or sublist

acceptable to the PUSH and POP macros. e is the push down pointer

for the register saving; normally P is assumed. b, is the name of

the base register for the routine n= and for the current routine

(last SUB). If B=k is omitted, the standard base register B

is assumed. If S=mS is coded, no base register is loaded after

- return, the assumption being that the current routine is addressable.

via some preserved register. With S= omitted, the code generated

iS

PUSH regs,P=E if regs specified

L

L 5Ysel.f
t

pop regs, P* if rep;s specified

k is the label of the address'of routine g in the transfer

vector table, #self is the label of the address constant for the

current routine. The name self Gas the name on the most recent

SUB macro.

TVMAK Igll, nm2, . . ., nmn. This macro creates entries in the transfer

vector table. One entry is created for each element in the list.

_- The label on the entry is created by concatenating a W#r' on the

front of the first seven characters of nmi. If nmi is not defined

in the current assembly, it is EXTRN'ed. This decision is made
--.

on the basis of the type attribute of nmi. Care must be taken

that nmi is not the label on EQU. (That pseudo-op gives its label

the type attribute 'U'). The code generated for each entry is

EXTRN name if required

hme DC A(namel

XB rtn,&abeJ.. This macro is provided for jumping into the middle

of some other routine. Because this is considered evil, XB
.

generates an l@?OE statement which goes into the error listing.

XB does TwItt modify the stack; this.must be accomplished by RET

in rtn. The second argument may be omitted and the code generated

is:

L B, htn

B 8(B)

#rtn is the label of the transfer table entry for rtn.

Execution of rtn begins just after its SUB macro (which mu& not

specify R=N$). -

112

If the second argument is specified, label must appear somewhere

in rtn and rtn must be assembled in the current module. Control is

transferred to label in rtn by the code:

L B, #r-h . .

B label-rtn(B)-m

B.7. Control - Flow of Control

IF, THE& ELSE, ENDIF; AND, @RX, N$T; BCMAC, G#T@

There are three groups of control macros. IF, TEEN, ELSE, and

ENDIF must occur in that sequence; they avoid many user generated labels,--.

AND, #RX, and N@T may occur only between IF and THEN. BCMAC and G&C@

generate branch

unconditional.

The macros

they affect the

instruction; the former conditional, the latter

in the first two groups ignore any arguments. 1nstea.d

flow of control to the code between them. The primary

purpose of these macros clarify what code is executed under what

conditions.

The key to the flexibility of the IF-THEN-ELSE is BCMAC and thea

concept of predicate macros. A predicate macro calls on BCMAC to

assemble a conditional branch to a label depending on the context.

Predicate macros need not supply branch labels if they occur

between IF and Tm because BCMAC uses labels generated by the preceding

IF. Currently, the predicate macros are AT$M, NULL, EQ, and TESTB.

IF, THEN, ELSE, ENDIF. There are two forms: IF-THEN-ENDIF and

IF-TEEN-EISE-ENDIF. The expression IF-THEN-ELSE will mean-both.

113.

The first form may be represented

IF

THEN

predicate-part

true-part

ENDIF

The code generated is

predicate-part

EQU * (if #RX occured in predicate-part)

true-part

=EY EQU *
-=.

where x and y are unique four digit numbers, The IF macro generates

the labels THENx and ELSEy and stores them on an assembly-time global

stack. Predicate macros in the predicateipart simply test for the

falsehood of the predicate and branch to the ELSEy on top of the stack.

#RX and N$T in the predicate-part modify the action of BCMAC so that

the desired result is accomplished (see the descriptions of those

macros).

. The second form may be represented

IF

predicate-part

TEEN

true-part

ELSE

false-part

ENDIF

114

The code generated is

predicate-part

THENX EQU * appears only if #RX is in predicatepart

true-part . .

B DCNEZ

ELSEy EQU *

false-part

DONEz EQU *

where x, y, and z are unique four digit numbers. The label DONEz

is created by the EISE macro and stored atop the label stack.

IF-THEN-EISEys are permitted to nest (up to 60 levels). That is,

they may appear in either the true-part or the false-part. But

IF-THE%EISE is not permitted in the predicate-part.

A-m 0RJb N@. The second group of flow of control macros may appear

only in a predicate-part. They control the code generation in

BCMAC.

Np)T. This macro reverses the sense of any BCMAC occurring

e before the next AND, $RX, @T, or THJZN. Two N/dT's cancel eadh other.

While N@ is in force, BCWC makes tests for true and branches to the

ELSEy on top of the label stack.

j&X (not $R because IBM used it). This macro makes tests parallel.

It assembles the code

B THENx

ELSEy EQU *

Also it turns off any outstanding N$T, sets an indicator so that

THENx E&U * will appear, and creates an ELSEw (on the IF

label stack) for subsequent false tests to branch to.

AND. The only action by AND is to turn off any outstanding

N@. But use of AND makes explicit the fact that all sequential

tests must be met before the true-part is executed.

BCMAC TBR=tbr,FBR=fbr,TG&tgo,F#=fgo. This macro assembles one

branch conditional instruction. If either TG# or FG/d (or both)

is specified, BCMAC

operator for tgo is
--.

and tbr are assumed

tbr tgo

fbr fgo

assembles a branch to tgo, fgo or both. The

B o t h fbrtbr; the operator for fgo is fbr.

to exist. The code generated is

if only tgo exists

if only fgo exists

tbr *

1

if both tgo and fgo exist

B ZE

If neither tgo nor fgo exists, the BCMAC must occur in the predicate-

part of an IF-THEN-ELSE. If N#T. is not in force, the code generated

is

fly ELSEx

If Np)T is in force, the code generated is

tbr EESEx

G#l$ label. This macro assembles into a branch to label:

B label

B.8. Mist - Miscellaneous

CHTBL, SWEAR,

CHTBL loc{,what,where] . . .- -

may be repeated up to

INST4, GCRJT, FIXSJP

. (. . . indicates that *, what, where 'm-. .
127 times). This macro is intended for

creating character tables for the translate instruction (TR) and

the translate and test instruction (TRT). As such, lot is assumed

to be the address of a table. CHTBL then $RG*s into that table

required places. For example, a TRT toand puts

scan for

BLTBL

values at the

blanks might be written

DC 256x’oof

0RG BLTBL + C' '

DC x*01*

This scheme is documentary in that the $RG tells exactly where

something goes, while the DC tells what that something is.

Using CHTBL, the example might be written

BLTBL DC 256~~00’

. The

The

the

CRTBL BLTBL,l,C' '

name field is ignored in call on CRTRL.

lot field may be any expression. It will be assumed to be

beginning of a table 256 bytes long. The last instruction

generated is an

#RG 10~+256

That what field may be either a decimal number or an argument for

DC. In the first case, the macro generates DC FLl(what); in

the second case, DC what. The cases are distinguished because

a decimal nmber must be three or less characters and the general*

DC argument must be four or more.

The where field may be a (360 assembler) sub-list. Each element

of the sub-list may be either a single character or a non-relocatable

term. The latter must be more than one character. In the first

case the macro generates . .

j6RG loc+C*where*m -

While the non-relocatable term generates

0GR
The following

-- HEXTBL DC

loc+where- -

example illustrates all of the above

256x900*

CHTBL REXTBL,4,(A,B),4Xt4',C, lOAL1(8),C'O'

--.
will generate

HEXTBL DC

0GR

DC

0RG
DC

0GR
DC

0GR
DC

0GR

256x*00*

HEXTBIM'A

m1'4'

REXTBWC'B'

FLl'4'

HEXTBLtC'C'

4x*4'

BEXTBL+C'O'

10&l(8)

HIZXTBM~~~

Note that using a sub-list for where can lead to large object

module decks. (Each #RG forces a new output card image).

Note also that good documentation requires that each what - where

pair go on a separate continuation card.

118

SWEAR error-code. This macro generates a call on the STUTTER internal

routine: SWERROR. The error-code must be two characters. These

characters will be supplied as a character string to the error

routine: ERROR. The code generated is
._

LH ~,*8 load error-code in REG L

B SWERRj?R go to system error routine

DC C'error-code'

Note that SWERR@R is always addressable via register S.

INST4 m~rand. The purpose of this macro is to avoid the overly

cautious assembler's "ALIGNMENT ERROR" message. This is done

by assembling first the OP and Rl fields and then the Bl-Dl field.

The R2 field can not be used with this macro. Two forms are

possible: g present

DC SC r=d)

2 omitted

22 O

0RG *-2
. DC S(rand)

GCPUT type. . This is a special purpose macro for writing the garbage

collector. It is called to place a word in new core. For further

discussion see the routine GCPUT in Appendix E. The code generated

depends on type.

type omitted

BAL L,GCPuT

= R S Ttype

NR TT,N#TMl

L,GcPUrFVL

t5f-w =FuLL

L,GcPUTFuL

If some other type is coded , GCPUT assumes 'type omitted', but generates an

error message.
FIXUP &new. This is a special purpose macro for the garbage

collector. It makes an entry in the fixup table. & and new

must be regist<r names. Register p-& contains the address of a

word in old core which will eventually contain a correct new core

address. new contains a pointer to new core showing where to

put the eventual contents of Efi. Register FIXPTR points at the

fixup table; so the code generated is:

ST pt, O(FIXPTR)

ST new$+(FIXPTR)

LA FIXPTR,8(FIXPTR)

120

&endix C. READ Routines and Syntax

The READ routines convert a character string on an input medium into

an inter&l plex structure. The syntax is similar to the LISP 1.5 syntax.

The major innovation is the super-parenthesis. The parser guarantees that

all regular parentheses within a pair of super-parentheses will match.

Thesyntax is described in section C.l. A second section describes the

internal routines. (External routines are described in Appendix F.) Section

Cl3 details the variables

of the main READ routines

collected in Appendix J.

c.1. The Syntax

in CSSWYM used by the READ routines. Flow charts

are in the last section. All error codes are

Input expressions are punched free-form in the first 71 columns of the

input cards. Column 72 is used for the continuation as described in the

paragraph on (string). Columns 73-80 are ignored. Column 1 of one card

immediately follows column 71 of the preceeding card. Comments may be

included; the characters'_/' are ignored and terminate scanning of a card.

* A card with under bar - slashin the first two columns is printed, but

otherwise ignored. Allcharacters must be in the IBM 029 character code.

The BNF of the syntax appears in figure C.l. The highest non-terminal is

the s-expression, abbreviated (sexpr). The following paragraphs specify

the semantics of selected syntactic types.

(super list). The less-than and greater-than characters bracket a

(super list). When a greater-than is reached before all subordinate

structures are terminated, parentheses are created as required to

121

err”“--
___.-__. -

Figure C.1

(sexpr) ::= (list) \ (super list) 1 (atom>

(list) ::= (1 1 ((s-d (list tail)

(list tail) ::= (sexpd) 1 l (sexpr)) 1. .

bexpr > (list tail)

(super list) ::= < > 1 < (sexpr) (super list tail)

(super list tail) ::= (sexpr)> 1 . (sexpr) > 1

(sexpr) (super list tail)

Catom> ::= (symbol) I (string)

(symbol) ::= (letter) I (symbol) (alpha-num) 1

@ (char) 1 (symbol) @ (char)

(string) ::= (mm string) I - (mm string) 1

Z * (char string) * 1 XT (hex string) *I

W * (bit string)'

(mm string) ::= (nu,m) 1 (num string) (num>

(mm> ::= dew+lmm9

(char string) ::= (char) **I

(char string) (char) **

(hex string) ::= (hex digit> I

(hex digit) ::= (blank) 1 (mm)

(char string) (char)\

(hex string) (hex digit)

1 (hex letter)

(hex letter) ::= AjBjClDlElF

(bit string) ::= oIllO (bitstring) 1 1 (bit string)

(blank) (bitstring) 1 (bitstring) (blank)

122

(other letters) ::= GjH1IIJjKILlMlNlOlplQIR\SITIUIVIWIX\YIZ

(letter) ::= (hex letter) I (other l‘;?tters)

(alpha-nun) ::= (hex digit) 1 (other letters)

r (char) ::= (alpha-mm) 1 •l~l~l~l~l~l~l+lll~l~l
~1/(4617(:~#~~~~~!~028~*l=l,I(blank)

&I, ’ I0

close all strwtwes. When all iq$erqsJ. struictures a~c4 q&as& and

an extra right parentiesis is enoountered 9~ where a greater-than is

expected -- oharacters are discarded until the matehiw grS;qterTthan

is found, As

discarded, so

3ust the next

1 'NIV),

(lQ3t tail). Note

dotted pair, This syntax reflects the tlgeneral s-expressio$ form as

will be seen from the flow @art,, whole str!&ures are

that the matching greater-than is found rather than

greater-than, (For exa&?le, 'S)AGo>()> $rs parsed as

that a degeqerate faw of the {J.i&) is t.he &ISP 1.5

supported by most LISP read routines,

[smbol) q --'*This is parsed into a t-e 0 atom, If a type: 0 atom with the

same string exists on the OBLIST, a pointer to that existing atom is

returned; otherwise, a new atom is created, NCote that I@! preceding

any character causes that character to be treated as a letter9 Only

one character, the seoond, is stored in the preated print name, For

example, the (sexpr) @@ returns a pointer to the spbo?_ atom with the

one character print name W. This atom 4Q.ready fqSt&e,

Cstsing). Arbitrary string atom@ may be input,, Both (hex string)% and

.

(bit string>% are converted into hex string type string atom intern-, .

&i&r, Numbers are currently always four bytes, but the other two

qlasses may be up to 215 -1 bytes. Hex strings are filled with aeroe43

from the right to make an integral nwber of' Qtesq FSoa$in~ point

numbers are not defined so there is no aat arpblguity prob$emj ho~everd

this problem oould be solved with F'Ttq $.

124

Any string within quotation marks may be continued from one

card to the next. Column one of the second card immediately follows

column 71 of the preceding card. In this case, column 72 must contain

a dash ('-'). Otherwise, column 72 must be blank. This convention

was adopted from CBL in order to attack the quote mismatch recovery

problem. This problem occurs if there is a missing or extra quote

mark. Thereafter, everything which looks like it should be in quotes is

outside and vice-versa. There is sufficient redundancy in the Stutter

syntax for recovery at some later point. Because there was insufficient

experience with thelanguage to have a feeling for reasonable recovery

heuristics, the mismatched quote problem was not attacked other than to

specify what should be an adequate syntax.

(blank). The general rule is that blanks may appear where they do no

harm. They are only required to separate the strings representing

symbol atoms. Blanks may appear between any two elements of the (list),

(list tail), (super list), and (super list tail). More than one

blank will be treated as a single blank except inside a (char string).
e

Blanks may also appear within the quotes for (hex string) and (bit

string).

(char).: In flow charts, two special characters are used: ',J represents

a single blank; ',-,' represents underbar.

125

C.2. Internal Routines

The routines described in this section are service routines available

only within the read package. The routines available through the stutter

interpreter are described in Appendix 9. The entire CSREAD control section

is reentrant. All temporary storage is in CSSWYM.

All read routines make use of three global bytes: RDSTAT, RDCHAR, and

RDCLASS . These are described in Section C.3.

The get-a-character routine, GETCH, puts a single character into

.. RDCHAR and puts the class of that character into RDCLASS. The class of a

character is a number chosen to simplify distinctions like nIs this

character possibly the first character of an atom?" The classes and their

members are in figure C.2. RDCHAR can be set and tested by a STUTTER

program with the functions STIVCCH and IVCCH. This can be important

because the general rule is that the read routines interpret the

character in RDCHAR and then read another character for the next routine

to interpret.

The RDSTAT byte is composed of eight status bits. They are used to

communicate between the various routines. One of these bits may be manip-

a ulated by a stutter program as an internal variable (STIVQMO, IQMO). The

defined bits are described in figure C.3.

The symbol NOCARDS also bears explanation. It is the address branched

to when the input file is exhausted. The routine there provides for

orderly termination of the job.

The remainder of this section is a discussion of each of the internal

read routines:

class

0

4 .

8

12

16

20

24

28

32

36

members

091

2,3,4,5,6,7

899

w,C,w,F

G,H, . . . 2, @

-.e.

(6

blank

.

1 1’

.’ ’

.

*

Figure C.2

comments

I’ 1 bit string

octal string

number

1 hex string

alphanumeric

atom start

list start

dot

list terminator

40 all other keypunch characters

All non-keypunch characters are in class 255. They cause an error and

are converted to blank before being processed.

127

seton setoff

QUOMON QUOMOFF

NEGNON

GJFND

SKIPMON

--.
NEGNOFF

GJINFND

SKIPMOFF

Figure C.3

on:
. .

off:

on:

on:

on:

interpretation

GETCH passes each character in

turn. '2 must appear in column

72.

if last char was blank., GETCH scans

for non-blank. Column 72 must be

blank. '-1' in two columns means

ignore those characters and the

rest of the card,

detected -(num string) construct

(used in RDAT)

GETOBJ found the symbol atom

already on the OBLIST, RBAT

releases any new storage

allocated,

skipping to find right super-

paren. Used by RDSE when skipp-

ing to avoid recursive RO error

messages.

A bit is set on with the instruction

01 RDSTAT,seton

The sam& bit is set off with the instruction

NI RDSTAT,setoff

128

. .
error routines

RDERR, RDERRCNT
character fetching

GETCH . .

string construction

PBOPEN, PUTBYTE, PBCIOSE

recursive parser

RDSE, RDLIST, RDAT

RDERR. This routine prints a two byte error code. The code must be

in the right half of register Al on entry. RDERR also prints a pointer

indicating the last character scanned.--.

RDERRCNT. This routine prints a read error message by using RDERR.

RDERRCNT's second argument is a number in A2. This number is printed

at the far right of the RDERR message.

GETCH. This routine GETS one character from the current input card

and puts it in RDCBAR; its class is put in RDCLASS. GETCH reads a

new card when required and maintains two pointers - one to the current

character, the other to the end of the card. Initially, both pointers

.
are zero to force the reading of the first card. GETCH converts

strings of blanks to a single blank by ignoring blanks if RDCHAR (the

last character read) is blank. Illegal characters (not on keypunch)

are converted to blanks. When quote mode (QUOMO) is on, all blanks

are sent to the calling routine. The '-!, terminates scanning of a

card unless QUOMO is on, in which case both characters are passed to

successive GETCHes.

129

\ , .

l?BOPEN,PUTBYTE,PBCIDSE. While RDAT is scanning a character string, no

TAK2's are performed. The character string for the atom name is

constructed directly on top of free storage. PUTBYTE takes one

character from register Al and stores it in the next position in the. .

new string. PBOPEN initializes the process. Its argument is a full

work in Al which is stored at the beginning of the string as its atom

head. PBCIDSE terminates the process and stores the length of the

string into the atom head. PBCIDSE returns a pointer to the new

string atom. PUTBYTE must provide for exhaustion of free storage.

When this occurs, the temporary string is converted to a bona fide

string atom and a pointer to it is put on the stack. The garbage--.

collector is called. On return, the temporary string is copied to

the top of free-storage and PUTBYTE'ing continues. PBOPEN saves the

address of the atom head in PBHD. If a type 0 atom is being created

and GETOBJ finds an old instance of an atom with the given print

name, storage allocated for the new print name is recovered. The

free storage pointer is simply reset from PBHD.

RDSE. This routine has no arguments. It scans the input string for

an s-expression and returns a pointer to that expression. RDCHARisa

assumed to contain a legal character for the start of an s-expression,

otherwise characters are skipped (and an error message is printed)

until a legal character is found. RDSE checks to see if the string is

an atom, a list, or a super list. In the first case it calls RDAT to

read the atom. In the other two cases, it calls RDLIST to read the

list. RDSE has the function of destroying structures if a right super

parenis not found. It also prints the error message indicating how

many parentheses were created. No parentheses are actually created;

130

the number is simply a count incremented as RDLIST exits each level of

recursion for a missing right parenthesis. Normally, this count will

be 1. That is, RDLIST did not find one right parenthesis before a

right super-paren. . .
. - .

RDLIST. This routine has no arguments. It scans the input string and

takes one list off the front. On entry, RDCHAR must contain either

' *(* or *Ct. RDLIST calls RDSE to read each element of the list.

RSLIST terminates when it finds either) or >. The former it changes

to blank so no other routine reads it. The latter it leaves in RDCHAR

so the next higher level can process it. In the latter case, a count

is incremented' indicating that one parenthesis was created. While

creating the structure for a list, RDLIST maintains two pointers, one

to the beginning of the list, the other to the end of the list. After

each element is parsed, a dotted pair is created of that element and

NIL. Then a RST pointer to that new pair is stored in place of the

NIL at the current end of the list. In this limited context, the

operation RPLR (not a macro) works because a RST pointer always exists

to be replaced.
-

RDAT. This routine scans the input string and takes the characters

for one atom off the front of the string. It returns a pointer to

: that atom. The atom may be either a (symbol) or one of the (string)

types as indicated in the syntax. A numeric character or dash in

RDCHAR at the start of RUT causes a branch to RANSCN. This routine

scans a number and creates a number atom. Currently, the number must

fit in eight digits because that is the size of the internal buffer

6 used. An alphabetic character may be the start of either a symbol or

some quoted string. The latter is distinguished by the quote following

the alphabetic character. Quoted strings are scanned by RABITS which

in turn passes control to RABX, RABW, or RABZ for hexadecimal, bit, and

character strings respectively. After a string atom is created for the

print name of a symbol atom, GETOBJ.+is called. GETOBJ either finds the

old atom with the same print name, or makes a new symbol atom using

the new character string atom as the print name. In the former case,
.

storage for the new string atom is recovered.
r

c.3. CSSWYM Fields Used by READ Routines

RDCOL, RDENB, RDLNG. These fields control the scanning of the card by

GETCH. RDCOL contains the address of the last character read, the-=.

character now in RDCHAR. RDEND points at the last character to be

read from the card. RDLNG contains the number of characters to be

read from a card. Normally, RDIK is 71 because the continuation

character is

RDCHAi, RDCLASS.

recent input

in col~lln 72.

These one byte fields contain respectively the most

character and its class. The class of a character is

illustrated in figure C.2.

RDSTAT. This byte contains bits representing the state of the read

routines. These bits are detailed in figure C.3.

RDERMS, RDERNO, RDERIDC, RBERCT. These fields form the line printed

for READ errors generated by RDERR and RDERRCNT. RDERMS is the

address of the string passed to PUTSTR. RDERNO is the error number

(the argument to RDERR). RDERIDC is the field beneath the card image

and is set up with a single pointer (*CT) to the last character

scanned (character in RDCHAR). RDERCNT! is used by RDERRCNT to store

the number of parentheses created for error R2.

132

RDSUPCTR. This field accumulates the number of parentheses created

before a right super-parenthesis. It is incremented each time RDSE

exits due to finding a 9' instead of a ')' at the end of a list.

When recursion returns to a level of RDSE looking for '>', RDSUPCTR

contains one more than the number of parenthesescreated. RDSUPCTR

is zeroed both before and after reading a list bounded by super-

% parenthesis.

ATAMT.
.

This half-word contains the atom offset. Atom pointers

point [the quantity in ATAMTjbytes in front of the atom they

reference.

PBHD. While PUTBYTE is being used to create a character string

atom on top of.free storage, register F points at the location to

store the next byte. PBHD contains the contents of F before PBOPEN

was called. PBBD - ATAMT will be the address of the created

character string atom.

133

r -

,

C.4. Flow Charts

Flow charts are included in this section as the most concise means of

describing the parsing algorithm in complete detail. The parser is

to the parsers compiled by Cogent. The syntax is designed so there

similar

is

never any ambiguity in the string. That is, from the current location in

the program and the next incoming character, it is always possible to decide

the type of the forthcoming input construct. Then the appropriate routine

is called to handle the indicated type.

134

Yes

r-lfind class
of next
char

1 I
I

CHAR cnextr-lchar. CLASS +
class

A

use OS
to get nex

print Yes

+

line
empty

no

print0currentline

0print card
6B

135

Yes

save v
to retrRDCH

alue-Jurn

Y parens
created +O

\of RDLISTJ

136

I
I

A
no

no. parens

current-list
c(value ofL-JFCDSE . NIL)

A

place value of RDSE r-
YesI!3RDCHAR +

1 I.
u-

no

I A I

Yes
I

store value of RDSE
) as final RST of

current list

137

4 no

J no

c&lABEND

1
open0PUTBYTE

I 6PUTBYTE

. .

Yes

4RDCHAR= n o
'@'?

6F'UTBYTE
-0GETCH 6RETURN atom

138

l . . put digit
in buffer

GETCH
I I

bA< 9 digits >zd

pack
BUFFER

/ RDERR \ 1
1

- YJ STAKN. s
lmvo words

convert buffer
to binary and
store in new

block

1
store atom
head for

number atom1

139

7RABDUN

no

I
/AWUAR

. .

4

I no

I 1

convert to

0RDERR
('R8')

.

blank out
quote

conve2-t to
hex digit

I 'In0 I Yes I

140

. .

.
--

141

.” :,

Appendix D. OVAL and the Stutter Interpreter

To facilitate experimentation with Swym, an interpreter for the eval-

uation of functions was provided. These functions are written in a language

called Stutter, similar to LISP 1.5, but without PEW.

The interpreter is essentially the routine MAIN.

for a Stutter run9 MAIN is given control. MAIN can be

main () = begin

A: print (eval (read()));

terpri ();

--. goto A

end

When Swym is loaded

described by:

(But note that Stutter does not currently have goto or assignment state-

ments.) Thus, the interpreter repeatedly reads an expression, evaluates it,

and prints the value. MAIN as implemented in assembly language also prints

numbers between reading the expression and printing the value. The first is

the time to read the expression, the second is the time to evaluate that

expression. Both times are hundredths of a second. RIZAD is described in

- Appendix C. PRINT and TERPRI are described in Appendix F. EVAL is described

below. The routine ERROR exits to the loop in MAIN, so that interpretation

can continue with the next expression. Succeeding sections of this appendix

describe Stutter function definition, Stutter variable binding, and the

individual internal interpreter routines.

D.1 Defining Functions to the Interpreter

There are four varieties of functions in Stutter, just as in LISP 1.5:

SUBR, FSUBR, EXPR, FEXPR. -SUER's are machine language routines, executed

142

by the machine. EXFWs are s-expressions executed interpretively by EVAL.

