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1 Introduction

XML, theeXtensible Markup Language[XML97], is fast becoming the de-facto representation for semistruc-
tured data. In the research community, initial work on semistructured databases was based on simple graph-
based data models such as theObject Exchange Model(OEM) [PGMW95]. Though XML and OEM are
similar, there are some differences [DFF+99, GMW99], and one of the most significant of these concerns
data ordering. OEM and other original semistructured data models areset-based: an object has a set of
subobjects. However, since XML is a textual representation, any XML document specifies order inherently:
an element has alist of subelements. Of course, some applications may treat order as an irrelevant artifact
of the serialization “forced” by an XML representation. Still, we cannot preclude XML content authors
from taking advantage of order. For example, a publications database in XML may represent a publication's
author ordering simply by using an ordered list ofAuthor subelements under eachPublication.

As researchers have adapted their work on semistructured data to XML, the issue of order already has
been addressed at the data model and query language level [DFF+99, GMW99]. In this paper, we focus
on the impact of ordered subelements on two important technologies associated with semistructured data:
DataGuides[GW97] andproximity search[GSVGM98].

A DataGuideis a concise, accurate structural summary of a semistructured database [GW97]. Data-
Guides are constructed and maintained dynamically from a database, and they have proved useful for a
variety of purposes: browsing, query formulation, storing statistics, query optimization, and most recently
compression of XML data [LS00]. DataGuides were defined originally in the context of the OEM model:
DataGuides summarize unordered OEM databases, and a DataGuide is itself an unordered OEM object. It is
straightforward to use our original DataGuide algorithms to create and maintain unordered XML DataGuides
over XML data. However, capturing order in XML DataGuides introduces some new and interesting issues.
In this paper we present and evaluate several approaches for creating ordered XML DataGuides that effec-
tively summarize the order in the original XML data.

Proximitysearchis a concept from information retrieval (IR) that we applied to searching graph-structured
databases [GSVGM98]. In a traditional IR setting, proximity search is typically implemented with aNear
operator and is effective for identifying documents that contain multiple keywords in close proximity—
where distance is defined based on the number of characters separating the keywords. But when structure
is present, textual nearness is not always appropriate. For example, in an XML publication list an author
subelement for a publication could be textually closer to the following publication's title than to its own title.
Our proximity search approach takes structure into account by instead considering shortest paths in graph
representations of the data. We build special indexes for this purpose, and experience indicates that our
approach does an effective job of capturing what proximity search should mean in a structured or semistruc-
tured database [GSVGM98]. As with our DataGuide work, however, our proximity search work was based
on an unordered data model. In this paper we show how to modify proximity search to incorporate the in-
herent order of XML subelements. Specifically, we show how to augment the graph representation of XML
data such that shortest path computations account for subelement order. We demonstrate the impact of our
changes in a sample scenario where subelement order is clearly relevant to proximity search.

Throughout this paper we assume the mapping of XML data to an ordered labeled graph as specified in
[GMW99]. In brief, each element and each attribute maps to a node in the (rooted) graph, and edges cor-
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respond to element-subelement and element-attribute relationships. Edges are labeled with tags or attribute
names as appropriate, and the outgoing edges of each node are ordered (with attribute edges preceding
subelement edges by default). The distinction betweensemantic mode(where IDREF attributes become
graph edges) andliteral mode(where XML data always maps to a tree) from [GMW99] has no effect on the
algorithms presented in this paper. Our work also can be applied directly to other graph-based data models
for XML, e.g., [DFF+99].

2 DataGuides

From [GW97], a DataGuideG of a graph-structured source databaseD is itself a graph such that every label
path from the root ofD appears exactly once inG, and every label path from the root ofG appears inD.

Consider the following tiny snippet of abstract XML data, contrived to illustrate a point.

