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INTEGER PROGRAMMING OVER A CONE

0. Introduction
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The properties of a special form integer programming problem are

discussed. We restrict ourselves to optimization over a cone (a set of

n constraints in n unconstrained variables) with a square matrix of

positive diagonal and non positive off-diagonal elements. (Called a

bounding form by F. Glover [3]). -

It is shown that a simple iterational process gives the optimal

integer solution in a finite number of steps,

-

It is then shown that any cone problem with bounded rational

solution can be transformed to the bounding form and hence solved by

the outlined method.

Some extensions to more than n constraints are discussed and

a numerical example is shown to solve a bigger problem.

The research reported here was supported in part by the Advanced Research
Projects Agency of the Office of the Secretary of Defense (SD-183).
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1, Notation and Formulation

Our main concern in this paper will be with linear programming

problems of the form

(1) Maximize 2 = CTX

Subject to MX 5 b

Where C, X, b are n dimensional column vectors, M is a rectangular

m x n matrix, and all components of M, C, b are assumed to be integral.

X is unconstrained and any positivity requirements are explicitly incor-

porated into the system MX 5 b . _

We will refer to the linear program (1) as the rational program,

because it possesses in general a rational solution X .

If we add to (1) the requirement that the solution X be inte-

gral, we obtain the integral program, whose solution gives in general a

lower value of the objective function 2 .

As is known, the notion of optimal solution to (1) is meaningful

only when m > n , since otherwise unbounded rational solutions exist

and most often unbounded integral solutions. Thus we will be interested

in this case only.

An additional requirement imposed is one of complete non degeneracy,

i.e. All square n X n submatrices -of M should be non singular.

The special case m = n is called a rational (integral) cone

program.



2. Properties of 1 Bounding; Cone
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L.

A cone program (1) is in bounding form if the follcming conditions

are met:

a) C_>O,C#O

b) Mij-<O for i# j

Mii
> 0 for i = 1, l *e n

Thus M can be written as M = D-A where D is a positive diagonaL

matrix and A is a non-negative off-diagonal matrix.

c) There exists a positive row vector @ = (al, mm. QIn),

ari > 0 such that @uM > 0 or for each canggonent

n
c

i=l
% Mij ' O 3 = 1, 2, l ** n.

Since M is not singular by requirement, there exists M-l.
-

And we have

Lemma1 &D- -

Let u = (up 0-e Un) be any row vector such that UML 0 .

Consider the quantities U&, U2/a2, l ee Un/an where tyi are those

given in condition c). Let k be the one for which w'yk is @inbd.

i.e.

thInspecting the k inequality of UM 2 0 we get
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Where replacing each 1 i # k by - only increases its value

% Qk

because of (2) and the fact that aiMik < 0 . From condition c) we know

that F aiMik > 0 therefore we have
i=l

Uk/ak 2 0 and also

ui/cyi 2 ‘k/Qir L O for i = 1, . . . n .

Thus we conclude that U is non negative or

uM~O*U>O-

Since all rows of the inverse matrix M-l satisfy the left side of this

implication it follows that M-I > 0-

Observation: Given that M-l = N ,> 0 it is easily shown that

condition c) is satisfied by taking cyi = ii Nki ea t cv be the sum

of the rows of M-l).
k=l

-
Hence given a) and b) condition c) is equivalent to

-1M > 0 .

We show that a bounding cone always possesses a bounded rational solution

given by XR = M-lb .

Let X be any feasible point satisfying MX ,< b .

Subtracting the equation MXR = b from this we get

M(X - xR) ,<O '
-1

Since M is non negative we may multiply both sides by M-1 without

distorting the inequalities implied to get

ti

X- XR < 0 or

(3) ’ 5 ‘R for any feasible X .

TSince QOweget CTX ,< C XRand hence no feasible solution may have

higher value for 2 than XR .
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It can be shown that any non degenerate cone contains an integral

feasible point.