The arguments for SUM's and EXPR's are EVALuated before the function is

called. FSUB,R's and EptpR's are the same as SUBR's and EXPR's, except their

arguments are not EVALuated. Instead, a list of the unevaluated arguments is

passed as the single argument to an FSUBR or an FEXPR.

Functions are stored on the property lists of symbol atoms. The indi-

catorused is the type of function. The value is either a pointer to a

piece of code (SUBR's and FSUBR's) or a pointer at an s-expression (EXPR's-

and FEXPR's). These values can be stored, referenced, or modified using

PUTPROP, GET, and REMPROP. To save property list searching time and storage
-=.

space, a function definition for a symbol atom is stored in that atom's value

cell. See the discussion of BINDERY in section D.3.

The format for an EXPR or FEXPR s-expression is different than that for

Lisp 1.5. The expression should be a list of the form,

where:

. vl is a list of xariables. These are bound to the arguments of the

function as discussed in the next section.

exPi is an expression

each expi is evaluated until the atom at at the end is reached.

Normally 2 is 1 and at isNIL so that a function definition looks like

(s exp)[corresponding to the LISP 1.5: (LAMBDA vJ, exp)}

at this is the atom at the end of the list of expressions. If z

is NIL1 the value of expn is returned. Otherwise, the EVAL value of

at is returned. d

143

TWO problems with a common solution exist in Stutter and in many

implementations of LISP. First, a pointer at a

of a SUBR property -- is not distinguished from

This leads to either errors or special handling

piece of code -- the value

a pointer at an s-expression.

in routines that accept

arbitrary list structure as input, ego PRINT. The second problem is the

impossibility of compiling a function stored under a special indicator.

Suppose the atoms of some class have, as one property, the indicator PROCESS

whose value is a functions If the value is an s-expression, this code

applies the appropriate-function to one such atom,

--. ((GET x (QDCTE mc~ss)) x)

This works because EVAL assumes that the FST will EVALuate to a function.

But the only way code can be

SUBR or FSUBR. The solution

atom type: the code atom.

executed is to be stored under the indicator

to both these problems is to create a third

Such an atom would indicate the location of the

code and its length. It might contain garbage collection information such as

relocatability and a list of pointers referenced by the routine. The atom

might also contain information about whether the arguments should be evaluated.a

' D.2 Stutter Variable Binding

I Two kinds of variable binding are used in Stutter. SUBR's and FSUBR's

receive their arguments in registers Al, A.2, . . . A6. Thus no SUBR may have

more than six arguments. (FSUBR's always have exactly one argument.)

Assembled routines may generally use the registers and the stack as temp-

orary storage, as long as they obey the restrictions of Appendices I and A.2.

The value of a SUBR or FSUBR is returned in Al.

144

ZXPR's and FEXPR's are lists whose first element must be a list of symbol

atoms (called v& xariable &ist, above). There must be exactly as many

atoms in the list as arguments in the function call. The arguments of the

function are stored in the value cells of the listed symbol atoms. The. .

previous contents of the value cells are stored in a stack-block type 1 as

described in Appendix A.2. When EVAL is called with a single symbol atom

as its argument 9 the value returned is the value in that symbol's value cell.

Thus, sub-expressions are EVALuated using the appropriate values for symbol
r

Using the value cell mechanism there is no simple method of establish-

ing any particular environment that existed at some higher level (for example,x.

that existed'whenafunction was passed as an argument). That would be

dynamic variable binding. Stutter variable bindings are static; that is,

every variable has its most recent binding time-wise, regardless of when a

function was passed as an argument. This affects free variables of passed

functions and their sub-functions.

D.3 SLtutter, ~,~cqlx~r~zv~~r ,Internal Routines

e Six routines are basic to the Stutter interpreter: MAIN, EWXL, EVLIS,

EVGET, BINDERY, UNBIND. They are all assembly language routines. With the

exception of ENAL, they are not available to the Stutter programmer.

This routine is the central loop of the interpreter. It was described

above.

145

EvAIt.

This routine has one argument, an s-expression. The expression is

evaluated in terms of the current environment (bindings of variables). A

complete description of the action of EVIL is in figure D.1. EVA& like all

Stutter functions, returns its value in register AL In D& spbolp(,)

is a predicate true when 2 is a symbol atom. The other functions are

described further on in this appendix. WNBND points at a special atom. It

is the contents of the value cell of any unbound atom (if there is no function

definition in the value cell.) EXAL' signals an error when an unbound atom is

IWUuated. EV' should also test for the value cell containing a functionI.

definition and signal the same‘ error. Currently, though, this latter test is

not made. EXAL handles correctly the evaluation of an atom whose value is non-

relocatable, i.e., a number. The value is converted into a numeric type 1 atom.

This makes possible communication between the interpreter and fast arithmetic

functions using the value cell simply to hold a number.

When the fst of EVAL's argument is non-atomic and evaluates to a non-

atomic expression, that expression is treated as though it were an FEXEL-

That is, its arguments are not evaluated. However, the variable list for that

expression must have as many atoms as EVAL's argument has rst's because of

the tiay the call on BINDERY is reached. This permits the expression to have

some control over the evaluation of its arguments. The most serious problem

is the inconsistency of this feature with the rest of the language.

EVLIS.

This routine has one argument, a list of s-expressions. It&value is

146

a list of the EVAL values of those s-expressions. EVLIS simply applies EVAL

to each member of its argument list and creates a list of the values. The

length of the list is computed and a nnmpact list of taat length is allocated.

Successive values are stored in that list.

It is now realized that using free storage to return the value of EVLIS

is just as flagrantly wasteful of space as an a-list would have been. The

appropriate correction is to have EVLIS place values on the stack. They would

then be taken off the stack by BINDERY. Since BINDERY must put information

on the stack, the best solution is the combination of EVLIS and BINDERY into

a single function.--.This function would create a BINDERY type stack block and

store the neti values of the atoms in it. When all arguments were EVALuated,

the values would be swapped between the stack and the value cells of the atoms.

Note that the call of EVLIS at the label EVSUBR in EVAL must be replaced with

code, probably in-line, that stores new values in the stack and then places

them in the registers.

EVGET.

e This function gets the function definition of a symbol atom from that

\ atom's value cell or property list. This is a non-standard function in that

its-argument is passed on the stack. The value is returned in Al. EVGET also

stores the previous contents of Al on the stack to avoid repeating that store

in several places in EVAL. EVGET first checks the CELVAL bit in the atom head.

If that bit is off, the contents of the value cell are the function definition

for the atom. If CELVAL is on, EVGET finds out (by indexing VFPROPS with the

CELFNC bits) the type of function definition: SUBR, FSUE!R, EXPR, or FEXPR.

147

GET is called to find the function definition on the property list.

BINDERY.

This function has two arguments; a list of values, and a list of symbol

atoms. The result is to store each value in the value cell of the corres-

ponding atom. When EVAL subsequently evaluates one of these atoms, it

retrieves the new value. The old values of the atoms are stored in a plex

on the stack (stack plex type 1 -- ses Appendix A.2). This stack plex must

later be popped off the stack by a call on UNBIND.

Information is left on the stack after BINDERY exits. This leads to the

stringent requirement that BINDERY may not itself use temporary storage onx.

the stack, nor my the calling' routine. BINDERY does all its computation in

the general registers. When EVAL calls BINDERY, a pointer to EVAL's argu-

ment is in register A3. BINDERY must not affect this register.

Because BINDERY cannot call functions, it cannot bind a symbol atom having

a function definition in the value cell. The function definition would have to

be put on the property list, which would require storage allocation and

possibly garbage collection. Consequently, BINDERY causes error BI when a

yalue cell contains a function definition. The simplest solution to this

problem is to not store function definitions in the value cell. This would

increase property list searching time, but would save a great deal of messy

bit pushing. A second solution would be to always store function definitions

on the property list and to store them in the value cell until the atom is

bound to some value.

UNBIND.

This function pops off the stack a plex stored on the stack by BINDERY.*

148

Note that UNBIND must be called when the BINDERY plex is at the top of

the stack, or disaster will occur* UNBIND may not use any storage on the

stack, nor may it affect register Al.

-.
Figure D.1

eval (a) = begin list x9 y;
if atom (a) then-m

if symbolp (a) then

if cell (a) = VUNBND then error (El)

else return (cell (a))

else return (a). .

else if-, atom (fst (a)) then begin-s

x: = eval (fst (a));

if1 atom (x) then begin

comment assume x is s-expression for an FEXPR w/ multiple arguments;

Y: = rst (a); goto EVENBD;

end

end else x: = fst (a);

X := get (x, { SUBR, FSUBR, EXPR, or FEXPR depending on bits in atom head]);-

goto {EVSUBR, EVFSUBR, EVEXPR, or EVFEXFR depending on bits in atom head];

EW3JBR: y : = evlis (rst (a));.

{place elements of y into registers Al to A6];

return ({execute routine pointed at by x]);

msuBR: {put rst (a) into register Al);

return ([execute routine pointed at by x]);

EVEXPR: y := evlis (rst (a));

149

EVEMQD: bindery (y, fst (x)); x := rst (x);

EVELP: if atom (x) then begin

x :s;: eval(x); unbind (); return (x)

end; . .

Y := fst (x) ; x := rst (x);

if null (x) then begin-m

X := eval (y); unbind(); return (x)

end;

-uYh

got0 EVISLP;

l3WEXPR: bindery(list (rst (a)), fst (x));

X i= rst (x);

got0 EVEzl?

end eval

150

.

Appendix E. Swym Garbage Collector

One of the important goals of Swym was the development of a list compact-

ing garbage collector. This appendix explains that collector in great detail.

Section III.2 contains a simple version of the collector explaining the basic

concept. The first section of this Appendix describes the heart of the collector

in a higher level language. The second section describes the internal garbage

collector routines (i.e., those not available to the STUTTER program). The

last section describes those portions. of CSSWYM used by the garbage collector.

151

E.l. The Complete Garbage Collector Algorithm

The simple garbage collector in III.2 is inadequate for ma& common list

structures: circular lists, several lists with the same rst, a structure which

is an element of more than one list, and-more pathological cases., The

implemented garbage collector handles all possible cases with marking bits and

a fixup table.

Two marking bits are associated with each list word, Each pass s&s a

marking bit to indicate it has visited a given word. The first pass sets

bit I&, the second sets g. Special action must be taken when a marked word

is encountered, because that word is already being processed at some other level

of recursion. A word with g set always contains the address of the corres-

ponding word in the new core image.

Several functions set and test the marking bits:

I%JmKl (;I The word pointed at by l is marked with m&

* MARKu (w) The word pointed at by 2 is marked with both

UNMARKl (z) & is turned off in the word pointed at by >

Ml (w> This predicate is true if & is on in the word

pointed at by x*

This predicate is true if g is on in the word

pointed at by 2.

Conceptually, each of these functions tests its argument to see if it points

at an atom and adjusts the addressing appropriately. In practice it is known

a priori whether the argument is an atom, and a bit macro (see B.5) is coded

instead of a function call.

152

In circular structures, a word points at some structure already being

collected at some higher level of recursion (& is set, but not m2). That

word cannot be written correctly to the new core image because its contents

are not determined. In most reasonable applications, the number of such

circularities is well below one percent of the number of pointers. Nonethe-

less, some provision must be made to handle this case; in Swym, the garbage

collector uses a fixup table. When the correct new contents of a word cannot

be determined, a word of zeros is written to the new core and an entry is made

in the fixup table. Each entry is two pointers. The first points at the word

of zeros in the new core; the second points at the word in old core which will

eventually contain the correct address to substitute for the word of zeros.

After COLLECT is finished, the second pointer of each fixup entry is replaced

by the contents of the word it points at. Then, after the new core image has

been read in, the fixups are applied; i.e., the second word of the entry is

'or'ed into the location indicated by the first word of the entry. 0-he 'or'ing

permits the word of zeros to have the rst bit on if required. The fixup procedure

thus works for both fst and rst fixups.)

One additional function must be defined to describe the complete garbage

collector (others are defined in 111.2):

FIxuP (29 2) The word 2 (either zero or r&bit) is GCPUT to the

. new core. An entry is made in the fixup table consisting

of the address returned by GCPUT and the pointer &

153

The function ATCOL defined in section III.2 must be extended. When ATCOL

is entered, the ml is set in the plexhead. After collecting the atom, both

marking bits are set. Since COLLECT may be called for some sub-structure of

an atom, provision is made for a pointer at an atom with g and not g (a
-.

fixup entry is generated).

The complete garbage collector is given in Figure E.1. The argument 2

must be a pointer at list structure with neither marking bit on. COLIXCT

has no value, but the new-core address of the list corresponding to 2 is

stored in place of the pointer to f&(E). A demonstration that this algorithm

creates a correct representation of its argument is given in Appendix L. The

UNMARKl(;) and the boolean variable m are related. The former indicates the
-m.

need for a fixup in the rst direction; the latter detects this need in the

second pass. In Figure E.l,.the marking bits are assumed to be associated

with each word, but not part of the word. This association could be by extra

bits in the hardware or by a bit table in a separate area of memory. The

former requires hardware modification, while the latter requires six percent

more memory. In the implemented system, the marking bits are in the list words

themselves, as shown in Figure 2. Figure E.1 must be modified for these bit

assignments by turning off the marking
.
replacing

with

t := rst(r)

bits in the arguments to GCPUT and

if Ml(r+4) then t := r+4 else t := r&(r).

Figure E.2 illustrates effect of COLLECT on a complex structure.

154

Figure II.1

Swym Garbage Collection Algorithm

COI&EXT (x) = begin list r, t; Boolean m;

r&bitword := x'00000001';
. .

r := x;

chkloop: comment loop to collect each fst;

t := fst (r); .MARKl (r);

if atom (t) then ATCOL (t) else ifa (t) then COLLECT (t);- - -v

-comment test for end of list or reached marked word;

-t := rst (r);

if atom (t) then ATCOL (t)- -

else if M2 (t) then- -

else if Ml (t) then UNMARKl (r)- -

else begin r := t; goto chkloop end;

r := x;

wrloop: comment loop to write out each new fst:
-’

m := Ml (r); t := fst (r);

rplf (r, if atom (t) then- -
-

if M2 (t) then GCPUT

else if M!2 (t) then GCPUI!- -

I MARK12 (r);

comment test for end of second pass;

t := rst (r);

if atom (t) then-m

(HD (t)) else FIXUP (t, 0)

(fst (t))else FIXUP (t, 0));

if M!2 (t) then GCPUT (HD (t) v rstbit)

else FlfnrP (t, rstbit)

else if M2 (t) then GCPUT (fst (t) v rstbit)- -

else if m then begin r := t;- - goto wrloop end
PAGE 155

I

Figure &l Continued

else FOCUS (t, rstbit)

collectend

Figure E.2

x:

At wrloop on the highest level:

Old Memory

x:

Fixup Table

\ ‘\
0

\
0

\ 0
\ \ 0

New Memorv

157

Figure E.2 (Con?)

At exit from COLLECT:

Old Memory

x:

. .

F ixup Table

\
--.

---a l

t
0

�\ ---.

4 \
- - -

\
\

I t

i 1
--r--T-- I

1
/- 4-’

New Memory

I
I
I
I
I
I
I
I
I

/

Final structure after-reading new core image and atxduinn fiutmc.

s t r u c t u r e : 1~

158

E.2 Garbage Collector Internal Routines

The interface between all other routines and the garbage collector

is the routine CC. It receives control when TAK2 or some other routine

detects insufficient memory, or it may be called explicitly from a

Stutter program. GC controls the garbage collection process and prints

statistics. CC, ATCOL, COW, and COLLECT are called with the standard

CALmacro. CHOKE, GCABEND, and GCPUT are routines with special calling

sequences.

Routines written to garbage collect newly created atom types must.-

be made part of the routine ATCOL. The description of that routine

includes information on inserting new atom collection routines. But
x.

all the information in section E.3 should be understood before coding

special atom collection routines.

Gc This is the executive portion of the garbage collector.

Its major functions are outlined in Figure E.3. Pointers at,

OBLIST, CHAROBS, NIL, FPROPS, and *UNBOUND* are put on the

stack so the corresponding information will be garbage collected.

Since the OBLIST points at all symbol atoms, both they and their

property lists will be collected.

The current implementation does not use temporary storage

- for garbage collection; instead, the data structures are moved

between two areas of memeory. The 'switch memories' action in

Figure E.3 is merely the swapping of pointers so GCPUT will store

the new structures into the currently non-active free-storage area.

In an implementation using temporary storage, the temporary data

set would have to be initialized. Similarly, the step 'apply

fixups' would have to be preceded by 'read in new core image'.

159

Figure E.3

4 . .
Note
Time

r-lSwitch
Memories

l

Print
Statistics

,

160

The following statistics are printed, all on a single line:

length of active pdl (stack)

number of bytes of active free storage

time at start of garbage collection (100 ths/sec)

time at end of garbage collection (100 ths/sec) (times are

since last starting the READ in the MAIN loop)

total time for garbage collection (100 ths/sec)

C@LIECT. This routine has been described in detail in section E.l.

.- The argument (in Al) to C@&ECT is a pointer at an unmarked list.

C@XECT has no result, but the fst of the argument points at the

representationof that list in the new core.

ATC#L. This routine garbage collects one atom and writes a rep-

resentation of that atom to the new core image. The argument

(in Al) must be a pointer at an unmarked atom. The result is that

the head of the atom is replaced by the new-core address of that

atom. The main routine of ATC@L simply abstracts the type field

from the atom head and branches to the appropriate routine for that

atom type. Currently, there are routines for symbol atoms and

bit string atoms. Adding a new routine is done by putting the

address of the routine into the branch table (ATCBTBL). If more

- than eight atom types are implemented, the table can be extended

by increasing the nuMber of bits masked from the type field. The

individual processing routines should branch to ATCXIT a.fter completely

collecting the atom. The individual routines are responsible for

replacing the atom head with the new core address of the atom.

161

ATCO. This is the part of ATC@L for collecting symbol (type 0)

atoms. For such atoms, the atom head and the atom cell must

immediately precede the property list. To achieve this, the routine

processes the property list with a loop similar to the first loop

in collect. Thus all pointers in the property list are marked

with ml and all elements of the list are collected. Then ATCO

collects the contents of the atom cell (if they are relocatable).

Finally, ATCO writes the atom head and the new atom cell to the new

core; then it transfers to the WRL@$P portion of C&LECT to finish

writing out the property list.

qh. The-argument to C!@IECT must not be marked and must not

be an atom. The argument to C@X may be marked or unmarked, atomic

or not, But if marked, the structure must have both bits on. If

its argument is unmarked, @LX calls C&LECT or ATC#L as required.

The result of @IX is a pointer at the new core representation of

@IX% argument. C&X% can be used by atom collection routines

if it is certain that its argument will never satisfy

(mm) A 1 em l

CH@E. If, following a garbage collection, insufficient free

storage is available, then this routine should be entered. It is

in the CSSWYM control section and can be entered simply with

B CHOKE

or

BC nn,CHOKE

CHOKE simply ABEND's with the user completion code 20.

1 :

’

‘,

GCABEND. If the garbage collector detects an error in the data

structure construction, it

errors. AcallonGCABEND

BALLyGCABEND

ABEND's immediately to avoid propagating

is

This routine constructs a completion code based on the displacement

of the BAL from the beginning of the current routine. The contents

of register 1 are stored in register L, and the ABEND is issued.

The current completion codes and their significance are listed in

Appendix J.

GCPUT. This routine is called by the GCPUT macro (section B.8).

It is called by that macro with either

or

This routine must be changed if SWYM is to use temporary storage

during garbage collection.(Note: The comments about #MU42 in the next

section).

ATCl. This portion of ATC#L collects bit string atoms. Since

such atoms contain no relocatable information, ATCl simply writes

a new atom head and copies the string into the new core. The

subtypes of type 1 atoms are designed so that the garbage collector

: need not distinguish among them. The length field always indicates

a length in bytes and the garbage collector always transfers the

integral number of words necessary to transfer all the bytes.

E.3 Information stored in CSSWYM

MEMUSE, MEMNXT. These two words contain the addresses of the two

memories used alternately as free storage. On entry to CC, the

two fields are swapped and the newcontents of MFNUSE are the

initial destination for words stored by GCPUT.

MEMSIZ. This word contains the number to be added to MEMUSE to

compute the new FEND.

FEND. This word contains the address of the next to last word to

be stored into by TAK2. When this word or the succeeding word is stored,

TAE calls G-C. FEND is also used by PB#PEYN, PUTBYTE, and STAKN to

check for the end of the free storage area*

GCTIMEl. GC saves the TTIME time on entry and uses it to compute

the total garbage collection time before exitting. This total is

printed in the garbage collector statistics line.

GCABAD. This word is used by GCABEND to create a completion code

for ABEND. Because the high order bit is on, ABEND calls for a
-

dump.

#w. This word is used by GCPUT to put the Ml and M2 bits on

the address word it returns. #KIM2 must be in CSSWYM because B

may have different values when GCPUT is called.

164

Appendix F. Stutter Functions

This appendix details all functions available to the Stutter

programmer. They are represented in initial free storage by atoms

with the property SUBR or FSUBR. For each routine there is a description

of the inputs, the value of the function, and the internal code involved.

Three routines are described in more detail in separate appendices: GC,

EVAL, and READ.

Internally, a Stutter function cannot be distinguished from a

Swym system function. Specifically, all Stutter functions can be called

internally with ihe standard CAL macro. The name of the function is

the same to the CAL macro as to the Stutter program. (Note that a few

functions - like RST and FST - are also available as macros. Although

they can be called with CAL, it is clearer and faster to use the macro

form.) Arguments to these functions are passed in registers Al, A2, .*. A6.

The value is returned in register Al. Any excess arguments are ignored;

they may or may not remain after execution of the function.

The routines are organized in five groups: basic, input, output,
w

Stutter and utility. This index tells where to find each routine:

Routine Group Type Control Section

ATOM

BELL

basic SUBR 1 CSSUBS

utility SUBR 1 CS2250

COND

EJECT

Stutter

output

FSUBR

SUBR 0

CSEVAL

CSPRINT

EQ basic JXJBR 2 CSSUBS

165

Routine

ERROR

EVAL

EXPLODE

FST

GC

GET

GETOEU
._

IVCCH

IV@@

LIST

MMSTRNG

PRINT

PRINl

PUTPROP

QUOTE

- READCH

REMPROP

.RST

SASSOC

STIVCCH

SWaEyd

TAK2

TFBPRI

Group

utility

Stutter

mtput

basic

utility

Stutter

input

input

input

basic

input

basic

output

output

Stutter

Stutter

input

input

Stutter

basic

Stutter

input

input

basic

output

Type
SUBR

SUBR

SUBR

SUBR

SUBR

SUBR

SUBR

SUBR

SUBR

FSUBR

SUBR

SUBR

SUBR

SUBR

SUBR

FSUBR

SUBR

SUBR

SUBR

SUBR

SUBR

SUBR

SUBR

SUBR

SUBR

of A.rgs.

1

1

1

1

0

2

1

0

0

1

1

1

1

3

0

0

2

1

2

1

1

2

0

Control Section

cssms
CSEVAII
CSEVAL
CSSUBS
CSGC
CSEVAL
CSRFIAD
CSREAD
CSREAD
CSEv&
CSREAD
CSSUBS
CSPRIKC

CSPRINT

CSEVAL

CSEvffi

CSREAD

CSREAD

CSEVAL

CSSUBS

CSEVAL

CSREAD

CSREAD

CSSUBS

CSPRINL

166

F.1 Basic Routines

RST, FST, TAlt2, AT#M, NULL, EQ, LIST

The routines in this group are the lowest level functions for the

manipulation of lists.

(RST x). Returns the ReST of the list x, which must not be atomic.

Atomic x results in a specification interrupt4

(FST x). Returns the FirST element of the list x, which must not

be atomic. Atomic x results in a specification interrupt.

-m.

Cm x, y). If y is a list, returns a list whose FST is x and whose

RST is y. If y is atomic (other than NIL), TAK2 returns a generalized

list, that is, a list whose R...RST is, not NIL. In either case,

TAK? is well defined. This function takes two words from the free

storage block and thus incurs part of the expense of the next gar-

bage collection. Beware when CAL'ing TAIC;! from an assembled

routine. Because the garbage collector might be called, all

registers must be saved, and all pointers must be identifiable ase

such.

(EQ x, y). Predicate. If x and y are atomic , returns T if they are

the same atom, and NIL if they are not. If x or y is not atomic,

returns T if x and y both point at the same location. EQ is always

defined.

(AT$M x). Predicate. Returns T if x is an atom and NIL otherwise.

167

1
lll_-_--_.- - --.

(NULL x). Predicate. Returns T if x is the atom NIL. If x is any other

atom or is non-atomic, NULL returns NIL.

(L I S T ⌧1,⌧2 v . l ⌧n).

Unlike other basic

Note in particular

Returns a list whose elements are x1, x2,... xn.. .

functions , LIST accepts any number of arguments.

that (LIST) is valid and returns NIL. LIST

is implemented so that if given n (> 1) arguments it will use ntl

words from the free storage block. Thus list is more efficient than

-- successive TAK2's.

F.2 Innut Routines
-=.

READ, READCH, IVCCH, STIVCCH, IVQ,@, STIVQ,M@, MM.STRNG,GETPjBJ

The Stutter input routines are well developed since they were a

necessary adjunct to testing the system. Two modes are provided: READ

reads an entire expression. It is also used by the main interpretative

loop, so an understanding of it is an understanding of the input syntax

for Stutter. A single character input mode is also provided to permit

-the writing of more general input. The internal read routines are

described in Appendix C.

The read routines make use of a device, borrowed from @GENT, called

an :"internal variable". This is a variable whose value affects the system

and which can be set or reset by special subroutine calls. Each internal

variable is represented by a three character mnemonic; two routines are

associated with each internal variable. If the mnemonic is xxx, the

routines are (IVxxx) and (STIVxxxa). The first routine returns the

current value of the variable and the second assigns the value of'as

168

to the variable. If the variable is a switch, it will have the value T or

NIL and can be set by STIVxxx. The argument NIL sets the switch off and any

other argument sets the switch on.

