
Query Optimization for Semistructured Data�

Jason McHugh, Jennifer Widom

Stanford University
fmchughj,widomg@db.stanford.edu, http://www-db.stanford.edu

Abstract

With the emerging prevalence of semistructured data|data that may be irregular or in-
complete|it is important to develop e�cient query processing techniques for such data. This
paper describes the query processor of Lore, a DBMS for semistructured data, and focuses par-
ticularly on the cost-based query optimization techniques we have developed and implemented
for a semistructured environment. While all of the usual problems associated with cost-based
query optimization apply to semistructured data as well, a number of additional problems arise,
such as vastly di�erent query execution strategies for di�erent semistructured databases, more
complicated notions of database statistics, and novel uses of indexing. We introduce very 
exible
logical query plans that can be transformed into a wide variety of physical plans, de�ne appro-
priate database statistics and a cost model, and describe plan enumeration including heuristics
for reducing the search space. Our optimizer is fully implemented for most of the Lore query
language, and preliminary performance results are reported.

1 Introduction

Several recent trends, including the integration of data from heterogeneous sources and the emer-

gence of the World-Wide Web, have sparked a great deal of interest in semistructured data [Abi97,

Suc97]. Unlike well-structured relational, object-relational, or object-oriented data, semistructured

data need not adhere to a �xed schema de�ned in advance. Rather, the schema may evolve as

rapidly as the data does and in unpredictable ways. Furthermore, semistructured data may be

irregular or incomplete, and it may exhibit structure and type heterogeneity. Generally it is very

di�cult to force such data into a traditional strongly-typed data model requiring a prede�ned

schema, so many applications involving semistructured data forgo the use of a database man-

agement system, despite the fact that the strengths of a DBMS|ad-hoc queries, e�cient access,

concurrency control, crash recovery, security, etc.|would be very useful to those applications.

In the Lore1 project at Stanford we are building a database management system designed

speci�cally for semistructured data. We decided to build Lore from scratch so that we could

experiment with how the semistructured nature of our data a�ects each component of the DBMS.

For an overview of the Lore system and discussion of the issues we have addressed in its various

components see [MAG+97]. Lore has evolved into a full-feature multi-user DBMS and is available

to the public; see www-db.stanford.edu/lore.

In this paper we address query processing in Lore, and in particular we describe the cost-based

query optimizer we recently designed and implemented. (Earlier versions of Lore's query processor

�This work was supported by the Air Force Rome Laboratories and DARPA under Contracts F30602-95-C-0119

and F30602-96-1-031.
1The name Lore derives from Lightweight Object Repository, initially indicative of the fact that we were building

a \lightweight" system for \lightweight" objects [QRS+95].

1



naively selected from one or two types of simple query plans.) To the best of our knowledge ours is

the �rst complete cost-based optimizer for queries over semistructured data, and because our data

model and query language are similar to others [Cat94, BDHS96] our approach should certainly be

applicable to other ongoing work in the area.

While our general approach to query optimization is typical|we transform a query into a

logical query plan, then explore the (exponential) space of possible physical plans looking for the

one with least estimated cost|a number of factors associated with semistructured data complicate

the problem. Because we use a graph-based data model (Section 3) and do not have a known

�xed schema for a given database, many of our physical operators look very di�erent from those

found in a relational or even object-oriented query processor. Furthermore, a given query may

have many candidate physical plans with vastly di�erent shapes. A signi�cant challenge for us was

to develop logical plans that are 
exible enough to generate widely di�ering physical plans while

handling arbitrary queries in our language. Another challenge was to de�ne an appropriate set of

database statistics and devise methods for computing and storing them, again without the bene�t

of a schema. Further, as will be seen, we have developed some novel indexing techniques for query

processing in Lore, and much of the plan enumeration phase consists of properly incorporating and

evaluating these techniques in query plans. Finally, since our search space is at least as large as

one �nds in a conventional optimizer, we needed to develop pruning heuristics appropriate to our

query plan enumeration strategy.

Section 2 surveys related work. Section 3 introduces the Object Exchange Model (OEM)

[PGMW95], Lore's self-describing graph-based model for semistructured data. Section 3 also brie
y

describes Lore's query language Lorel (for Lore Language), mentioning the basic features needed to

understand the query optimization process. Details on the full language can be found in [AQM+96].

Section 4 motivates the variety of query execution strategies we can generate through several ex-

amples. Section 5 then describes our logical query plans, followed by Section 6 that covers physical

plans. Our cost model and statistics are given in Section 7. The plan enumeration algorithm is

covered in Section 8, including our overall strategy and our heuristics for pruning the search space.

Finally, some preliminary performance results are reported in Section 9, although exhaustive per-

formance evaluation is not the focus of this paper.

2 Related Work

The �rst version of the Lorel query language and initial ideas for the Lore system were presented

in [QRS+95]. Details of the syntax and semantics of the current version of Lorel can be found

in [AQM+96]. The overall architecture of the Lore system, including the simple query processing

strategy we used prior to developing our cost-based query optimizer, can be found in [MAG+97].

The UnQL query language [BDHS96, FS98] is based on a data model similar to ours and also is

designed speci�cally for semistructured data. For query optimization, a translation from UnQL to

UnCAL is de�ned [BDHS96], which provides a formal basis for deriving optimization rewrite rules

such as pushing selections down. However, UnQL does not have a cost-based optimizer as far as we

know, and no performance results have been reported. A much earlier system, Model 204 [O'N87],

was based on self-describing record structures that can be thought of as semistructured data. Lore's

data model is more powerful in that it includes arbitrary object nesting, so Lore's query language

2



is richer than the language of Model 204. Thus, query processing in Lore is more complicated than

in Model 204, which concentrated primarily on clever bit-mapped indexing structures to achieve

high performance.

Some recent papers have speci�ed cost models for object-oriented DBMS's, e.g., [BF97, GGT95].

Because Lore does not guarantee the object clustering properties assumed by these cost models

and does not provide a �xed schema, we were unable to adapt these models immediately for our

purposes, and our current cost model is quite a bit more simplistic. As future work we intend to

investigate object clustering and whether it would permit us to (among other things) adapt known

OODB cost formulas for our setting.

Other recent work has focused on optimizing the evaluation of generalized path expressions,

which describe traversals through data and may contain regular expressions. In [CCM96] an al-

gebraic framework for the optimization of generalized path expressions is proposed, including an

approach that avoids exponential input to the query optimizer and o�ers 
exibility in the ordering

of operations. In [FS98] two optimization techniques for generalized path expressions are presented,

query pruning and query rewriting using state extents. While the Lorel language does include an

analogous concept of generalized path expressions within its queries, in this paper we in fact drop

that feature (and only that feature) and focus instead on the overall query optimization problem

for complete queries. We expect that optimization techniques designed speci�cally for generalized

path expressions, such as those in [CCM96, FS98], can be incorporated into our cost-based query

optimizer and we hope to do so in the near future.

In the context of query optimization for standard (well-structured) object-oriented DBMS's,

[GGT96] proposes a set of algorithms to search for objects satisfying path expressions containing

predicates, and analyzes their relative performance. Our work di�ers in that we also consider ex-

istentially quanti�ed variables, we gather and store statistics in a semistructured environment, we

have additional access methods for path expressions, and our optimization techniques are imple-

mented within a complete DBMS. Similar comparisons can be drawn between our work and other

recent OODB optimization work, e.g., [GGMR97, KMP93, OMS95, SO95].

3 Preliminaries

We �rst introduce the context of our query optimization work by describing the data model and

query language of Lore, the basic architecture of the Lore query processor, and a description of

indexing in Lore. For motivation and further details on the overall Lore system see [MAG+97]. See

[AQM+96] for details on Lorel, Lore's query language.