<X><A/><A/><B/><C/></X>
<X><A/><C/><D/></X>
<X><B/><A/><C/><D/></X>
<X><A/><B/><C/><D/></X>

If we assume unordered subelements, then one valid DataGuide is:

<X><A/><B/><C/><D/></X>

Each remaining permutation of theA, B, C, andD subelements forms a valid DataGuide as well.
When we take order into account, we would like to preserve the original definition of a DataGuide as

much as possible, but extend the definition to summarize the order of subelements as well as the overall
structure. We thus propose to keep the size of the ordered DataGuide the same as the size of the unordered
DataGuide, choosing the “best” subelement ordering for each element in the DataGuide. (If we want to store
further information about the actual orderings, we canannotatethe DataGuide elements as in [GW97].)

In our example, intuitivelyABCD does the best job of approximating the subelement order for theX
instances in the source data:A is the first subelement in 75% of the instances;B follows A in two instances
and precedes it in one;C follows A andB in all three instances where they all appear; andD is last in the
three instances it's a part of. While it may be easy to choose a “best” order for this simple example, it is a
challenge to define the “best” order for an XML DataGuide in general, and the definition could easily change
depending on the application. Hence, we have devised several strategies for summarization and report on
their effectiveness through an experimental framework.

2.1 Problem Formulation

The problem of ordering a DataGuide can be broken down recursively into the problem of ordering the
subelements of each DataGuide element. (If we also wish to order the attributes of each element, the
problem can be treated in the same way.) Suppose we create an XML DataGuideG of a source databaseD.
Consider any elemente in G, reachable fromG' s root by some sequence of tagsp. (By the definition of a
DataGuide,e is the only element inG reachable viap.) LetT be the set of elements in databaseD reachable
by p. (In [GW97] we callT the target setof p in D.) By the original DataGuide definition, each unique
subelement tag of the elements inT appears exactly once as a subelement tag ofe, and as discussed above
we retain this requirement in the presence of order. To order the DataGuide, we must order the subelements
of each such elemente. We will do so based on subelement ordering in all of the elements inT .

The problem can be stated more formally (and abstractly) as follows. Consider a setS = f�1; : : : ; �ng
where each�i is a sequence of labels. Construct a single sequence� of labels that “best” summarizes the
sequences inS, where� contains each label appearing in any�i exactly once.S corresponds to target setT ,
�1; : : : ; �n to the elements inT , and each�i encodes the subelement ordering of one element ofT . In our
simple example at the start of this section,S =fAABC, ACD, BACD, ABCDg and we constructed� =ABCD.
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2.2 Algorithms

We now describe three proposed algorithms for solving the problem specified in Section 2.1. Note that
for the simple example given at the beginning of Section 2, all three algorithms selectABCD (which was
proposed as the best permutation). The algorithms are evaluated experimentally in Section 2.3.

2.2.1 Greedy

One option is to use a simple greedy algorithm to generate� from S = f�1; : : : ; �ng. To begin, select the
labelL that appears at the head of the largest number of sequences inS. LabelL becomes the first label
in �. Remove all instances ofL from S, and repeat the process until all sequences inS are empty.� will
contain all labels exactly once. This algorithm is simple and can effectively summarize sequence order in
many cases, but there are several situations where it can produce counterintuitive results. Consider:

S = fBABB, BABB, BABB, ABB, ABB, XABBg

For this input, the greedy algorithm will constructBAX. However, this choice does a poor job of reflecting
the fact thatA precedesB in the data far more often thanB precedesA.

2.2.2 Edit Distance

A more intricate algorithm can be constructed usingstring edit distance[Gus97], which measures the min-
imum number of character insertions, deletions, or changes required to transform one string into another.
(For example, the wordswall andstill have an edit distance of 3: starting withwall, we can change thew to
s, change thea to t, and insert ani. Note that edit distance is symmetric.)

With a brute force approach, we can consider as candidates for� all permutations of all labels in any�i.
Then we compute the sum of the edit distances from each candidate� to all of the sequences inS. The�
permutation with the minimum overall edit distance is selected. For the example in Section 2.2.1,ABX and
AXB tie as the best permutations according to this algorithm.