(READ).
. .

One expression is REND from a card or cards and returned

as the value of READ. This routine is described in detail in Appendix C.

(RWCH). READS the next CHaracter from the input card and returns

a pointer to an atom with that character as its print name. All printable
0

characters and #, !, 2 already exist as objects in the system. Any other- [I8
character is translated by READCH into blank. EQ may be used to compare

characters because they are uniquely represented. Characters are read

using the same conventions of card layout, that is, columns 1 to either

71 or the first underbar-slash. Also, if the current character is a blank,

READCH will return the next non-blank character. These conventions may be

altered by turning on the quote mode with (IVQM$).

(rvcc~) (STIVCCH x). To store one character in the case that an expression

read by READ is an atom and the following character is a left parenthesis,

an internal variable called 'Current CHaracter' is defined. Its value

can be SeT to any character by STIVCCH. An error is signalled if the argu-

ment is not an atom with a one character printname. The 'current character'

can be accessed by evaluating (NCCH).

. The relationship between REAL, READCH, and IVCCH is most easily explained

in terms of a 'scan pointer' and a character variable called the 'current

character'. The scan pointer moves along the input text having due regard for

card boundaries and the 'J' convention. The character pointed at by the scan

pointer is called the scanned character. After READing an atom, the scan

pointer points at the character following the atom (usually blank) and the

current character contains the scanned character. After READing a list, the

169

scan pointer points at the final right parenthesis and current character con-

tains a blank. IVCCH does not affect the scan pointer and returns the current

character. The first character read by READ is the current character.

Succeeding characters would be the values of successive READCH'es. READCH can

best be described as a call on GETCH, as flow charted in ,Appendix C.4. An

approximation to READCH can be given by:

Loop: move scan pointer to next character;

if (current character is blank A

quote mode is off A
-.

scanned character is blank) then go to loop;

current character := scanned character;

return (scanned character).

(IVQM$) (STNQM$ x). If Quote @de is on, then each character on each

card is passed in turn as the value of READCH. This provides a means of

avoiding the normal underbar-slash and de-blanking conventions. Unfortun-

ately, in this mode there must be a dash in column 72 (or quote mode must

. be set off just before column 71 is scanned). Calling REAJI always sets

quote mode off.

(WTRNG x). x must be a list whose elements are all symbol atoms with

one character print names. The characters are collected together and the

value of MAKSTRNG is a character STRiNG atom MAKed of the print names of

those atoms. Flength (x)/m + 1 words are taken from the free storage block.

170

(GETPIBJ x). x must be a character string atom such as is returned by

MAKSTRNG. The value returned by GET&J is an atom with the indicated

print name. GET$BJ searches the OBLIST for an atom with the proper print

name. If such an atom is found, it is returned; otherwise an atom is

created. If an atom is created, three words are used from the free storage

block.

F.3 Output Routines
._

PRINT, PRINl, TERPRI, EJECT, EXPL$DE

The routines in this group provide for printing expressions and controlling

the printer. A routine is also provided to abstract from a symbol atom a list of

the characters in its printname. A print line is 132 characters; no access to

the carriage control character is provided other than that supplied by TERPRI

and EJECT.

(PRINT x)* The expression x is PRINTed, and then the printer is spaced

to a new line. Lines will be as full as possible without printing

an atom name on two lines. This means that isolated left parentheses

will appear on the right. The value of (PRINT x) is x. Internally,

PRINT simply calls PRINl and TERPRI.

(PRINl x)0 Identical to PRINT except PRINl returns NIL and does not

space the line printer after printing. The first character of a

succeeding PRINT or PRINl will immediately follow the last character

of a given PRINl.

171

(TERPRI). TERminate the PRInt line. The line printer is advanced

the the next line. (TEEXPRI x) returns x0

(EJECT). The line printer is EJECTed to the next page. The next

PRINT or PRINl will put characters beginning at the upper lefthand corner. .

of the next page.

(ExPL$DE x). x must be a type 0 atom (symbol). lKPL/dDE returns a list

whose elements are the character atoms corresponding to the print name of

X. Thus (GFT~BJ(MAK~T~~NG(~PL#DE x))) returns x if x was on the OBLIsT,

otherwise a new atom with the same print name.

Fields in,CSSWYM used by Output Routines:
. .

PRPT. Pointer to location to store next character to be printed.

Intitialized by TERPRI and incremented by P'UTCH.

PRPEND. Address of character just beyond last character in print

line. PUTCH calls TERPRI if PRPT reaches PRPEND. Intitialized by TERPRI.

PRLNG. This constant is the length of the print line. Normally

132, it can be changed for different buffer lengths or a wider right margin.

PRATRAD. Used by PRINl to print the message '?TYPx' for atoms with type

x c [% 3, 4, 5, 6, 7’30 (That is, for atom types for which no print

routine has been defined).

F.4 STUTTER Routines

COND, EVAL, GET, PUTPR@P, REMPRgP, QU,&'E, SASS@

(COND al, 12, . ..ln). This FSUBR C$NDitionally evaluates an expression.

Each sublist must be a list-of two expressions. The first expression in

172

each successive sublist is EVALuated until one is found that is not NIL.

The second expression of the selected sublist is EVALuated and returned as

the value of CjZkJD. If all first expressions are NIL, error CN is signaled.

(EWL x). EVALuates and returns the value of the s-expression x.

Complete details of EVAL are in Appendix D.

GET, PUTPR@P, REMPR#P. Symbol atoms have an associated list called a property

list. On this list the different 'properties' of the atom are stored, each
-

under different names, called 'indicators.' The indicators must be symbol

atoms. The properties may be any s-expression. In the initial free storage,

only the prope&ies for SUBR and FSUBR indicators occur. Function defini-

tions can be stored under EXPR and FEXPR. Other properties and corresponding

indicators can be defined at the Stutter programmers'convenience. The only

restriction is that the above three functions are the only ones allowed to

access the property list. This is because PUTPR$P and REMPR$P replace

element pointers with rst pointers in some case.

(GET a i). This SUBR has two arguments: an atom and an indicator. It

e searches the property list of the atom for the indicator and returns the

corresponding property value. If the indicator is not found, GET returns

.NIL.

(PUTPR#P a p i). This SUBR has three arguments: an atom, a value, and an

indicator. The value is stored under the indicator on the property list

of the atom. If the indicator existed on the property list, the pointer at

the old value is replaced with a pointer at the new value. Otherwise, the

indicator and value are placed at the front of the property list. Currently,

the value of PUTPR$P should not be used. It should be changed to return the

atom.

173

(REMPR$P a i). The arguments of this SUBR are an atom and an indicator.

The indicator and the corresponding value are removed from the property

list of the atom. REMPI@ returns the atom. Currently, REMPR#P ignores

(does not delete) function definitions stored in the value cell.. .

(QU@'E x>, This function is an FSUBR* Its arguments are passed as an

WEVALuated list to the quote routine. If the list has one element,

QU$TE assumes that the nomal LISP lay QU$TE was desired. If the list

has more than one element, QU@!E simply returns the list, Both (QU$TE A B)

and (Qm (A B)> return the value (A B).

!sAss8c x Pl)* --, This SUBR expects an expression (usually an atam) and a

list of dotted pairs as arguments, The list is searched for a pair whose

FST is EQ to the expression. The value of SASS@! is RST of the selected

pair. If the expression is not found> the value of SASSjk is the atom at

the end of the list of pairs, Usually, this atom is NIL> but this is up to

the creator of the list of dotted pairs.

F.5 Utility Routines

BELL, ERR#R, CC

A.ll these routines are SUBR's.

(BELL x). The argument must be a number. BE&L rings the bell on the

2250 twice. The interval between the rings is specified by the argument,

in hundredths of seconds (200 represents delay of 2 seconds)* To use this

routine, a DD card must be provided asskgning SJW@OOP to a 2250. The

value of BELL is EIL. (Until registers B and L are assigned other than 14

and 15, BELL causes an abnormal termination,)

174

(ERR/~R x). This routine prints its argument and exits to the top level

of the 'Stutter interpreter. The stack is not unwound, so variables

retain the values they had at the time of the error.

w . A call on GC causes a garbage collection. The value of

GC is NIL. It may be advantageous to call GC at times, because

garbage collection is much less expensive when the amount of active

‘storage is low. GC is described in detail in Appendix E.

175

,., .,L.

* Ij-

Appendix G. Miscellaneous Swym Routines

The routines in this section are available within Swym but not to

Stutter programs. Unless otherwise stated, a routine is called with
- ,.”1_.. . .s

CAL, but most have non-standard calling sequences: either they pass numbers

rather than pointers or they are not called with CAL. Such non-standard

routines are justifiable in limited contexts to avoid using free storage

and to speed processing.

STIME,TTIME. These routines provide access to the $3 task timer.

STIME Starts the TIM&. It has no argument, but returns the
--.

value of any argument supplied. (i.e., STIME does not modify Al.)

TTIME reports the elapsed Task TIME (in hundredths of a second)

since the last execution of STIME. The result of TTIME is left in

register Al. (Not a pointer to the result, the result itself.)

STAKN. This routine allocates a plex. The argument in Al is the

number of bytes to be allocated; it must be a multiple of four.

The value of STAXN is a pointer to the newly allocated plex. The

. calling routine must store a valid plexhead in the newly allocated

plex. The name "STAKN" has nothing to do with the stack. It refers

to a System function to TAKe N bytes from free storage. Note that

STAKN can cause garbage collection: all pointers which are to be

garbage collected must be in the stack when STAKN is called.

There is currently a major bug in STARR. When the garbage collector

is called, one of the pointers on the stack is to the new plex. But it

is not an atom pointer nor is there a plexhead in the plex. There is no

indication to the garbage collector of the type and extent of the allocated

plex. The best correction is to have STAKN call the garbage collector

before allocating the storage. The argument to STAKN would be made

odd and saved on the stack. . .

NLEXGTH. The single argument to this routine is a list (or atom) in

Al. The result of NLENGTR is the number of elements in the argument.

The number, rather than a pointer, is left in Al. The length of

an atom is zero.
-

' PUTSTR. PUTSTR PUTS a character STRing atom on the current output line.

If its argument is not a character string atom, PUTSTR calls ERRfiR.

If the string is too long to fit on the current line and short enough

to fit on a full line, PUTSTR calls TERPRI to terminate the current

line. PUTSTR uses PUTCH (in CSSWYM) to transmit characters one at

a time to the print line.

INIT, FINISH. INIT is the INITialization routine. It is entered

from j&, saves the registers, and initializes the registers for

swym. It also opens data sets, sets the memory control pointers

and calls STIME to start the timer. INIT exits to MAIN, the Stutter

interpreter loop. Control is returned to j&S by FINISH. When the

. end of the input file is recognized, E#DAD in CARDRDR sends control

to NOCARDS, which transfers control to FINISH.

FINISH prints some information for debugging, and abnormally

terminates. When debugging is complete , FINISH will close all data sets

and terminate normally.

SW@RoR* This routine prints ERRfiR messages for SWYM routines. Its

argument is two characters in the low order two bytes of register L.

SWERR$R is called by a simple branch. It changes the two characters

to a character string atom, and calls ERR$R with that atom as its

argument. SWERR@R is designed so that changing it to ABEND rather

than call ERR#R will preserve all registers as they were at the time

of the error. It is also possible to get very useful results if

ERR#R prints all registers.

TRUE, FALSE. These two routines are called with a simple branch. They

set Al to T and NIL, respectively, and execute a return. These--.

routines save a little code in predicates like NULL and ATOM. These

can exit by branching to TRUE or FALSE, thus avoiding two load

instructions and the code for return (RET).

PUTCH. This routine PUTS one CHaracter into the current print line.

The character must be in the low order byte of register A4. PUTCH

is called with the instruction

BAL L,PUTCH

This avoids several instructions for each character output. If the

. current character fills the output line, PUTCH calls TERPRI to print

the line. PUTCH modifies only register TT.

3-78

Appendix H. Swym - Stutter Initial Free Storage

When Swym is loaded there are three classes of structure in the

free storage area: character objects;' function names, and special structures.

Each of these is described in a separate section below. The cards

used to create the initial free storage are shown in Figure H.l.

H.1 Character Objects

As indicated in Appendix C (Read Routines), there are 64 character

objects in SWYM. Each input character is converted into one of these
. .

64 objects. These objects include A-S, V-Z, 0-3, +, 1, $, I) /, ?,

:t #, “, p’, !, o-2-8, *, => <, >, @, ;, 1 1 1 1-, -j '9 3 > 1 , and 0' .

These character objects are assembled with the macros CHAR and QCHAR. For

various reasons, other means are used to assemble the character objects

for T, blank, apostrophe, and ampersand.

H-2 Subroutine Objects

. All subroutines available to Stutter programs must be represented

in initial free storage. There is one atom for each subroutine described

in Appendix F. Subroutine atoms are assembled with the SUBR and FSUBR

macros.

H.3 Special Structures

NIL,T. These two atoms are used by Stutter to represent the Boolean

values false and true. Each has a predefined value equal to.
s

itself. Thus, (EZ(QUOTE NIL)) is NIL; but one can also say

(EVAL NIL) and get NIL.
179

@LIST. The predefined value of this atom is a list of all symbol

atoms active at any given time* This list is a list of 64 sublists.

An atom is placed on a sublist chosen by hash coding the atom's

print namer This speeds up the read routine search to find an

existing instance of an input atom (in GET@J). The hashing function

is

((length of pname) + *(last character) + S"(first

character) + 13*(third character)) mod 64 p

where the characters are represented in EBCDIC. If the third

character is absent, blank is used. This function seems to

distribute the atoms fairly well 9 although there is a slight

preference for bin 32.

.

The value of fiBLIST is treated as though it were an array.

That is, the proper sublist is accessed by address arithmetic rather

than successive RST operations. There is the danger that the

garbage collector could convert this list into two or more lists

connected by RST pointers. To avoid this , no variable should ever

point at a portion of the object list.

CHAR$BS. The predefine8 value of this atom is the list of all

.
character objects. This list has 256 elements, one for each possible

EBCDIC byte pattern. All illegal characters point at the character

object for blank. Like &lBLIST, the character object list is referenced

(by READCH and IVCCH) as though it were an array* Again, no variable

may point at a portion of the character object list.

180

SUBR, FSURR, EXPR, FEXPR. These atoms represent properties which

can be PUTPR#P and which the system must know about. Specifically,

each represents some form of function definition. To use an atom

as a function, EVGET looks for one of these indicators on the-.

property list and uses the corresponding value as the function

definition. See further description in Appendix D.2.

FPR@S. This is a structure:

((SUBR l 1) (FSURR . 2)

(EXPR l 3) (FMPR . 4))

OVAL uses this structure at various points to associate a bit

pattern with one of the indicators for a function definition.

If an atom has a function definition, the appropriate bit pattern

will be in the CELFNC field of the plexhead. This structure

cannot be accessed by Stutter programs.

WqaJND’. This is simply a character string atom. It is the value

of any atom that has not been assigned a value by one of

.
initial value

variable binding

function definition..

.

If 'UNB@JND' is the value of an atom, EVAL signals error El and

terminates processing of the current s-expression.

Figure H-1

UNBOUND

BLANK

NIL

TRUTH

OBLIST

CHAROBS

SUBR

FSUBR

EXPR --.

FEXPR

STRAT

QCM

VALUE

VALUE

VALUE

VALUE

MATOM

MATOM

MAsTOM

MATOM

SUBR

SUBR

SUBR

SUBR

SUBR

SUBR

FSUBR

SUBR

CHAR

CHAR

&CM

c’uNBouND’

1 1 . .

NIL,NIL

T,TRUTH

OBLIST,OLST

CHAROBS,COBS

SUBR

FSUBR

EXPR

FEXPR

FST,RST,TAX'L,GC

ATOM,EQ,NULL,PRINT,PRINl,TERPRI

READ

ERROR,STIVCCH,IVCCH,READCH,STnT&MO,IV&MO

GETOBJ,MAKSTRNG,EJECT

EVAL,SASSOC,EXPLODE,GET,PUTPROP,REMPROP

COND,QUOTE,LIST

BELL

A B C D E F G H I J K L M N O P Q R S U V W X Y ZY Y Y Y Y Y Y Y YYYYY,YYY1YYYY,,

%L2,3,4,5,6,7,8,9

+, 1 ,$,I,/,$,: ,#,�YqL! ,0-2-8,*,=,-Y<,>,@,-, l 1;

� (� A � , � , �

182

mendix I. Swym Register Assignments

All the general registers are assigned names under Swym. About

half are available for general use , while the remainder have specific

uses. Although the register currently assigned to each name is listed,

these assignments must be changed to better cooperate with #S.

Register Name

0 N Contains a pointer to the atom NIL.

14

7

9

10, 11 T, TT

12

13

14

15

Al-A6

c4 x.

S

F Free storage pointer - next word to be allocated.

P

B

L

Use

Arguments to SUBR's; Stutter routines return
results in Al; otherwise available for
general use. Always six consecutive registers.

Must always contain F'4'.

Permanent base register for addressing system
data, transfer vectors, and a few basic routines.

An even-odd pair of temporary registers. TT is
used by AT@M and PUTCH.

PUSH down list pointer - last word which was
allocated. See Appendix B.4.

Base for all routines

Linkage, holds return address on entry to
a routine.

The user may alter Al-A6, T and TT with impunity. The following rules

must be observed:

1. No register contents are garbage collected. If something must

be collected, it must be in the stack. The garbage collector

destroys all temporary registers.

2. A calling routine is responsible for saving any registers which

might be destroyed by a called routine.

183

“,

Appendix J. Swym - Stutter Output and Error Messages

There are four classes of output:

1) Normal

2) Read Error

3) Computation Error

4) ABEND- Abnormal Terminations

- Each of these will be discussed in turn.

J.l Normal output

Normally, the Swym system running Stutter reads an s-expression,

evaluates it, and prints the value. All cards read are printed beginning

in column 24 of the print line. After reading, the time since the start

of processing this s-expression is printed (in lOOths/sec.). Next

appear any lines PRINTed during EVAL. After EVAL, the total time

since starting to read the s-expression is printed (in lOOths/sec.).

Finally, the value of the expression is printed, followed by a blank line.

At any time, the garbage collector may be called. It will produce a

line of output as described in appendix E.

5.2 Read Errors

While reading cards, certain syntax errors are indicated. In all

cases the read routine proceeds in some manner, usually by ignoring the

error. The read error message includes a pointer ('<') beneath the next

character to be scanned. Vsually the character in error is immediately

to the left.
184

Error Code

RO

Rl

R2

R3

R4

R5

R6

R7

R8

R8

RA

RB

RC

6

Routine
I. I

RDSE

RDSE

RENI and
RDSE

RDLIST

RDSE

RDAT

RDAT

GETCH

GIETCH

RDAT

RDSE and
R.DLIST

Error 1

missing right super-paren -'>I;

end of skipping chars for RO;

missing right parens ')'-
inside super-parens;

extra dot between list elements;

RO occurred while skipping for
earlier RO;

igl char in X1...', W'...', or
B'...';

Cl...’ but should use Z'.oa';

B'...' but should use W'...';

X’ appears where
X + WY XY z, G B3;

inside quotes but no '-* in 72;

non-blank in 72 outside quotes

too many digits (9:) in integer;

igl char at start of s-expr;
igl char after '<' or '(I;
igl char between list elements; ?

READ ERRORS

Action

start skipping s-expressions

reading continues

right parens created; number
is printed at the far right

ignored

skips for inner RO then back
to skipping for outer RO

invents quote before the error
character this may confuse the
scanner

Z'...' assumed

W’...’ assumed

quote ignored, atom with print
name x_is produced; beware, the
scanner may become confused.

stays in quote mode

ignored

this and all after ignored

ignored

J*3 Computation Errors ,

These errors terminate evaluation of the current s-expression. Variables

are not rebound; this means that global variables may not have their

correct value and also that list structure may be saved unnecessarily.

Swym continues after these errors by evaluating the next input s-expression.

Error Code Routine

BI BINDERY

CN cm
-m.

E x EXPLODE

El EVAL

Ml

.
PP

Pl

RI

RJ

MAKSTRNG

PWR$P

PKCSTR

STIVCCH argument's print name not one character

GET@J argument not a character string atom
(Wee 1)

Error

trying to bind atom with function definition
in cell

no predicate was true

argument not symbol atom (type 0)

arg was unbound atom
atom at front of s-expr was not symbol

hPe 0)
atom at front of s-expr had no function

definition
atom at front of s-expr had illegal function

definition type (system error)
more than six arguments to a SUBR
more than one formal argument in FEXPR

definition

argument was not a list of atoms each
having a one character print name

first argument not a symbol atom (type 0)

argument not character string atom (type 1)
(system error)

186

5.4 ABEJXD - Abnormal Terminations

These errors are always fatal and produce a dump if a //SYSUDUMP DD

card has been included. Most are concerned with errors in the garbage

collector and indicate that the data structure was illegal. Further

computation on an erroneous data structure can produce nothing useful.

Completion Code

-

System 0~6

User 7 .

2 0

Routine

FST,RST

FINISH
-2.

PBj6PEN,PUTBYTE

2 0 C&IJXT

28 ATCaL

2E c&x

3E cm

6~ carx

7E c&x

7E GC

1 1 8 C&IECT

1 2 2 , 1 2 6

15A

Gc

C@WT

u8 C&CJXT

.

Error

Fst or rst taken of an atom

During debugging, normal
termination

Insufficient memory remaining
after garbage collection

Argument already marked with ml

Illegal atom type

Atom A -I~ILL A m2

Atom A ml A 71112'

latom A m2 A ~ml

Tatom A IIII~ A m l

stack pointed at an ml A -3112
orlmlAm2word

in second pass, found atom
A-mlA\

invalid stack block type

in second pass, found la-tom
AvLLATIQ

in second pass, found rst: atom
A Trnl A -m2

187

Appendix K. Proposed Instructions for the IBM/%0

The instructions proposed in this appendix are intended to give the

flavor of possible additions to the 360 instruction set. A completely

different machine design might be preferrable, but would mean reprogramming

on the scale accompanying introduction of the 360. Additions to the

instruction set would not obsolete any existing programs, except in that they

could be written more compactly in the proposed extended instruction set.

The instructions are proposed in terms of the 360 because to a large extent

they then also apply to most traditionally designed computers. Thus,

although these instructions might make radical changes in program design

(more modularity), the basic design of computers need change very little.

Four sets of proposals are included below:
.

Loads and Stores

Associated-Bit Instructions

Stack Instruction

Subroutine Linkage

. The last two are interdependent, but otherwise these instruction sets

could be added individually.

Proposed Loads and Stores

These instructions are intended to remove some of the more annoying

limitations of the 360. They have been proposed many times, especially

in [Wrth 681.

(RX) Load Halfword Logical

The halfword at Dl (Xl,Bl) replaces the low order

188

STHA

16 bits of register Rl. The upper 16 bits of Rl

are unaffected.

(RX) Store Halfword Arithmetic

If bits 1-16 of Rl do not all match the sign bit, this

instruction causes a fixed point overflow. Otherwise,

the low order 16 bits are stored in the halfword addressed

by D&Xl, Bl) 9

-

LI (AI, SI) (RX) Load (Add, Subtract) Immediate

A thirty-two bit quantity is computed from Dl plus the

contents of registers Xl and Bl, treated as signed

numbers. The resulting quantity is loaded (added, sub-

tracted) to register Rl. AI and SI may cause fixed point

overflow.

LIR (AIR, SIR) (RR) Load (Add,Subtract) Immediate Register Field

These instructions are similar to LI (AI, SI) except that

the quantity loaded, added, or substracted is the R2 field

of the instruction (not the contents of that register).

(RX) Load (Store) Indirect

The Dl$Bl) field refers to a word in memory. The con-

tents of this word are used as the address from which to

load or to which to store the contents of Rl.

LIN (STIN)

Proposed Associated-Bit Instructions

There are many uses in higher level languages for non-numeric bits

associated with the words of memory. This proposal describes one set of

instructions for manipulating these bits. It is assumed that one bit is

189

associated with every byte of memory9 but that the most coxmnon use will be

to use all four bits for each word. Four bits are also associated with each

general register. Any instruction not specified below does not alter the

bits in memory or in a general register. This means that a floating point

field, for example, remains marked as such as ,long as only floating operations

are used on that field.

(SS) Move Bits

The b%ts associated with the L + 1 words starting at D2(B2)

are moved to the bits for the L + 1 words starting at Dl(Bl).

The operation proceeds from left to right by word. Both addresses

must be on word boundaries. 0 c, L 5 255.

MVSB (SS) Move Single Bits

The

are

bits associated with the L + 1 bytes starting at D2(B2)

moved to the bits for L + 1 bytes starting at D2(B2).

.
The operation proceeds from left to right. 0 5 L 5 255.

TJ!m,NIB,OIB, - .
XIBJWIB (SI) These instructions correspond to the normal instruction

. without the 'B' suffix. The difference is that the four

low order bits of the mask correspond to the four bits

associated with the addressed word. The address must be on

a word boundary.

GBR

PBR

(RR) Get Bits from Register

The four low order bits of Rl are replaced by the bits

associated with R2. Bits 24-27 of Rl are zeroed; other

bits are unchanged. ..

I .

(RR) Put Bits from Register -._ .

The bits associated with Rl are replaced by the four low

order bits of R2.

PIB

LB

- STB

PB

(RR) Put Immediate Bits

The bits associated with Rl are replaced by the contents

of the R2 field.

(RX) Load Bits

The four low order bits of register Rl are replaced by the

bits associated with the word at Dl(Xl,Bl)* The next four

low order bits (24-27) are replaced by zero. The rest of

the register is unchanged. Dl(Xl,Bl) must specify a word

boundary.

(RX) Store Bits

The four low order bits of Rl replace the bits associated

with the word at Dl(Xl,Bl). The latter must specify a word

boundary.

(SS) Pack Bits

The Dl(Bl) field specifies the beginning of a field of L + 1

bytes. The low order four bits of each of these bytes is set

from the bits associated with the corresponding word in the

D2(B2) field. The latter is L + 1 words long. The high

order four bits of each byte are zeroed. D2(B2) must be

on a word boundary. 0 4 L 5 255.