3.1 Data Model

Lore's data model is the Object Exchange Model (OEM), which is designed for semistructured

data [PGMW95]. Data in this model can be thought of as a labeled directed graph. For example,

the very small OEM database shown in Figure 1 contains (�ctitious) information about the Stanford

Database Group. The vertices in the graph are objects; each object has a unique object identi�er

(oid), such as &5. Atomic objects have no outgoing edges and contain a value from one of Lore's

basic atomic types such as integer, real, string, gif, java, audio, etc. All other objects may

3



DBGroup

Member

&4

Member

Name

Age

&14

&5

Project

Office

&1

Title

&3

Name

Office

Office

"Smith" "Gates 252" "Jones" 46 "Lore"

Member

Project

Building Room

"Gates" 252

&8 &10 &12 &13 &15

&19 &20

&6

Title

"Tsimmis"

&16

ProjectMember

&11

Building Room

"CIS" "411"

&17 &18

Age

28

&9

&2

Name

"Clark"

&7

Project

Figure 1: An OEM database

have outgoing edges and are called complex objects. Object &3 is complex and its subobjects are

&8, &9, &10, and &11. Object &7 is atomic and has value \Clark". Names are special labels that

serve as aliases for single objects and as entry points into the database. In Figure 1, DBGroup is a

name that denotes object &1.

In an OEM database there is no notion of a �xed schema. Instead, all schematic information is

included in the labels, which may change dynamically. Thus, an OEM database is self-describing,

and there is no regularity imposed on the data. The model is designed to handle incompleteness of

data, as well as structure and type heterogeneity as exhibited in the example database. Observe in

Figure 1 that, for example: (i) members have zero, one, or more o�ces; (ii) an o�ce is sometimes

a string and sometimes a complex object; (iii) a room may be a string or an integer.

We now introduce two de�nitions that are useful in the remainder of the paper.

De�nition 3.1 (Simple Path Expression) A simple path expression speci�es a single-step nav-

igation in an OEM database. A simple path expression for an OEM object x and label l has the

form x:l y, and denotes that y ranges over all l-labeled subobjects of x. If x is an atomic object,

or if l is not an outgoing label from x, then y ranges over the empty set.

De�nition 3.2 (Path Expression) A path expression is an ordered list of simple path expressions.

Path expressions are the basic building blocks in the Lorel language and describe traversals

through the data in a declarative fashion. For example, \DBGroup.Member x, x.Age y" is a path

expression. Its semantics say that y ranges over the objects that can be reached starting with

the DBGroup object, following an edge labeled Member, then following an edge labeled Age. Lorel

supports a shorthand to write this path expression as \DBGroup.Member.Age y", and further short-

hands to eliminate variables such as y [AQM+96], however for clarity we avoid shorthands in the

4



examples in this paper. Note that this de�nition of a path expression is more restrictive than

Lorel's general path expressions described in [AQM+96] because in this paper we do not consider

regular expressions or \wildcards" appearing within the path expression. This restriction is further

discussed in Section 3.5.

3.2 Query Language

Lorel is the query language supported by the Lore DBMS. Lorel is an extension of OQL supporting

declarative path expressions for traversing semistructured data, and extensive automatic coercion

for handling heterogeneous and/or typeless data without generating errors. Although Lorel o�ers

much syntactic sugar over OQL that is convenient in practice (including the shorthands mentioned

earlier), in this paper we write our queries without any shorthands in order to be very explicit

and enable understanding for those familiar with OQL but unfamiliar with Lorel. As a simple

illustrating example, consider the following query, which asks for all of the young members of the

Database Group.2 In the remainder of the paper we refer to this query as \Query 1". The result

of the query over the database of Figure 1 is shown, with indentation to represent the subobject

relationship.

Query 1: RESULT: Name "Smith"

Select x Age 28

From DBGroup.Member x Office "Gates 252"

Where exists y in x.Age: y < 30 Office

Building "CIS"

Room "411"

This very simple query is used as an example throughout the paper to illustrate our basic query

optimization techniques. Our optimizer does handle more complex queries, such as the following

one which asks for the set of names of all pairs of group members who work on the same project

and whose age di�ers by more than ten years.

Select m1.Name, m2.Name

From DBGroup.Member m1, m1.Project p1,

DBGroup.Member m2, m2.Project p2

Where p1 = p2 and exists a1 in m1.Age: exists a2 in m2.Age: abs(a1 - a2) > 10

3.3 Lore Query Processing

The general architecture of the Lore system looks very much like a traditional DBMS [MAG+97].

The components most relevant to this paper are the query compilation and query execution compo-

nents shown in Figure 2. After a query is parsed, it is preprocessed to convert the Lorel shorthands

into a more traditional OQL form. The logical query plan generator then creates a single logical

query plan. The logical query plan is a tree composed of logical operators describing a high-level

2The existential quanti�cation in the Where clause is necessary since in a semistructured database a Member object

could conceivably have many Age subobjects. A shorthand in Lorel allows simply \x.Age < 30" as the Where clause,

which is preprocessed automatically into the query as shown [AQM+96].

5



Parser

Preprocessor

Logical Query Plan Generator

Physical Query Plan Generator

Query Execution

Lorel Query Tree

Lorel/OQL Query Tree

Logical Query Plan

Physical Query Plan

Textual Lorel Query

Parser

Preprocessor

Logical Query Plan Generator

Physical Query Plan Enumerator

Query Execution

Figure 2: The Lore query processor

execution strategy for the query. As we will show in Section 5, generating logical query plans is

fairly straightforward, but special care needed to be taken to ensure that the logical query plans

are 
exible enough to be transformed into vastly di�erent physical query plans. The \meat" of the

query optimizer occurs in the physical query plan enumerator. This component uses statistics and

some metadata in order to transform the logical query plan into the estimated best physical plan

that lies within our search space. A physical query plan is a tree composed of physical operators

that are implemented by the query execution engine and perform the low-level steps required to

execute the query and construct the result.

We use a recursive iterator approach in query processing, as described in, e.g., [Gra93]. With

iterators, execution begins at the top of the tree-structured query plan, with each node in the plan

requesting a \tuple" at a time from its children and performing some operation on the tuple(s).

After a node completes its operation, it passes a resulting tuple up to its parent. For many physical

query plan operators, an iterator approach avoids creation of temporary data. We assume the

reader is familiar with the basic concepts associated with iterators.

3.4 Lore Indexes

As in a conventional DBMS, indexes in Lore enable fast and e�cient access to the data. In a

traditional relational DBMS, an index is created on an attribute in order to locate tuples with

particular attribute values quickly. In Lore, such a value index alone is not su�cient, since the

path to an object is as important as the value of the object. Lore contains several indexing

structures that are useful for �nding relevant atomic values, parents of objects, and speci�c paths

and edges within the database. The value index, or Vindex, supports �nding all atomic objects with

a given incoming edge label and satisfying a given predicate. The label index, or Lindex, allows us

to locate all parents for a given object via an edge with a given label. The edge index, which we

term the Bindex, supports �nding all parent-child object pairs that are connected via a speci�ed

labeled edge. Our full text index, or Tindex, supports �nding atomic string values that match an

information-retrieval style pattern. In addition to these indexes, Lore's DataGuide [GW97] provides

6



the functionality of a path index, or Pindex. Since a frequent use of Lore is as a read-only query

engine for data imported from the World-Wide Web, we have found that the overhead of building,

storing, and maintaining all of these indexes usually is worthwhile. However, as in any DBMS, the

indexes built on a given database can be selected by the system administrator, and the optimizer

only creates plans based on indexes that exist.

Value indexing in Lore requires some novel features due to Lore's non-strict typing system.

When comparing values of di�erent types, Lore always attempts to coerce the values into compa-

rable types. The current indexing system deals with coercions involving integers, reals, and strings

only, although it can easily be generalized. Further details on how the Vindex handles coercion can

be found in [MAG+97].

