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INTEGER PROGRAMMING OVER A CONE

0. Introduction

The properties of a special form integer progranmng problem are
di scussed. W restrict ourselves to optimzation over a cone (a set of
n constraints in n unconstrained variables) with a square matrix of
positive diagonal and non positive off-diagonal elenents. (called a
bounding form by F. Glover[3]).

It is shown that a sinple iterational process gives the optimal
integer solution in a finite nunber of steps,

It is then shown that any cone problem with bounded rational
solution can be transformed to the bounding form and hence solved by
the outlined nethod.

Sone extensions to nore than n constraints are discussed and

a numerical exanple is shown to solve a bigger problem

The research reported here was supported in part by the Advanced Research
Proj ects Agency of the Office of the Secretary of Defense (SD-18%).
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1. Notation and Formul ation

Qur main concern in this paper will be with [inear programmi ng
problems of the form

(1) Maxi mi ze z = ¢'X

Subject to MK < b

Were ¢, X, b are n dinensional colum vectors, Mis a rectangul ar
myx n matrix, and all conponents of M C b are assuned to be integral.
X is unconstrained and any positivity requirements are explicitly incor-
porated into the systemM < b .

VW will refer to the linear program (1) as the rational program
because it possesses in general a rational solution X .

If we add to (1) the requirement that the solution X be inte-
gral, we obtain the integral program whose solution gives in general a
| ower value of the objective function z .

As is known, the notion of optimal solution to (1) is neaningful
only when m> n, since otherwi se unbounded rational solutions exist
and rmost often unbounded integral solutions. Thus we will be interested

in this case only.

An additional requirement inposed is one of conplete non degeneracy,

i.e. Al square n x n submatrices -of M should be non singular.

The special case m=n is called a rational (integral) cone

progr am
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2. Properties of a Bounding Cone

A cone program (1) is in bounding formif the following conditions
are nmet:

a) ¢>0,C40

b) Midgofor i # ]

M11>0f°r =1, s

Thus M can be witten as M= D-A where D is & positive diagonal
matrix and A is a non-negative off-diagonal matrix.

c) There exists a positive row vector « = (“1’ “’h)’
@; > 0 such that o > 0 or for each component

n

b) o M >0 ,j=1,2, oo N
421 174

Since M is not singular by requirenment, there exists Wi,
And we have
Lemal M1 >0
Let u = (Ul, Un) be any row vector such that m> 0 .

Consider the quantities Ul/ql, Ua/aé,.ee Un/an wher e o are t hose

given in condition c). Let k be the one for which U/, is minimal

e
| nspecting the kth inequality of M > 0 we get
U U,
n n i k n
0< ¢ UMy= ¢ (—) (@M )<(—) ¢ aM
191 1 ik {21 @y ik o = i1k
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\Where repl acing eacho{~l I # k by —-o&nly I ncreases its val ue

1

because of (2) and the fact that My < 0 . From condition c) we know

that 37 oM, > 0 therefore we have u/o, > 0 and al so
i 1 ik -

U je, > U /e >0 fori =100,
Thus we conclude that Uis non negative or

UM>0=1U>0
Since all rows of the inverse matrix M* satisfy the left side of this
inplication it follows that ¥* > 0

Observation; Gven that M* = N> 0 it is easily shown that

condition c) is satisfied by taking @, = T N, (Let « be the sum
of the rows of M%), ot

Hence given a) and b) condition c) is equivalent to I\/i1 >0 .
W show that a bounding cone always possesses a bounded rational solution
given by X = MIib .

Let X be any feasible point satisfying mx < b .

Subtracting the equation M

MX - XR) <0,

Since I\/i1 IS non negative we may multiply both sides by ML without

- b fromthis we get

distorting the inequalities inplied to get

X—XR<O or

(3) X <X for any feasible X .