There are many possible ways to further tune this approach. For example, different costs may be assigned
to different edit functions: to account for consecutive labels in an input sequence, we might want to set the
cost of a label deletion to be cheaper if it's exactly the same as either adjacent label. Another possibility is
to use a non-linear combination of the edit distances from� to the sequences inS to enhance (or mitigate)
the impact of any particular sequence within the set.

Unfortunately, this algorithm can be extremely expensive computationally, so pruning strategies would
be essential to making it practical in general.

2.2.3 Weighted Averages

For our third algorithm, we calculate the average sequence position for every label across all sequences inS
and then pick a final sequence that most closely matches the average sequence number for each label. Here,
we explicitly collapse consecutive identical labels to compute sequence positions.

More specifically, considerS = f�1; : : : ; �ng. First, for each�i and each unique labelL in �i, we
computepos(L, �i): the average position ofL in �i, after collapsing consecutive identical labels. As a
simple example,pos(B, AAABBBCC) is 2, since after collapsing consecutive labelsB is the second label.
When a label appears in more than one position in a sequence, we use the number of consecutive instances
at each position to weight the final average. For example,pos(B, BBBAB) is 1.5:(3�1+3)=4, whilepos(B,
BAB) is 2: (1 + 3)=2. Finally, letSL be the set of sequences�i in S such thatL appears in�i. The final
average position forL is computed as:

X

�i2SL

pos(L; �i)

jSLj
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To illustrate this algorithm, consider the following input data.

S =fAAABCDC,BAC, AAACCCDCg

For this data, we compute the following positions:

pos(A, �1) = 1; pos(A, �2) = 2; pos(A, �3) = 1
pos(B, �1) = 2; pos(B, �2) = 1
pos(C, �1) = 4; pos(C, �2) = 3; pos(C, �3) = 2.5
pos(D, �1) = 4; pos(D, �3) = 3

The final positions forA, B, C, andD are approximately 1.3, 1.5, 3.2, and 3.5, respectively, leavingABCD
as the final choice for�. For the example in Section 2.2.1, this algorithm selectsXAB.

2.3 Experimental Framework and Performance Results

To evaluate our different algorithms over large data sets, we created a simple program that generates sets
of label sequences with varying characteristics. The language of possible labels consists of the lettersA–Z,
both in upper and lower case. The program takes a lottery-based approach to picking labels to construct a
sequence. Given an input integer parametert, the first label picked will bet times more likely to be anA
than any other letter. The second label picked will bet times more likely to be aB than any other letter,
and so on, for up tol letters, wherel is an input parameter that can vary from 1 to 26. The lower-case
letters will be addressed momentarily. Each time a label is selected, we have another “lottery” to determine
how many consecutive instances of that label to include in the sequence. We make it equally likely that 1,
2, 3, ...,f consecutive instances are included, wheref is an input parameter. A third parameter isn, for
noise, intended to model the occasional inclusion of atypical labels—as may happen with semistructured
data. Before selecting each new label for the sequence, with chances 1 out ofn we will insert a randomly
selected lower-case letter into the sequence.

As an example let us setl=5 (for 5 upper-case labels),t=20 (making it quite likely that the letters are
selected in order),f=5 for moderate repetition, andn=10 for some noise. The following results represent
one run to generate 10 sequences.

cABBBBBBEEEE
cAAAABBBBADDDDBB
AAAAcCCCDDDE
AAAABBBBCCCCDDDEEEE
hAAABnCCDDEE
AAAAAhCCDDDDEE
AAAAAAACDDDDbEE
AEEEECCCBEEE
ABCCCCaDDE
ABBBBCCCDE

To compare the effectiveness of our algorithms from Section 2.2, we measure how often each algorithm
chooses a “correct” permutation as we vary the input parameters. In this setting, we say a permutation is
“correct” if A, B, C, and so on all appear within the permutation in lexicographic order. That is,A precedes
B, which precedesC, and so on. We ignore any noise labels when determining whether a permutation is
correct. A good algorithm should select a “correct” permutation more often ast increases (since labels
are likely to be chosen in order) and asn increases (since noise is less likely to be added between labels).
Furthermore, if an algorithm can consistently select the correct result for smallert andn, then it is likely to
do well in practice at finding intuitive permutations.