TSB

TPTB

(SS) Unpack Bits

D2(B2) specifies the start of a field of L + 1 bytes. Dl(B1)

specifies the start of a field of L + 1 words. UPB

reverses the process of PB by setting the bits associated

with the words from the low order four bits of the corres-

ponding byte.--. Dl(B1) must specify a word boundary. 0 5 L 5 255.

(RX) Test Single Bit

The low order bit of the condition code is set from the bit

associated with the byte at Dl(B1). The high order bit is

set from the bit associated with the other byte in the half-

word of which Dl(Bl) is part. If Dl(Bl) is even, the

high order bit is set from the bit associated with Dl(Bl) + 1.

If odd, then Dl(Bl) - 1.

(SS) Translate and Test Bits

The four bits associated with the word at Dl(Bl) et sequens

are used to index into the table at D2(B2). The table need

have only 16 entries. Termination and condition code

setting are as for the instruction TIIT.

192

L (RX) Load

This instruction is identical to the normal load instruction,

except that the bits associated with the target register are

set from the bits associated with the word in memory.

The bits of the target register are set from the bits

of the source register.

- LM, STM (RX) The bits of the target are set from the source.

Proposed Stack Instructions

The problemwith using a stack on the 360 is that code must be generated

to test for the ends of the stack. These instructions manipulate the stack

and test for the beginning and end. In all cases, the Rl field indicates a

register containing a stack pointer. This register always points to the

latest word added to the stack. The register is decremented for each entry,

so all recent entries can be addressed relative to the stack pointer. The

Dl(Bl) field of the instructions is assumed to be the address of a two word

Stack Control Block. The first word of the block is the address of the first
a

entry in the stack, the second word is the address of the last allowable

entry in the stack. This control block is used to check for the ends of the

stack. Stack instructions can generate two new interruption types; stack

overflow and stack underflow.

193

(RX) Queue Register on Stack

The contents of Rl are decremented by four and compared

against the contents of the,.word addressed by Dl(Bl). If

less-than, then a stack overflow interrupt is generated.

Otherwise, the contents of the R2 are stored at the location

indicated by the revised contents of Rle

(F& Queue Multiple Immediate

The R2 field is multiplied by four and subtracted from Rl.

The result is compared against the contents of the word

addreised by Dl(Bl). If less-than, a stack overflow

interrupt is generated.

(RX) Unqueue Word from Stack

The contents of Rl are compared against the contents of the

word at Dl(Bl)+4 if greater-than or equal, then a stack under-

flow interrupt is generated. Otherwise, the contents of R2

are replaced by the word addressed by Rio Finally, Rl is

incremented by four.

(RX) Unqueue Multiple Immediate

The R2 field is multiplied by four and added to Rl. The result

is compared against the contents of the word at Dl(Bl) + 4.

If greater-than, a stack underflow interrupt is generated.

194

8pRtm, K!P%
UQ3-R (RX) Queue Double Floating Register

Queue Short Floating Register

Unqueue Double Floating Register

Unqueue Short Floating Register

These are analogous to QR and UQR except that they use the

floating registers. Also, QDR and UQDR modify the Rl

register by eight rather than four.

--
Proposed Subroutine Instructions

CAL (SS) Call a Subroutine

The"Rl and Dl(Bl) fields refer to a stack. These fields

are used to QR the program counter. The R2 register is

loaded with the word indicated by D2(B2). The program

counter is loaded with the same word so that execution begins

at the address in R
2'

Rl3T (SS) Return from a Subroutine

The Rl and Dl(Bl) fields refer to a stack. UQR is executed

from this stack and the top element is loaded into the

program counter and into R2. The displacement D2 and the

contents of B2 are added to the program counter.
.

195

Appendix L. Demonstration of the Correctness of the Swym Garbage Collection
Algorithm

The Swym garbage collector is reasonably complex since the central routine,

COLLECT, involves two loops and recursion. The potential user deserves some. .

reassurance that COLLECT will not lqysteriously modify his data. The problems

of minor errors in garbage collectors are severe because the collector is

called when storage is exhausted, and this depends on the data in the problem

at hand. This appendix attempts to demonstrate the correctness of the COLLECT

algorithm. But it is important to note that this demonstration proves nothing

t

about the

1)

2)

a

3)

actual Swym system garbage collector. There are three reasons:

This is a demonstration of an algorithm. The program itself may or
-m.

may not correspond to the algorithm. There is many a slip 'twixt

conception and core; errors can occur in coding, keypunching, assembly,

or during execution, when some other part of the system may modify

COlXECT.

It is necessary for this proof.to make numerous assumptions about

the effect of subsidiary functions. These are subject to the

problems mentioned in (1). They are also subject to that fact

that they are specified only in English, a not always precise

language.

The proof itself is primarily in English. A gain in precision could

be achieved by translating the proof into the predicate calculus;

but even though more readers might be reassured, the number of

readers would decline drastically.

Despite all the above, the demonstration of the correctness of the COLLECT

algorithm is at least an interesting problem. Because of the involuteness

and the fact that a given call depends on the correctness of higher level

invocations as well as lower level invocations, the major problem is avoiding

a circular proof.
. .

Most of the functions used in COLLECT are defined elsewhere. The follow-

ing are assumed as primitives: fst, rst, atom, rplf, and HD. The five

operations on marking bits - ML, ML, MARKl, MARKl2, and UNMARKl - are all

assumed to use two bit tables to associate two bits with each word. This is

contrary to the implementation, but simplifies the demonstration somewhat.

(A final note will show how to remove this restriction.) The properties of four

functions must be presented in detail: ATC$L, GCPUT, FIXUP and @UECT. The

properties of the first three will be assumed while the properties of C&LECT

are to be demonstrated. The relevant properties are listed in Figure L.4.

The C$LLECT algorithm in figure L.l has extra labels for reference during

this appendix; otherwise, it is the same algorithm as given in appendix E. A

flow chart is in Figure L.2, for those who read flow charts. The labels in

L.l and L.2 will be used to refer to the relevant statement without specific

reference to the figure. Several other types of references are made to items

identified with a capital letter followed by one or more digits. This table

summarizes the capital letters and the location of more information.

A ATCOL property
.

C COLLECT property
See Figure L.4

F FIXUP property

G GCPUT property 1

L a figure in this appendix

M marking bit See Appendix E

S statement label in Figure L.l

197

The argument to C&LECT is a list. C&lXCT processes as much of that

list as can be represented in new core as a single sequence of consecutive words,

where only the last is

segment. Sometimes it

atom. But if some rst

end with a rst pointer

a rst Dointer. This Dart of a list is called a list--

is the entire list, -ending with a

of the list is already collected,

to the existing representation of

c ience, the pointers pointing at the elements of the list

fst pointers.

rst pointer at an

the list segment must

that rst. For conven-

segment will be called

~ Each invocation of C&LECT writes a list segmenton the temporary file.

After all structures are collected, this file is read in to replace list storage.

It represents the same list structures as the old contents, providing that

all pointers into list storage are modified to point to the new locations of

the structures. The old contents of list storage are referred to as old core.- -

The new contents, though stored temporarily on the file, are referred to as

new core. For every pointer into old Corey there is an equivalent pointer into-w

new core. As C@,LECT processes a list segment, say zy it replaces fst (5)

in old core with a pointer to the equivalent of 2 in new core. For example,

the fst of the list (A B C) is replaced with a pointer to the same list in

new core (not with a pointer to A in new core). This replacement is done with

the rplf in S34. Later the pointer to the new core equivalent is accessed with

the fst in S3422 or $122. These three statements are not operations on list
.

structure in the sense normally understood by 'fst', but they are implementation

independent in that they only require that fst return the value stored with

rDlf.

C$LLECT contains two loops: the first is all statements numbered SIX and

S2x; the second is all statements S3x and S4x. Sll and S31 initialize the

loops by setting 2 to a rst of the list (the list itself being considered the

198

Oth rst). Then the Six and S3x statements process an element of the list.

The S2x and S4x statements check the next successive rst and either 100p

back, or process the rst and terminate. Below, the first loop will be

referred to as pass one and the second loop as pass two. This is because

each makes one pass over the list segment.

Understanding Cj&JXT requires knowledge of the state of the list segment,

zfr at $31. There are three cases:

1. Each pointer in the list points at a word with at least Ml. Each pointer

- has its own Ml. bit on and M2 bit off. The end of the list is signalled

by a rst pointing at an atom.

2. Same as case-l, except that the final rst points at a word marked with

both Ml and M2.

3. This case is like case lJ except that the final rst is a word that is

marked with Ml and not W. In addition, the element pointer to the last

element has neither marking bit.
.

Pictorially these cases can be represented as in diagram L.3.

To illustrate the predicate calculus approach to this demonstration of

correctness, here is the predicate that a list segment satisfies:

a
(3n) (LlAL2AL3)

where

.
n-l

Ll = icl (*(R(i)) A Ml(R(i))) A 7 m(R(n))

L2 = E Ml(fst(R(i)))
i=l -

JJ+*::::: a:

L3 = (Ml(R(n)) A (a=)) v M2(R(n+l))))

v(-Ml(R(n)) A U(R(n+l)) A R(n+l) # R(n))

v(Rb+l) = fj(n) A *(R(n)))
{case 33

199

where

R(i) = rsti(x)

rsti(p) = if i=O then p else rst(r s t
i-l

- - - (P))

x = argument to C&LEET . .

The demonstration of the correctness of C&LECT requires 3 steps. The

first step is to show that COLLECT terminates. This can be shown with

minimal recourse to C&LECT's properties. Secondly, assuming that C&IJXT

is correct for all recursive invocations , C&LEKT is shown to have properties

Cl-ClO. Finally, it is shown that the new core image is equivalent to the old

core, and thus that C!@LECT is correct.
-m.

The first two steps are sufficient to show that C&LECT writes out a list

segment. For if C@LECT terminated, at some level of recursion it did not

call itself and thus did not depend on its own properties. The fact that

C&LECT also depends on the correctness of higher levels of recursion is

dealt with in the third step.

Certain of the properties in L.4 are assumptions about the arguments to

the relevant function. These are included for ease of reference, but they

must be demonstrated each time the function is called. There are a few global
a

assumptions:

1) At the time C$LLEXT is first called, for a given garbage collection,

. there are no marking bits set; all words w satisfy a(w) A a(w).

2) When C&LECT is called by the garbage collector or ATC#L, its argu-

ment satisfies CO.

3) No pointer in memory points at a word with the rst bit on.

200

F

Lemma 1. CO is always satisfied.

By the second global assumption above, CO is satisfied when C$LLEET

is called externally. When C@IJXT is called at ~142, its argument is neither

an atom nor marked Ml because of the testsin Sl4. Thus to violate CO, L in

~142 must be +l(t) A M2&). But by the first global assumption above this

word was not so marked at the beginning of garbage collection. Consequently,

it must have been created by earlier or concurrent calls on C@LJXT. These

calls must have included execution of S35 to turn on the M2 bit and a subsequent

cai!l. on S223 to turn off the Ml bit that is also set at S35. (S35 is the only

statement turning on M2 and S223 is the only statement turning off Ml). But by

the test before S222-, S223 cannot be executed for a word with the M2 bit.

Consequently, a word satisfying +l(t) A IQ(t) cannot exist. Thus ~142 cannot

violate CO, and the lemma, is proven.

Lemma 2. At S12, L is unmarked and non-atomic.

This is true on entry to Cj&LECT, by Lemma 1. Thereafter, the lemma is

true by the tests in S22, which terminate pass one if the next 2 would be

atomic or marked.

Lemma 3. S223 unmarks the last word marked at S13; a word previously unmarked.

No statements modifying 2 occur between S223 and S13 (assuming the Algol

interpretation of variable binding). The second assertion follows from lemma

2.

Lemma 4. m9) 2 MQg*

This is initially true since it is assumed that there are no M2 bits set.

Thereafter, it remains true since M2 can only be set by S35 and that statement

also sets Ml. The KL cannot be unmarked by S223 as shown in the proof of

lemma 1.
201

I. C@LLECT Terminates

I Lemma 5. Each call on C&LECT sets at least one previously zero Ml bit.

I

By lemma 2, the argument to C#LLECT, 5, is not marked with Ml. It is so

marked by Sl3. If S223 is not the path chosen through S22, then 2 remains

I

marked with MI. If S223 is executed while L = 2, then 2 is unmarked, but is

marked again at S35. In either case, 5 remains marked with Ml by lerrrma, 3

and A.5.

Lemma 6. The recursion in ~142 is always to a finite depth and therefore

terminates.-

By lemma 2, a previously unmarked word is marked at Sl3. But there are

I a finite number of words in memory (otherwise the garbage collector would

not be called and its correctness would not matter). By the test before ~142,

C#GLECT does not recur if what would be its argument is already marked. Since

every time C&LECT is called there are fewer words not marked with Ml, C&I&CT

cannot recur indefinitely.

The loop in pass one terminates.Lemma 7.

At S2242 the loop returns to chkloop, that is, S12. But then S13 marks

a previously unmarked word (by lemma 2). Since at each execution of S13

there are fewer words unmarked with M1, the loop terminates. Note that if S223

unmarks a word, the loop is terminating since S2242 will not be executed.

lemma 8. The loop in pass two terminates.

By lemma 1, 5 is not marked with MZ after S31. But that 5 is marked with

M2 after S35. The loop terminates at ~422 if 4 is marked with M2, but 2 is

assigned the value of 4 in ~4231, just before looping back. Therefore S35

again marks a word previously unmarked with M2. Since there are a finite

number of words not marked with M2, the loop must terminate at ~422, if not sooner.

202

Theorem 1. COLLECT terminates.

Assuming that all subsidiary functions terminate, the theorem follows

from lemmas 6, 7 and 8.

203

II. Collect has properties Cl-ClO.

In this section the inductive assumption is made that all subsidiary

calls of C@LECT satisfy CO-Cl0 if they terminate.
. .

Lemmay. Pass one has properties Cl-&t.

The words constituting the list segment are those pointed at by

successive values of r. S13 sets the &XL bit in that word, thus satisfying C2.

Cl is satisfied by Sl4:

-
If t (= fst(r))- - is atomic then Al is satisfied for Sl41 and t is marked

Ml by property A2 or A4.

If L is marked with M2, then it is also marked with Ml by lemma 4.
-l

If t is marked with KL, there are two possible cases: 2 has been marked

by a higher level invocation of C#LLECT, or t is a word in the list

segment. In either case, & is indeed marked with Ml, satisfying Cl.

If 4 is unmarked, then it is marked with Ml since the lower level C$LlXCT

is assumed to satisfy C2.

S22 tests for termination of the list segment. If S221 is executed, then

the list segment is an instance of case 1 in L.3. If S222 is executed, then

this is an instance of case 2. If S223 is executed, then this is an instance

of case 3, and the Ml bit in en is indeed set off, satisfying C4. If S224 is

executed, then at least one more element pointer is to be included in the list

segment. Each time through S224, all prior element pointers of the list

segment satisfy Cl and C2, as shown above. The first pass eventually does

terminate, by lemma 7, and can only terminate by one of the paths through S22

discussed above; thus C3 and C4 are satisfied.

204

Lemma 10. Pass 2 satisfies ~5~8.

The proof is by induction on E, the length of the list segment isolated

in pass 1. Suppose n = 1. About half of the possibilities for this case are

illustrated in L.5. . .

c5: one word is written for the one fst pointer in the list segment by

s342.

c6: the address of the written word replaces the fst pointer in the list

segment (statement S34).
-

c7: the word in the old core list segment is marked with Ml and M2 by

s35.

c8: since n.= 1, ~42 writes a rst pointer in one of its branches, depend-

ing on which case of list segment has occured.

Case 1.

Case 2.

Case 3.

The rst is an atom. In this case a pointer with the rst bit

is written in ~4211 or S&212.

The rst is marked with M2. A pointer with the rst bit is

written by S422.

Note that E is false because there is no Ml bit with the last

fstpointer (by C4). Thus ~424 is executed and a word is

written that will eventually contain a pointer and a rst bit.

Suppose n > 1. In this case, C5, ~6, and C7 are satisfied for the first

f%t pointer by the same argument used for 2 = 1. By the structure of a list

segment, rst (r) is neither atomic, nor marked with M2.-I Furthermore, z is

true, because the Ml bit is always on for all fst pointers in the list segment

other than the last. Consequently, S&23 is executed and control returns to S32

with ; pointing at the rst of the original list segment. But rst of a list

segment of length greater than 1 is a shorter list segment, so the induction is

satisfied. Thus the lemma is demonstrated.

205

Lemma xl.. @9>

C&LECT does not modify any word marked with Ml by any other routine or

other invocation of C@LECT.

There are seven statements in C&LECT..that modify marking bits or words

in old core: S13, S141, ~142, S221, S223, S34, and S35. The lemma will be

demonstrated for each in turn.

Sl3 (MARKl(r)) By lemma 1, this word was previously unmarked.

Sl41 and S221 (ATC#L(L)) By the tests preceeding these statements, Al is

satisfied. Hence, ATC$L satisfies A5 and A2, modifying no word

previously marked with Ml.

~142 (C@UZCT(~)) t- is neither atomic nor marked by lemma 4 and the tests

in Sl4. Thus CO is satisfied and by assumption the lower level

invocation of Cj&LECT is correct. Therefore ~142 satisfies C9

because the lower level C$LLEXT does.

S223 (UNMARKl(~)) By lemmas 2 and 3, this statement unmarks a word

that was unmarked prior to S13.

s34 bPlf (;; . ..)) As shown in the demonstration of lemma 10, r is

part of the list segment and it was marked with Ml by pass one of

the current invocation of C@LFCT.

s35 (MARKl2(r)) Similarly to S34.

Lemma 12 (ClO)

Any word marked Ml either contains or will contain the address of the

equivalent word in new core.

When the equivalent address is placed in the word by S34, the word is

marked Ml (and M2) by S35. By Cg and A5, this word is not thereafter modified

by any other routine. If M2 is off, then Ml was set by S13. But by C5 and

206

~6 the address of the new core equivalent will be placed in this word.

,

Theorem 2. COLLECT has properties Cl-ClO.

Lemmas 9, 10, 11, and 12 were demonstrated with the assumption that all. .

lower level calls of C@LLEZT were correct. But if the recursive call terminates,

then at some level CjZkLECT did not call itself. Thus at this level correctness

can be demonstrated without reference to lower level calls of Cj!kLECT. Con-

sequently, this lowest level is correct. The correctness of the outermost level

can be proven by induction on the depth of recursion. But by Theorem 1, C$LLECT

terminates. Consequently, by Lemmas 9, 10, 11, and 12, C$LLECT has properties

Cl-C10.
-m.

III. The New Core Image is Isomorphic to the Old

The isomorphism to be demonstrated will be written x r y and defined by

xEy= (if atom (x) then atom (y) A x = y- -

else fst (x)- - g fst (y) A rst (x) g rst (y))

where x = y is the isomorphism induced by ATC$L. If x is a word in old core

marked with M1 and M2, then by ~6 that word contains the address of the

-equivalent word in new core. This equivalent word is denoted by x'. It is

necessary to demonstrate that after garbage collection (but before reading the

new core) (Vx) (Ml(x))=, &2(x) A x z xt). The proof will be by induction on

n the length of the list segment in new core. This length is the number of

,words from x' (including x') to the next word in memory with'a rst bit.

Lemma 14. M2(z)r> if atom (x) then HD(x) = x' else fst(x) = x' and the value- - - -

of x is not modified, nor is the M2 removed, by C&LECT or any subsidiary

function.

By A4, ~6, and C7, 2' is written into tf at the same time that 2 is

marked with M2. By lemma 4, M2($ 2 Ml&); but if ML(z) then tf is not

modified as guaranteed by A5 and Cg.

Lemma, 15. S342 has the effect of GCPUT (L'), where 4 = f&(E).

Note that by definition FIXUP executes GCPUT; so every branch of S342

executes GCPUT exactly once. By A&, ~34211 does GCPUT (4') if 4 is an atom

marked M2. By ~6 and C7, S3422 does GCPUT (4') if L is non-atomic and marked

with M2. S34212 does GCPUT. (0) but establishes a fixup so that the zero will

be replaced by the contents of 4 after C&IXCT. But by A3 and A4, 2 will

contain t'. Similarly S3423 does GCPUT (0) and establishes a fixup. By Cl,

208

4 is marked with Ml (and not M2 because of test before 53422); but by Cl0 that

word will contain the address of its new core equivalent. Thus in each branch

of S342 either 4' is written or a fixup is generated so that the written word

will contain t,. . .

Lemma 16. s&L~, S4212, S422, and ~424 have the effect of GCPUT (4' v rstbi:.)

r
where t = rst (r).- -II

~4211: By A&, ED(t) contains the address i'*-

$1212: By A3 and A4, HD(i) will contain the address t'. Since the

fixup processing routine &s the fixup into the word in new

core, r&bit remains in the word.

s422: By c6, fst (t) is 2'.- -

~424: Since 2 is false, this must be a case 3 list segment. Ohe

only case having *(R(i)).) But in this case, by the test

before S223, the rst (r) is marked with Ml and by Cl0 will-a

contain t'. Consequently, the fixup process will create a

correct rst pointer to 4'6

Theorem 3.e

After C@LECT, any word, 2, marked M2 is also tiarked Ml and contains a pointer

to the equivalent word, z', in new core satisfying x z x4.

If 2 is an atom, then C&LFCT called ATC@L if it processed tf* By A&,

x' is atomic and x = x'.I If tf is not atomic, then by the properties of pass

two, 2' is not atomic. The proof that of "5' is by induction on 2, the- number

of pointers from x'I;. (and counting 2') to the next word with a rst bit. Note

that 2' was marked by S35 and 5' was written by S342 which never puts in a

rst bit.

209

n = 1.

(2)fst g fst(x'). 1 By Mmna 15, 5' was effectively written with GCPUT(4')

where 4' is the address of the equivalent of 4 and 4 = fst(z$.

rst(x) g rst(x'). Since 2 = 1, the word following 1' has a rst bit and

thus contains the pointer at r&(2'). But any word with a rst bit must have

been written with ~42. By lemma 16, any word written with ~42 was effectively

written with GCPUT((rst(;))' v rstbit). But 2 was not modified between S23 and

~42 so 2 indicated the same tf whose fst was written out in S&2. Thus rst($ z

r&(x') because the latter was created from the former.- -

n> 1.

(x)fst = fst(x'). By the same argument as the case above.

rst(z) g rst(x'). Since g> 1, the word following 1' has no rst bit and

rst(x') is a pointer to that following word, that is, a pointer to the list

segment of length

Sk23 was executed

_n-1 starting at that following word. After 2' was written,

(otherwise the following word would have a rst bit). So

S32 & sequens were executed with 2 pointing to rst(x), creating a list

segment of length z-1. By the induction, the shorter list segment is equivalent

to rst(x). Consequently rst(x) g rst($).
.

Thus in all cases, C@LECT creates a correct representation of its argument.

Note on the Implementation

The actual implementation of C#LLECT uses the MI and E? bits in the word

itself as shown in figure 1.2. The problem for the above demonstration is

that the M2 bit is the same as the rst bit. Two changes are made in the

algorithm: the arguments to all functions aremasked to remove possible

marking bits and 4:= r&(r) is changed to-I

t := if Ml(;+b) then r+4 else rst(r).-II wm-

This note will show that the proof can be modified to take these changes

into account and that the modified rst function is valid.

The proof of 1-a 1 depends on global assumption 1 that no marking bits

exist before the first entry to C@LECT (for a given garbage collection). But

since there can be rst bits, global assumption1 does not hold. Instead, it

must be changed to:

At the time C#LLlXT is first called for a given garbage collection,

there are no marking bits set in any fst pointers.

Thereafter, all discussion of marking bits must be qualified by reference to

fst pointers only. But we have:

Lemma 0. COLLEET never sets Ml in a word with the rst bit.

Global assumption 3 states that no pointer into list storage, no fst

pointer, and no rst pointer points at a word with the rst bit on. But the

variables 2, 2, and t only acquire values from these three sources. Thus

3 2, and 2 never point at a word with the rst bit on. But Ml is only set by

Sl3 and S35 where the argument is 2. Consequently the lemma is true.

.

211

Because of lemma 0, the modified global assumption 1 is valid. Further-

more, the extension to the rst operation is justified; if the word following

a given word has ML, it cannot be a rst pointer and the pointer to r+k is what rst
. .

would return anyway.

212

Figure L.l

COLLECT (x) = begin list x,r,t; Boolean m;

word rstbit : = x'00000001' ;

Sll: r := x;
. .

chkloop:

S12: t := fst (r);

s13: MARK1 (r);

s14: if atom (t) then-m
--

s141: ATCOL (t)

else if-Ml (t) then

S142: --COLLECT (t);

S21: t := rst (r);

s22: if atom (t) then-v

s221: ATCOL (t)

else if M2 (t) thenm-

s222:

else if Ml (t) then- -

S223: UNMARKl (r);

else

S224: begin

S2241: r := t;

S2242: gotoc h k l o o p

end;

S31: r := x;

S32: wrloop: m := Ml (r);

s33: t := fst (r);

213

s34: rplf (S341: r;

S342: if atom (t) then-m

S3421: if M2 (t) then

S34211:“ GCPUT WD (t))

else

S34212: FIXUP (t; 0)

else if M2 (t) then-w

S3422: GCPUT (fst (t))

else

S3423: FIXUP (t; 0));

s35: MARK12(r>;

S41: t := rst (r);

S42: if atom (t) then- -

S421: if M2 (t) then

S4211: GCPUT (HD (t) V rstbit)

else

S4212: FIXUP (t; rstbit)

else if M2 (t) then-m

S422: GCPUT (fst (t) V rstbit)

else if m then- -

S423: begin

S4231: r := t;

S4232: got0w r l o o p

end

else

S424: FIXUP (t; rstbit)

end COLLECT

214

n-

P

30
s 3 1 +

WRLOOP R := X

M := Ml(R)

-_. -__-.- “-
---R@!I<’ ::.:

Figure L. 2 Kant) .

