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Abstract

Semistructured data usually is modeled as labeled directed graphs, and query languages
are based on declarative path expressions that specify traversals through the graphs. Regular

(or generalized) path expressions use regular expression operators to specify traversal patterns.
Regular path expressions typically are evaluated at run-time by exploring the database graph.
However, if the database includes a structural summary such as a DataGuide, then an alternative
approach is to expand regular path expressions at compile-time using the structural summary,
reducing the run-time overhead of database exploration. This paper describes algorithms for
compile-time regular path expression expansion in the context of the Lorel query language
for semistructured data, and reports on performance results conducted on the Lore system
illustrating the bene�ts of compile-time expansion.

1 Introduction

E�ciently storing and querying semistructured data|data that need not adhere to a �xed schema|
has emerged as an important topic in the database research community [Abi97, Bun97, Suc98].
Researchers have addressed the design of query languages for semistructured data, e.g., [AQM+97,
BDHS96, FFLS97], the implementation of prototype database management systems for semistruc-
tured data, e.g., [FFLS97, MAG+97], and query optimization issues related to semistructured data
and path expressions, e.g., [BDHS96, FLS98, FS98, GGT96, MW98]. With the recent emergence
of XML, a proposed standard for exchanging information on the Web [LB97], and the remarkable
similarity of XML to typical models for semistructured data, support for query languages for semi-
structured data|and the performance of such queries over large semistructured databases|is of
increasing importance.

XML, as well as other semistructured data, can be stored in a database system by modeling
the data as a labeled directed graph. Queries use path expressions to describe traversals through
the labeled edges in the graph. The e�cient evaluation of a query then hinges upon choosing
e�cient traversal schemes for the set of path expressions in the query [MW98]. A regular (or
generalized) path expression uses regular expression operators to specify a (possibly recursive) path
pattern. Regular path expressions are particularly useful when the structure of the data is irregular,
changes often, or is not completely known to the user. Modeling semistructured data as labeled
graphs and querying it using a language based on regular path expressions is common to most
research in semistructured data, e.g., [BDHS96, FFLS97, MAG+97].

Run-time evaluation of regular path expressions can be expensive. In this paper we explore
improving e�ciency by performing compile-time expansion of regular path expressions based on a
structural summary (DataGuide [GW97]) of the current database. Compile-time expansion incurs
the cost of exploring the structural summary and rewriting the query, but it can eliminate signi�cant
amounts of unnecessary database exploration at run-time. We have implemented our algorithms in
the LoreDBMS for semistructured data [MAG+97], and preliminary performance results con�rming
the bene�ts of the approach are reported.

Our work is similar in spirit, but not in details, to [FS98]. In [FS98], a cross-product is computed
between a graph schema|a summary of the database that must be small and reside in memory|
and a representation of the query. From this cross-product an expanded version of the query is
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Figure 1: Semistructured library database

produced that is expected to execute more e�ciently than the original. Our algorithm traverses
the DataGuide (which corresponds roughly in our work to their graph schema) in order to rewrite
the query. We do not require that the DataGuide is small since a full cross-product is not formed.
We also do not require that the DataGuide reside in memory, and we thus must consider the I/O
cost incurred when portions of the DataGuide are read from disk during query rewrite. We also
address some additional query rewrites not covered in [FS98].

2 Setting and Examples

Our work is conducted in the context of Lore, a database management system designed speci�cally
for storing and querying semistructured data [MAG+97]. Lore's data model is the Object Exchange
Model (OEM) [PGMW95]. Data in this model can be thought of as a labeled directed graph, with
objects as vertices and edges representing the object-subobject relationship. Details on OEM and
Lore can be found in [MAG+97]. The query language supported by Lore is Lorel [AQM+97]. Lorel
is an extension of OQL supporting (among other features) declarative regular path expressions
for traversing semistructured data. Since semistructured data need not conform to a prede�ned
schema, in Lore we have introduced DataGuides [GW97], which replace the traditional schema with
a dynamically-generated structural summary of the database. The DataGuide stores information
about all unique label paths in the current database graph.