R
. T , .
Since ¢>Oweget ¢'X < C X end hence no feasible solution may have

hi gher value for z than X -



It can be shown that any non degenerate cone contains an integral
feasi bl e point.
W will outline now a nethod for deriving the optimal -integral

solution. Define the followng sequence:
(4) Xo = [XR]

-1
Xy = [0 (04K )]

Where [ 1is the truncation operation i.e, taking the largest integer
not larger than the argument, applied to each conponent. D and A are
the positive decamposition of M = D-A into diagonal and off diagonal

mtrices. Cearly X, <X

Fran Which by multiplications of positive matrices and additions

we get 0L (brax < D'l(b+AxR) =X

O) R

Truncating both sides we get

X, = [D'l(b+Axo)] <[XR] = X, or

X, <X,

Assum ng inductively that X, <X

W prove simlarly that
=1, -1
[D (b+AXn)] < [D (b+AXn l)] or
(5) X1 5%, which holds therefore for all n.

Let ¥, be any integral-feasible point.

By 3)it follows that ¥y < X and since Yoisintegral al so

Yy < X,

Si nce ¥, Is feasible ¥, < D'l(b+AYO) Furthermore it is integral

Y, < [0 (ovav )] (6)
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Apply the operator T(X) = [D-'L1(b+AX)])tO both sides of

Yo

IN

Xy and then use (6)to get

Y

o< X

1
whi ch can be inductively extended to
(7) Yy < X .

W proved our sequence X to be non increasing in all conponents
and bounded bel ow by any integral feasible point Y. There must exi st
therefore n such that x ., =X which inplies

X, = [D'l(b+AXn)] < D'l(b+AXn)

Le. that x is a feasible integral point,

Furthermore it is not |ower in any conponent than any other inte-
gral feasible point and hence is an optinal integral solution.

W sunmarize this chain of arguments in the follow ng:

Theor ent
The sequence defined by (4) converges in a finite nunber of steps

to an optimal integral solution of any bounding cone program,

3, Ceneral Applicability of the Method

The contents of this chapter is a theorem showing that any cone
program possessing a bounded rational solution can be transformed to a
speci al bounding form and solved by the above suggested nethod,

Wien transformng integral programs one nust be careful to pre-
serve integrality of the feasible points, The only pernissible transfor-
mations are change-of-variable transformations (colum operations on the

T

matrix Mand the row C) which map integral points on integral points

and do not map any non integral point on an integral point.

6



These are unimodular transformations and may be built up of the
following elenentary operations:

a) Reverse the sign of a col um,

b) Add to a colum a multiple (integral in our case) of
anot her column,

Let us indicate a sequence of increasingly conplex procedures
that can be executed using these twe operations.

c) Interchange two col ums

Gven two colums U and v, the follow ng sequence interchanges

their contents.

U:= U+V;
Vi= V-U;
Vi= =V
U:= U-V;

d) Gven two elements in a given row, use colum operation on
the two corresponding colums which result in a 0 being placed in the
first elements location and the greatest common divisor of the two ele-
ments in the second location, (If both are initially O |eave them
that way).

W start by sign nodifications to make both el ements positive
By successive subtractions of the smaller from the bigger we cause the
nunbers to decrease until one or the other becomes 0 . [|f this happens
to the second element, interchange colums. The remaining non zero ele-
ment is the G.c.D.

e) Gven a row segment by a specified rowi and last colum

k <n, transformit to a row containing 0 in locations M . to M,
- 1,1 l,k-l



and the g.c.p. of this segnent (if not zero) at |ocation Mi,k'

Apply procedure d) to the first two elements producing 0 in
the first colum and the c.c.n. of the pair in the second col um.

Repeat successively between 2nd and %rd, 3rd and Lth, etc.,
until after applying it to the k-1 and the k*B col ums, the row seg-
ment attains the desired form

f) Gven a square subma-trix by specifying k as the last row
and colum to be included, transformit to an upper triangular matrix
"having positive diagonal and non positive super-diagonal elenents.
(Assume the submatrix to be non singalar).

Apply procedure e) to the last row segment for colums 1 to k.
produci ng zeroes everywhere except for M x which gets a positive
val ue.