S 3 4 2 1 1

TEMP :=

I
1 I
S 3 4 2 2

TEMP :=
GCPUT

) (FST(T))

S 3 4 2 3
1 T E M P : = L

RPLF

(R,TEMP)

1 I

s 3 5

MARK12
(RI

216

Figure L 2 Kant)

\
s 4 1

L

T :=
RST(R)

i ‘1
S 4 2 1 1

GCPUT
fl-il’WTI v I

I 1
S 4 2 1 2 ?

FIXUP
) (T,RSTBIT) ,

l

S 4 2 2

GCPUT

b (lz’B:~Y ’
A

S 4 2 4

FIXUP
b (T,RSTBIT)

l

i

Figure L 3

Cases of ‘List Segment’

Case 1: List segment ends with rst pointer at atom

iei,, enr-4
Case 2: List segment ends with rst that has already been collected

: List segment ends with rst that is being collected

Notation: 9 indicates rst (either adjacent or & pointer)
-

e.
1

is a pointer at an element of a list segment

i-21

1 (2) indicates Ml (M2) set

I- (49 indicates Ml (M2) is zero

X indicates indeterminate MZ

Figure L. 4

Properties of ATCaL

Assumption:

Al.

Properties:

A2.

A30
. .

A4.

A5.

NOT&:

The argument must be a pointer at an atom.

If the atomhead is already marked with Ml, then ATCOL

returns; otherwise

On entry, the atomhead is marked with Ml.

On exit, the atomhead is replaced with a pointer to the

equivalent atom in new core and the atomhead is marked with

Ml-and M2.

No word marked Ml before entry to ATCOL is modified; marked,

or unmarked.

ATCaL may call C!@LECT to collect a substructure of the

atom. If that substructure points back to the atom, C#LLEC!T

will find an atom that is Ml but not M2. This case is

handled at S34212 and S&212.

219

Figure L. 4 Kant)

Properties of GCPUT

Assumption:

Gl. The argument may be any word, with or without the rst bit.

Properties:

G2. G(!PuT stores its argument in the next location in the new core.

93. The value is the assigned new core address.

Properties of FIXUP

Assumptions:

Fl. First argument is a pointer at a word in old core.

F2. Second argument is either zero or zero with the rst bit.

Properties:

F3. The second argument

F4. An entry is made in

is GCPUT.

the fixup table consisting of the first

F5.

argument and the value of GCPUT.

After processing the fixup table, the GCPUT word will point

to the equivalent of the first argument.

Processing the fixup table takes two steps:

- (1) After C$LI,ECT, the first argument (to FIXUP) will be Ml and

(2)

M2 by ClO; it is replaced in the fixup table by its contents,

which point to its new core equivalent (by lemma 14).

After loading the new core, the word pointed at by the second

item in each fixup is replaced by the first item.

220

Figure L 4 Kant)

Pronerties of COLLECT

Assumption:

co

Pass 1 isolates a list segment.

Cl After pass 1, each successive fst is marked with at least Ml.

c2 The Ml bit for each word constituting the list segment is

set on.

c3

c4

Pass 1 terminates when it reaches a word that is an atom,

is M2, or is Ml.

In-the last case of C3, the Ml bit in the last word of the

list segment is set off.

Pass 2 writes it out and remembers its location(s).

c5 Writes to new core one word for each word marked in Cl.

c6 Places in each word marked in Cl the address of the new

core equivalent word.

C? Marks each word marked in Cl with Ml and M2.

.

’ c8 Writes to new core a rst pointer to the rst of the list

segment.

Miscellaneous:

c9 C&LEC!T does not modify any word marked with Ml by any other

routine or by any other invocation of C$LLECT.

Cl0 Any word marked Ml either contains or will contain the

address of the equivalent word in new core.

221

Instances of Case I with n=l
,

Before :

0. ’R plex- ’
,o l 0 b OheadO

4

0.0. o-
R plex-l J head2 _

.

Old Core

After

New Core

i

I

-v-w------i

1 0

Figure L 5
Collection of List Segments with n=l

Note:

A dashed line from old core to new core represents a pointer to the location
a word will occupy when it is read in.

A dashed line frog new core to old core represents an entry in the fixup
table. The new core word will eventually point to the equivalent of
the old core word.

222

Instances of Case I I with n-l

. .
After

Before: Old Core

‘,l

+

,o 0

. . @
1 21 2

New Core

Figure L. 5
Collection of List Segments with n=l Kant)

223

Instances of Case I I I with n=l. . - 4

After

Before : Old Core New Core

cl0 0
l

0
O-01 0

‘I

1 0

/ @ R
0 0

--

-cl

-l

I

w--s---

1 2

l-l+

-s---s- _J
--. 10 '

1 1

Figure L 5
Collection of List Segments with n=l (Cod

224

Appendix M. Description of Control Section CSSWYM

The control section CSSWYM is always addressable via register S. It's

contents serve a variety of needs: globalvariables for system routines,

transfer vectors for routine linkage, register definitions. CSSWYM is non-

reentrant. A DSECT describing its contents must be assembled with any

Swym control section; the required code is described in Appendix N.

1)

2)

3)

The following are included in CSSWYM:
--

Register Definitions. These names are equated to specific registers:

N, Al, A2, A3, A4, A5, A6, C4, S, T, TT, F, P, B,
-.

IJ. See Appendix I.

AT EQU 6. Pointers at atoms point AT bytes in front of the

atom. References to atoms should use this identifier to emphasize

that the operand is an atom and in case the offset amount must be

changed. (M yan routines presently ignore this rule.)

Bit Definitions. The macro BITTBIMK is called to set up a table

used by BIT (to find the bit mask for the bit-within-the-byte). Bits

defined in CSSWYM are;

Ml, M2

:CELREL

CELVAL

The garbage collector marking bits. (These definitions

should be moved to CSGC.)

This bit is on in an atom head to indicate that the

value cell contains a pointer at list structure. If

off, the cell contains a number.

If on, the cell contains a value definition (possibly

the special value UNDEFINED). If off, the cell

contains a function definition.

225

4)

-

5)

CELFNC This is a byte mask definition defining the function

definition bits in the atom head. If any of these bits

is on, the atom has a function definition.

. .
SWYM EQU *

USING SWYM,S

This establishes addressability for the information in CSSWYM. Note

that no program may modify the contents of register S. (The contents

are established by the routine CSINIT.)

Temporary Storage Areas.

SWYMSAVE --, Used as save area when calling OS routines.

SYSFOO Five word area to save registers 13, 14, 15, 0, 1 while

calling OS.

DUBWORK A double word work area.

TIME Used by STIME and TTIXE to compute processing time.

WT,
NUMATVAL A number can be printed by storing it in NUMATVAL,

then passing a pointer to NUMAT to PRINT or PRINl.
,

a 6) Pointers at List Structure.

These pointers point at list structure referenced by the system. The

values are updated by the garbage collector.
.

VCBAROBS Points at CHAROBS, the list of all character objects;

VOBLIST

ST

VFPROPS

i.e., atoms with one character print names.

Points at the OBLIST.

Points at the atom T.

Points at FPROPS for EVGET.

226

VUNBND Points at the special atom 'UNBOUND' for WAL.

For further information on these structures, see Appendix H.

7) Work Areas for Specific Routines ..

See the indicated appendix for further information on these

variables:

. Memory control - Appendix E.4

MNUSE, MEMNXT, MESISIZ, FEND

Garbage Collector - Appendix E.4

GCTIME, GCABAD, #MU42

Print - Appendix F.3

PRPT,PRPEND,PRLNG,PRATBAD

Read - Appendix C

RDCOL,RDEND,RDLNCT,PB~,ATAMT,RDSUPCTR,RDERMS,~ERJ@,

RDERL/dC, RDERCT, RDCLASS, RDCHAR, RDSTAT

8) Data control blocks.

There are two DCB's, one for output - PRINTER, and one for input -

CARDRDR. In the copied code, these are not assembled, but space is

reserved. They are assembled when CSSWYM is assembled by itself as

a CSECT.

9) Transfer vectors.

These contain the address constants used to address routines by the

CAL macro. The field labeled h contains the address of the

routine xxx. The transfer vectors are created with the TVMAK macro.

One special transfer vector is included: #PO contains the address

of the stack. This is-used by ERROR to restore the stack pointer

(register P).
227

r- --

10) Always addressabfle routines.

See the indicated appendix for a descz+iption of these rc%,dines.

Eb3 CHOm . .

B.l RSTh., RSTA2, RSTA3# RS?y, %3TTp

r

-..

228

Appendix N. Adding Routines to SWYM-Stutter

Assembled routines, compiled routines, and interpreted routines can

be added to the SWYM System with a minimum of difficulty. This appendix

treats each of these types in turn.

N.l. Adding Assembled Routines

Routines designed to run under SWYM can be assembled in either an

existing SWYM control section or a new control section. In either case,

the assembly must include CSSWYM as a dummy control section so the routines

can communicate with SWYM. The following code must begin any SWYM--.

assembly:

TITLE 'title of control section'

CSSWYM DSECT

PRINT OFF

'COPY SWYM

PRINT ON
.

* COPY SWYM
a

csectnm CSECT

The code for CSSWYM is copied from the SWYM macro library. Each routine

must obey the linkage conventions indicated in Appendix K. It must begin

(physically and logically) with the SUB macro. It must end (logically) by

executing the RET macro. If the routine is to be referenced by routines

in other control sections, an entry must be made in the transfer vector

table in CSSWYM. To avoid reassembling all control sections, the entry

should be made at the end of the table and the card,s

229

DS nnA(C) (currently nn = 20)

should have nn reduced by 1. In this way, the transfer vector table stays

the same length. If the routine is not referenced by routines outside
. .

its control section, it is sufficient to include a TVMAK card for the

routine at the end of the control section. The TVMAK card must be

addressable when the routine itself is executed (register B points at the

SUB macro).

If a routine is to be referenced from Stutter interpreted functions,

there must be an atom for it in free storage. This atom can be created

by coding either

or

Both generate

routine. The

SUBR new routine name

F'SUBR new routine name.

an atom with the given indicator and a pointer at the new

new routine name must be the same as the label on the SUB

macro beginning the routine.

N.2. Compiling Functions for Swym

Although there is no STUTTER compiler, Swym has provision for

including compilers. Three major problems must be faced: storage for

the compiled code, linkage between routines, and variable binding.

There is no Swyqbinary program space. The plan is that compilers will

store code in a new plex type. This 'code plex' will have a section for

reentrant address-independent code, a section for relocatable pointers,

and possibly a section for non-reentrant, address-independent data. The

230

garbage collection routine for this plex type should move these plexes

to a semi-permanent area to avoid relocating them every time the garbage

collector is called.

The address of a routine may appear in two different places - the

transfer vector table and the property list of the name of the routine

(under either the SUBR or FSUBR indicator). To call another code routine,

r a compiled routine must load its address from the transfer vector table

using code such as is generated by the CAL macro. The compiler can find the

appropriate transfer vector entry because the contents are the same as the

address stored on the property list of the called routine's name. The

compiler must also store the address of a compiled routine in both the

transfer vector table and on the property list of the name of the routine.

This address must be the address of the code. If the code is stored in a

*code plex', the plexhead is presumably stored immediately in front of

the code. A special bit in the plexheadof the name of the routine must

tell the garbsge collector that the value of the SUBR or FSUBR property

addresses a code plex. If thatplex is relocated, the address of the

code must be changed in both places where it is stored.

e The interpreter passes arguments to SUBR's and FSUBR's in registers

Al to A6. Compiled functions may not have more than six arguments and may

expect them in those registers. The result must bereturned in register

Al. If a compiled routine needs more working space than AbA6, T, and

TT, then it must store information on top of the stack with the equivalent

of PUSH and POP.

231

N.3. Defining Routines To Be Interpreted

A routine to be interpreted must be stored as an s-expression with

the format given in Appendix D. This expression must be the value of the
a.

indicator EXPR or FEXPR stored on the property list of the name of the

routine. The basic function PUTPROP may be used for storing such expressions:

(PUTPROP

(QUOTE routine name)

(QUOTE s-expression)

(QUOTE =N

A DEFINE function can be defined to simplify the process. The version

in figure NJ. accepts a list of function definitions of this form:

(name vl exp, l .* ewd

where name is the atom where the rest of the expression is to be stored

under the indicator EXPR.

<PUTPROP

(QUOTE DEFINE)

(QUOTE ((A) (DEF1 A')))

(QUOTE mm)
>
<PUTPROP

(QUOTE DEF2)

(QUOTE ((A) < PUTPROP

(FST A)

(RST A)

--. (QUO'I'E mm> 8)

(QUOTE EXPR)

>

(DEFY (QUOTE

(DEFY (A) < corn

((NULL A) NIL)

(T (TAK2 (DEFY (FST A)) (DEFl (RST A))))

Fiwure N.1

233

Annendix 0. SWYM Control Sections

b

The assembly .of SWYM-Stutter is divided into ten control sections or

CSECT's. When a routine in one CSECT is modified, it is only necessary to

reassemble that CSECT. Thus, total assembly time is reduced. All other

CSECT's use information in CSSWYM. For this reason, CSSWYM is assembled

as a DSECT along with each other control section. The assembly code to

do this is in Appendix N. This appendix lists the CSECTS and sketches the
.-
contents of each.

The only non-reentrant control sections are CSSWYM, CSPDL, and

CSFREEST. There must be separate copies of these for each user of Swym.

The other control sections may be shared by all jobs in the 360 memory.

CSINIT Contains inititlization code for running any programs (not

just Stutter) under Swym. CSINIT establishes register contents,

opens the card and print data sets, and starts the timer. Even-

tually, initialization will include reading PARM information and

setting up the stack and free storage areas according to parameters..

CSINIT is not needed after initialization.

CSSWYM Contains global information for Swym system routines.

Complete details are in Appendix M.

CSSUBS Basic subroutines for the Swym data structure; such as:

FST, RST, and TAK2.

CSGC Garbage collector. See Appendix E.

CSFREEST Free storage. See Appendix H. (CSSWYM is not assembled

with CSFREEST.)

234

CSMAIN Main loop for Stutter. Calls READ, EXAL and PRINT in turn

as described in Appendix D. CSMUN also contains FINISH which is

entered when the input is exhausted. By replacing CSMAIN, Swym can

be used as the basis for other interpreters.

CSREAD Read routines. See Appendix C.

CSPRINT Print routines, See Appendix F.3.

CSEVAL Stutter interpreter and functions useful to interpreted

functions. The routines in CSEVAL are among those described in

Appendix P-4

cs2250 Experimental routine to interface to the 2250. Currently,

the only function is to ring the 2250% bell.

235

MNEMONIC INDEX

All major Swym mnemonics are listed in this index. With each

mnemonic is listed its class and the location of its definitions in the

Appendices and the program code. A brief comment describes the function

of the mnemonic. Four differently sorted indices are included: mnemonic,

class, appendix, and control section. The last three are primarily for

review purposes.

There are five columns:

1) MNEMONIC - The indexed mnemonic.

2) CLASS - The ten-classes are:

a) MACRO

b)SUBR

c)FSUBR

cl) CAL

e) CSECT

f) RJz

43) SUM

h) FIELD

i) STRUCT

j) MISC

Swym macro

routines available to Stutter programs. These

routines may also be entered with CAL.

routine callable only from assembled programs

control section

name equated to a register

name defined in CSSWYM

name equated to a bit or field definition

a structure in initial free storage

miscellaneous. Mostly routines with non-standard calling

sequences.

3) APP - Appendix containing definition of mnemonic.

4) CSECT - Control section in which the mnemonic is defined.

5) COMMENTS - A brief description of the mnemonic.

236

SUYU M N E M O N I C S S O R T E D ALPHABtf ICALLY PAGE 1

MNEMONIC

AND
A T
ATAMT
ATCOL
ATCO
ATCl
ATOU
ATOM
A l
A 2
A 3
A 4
A 5
A 6

5
BCMAC
BELL
B I N D E R Y
B I T
BITTBLMK

CAL
C ARDRDR
CELFNC
CELL
CELREL
C ELVAL
CHAR
CHAROBS
CHOKE
CHTBL
COLLECT
COLX
COND
C SEVAL
C SPREEST
CSGC
C S I N I T
c SSWYM
CSMA IN
CSPDL
C S P R I N T.
CSREAD
CSSUBS
cs2250
ce

WIBUORK

&ECT
E L S E
END IF
EQ
EQ

C L A S S APP

MACRO
MISC
SWYM
CAL
HISC
MISC
MACRO
SUBR
REG
REG
REG
REG
REG
REG

REG
MACRO
SUBR
CAL
MACRO
MACRO

MACRO
SWYM
F I E L D
MACRO
F I E L D
F I E L D
MACRO
STRUC
MISC
MACRO
CAL
CAL
FSUBR
CSECT
CSECT
CSECT
CSECT
CSECT
C SECT
c SECT
CSECT
CSECT
CSECT
CSECT
REG

SWYM

SUBR
MACRO
MACRO
MACRO
SUBR

6 . 7

t”
E . 3
E . 3
E . 3
8 . 1
F . l
I
I
I
I
I
I

I
B . 7
F . 5
0 . 3
8.5
B . 5

=‘B.6
M
M
B . 2
M
M
8 . 3
H
E . 3
8 . 8
E . 3
E . 3
F . 4
D
l-l
E
0
M
0
0
0
C
0
0
I

M

F . 3
B. 7
8.7
8 . 1
F . l

CSECT

M A C L I B
CSSUYM
CSSWYM
CSGC
CSGC
C SGC
MACL IB
C SSUBS
CSSWYM
CSSWYM
CSSWYM
CSSUYM
CSSUYM
CSSUYH

CSSUYM
MACL IB
CS2250
CSEVAL
MACL IB
MACL IB

MACLIB
CSSWYM
C SSUYM
MACL I B
CSSUYM
C SSUYM
Y A C L I B
CSFREEST
c SGC
M A C L I R
CSGC
C SGC
CSEVAL
CSEVAL
CSFREEST
C SGC
CSINIT
C SSUYM
C S Y A I N
CSPDL
C S P R I N T
C SREAD
c SSUBS
C S 2 2 5 0
CSSWYM

CSSWYM

C S P R I N T
HACL I B
M A C L I B
MACL IB
CSSUBS

COMMENTS

COMBINE TWO PREDS
E Q U A T E D T O A T O M OFFSET141
A T O M O F F S E T (6)
C O L L E C T S A N ATOW
P A R T O F A T C O L F O R T Y P E 3 A T O M S
P A R T O F A T C O L F O R T Y P E 1 ATOYS
3 I S A R G A N A T O M
S T U T T E R R O U T I N E F O R - I S A R G A T O M ?
A R G U M E N T R E G I S T E R C R E S U L T R E G I S T E R
A R G U M E N T R E G I S T E R
ARGUMENT REGISTER
ARGUMENT REGISTER
A R G U M E N T R E G I S T E R
ARGUMENT REGISTER

B A S E R E G F O R A L L R O U T N S
M A K E A B R C O N D I T I O N I N S T R U C T I O N
R I N G S B E L L O N 2 2 5 0
B I N D A R G A T O M S T O T H E I R V A L U E S
I D E N T I F Y M N E M O N I C W I T H B I T I N W O R D
M A K E A T A B L E F O R ’ BIT’MACRO

S U B R O U T I N E C A L L
DC6 F O R R E A D I N G C A R D S
ATOY H E A D - F U N C D E F T Y P E B I T S
L O A D S A T O M C E L L I N T O R E G
A T O M H E A D - C E L L IS RECOCATABLE
ATOY H E A D - C E L L H A S V A L U E (N O T F N C 1
C R E A T E S A C H A R O B J E C T A T O M
A T O M W I T H V A L U E - L I S T O F A L L C H A R S
0RANCH T O I F S T O R E EXHAUSTEDtABEND
M A K E A C H A R A C T E R T A B L E (F O R TR)
C R E A T E S IUAGE O F A R G I N N E W CnRE
C H E C K S A N D C O L L E C T S O N E P O I N T E R
C O N D I T I O N A L E X P R E S S I O N E V A L U A T E D
TNTERPRETER A N 0 R E L A T E D R O U T I N E S
F R E E STORAGEt INCL I N I T I A L S T R U C T S
GARBAGE COLLECTOR
I N I T I A L I Z A T I O N
G L O B A L I N F O R M A T I O N F O K SUYM R T N S
MAIN S T U T T E R L O O P
STACK
P R I N T R O U T I N E S
READ ROUT I NES
B4SIC SUBROUTANES
2 2 5 0 E X P E R I M A N T A L I N T E R F A C E
O D D R E G I S T E R C O N T A I N I N G F ’ 4 ’

DOUBLE WORD WORK AREA

M O V E S P R I N T E R T O N E X T P A G E
CON0 - E N D T R U E ; S T A R T F A L S E P A R T
C O N D - E N D F A L S E ; EN0 C O N D I T I O N A L
3 ARGl = ARGZLTESTS T W O P O I N T E R S)
S T U T T E R R T N F O R - A R G L = ARG2?

237

SUYM M N E M O N I C S SORTEO A L P H A B E T I C A L L Y PAGE 2

COMMENTSMNEMONIC CLASS APP CSECT

ERROR
EVAL
EVCH
EVGET
E V L I S
EXPLOOE
EXPR

SUBR F . 5
SUBR 0 . 3
MACRO 8 . 3
CAL 0 . 3
CAL 0 . 3
SUBR F . 3
STRUC 0 . 2

C SSUBS
CSEVAL
MACLTB
C SEVAL
C SE VAL
CSEVAL
C SFREEST

W R I T E S M E S S A G E A N D G O E S T O T O P L V L
S T U T T E R I N T R P R T R E X P R S N E V A L U A T O R
G E T S 4 R I T H V A L OF E B C D I C BTTS
G E T F U N C T I O N D E F I N I T I O N O F ATOM
E V A L U A T E L I S T O F E X P R E S S I O N S
C O N V E R T S A T O M T O LIST C H A R S I N P N A M
I N D I C A T O R F O R S - E X P R F U N C T I O N S

F R E E S T O R A G E P O I N T E R
L AlrNIL; R E T ; (B R A N C H T O IT)
P O I N T S A T EN0 O F F R E E S O T R
I N D I C A T O R F O R S - E X P S P E C I A L F N C T S
FIN0 B I T M N E M O N I C F O R B Y T E - I N - W O R D
C L O S E F I L E S A N D E X I T
G C - M A K E E N T R Y I N FIXUP T A B L E
S T R U C T U R E : ((SUBR . 1) (F S U B R
F I R S T E L E M E N T O F L I S T
S T U T T E R RTN F O R - 1ST E L E M O F L I S T
CREATES AN ATOM bifTti F S L J B R P R O P
I N O I C A T O R F O R A S S E M B L E D S P E C I A L F N C

CONTROLS GARBAGE COLLECT ION
G C ABENDS F O R BAD D A T A S T R U C T U R E
SAL TD I F D A T A S T R U C T U R E ERRt ABENO
GC-PUT WORD TO NEW CORE
B A L ’ E D T O B Y G C P U T M A C R O
G C C O M P U T E S I T S T I M E
F I N D S P R O P E R T Y O F A N A T O M
GET A CHARACTER
L O A O S P T R A T P N A M E C H R S T R A T M
G E T V A L U E O F N U M C H A R S T R A T O M
FINQS S Y M B O L F O R C H A R S T R I N G A R G
BRANCH

H A S H CODE A N IOENt F O R O B L I S T
L O A D S H E A D O F A T O M

C O N D - S T A R T P R E D I C A T E
S E T U P S W Y M R E G S A N D O P E N F I L E S
A S S E M B L E I N S T R U C T I O N WO/ A L I G N E R R
C H A N G E B I T
R E T U R N S N E X T I N P U T C H A R
R E T U R N S S T A T U S O F Q U O T E MODE

L I N K A G E R E G / R E T U R N A D D R E S S)
M A K E S A L I S T O f T H E A R G E X P R E S S I O N S

M A I N L O O P O F S T U T T E R I N T E R P R E T E R
M A K E S C H R S T R A T M F R O M L I S T O F C H R S
C R E A T E S A N A T O M S T R U C (I N C S F R E E S T)
A L T E R N A T E F R E E S T O R
SIZE O F F R E E S T O R A G E
F R E E S T O R IN U S E
G A R B C O L M A R K I N G B I T
G A R B C O L M A R K I N G B I T