Figure 1 shows a sample OEM database of library information with atomic values omitted.
Because in our sample data we primarily show only one representative for each kind of information,
with the exception of the two Book and Conference edges, this graph also serves as the DataGuide
for our running example. Of course an actual database, including the one used for our experiments,
would have a large number of books, movies, conferences, etc.
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2.1 Lorel Path Expressions

In Lorel, a path expression speci�es a traversal through the database graph. For example, \Library.
Books b, b.Book x" is a path expression that binds to variable b all Books subobjects of the
Library object, and to variable x all Book subobjects for a given object bound to b. A path
expression is made up of a sequence of path components, where a component is a triple of the form
hSourceVar, SubPath, DestVari.1 The source variable can either be a variable or a name. A name
uniquely identi�es a single object and is used as an entry point into the graph. A SubPath is either
a single label, or a subpath with regular expression operators that cannot be decomposed further.

A regular path expression is a path expression where one or more of the path components con-
tains a subpath with a regular expression operator applied to it. For example, the path component
hx, (.PreviousEdition)*, yi will bind to y all descendents of x that are reachable by following 0
or more edges labeled PreviousEdition. The path component hx, (.Citesj.PreviousEdition), yi
will bind to y both Cites and PreviousEdition subobjects of x. In addition to the Kleene clo-
sure (*) and alternation (j) operators, Lorel includes operators for \one-or-more" closure (+) and
optionality (?), and the subpath \#" is used to match 0 or more edges with any label.2

2.2 Examples

Here are three Lorel queries containing regular path expressions, intended for the database of
Figure 1.

(1) Select x, y from Library.# x, x(.Cites|.PreviousEdition|.Sequel)+ y

(2) Select y, z from Library.Proceedings c, c.# x, x.Title y, x.Cites z

(3) Select y from Library.# x, x.Author y

Where exists z in x.Title: z like "%stand%"

The �rst query returns database objects x together with other objects y that were \in
uenced" by
x. Here in
uenced means that there exists a path of length � 1 of Cites, PreviousEdition, or
Sequel edges. The second query returns all titles of objects in Proceedings subgraphs along with
the entries that they cite. Note that x can be bound to any descendent of c, but x must have Title
and Cites subobjects in order to satisfy bindings for variables y and z. The third query includes
the SQL-style \like" operator and returns all authors of objects that have \stand" in their title.

3 Compile-time Rewrites

We now introduce two schemes for eliminating regular path expressions at compile-time: path

expansion (for eliminating *, +, and ? operators) and alternation elimination (for eliminating j
operators).

3.1 Path Expansion

We use the DataGuide to replace all regular expression operators *, +, ? with alternations (j)
representing possible paths in the current database. The rewrite algorithm e�ectively executes
the entire regular path expression over the DataGuide and records the label paths that are seen.

1Lorel allows many shortcuts that eliminate variables and are convenient in practice. In the Lore implementation,
all shortcuts are transformed into the fully instantiated path components that we describe here.

2Lorel also supports \label wildcards", and in fact \#" is an abbreviation for \(%)*" where % matches any
label [AQM+97]. Label wildcards are expanded into alternations e�ciently by the Lore preprocessor and thus are
not considered further in this paper.
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Since the DataGuide is typically much smaller than the database, we can e�ciently replace regular
path expression operators with the actual set of possible matching paths, eliminating unnecessary
exploration of the full database at run-time. Cycles must be handled carefully: the semantics of
Lorel is to traverse a data cycle no more than once when evaluating a path expression with a closure
operator, and that same semantics must be preserved when we eliminate closure at compile-time.
Note that we are assuming a \compile-and-run" scenario, with concurrency control ensuring that
the structure of the database remains stable between compilation and execution. Obviously if the
DataGuide can change between compile-time and run-time then our approach does not apply.