3.5 Relevant Lorel Subsets

Like SQL and OQL, Lorel is a big language. Most of Lorel is functional within the Lore system,

including some subqueries, aggregation and arithmetic operations, constructed results, a declarative

update language, and view facilities [AGM+97, AMR+97]. Missing features at the time of writing

include full support for arbitrary subqueries, Groupby and OrderBy clauses, external functions and

predicates, and full regular expressions appearing within path expressions (although a useful subset

of regular expressions is supported). Our query processor can generate correct \naive" physical

query plans for the entire supported language. Our cost-based optimizer also operates on the full

language except that it does not handle queries that contain regular expressions appearing within

path expressions, nor does it consider the related issue of how to handle cycles within the data

(but again, we emphasize that such queries are supported by our system through straightforward

strategies). There has been good work on these topics [CCM96, FS98] and it is our hope to

incorporate some of this work into our optimizer. In addition, the Tindex is new to Lore so it is not

yet considered by the optimizer. As will be seen, the query optimization problem for semistructured

data is su�ciently complex that it made sense to begin with these restrictions. Due to space

constraints, we consider a further subset of the language in this paper for clarity of presentation,

although the general optimization principles are evident.

4 Motivation

As in any declarative query language, there are many ways to execute a single Lorel query. In this

section we motivate how queries over semistructured data can be optimized. We will continue to

use Query 1 introduced in Section 3.2, and will roughly sketch several types of query plans. As we

will illustrate, the optimal query plan depends not only on the values in the database but also on

the shape of the graph containing the data. It is this additional factor that makes optimization of

queries over semistructured data both important and di�cult.

The most straightforward approach to executing Query 1 is to fully explore all Member subobjects

of DBGroup and for each one look for the existence of an Age subobject of the Member object whose

value is less than 30. We call this a top-down execution strategy since we begin at the named

object DBGroup (the top) and evaluate the From clause by processing each simple path expression

in a forward manner, moving from one variable to the next. Once all variables appearing in the

7



From have been \bound", the Where clause is handled in a similar fashion. (Recall that an iterator

approach is being used, so this process is repeated for all variable bindings.) This query execution

strategy results in a depth-�rst traversal of the graph following edges that appear in the path

expressions.

Another way to execute Query 1 is to �rst identify all objects that satisfy the Where clause by

using an appropriate Vindex if it exists (recall Section 3.4). Once we have an object satisfying the

predicate, we traverse backwards through the data, going from child to parent, matching in reverse

the path expressions appearing in the Where and then in the From. Since our implementation does

not support parent (inverse) pointers, we use the Lindex to move from objects to their parents. We

call this query execution strategy bottom-up since we �rst identify atomic objects and then attempt

to work back up to a named object. The advantage of this approach is that we start with objects

guaranteed to satisfy the Where clause, and do not needlessly explore paths through the data only

to �nd that the �nal atomic object does not satisfy a predicate in the Where. Bottom-up is not

always better than top-down, however, since there could be very few paths satisfying the simple

path expressions in the From but many objects satisfying the condition in the Where.

A third strategy for executing Query 1 is to evaluate some, but not necessarily all, of the From

clause in a top-down fashion and create a set of \valid" objects. Then directly identify those atomic

objects that satisfy the Where using the Vindex and traverse up, via the Lindex, to the same point

as the top-down exploration. By intersecting the sets of objects and combining traversed paths

we �nd the result of the query. We call this a hybrid plan, since it operates both top-down and

bottom-up, meeting in the middle of a path expression. This type of query plan can be optimal

when the fan-in degree of the reverse evaluation of a path expression becomes too large at about

the same time that the fan-out degree in the forward evaluation of the path expression becomes

too large.

These three approaches give a 
avor of the very di�erent types of plans that could be used to

evaluate a simple query, one that e�ectively consists of one path expression. The actual search space

of plans for this simple query is much larger, as we will illustrate in Section 8, and more complicated

queries with multiple path expressions naturally have an even larger variety of candidate plans.

To make things more concrete, suppose we are processing the query \Select x From A.B x

Where exists y in x.C: y = 5", which is similar to Query 1. Example databases where each

type of query plan described above would be a good strategy for this query appear in Figure 3.

The database on the left has only one A.B.C path and top-down execution would explore only this

path. Bottom-up execution, however, would visit all the leaf objects with value 5. The second

database has many A.B.C paths, but only a single path satisfying the Where, so bottom-up is a

good candidate. Finally, in the third database top-down execution would visit all the leaf nodes,

but only a single one satis�es the query. Bottom-up would identify the single object satisfying the

Where, but would visit all of the nodes in the upper right portion of the database. In this case,

a hybrid plan where we use top-down execution to get the set of all A.B objects, then bottom-up

execution for one level, then �nally intersect the sets, would be a good query execution strategy.

Consider how very di�erent just these three example plans are. In top-down we have a forward

evaluation of all path expressions in the From and then evaluation of the Where. In bottom-up, we

�rst handle the Where and then a reverse evaluation of all path expressions. Finally, the hybrid

approach can evaluate either the From or the Where �rst, but sets of objects must be created and

8



5 5 5

D

C C C

...

...

B

A

4 4 5

B
B

C C C

...

...

B

A

4 4 5

B
B

C C C

...

...

B

A

B

B

...

D

D

...

Query: Select x From A.B x where exists y in x.C: y = 5

Top-down Preferred Bottom-up Preferred Hybrid Preferred

D

Figure 3: Di�erent databases and some good query strategies

intersected. Each of these approaches results in a query plan that has a substantially di�erent shape

from the others, and each is the optimal plan for a particular database. One important contribution

of this paper is in the design of our logical query plans, which allow simple transformations into

any number of vastly di�erent physical query plans.

5 Logical Query Plans

Before explaining the logical query plan operators and structure of the plans, we introduce two

additional de�nitions.

De�nition 5.1 (Variable Binding) During query processing, variable y in the simple path ex-

pression x:l y is said to be bound after an l-labeled subobject o of x has been assigned to y. We

also say that o is bound to y.

De�nition 5.2 (Evaluation) An evaluation of a query (sub)plan is a list of all variables appearing

in the (sub)plan along with the object (if any) bound to each variable.

The goal of query execution is to iteratively generate complete evaluations for all variables in

the query, producing the query results based on these evaluations. Figure 4 presents some of the

logical query plan operators used in Lore. Due to space constraints we omit several operators such

as those used for arithmetic, aggregation, update, and view operations.

Recall that one major di�erence between the top-down and bottom-up query execution strate-

gies introduced in Section 4 is the order in which the query is processed. In the top-down approach

we handle the From clause before the Where; the order is reversed for the bottom-up strategy. Also

consider the Where clause of Query 1: \Where exists y in x.Age: y < 30". We can break this

clause into two distinct pieces: (a) �nd all Age subobjects of x, and (b) test their values. In the

9



Node Parameters Description

Project Variable Project out Variable.
Select Predicate Apply the Predicate to the current evaluation.
CreateSet PrimVar, SecVar, DestVar Accumulate a set of intermediate structures

placed in the destination variable, DestVar,
where each intermediate structure tracks a
primary variable, PrimVar, and a set of
secondary variables, SecVar.

Set LeftPlan, RightPlan, SetOp Perform a set operation SetOp (such as union,
intersect, or except) using two sets of CreateSet
structures passed up from the children nodes.

Glue LeftPlan, RightPlan Used to connect two independent subplans,
where either subplan could be executed �rst.

Name Name, DestVar Find the named object, Name, and place the
object into the destination variable, DestVar.

Chain LeftPlan, RightPlan Connector used between two components of a
path expression.

Discover SimplePathExpression Used to discover information about the current
database based on the SimplePathExpression.

Exists Variable Ensure that there is a binding for Variable.

Figure 4: Logical query plan operators

bottom-up plan we �rst use the Vindex to �nd all objects that satisfy the predicate \y < 30", and

then use the Lindex to �nd all parents pointing to this object with label Age that is, we perform (b)

before (a). In the top-down strategy we do the opposite, �rst �nding an Age child of x and then

testing the condition.