PEG
M I S C
swvn
STRUC
MACRO
M I S C
MACRO
S TRUC
MACRO
SUBR
MACRO
STRUC

CSSWYM
CSSWYM
CSSWYY
CSFREEST
M A C L I B
C S Y A I N
MACL I B
C SFREEST
M A C L I B
C SSUBS
M A C L I B
CSFREEST

F
F A L S E
FEND
FEXPR
FINDBIT
F I N I S H
FIXUP
FPROPS
FST
FST
FSUBR
FSUBR

I
G
E . 4
0 . 2
B.‘5
G
B . 8
H
B . l
F . l
8 . 3
0 . 2

C SGC
CSSWYM
C SGC
YACL I B
C SGC
C SSWYM
C SEVAL
CSREAD
MACL 18
MACL 18
CSREAD
Y A C L I B

GC
GCABAD
GC ABEND
CCPUT
GCPUT
G C T I M E
GET
GETCH
GETNAME
GETNUM
GETOBJ
GOT0

SUBR
SWYM
MISC
YACRO
M I S C
SUYM
SUBR
CAL
MACRO
MACRO
SUBR
MACRO

E . 3
E . 4
E . 3
B . 8
E . 3
E . 4
F . 4
C
8 . 2
8 . 2
F . 2
8 . 7

HASH
HEAO

MACRO 8 . 3
MACRO 8 . 2

MACLIB
MACLIB

I F
INIT
INST4
INVERTB
IVCCH
I VQMO

MACRO
MISC
MACRO
MACRO
SUBR
SUBR

8 . 7
G
8 . 8
B . 5
F . 2
F . 2

M A C L I B
C S I N I T
Y A C L I B
M A C L I B
C SRFAO
CSREAO

CSSWYM
CSEVAL

L
L I S T

REG
F SUBR

I
F . l

M A I N -
MAKSTRNG
MATCM
MEMNXT
YEMSIZ
MFMUSE
Ml
M2

M I S C
SUBR
MACRO
SWYM
SUYM
SWYM
F I E L O
F I E L D

D . l
F . 2
8 . 3
E . 4
E . 4
E . 4
E . 2
E . 2

CSMAIN
CSREAD
MACLIB
C SSWYM
CSSWYM
CSSUYM
C SSWYM
CSSWYM

238

SWYH M N E M O N I C S S O R T E D A L P H A B E T I C A L L Y PAGE 3

MNEHON IC

N
N I L
NLENGTH
NOT
NULL
NULL
NUMAT
NUMATVAL

OBLIST
ORX

P
‘98CLOSE
PBHD
PBOPEN
POP
POPN
PRATBAD
P R I N T
PRINTER
PRINl
PRLNG
PRPEND
PRPT
PUSH
PUTBYTE
PUTCH
PUTPROP
PUTSTR

QCHAR
QUOTE

RDAT
RDCHAR
RDCLASS
RDCOL
RDEND
RDERCNT

a RDERLOC
RDERMS
RDERNO
RDERR
RDERRCNT
R D L I S T
RDLNG
RbSE
RDSTAT
RD SUPCTR
READ
READCH
REMPROP
RESET6

C L A S S

REG
STRUC
CAL
MACRO
MACRO
SUBR
SWYM
SWYM

STRUC
MACRO

REG
CAL
SWYM
CAL
MACRO
MACRO
SWYM
SUBR
SWYM
SUBR
SWYY
SWYM
SWYM
MACRO
CAL
MISC
SUBR
CAL

MACRO
F SUBR

CAL
SWYM
SWYM
SUYM
SWYM
SWYH
SWYM
SWYM
SWYM
CAL
CAL
CAL
SWYM
CAL
SWYM
SWYM
SUt3R
SUBR
SUBR
MACRO

APP

I

ii
0 . 7
8.1
F . l
M
M

H
0.7

t
C
8 . 4
0.4
F . 3
F.3

M
F . 3
F . 3
f . 3
F . 3
0 . 4
C
G
F . 4
G

8 . 3
F . 4

C
C
C
C
C
C

E
C
C
C
C
C
C
C
C
F . 2
f . 2
F . 4
8 . 5

C SECT

CSSUYM
CSFREEST,
C SEVAL
MACL I5
M A C L I B
c SSUBS
CSSWYM
CSSWYM

C SFREEST
M A C L I B

CSSWYM
CSREAD
CSSWYM
CSREAD
M A C L I B
M A C L I B
CSSWYM
C S P R I N T
CSSWYM
CSPRTNT
CSSWYY
CSSUYM
CSSWYM
MACL I6
CSREAD
CSSWYM
CSEVAL
C S P R I N T

MACLIB
CSEVAL

C SREAD
CSSWYM
CSSWYH
CSSWYM
CSSWYM
CSSWYM
CSSWYM
CSSWYM
CSSWYM
CSREAD
CSREAD
CSREAD
CSSWYM
CSREAD
CSSWYM
CSSWYM
C SREAD
CSREAD
C SEVAL
M A C L I B

COMMENTS

P O I N T S A T N I L
A T O M W I T H V A L U E - N I L
G E T L E N G T H O F L I S T
N E G A T E P R E D I C A T E M A C R O T E S T
? ARG = NIL
S T U T T E R R T N F U R - I S A R G = N I L ?
W O R K A R E A FOR P R I N T I N G N U M B E R S
W O R K A R E A F O R P R I N T I N G N U M B E R S

A T O M W I T H V A L U E - L I S T OF A L L ATOMS
COMBINE TWO PREDS

S T A C K P O I N T E R
F I N I S H C H A R S T R I N G A T O M
H O L D S A D R S O F A t - H D D U R I N G PUTBYtE
S T A R T M A K I N G C H A R S T R I N G A T O M
G E T S T O P OFF S T A C K - R E D U C E S S T A C K
R E D U C E S S T A C K N TtMES
A R E A F O R P R I N G I N G ‘?TYPN’
P R I N T S ITS A R G A N D G O E S T O N F X T L I N
D C B F O R P R I N T I N G
P R I N T S I T S A R G
L E N G T H O F P R I N T L I N E
W H E R E T O P U T L A S T P R I N T C H A R
W H E R E T O P U T N X T P R I N T C H A R
P U T S A R G A T O P S T A C K
P U T R Y T E I N T O C H A R S T R I N G
P U T C H A R A C T E R I N P R I N T L I N E
S T O R E S P R O P E R T I E S U N ATOMS P R O P L S T
P R I N T A C H A R A C T E R S T R I N G A T O M

C R E A T E S A C H A R O B J F O R ‘4’ ‘I’ ‘9)
R E T U R N S I T S A R G U N E V A L U A T E D

READ AN ATOM
L A S T C H A R R E A D
C L A S S O F L A S T C H A R A C T E R R E A D
L O C O F L A S T W O R D R E A D
L O C O F L A S T C H A R T O R E A D
P R I N T # PARENS C R E A T E D B E F O R E ‘B’
S Y N T A X E R R O R C A R D C O L U M N INDftATfON
R E A D S Y N T A X E R R O R M E S S A G E A R E A
SYNTAX ERROR NUMBER
tNDICATE tNPUT S Y N T A X ERROR
S Y N T A X E R R - P A R E N S MADE B E F O R E @>’
R E A D A L I S T
NJJMRER O F C H A R R E A D F R O M E A C H C A R D
R E A D A N S - E X P R E S S I O N
R E A D R O U T I N E S S T A T U S I N F O B Y T E
C O U N T # PARENS C R E A T E D B E F O R E 0’
R E A D S O N E EXPRESSfDN F R O M C A R D
READS ONE CHARACTER FROM CARD
R E M O V E S P R O P E R T I E S F R O M P-LIST
T U R N O F F B I T

239

SWYM M N E M O N I C S S O R T E D A L P H A B E T I C A L L Y P A G E 4

MNEMONIC

RET
RPLCEL
RPLF
RPLHD
RPLTOP
RPLTOPN
RST
R S T
RSTAl
R S T A 2
R STA3
RSTMAK
R S T T
RSTTT

s .-
SASSOC
SETBIT
S T
STAKN
S T I M E
S T I V C C H
S T I V Q M O
STRAT
SUB
SUBR
SUBR
SWEAR
SUERROR
SUYM
SLJYMSAVE
SYSFOO

T
T
T A I L
T A K 2
T E R P R I
T E S T 6
THEN
TIME
TOP
TOPN
TRUE
T T
T T I M E
TVEND
TVMAK
TVSTART

U N B I N D
UNBOUND

VALUE
VCHAROBS

CLASS

?tAC.RQ
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
SUBR
MISC
HISC
MISC
MACRO
MISC
M I S C

REG I CSSWYM
SUBR F . 4 CSEVAL
MACRO 0.5 M A C L I B
SWYW M CSSUYM
CAL G c s s u a s
CAL G --. c s s u a s
SUBR F . 2 CSREAD
SUBR F . 2 CSREAD
MACRO 8 . 3 M A C L I B
MACRO 0.6 M A C L I B
MACRO B . 3 M A C L I B
STRUC 0 . 2 CSFREEST
MACRO a.8 HACL I B
M I S C G CSSWYY
SUYM M CSSWYM
SWYM w CSSWYM
SWYM P CSSWYM

STRUC
REG
MACRO
SUBR
SUBR
MACRO
MACRO
SWYM
MACRO
MACRO
M I S C
REG
CAL
SWYM
MACRO
SWYM

CAL
STRUC

MACRO
SUYM

APP

8 . 6
8 . 2
8 . 1
6.2
a . 4
0 . 4
8 . 1
F.1
a . 1
a . 1
8 . 1
a. 1
a . 1
8 . 1

H
I
a . 2
F . l
F . 3
8 . 5
8.7
M
0 . 4
a . 4
G
I
G
M
6 . 6
M

0 . 3
H

a . 3
M

C SECT

PACLIB
M A C L I B
MACL I B
MACLIB
M A C L I B
M A C L I B
MACLXB
c SSUBS
C SSWYM
CSSWYM
CSSWYM
M A C L I B
CSSYYM
CSSUYM

CSFREEST
CSSWYM
M A C L I B
CSSUBS
C S P R I N T
M A C L I B
MACL I a
CSSWYM
MACL I B
M A C L I B
CSSUYH
C SSWYM
c SSUBS
CSSWYM
M A C L I B
CSSWYM

CSEVAL
C SFREEST

MACLIE
CSSWYM

COMMENTS

S U B R O U T I N E R E T U R N
R E P L A C E S A T O M C E L L
R E P L A C E S FfRST P T R O F LiST
R E P L A C E S H E A D O F A T O M
R E P L A C E T O P I T E M O N S T A C K
R E P L A C E N T H I T E M O F S T A C K
A L L B U T 1Si E L E M E N T O F L I S T
S T U T T E R R T N F O R - R E S T O F L I S T
RSTTAIJ. BAL’EDTO B Y R S T M A C R O
RSTIA2J. B A L ’ E D T O B Y R S T M A C R O
RST(A3). B A L ’ E D T O B Y R S T MIICRO
M A K E R O U T I N E S F O R ‘ R S T ’ T O B A L T O
RST(T1. B A L ’ E D T O B Y H S T M A C R O
RSTtTT). B A L ’ E D T O B Y R S T M A C R O

BASE REG FOR CSSWYM
F I N D S A R C O N A N ASSilCIATION L I S T
T U R N O N B I T
P O I N T E R A T T
G E T F R E E S T O R A G E B L O C K
S T A R T T I M E R
S E T S C U R R E N T I N P U T C H A R
SETS QUOTE MODE
C R E A T E S S T R I N G A T O M S T R U C (FREEST)
S U B R O U T I N E E N T R Y
C R E A T E S A N A T O M W I T H SUBR P R O P E R T Y
I N D I C A T O R F O R A S S E M B L E D F U N C T I O N S
SYSTEM ERROR
SYSTEM ERROR
F I R S T L O C I N C S S U Y M
S A V E A R E A F O R C A L L I N G O S
S A V E A R E A F O R S A V I N G O S L I M K R E G S

A T O M W I T H V A L U E - T
TEYR (E V E N , N E X T T O TT)
L O A D S P T R A T T A I L O F A T O M
M A K E S L I S T W/ FST ARGl A N D R S T A R G Z
M O V E S P R I N T E R T O N E X T L I N E
T E S T B I T
CON0 - E N D P R E D : S T A R T T R U E P A R T
T I M E S E T ’ A T L A S T S T I M E
G E T S T O P O F S T A C K - B U T L E A V E S I T
G E T S N T H I T E M O N S T A C K
L Alrf; R E T ; (B R A N C H T O YT)
TEMP (O D D , N E X T T O T)
H O W L O N G S I N C E L A S T STIME
L A B E L O F L A S T E N T R Y I N T V T A B L E
M A K E A T R A N S F E R V E C T O R F O R C A L
L A B E L O F S T A R T O F T R A N S V E C T T A B L E

R E S T O R E O L D B I N D I N G S O F A R G A T O M S
R E C O G N I Z E D B Y E V A L A S E R R O R V A L U E

CRFATES A N A T O M W I T H A V A L U E
P O I N T E R A T C H A R O B J E C T S L I S T

S U Y M M N E M O N I C S S O R T E D A L P H A B E T I C A L L Y

MNEMONIC C L A S S APP C S E C T COMYENTS

VF PROP S SUYM M CSSUYM P O I N T E R A l F P R O P S S T R U C T U R E
VOBL I ST SWYM M CSSWYM POIYTER A T A L L UBJEtfS L I S T
VUNBND SUYM Y CSSWYM P O I N T E R - A T S P E C I A L ‘ U N B O U N D ’

XB M A C R O 8.6 MACLIB T R A N S F E R I N T O MIDDLE OF SURROUTINE

WMlM2
#PO
#xXxX

SUYM E . 4 C S S W Y M
SUYM Y CSSWYM
SWYM M CSSWYM

USED BY GC TO ‘OR’ IN Ml & M2 B I T S
ADRS OF BEGINNING OF STACK
T R A N S F E P V E C T O R , A D K S O F R T N X X X X

PAGE 5

-..

241

MNEMONIC

ATCOL
B I N D E R Y
COLLECT
COLX
EVGET
E V L I S
GETCH
NLENGTH
PBCLOSE
PBOPEN
PUTBYTE
PUTSTR
RDAT
RDERR
RDERRCNT
R D L I S T
ROSE
STAKN
S T I M E
TTIME
LJNB I ND

c SSUBS
CSSWYM
cs2250

C SEVAL
C SFREEST
CSGC
C S I N I T
CSMA IN
C SPDL
CSPR INT
CSREAD

SWYM MNEMONICS SORTED BY CLASS

C L A S S A P P C S E C T

CAL E . 3 C S G C
CAL 0 . 3 C S E V A L
CAL E . 3 C S G C
CAL E . 3 C S G C
CAL 0 . 3 C S E V A L
CAL 0 . 3 C S E V A L
CAL C CSREAD
CAL G CSEVAL
CAL C CSREAD
CAL C CSREAD
CAL C CSREAD
CAL G C S P R I N T
CAL C C SREAD
CAL C C SREAD
CAL C CSREAD
CAL C CSREAD
CAL C CSREAD
CAL G c s s u a s
CAL G c s s u a s
CAL G c SSUBS
CAL D.3 C S E V A L

C S E C T C l CSSU0S
C S E C T M CSSUYM
C S E C T 0 CS2250

C S E C T 0 CSEVAL
C S E C T H CSFREEST
C S E C T E C SGC
C S E C T 0 C S I N I T
C S E C T 0 CSMAIN
C S E C T 0 CSPDL
C S E C T 0 C S P R I N T
C S E C T C CSREAD

CELFNC F I E L D M CSSWYM
CELREL F I E L D M CSSWYM
CELVAL F I E L D M CSSWYM
M l F I E L D E . 2 C S S W Y M
M2 F I E L D E . 2 C S S U Y M

CON0
L I S T
QUOTE

AND
ATOM
BCMAC
017
8 I-TTBLMK
CAL
CELL
CHAR
CHTBL
ELSE
END IF

FSUBR
F SUBR
FSUBR

MACRO B . 7
MACRO a . 1
MACRO a . 7
MACRO B. 5
MACRO 5 . 5
MACRO 8 . 6
MACRO 8 . 2
MACRO 6 . 3
MACRO 5 . 8
MACRO 8 . 7
MACRO 8 . 7

F . 4
f . l
F . 4

CSEVAL
CSEVAL
C SEVAL

M A C L I B
M A C L I B
MACLIB
M A C L I B
MACL IB
M A C L I B
MACLIS
MACLI8
MACLIB
MACLIB
MACLIB

COMMENTS

C O L L E C T S A N A T O M
B I N D A R G A T O M S TO T H E I R V A L U E S
CREITES ~‘MAGE 0~ ARG I N N E W CORE
C H E C K S A N D C O L L E C T S O N E P O I N T E R
G E T F U N C T I O N D E F I N I T I O N O F A T O M
E V A L U A T E L I S T O F E X P R E S S I O N S
GET A CHARACTER
G E T L E N G T H O F L I S T
F1NISH C H A R S T R I N G A T O M
S T A R T M A K I N G C H A R S T R I N G A T O M
P U T B Y T E I N T O C H A R S T R I N G
P R I N T A C H A R A C T E R S T R I N G A T O M
READ AN ATOM
I N D I C A T E I N P U T S Y N T A X E R R O R
S Y N T A X ERR-PARENS M A D E B E F O R E 0’
R E A D A L I S T
R E A D A N S - E X P R E S S I O N
G E T F R E E S T O R A G E B L O C K
S T A R T T I M E R
H O W L O N G S I N C E L A S T S T I M E
R E S T O R E O L D B I N D I N G S O F A R G A T O M S

I N T E R P R E T E R A N D R E L A T E D R O U T I N E S
F R E E S T O R A G E , INCL I N I T I A L S T R U C T S
GARBAGE COLLECTOK
INITI4LIZATION
M A I N S T U T T E R L O O P
STACK
P R I N T ROLJTINES
R E A D R O U T I N E S
B A S I C S U B R O U T I N E S
G L O B A L I N F O R M A T I O N F O R S U Y M R T N S
2 2 5 0 E X P E R I M A N T A L I N T E R F A C E

ATCIM HEAD-FUNC D E F T Y P E B I T S
A T O M H E A D - C E L L I S R E L O C A T A B L E
ATOY H E A D - C E L L H A S VALlJEtNOT FNC)
G A R B C O L M A R K I N G B I T
G A R B C O L M A R K I N G B I T

C O N D I T I O N A L E X P R E S S I O N E V A L U A T E D
M A K E S A L I S T O F T H E A R C E X P R E S S I O N S
R E T U R N S I T S A R G U N E V A L U A T E D

C O M B I N E T W O PREDS
? I S A R G A N A T O M
M A K E A B R CONDITLON I N S T R U C T I O N
I D E N T I F Y M N E M O N I C W I T H B I T T N W O R D
M A K E A T A B L E F O R ‘BIT’MACRO
S U B R O U T I N E C A L L
L O A D S A T O M C E L L I N T O R E G
C R E A T E S 4 C H A R O B J E C T A T O M
M A K E A C H A R A C T E R T A B L E (FOR TR)
CON0 - E N D T R U E ; S T A R T F A L S E P A R T
C O N D - E N D F A L S E ; E N D C O N D I T I O N A L

P A G E 6

242

S W Y M M N E M O N I C S S O R T E D B Y C L A S S PAGE 7

MNEMONIC

EQ
EVCH
FINDBIT
F IXUP
F S T
F SUBR
GCPUT
GETNAME
GETNUM
GOT13
HASH
HEAD
I F
I NST4

. I NVERTB
MATOM
NOT
NULL
ORX
POP
POPN
PUSH
QCHAR
RESET0
RET
RPLCEL
RPLF
R PLHD
RPLTOP
RPLTOPN
RST
RSTMAK
SETBIT
STRAT
SUB
SUBR
SWEAR
T A I L
TEST0
THEN
TOP

- TOPN
TYMAK
VALUE
x8

AT
ATCO
ATxl
CHOKE
F A L S E
FINISH
GCABEND
GCPUT
INIT

CLASS APP

MACRO 5 . 1 M A C L I B
MACRO 5 . 3 H A C L I B
MACRO B. 5‘ M A C L I B
MACRO 8 . 8 MACL I0
MACRO 8 . 1 M A C L I B
MACRO 0 . 3 M A C L I B
MACRO 8 . 8 M A C L I B
MACRO 8 . 2 M A C L I B
MACRO 8 . 2 M A C L I B
MACRO 8 . 7 MACL IB
MACRO 8 . 3 M A C L I B
MACRO 8 . 2 M A C L I B
MACRO 0.7 M A C L I B
MACRO 5 . 8 M A C L I B
MACRO 8 . 5 M A C L I B
MACRO 5 . 3 M A C L I B
MACRO 8 . 7 M A C L I B
MACRO 8 . 1 M A C L I R
MACRO 8 . 7 M A C L I B
MACRO 8 . 4 M A C L I B
MACRO - 8 . 4 MACL IB
MACRO 8 . 4 M A C L I B
MACRO 8 . 3 M A C L I B
MACRO 5 . 5 MACL 10
MACRO 6 . 6 M A C L I B
MACRO 8 . 2 M A C L I B
MACRO 8 . 1 MACLIR
MACRO 8.2)JACL I B
MACRO 8 . 4 M A C L I B
MACRO 8 . 4 M A C L I B
MACRO 8 . 1 M A C L I B
MACRO B. 1 M A C L I B
MACRO 0 . 5 MACL10
MACRO 8 . 3 M A C L I B
MACRO 8 . 6 M A C L I B
MACRO 8 . 3 M A C L I B
MACRO 8 . 8 MACL I5
MACRO 5 . 2 M A C L I B
MACRO 5 . 5 M A C L I B
MACRO 8 . 7 M A C L I B
MACRO 8 . 4 M A C L I B
MACRO 8 . 4 MACL IB
MACRO 8 . 6 M A C L I B
MACRO 8 . 3 M A C L I B
MACRO 8.6 MACL IB

MISC
MISC
MISC
MISC
MISC
MISC
MISC
MISC
MISC

M
E . 3
E . 3
E . 3
G
G

2;
G

CSECT

CSSWYM
CSGC
C SGC
CSGC
CSSUYM
CSMAIN
CSGC
C SGC
CSINIT

COMMENTS

3 ARGl = ARG2dTESJS TUCI P O I N T E R S)
G E T S ARJTH V A L O F E B C D I C B I T S
F I N D B I T M N E M O N I C F O R B Y T E - I N - W O R D
G C - M A K E E N T R Y I N FIXUP T A B L E
F I R S T E L E M E N T O F L I S T
C R E A T E S A N A T O M W I T H FSURR P R O P
GC-PUT WORD TO NEW CORE
L O A D S P T R A T P N A M E C H R S T R A T M
G E T V A L U E O F N U M C H A R S T R A T O M
RRANCH
H A S H C O D E A N IDENT F O R OBLIST
LOADS HEAD OF ATOM
CON0 - S T A R T P R E D I C A T E
4SSEMBLE I N S T R U C T I O N WO/ A L I G N E R R
C H A N G E B I T
C R E A T E S A N A T O M S T R U C (IN CSFREEST)
N E G A T E P R E D I C A T E M A C R O T E S T
3 ARG = NIL
C O M B I N E TYO P R E D S
G E T S T Q P O F F S T A C K - R E D U C E S S T A C K
R E D U C F S S T A C K N T I M E S
P U T S A R G A T O P S T A C K
C R E A T E S A C H A R O B J F O R ‘f’ l)I a.1

T U R N O F F B I T
S U B R O U T I N E R E T U R N
R E P L A C E S A T O M C E L L
R E P L A C E S F I R S T PJR O F L I S T
R E P L A C E S H E A D O F ATOH
R E P L A C E T O P I T E M O N S T A C K
R E P L A C E N T H I T E M O F S T A C K
A L L B U T 1ST E L E M E N T O F L I S T
M A K E R O U T I N E S F U R ‘ R S T ’ T O B A L T O
T U R N O N B I T
C R E A T E S S T R I N G A T O M S T R U C (F R E E S T)
S U B R O U T I N E E N T R Y
C R E A T E S A N A T O M riITH S U B R P R O P E R T Y
SYSTEM ERROR
L O A D S P T R A T T A I L O F A T O M
T E S T B I T
CON0 - E N D P R E D ; S T A R T T R U E P A R T
G E T S T O P O F S T A C K - B U T L E A V E S I T
G E T S N T H I T E H O N S J A C K
M A K E A T R A N S F E R V E C T O R F O R C A L
C R E A T E S A N A T O M W I T H A V A L U E
T R A N S F E R I N T O M I D D L E O F S U B R O U T I N E

E Q U A T E D T O A T O M UFFSET(61
P A R T O F A T C O L F O R T Y P E 0 A T O M S
P A R T O F A T C O L F O R T Y P E 1 A T O M S
R R A N C H T O I F S T O R E FXHAUSTED, ABEND
L Al,NtL: R E T : (B R A N C H T O IT1
C L O S E F I L E S A N D E X I T
B A L T O I F D A T A S J R U C J U R E E R R , ABEND
B A L ’ E D T O B Y G C P U T M A C R O
S E T U P SUYM R E G S A N D O P E N F I L E S

243

SWYM MNEMONICS SORTED BY CLASS P A G E 8

MNEMONIC

M A I N
PUTCH
RSTAl
RSTAZ

I

R STA3
RSTT
RSTTT
SWERROR
TRUE

A l
A2
A 3
A 4
A5
A b
R
c 4
F
L
N
P
S
T
TT

REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG

CHAROR S STRUC
EXPR STRUC
FEXPR STRUC
FPROPS STRUC
FSUBR STRUC
N I L STRUC
OBLI ST STRUC
SUBR STQUC
T STRUC
UNROUND STRUC

4TOM
RELL
EJECT
EO
ERROR
EVAL
EXPLODE
FST
GC
GET
GETOBJ
I V C C H
I VQMO
MAKSTRNG
NULL
P R I N T
PRINl
PUTPROP

CLASS

M I S C
MISC
MISC
MISC
MISC
MISC
HISC
MISC
MISC

SURR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SURR
SUBR
SUBR
SUBR
SUBQ
SUBR
SUBR
SUBR
SUBR

A P P C S E C T

0 . 1 C S M A I N
G CSSWYM
6 . 1 C S S W Y M
8 . 1 C S S U Y M
R . l C S S U Y M
B.1 C S S W Y M
B.1 C S S U Y M
G CSSUYM
G CSSUYM

I CSSWYM
I CSSWYM
I CSSUYM

:
C SSUYM
CSSUYM

I CSSUYM
I CSSUYM
I CSSUYM
I CSSUYM
I CSSUYM
I. . C SSUYM
I CSSUYM
I CSSUYM
I CSSUYM
I C SSUYM

H CSFREEST
0 . 2 C S F R E E S T
0 . 2 C S F R E E S T
H C SFREEST
0 . 2 C S F R E E S T
H CSFREEST
H CSFREEST
0 . 2 C S F R E E S T
H CSFREEST
H CSFREEST

f . l C S S U B S
F . 5 cs22so
F . 3 C S P R I N T
F . l C S S U B S
F . 5 C S S U B S
0 . 3 C S E V A L
F . 3 C S E V A L
f . l C S S U B S
E . 3 C S G C
F . 4 C S F V A L
f . 2 C S R E A D
F . 2 C S R E A D
F . 2 C S Q E A D
F . 2 C S R E A D
F . l C S S U B S
F . 3 C S P R I N T
F . 3 C S P R I N T
F . 4 ~SEVAL

COMMENTS

M A I N L O O P O f S T U T T E R I N T E R P R E T E R
P U T C H A R A C T E R I N P R I N T LINF
RSTtAl):‘ B A L ’ E D T O BY R S T M A C R O
RSTLAZ). B A L ’ E D T O BY R S T M A C R O
RST(A3). B A L ’ E D T O BY R S T M A C R O
RSTLT). B A L ’ E D T O B Y R S T M A C R O
RSTLTTJ. B A L ’ E D T O B Y R S T M A C R O
SYSTEM ERROR
L A1.T: R E T ; (B R A N C H T O I T)