Apply procedure e) again to the k-1 st rowfor colums 1 to k-I.
Since the k*® row contains non zero element in the ki colum onl y, it
will not be changed. Raving produced zeroes in colums 1 to k-2 and a
positive nunber in colum k-1, we proceed to subtract that colum suffi-
ciently many times from colum kto make Mk_l”k <0.

Simlar application to the previous rows finally produce the
desired form

g) Gven a square submatrix of order k , transformthe whole
mtrix to a formin which the k1** colum has negative entries in e
of the first k rows,

Transform first the submatrix to an upper triangular form by
prodeedure f). Subtract a large multiple of the Kt colum from the

st ‘ st
k+1 . -
to make M g1 SO Subtract now a large multiple of the k-1



t

s . .
colum fromthe k+1”~ colum to nake N&{_l’kﬂ < 0. Notice that since

M ko1 " 0 we did not destroy the negativity property of M i1 o
Proceeding in this fashion we finally subtract the 1 - element first

st
colum fromthe k+1

colum to nake Ml,k+l <0, not disturbing
the rest of this colum,

Before we proceed to procedure h) which effects the conplete
transformation we derive a necessary result,

W assuned our cone problemto have a bounded rational. solution.
' The only one possible is x; = M

In order for it to be optimal it is necessary that for any other
feasible solution:

M}(§b=°CTX_§CTXR

or
(8) MY_§O=aCIY50 if we let x-xp =Y.
by Farkas Lemma [1] it follows that
(9) ¢’ - BM

where B 1S a non negative row vector.

Now we are ready to outline the final procedure.

h) Gven a cone problemwhich is rationally solvable, it can be
transfornmed to a bounding cone problem of the follow ng special type:

(to be called m forn.

o
P_j 1
_rl

QD Qoooo
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E is an upper triangular bounding matrix, i.e.,

g. >0e., <0 for i<
Il ij —

G is an upper sub-triangular bounding matrix with negative (non zero)

0 for i > |

el ements on the first |ower sub diagonal,

i.e. 855 >0 &;; < 0 for i <j
8i41,1 <O
gij =0 for i > j+1
_— ——
+ 8 e & v g s 4+ B . v . O
o + re) )
0 o, .
: s % . *
L4 : .'
[ s o.
M= 0 Ve SO+ e & o
0 = v 0 0 + o 6 [ P ° o
- + &
0O - +
0 0 -I..Q
. .‘., [
. ¢ ¢ .' .0 0
* * * .::'.+ o
. [ [} L J
0 e o0 O~ » ) ¢ s o0 - +

& stands for a non positive elenent.

For conveni ence we place the cT row as an additional =+15' row

of the matrix M.

10



Start by applying procedure 3)to row »+1 up to colum n ,

getting ¢ into the above indicated form Apply now procedure g)

to the submatrix of order n-1 nmaking the first n-1 entries of the nth
colum non positive, (One can always find a non singular (n-1) x (n-1)
submatrix among the first n-l colums), The matrix at this stage

| ooks as shown:

+
o}
¢

.+e:
-~ + 6

X X X X..X X 7
CT = (0, 0... 0 0 +)
The " " stands for M whose sign is unknown, Consider the fact that

a non negative cambination Of the n rows should result in the |ast ot

row. This could be true for the last colum only if Moo > 0 and the
n® row actively participates in that combination i.e. B, >0 .
2). Inspect nowrown , colums 1 to n-1 (where we drew X to signify
we do not have any information about their sign pattern). If all entries
are 0 the matrix has been brought to PL. formw th G of order o.
(M then consists of E only).

If any non zero entry is present, apply procedure e) to this row

segnent. Al entries will be 0 now except M1 which is positive.

Reverse this colum sign to make Mngl_l < 0.