We will outline now a method for deriving the optimal -integral

solution. Define the following sequence:

(4) x0 = IXRl

Xn+l = [D-'(b+~,)I

Where [ ] is the truncation operation i.e, taking the largest integer

not larger than the argument, applied to each component. D and A are

the positive decomposition of M = D-A into diagonal and off diagonal

matrices. Clearly X0 5 XR

Fram which by multiplications of positive matrices and additions

we get D-'(b+AXO) 5 D-l(b+AXR)  = XR

- Truncating both sides we get

Xl = [D-l(b+AX,)l < [x,] = x0 01”

Assuming inductively that

We prove similarly that

'n L 'n-1

[D-'(b+AX,)] < [D-l(b+AXn ,)I or

(5) X <xn+l- n which holds therefore for all n O

Let Y. be any integral-feasible point.

By (3) it follows that Y. ,< XR and since Y. is integral also

Since Y. is feasible Y. < D-'(b+nU,)  Furthermore it is integral

Y. 5 ifl(b+Ao)l (6)
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Apply the operator T(X

Yo 5 x0

Yo 5 x1

) = [D-l(b+AX)j to both sides of

and then use (6) to get

which can be inductively extended to

(7) Y. < xn 0

We proved our sequence Xn to be non increasing in all components

and bounded below by any integral feasible point
yO' There must exist

therefore n such that Xn+l = Xn which implies

'n = [D-'(b+AX$] < D-'(b+AXn)

Le. that Xn is a feasible integral point,

Furthermore it is not lower in any component than any other in-te-

gral feasible point and hence is an optimal integral solution.

- We summarize this chain of arguments in the following:

Theorem1

The sequence defined by (4) converges in a finite number of steps

to an optimal integral solution of any bounding cone program.,

3‘9 General Applicability of the Method- -

L The contents of this chapter is a theorem showing that any cone

program possessing a bounded rational solution can be transformed to a
-

special bounding form and solved by the above suggested method,

-

L

-

When transforming integral programs one must be careful to pre-

serve integrality of the feasible points, The only permissible transfor-

mations are change-of-variable transformations (column operations on the

matrix M and the row TC ) which map integral points on integral points

and do not map any non integral point on an integral point.
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These are unimodular transformations and may be built up of the

following elementary operations:

another

a) Reverse the sign of a column,

b) Add to a column a multiple (integral in our case) of

COllXKI.Ul,

Let us indicate a sequence of increasingly complex procedures

that can be executed using these twc operations.

c) Interchange two columns.

Given two columns U and V., the following sequence interchanges

their contents.

u:= u+v;

v:= v-u;

v:= -v;

u:= u-v;

d) Given two elements in a given row, use column operation on

the two corresponding columns which result in a 0 being placed in the

first elements location and the greatest common divisor of the two ele-

ments in the second location, (If both are initially 0 leave them

that way).

We start by sign modifications to make both elements positive.

By successive subtractions of the smaller from the bigger we cause the

numbers to decrease until one or the other becomes 0 0 If th,is happens

to the second element, interchange columns. The remaining non zero ele-

ment is the G,C.D.

e) Given a row segment by a specified row i and last column

k<n, transform it to a row containing 0 in locations M- i.91
to Mi k 1

9 -
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and the G.C.D. of this segment (if not zero) at location Mi,k '

Apply procedure d) to the first two elements producing 0 in

the first column and the G.@.D, of the pair in the second column.

Repeat successively between 2nd and 3rd, 3rd and 4th: etc.,

thuntil after applying it to the k-l and the k columns, the row seg-

ment attains the desired form.

f) Given a square subma-trix by specifying k as the last row

and column to be included, transform it to an upper triangular matrix

'having positive diagonal and non positive super-diagonal elements.

(Assume the submatrix to be non singtiar).