In fact, all queries can be broken into independent components where the execution order of

the components is not �xed in advance. When creating a logical query plan, the Glue operator is

used to connect two such components of the query. At a high level, each query is put into the form

shown in Figure 5 (we abbreviate Path Expressions as PE in the �gure). Among other things, this

coarse outline indicates that execution of the From clause is completely separate from the Where,

and that either subplan could potentially be executed �rst. In special cases we know that a certain

order is almost always preferable, so as a heuristic to prune the search space we provide a 
ag in

the Glue operator indicating whether or not to consider swapping the execution order of the left

and right subplans when enumerating physical plans.

In the logical query plan, each simple path expression in the query is represented as a Discover

node, which indicates that in some fashion information is discovered from the database. When

multiple simple path expressions are grouped together into a path expression, we represent the

group as a left-deep tree of Discover nodes connected via Chain nodes. It is the responsibility of

the Chain operator to optimize the entire path expression represented in its left and right subplans.

As an example, consider the path expression \x.B y, y.C z, z.D v" which has the logical query

subplan shown in Figure 6. The left-most Discover node is responsible for choosing the best way

to provide bindings for variables x and y. The Chain node directly above it is responsible for

evaluating the path expression \x.B y, y.C z" e�ciently. This could be done by asking both

children for their most e�cient way of executing their subplans and then joining them together in

10



Glue

Glue

GlueFrom
Clause

Select
Clause

PE
in Where

Where
Predicate

Figure 5: The general form of a logical query plan

Chain

Discover(y,"C",z)

Chain

Discover(x,"B",y)

Discover(z,"D",v)

Chain

Figure 6: Representation of a path expression in the logical query plan

some fashion, or by a method called TargetSet that we discuss later.

As mentioned in Section 3.1, a name is a reference to a single object and is used as an entry

point into the database. We use a special logical query plan operator Name to discover information

about named objects. Names have several special properties including the fact that they are unique,

and they are stored e�ciently due to their frequent access. Also, since the database is divided into

workspaces within a database (to handle views and private areas within which individual users

can work) the Name operator is a convenient place to reference the workspace over which a path

expression is being evaluated.

The Select and Compound operators are used for the Where clause to represent single com-

parisons and compound predicates (and, or) respectively. The Exists operator is used to handle

existentially quanti�ed variables that appear in the Where clause. The Exists operator is always

placed directly above the Discover node for the relevant variable. The Project operator projects

out a single variable and typically appears as the topmost node in a logical query plan.

The CreateSet operator creates a set of intermediate structures based upon the evaluations of

its children. It is needed for the set operations (union, intersect, except), which operate over sets of

evaluations, and is similar to creating a temporary table in a relational query plan. One variable,

bound by the subplan rooted at the child of the CreateSet operator, is designated as Primary. A

list of variables, which also must be bound below, is designated as Secondary. Each intermediate

structure associates, for one object bound to the primary variable, a set of bindings for each

secondary variable. In Section 6 we will explain why the CreateSet operator creates an intermediate

structure with secondary variable bindings and not just a straightforward set of objects.

Figure 7 shows the complete logical query plan for Query 1. The topmost Glue node connects

the subplans for the From and Where clauses. The Chain node connects the two components of the

path expression appearing in the From. The Exists node guarantees that y is existentially quanti�ed.

A Glue node separates the discovery of the existential in the Where from the actual predicate test,

11



Glue

Exists(y)

Discover(x,"Age",y)

Select(y,<,30)

Chain

Name("DBGroup",t1) Discover(t1,"Member",x)

Glue

CreateSet(x,{},t2)

Project(t2)

Figure 7: A complete logical query plan

allowing either operation to occur �rst in the physical query plan. Because the semantics of Lorel

requires a set of objects to be returned, the CreateSet node gathers the satisfying evaluations at

the top of the query plan and projects the result from that set.

6 Physical Query Plans

Now we describe the physical query plan operators and give some examples of complete physical

query plans. Figure 8 shows some of the physical query plan operators used in Lore. Again, due

to space constraints we omit several operators such as those used for arithmetic, update, and view

operations. In Section 8, we will specify the method by which logical query plans are transformed

into physical query plans. Recall that our physical query plan nodes act as iterators, where each

node in the plan requests a \tuple" at a time from its children and performs some operation on

the tuple(s). Here the \tuples" that our query plans operate over are evaluations (De�nition 5.2),

which are sets of bindings for variables in our query.

Many of the physical operators in Figure 8 are exactly the same as their relational counterparts.

For example, Select simply applies a predicate to the current evaluation, and Project projects out

a single variable in the current evaluation. The Join operator is similar to the nested-loop join

in relational systems: for every successful evaluation of the LeftPlan, the RightPlan is called to

exhaustion. Each pair of evaluations between the left and right plans is passed up to the Join's

parent. The Compound operator supports and and or in the usual (short-circuited) manner.

In physical query plans, there are six ways to identify information stored in the database:

1. Scan: The Scan operator is similar in functionality to a relational scan. However, instead of

scanning the set of tuples in a relation, our scan returns into y all objects that are subobjects

of the complex object x via an edge labeled l.

2. Lindex: In the reverse of the Scan operator, the Lindex operator returns into x all objects

that are parents of y via an edge labeled l. This operator is implemented in Lore by the label

index (Section 3.4).

12



Name Parameters Function

Project Variable Project out Variable.
Select Predicate Apply the Predicate to the current evaluation.
Join LeftPlan, RightPlan Straightforward implementation of the

relational nested-loop join.
Compound LeftPlan, RightPlan, CoOp Links two components of a compound predicate,

where the operator, CoOp, can be either and or or.

Scan x, l, y Place all subobjects of x that have label l
into y.

Lindex x, l, y Place all l-labeled parents of the object in
y into x.

TargetSet PathExpression, DestVar Using the DataGuide's target set, put all objects
reachable via PathExpression into DestVar.

FindObj x, l, y Find all edges in the database with label l and
place the parent into x and the child into y.

Vindex Label, Op, Value, DestVar All atomic values satisfying Op Value

and that have an incoming edge labeled Label

are placed into DestVar.
NamedObj SourceVar, Name Con�rm that the object in SourceVar is the

Named object Name.
Once Variable Ensure that an object is only assigned to

Variable a single time.

CreateSet PrimVar, SecVar, DestVar Accumulate a set of intermediate structures,
where each intermediate structure tracks
information about a primary variable, PrimVar,
and a set of secondary variables, SecVar.

Set LeftPlan, RightPlan, SetOp Perform a set operation SetOp (such as union,
intersect, or except) using two sets of CreateSet
structures passed up from the children nodes.

Deconstruct SourceVar Take the intermediate structure in SourceVar

and decompose it into its components.
ForEach SourceVar Take the set of objects in SourceVar and

iterate over them one at a time.
Aggregation SourceVar, Op, DestVar Perform the aggregation operation, Op, over

SourceVar. In addition, this operator can be used
to ensure that at least one object was successfully
bound to SourceVar.

Figure 8: The physical query plan operators

13



3. TargetSet: Lore maintains a dynamic \structural summary" of the current data called a

DataGuide [GW97]. The DataGuide also can be used as a path index enabling quick retrieval

of oid's for all objects reachable via a given path expression. The set of oids is called the

Target Set for a path expression. The TargetSet operator places all objects reachable via

PathExpression into a destination variable DestVar.

4. FindObj: The FindObj operator �nds all parent-child pairs connected via an edge labeled l.

FindObj allows us to e�ciently locate edges whose label appears infrequently in the database.

The FindObj operator is implemented using Lore's edge index (Section 3.4).

5. NamedObj: The NamedObj operator simply veri�es that the object in variable SourceVar is

the named object Name.