A R G U M E N T R E G I S T E R & R E S U L T R E G I S T E R
A R G U M E N T R E G I S T E R
A R G U M E N T R E G I S T E R
ARGUMENT REGISTER
A R G U M E N T R E G I S T E R
ARGUMENT REGISTER
R A S E R E G F O R A L L R O U T N S
O D D R E G I S T E R C O N T A I N I N G F’4’
F R E E SlORAGE P O I N T E R
L I N K A G E R E G (R E T U R N A D D R E S S 1
P O I N T S A T N I L
S T A C K P O I N T E R
R A S E R E G F O R C S S U Y M
TEMP (FVEN, N E X T T O TT)
T E M P (O D D , N E X T T O T)

A T O M W I T H V A L U E - L I S T O F A L L C H A R S
I N D I C A T O R F O R S - E X P R FUNCTXONS
I N D I C A T O R F O R S - E X P S P E C I A L F N C T S
S T R U C T I J R E : ((SUBR . 1) (FSUBR
I N D I C A T O R F O R A S S E M B L E D S P E C I A L FNC
A T O M W I T H V A L U E - N I L
A T O M U I T H V A L U E - L I S T O F A L L A T O M S
I N D I C A T O R F O R A S S E M B L E D F U N C T I O N S
A T O M UITH V A L U E - T
R E C O G N I Z E D B Y E V A L A S E R R O R V A L U E

S T U T T E R R O U T I N E F O R - I S A R G A T O M ?
R I N G S B E L L O N 2 2 5 0
M O V E S P R I N T E R T O N E X T P A G E
S T U T T E R R T N FOR-ARGL = ARGZ?
W R I T E S M E S S A G E A N D G O E S T O T O P LVL
S T U T T E R I N T R P R T R E X P R S N E V A L U A T O R
C O N V E R T S A T O M T O L I S T C H A R S I N P N A M
S T U T T E R R T N F O R - 1ST ELEM O F L I S T
CONTROLS GARBAGE C O L L E C T I O N
F I N D S P R O P E R T Y O F A N A T O M
F I N D S SYMBOL fOR C H A R S T R I N G A R G
R E T U R N S N E X T I N P U T C H A R
R E T U R N S S T A T U S O F Q U O T E M O D E
M A K E S C H R S T R A T M F R O M L I S T O F C H R S
S T U T T E R R T N F O R - IS A R G = N I L ?
P R I N T S ITS A R G A N D G O E S T O N E X T L I N
P R I N T S I T S A R G
S T O R E S P R O P E R T I E S O N A T O M S P R O P L S T

244

S U Y M M N E M O N I C S S O R T E D B Y C L A S S P A G E 9

MNEMONIC

READ
R EADCH
REHPROP
RST
SASSOC
S T I V C C H
STIVOMO
TAKZ
TERPRl

ATAMT
C ARDROR
DUBUORK
FEND

.GCABAD
G C T I M E
MEMNXT
MEClSIt
MEMUSE
NUMAT
NUMATVAL
PBHD
PRATBAO
PRINTER
PRLNG
PRPEND
PRPT
RDCHAR
ROCLASS
RDCOL
RDEND
RDERCNT
RDERLOC
RDERHS
RDERNO
RDLNG
RDSTAT
ROSUPCTR
ST
SUYH
SUYMSAVE

. SYSFDO
T I M E
TVEND
TVSTART
VCHAROBS
VFPROPS
V O B L I S T
VUNBND
WMlM2
P O
IXXXX

C L A S S A P P C S E C T

SUBR F . 2 C S R E A D
SUBR F . 2 C S R E A D
SUBR F . 4 C S E V A L
SUBR F . 1 C S S U B S
SUBR F . 4 C S E V A L
SUBR F . 2 C S R E A D
SUBR F . 2 C S R E A D
SUBR F.1 C S S U B S
SURR F . 3 C S P R I N T

surf4 c CSSkYM
SUYY M CSSUYM
SUYM M CSSUYM
SUYM E . 4 C S S U Y M
SUYM E . 4 CSSUYM
SUYM E . 4 C S S U Y M
SUYM E . 4 CSSUYM
SUYM E . 4 C S S U Y M
SUYM E . 4 C S S W Y M
SUYM M CSSUYM
S U Y M -M CSSUYM
SUYM C CSSUYM
SUYM F . 3 CSSUYM
SUYH M CSSUYM
SUYM F . 3 C S S U Y M
SUYM F . 3 C S S U Y M
SUYM F . 3 C S S U Y M
SUYM C CSSUYM
SUYM C CSSUYM
SUYM C CSSUYM
SUYM C CSSUYM
SWYM C CSSUYM
SUYM C CSSUYM
SUYM C CSSUYM
SWYM c CSSUYM
SUYM c CSSWYM
SUYM C CSSUYM
SWYM C CSSUYM
SUYM M CSSUYM
SUYM M CSSUYM
SUYM M CSSWYM
SUYM M CSSUYM
SUYM H CSSUYM
SUYM M CSSWYM
SWYM M CSSWYM
SUYM M CSSUYM
SWYM M CSSUYM
SUYM M C SSUYM
SWYM M CSSUYY
SUYM E.4 C S S U Y M
SWYH n CSSWYM
SUYM M CSSUYM

COMMENTS

R E A D S O N E E X P R E S S I O N F R O M C A R D
READS ONE CHARACTER FROM CARD
R E M O V E S P R O P E R T I E S F R O M P - L I S T
S T U T T E R R T N F O R - R E S T O F L I S T
FINOS A R G O N A N A S S O C I A T I O N L I S T
S E T S C U R R E N T I N P U T C H A R
SETS OUOTE MODE
M A K E S L I S T W/ F S T ARGl A N D R S T A R G 2
M O V E S P R I N T E R T O N E X T L I N E

A T O M O F F S E T (41
D C B F O R R E A D I N G C A R D S
DOUBLE WORD WORK AREA
P O I N T S A T E N D O F F R E E S O T R
C C ARENDS FOR BAD D A T A S T R U C T U R E
G C C O M P U T E S I T S T I M E
A L T E R N A T E F R E E S T O R
SIZF O F F R E E S T O R A G E
F R E E S T O R I N U S E
W O R K A R E A F O R P R I N T I N G N U M B E R S
W O R K A R E A F O R P R I N T I N G N U M B E R S
H O L D S A D R S O f A T - H O D U R I N G PUTBYTE
A R E A F O R P R I N G I N G ‘?TYPN’
DC6 F O R P R I N T I N G
L E N G T H O F P R I N T L I N E
W H E R E T O P U T L A S T P R I N T C H A R
W H E R E T O P U T N X T P R I N T C H A R
L A S T C H A R R E A D
C L A S S O F L A S T C H A R A C T E R R E A D
LOC Of LAST W O R D R E A D
L O C O F L A S T C H A R T O R E A D
P R I N T # PARENS C R E A T E D B E F O R E 0’
S Y N T A X E R R O R C A R D C O L U M N I N D I C A T I O N
R E A D S Y N T A X E R R O R M E S S A G E A R E A
SYNTAX ERROR NUMBER
NUMBER OF CHAR READ FROM EACH CARD
R E A D R O U T I N E S S T A T U S I N F O B Y T E
C O U N T I) PARENS C R E A T E D B E F O R E 0’
P O I N T E R A T T
F I R S T L O C I N C S S U Y M
S A V E A R E A F O R C A L L I N G O S
S A V E A R E A F O R S A V I N G O S LIHK R E G S
T I M E S E T A T L A S T STIME
L A B E L O F L A S T E N T R Y I N T V T A B L E
L A B E L O F S T A R T O F T R A N S V E C T T A B L E
P O I N T E R A T C H A R O B J E C T S L I S T
P O I N T E R A T F P R O P S S T R U C T U R E
P O I N T E R A T A L L O B J E C T S L I S T
P O I N T E R A T S P E C I A L ‘ U N B O U N D ’
USED BY GG TO ‘OR’ IN Ml E M2 BITS
A D R S O F B E G I N N I N G O F S T A C K
T R A N S F E R VECTOR* A O R S O f R T N XXX%

245

S U Y M M N E M O N I C S S O R T E D B Y A P P E N D I X P A G E 1 0

MNEMONIC CLASS

ATOM
EO
F S T
NULL
RPLF
RST
RSTAl
RSTAZ
R S T A 3
RSTMAK
RSTT
R S T T T
CELL
GETNAME
GETNUM
HEAD
RPLC EL
RPLHD
T A I L
CHAR
EVCH
F SUBR
HASH
YATOM
OCHAR
STRAT
SUBR
VALUE
POP
POPN
PUSH
RPLTOP
RPLTOPN
TOP
TOPN
BIT
6 ITTBLHK
F I N D R I T
I NVFR TB
RESET6
SETBIT

- TEST6
CAL
RET
SUB
TVMAK
X6
AND
BCHAC
E L S E
END IF
GOTQ
I F
NOT
ORX

MACRO 0 . 1
MACRO 0 . 1
MACRO 6 . 1
MACRO 0.1
MACRO 0.1
MACRO 0.1
MISC 6 . 1
YISC 0.1
MISC 8 . 1
MACRO 6 . 1
M I S C 0 . 1
HISC 8.1
MACRO 0.2
MACRO 0 . 2
MACRO 0 . 2
MACRO 5 . 2
MACRO 8 . 2
MACRO 8 . 2
MACRO 8 . 2
MACRO 0 . 3
MACRO B<3
MACRO 0 . 3
MACRO 0 . 3
MACRO 0 . 3
MACRO 0 . 3
MACRO 8 . 3
MACRO 8 . 3
MACRO 8 . 3
MACRO 0 . 4
MACRO 0 . 4
MACRO 0.4
MACRO 0 . 4
MACRO 8 . 4
MACRO 8 . 4
MACRO 8 . 4
MACRO 8 . 5
MACRO 8 . 5
MACRO 8 . 5
MACRO 0 . 5
MACRO 8 . 5
MACRO 0.5
MACRO 6.5
MACRO 0.6
MACRO 8 . 4
MACRO 8.6
MACRO 0.6
MACRO 0 . 6
MACRO 8 . 7
MACRO 0.7
MACRO 8 . 7
MACRO 6 . 7
MACRO 6.7
MACRO 0 . 7
MACRO 6 . 7
MACRO 0.7

APP CSECT

M A C L I B
MACLIB
M A C L I B
M A C L I B
M A C L I B
M A C L I B
CSSUYM
CSSWYM
CSSUYM
M A C L I B
CSSUYM
C SSUYM
MACL 10
Y A C L I B
HACLIB
M A C L I B
M A C L I B
M A C L I B
M A C L I B
M A C L I B
M A C L I B
MACLI 6
MACL I6
M A C L I B
M A C L I B
M A C L I B
MACLIR
FACL 16
M A C L I B
PACLIB
M A C L I B
M A C L I B
MACL 16
MACLI 6
M A C L I B
MACLIB
M A C L I B
MACL 10
M A C L I B
M A C L I B
M A C L I B
M A C L I B
MACLIB
MAC1 10
CACLIB
M A C L I B
M A C L I B
M A C L I B
MACLIB
M A C L I B
MACL 16
MACL 16
M A C L I B
MACLI 0
YACLIB

COMMENTS

? IS A R G A N A T O M
? ARGl = ARGZlTESTS T W O P O I N T E R S)
F I R S T ELE-idENT O F L I S T
3 ARG = NIL
R E P L A C E S F I R S T P T R O F L I S T
A L L B U T 1ST E L E M E N T O F L I S T
RST(A11. B A L ’ E D T O B Y R S T M A C R O
RST(A2). B A L ’ E D T O B Y R S T M A C R O
RSTtA3). B A L ’ E D T O B Y R S T M A C R O
M A K E R O U T I N E S F O R ‘ R S T ’ T O B A L T O
RST(T1. B A L ’ E D T O B Y R S T M A C R O
RSTtTT). B A L ’ E D T O B Y R S T M A C R O
L O A D S A T O M C E L L I N T O R E G
L O A D S P T R A T P N A M E C H R S T R A T M
G E T V A L U E O F N U M C H A R S T R A T O M
L O A D S H E A D O F A T O M
R E P L A C E S A T O M C E L L
R E P L A C E S H E A D O F A T O M
L O A D S P T R A T T A I L OF A T O M
CRE4TES A CHAR O B J E C T A T O M
G E T S ARtTH V A L O F E B C D I C B I T S
C R E A T E S A N A T O M W I T H F S U B R P R O P
H A S H C O D E A N IDENT F O R OBLTST
C R E A T E S A N A T O M S T R U C (IN CSFREEST)
C R E A T E S A C H A R O B J F O R ‘L’ 0’ ‘,’
C R E A T E S S T R I N G A T O M S T R U C (F R E E S T)
C R E A T E S A N A T O M W I T H S U B R PRDPERTY
C R E A T E S A N A T O M W I T H A V A L U E
G E T S T O P O F F S T A C K - R E D U C E S S T A C K
R E D U C E S S T A C K N T I M E S
P U T S A R G A T O P S T A C K
R E P L A C E T O P I T E M O N S T A C K
R E P L A C E N T H I T E M O F S T A C K
G E T S T O P O F S T A C K - B U T L E A V E S I T
G E T S N T H I T E M O N S T A C K
I D E N T I F Y M N E M O N I C W I T H B I T I N MORD
M A K E A T A B L E F O R ‘ B I T ’ M A C R O
F I N D B I T M N E M O N I C FUR B Y T E - I N - W O R D
C H A N G E B I T
T U R N O F F B I T
T U R N O N B I T
T E S T B I T
S U B R O U T I N E C A L L ,
SUBROUTINE R E T U R N
S U B R O U T I N E E N T R Y
M A K E A T R A N S F E R V E C T O R F O R C A L
T R A N S F E R I N T O M I D D L E O F S U B R O U T I N E
C O M B I N E TUO P R E O S
M A K E A B R C O N D I T I O N INSTRUCTlClN
CON0 - E N D T R U E ; S T A R T F A L S E P A R T
CON0 - E N D F A L S E ; E N D C O N D I T I O N A L
BRANCH
CON0 - S T A R T P R E D I C A T E
N E G A T E P R E D I C A T E M A C R O T E S T
C O M B I N E TUO P R E D S

246

SWYM M N E M O N I C S S O R T E D BY A P P E N D I X PACE 1 1

MNEMON It

THEN
CHTBL
F IXUP
GCPUT
I NST4
SUEAR

ATAMT
CSREAD
GETCH
PBCLOSE
PBHD
PBOPEN
PUTBYTE
ROAT
RDCHAR
RDCLASS
RDCUL
ROEND
RDERCNT
ROERLOC
RDERMS
RDERNO
RDERR
RDERRCNT
RDLIST
RDLNG
ROSE
RDSTAT
RD SUPCTR

CSEVAL
M A I N
E XPR
F EXPR
FSUBR
SUBR
B I N D E R Y
EVAL
EVGET
EVLIS

. U N B I N D

CSGC
Ml
M2
ATCOL
AT-CO
Art1
CHOKE
COLLECT
COLX

iiE ABEND
G.CPUT

C L A S S AP”

M A C R O 0 . 7
M A C R O 0 . 8
M A C R O 0 . 8
M A C R O 0.8
M A C R O 0 . 8
M A C R O 0 . 8

SWYM C
C S E C T C
CAL C
CAL
SUYM E
CAL C
CAL C
CAL C
SUYM C
SHYM C
SUYM C
SWYM C
SUYM C
SUYM G.
SUYM C
SWYM C
CAL C
CAL C
CAL C
SWYM C
CAL C
SUYM C
SUYM C

C S E C T D
M I S C 0 . 1
S T R U C 0 . 2
S T R U C 0 . 2
S T R U C 0 . 2
S T R U C 0 . 2
CAL 0.3
S U B R 0 . 3
CAL. 0.3
CAL 0.3
CAL 0.3

C S E C T E
F I E L D E . 2
F I E L D E . 2
CAL E.3
MISC E.3
MISC E.3
MISC E . 3
CAL E.3
CAL E.3
S U B R E . 3
MISC E.3

CSECT

M A C L I B
M A C L I B
M A C L I B
MACL I f3
M A C L I B
M A C L I B

CSSWYM
CSREAD
CSREAD
CSREAD
CSSWYM
CSREAD
CSREAO
CSREAD
CSSUYM
CSSUYM
CSSUYM
CSSWYM
CSSWYM
csswvpl
CSSUYM
CSSUYM
C SREAD
CSREAD
CSREAD
CSSUYM
CSREAD
CSSUYM
CSSUYM

CSEVAL
CSMAIN
CSFREEST
CSFREEST
CSFREEST
C SFREEST
CSEVAL
C SEVAL
CSEVAL
CSEVAL
CSEVAL

CSGC
CSSUYM
C SSUYM
CSGC
CSGC
C SGC
CSGC
CSGC
C SGC
C SGC
C SGC

M I S C E . 3 CSGC

COMMENTS

CON0 - E N D P R E D ; S T A R T T R U E P A R T
M A K E A C H A R A C T E R T A B L E (FOR TR)
G C - M A K E E N T R Y I N FIXUP T A B L E
G C - P U T WORO T O N E W C O R E
A S S E M B L E I N S T R U C T I O N UO/ A L I G N E R R
SYSTEM ERROR

A T O M O F F S E T (6)
R E A D R O U T I N E S
GET A CHARACTER
F I N I S H C H A R S T R I N G A T O M
H O L D S A D R S O F A T - H D D U R I N G PUTBYTE
START MAKING CHAR STRING A T O M
P U T B Y T E I N T O C H A R S T R I N G
READ AN ATOM
L A S T C H A R R E A D
C L A S S O F L A S T C H A R A C T E R R E A D
L O C O F L A S T W O R D R E A D
L O C O F L A S T C H A R T O R E A D
P R I N T # PARENS C R E A T E D B E F O R E 0’
S Y N T A X E R R O R C A R D C O L U M N I N O I C A T I O N
R E A D S Y N T A X E R R O R M E S S A G E A R E A
SYNTAX ERROR NUMBER
T N D I C A ’ T E I N P U T S Y N T A X E R R O R
S Y N T A X E R R - P A R E N S M A D E B E F O R E ‘>’
R E A D A L I S T
NUMBER OF CHAR READ FROM EACH CARD
R E A D A N S - E X P R E S S I O N
R E A D R O U T I N E S S T A T U S I N F O B Y T E
C O U N T cf PARENS C R E A T E D B E F O R E ‘>’

tNTERPRETER A N D R E L A T E D R O U T I N E S
M A I N L O O P O F S T U T T E R I N T E R P R F T E R
I N D I C A T O R F O R S - E X P R F U N C T I O N S
I N D I C A T O R F O R S - E X P S P E C I A L F N C T S
I N D I C A T O R F O R A S S E M B L E D S P E C I A L F N C
I N D I C A T O R F O R A S S E M B L E D F U N C T I O N S
BIN9 A R G A T O M S T O T H E I R V A L U F S
S T U T T E R I N T R P R T R E X P R S N E V A L U A T O R
G E T F U N C T I O N D E F I N I T I O N O F A T O M
EVALJJATE L I S T O F E X P R E S S I O N S
R E S T O R E O L D B I N D I N G S O F A R G A T O M S

GARBAGE COLLECTOR
G A R B C O L M A R K I N G B I T
G A R B C O L M A R K I N G B I T
C O L L E C T S A N A T O M
P A R T OF A T C O L F O R T Y P E 0 A T O M S
P A R T O F A T C O L F O R T Y P E 1 A T O M S
B R A N C H T O .IF S T O R E EXHAUSTED,ABEND
C R E A T E S I M A G E O F A R G IN N E W C O R E
C H E C K S A N D C O L L E C T S UNE P O I N T E R
CONTROLS GARBAGE COLLECT ION
8AL T O IF D A T A S T R U C T U R E ERR, ABEND
B A L ’ E D T O B Y G C P U T M A C R O

247

S U Y M M N E M O N I C S S O R T E O B Y A P P E N D I X P A G E X 2

MNEMONIC

F END
GCARAD
G C T I M E
MEMNXT
MEHSIZ
MEMUSE
#MlMZ

ATOM
EQ
F S T
L I S T
NULL
QST
TAK2
GETOBJ
IVCCH
I VW0
MAKSTRNG
READ
QEADCH
S T I V C C H
STIVQMO
EJECT
EXPLODE
PRATBAD
P R I N T
PRINl
PRLNG
PRPEND
QRPT
T E R P R I
CONn
GET
PUTPROP
QUOTE
REMPROP
SASSOC
BELL
ERROR

F A L S E
F I N I S H
INIT
NLENGTH
PUTCH
PUTSTR
STAKN
S T I H E
SUFRROR
TRUE
T T I M E

CHARDB S
CSFREEST

CLASS

SWYM
SWYM
SUYM
SUYM
SUYM
SWYM
SUYM

SURR
SUBR
SUBR
F SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUYM
SUBR
SUBR
SWYM
SUYM
SUYY
SUBR
FSUBR
SUBR
SUBR
FSUBR
SUBR
SUBR
SUBR
SUBR

MI SC
M I S C
MISC
CAL
MISC
CAL
CAL
CAL
YISC
MISC
CAL

STRUC
CSECT

APP

E . 4
E . 4
E . 4
E . 4
E . 4
E . 4
E . 4

F . l
F . l
F . l
F.1
F . l
F.1
F.1
F . 2
F . 2
F . 2
F . 2
F . 2
F l ⌧?
F . 2
F . 2
F . 3
F . 3
F . 3
F . 3
F . 3
F . 3
f . 3
F . 3
F . 3
F . 4
F . 4
F . 4
F . 4
F . 4
F . 4
F . 5
f.5

G
G
G
G
G
G
G
G
G
G
G

CSECT

CSSWYM
CSSUYM
CSSUYM
CSSWYM
C SSUYM
CSSUYM
CSSWYM

CSSUBS
CSSUBS
CSSUBS
CSEVAL
C SSUBS
CSSIJBS
CSSUBS
CSREAD
CSREAD
CSREAD
CSREAD
C SREAD
C SREAD
C SREAO
CSREAD
C S P R I N T
CSEVAL
CSSUYM
C S P R I N T
C S P R I N T
CSSUYY
CSSUYM
CSSUYM
C S P R I N T
CSEVAL
CSEVAL
CSEVAL
CSEVAL
C SEVAL
CSEVAL
CS2250
CSSURS

CSSUYM
CSMAIN
CSINIT
CSEVAL
CSSUYM
C S P R I N T
CSSURS
C SSUBS
CSSWYM
CSSUYY
C SSUBS

CSFREEST
CSFREEST

COMMENTS

P O I N T S A T E N D O F F R E E S O T R
G C ABENOS F O R B A D D A T A S T R U C T U R E
G C C O M P U T E S I T S T I M E
A L T E R N A T E F R E E S T O R
S I Z E O F F R E E S T O R A G E
F R E E S T O R I N U S E
USED BY GC TO ‘OR’ IN Ml C M2 BITS

S T U T T E R R O U T I N E F O R - I S A R G A T O M ?
S T U T T E R R T N FOR-ARGl = ARGZ?
S T U T T E R R T N F O R - 1ST E L E M O F L I S T
M A K E S A L I S T O F T H E A R G E X P R E S S I O N S
S T U T T E R R T N F O R - IS A R G = N I L ?
S T U T T E R R T N F O R - R E S T O F L I S T
Y A K E S L I S T U/ F S T ARGl A N 0 R S T ARGZ
F I N D S S Y M B O L F O R C H A R S T R I N G A R G
R E T U R N S N E X T I N P U T C H A R
R E T U R N S S T A T U S O F Q U O T E M O D E
M A K E S C H R S T R A T M F R O M L I S T O F C H R S
R E A D S O N E E X P R E S S I O N F R O M C A R D
READS ONE CHARACTER FROM CARD
S E T S C U R R E N T I N P U T C H A R
SETS QUOTE MODE
M O V E S P R I N T E R T O N E X T P A G E
C O N V E R T S A T O M T O L I S T C H A R S I N P N A M
A R E A F O R P R I N G I N G ‘OTYPN’
PRI’UTS I T S A R G A N D G O E S T O N E X T LTN
P R I N T S I T S A R G
L E N G T H O F P R I N T L I N E
W H E R E T O P U T L A S T P R I N T C H A R
W H E R E T O P U T N X T P R I N T C H A R
M O V E S P R I N T E R T O N E X T L I N E
C O N D I T I O N A L E X P R E S S I O N E V A L U A T E D
F I N D S P R O P E R T Y O F A N A T O M
S T O R E S P R O P E R T I E S O N A T O M S P R O P L S T
RETlJRNS ITS A R G U N E V A L U A T E D
R E M O V E S P R O P E R T I E S F R O M P - L I S T
F I N D S A R G O N A N A S S O C I A T I O N L I S T
R I N G S RELL O N 2 2 5 0
W R I T E S M E S S A G E A N D G O E S T O T O P L V L

L Al,NILi R E T ; L B R A N C H T O I T)
C L O S E F I L E S A N D E X I T
S E T U P S’dYM R E G S A N D O P E N F I L E S
G E T L E N G T H O F L I S T
P U T C H A R A C T E R I N P R I N T ’ L I N E
P R I N T A C H A R A C T E R S T R I N G A T O M
G E T F R E E S T O R A G E B L O C K
S T A R T T I M E R
SYSTEM ERROR
L A1.T; R E T ; (B R A N C H TC) IT)
H O W L O N G S I N C E L A S T S T I M E

A T O M W I T H V A L U E - L I S T O F A L L C H A R S
F R E E S T O R A G E , I N C L I N I T I A L S T R U C T S

248

SUYM M N E M O N I C S S O R T E D B Y A P P E N D I X P A G E 1 3

MNEMONIC

FPROPS
N I L
OBLIST
T
UNBOUND

A l
A 2
A 3
A 4
A 5
A 6
0
c 4

-F
L
N
P
S
T
T T

AT
C ARDRDR
C E L F N C ’
CELREL
CELVAL
CSSUYM
DUBUORK
NUMAT
NUMATVAL
PRINTER
ST
SYYM
SUYMSAVE
SYSFOO
T I M E
TVEND
TVSTART
VCHAROBS
VFPROPSa V O B L I S T
VUNBND
#PO
wxxxx