11



Repeat now and apply procedure g) to the submatrix of order n-2,
meking all elenents of colum n-1 and rows 1 to n-2 non positive. The

matri x now has the follow ng form

+ O e ©
0 + € o
i‘ v .
. e
. L]
» . L]
‘+ & 8
X Xao X 7?7 B
O-... 0 = +
T
C = (O,o oooooo ooooeno +)

I nspecting colum n-1 we find nonrpositive entries in rows 1 to
n-2, a negative entry which participates actively in the non negative
cambination, and 0 as the value of that combination. [t nust there-
fore be that L 0 and row n-1 also participates actively
in the cambination.

I nspect now row n-1 (where the Xs are). If all entries are 0
we are done. Qtherwise go back to step 2) with row n-1 and shorter seg-
nent 1 to n-2.

Proceeding in this way we either stop because such a row segnent
has all zero entries, at which stage we have a non trivial B, or we carry
this process through up to row 1, in which case E is of dinension 0
and Gis all of M.,

Qbserve that all rows of G participate actively in the positive

conbi nati on,



A conpl ete a1go1 program effecting this transformation is
attached as an appendix.,

\\ have thus shown that any cone problemcan be brought to a1
formt In order to camplete the proof of the theoremwe have to show
t hat

Nt >o0. for Min the m form

W start by showing that gl

>0 . Let G hbe of order g .
From the observation about all rows of G actively participating

in the Farkas conbination we conclude the existence of

= 8 0 a o >
o (cvl, ozl) Such t hat o 0
J} .

7. = a.g.. >0 for j=1,... 2-1

37 h Mgt ’
and

Z = ! . >C >0

7 E—-l C’(igi! -

Let now U = (Ul,..,Uz) be any row vector such that UG > 0 .

Consider the sequence v;/®, and let k be the largest index
such t hat Uk/ozk < Ui/ai for i=1, Qe ¢ .

Consi der the kth inequality of US> 0, as hefore we can derive

u U
os_é U8y = § (= )(aig.k)s(a—k)é(aigik)zi.zk

i= izl % * ko i=l

If k=ythenz >0 and we conclude that v/ > 0.

If k #4 and the inequalities on the way were strict inequalities we

U U
have 0< -E-zka S
ok O

13
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In order for the inequalities to became equalities it IS neces-

U, U
sary that all - i £k, for which g. #0 be equal to X .
a;- lk Q']:{
1
But since g, , 70 it follows that Ve ~ Eli whi ch viol ates
, ==
k+1 d

our requirenent that k be the largest index for which U /o is

mnimal. Hence as proven in Lemm 1
-1
(U6>0=U>0)=0G6">0.

-1 -1 1

E F E g lFgt

E™" being the inverse of a triangular matrix with positive diagonal
and non positive superdiagonal elenents is positive. -F > 0 and so
is its product with positive matrices -E_lFG-l >0
W\ summarize these results in the following:
Theorem 2
Any non singular, rationally solvable cone problem can be trans-

formed to a L bounding form

4. Extensions
The natural extension to a bounding cone is a bounding program
whi ch. may be defined as foll ows:
Maxi mize Z = ¢'x
Subject to MK < b ¢, M b, X integers, Mconpletely

Nnon degeneratz.

14



Wth the conditions:
a) ¢>0

The rows indices may bhe partitioned into exclusive non enpty

sets Ii i=l,... N -such t hat
b) For g€ I, M.jk<_0 K#i

Mi >0

c) There exists a row « « >0 such-that aM >0 . |n other
words there should be a basic bounding cone and additional constraints,
each having exactly one positive coefficient.

The iterational process is defined now as

Xy = [Xgl
| by 0 My X
i B i 3k n
(8) Xn+l =mn .
ji

By using this ssquence one may convert all proofs for the cone
case to proofs for the nore general case, thus showing the iterational
process to converge provided an integral feasible point exists.

Exi stence of a feasible integral point is assured in the case of
a bounding non degenerate cone.

In the case of a more general bounding program the follow ng pro-
cedure is suggested:

1) Look first for a bounded rational solution to the m ninum
program Mninize Z = ¢k S/T  M{<b

If no bounded solution exists and the program is conpletely non
degenerate, an integral feasible point nust exist and hence the itera-

tional process nust converge,

15
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[f a bounded rational soiution exists, record its value. At
each generation of Xn compare chn against the mniml value. If
it gets beiow the mnimal valie, N0 feasible integral point exists.