Apply procedure e) to the last row segment for columns 1 to k.

producing zeroes everywhere except for Mk
9k

which gets a positive

value.
-

Apply procedure e) again to the k-l st row for columns 1 to k-l.

thSince the k throw contains non zero element in the k column only, it

will not be changed. Raving produced zeroe s in columns 1 to k-2 and a

positive number in column k-l, we proceed to subtract that column suffi-

ciently many times from column kto make smlk ,< 0 .
9

Similar application to the previous rows finally produce the

desired form.

g) Given a square submatrix of order k ,, transform the whole
cl+

matrix to a form in which the k+l"" column has negative entries in all

of the first k rows,

Transform first the submatrix to an upper triangular form by

prodcedure f). thSubtract a large multiple of the k column from the

k+lst to make % <o 0,k+l- Subtract now a large multiple of the k-lst

8



column from the k+l
St column to make

%,-l,k+l 5 ' * Notice that since

Mk,k-l = 0 we did not destroy the negativity property of Mkk+l o

Proceeding in this fashion we finally subtract the 1 - element first

column from the k+lSt column to make M? <o 9,k+l- not disturbing

the rest of this column,

Before we proceed to procedure h) which effects the complete

transformation we derive a necessary result,

We assumed our cone problem to have a bounded rational. solution.

'The only one possible is XR = M-lb .

In order for it to be optimal it is necessary that for any other

feasible solution:
T

MX_<b*CTX<CXR

or
-

(8)
TMYLO*CY<O if we let X-XR = Y a

by Farkas Lemma [l] it fo1.10~~ that

where fl is a non negative row vector.

Now we are ready to outline the final procedure.

h) Given a cone problem which is rationally solvable, it can be

transformed to a bounding cone problem of the following special type:

(to be called Pl form).

c=
cn > 0

M =

i F

0 G
v I

F<O



E is an upper triangtil.a+r bounding matrix, Leo9

eii > 0 e, <O for i<jlj -

e - 0 for i > jij -

G is an upper sub-triangular bounding matrix with negative (non zero)

elements on the first lower sub diagonal,

i.e. 65ii>o g,. < 0 for i < j
1J -

-

M =

L

gij
= 0 for i > j+l

0 -“O 0
0

0

6.
b s

b .A -

0 0 0

0 - +,

0 0 -a=C
l

.
0

. l

. *

8 stands for a non positive element.

For convenience 'we place the Ca row as an additional n+lst row

L

of the matrix M,

10



Start by applying procedure 3) to row n-+1 up to column n 9

getting CT into the above indicated form, Apply now procedure g)

to the submatrix of order n-l making the first n-l entries of the nth

column non positive, (One can always find a non singular (n-l) x (n-l)

submatrix among the first n-l columns), The matrix at this stage

L

4

L

looks as shown:

‘+ 0-

0 -!- 0 0

0-f - 8

r
L

C
T =

-

i

The " ?" stands for M
n-n whose sign is unknown, Consider the fact that'AI I.&

l
c .

0

. .

.
. .

�+ 0 :

0 +0

,x x x x.,.x x ?,
(0, o,,, 0 0 +)

a non negative combination  of the n rows should result in the last CT

row. This could be true for the last column only if Mn n > 0 and the
9

nth row actively participates in that combination i.e. Bn>O Q

2). Inspect now row n 3 columns 1 to n-l (where we drew X to signify

we do not have any information about their sign pattern). If all entries

are 0 the matrix has been brought to Pl form with G of order 0,

(M then consists of E only).

If any non zero entry is present, apply procedure e) to this row

segment. All entries will be 0 now except Mn n 1 which is positive.
9 -

Reverse this column sign to make Mn n 1 < 0.
9 -
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Repeat now and apply procedure g) to the submatrix of order n-2,

L

making all elements of column  n-l and rows 1 to n-2 non positive. The

matrix now has the following form

rt 0 0 0-

0 * 0 0
b b

. 0 : :
. *

b b t
b
‘+ 0 0

x x0.. 4r x ? 0

0. * . . 0 - +

Inspecting column n-l we find non&&Live entries in rows 1 to
-

n-2, a negative entry which participates actively in the non negative

canibination, and 0 as the value of that combination. It must there-

fore be that Mn 1 n 1
- 9 -

> 0 and row n-l also participates actively

in the ccxnbination.