CSIN IT
CSMAIN
CSPDL
C S P R I N T
CSSUBS
CS2250

C L A S S A P P

S T R U C H
S T R U C H
S T R U C H
S T R U C H
S T R U C H

REG I
REG I
REG I
REG J
REG I
REG I
REG I
REG I
REG I
REG I
REG I
REG I
REG I
REG I
REG --I

MISC M
SUYM M
F I E L D M
F I E L D M
F I E L D M
C S E C T M
SUYM M
SUYM M
SUYC M
SUYN M
SWYM M
SUYM M
SUYM M
SWYM M
SUYM M
SWYM M
SUYM M
SUYM M
SWYM M
SUYM M
SUYM M
SUYM M
SUYM M

C S E C T 0
C S E C T 0
C S E C T 0
C S E C T 0
C S E C T 0
C S E C T 0

CSECT

C SFREEST
C SFREEST
C SCREEST
C SFREEST
CSFREEST

CSSUYM
CSSUYM
CSSWYM
C SSUYM
CSSUYM
C SSWYM
CSSUYM
CSSUYM
CSSUYM
CSSWYM
CSSUYM
CSSUYM
CSSUYM
CSSWYM
C SSWYM

CSSUYM
CSSUYM
CSSUYM
CSSUYM
C SSWYM
CSSUYM
CSSUYM
CSSUYM
CSSUYM
CSSWYM
CSSUYM
CSSWYM
CSSUYM
CSSWYM
CSSUYM
CSSUYM
CSSUYM
CSSUYM
CSSWYM
CSSWYM
CSSUYM
CSSUYM
CSSWYM

C S I N I T
CSYAT N
C SPDL
C S P R I N T
C SSUBS
cs2250

COMMENTS

S T R U C T U R E : ((SUBR . 1) (FSUBR
A T O M W I T H V A L U E - N I L
A T O M W I T H V A L U E - L I S T O F A L L A T O M S
A T O M W I T H V A L U E - T
R E C O G N I Z E D B Y E V A L A S E R R O R V A L U E

A R G U M E N T R E G I S T E R & R E S U L T R E G I S T E R
A R G U M E N T R E G I S T E R
ARGUMENT REGISTER
A R G U M E N T R E G I S T E R
A R G U M E N T R E G I S T E R
ARGUMENT REGISTER
B A S E R E G F O R A L L R O U T N S
O D D R E G I S T E R C O N T A I N I N G F’4’
F R E E S T O R A G E P O I N T E R
L I N K A G E R E G (R E T U R N A D D R E S S)
P O I N T S A T N I L
S T A C K P D I N T E R
BASE REG FOR CSSWYM
T E M P (E V E N , N E X T T O TTI
T E M P (DOD, N E X T T O Tb

E Q U A T E D T O A T O M OFFSETt6)
DC6 F O R R E A D I N G C A R D S
A T O M H E A D - F U N C DEF T Y P E B I T S
A T O M H E A D - C E L L IS R E L O C A T A B L E
A T O M H E A D - C E L L H A S VALUELNOT FNC)
G L O B A L I N F O R M A T I O N F O R SUYH R T N S
DOUBLE WORD WORK AREA
WORK AREA FOR PRINTING N U M B E R S
WORK AREA FOR PRINTING N U M B E R S
O C B F O R P R I N T I N G
P O I N T E R A T T
F I R S T L O C I N C S S U Y M
S A V E A R E A F O R C A L L I N G O S
S A V E A R E A F O R S A V I N G O S LIMK R E G S
T I M E S E T A T L A S T STIME
L A B E L O F L A S T E N T R Y iN T V T A B L E
L A B E L O F S T A R T O F T R A N S V E C T T A B L E
P O I N T E R A T C H A R O B J E C T S L I S T
P O I N T E R A T F P R O P S S T R U C T U R E
P O I N T E R A T A L L O B J E C T S L I S T
P O I N T E R A T S P E C I A L ‘ U N B O U N D ’
A O R S O F B E G I N N I N G O F S T A C K
T R A N S F E R V E C T O R ’ A D R S O F R T N X X X X

I N I T I A L I Z A T I O N
M A I N S T U T T E R L O O P
STACK
P R I N T R O U T I N E S
R4SIC S U B R O U T I N E S
2 2 5 0 EXPERIMANTAL I N T E R F A C E

249

S W Y H M N E M O N I C S S O R T E D BY CONTROL SECT ION P A G E 1 4

HNEHONIC

B I N D E R Y
CON0
C SEVAL
EVAL
EVGET
E V L I S
EXPLODE
GET
L I S T
NLENGTH
PUTPROP
QUOTE
REMPROP
SASSOC
U N B I N D

CHARD8S
CSFREEST
EXPR
FEXPR
FPRQPS
FSUBR
N I L
OBLI ST
SUBR
T
UNBOUND

ATCOL
ATCO
ATCl
CHOKE
COLLECT
COLX
CSGC
GC
GCABEND
GCPUT

C S I N I T
INIT

CSMAIN
f I N I S H
M A I N

C SPDL

CSRRINT
EJECT
P R I N T
PRINl
PUTSTR
TERPRI

CLASS

CAL
FSUBR
CSECT
SUBR
CAL
CAL
SUBR
SUBR
FSUBR
CAL
SUBR
FSUBR
SUBR
SUBR
CAL

STRUC
CSECT
STRUC
STRUC
STRUC
STRUC
STRUC
STRUC
STRUC
STRUC
STRUC

CAL
MISC
MISC
MISC
CAL
CAL
CSECT
SUBR
M I S C
MISC

CSECT
M I S C

CSECT
M I S C
MI SC

CSECT

CSECT
SUBR
SUBR
SUBR
CAL
SUBR

A P P C S E C T

0 . 3 C S E V A L
F . 4 C S E V A L
D C SEVAL
0 . 3 C S E V A L
0 . 3 C S E V A L
0 . 3 C S E V A L
F. 3 C S E V A L
F . 4 C S E V A L
F . 1 C S E V A L
G C SEVAL
F . 4 C S E V A L
F . 4 C S E V A L
F . 4 C S E V A L
F . 4 C S E V A L
0 . 3 C S E V A L

H CSFREEST
H CSFREEST
0 . 2 C S F R E E S T
0 . 2 C S F R E E S T
c. CSFREEST
0 . 2 C S F R E E S T
H C SFREEST
H CSFREEST
0 . 2 C S F R E E S T
H CSFREEST
H C SFREEST

E . 3 C S G C
E . 3 C S G C
E . 3 C S G C
E . 3 C S G C
E . 3 C S G C
E . 3 C S G C
E C SGC
E . 3 C S G C
E . 3 C S G C
E . 3 C S G C

0 C S I N I T
G C S I N I T

0 CSMAIN
G CSMAIN
0 . 1 C S M A I N

0 CSPDL

0 C S P R I N T
F . 3 C S P R I N T
f . 3 C S P R I N T
F . 3 C S P R I N T
G C S P R I N T
F . 3 C S P R I N T

COMMENTS

B I N D A R G A T O M S T O T H E I R V A L U E S
C O N D I T I O N A L E X P R E S S I O N E V A L U A T E D
I N T E R P R E T E R A N D R E L A T E D R O U T I N E S
S T U T T E R I N T R P R T R E X P R S N E V A L U A T O R
G E T F U N C T I O N DEt=INITION O f A T O M
E V A L U A T E L I S T O F E X P R E S S I O N S
C O N V E R T S A T O M T O L I S T C H A R S I N P N A Y
F I N D S P R O P E R T Y O F A N A T O M
RAKES A L I S T O F T H E A R G E X P R E S S I O N S
G E T L E N G T H O F L I S T
S T O R E S P R O P E R T I E S O N A T O M S P R O P L S T
R E T U R N S I T S A R C U N E V A L U A T E D
R E M O V E S PROPERTiES F R O M P - L I S T
F I N D S A R G O N A N A S S O C I A T I O N L I S T
R E S T O R E O L D B I N D I N G S O F A R G A T O M S

A T O M W I T H V A L U E - L I S T O F A L L C H A R S
F R E E S T O R A G E , I N C L I N I T I A L S T R U C T S
I N D I C A T O R F O R S - E X P R F U N C T I O N S
I N D I C A T O R F O R S - E X P S P E C I A L F N C T S
S T R U C T U R E : ((SUBR . 1) (F S U B R
I N D I C A T O R FOR A S S E M B L E D S P E C I A L F N C
A T O M W I T H V A L U E - N I L
A T O M W I T H V A L U E - L I S T O F A L L A T O M S
I N D I C A T O R FOR A S S E M B L E D F U N C T I O N S
A T O M W I T H V A L U E - T
R E C O G N I Z E D B Y E V A L A S E R R O R V A L U E

C O L L E C T S A N A T O M
P A R T O F A T C O L F O R T Y P E 0 A T O M S
P A R T O f A T C O L F O R T Y P E 1 A T O M S
B R A N C H T O I F S T O R E EXHAUSTED,ABEND
C R E A T E S I M A G E O F A R G I N N E W C O R E
C H E C K S A N D C O L L E C T S O N E P O I N T E R
GARSAGE C O L L E C T O R
CONTROLS GARBAGE COLLECT ION
B A L T O I F D A T A S T R U C T U R E E R R , ABEND
B A L ’ E D T O B Y G C P U T M A C R O

I N I T I A L I Z A T I O N
S E T U P S W Y M R E G S A N D O P E N F I L E S

M A I N S T U T T E R L O O P
C L O S E F I L E S A N D E X I T
P A I N L O O P O F S T U T T E R I N T E R P R E T E R

STACK

P R I N T R O U T I N E S
M O V E S P R I N T E R T O N E X T P A G E
P R I N T S I T S A R G A N D G O E S T O N E X T L I N
P R I N T S I T S A R G
P R I N T A C H A R A C T E R S T R I N G A T O M
M O V E S P R I N T E R T O N E X T L I N E

250

S W Y Y M N E M O N I C S S O R T E D BY C O N T R O L S E C T I O N

MNEMONIC

CSREAO
GETCH
GETOBJ
TVCCH
I WHO
MAKSTRNG
PBCLOSE
PROPFN
P U T E Y T E
RDAT
RDERR
RDERRCNT
RDLIST
ROSE
READ
READCH
STIVCCH
STIVCMO

ATOP
CSSUBS
EO
ERROR
FST
NULL
RST
STAKN
STIME
TAK2
T T I H E

AT
ATAMT
A l
A 2
A 3
A 4
A 5
A 6
6
CARORDR. CELFNC
CELREL
C ELVAL
CSSWYM
c 4
DUBWORK
F
F A L S E
FEND
GCABAD
G C T I M E
L
MEUNXT
Y E M S I Z

CLASS APP

CSECT
CAL
SUBR
SUBR
SUBR
SUBR
caL
CAL
CAL
CAL
CAL
CAL
CAL
CAL
SUBR
SUBR
SUBR
SUBR

SUBR
CSECT
SUBR
SUBR
SUBR
SUBR
SUBR
CAL
CAL
SUBR
CAL

F.1. .
0
F . l
F . 5
F . l
F.1
F . l
G
G
F . l
G

MISC
SWYM
REG
REG
REG
REG
REG
REG
REG
SWYM
F I E L D
F I E L D
F I E L D
CSECT
REG
SWYM
REG
YISC
SWYM
SWYM
SWYM
REG
SWYM
SWYM

C
C
F . 2
F . 2
F . 2
F . 2
C

;
C

:
C
C
F . 2
F . 2
F . 2
F . 2

t”
I
I
I
I
I
I
I
M
M
M
M
M
I
M
I
G
E,4
E . 4
E . 4
I
E . 4
E . 4

CSECT

C S R E A D ’
C SREAD
CSREAD
CSREAD
CSQEAD
CSREAD
C SREAD
CSREAD
C SREAD
CSREAD
CSREAD
CSREAD
C SREAD
CSREAD
CSREAD
C SREAD
C SREAD
CSREAO

C SSUBS
c SSUBS
CSSU6S
c SSUBS
c SSUBS
C SSUBS
c SSUBS
c ssul3s
CSSUBS
c ssues
c SSURS

CSSWYM
CSSWYH
CSSWYM
C SSWYM
CSSUYM
CSSWYH
CSSWYM
CSSWYM
CSSWYM
CSSWYM
CSSWYM
C SSWYM
CSSWYM
c SSWYM
CSSUYM
CSSWYM
CSSWYM
CSSWYM
CSSWYM
CSSWYY
CSSWYM
C SSWYM
CSSWYM
CSSWYM

COMMENTS

R E A D R O U T I N E S
G E T A C H A R A C T E R
F I N D S S Y M B O L F O R C H A R S T R I N G A R G
R E T U R N S N E X T I N P U T C H A R
R E T U R N S S T A T U S O F Q U O T E M O D E
M A K E S C H R S T R A T M F R O M L I S T O F C H R S
F I N I S H C H A R S T R I N G A T O M
S T A R T M A K I N G C H A R S T R I N G A T O M
P U T B Y T E I N T O C H A R S T R I N G
QEAO AN ATOM
I N D I C A T E I N P U T S Y N T A X E R R O R
S Y N T A X E R R - P A R E N S M A D E B E F O R E 0’
R E A D A L I S T
R E A D A N S - E X P R E S S I O N
R E A D S O N E E X P R E S S I O N F R O M C A R D
READS ONE CHARACTER FROM CARD
S E T S C U R R E N T I N P U T C H A R
SETS QUOTE MODE

S T U T T E R R O U T I N E F O R - I S A R G ATDM?
B A S I C S U B R O U T I N E S
S T U T T E R R T N FOR-ARGl = ARG23
W R I T E S M E S S A G E A N D G O E S TO TOP LVL
S T U T T E R R T N F O R - 1st ELEM O F L I S T
S T U T T E R R T N F U R - I S A R G = N I L ?
S T U T T E R R T N F O R - R E S T O F L I S T
G E T F R E E S T O R A G E B L O C K
S T A R T T I M E R
M A K E S L I S T W/ FST ARGl A N D R S T ARC2
H O W L O N G S I N C E L A S T STIME

EQUATED T O A T O M OFFSET(6)
A T O M O F F S E T (41
A R G U M E N T R E G I S T E R & R E S U L T R E G I S T E R
A R G U M E N T R E G I S T E R
ARGUMENT REGISTER
ARG’JMENT R E G I S T E R
ARGUMENT REGISTER
ARGUMENT REGISTER
BASE REG FOR ALL R O U T N S
DCB F O R R E A D I N G C A R D S
A T O M H E A D - F U N C D E F T Y P E B I T S
A T O M H E A D - C E L L I S RELOCATAE3LE
A T O M H E A D - C E L L H A S VALUEiNOT FNC)
G L O B A L I N F O R M A T I O N F O R S W Y M R T N S
ODD R E G I S T E R C O N T A I N I N G F ’ 4 ’
DOUBLE WORD WORK AREA
F R E E S T O R A G E P O I N T E R
L AlrNIL; R E T ; (B R A N C H T O IT)
P O I N T S A T E N D O F F R E E S O T R
G C ABENDS F O R B A D D A T A S T R U C T U R E
G C C O M P U T E S I T S T I M E
L I N K A G E R E G (R E T U R N A D D R E S S)
4LTERNATE F R E E S T O R
S I Z E O F F R E E S T O R A G E

251

S W Y M M N E M O N I C S S O R T E O B Y C O N T R O L S E C T I O N P A G E 1 6

MNEMONIC

MEMUSE
M l
M2
N
NUMAT
NUMATVAL
P
PBHD
PRATBAD
P R I N T E R
PRLNG
PRPEND
PRPT
PUTCH
RBCHAR
RDCLASS
RDCOL
RDEND
QDERCNT
RDERLOC
RDERMS
RDERNO
RDLNG
RDSTAT
RDSUPCTR
RSTPl
R S T A 2
R S T A 3
RSTT
R STTT
S
S T
SWERROR
SWYM
SWYMSAVE
SYSFOO
T
T I M E
TRUE
T T
TVEND
TVSTART
VCHAROBS
VFPROPS
V O B L I S T
VUNBND
#MlM2
#PO
#X)cXX

BELL
cs2250

AND
A TOM

C L A S S

SWYM
F I E L D
F I E L D
REG
SWYM
SWYM
REG
SWYM
SWYM
SWYM
SWYM
SWYM
SWYM
MISC
SWYM
SWYM
SWYM
SWYM
SWYM
SWYM
SWYM
SWYM
SWYM
SWYM
SWYM
M I S C
MISC
M I S C
M I S C
M I S C
REG
SWYM
M I S C
SWYH
SWYM
SWYM
REG
SWYM
nrsc
REG
SWYM
SWYM
SWYM
SWYM
SWYM
SWYM
SWYM
SWYM
SWYM

SUBR
C SECT

MACRO
MACRO

A P P C S E C T

E . 4 C S S W Y M
E . 2 C S S W Y M
E . 2 C S S W Y M
I CSSWYM
M CSSWYM
M C SSWYM
I CSSWYM
C CSSUYM
F . 3 C S S W Y M
M CSSYYM
F . 3 C S S W Y M
F . 3 C S S U Y M
F . 3 C S S W Y M
G CSSWYM

E
CSSWYY
CSSWYM

C CSSWYM
C CSSUYM
C CSSWYM
C CSSWYH
c -.. CSSWYM
C CSSWYM
C CSSWYM
C CSSUYM
C CSSWYM
6 . 1 C S S W Y M
B . 1 C S S W Y M
B . 1 C S S W Y M
B . l C S S W Y M
6 . 1 C S S W Y M
I CSSWYM
M CSSUYM
G CSSWYM
M CSSWYY
M CSSWYM
M CSSWYM
I CSSWYM
M CSSWYM
G CSSWYM
I C SS WYM
M CSSWYM
M CSSWYH
M CSSWYM
M CSSWYM
M _ C S S W Y M
M CSSWYM
E . 4 C S S W Y M
M CSSWYM
M CSSWYM

F . 5 C S 2 2 5 0
0 CS2250

6 . 7 M A C L I B
6 . 1 M A C L I B

COMMENTS

F R E E S T O R I N U S E
G A R B C O L -NAFtKING B I T
G A R B C O L M A R K I N G B I T
P O I N T S A T N I L
W O R K A R E A F O R P R I N T I N G N U M B E R S
WORK A R E A F O R P R I N T I N G N U M B E R S
S T A C K P O I N T E R
H O L D S A D R S O F A T - H D D U R I N G PUTBYTE
A R E 4 F O R P R I N G I N G ‘?TYPN
DC6 F O R P R I N T I N G
L E N G T H O F P R I N T L I N E
W H E R E T O P U T L A S T P R I N T C H A R
W H E R E T O P U T N X T P R I N T C H A R
P U T C H A R A C T E R I N P R I N T L I N E
L A S T CH4R R E A D
C L A S S O F L A S T C H A R A C T E R R E A D
L O C O F L A S T W O R D R E A D
L O C O F L A S T C H A R T O R E A D
P R I N T # PARENS C R E A T E D B E F O R E 0’
S Y N T A X E R R O R C A R D C O L U M N I N D I C A T I D N
R E A D S Y N T A X E R R O R M E S S A G E A R E A
SYNTAX ERROR NUMBER
NUMBER OF CHAR READ FROM EACH CARD
R E A D R O U T I N E S S T A T U S INFO B Y T E
C O U N T # PARENS C R E A T E D B E F O R E ‘>’
RSTtAl). B A L ’ E D T O B Y R S T M A C R O
RSTTAZ). B A L ’ E D T O B Y R S T MACRO
RST(A3). BAL’EOTO B Y R S T M A C R O
RSTTT). B A L ’ E O T O B Y R S T M A C R O
RSTLTT). BAL’EDTO BY RST M A C R O
BASE REG FOR CSSWYN
P O I N T E R A T T
SYSTEM ERROR
F I R S T L O C IN C S S W Y M
S A V E A R E 4 F O R C A L L I N G O S
S A V E A R E A F O R S A V I N G O S L I M K R E G S
TEMP (E V E N , N E X T T O TT)
T I M E S E T A T L A S T S T I M E
L A1.T: R E T ; (B R A N C H T O I T)
T E M P (ODD, N E X T T O T)
L A B E L O F L A S T E N T R Y I N T V T A B L E
L A B E L O F S T A R T O F T R A N S V E C T T A B L E
P O I N T E R A T C H A R O B J E C T S L I S T
P O I N T E R A T F P R D P S S T R U C T U R E
P O I N T E R A T A L L 03JECTS L I S T
P C I N T E R A T S P E C I A L ‘ U N B O U N D ’
USE0 BY GC TO ‘OR’ IN ML t M2 BITS
A D R S O F B E G I N N I N G O F S T A C K
T R A N S F E R V E C T O R , A D R S O F R T N X X X X

R I N G S B E L L O N 2 2 5 0
2 2 5 0 EXPERIMANTAL I N T E R F A C E

C O M B I N E T W O PREDS
? fS A R G A N A T O M

252

SLIYM M N E M O N I C S S O R T E D B Y C O N T R O L SECTIUN P A G E 1 7

MNEMONIC

BCMAC
B I T
B I T T B L M K
CAL
CELL
CHAR
CHTBL
ELSE
ENDIF
EQ
EVCH
FINDBIT
F IXUP

-FST
FSUBR
GCPUT
GETNAME
GETNUM
GOT0
HASH
HEAD
I F
INSTI
I NVERTB
MATOM
NOT
NULL
ORX
POP
POPN
PUSH
QCHAR
R E S E T 8
RET
RPLCEL
RPLF
RPLHD
RPLTOP
RPLTOPN
RST
RSTMAK.
SET6 IT
STRAT
SUB
SUBR
S.WEAR
T.A I L
T.ESTB
THEN
TOP
TOPN
TVMAK
VALUE
X8

CLASS

MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRC?
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO

APP CSECT

8 . 7
8 . 5
9 . 5
6 . 6
8 . 2
6 . 3
8 . 8
8 . 7
8 . 7
8 . 1
6 . 3
8 . 5
6 . 8
8 . 1
6 . 3
8 . 8
B . 2
8 . 2
8 . 7

88:;
8 . 7
8 . 8
8 . 5
8 . 3
6 . 7
6 . 1
8 . 7
6 . 4
8 . 4
8 . 4
8 . 3
6 . 5
8 . 6
8 . 2
8 . 1
6.2
8 . 4
6 . 4
8 . 1
6 . 1
6 . 5
6 . 3
8 . 6
8 . 3
6 . 8
8 . 2
8 . 5
6 . 7
8 . 4
8 . 4
6 . 6
8 . 3
6 . 6

M A C L I B
MACLIB
MACL 18
M A C L I B
M A C L I B
MACLTB
M A C L I B
M A C L I B
M A C L I B
M A C L I B
M A C L I B
M A C L I B
M A C L I B
P A C L I B
M A C L I B
YACL I6
MACL I B
M A C L I B
HACL 18
MACL 18
MACL 16
M A C L I B
MAC116
HACLI 6
P A C L I B
M A C L I B
M A C L I B
M A C L I B
M A C L I B
MAC118
C A C L I B
M A C L I B
M A C L I B
M A C L I B
M A C L I B
M A C L I B
P A C L I B
MACLI 8
M A C L I B
M A C L I B
C A C L I B
M A C L I B
MACLI I!
M A C L I B
M A C L I B
P A C L I B
M A C L I B
M A C L I B
M A C L I B
M A C L I B
M A C L I B
VACLIB
MaCLIB
MACL I8

COMMENTS

M A K E A B R CONDiTION I N S T R U C T I O N
I D E N T I F Y MNFMONIC W I T H B I T I N W O R D
M A K E A T A B L E F O R ‘ B I T ’ M A C R O
S U B R O U T I N E C A L L
L O A D S A T O M C E L L I N T O R E G
C R E A T E S A C H A R O B J E C T A T O M
M A K E A C H A R A C T E R T A B L E (F O R TR)
C O N D - E N D T R U E : S T A R T F A L S E P A R T
CON0 - E N D F A L S E ; E N D C O N D I T I O N A L
? ARGl = ARG2tTESTS T W O P O I N T E R S)
G E T S A R I T H V A L O F E B C D I C BITS
FIN0 B I T M N E M O N I C F O R B Y T E - I N - W O R D
G C - M A K E E N T R Y I N FIXUP T A B L E
F I R S T E L E M E N T O F L I S T
C R E A T E S A N A T O M W I T H FSUBR P R O P
GC-PUT WORD TO NEW CORE
L O A D S P T R A T P N A M E C H R S T R A T M
G E T V A L U E O F N U M C H A R S T R A T O M
BRANCH
H A S H C O D E A N IDENT F U R O B L I S T
LOADS HEAD OF ATOM
CON0 - S T A R T P R E D I C A T E
A S S E M B L E I N S T R U C T I O N WO/ A L I G N E R R
C H A N G E B I T
CREhTES A N A T O M S T R U C (I N C S F R E E S T I
N E G A T E P R E D I C A T E M A C R O T E S T
? ARG = NIL
C O M B I N E T W O PREDS
G E T S T O P O F F S T A C K - H E D U C E S S T A C K
R E D U C E S S T A C K N TIYES
P U T S A R G A T O P S T A C K
C R E A T E S A C H A R O B J F O R ‘0 ‘1’ ‘,’
T U R N O F F B I T
S U B R O U T I N E R E T U R N
R E P L A C E S A T O M C E L L
R E P L A C E S F I R S T P T R O F L I S T
R E P L A C E S H E A D O F A T O M
R E P L A C E T O P I T E M O N S T A C K
R E P L A C E N T Y I T E M O f S T A C K
A L L B U T 1ST E L E M E N T O F L I S T
M A K E RDUTINES F O R ‘ R S T ’ T O B A L T O
T U R N O N B I T
CRE4TES S T R I N G A T O M S T R U C (F R E E S T)
S U B R O U T I N E E N T R Y
C R E A T E S A N A T O M W I T H S U B R P R O P E R T Y
SYSTEM ERROR
L o a m P T R aT TA IL O F A T OM
T E S T B I T
CON0 - E N D P R E D ; S T A R T T R U E P A R T
G E T S T O P O F S T A C K - B U T L E A V E S fT
G E T S N T H I T E M O N S T A C K
YAKE A T R A N S F E R V E C T O R F O R C A L
C R E A T E S A N aTOM W I T H A V4LUE
T R A N S F E R I N T O M I D D L E O F S U B R O U T I N E

253