As an example, consider the subpath \Library.# x, x.Author y" in example query 3 (above).
The path component hLibrary, #, xi binds to x any descendent of the named object Library. How-
ever, the path is further restricted by the second path component hx, Author, yi. By performing
compile-time expansion of the #, we can ignore at run-time those database paths that don't lead
to an Author subobject. For example, by applying this path to the DataGuide for Figure 1, we
determine that the # can match only Proceedings.Conference.Paper and Books.Book, yield-
ing an equivalent path expression \Library(.Proceedings.Conference.Paperj.Books.Book) x,

x.Author y." The expansion of paths with + and ? proceeds similarly.
By expanding a regular path expression at compile-time using the DataGuide, we are guaranteed

to visit, at run-time, a subset of the objects we would have visited with the original path expression.
If the DataGuide is small and resides in memory then the expansion itself will be very fast and
almost certainly worthwhile. However, when the DataGuide is large and may reside partially (or
completely) on disk, it is less obvious that the cost associated with compile-time expansion, plus
the cost of evaluating the expanded path expression, will be less than run-time evaluation of the
original path expression. In Section 4 we empirically evaluate the expansion tradeo�s. We have
some preliminary ideas on an e�cient data structure that stores certain path statistics tuned to
enable the optimizer to quickly choose whether or not to perform compile-time path expansion.
Simple heuristics based on, say, the size of the DataGuide are not su�cient, but detailed coverage
of this topic is beyond the scope of this paper.

3.2 Alternation Elimination

We can also eliminate alternation operators in regular path expressions by introducing either a
union operator or a disjunct in the where clause. If the alternation appears in the From clause,
e.g., \From Library(.Book|.Movie) x, x.Title y", then we can rewrite this clause as \From
((Library.Book) union (Library.Movie)) x, x.Title y". This transformation can be ap-
plied as many times as necessary, and if union is implemented properly it will not introduce
any computational or I/O overhead to any execution strategies. Once an alternation is replaced
with a union we can consider the following query rewrite:

Select s
From ...,((x.Book) union (x.Movie)) y,...
Where w

!

0
@

Select s
From ...,x.Book y,...
Where w

1
A Union

0
@

Select s
From ...,x.Movie y,...
Where w

1
A

Here we have replaced the union expression in the From clause with two queries connected via a
union. In Section 4 we give examples showing when this transformation is advantageous.

When the alternation appears in the Where clause, such as \Where exists y in x(.Subject

|.Keyword): y = 'Semistructured'", we can rewrite it using a union and make the transfor-
mation as above, or we can rewrite it using disjunction: \Where exists y in x.Subject: y =

'Semistructured' or exists z in x.Keyword: z = 'Semistructured'". Note that in gen-
eral, to introduce disjunction, the Where clause must �rst be expressed in disjunctive normal form,
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Path Compile-time Query Total Execution of
Expression Expansion Execution Original Path

Library.#.Name 0.35 28.74 29.09 54.10
Library.#.Title 0.21 10.0 10.21 33.43
Library.Books.Book.#.Name 0.07 5.37 5.44 10.05
Library.Movies.#.Title 0.1 2.84 2.94 12.30
Library.Movies.Movie.Actor.# 0.01 3.07 3.08 3.12

Table 1: Execution times for small database

Path Compile-time Query Total Execution of
Expression Expansion Execution Original Path

Library.#.Title 0.77 102.65 103.42 412.13
Library.Books.Book.#.Name 0.18 99.10 99.28 126.74
Library.Movies.#.Title 0.24 83.73 83.97 223.10
Library.Movies.Movie.Actor.# 0.01 35.4 35.41 37.93

Table 2: Execution times for larger, cyclic database

and care must be taken to ensure that quanti�cation and scope remain correct. The importance of
this transformation is that it allows us to take advantage of an index created over Keyword objects
when no corresponding index exists for Subject objects, or vice-versa.

4 Implementation and Performance

In this section we empirically evaluate the bene�ts of the compile-time rewrites described above.
We have extended the Lore system to expand path expressions containing #, +, and ?, using the
DataGuide. Lore does not currently support a general query rewrite mechanism to implement the
union rewrite described in Section 3.2, so we have hand-fed the original and rewritten queries in
order to evaluate the e�ectiveness of the transformation.