Inspect now row n-l (where the Xs are). If all entries are 0

we are done. Otherwise go back to step 2) with row n-l and shorter seg-

ment 1 to n-2.

Proceeding in this way we either stop because such a row segment

has all zero entries, at which stage we have a non trivial E, or we carry

this process through up to row 1, in which case E is of dimension 0

and G is all of M 0

Observe that all rows of G participate actively in the positive

combination,



A complete Algol program effecting this transformation is

attached as an appendix.,

We have thus shown that any cone problem can be brought to 91

form* In order to caraplete the proof of the theorem we have to show

that

M-I>0 0 for M in the Pl form.

We start by showing that -1G 2 0 . Let G be of order 1 .

From the observation about all rows of G actively participating

in the Farkas combination we conclude the existence of

CY  = (CYp 0 0 .a1  > Such that cyi > 0

zj= ; cY.*g. .
1. LJ

2 0 for j=190.0 1-l
i=l

-
and

Let now U = (U19... Ur) be any row vector such that UG > 0 .

Consider the sequence Ui/ai and let k be the largest index

such that Uk/Qk ,< Ui/Qi for i=l, O.e I 0

thConsider the k inequality of UG > 0 9 as before we can derive

0 L ~ ‘igik =
i=l

'k 'k
> (~igik) L ( "k > ~ (crigik) = - ' ~

i=l QEk

If k= 1 then Z1 > 0 and we conclude that Uk/ak 2 0 .

If k # 1 and the inequalities on the way were strict inequalities we

'k 'khave 0< -*Zk* ->O.
cy, ak

13
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In order for the inequalities to beccme equalities it is neces-
U. 'ksary that all -& i { k 9 for which gik # 0 be equal to - 0
@i. %

But since gkcl k f 0 it follows that 'k+l 'k which violates
9

=-
%+l Qk

our requirement that k be the largest index for which Uk/ak is

minimal. Hence as proven in Lemma i

-I-(UG>O+U>O)aG > 0 a- - -

M-l=

F-l

G I i= E-l -E-lFG-1-

0 G-l-

>o

E-I being the inverse of a triangular matrix with positive diagonal

and non positive superdiagonal elements is positive. -F > 0 and so_

is its product wi-th positive matrices -E-'FG-1 10 :

We summarize these results jn the followirg:

Theorem 2

Any non singular, rationally so1vabl.e cone problem can be trans-

formed to a Pl bounding form,

4 o Extensions

The natural extension to a bounding cone is a bounding program

which. may be defined as follows:

Maximize Z = CTX

Subject to MX 5 b C9 M9 b, X integers, M completely

non degenerate0

14
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With the conditions:

a) C>G-

The rows indices may be partitioned into exclusive non empty

sets Ii i=190.a n .sti that

b) For jc Ii M. < 0
,7k -

k # i

Mji >o

c) There exists a row cy a,20 such-that crM>O. In other

words there should be a basic bounding cone and additional constraints,

each having exactly one positive coefficient.

The iterational process is defined now as

L

i

(8)-

.
=min

By using this sequence one may convert all proofs for the cone

case to proofs for the more generai case9 thus showing the iterational

process to converge provided an integral feasible point exists.

Existence of a feasible integral point is assured in the case of

a bounding non degenerate cone.

In the case of a more general bounding program the following pro-

cedure is suggested:

1) Look first for a bounded rational solution to the minimum

program Minimize Z = CTX S/T -MX<b

If no bounded solution exists and the program is completely non

degenerate, an integral feasible point must exist and hence the itera-

tional process must converge,



I -

L It is thus ascertained tha:, in a finite number of steps one

-

If a bounded rational so3M.on exists7 record its value. At

each generation of Xn cornpaTe CTX, against the minimal value. If

it gets beiow the minimal v&k+ no feasible integral point exists.

either proves the non exl.3*sence i;rf integral solution or finds it.

Unfort;unat,ely  no general proA.,-adure is known which will transform

a general problem to a b0;Lndin.g form except for the case of n = 2 o

Another possible extansion is using the bounding form to derive

L

-

L

quence defined in the same way as (7) or (8).