6. Vindex: The Vindex operator accepts a Label, an operator Op, and a Value, and �nds all

atomic objects that satisfy the \Op Value" condition and have an incoming edge labeled

Label. Each satisfying object is placed in the DestVar.

As an example that uses some of the operators discussed above, consider the path expression

\A.B x, x.C y" and four possible subplans as shown in Figure 9. The logical query plan is shown in

the top left panel. In the �rst physical plan, the \Scan Plan", we use a sequence of Scan operators to

discover bindings for each of the variables, which corresponds to the top-down execution strategy

introduced in Section 3. If we assume that we already have a binding for y then we can use

the second plan, the \Lindex & NamedObj Plan". In this plan we use two Lindex operations

starting from the bound variable y, and then con�rm that we have reached the named object A.

This corresponds to the bottom-up query execution strategy. In the \TargetSet Plan", we use the

TargetSet operator which allows us to directly obtain the set of objects reached via the given path

expression. In the \FindObj Plan", we directly locate all parent-child pairs connected via a B edge

using the FindObj operator. We then need to con�rm that the parent object is the named object

A, and Scan for all of the C subobjects of the child object.

The Set operator is key to the hybrid query execution strategy introduced in Section 3. This

operator allows one subplan to evaluate a portion of the query and obtain bindings for a set of

variables, say V , and another subplan to obtain bindings for another set of variables, say W . If

V \ W contains one variable, then both plans require that a single variable be bound to certain

objects. Furthermore, if the plans are otherwise independent, meaning one does not provide a

binding that the other uses, then by creating the evaluations for both subplans and intersecting

the sets of objects for the shared variable, we e�ciently obtain the complete evaluations that are

valid between both sets. While it is possible to combine the subplans without a set operation, it

is very ine�cient to do so|it would be analogous to executing an uncorrelated subquery in SQL

once for each tuple produced by the outer query.

In some situations, the temporary data created by CreateSet may need to contain more than

just the bindings for the \primary" variable that we will perform the Set operation over. Without

additional information, those variables that are not the primary variable will lose their bindings

after successive calls to CreateSet's subplan. To accommodate this situation, CreateSet actually

has three arguments: (1) the primary variable over which the set operation is performed; (2) the

set of secondary variables that will be tracked in conjunction with a primary variable; and (3) the

variable to hold the resulting set. This structure allows us to recall, for a given object o bound to

14



Chain

Discover(A,"B",x) Discover(x,"C",y) Scan(A,"B",x) Scan(x,"C",y)

Join

TargetSet("A.B x, x.C y", y)
NamedObj(t,"A") Scan(x,"C",y)

Join

FindObj(t,"B",x)

NamedObj(t,"A")Lindex(x,"C",y)

Join

Lindex(t,"B",x)

Logical Query Plan Scan Plan Lindex & NamedObj Plan

TargetSet Plan FindObj Plan

Subplans for: A.B x, x.C y

Chain

Figure 9: Di�erent physical query plans

the primary variable, a set of objects that were bound to a secondary variable at the same time

that o was bound to the primary. Needless to say, we have been careful to encode this temporary

data compactly.

The Set operator performs any of the standard set operations, union, intersect, and except,

over the two sets of intermediate structures passed up from its children. The object resulting from

the set operation is another set of intermediate structures. The primary variable of the incoming

intermediate structure is used to perform the actual set operation, while the resulting secondary

structure is the union of the two secondary structures for the satisfying primary objects.

The Aggregation operator can be used both for standard aggregation operations (not discussed

here) and also to ensure that a variable satis�es an existential quanti�cation: aggregation with

the Exists operation is used in top-down evaluation, and continues to call its subplan until a

single binding has been found for its SourceVar. Subsequent calls to the aggregation operation

with the same evaluation as the previous call will result in no evaluation being passed up, since

the existential clause has already been satis�ed. The Once operator also is used to ensure that

a variable is existentially quanti�ed, but Once is used during bottom-up evaluation and appears

directly above the Lindex node that binds the existentially quanti�ed variable. The Once operator

only allows an evaluation to be passed to its parent node if the object bound in Variable has never

been seen before.

TheDeconstruct operator is the reverse operation of CreateSet. It accepts a SourceVar that holds

an intermediate result from the CreateSet operation, and it decomposes the set into its components

by placing, one at a time, the primary objects and corresponding sets of secondary objects into

15



Project(4)

CreateSet
(1,{},4)

Join

Join

Scan
(x,"Age",y)

Select
(y,<,30)

Join

Scan
(DBGroup,t0)

Scan (t0,
"Member",x)

Project
(t1)

CreateSet
(x,{},t1)

Name
("DBGroup",t0)

Join

Lindex (t0,
Member", x)

Join

Vindex
("Age",
"<30",y)

Once(x)

Lindex
(x,"Age",y)

Project
(t3)

Set(Intersect,
t0,t2,t3)

Join

Once(x)

Lindex
(x,"Age",y)

CreateSet
(x,{},t0)

CreateSet
(t1,{},t2)

Join

Scan(t0,
"Member",t1)

Aggr(y,
exists, t1)

Select
(t1,=,"true")

Top-down Bottom-up Hybrid

Project
(t2)

CreateSet
(x,{},t2)

Join

Scan
(DBGroup,t0)

Vindex
("Age",
"<30",y)

Figure 10: Three complete physical query plans

their original variables. After decomposition, a secondary variable will hold the set of secondary

objects that are seen while visiting the primary object, so it is the responsibility of the ForEach

operator to take a secondary set of objects and iterate through all of the members. Thus, we use

the CreateSet operator to create sets of objects in order to apply intersection or union operations,

then we use Deconstruct and ForEach to decompose the result and continue query processing on

the original objects. In Figure 10 we give three complete physical query plans for Query 1. Each

plan corresponds to one of the strategies that we introduced in Section 4. Again, we emphasize that

these are only three representative plans, while numerous others are possible and are considered by

our plan enumerator.

7 Statistics and Cost Model

As with any cost-based query optimizer, we need to establish a metric by which we will estimate

the execution cost for a given physical query plan or subplan. Lore currently does not enforce

any object clustering, so we are limited to using the predicated number of object fetches as our

measure of I/O cost, since we cannot accurately determine whether two objects will be on the same

page. Despite this rough approximation and our relatively simple cost calculations, experiments

presented in Section 9 validate that our cost model is reasonably accurate. Nevertheless, re�ning

and expanding the cost model is an area where we intend to invest signi�cant future e�ort.

7.1 Statistics

Our query optimizer must have access to statistical information about the size, shape, and range

of values within an OEM database in order to estimate the cost of physical query plans. Although

the lack of a schema makes it appear di�cult to collect and store statistics, it turns out that the

DataGuide [GW97], introduced earlier in Section 6, is the perfect vehicle. Roughly, the DataGuide,

which is a \structural summary" of the database, maintains statistics for each distinct path expres-

16



sion by annotating corresponding single paths in the DataGuide. The statistics tracked for every

path expression p include:

� For each atomic type, the total number of atomic objects of that type reachable via p.

� For each atomic type, the minimum and maximum values of all atomic objects of that type

reachable via p.

� The total number of objects reachable via p, denoted jpj.

� The total number of distinct objects reachable via p, denoted jpjd.

Further details on how the DataGuide computes and stores statistics for path expressions appear

in [GW97].

As mentioned earlier, our cost metric is based on the estimated number of objects fetched during

evaluation of the query. Thus, given an evaluation that corresponds to a traversal to some point in

the data, the optimizer must estimate how many objects will bind to the next simple path expression

to be evaluated. For example, consider evaluating the path expression \A.B x, x.C y" top-down.

If we have a binding for x, then the optimizer needs to estimate the number of C subobjects, on

average, that an object reached by the path \A.B x" has. Alternatively, if we proceed bottom-up

with a binding for y, then the optimizer must estimate the average number of parents via a C edge

for an atomic object. We call these two estimates fan-out and fan-in respectively.