Note that we are not measuring running time in these experiments, only effectiveness in selecting a good
permutation. Both the weighted averages and greedy algorithms are linear in running time with respect to
the total number of labels in all the sequences, while the edit distance algorithm shows factorial space and
time growth in the number of distinct labels across sequences. The number of different ”noise” labels
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Figure 1: Comparison of ordered DataGuide algorithms

quickly makes the edit distance algorithm infeasible, so in our experiments we make one small adjustment:
we consider all permutations of the “primary” labels (A, B, C, etc.) only, then measure edit distances to the
original sequences, which include both primary and noise labels.

We compare the effectiveness of our algorithms in Figure 1. Six graphs are presented, corresponding to
six different values fort (from 2 to 7). In each graph, we show the effectiveness of all three algorithms (WA
for weighted averages, ED for edit distance, and GR for greedy) for six different values ofn, again from 2 to
7. For each combination oft andn, we ran all three algorithms over 20 independent sets of 100 sequences.
The effectiveness is the percentage of the 20 runs that return a correct permutation. We setl = 5 andf = 5
for all experiments, though we observed similar results for other values.

The results show quite conclusively that the edit distance algorithm is the most effective, reaching about
100% effectiveness for allt � 3, at any value ofn. When noise is rare, the other two algorithms are similar
to each other in accuracy, approaching 100% effectiveness whent � 6 andn � 6. The greedy algorithm is
the most susceptible to large amounts of noise: it is less effective than the weighted average algorithm when
n � 3.

3 Proximity Search

Consider the following sample XML data, representing three Stanford Database Group publications.

<PUBLICATION>
<TITLE>DataGuides: Enabling Query Formulation and Optimization in Semistructured Databases</TITLE>
<AUTHOR>R. Goldman</AUTHOR>
<AUTHOR>J. Widom</AUTHOR>

</PUBLICATION>
<PUBLICATION>
<TITLE>Lore: A Database Management System for Semistructured Data</TITLE>
<AUTHOR>J. McHugh</AUTHOR>
<AUTHOR>S. Abiteboul</AUTHOR>
<AUTHOR>R. Goldman</AUTHOR>
<AUTHOR>D. Quass</AUTHOR>
<AUTHOR>J. Widom</AUTHOR>

</PUBLICATION>
<PUBLICATION>
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Figure 2: Original and transformed XML graphs

<TITLE>Proximity Search in Databases</TITLE>
<AUTHOR>R. Goldman</AUTHOR>
<AUTHOR>N. Shivakumar</AUTHOR>
<AUTHOR>S. Venkatasubramanian</AUTHOR>
<AUTHOR>H. Garcia-Molina</AUTHOR>

</PUBLICATION>

Consider a search that tries to identify publication titles “near” J. Widom. The traditional definition of
textual proximity does not work well in this case:J. Widom is closer in the text toProximity Search in
Databases than toLore, even though she isn' t an author of the former. Our previous work on proximity
search addresses exactly this situation [GSVGM98]. We model the data as a graph as described in Section 1,
and users can optionally add weights on edges to indicate the “strength” of object-subobject relationships.
Distance between data objects is then measured based on the shortest weighted path in the graph, and a
special index is built to speed up the computation [GSVGM98]. Even with uniform weights, the graph
encoding and shortest path approach to proximity search solves theTitle near J. Widom problem above.