-

in taking as X
0

ary feasible integer point,

teed to converge to a aubop~Lima.l  solution with

value Z not lower than the one for X0 Z. =

a suboptimal  solu;t?on rather than an optimal one. We use again a se-

The only difference is

This sequence is guaran-

objective functions

cTxo 0

In order to get a ccmplete integer programming algorithm one

may use the following scheme:

1) Identify the active cone (the one which tightly bounds the

rational optimal solution) and solve it.

2) If some other cons+raints are still unsatisfied add to the

set of constraints the n new constraints

Xi <hi -i=lyOOO n.

Where h is idhe integral solution of the currently

solved cone!.
L

i

Return to step 1,



5. I2 Form- -

During computation it has been observed that the matrices ob-

tained in form Pl are not in general diagonal dominant. Since diagonal

dcxninance may enhance convergence, we shcrw now how any bounding cone can

be brought to a E2 form, which is also a bounding form with the additional

requirement that

Mii ’ IMij I jf;i .

This transformation is accomplished by column additions only

'and hence preserve condition c) validity.

Assume M to be in bounding form and let cy be the row vector,

cy > 0 such that

cuM=p>o

Suppose there are a row i and a column j such that

Mii-< lMijl i#j .
.th

We apply then a basic step of adding the P column to the jth COlumn.~

'In order to show that this does not destroy the bounding form of M 9

we focus our attention on the principal minor formed out of rows and

colu~@~s  i and j. (Without loss of generality assume i < j).

.

.

. ..m... !ii...
.

..*... Yji...

..

. . . . . . ...*.. il. . . . . . e.

l lJ.

.

. . . . . . . . . . . .M
:3j"""
.

Because any other elements in these columns are non positive it follows

that

KM..1 11 + ar.M.. = 6
J J1

i>O

a.M.. + 6
1 =J

QjMjj = j >0

17



Since Q~>Q/.
3

are positive and the sign pattern of the minor is the

bounding one, one considers the solution of this 2 X 2 system and

infers that

M..M.. -
11 JJ

If now Mii _< j Mijl it

column to the j
th column

M..M.. > 0
13 Jl

must follow that M,. > 1 K.1. Adding the i th
JJ J1

is going therefore to leave M..
1J

non positive,

M
33

positive and all other element in the altered column non positive.

To show that this process of repeated column additions must

terminate in a finite number of steps observe the following:

Adding column i to column j transforms matrix M to M' and

accordingly CUM' = BP > 0 where quite obviously

Hence

This implies that the sum of all the matrix elements weighted by

positive weight vector cy has increased. This transformation, however,

never increases any positive elements value, and must therefore decrease

the weighted sum of the negative elements in absolute magnitude. This

sum should decrease by at least 1 (assume CYi to be integral) at each

such step. - Since it cannot decrease below 0 the process must terminate;

termination means that no i and j exist such that Mii -< l"ijl i + 3 >

and E form has been attained.

18



6, Numerical Example

Trying different numerical examples we adopted the following

computational procedure.

1) Accept a general program (larger than a cone).

2) Solve first to get a rational minimal solution for bounding

2 from below,

3) Solve next to get a rational maximal solution - XR a

This process (using dual simplex method) singles out a basic cone

-

of tight or active constraints.

&) Transform this cone to Pl and later to R2 bounding form,

modifying XR on the way to be expressed in the new variables.

5) Search among the rest of the transformed program for addi-

tional constraints that are in bounding form and add them to form an

extended cone problem.

6) Solve the extended cone problem by the iterational method.

7) Check if the optimal solution attained satisfies the non-

participating constraints, If it does not - print an error message.

Return to step 1 to try the next problem.

In most of the cases tried, no error message was printed, which

means that the solution to the active cone is also a solution to the

complete program.
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As an illustrative numeric&l. example we chose the following

fixed-charge problem 121.

Maximize 2 = x3 + x4 + x
5

VT l l . . l . l . .