It IS thus ascertained that in a finite nunber of steps one
either proves the non existenze of integral solution or finds it.

Unfortunately NO general procedure 1S known which will transform
a general problemto a bounding form except for the case of n = 2,

Anot her possi bl e extension IS using the bounding formto derive
a suboptimal solution rather than an optimal one. W use again a se-
quence defined in the same way as (7) or (8). The only difference is

in taking as X  any feasible integer point, This sequence iS guaran-

0
teed to converge to a suboptimal Sol ution with objective functions
value Z not |ower than the one for X, z, = CTXO .

In order to get a camplets integer programming algorithm one
may use the follow ng schene:

1) Identify the active cone (the one which tightly bounds the

rational optiml solution) and solve it.

o) |f sone other constraints are still unsatisfied add to the
set of constraints the n new constraints
X, Shi “1=lye0. n.
Were h is the integral solution of the currently

sol ved cone!.

Return to step 1.

16



5. P2 Form
During computation it has been observed that the matrices ob-
tained in form® are not in general diagonal domnant. Since diagonal
daminance MRy enhance convergence, We show now how any bounding cone can
be brought to a 2 form which is also a bounding formwith the additional
requirement that
Mii>|MiJ.| JAL .
This transformation i s accomplished by col um additions only
"and hence preserve condition c) validity.
Assune Mto be in bounding formand let « be the row vector,
o > 0 such that
oM =g >0
Suppose there are a row i and a colum j such that
M, < Ml A
W apply then a basic step of adding the s colum to the jth column. .
"I'n order to show that this does not destroy the bounding formof M,
we focus our attention on the principal mnor formed out of rows and

colums i and j. (Wthout loss of generality assume i <j).

...'..Il\.dji Olocto.ooouolgﬁjjoﬁoooo

Because any other elenents in these colums are non positive it follows

t hat

alMll + O‘JMji 6i >0
a.M, . + o.M, = 6j >0
11 Jd Jd

17



Si nce @350, are positive and the sign pattern of the mnor is the
boundi ng one, one considers the solution of this 2 X 2 system and
infers that
Mi%J -MmMﬁ;>0
i o
If now u, < | Mijl it mst follow that > | My
h colum is going therefore to |eave ng non positive,

. Adding the ith

colum to the jt
ij positive and all other elenent in the altered colum non positive.
To show that this process of repeated colum additions nust
termnate in a finite nunber of steps observe the follow ng:
Adding colum i to colum j transfornms matrix Mto M' and
accordingly oM* = 8'> 0 where quite obviously
By =Py " By
Hence
P> E P
This inplies that the sumof all the matrix elements weighted by
positive weight vector o has increased. This transformation, however,
never increases any positive elenents value, and nust therefore decrease
the weighted sumof the negative elenents in absolute magnitude. This
sum shoul d decrease by at least 1 (assune o, t0O be integral) at each
such step. ~ Since it cannot decrease bel ow 0 the process nust termnate;
termination neans that no i and j exist such that M, SlMiJ.] it 3,

and B form has been attained.

18
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6. Nunmerical Exanple

Trying different nunerical exanples we adopted the follow ng
conput ational procedure.

1) Accept a general program (larger than a cone).

2) Solve first to get a rational mninal solution for bounding
7 fram bel ow,

3) Solve next to get a rational maximal solution - XR.

This process (using dual sinplex method) singles out a basic cone
of tight or active constraints

4) Transformthis cone to BL and |ater to 2 bounding form
modi fying XR on the way to be expressed in the new variabl es.

5) Search anong the rest of the transformed program for addi-
tional constraints that are in bounding formand add themto forman
extended cone problem

6) Solve the extended cone problem by the iterational method.