The fan-out for a given path expression p and label l is computed from the DataGuide statistics

by jp:lj=jpjd. Unfortunately, fan-in cannot be determined using the DataGuide statistics listed

above. To enable calculating fan-in, we create a reverse DataGuide by logically fusing all atomic

objects together into a single object and following parent pointers instead of child pointers, adding

statistics as in the regular DataGuide. The reverse DataGuide allows us to estimate fan-in in the

same manner as fan-out in the regular DataGuide, i.e., the fan-in for path p and label l is jp:lj=jpjd
evaluated over the reverse DataGuide.

Our cost metric also uses statistics obtained from Lore's indexing components. From the Vindex

we can estimate the number of atomic objects with an l-labeled incoming edge that satisfy a given

predicate. From the Bindex we can determine the total number of times that an l-labeled edge

appears within the database, which is necessary when estimating the cost of the FindObj opera-

tor. When estimating the number of atomic objects that will satisfy a given predicate, the usual

formulas, e.g., those given in [SAC+79, PSC84], are insu�cient in our semistructured environment

due to the extensive type coercion that Lore performs. Our formulas take coercion into account by

combining value distributions for all atomic types that can be coerced into a type comparable to

the value in the predicate.

7.2 Cost Model

Each physical query plan (or subplan) is assigned a cost based upon the estimated I/O and CPU

time required to execute the plan. The costing procedure is recursive: the cost assigned to a node

in the query plan depends upon the costs assigned to the subplans rooted below the node, along

with the cost for executing the node itself. For instance, the cost of the physical Project operator

17



Operator IO Cost

Project IOCost(Child)
Select IOCost(Child)
Join IOCost(Left) + jLeftj�IOCost(Right)
Compound IOCost(Left) + IOCost(Right)

Scan FoutPathOf(x);l

Lindex 2+ FinPathOf(y);l

TargetSet LengthOf(PathExpression)+jPathExpressionj

FindObj NumEdges(l)�2
Vindex BLevellabel;type1+ Selectivity1(label,Op,Value)

+BLevellabel;type2+ Selectivity2(label,Op,Value)
NamedObj IOCost(Child) + jChildj � 2
Once IOCost(Child)

CreateSet IOCost(Child) + jChildj�2�(1 + jSecVarj)
Set IOCost(Left) + IOCost(Right) + Struct(Left) +

Struct(Right)
Deconstruct jSourceVarj� (

P
x2SecV ar jxj / jSourceVarj)

ForEach 0
Aggregation IOCost(Child) + 1

Figure 11: The cost formulas for physical query plan nodes

is the cost of its child along with the cost for projecting one variable from each evaluation returned

by the child. In order to compute estimated cost recursively, at each node we must at the same

time estimate the number of evaluations expected for that subplan. To decide if one (sub)plan is

cheaper than another, we �rst check the estimated I/O cost. Only when the I/O costs are identical

do we take estimated CPU cost into account. Again, our cost metric is admittedly very simplistic,

but it does appear acceptable for the �rst version of our cost-based optimizer as shown by the

performance results in Section 9, and we plan to re�ne and extend it as discussed earlier.

Our formulas to estimate I/O cost in number of page fetches are given in Figure 11. As discussed

earlier, since we do not enforce clustering, we assume conservatively that each object fetch results

in a page fetch. Due to space constraints, we do not include our formulas for estimated CPU

cost and expected number of evaluations. As examples, let us consider the I/O formulas for the

Vindex and Lindex operators. Because of type coercion, multiple B+-trees need to be accessed

during a Vindex operation. Currently in Lore, three B+-trees are maintained to coerce the atomic

types string, integer, and real among themselves. Depending upon the type of the value in

the predicate, two of the B+-trees will be used [AQM+96]. For each, we �rst traverse down to a

depth at most BLevell;t, where BLevell;t is the height for the Vindex B+-tree for label l and type t.

We assume that each node in the tree requires a page fetch. We then add I/O cost based on the

total number of estimated answers, encapsulated in the Selectivity function described below. The

Lindex operator is implemented using extendible hashing [FNPS79], and our cost estimate assumes

no over
ow buckets. Thus, it requires two page fetches (one for the directory and one for the hash

bucket) and one additional page fetch for every possible parent. The number of possible parents is

based on the fan-in for the current path and label.

18



The following de�nitions are used in Figure 11. In the de�nitions, p is a path expression, x is

a variable de�ned within a simple path expression, and l is a label.

� P : Page size.

� Foutx;l: estimated l-labeled fan-out for any object bound to x. Formula is given in Section 7.1.

� Finx;l: estimated l-labeled fan-in for any object bound to x. Formula is given in Section 7.1.

� jxj: the number of objects expected to be bound to x. Determined by jPathOf(x)j as obtained

from the DataGuide, where PathOf takes a variable and returns the path expression that ends

in that variable.

� jplanj: the expected number of evaluations returned by the subplan plan. Determined recur-

sively; details omitted.

� Selectivity(Pred): the estimated selectivity of predicate Pred. We use [SAC+79, PSC84] as

a base with extensions to handle type coercion.

� Struct(plan): the estimated number of object fetches to read and write the set of intermediate

structures returned by subplan plan. Determined by jplan:PrimV arj+(jplan:PrimVarj�

(
P

x2plan:SecV ar jxj)).

� NumEdges(l): the number of edges with label l; supplied by the Bindex.

� LengthOf(p): the number of simple path expressions that comprise p.

8 Plan Enumeration

The search space of physical query plans for a single Lorel query is very large. For example, a path

expression of length n can be viewed as an n-way join where we have several \join methods", and

there may be many path expressions in a single query. In order to reduce the search time as well

as the complexity of our plan enumerator, we use a greedy approach to generating physical query

plans. Each logical query plan node makes a locally optimal decision, creating the best physical

subplan for the logical plan rooted at that node, based on the physical plans selected for its children.

While this approach greatly reduces the search space (and seems to perform well; see Section 9), it

still explores an exponentially large number of physical query plans. Thus, our optimizer currently

uses the following heuristics to further prune the search space.

� TargetSet is used only when a path expression begins with a name, and no variable except

the last is used elsewhere within the plan. This latter restriction is based on the fact that

TargetSet only binds the last variable in the path expression so other variables would need to

be discovered by some additional method.

� If a variable has been converted into a set by a CreateSet operator and we subsequently need

to access its members, we always execute a Deconstruct operator and never consider plans

that rediscover the original variable bindings.

19



� Applicable set operations are always preferred over rediscovering the same information; that

is, we do not repeatedly execute \uncorrelated subqueries" as discussed in Section 6.

� The Select clause always executes last, since in nearly all cases it depends upon one or more

variables bound in the From clause.

� The physical query plan will always execute either the complete From or complete Where

clause before moving on to the other one.

� Multiple path expressions are handled in the order they are speci�ed within the query. If the

path expressions are independent, the optimizer will not attempt to re-order them.

We intend to experiment with a �nal optimization phase in which we can apply transformations

directly over the generated physical query plan, such as moving subplans to di�erent locations

within the overall plan. For example, if one of the simple path expressions that appears in the

From clause is not required by the Where clause, then it could be moved to after execution of the

Where. This kind of post-optimization could \repair" any mistakes made by the last two heuristics

mentioned above, although we have not yet worked out the details.

To specify how physical plan generation works, we need to consider how each logical plan

node makes decisions, based upon decisions made by its earlier siblings and children. The state

information maintained during the process includes the following for every variable in the query:

(1) whether the variable is bound or not; (2) which plan operator has bound the variable; (3) the

set of other plan operators that require use of the variable; (4) whether the variable is a primary or

secondary variable in a set. When creating the physical query plan, each logical plan node receives

the current state of the variables in the query and generates the optimal physical plan for that

state. The new state of the variables and the optimal subplan are then passed to the parent.

Here we give an overview of how each type of logical plan node generates the optimal physical

subplan.