-&2 + x
-6x1

4
+ x

3

-x5 5 0
<o

,<O

3xl+2x2+2x3+ x4-+2x5  ~25

2x1 + 3x2 + X3 + 2x4 + 2x5 < 19-
- x1 ,<O

- x2 so
- x

3 <o

- x4 <o

The constraints have been ordered in such a way that the first

five are the tight constraints and yield the following rationial solution

ZR =ll 2l
z

16 1xl = 1 41 x2 = 1 x3 = 8 l4
8 41 x4=3% x5=0 .

Under transformation to new variables we get the following

rule of substitution:

x1= 1 +
yl

x2 =
y3 + y4 - Y5

yl - y2

x3 = 3 +5Y -1 3y2 - 2Y+3 + 3y4 - 7y
X4 5= -5 +

5Yl
"

2y2
-

2y
-

3 5Y4 -
x5 = 9 'lWl -I-

y5
5y2 + 4Y3 +2Y4 + gy

5
Z’?‘Y5

20



Where the yi are constrained to satisfy:

1, 10Yl - 5Y2 - by3 - 'Y)+ - 9Y5 5 9

2. -3~~ + 6~2 - 2~~ - 5~4 - Y5 5 5

3. - yl - 3Y2 + 4Y3 - 3Y4 - y5 5 3

4. y3 + 8Y4 5 3

5. y4 + 7Y5 ,< 6

6, - Yl + Y2 < 0

7a - yl + Y3 - Y4- + Y5 ,< 1

8. -5Y1 + 3Y2 + 2Y3 - 3Y4 + 7Y5 5 3

9e -5Y1 + 2Y2 + 2Y3 + 5yj++ Y5 f-5

Notice that the first 5 constraints are in the I?.? form, i.e.,

positive diagonal, non positive off diagonal, and diagonal greater in

absolute value than any other element in its row. Also note that in-

advertently constraint 6 is also of bounding form and should be added

to the five when generating the sequence.

The initial solution achieved by suitably truncating the trans-

formed rational solution is listed below together with the iterations:

Initial 1st 2nd 3rd , 4 - 5 6 7 8 9

169 168 167 166 165 164 163 162 162 162

169 168 167 166 165 164 163 162 162 162

189 188 187 186 185 184 183 182 181 181
- 24 24 23 23 23 23 23 23 23 23

4 4 4 4 4 4 4 4 4 4

21



Substituting these final values of y into the expressions for

x we get the final solution as

xl = 1, x2=0> x =
3

6, XL = 0, x
5

= 5

and the optimal value is z = 310

It was verified of course that this cone solution satisfies

also the other constraints as well,

,? Relation to Previous Work

Even though independently derived, the suggested method is in

some respects similar to F, Glovers "Bound Escalation Method" [3].

Once a bounding form is achieved, the process of attaining the optimal

integral solution to this partial problem is quite smilar.

The main differences are in justification of the iterational

method and in the proof of its convergence.

While the bound escalation method strongly relies on the assump-

tion that all variables are restricted to be positive, and hence is

restricted in the range of admissible transformations for creation of

a bounding form, our method has no such limitation. Convergence is

proved without any positivity  assumptions,,

The-possibility of simultaneously transforming a coraplete

cone into either Pl or p2 bounding form is considered and proved here

for the first time.

22
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APPENDIXA

Following are two ALGOL-60 procedures which transform solvable

cone problems into Pl and Pz forms respectively.

PROCEDURE Pl(M,n,m ); VALUE m,n;

INTEGER ARRAY

BEGIN CEMENT M is the matrix to be transformed. Assume column

M; INTEGER n,m;

n+l to contain the negated right hand side of the inequali-

0. m is the total number of constraints to

ties, row n+l contains the objective function coefficients

@ld Mn+l n+l=
be transfkmed together with the cone. m > n+l;

INTEGER b,e,q;

PROCEDURE w(a); VALUE a;

INTEGER a;

BEGIN Cm Reverse sign of column a;

FOR b:=l STEP 1 UNTIL m DOP -

M[b,a]:= -M[b,a]

END;