7) Check if the optimal solution attained satisfies the non-
participating constraints, If it does not - print an error nessage
Return to step 1 to try the next problem

In most of the cases tried, no error nessage was printed, which
means that the solution to the active cone is also a solution to the

conpl ete program

19
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L antiacs, 4

As an illustrative numeric& . exanple we chose the follow ng

fixed-charge problem [2],

S/T

Maximze Z = x. + x +)(5

1 3 <0

5

2Xl + 3X2 + X3 + 2x4 +2X5 <19

RS <0
- % <0

- X3 <0

- X <0

The constraints have been ordered in such a way that the first

five are the tight constraints and yield the follow ng rations1 SOl ution

rule of

_ 2
Zp =11 1:%
- .16 —7 _ olk
X. =1 =17 x =8
1 Elxg T 3 HXLL:B%‘%
Under transfornmation to new variabhles we

substitution:

>
]
=
+

<

]
+

Xh -5 - -

5y, M 2y3 Sy,
=09 -0 o+ 5y, + kyy; *t o2y,
Z = 7+ Y,

20

X5=O

get the followng



Were the y; are constrained to satisfy:

1. 0y, - 5y, hys -2y, - Wy =9
2. -3y, o+ 6y, - 2y - 5y, - Y5 =

3. - By, ¢ by - 3y - V5 203
4. V3 4 8y, <3
5. v, +t 7y5 < 6
6. N + Y, < 0
7. - N by Yy + ¥y 51
8. WOy ot 3, t 2yy - Dy 7y5 < 3
9. -5y, + 2y, + 2Y3 ooy, t v5 f-5

Notice that the first 5 constraints are in the 2 form i.e.,
positive diagonal, non positive off diagonal, and diagonal greater in
absol ute value than any other elenment in its row. Aso note that in-
advertently constraint 6 is also of bounding formand shoul d be added
to the five when generating the sequence.

The initial solution achieved by suitably truncating the trans-
formed rational solution is listed below together with the iterations

Initial | 1st | 2nd |3za ,| 4 -] 5 6 7 8 9

169 168 | 167 | 166 165 | 164 | 163 | 162 | 162 | 162 ¥y
169 168 | 167 | 166 165 | 164 | 163 | 162 | 162 | 162 g

2

189 188 | 187 | 186 185 | 184 | 183 |18 | 181 | 181 Vs
-t 2L 23 23 23 23 23 23 23 23 v,
L N 4 4 in i N N N L Vs

21




Substituting these final values of y into the expressions for
X we get the final solution as
X - - = = = 5
121 X, =0, Xg 6, x =0 X =5
and the optimal value is 2z =11 .

li

It was verified of zourse that this cone solution satisfies

al so the other constraints as well,

7. Relation to Previous Wrk

Even though independently derived, the suggested nethod is in
some respects simlar to . Govers "Bound Escal ation Method" [3].
once @& bounding formis achieved, the process of attaining the optinal
integral solution to this partial problemis quite smilar.

The main differences are in justification of the iterational
method and in the proof of its convergence.

Wile the bound escalation method strongly relies on the assunp-
tion that all variables are restricted to be positive, and hence is
restricted in the range of admssible transformtions for creation of
a bounding form our method has no such linmtation. Convergence is
proved w thout any positivity assunptions,,

The-possibility of sinultaneously transformng a complete
cone into either P or ® bounding formis considered and proved here

for the first tine.

22
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APPENDI XA

Following are two ALGOL-60 procedures which transform sol vable
cone problems into L and B2 forms respectively.

PROCEDURE PL(M,n,m ); VALUE m,n;
| NTEGER ARRAY M INTEGER n, m

BEG N coMENT M is the matrix to be transformed. Assume col um
ntl 10 contain the negated right hand side of the inequali-
ties, row n+tl contains the objective function coefficients
and M 0. mis the total number of constraints to

“ﬂxk,ml: _
be transformed together with the cone. m > ntl;

| NTEGER b,e,q;

PROCEDURE NEGATE(a); VALUE a;
| NTECER a;

BEGIN COMMENT Reverse sign of colum a;