� Project, CreateSet, Set, and Compound: simply returns the corresponding physical operator

over the optimal physical query plan(s) for the child(ren).

� Select: If the variables appearing in the selection condition are all bound then we return the

Select physical operator over the optimal plan for the child. If the variables are not bound,

then we return the Vindex physical operator with no subplan.

� Glue: Creates the optimal physical query plan corresponding to the left-then-right child

execution order and compares it with the optimal physical plan for the right-then-left child

execution order. The cheaper plan is returned.

� Name: Returns a Scan physical operator if the variable has not been bound, otherwise returns

a NamedObj physical operator.

� Chain: Creates the optimal physical query plan corresponding to the left-then-right child

execution order and a second optimal physical query plan corresponding to the right-then-

left child execution order. Compares the costs of these two against the cost of the TargetSet

physical operator for the entire path expression rooted at the Chain node, and returns the

cheapest of the three.

20



JoinTargetSet
("A.B x", x)

Join

Join

Scan(x,"Age",y) Select(y,<,30)

Set
(Intersect,t0,t1,t2)

Join

Vindex
("Age",<, 30, y) Once(x)

Lindex(x,"Age",y)

CreateSet
(x,{},t0)

CreateSet
(x,{},t1)

TargetSet
("A.B x", x)

Aggr
(y,exists,t1)

Select
(t1,=,"true")

(a)

(c) (d)

Join

Join

Vindex
("Age",<, 30, y) Once(x)

Lindex(x,"Age",y)

Set
(Intersect,t1,t2,t3)

CreateSet
(y,{x},t1)

CreateSet
(y,{},t2)

Vindex
("Age",<,30,y)

FindObj
("Age",x, y)

Once(y)

(b)

Figure 12: Sequence of possible transformations for Query 1 into a physical query plan

� Discover: If the SourceVar is bound then a Scan physical operator is created, otherwise a

Lindex operator is created. This operator is then compared against the FindObj physical

operator for the Discover node. The cheaper of the two is returned.

� Exists: Returns an Aggregation subplan3 over the optimal physical plan for the child if the

Variable is bound via a Scan physical operator, otherwise returns an Exists physical operator.

Two additional points about the process are worth noting. First, some logical operators such

as Glue and Chain combine their children's optimal plans into a single plan. This can be done

via either the Join or Set physical operators as indicated in Section 6. Second, a logical node may

be unable to create any physical plan for a given state of the variables because it requires some

variables to be bound before it may be executed. In this case, \no plan" is returned by the node,

and a di�erent choice can always be taken at a higher level in the plan.

As an example, let us consider part of the search space explored during the creation of the

physical query plan for Query 1, whose logical query plan was given in Figure 7. Note that this

transformation is based on statistics describing the shape of the database and its atomic values.

The topmost Glue node in Figure 7 is responsible for deciding the execution order of its children:

either left-then-right or right-then-left. It requests the best physical query plan from the left child

and then, using the returned bindings, requests the best physical query plan from the right child.

One possible outcome is the physical query plan fragment shown in Figure 12(a). After exploring

left-then-right execution order, the topmost Glue node considers the right-then-left order. We

examine the possible subplans for this ordering in more detail. The right child is another Glue

3When aggregation is used to existentially quantify a variable, a Select operator is placed directly above the

Aggregation node to ensure that the existential condition is satis�ed.

21



node which recursively follows the same procedure. Suppose that for this second Glue node, the

left-then-right execution order resulted in the physical subplan shown in Figure 12(b), while the

right-then-left execution order resulted in Figure 12(c). Suppose plan (c) is chosen as the cheaper

one, since it does not require the expensive CreateSet operation. The bindings provided by this

subplan are then supplied to the left child of the topmost Glue node to create the optimal query

plan for the left child, which could result in the �nal subplan shown in Figure 12(d). Notice that in

the right subplan for the topmost Glue node, the Chain node decided that the TargetSet operator

is the best way to get all \A.B x" objects within the database, despite the fact that we already

have a binding for x. This can happen when the estimated fan-in for x with label B is very high.

As a �nal step the topmost Glue node must decide which query plan is optimal, either (a) or (d),

and pass that plan up to its parent.

9 Performance Results

The optimization techniques described in this paper are fully implemented in Lore, including the

physical operators, statistics, cost formulas, logical query plan generation, and physical query plan

enumeration and selection. We now present some preliminary performance results showing that

our cost model is reasonable and that the optimizer is choosing a \good" plan. We focus on

comparing plans that use top-down, bottom-up, hybrid, and target set strategies, since in practice

only very unusual database shapes result in optimal plans that use FindObj. Extensive performance

evaluations over a large suite of queries and databases is beyond the scope of this paper.

All of our tests were run on a Sun Ultra 2 with 256 megabytes of RAM. However, Lore was

con�gured to have a small bu�er size of approximately 200K bytes, in order to match the rela-

tively small databases used by our initial performance experiments. Each query was run with an

initially empty bu�er. Over all of the queries in our experiments the average optimization time was

approximately 1/2 second. Query running times are shown below.

We used two synthetically-generated databases to test our optimizer. The �rst database is a

fairly well-structured tree of height 8 with a fan-out of 3 at each level. There are 2,188 total objects

in the database. Labels are the same within each level but distinct between levels. The leaf nodes

are populated with atomic integer values uniformly distributed between 1 and 10,000. The second

database is a semistructured graph with a fan-out of up to 7 at each level and a straight-line depth

(from the root to a leaf without traversing any sibling or back edges) of 12. Every 5th edge is a

sibling or back edge, and there are 10,857 total objects in the database. The atomic values are

50% strings, chosen randomly from 1,000 words, and 50% integers between 1 and 10,000. For the

remainder of this section we refer to the �rst database as Tree and the second as Graph.

9.1 Validating the Cost Model

To validate the relative accuracy of our cost model, we compare the estimated I/O cost of several

physical query plans against their actual execution time. (Since CPU cost is used only rarely as a

tie-breaker, we do not investigate its accuracy here.) We report on two di�erent queries run over

22



Point Query Range Query
Experiment # 1 2 3 4 5
Query Type Top-down Top-Down Top-Down Top-Down Hybrid

TargetSet Ok No TargetSet TargetSet Ok No TargetSet No TargetSet

Estimated Cost 7236 8803 8682 8803 10770
Actual Time 4.03138 4.23638 4.18361 4.30536 6.97613
Ratio (Est./Actual) 1794 2077 2075 2045 1544

Figure 13: Estimated cost vs. actual time on database Tree

Point Query Range Query
Experiment # 6 7 8 9 10
Query Type Top-down Top-down Hybrid Hybrid Top-down

No TargetSet TargetSet Ok TargetSet Ok No TargetSet No TargetSet

Estimated Cost 133 88 3410 3763 80
Actual Time 0.1350 .12077 2.59154 2.73998 0.05187
Ratio (Est./Actual) 986 728 1317 1373 1542

Figure 14: Estimated cost vs. actual time on database Graph

each database, and we instructed the optimizer to consider a variety of di�erent strategies.4. Both

queries involved traversing a path expression of at least length 5 in the From clause, with several

existentially quanti�ed variables appearing in the Where. The �rst query is a point query, designed

to produce very few results, while the second is a range query with 10% selectivity.

While the Graph database is much larger than the Tree, the range and point queries within the

graph are much more selective than the corresponding queries within the tree since some paths in

the graph lead to siblings or ancestors and not to atomic values. Recall that the estimated cost

for a query plan is the estimated number of page fetches. The ratio between the estimated cost

and actual execution time is our attempt to normalize the di�erence between the two, and the goal

is to keep this value constant. As can be seen in Figures 13 and 14, the stability of the ratio is

passable (especially when comparing di�erent plans for a single query and database) but surely not

perfect since we currently use such a simple metric for costing our query plans. On the good side,

a very accurate result can be found in experiments 8 and 9, where the range query is applied over

the Graph. The cost for experiment 9 is estimated as slightly higher (353 higher) than 8 because 9

does not use the TargetSet operator, but instead uses a sequence of Scans. The actual time re
ects

this increase.