Now let us consider the impact of order. In the example above, the order of authors is a very important
aspect of the data. If we want to findPublication near Goldman, the publications whereR. Goldman is a first
or second author should rank higher than those whereR. Goldman is a later author. To incorporate order into
our proximity search framework, we preprocess each XML data graph before building our proximity search
index, adding new objects and weighted edges that adjust the weighted shortest paths between objects in
order to reflect ordering. For example, the left side of Figure 2 shows the XML data above modeled as a
graph, with some simple weights to illustrate our approach. The right side of Figure 2 shows the transformed
graph for the rightmost publication subtree. As can be seen, the firstAuthor is distance 1 from the parent
publication element, the second author is distance1+ � (for some small value�), the third is distance1+2�,
etc. The distance between the first and second author is2 + �, the same as the distance between the second
and third author and the distance between the third and fourth.

In this case we decided that theTitle subelement and the firstAuthor should be the same distance from
the parent. However, if we preferred to take into account the fact thatTitle precedes the firstAuthor, we
could insert an� edge between nodesd1 andd2 and remove the edge fromd2 to p.

In the general case, consider an elementp. We partitionp' s list of subelements into sublists, where order
is relevant within but not between sublists.1 For each subelementci of p, we “disconnect”ci from p and
create a new parentdi of ci. The weight on thedi ! ci edge is the weight from the originalp ! ci edge.

1This partitioning could be provided by the XML content author. As a default when not specified, we either create one sublist
containing all subelements or we partition based on repeating XML tags. In our example, tagsTitle andAuthor partition the
subelements into two sublists. When present, XML attributes can be grouped into their own sublist.
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We then connect adjacentdi nodes within each sublist with edges of weight�, and finally add an edge with
weight0 from p to the firstdi for each sublist. Note that it is well-defined to perform this transformation on
arbitrary graphs.

The transformation effects some important properties. Considerp and one of its sublistsL such that the
weight fromp to every element inL is W . First, we see that any two adjacent siblings are now2W + �
apart. More generally, theith andjth siblings are2W + (ji� jj � �) apart, assuring that sibling distances
grow monotonically as their separation within the list increases. Also, the distance fromp to theith ele-
ment (counting from 0) ofL is W + (i � �), assuring that distance from the parent to its children grows
monotonically beginning with the first child.

3.1 Examples

To demonstrate the impact of our transformation, we built two proximity indexes over a real XML database
for the Stanford Database Group, which contains information about our group members, projects and pub-
lications (http://www-db.stanford.edu/lore). One index was based on the original graph, and the other based
on the transformed graph to take ordering into account. The format of the publication data is similar to the
XML shown above, though there is only one XML element per unique author, referenced (via an IDREF)
from all of his or her publications.

We performed several searches using both indexes and compared results. The result of a proximity
search is a ranked list ofFind elements, where the score of each is based on proximity to all in theNear
set. The score also is influenced by several tuning parameters described in [GSVGM98]; we use the same
default parameters as in [GSVGM98]. We describe results from two representative searches.

First, we performed the searchFind Publication near Goldman. All publications where R. Goldman was
the first author received the highest score, followed by publications where he was the second author, etc. In
the original scheme, all of R. Goldman's publications received the same score.

Next, we performed the searchFind Author near Goldman. The XML element for R. Goldman received
the highest score. Next was an eight-way tie among S. Abiteboul, S. Chawathe, A. Crespo, H. Garcia-
Molina, J. McHugh, D. Quass, N. Shivakumar, and V. Vassalos. All were adjacent to R. Goldman in an
author list except for A. Crespo and V. Vassalos. The latter two are non-adjacent co-authors of R. Goldman's,
but they have other relationships to R. Goldman in the database (e.g., they worked on the same research
project). The lowest non-zero scores were given to both S. Venkatasubramanian and Y. Zhuge, representing
the largest “separation” between R. Goldman and his co-authors. (On one paper, R. Goldman was first
author and S. Venkatasubramanian was fourth, and on another, R. Goldman was second and Y. Zhuge was
fifth.) In the original scheme, all of R. Goldman's co-authors tied for second place behind the element for
R. Goldman himself.
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