ECR b:-1 STEP 1 UNTIL m DO

M(b,a]:= -M[b,a]
END;
PROCEDURE. MLLADD( ¢, d, p); VALLE c,d, p;
INTEGER «c,d,p;

BEG N comMent Multiply colum ¢ by p and add to colum d;
FOR b:=1 STEP 1 UNTIL m DO

Mb,d,]:= Mb,d] + p x Mb,c]
END,

PROCEDURE XG(c, d): VALUE c,d;
| NTEGER c,d;

253



BEG N canENT | nter change contents of colums ¢ and d;
| NTEGER t ;
FOR b:=1 STEP 1 UNTIL m DO

BEGIN Mb,c]; Mb,c]:= Mb,dl; Mb,d]:=t

PROCEDURE @Dl (a, ¢, d): VALUE a,c,d;
| NTEGER &,c,d;

BEG N COMMENT Set M{a,c] to O and M{a,d] to the G C. D.
of the two el enents;

| F Ma,c] < 0 THEN NEGATE(c);
IF M[a,d] < 0 THEN NEGATE(d);
L:IF Ma,c] # O THEN
BEG N LF M[a,a] = 0 THEN XGc,d) ELSE

BEG? | F M[a,c] < Ma,d] THEN
MULADD(C, d,-M[a,d] + Mla,c]) ELSE
MULADD(d, c,-M[a,c] + Mle,d]);
OTOL

END;

PROCEDURE GcDe(a,c); VALUE e,c;
| NTECER a,c;

BEG N COMMENT SET M[a,1], Ma,2], . . . UNTIL Ma,c-1] TO 0
and Ma,c] to the GC D. of the two elenents;
FOR e:=1 STER 1 BNTIL DO

acpl (a,e,e+l);

! ek



I F Ma,c] < 0 THEN NEGATE(c)

END;

PROCEDURE_TRIANG k) ; VALUE k;

INTEGER k;

BEG N cameNT Transform submatrix of order k into upper tri-

st

angular bounding form Use if necessary x+1> row for
| nt er changes;

| NTEGER ERC,1i,§,t ;

ERC. =0,

FOR i:=k STEP -1 UNTIL 1 DO

BEGA N Ip: acpe(i,i);

IF M[i,1]=0 THEN
BEG N_IF_ERC # 0_tHEN GO TO ERRORL:

END;

COMMENT ERRORL 1S an error exit for cases
of singular matrix;

ERC. = 1;
FOR j:=1 STEP 1 UNTIL nt1 DO

BEGIN t:= M[k+1,j];
Mk+1,3]:= M[i,3];
Mii,jl:i=t

END;

—_—

COMENT in case of tenporary singularity

exchange row with ki1 St [ oW,

QO TO0I12

FOR j:=i+1 STEP 1 UNTIL x+1 DO

MULADD(i,J,-(M[1,3] + Mi,i]-1) + M[i,i]);
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-t : :
COMMENT make | B colum negative by subtracting
1% colum.  Note that j ranges until
k+1;

END FORi;
END,
COMENT main body of procedure;
GCD2  (nt+l,n);

FOR g:= n STEP -1 UNTIL 2 DO

BEGN TR ANG(g-1);

GCD(ayq-1);
I F M[q,q-1]=0 THEN GO TO LEND;
NEGATE( g- 1)

PROCEDURE P2(M,n,m); YALUE m n;
| NTEGER ARRAY M | NTEGER m,n;

BEG N COWENT transform matrix Mo form re;

INTEGER i,4,k,p;

P1(M,n,m);

1 STEP1 UNTIL n DO
1 STEP 1 UNTIL n+t1 DO

LB:FCR 1i:

1

FRR 3
LE (i#]) A (abs(Mi,j]) >M4,1]) THEN
BEG N p:= abs(M[i,j]) + M[i,i];

ql

26



FOR k:=1 STEP 1 UNTIL m DO

Mk, jl:= Mk, j] + p X Mk,il;
G010 LB
END
END

No attenpt has been nmade to code these procedures efficiently,
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