4We can \hint" to the optimizer to favor certain strategies, in order to test di�erent query plans for a single query,

but unfortunately at the current time we cannot force a particular complete query plan. This explains the absence

of pure bottom-up plans reported in Figures 13 and 14. We plan in the future to instrument the optimizer so that

we can dictate certain plans, in order to enable more extensive experiments.

23



Tree/Q1 Tree/Q2 Tree/Q3 Graph/Q4 Graph/Q5 Graph/Q6

Plan 1 0.01771 * 6.97613 69.5026 0.2131 2.59154 5.43245
Plan 2 4.03138 4.18361 * 5.30797 * 0.1207 * 2.73998 4.21658
Plan 3 4.23628 4.30536 5.44216 0.1350 0.5187 * 0.285 *

Figure 15: Execution time for queries and di�erent plans

9.2 Importance of Choosing a Good Plan

Even for the relatively small databases Tree and Graph, choosing a good query plan is very impor-

tant. Figure 15 presents actual query execution times for several queries, with three representative

query plans for each one. As we can see, there can be up to two orders of magnitude di�erence in

running time between plans. In all cases, our query optimizer chooses the starred (*) plan.

As examples, consider columns Tree/Q3 and Graph/Q6. In Tree/Q3 the query's Where clause

was not very selective. The bottom-up plan, shown as Plan 1, used the Vindex operator to evaluate

the Where, whereas the top-down plan (Plan 2) only explored those paths that satis�ed the From

and then checked the Where. In Graph/Q6, the query has a compound Where clause containing

a disjunction. In Plans 1 and 2, the compound clause was handled by creating sets of satisfying

objects for each predicate and doing a union. (The plans di�er in that Plan 2 uses a TargetSet

operator for the From and performs a second set operation, while Plan 1 does not.) In Plan 3,

we instead use a short-circuiting version of the Compound operator, which results in its faster

running time.

Needless to say, these experiments are very preliminary, but they indicate the importance of

selecting a good plan and show that our optimizer does so. We plan to modify our optimizer so

it can generate all possible plans (turning o� our heuristics and dropping the greedy approach) so

that we can test how close our selected plans are to the actual optimal one.

Acknowledgments

Many thanks to all members of the Lore project, past and present. We are especially grateful to

Roy Goldman for his DataGuide e�orts and feedback on this work, to Dallan Quass for his initial

work on query processing in Lore, and to Qingshan Luo, Michael Rys, and Takeshi Yokokawa for

their implementation e�orts.

References

[Abi97] S. Abiteboul. Querying semistructured data. In Proceedings of the International Conference on

Database Theory, pages 1{18, Delphi, Greece, January 1997.

[AGM+97] S. Abiteboul, R. Goldman, J. McHugh, V. Vassalos, and Y. Zhuge. Views for semistructured
data. In Proceedings of the Workshop on Management of Semistructured Data, pages 83{90,
Tucson, Arizona, May 1997.

24



[AMR+97] S. Abiteboul, J. McHugh, M. Rys, V. Vassalos, and J. Wiener. Incremental maintenance for
materialized views over semistructured data. Technical report, Stanford University Database
Group, 1997.

[AQM+96] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel query language for
semistructured data. Journal of Digital Libraries, 1(1):68{88, November 1996.

[BDHS96] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A query language and optimization
techniques for unstructured data. In Proceedings of the ACM SIGMOD International Conference

on Management of Data, pages 505{516, Montreal, Canada, June 1996.

[BF97] E. Bertino and P. Foscoli. On modeling cost functions for object-oriented databases. IEEE

Transactions on Knowledge and Data Engineering, 9(3):500{508, May 1997.

[Cat94] R.G.G. Cattell. The Object Database Standard: ODMG-93. Morgan Kaufmann, San Francisco,
California, 1994.

[CCM96] V. Christophides, S. Cluet, and G. Moerkotte. Evaluating queries with generalized path expres-
sions. In Proceedings of the ACM SIGMOD International Conference on Management of Data,
pages 413{422, Montreal, Canada, June 1996.

[FNPS79] R. Fagin, J. Nievergelt, N. Pippenger, and H. Strong. Extendible hashing { A fast access method
for dynamic �les. ACM Transactions on Database Systems, 4(3):315{344, September 1979.

[FS98] M. Fernandez and D. Suciu. Optimizing regular path expressions using graph schemas. Technical
report, AT&T Laboratories, 1998. To appear in Proceedings of the Fourteenth International

Conference on Data Engineering, Orlando, Florida, February 1998.

[GGMR97] J. Grant, J. Gryz, J. Minker, and L. Raschid. Semantic query optimization for object databases.
In Proceedings of the Thirteenth International Conference on Data Engineering, pages 444{454,
Birmingham, UK, April 1997.

[GGT95] G. Gardarin, J. Gruser, and Z. Tang. A cost model for clustered object-oriented databases.
In Proceedings of the Twenty-First International Conference on Very Large Data Bases, pages
323{334, Zurich, Switzerland, September 1995.

[GGT96] G. Gardarin, J. Gruser, and Z. Tang. Cost-based selection of path expression processing algo-
rithms in object-oriented databases. In Proceedings of the Twenty-Second International Con-

ference on Very Large Data Bases, pages 390{401, Bombay, India, 1996.

[Gra93] G. Graefe. Query evaluation techniques for large databases. ACM Computing Surveys, 25(2):73{
170, 1993.

[GW97] R. Goldman and J. Widom. Dataguides: Enabling query formulation and optimization in
semistructured databases. In Proceedings of the Twenty-Third International Conference on

Very Large Data Bases, pages 436{445, Athens, Greece, August 1997.

[KMP93] A. Kemper, G. Moerkotte, and K. Peithner. A blackboard architecture for query optimization
in object bases. In Proceedings of the Nineteenth International Conference on Very Large Data

Bases, pages 543{554, Dublin, Ireland, August 1993.

[MAG+97] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A database management
system for semistructured data. SIGMOD Record, 26(3):54{66, September 1997.

[OMS95] M. T. Ozsu, A. Munoz, and D. Szafron. An extensible query optimizer for an objectbase
management system. In Proceedings of the Fourth International Conference on Information

and Knowledge Management, pages 188{196, Baltimore, Maryland, November 1995.

[O'N87] Patrick O'Neil. Model 204 architecture and performance. In Proceedings of the 2nd International
Workshop on High Performance Transaction Systems (HPTS), pages 40{59, Asilomar, CA,
1987.

25



[PGMW95] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchange across heterogeneous
information sources. In Proceedings of the Eleventh International Conference on Data Engineer-

ing, pages 251{260, Taipei, Taiwan, March 1995.

[PSC84] G. Piatetsky-Shapiro and C. Connell. Accurate estimation of the number of tuples satisfying a
condition. In Proceedings of the ACM SIGMOD International Conference on Management of

Data, pages 256{276, Boston, MA, June 1984.

[QRS+95] D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman, and J. Widom. Querying semistructured hetero-
geneous information. In Proceedings of the Fourth International Conference on Deductive and

Object-Oriented Databases, pages 319{344, Singapore, December 1995.

[SAC+79] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price. Access path selection in a
relational database management system. In Proceedings of the ACM SIGMOD International

Conference on Management of Data, pages 23{34, Boston, MA, June 1979.

[SO95] D. D. Straube and M. T. Ozsu. Query optimization and execution plan generation in object-
oriented database systems. IEEE Transactions on Knowledge and Data Engineering, 7(2):210{
227, April 1995.

[Suc97] D. Suciu, editor. Proceedings of the Workshop on Management of Semistructured Data. Tucson,
Arizona, May 1997.

26