PROCEDURE MULADD(c,d,p); VALUE c,d,p;

INTEGER c,d,p;

BEGIN CC%!MENT Multiply column c by p and add to column d;

FOR b:=l STEP 1 UNTIL m DO- -

M[b,d,]:= M[b,dl + P X M[b,c]

END;

PROCEDURE XG(c,d); VALUE c,d;

INTEGER c,d;

23



BEGIN CNMENIJ Interchange contents of columns c and d;

INTEGER t;

FOR b:=l STEP 1 UNTIL m DO1 w

t:=REyN M[b,c]; M[b,c]:= M[b,d]; M[b,d]:=t
e

PROCEDURE GCDl (a,c,d); VALUE a,c,d;

INTEGER a,c,d;

BEGIN CCMMENT S.et M[a,c] to 0 and M[a,d] to the G.C.D.

of the two elements;

IF M[a,c] < 0 THEN NEGATE(c);

E M[a,d] < 0 THEN NEGATE(d);

L:IF M[a,c] # 0 THEN

BEGIN IF M[a,d] =- - 0 THEN XG(c,d) ELSE

BEG? IF M[a,c] < M[a,dl THEN_

MULADD(C,d,-M[a,d] + M[a,c]) ELSE

MuLADD(d,c,-M[a,c] + M[a,d]);

GO TO L- -

PROCEDURE GCD2(a,c);  VALUE a$;

INTEGER arc;

BEGIN CCMHENT SET M[a,l], M[a,2], . . . UNTIL M[a,c-l] TO 0

and M[a,c] to the G.C.D. of the two elements;

FOR e:=l STEP 1 UNTILc - 3 .  D O

GCDl (a,e,e+l);
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IF M[a,c] < 0 THEN NEGAT,E(c)

PROCEDURE TRIANG(k); VALUE k;

INTEGERk;

BEGIN CCMMENT Transform submatrix of order k into upper tri-
c

bounding form. Use if necessary k+lst row for

interchanges;
L

INTEGER ERC,i,j,t ;

L

L

L

L

L

L

L

L

L

4

L

L

ERC:=O;

FOR i:=k STEP -1 UNTIL 1 DO

BEGIN I2: GCD2(i,i);

M[i,i]=O THEN

BEGIN IF ERC k 0 THE.X GO TO IXRRCKL:

CCMMENT ERRORl is an error exit for cases

of singular matrix;

ERC:= 1;

FOR j:=l STEP 1 UNTIL n+l DO

BEGIN t:= M[k+l,j];

M[k+l,j]:= M[i,j];

M[i,j]:= t

END;

CCNMFXT in case of temporary singularity

exchange row with k+l st row;

GO TO I2- -

gg;

FOR j:=i+l STEP 1 UNTIL k+l DO

MUIADD(i,j,-(M[i,j]  + M[i,i]-1) + M[i,i]);
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CKMMENT make j
th

column negative by subtracting
ith column. Note that j ranges until

k+l;

END FORi;

END;

CCWENT main body of procedure;

GCD2 (n+l,n);

FOR q:= n STEP -1 UNTIL 2 DO- 7

BEGIN TRIANG(q-1);

~DhA-1);

IF M[q,q-l]=O THEN GO TO LEND;v---

NEGATE(q-1)

ENI%

LEND:

END;

PROCEDURE X??(M,n,m); YALUE m,n;

INTEGER ARRAY M; INTEGER m,n;

BEGIN COMMENT transform mtrix Mto form p2;

INTEGER i,j,k,p;

P~(M,n,d;

LB:FOR i:= 1 STEP1 UNTIL n DO- -

FOR j:= 1 STEP 1 UNTIL n+l DO

IF (i# j) A (abs(M[i,j]) LM[i,i]) THEN

BEGIN p:= abs(M[i,j])  + M[i,i];

26



FOR k:=l STEP 1 UNTIL m DO- B

M[k,j]:= M[k,j] + p X M[k,i];

GO TO LB- - -

END

END

No attempt has been made to code these procedures efficiently,
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