4.1 Path Expansion

In our �rst set of experiments we compare execution times for path expressions containing #,
with and without path expansion. (Recall that # matches any label path of length 0 or more.)
We use synthetic library databases similar to Figure 1. Atomic values are unimportant since we
are concerned primarily with paths through the database. Our database generator creates graphs
using parameters such as number of books, average number of authors, percentage of books that
are sequels, etc. In Tables 1 and 2 we present execution times (in seconds) for path expression
evaluation with and without path expansion. The numbers in Table 1 were generated by running
Lore over a small library database of about 31,028 objects and 42,270 edges. In this database there
are 2,000 books, 4,000 authors and actors, and 1,000 movies. The data is not tree-structured, but
there are few cycles in the graph, and the DataGuide consists of about 100 objects. No indexes
are used. For the execution times given in Table 2 the database contains 132,727 objects and
245,335 edges, with 10,000 books, 20,000 authors and actors, and 10,000 movies. Even though the
data follows the same general form as the �rst database, the data is generally more cycle, and the
DataGuide is about double the size of the �rst DataGuide. Again no indexes are used.
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Key Query

A Select x
From Library.Books y, y.Book x
where x.(TitlejKeyword) = \Armageddon"

B

0
@

Select x
From Library.Books y, y.Book x
Where x.Title = \Armageddon"

1
A Union

0
@

Select x
From Library.Books y, y.Book x
Where x.Keyword = \Armageddon"

1
A

Table 3: Key for Table 4

Query Execution Time Notes

A 5.9 No index used.
B 4.5 Index created and used over Keyword. No index over Title.
B 4.9 Index created and used over Title. No index over Keyword.

A 0.017 Index created and used for both Title and Keyword.
B 0.019 Index created and used for both Title and Keyword.

Table 4: Execution times for alternation elimination

Tables 1 and 2 show that compile-time path expansion can reduce overall execution time by
up to 75%. For these databases and DataGuides, the time to perform expansion is dwarfed in all
cases by actual query execution time. As can be seen, there is essentially no bene�t to expanding
the # operator when it appears at the end of the path, i.e., the last row in each table, since in this
case expansion does not prune any paths from consideration at run-time. (The small di�erence in
query execution times is due to a more e�cient implementation of the physical scan operator used
by the transformed path expression.)

Clearly we can construct a database with a very large DataGuide, where the cost of exploring
the DataGuide does outweigh the run-time bene�t of compile-time expansion. For example, we
generated a database whose DataGuide's size was close to the size of the database due to very
unstructured data. The time to execute a sample regular path expression was 156 seconds, which
was faster than the time required to expand the path expression (46 seconds) and then execute the
expanded path expression (150 seconds).

4.2 Alternation Elimination

To test the e�ectiveness of replacing alternation with union, we ran the experiments reported
in Tables 3 and 4. Table 3 shows our original (A) and rewritten (B) queries. We present the
transformation of alternation in the Where clause into a union operator (with subsequent query
rewrite), rather than disjunction, because the performance improvement is more signi�cant. Table 4
shows execution times (in seconds) with a variety of indexes over the smaller library database.

The experiments in Table 4 show one situation in which it is bene�cial to eliminate alternation.
In Lore, value indexesmay be used to quickly locate atomic objects with speci�c values and incoming
labels (e.g., objects with incoming label Title and value \Armageddon"). We can then traverse
backwards through the graph to match the path expression being evaluated. For details see [MW98].
In our example queries, if a value index exists for Title or Keyword objects but not both, then it
would be extremely di�cult for the optimizer to exploit just one index in the evaluation of query A.
Query B, however, can take advantage of a single index when it exists. For example, with an index
over Keyword objects the rewritten query ran about 24% faster than the original. The speedup

6



using a Title index was less because typically there are many Keyword subobjects for a movie,
but usually only one Title, thus requiring less search when a Title index is not present. If both
indexes are present then the optimizer selects a more sophisticated query execution strategy (a
combination of traversing down through the graph and upwards from the indexed values) for both
queries, with signi�cantly faster execution times as shown in the last two lines of Table 4.

In general terms, the advantage of transforming alternation into a union expression, and then
into two queries connected via a union, is that even though some redundant path traversals may
occur in the rewritten query, its two subqueries can be optimized independently and thus can
use very di�erent execution strategies. Transforming alternation into disjunction in our particular
example has a less dramatic e�ect. However, the same general principle of separating execution
strategies applies when the path expression operands to the alternation are longer.

One simple way to decide whether the rewritten query is likely to be advantageous is to send
both queries to the physical query plan generator and compare estimated cost [MW98]. As future
work we intend to investigate more e�cient heuristics to make this decision.
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