
Representing and Querying Changes in Semistructured Data�

Sudarshan S. Chawathe Serge Abiteboul Jennifer Widom

Computer Science Department, Stanford University, Stanford, California 94305

fchaw,abitebou,widomg@cs.stanford.edu

Abstract

Semistructured data may be irregular and incomplete and does not necessarily conform to

a �xed schema. As with structured data, it is often desirable to maintain a history of changes

to data, and to query over both the data and the changes. Representing and querying changes

in semistructured data is more di�cult than in structured data due to the irregularity and lack

of schema. We present a model for representing changes in semistructured data and a language

for querying over these changes. We discuss implementation strategies for our model and query

language. We also describe the design and implementation of a \query subscription service"

that permits standing queries over changes in semistructured information sources.

1 Introduction

Semistructured data is data that has some structure, but it may be irregular and incomplete and

does not necessarily conform to a �xed schema (e.g, HTML documents). Recently, there has been

increased interest in data models and query languages for semistructured data [Abi97, BDHS96,

CACS94, CGMH+94, MAG+97]. We also see increased interest in change management in relational

and object data [GHJ96, DHR96], and in the related problem of temporal databases [SA86, Soo91].

However, we are not aware of any work that addresses the problem of representing and querying

changes in semistructured data. As will be seen, this problem is more challenging than the corre-

sponding problem for structured data due to the irregularity, incompleteness, and lack of schema

that often characterize semistructured data.

In this paper, we present a simple and general model, DOEM (pronounced \doom"), for repre-

senting changes in semistructured data. We also present a language, Chorel , for querying over data

and changes represented in DOEM. We discuss the implementation of DOEM and Chorel using the

Lore system at Stanford [MAG+97]. We also introduce a facility that allows users to subscribe to

changes in semistructured data, and we describe its design and implementation based on DOEM

and Chorel.

1.1 Motivating Examples

The Palo Alto Weekly, a local newspaper, maintains a Web site providing information about restau-

rants in the Bay Area [Gul]. Most of the data in the restaurant guide is relatively static. But as

often happens in database applications, we are particularly interested in the dynamic part of the

data. For example, we are interested in �nding out which restaurants were recently added, which

restaurants were seen as improving, degrading, etc. These changes can be captured by a tool that

�This work was supported by the Air Force Rome Laboratories under DARPA Contract F30602-95-C-0119 and

by an equipment grant from IBM Corporation.

1

Figure 1: Example output from htmldi�

we have implemented, called htmldi� [CRGMW96]. The htmldi� program takes two versions of a

web page as input, and produces as output a marked-up copy of the web page that highlights the

di�erences between the two versions based on their semistructured contents. Our system allows

users to browse the marked-up web page to view the changes, and to travel back and forth between

the old and new versions of the document. A small portion of the output produced by htmldi�

on two versions of the restaurant guide is shown in Figure 1. The icons (which are in color in the

actual output) represent di�erent kinds of change operations: insertions, updates, etc. For details,

see [CRGMW96] or visit our Web site at http://www-db.stanford.edu/c3/demos/htmldiff/.

For reasonably small documents, browsing the marked-up HTML �les produced by htmldi� to

view the changes of interest is a feasible option. However, as documents get larger and changes

become more prevalent and varied, one soon feels the need to use queries to directly �nd changes of

interest instead of simply browsing. (For example, the restaurant guide page is currently more than

20,000 lines long, making browsing very inconvenient.) An example of a simple change query over

the restaurant data is \�nd all new restaurant entries." Another example is \�nd all restaurants

whose average price changed." Just as browsing databases is often an ine�ective way to retrieve

information, the same holds for browsing data representing changes. Thus, for this example, what

we need is a query language that allows queries over changes to (semistructured) HTML pages.

As another motivating example, consider a typical library system that contains book circulation

information. Suppose we wish to be noti�ed whenever any \popular" book becomes available where,

say, we de�ne a book as popular if it has been checked out two or more times in the past month.

We could partially achieve this goal by setting a trigger on the circulation database that noti�es

us whenever a book is returned. However, there are two problems with this approach. First, many

library information systems are legacy mainframe applications on which triggers are not available.

Furthermore, even in cases where the library information system is implemented using a database

system that supports triggers, a user often lacks the access rights required to set triggers on the

2

database. Second, there is often no way to access historical circulation information, so that we

cannot check whether the book being returned was checked out two or more times recently. In this

application too, the data may be semistructured, especially if the library system merges information

from multiple sources [PAGM96]. Thus, we again need a method to compute, represent, and query

changes in the context of semistructured data.

1.2 Overview

We are interested in the three components of a change management system, in the context of

semistructured data: (1) detecting changes; (2) representing changes; and (3) querying changes.

Detecting changes in semistructured data is a challenging problem in practice because many in-

formation sources that we are interested in do not provide facilities or authorization for explicit

monitoring of changes (e.g., using triggers). Therefore, we are often forced to infer changes based

on a sequence of data snapshots. We have studied this problem in [CRGMW96, CGM97], which

describe algorithms for inferring changes from snapshots of semistructured data; we therefore do

not discuss the problem further in this paper.

Since our goal is to represent changes in semistructured data, we use as a starting point the

Object Exchange Model (OEM) [PGMW95], designed at Stanford as part of the Tsimmis project

[CGMH+94]. OEM is a simple graph-based data model, with objects as nodes and object-subobject

relationships represented by labeled arcs. Due to its simplicity and
exibility, OEM can encode

numerous kinds of data, including relational data, electronic documents in formats such as SGML

and HTML, other data exchange formats (e.g., ASN.1), and programs (e.g., C++). The basic

change operations in such a graph-based model are node insertion, update of node values, and

addition and removal of labeled arcs. (Node deletion is implicit by unreachability [AQM+96].) Our

change representation model, DOEM (for Delta-OEM), uses annotations on the nodes and arcs of

an OEM graph to represent changes. Intuitively, the set of annotations on a node or arc represents

the history of that node or arc.

For change queries, we extend the Lorel language [AQM+96] for querying semistructured data,

to obtain Chorel (for Change Lorel). In particular, we extend the concept of Lorel path expressions

to allow us to refer to the annotations in a DOEM database. The result is an intuitive and convenient

language for expressing change queries in semistructured data. Although the work in this paper

is founded on the OEM data model and the Lorel language, the principal concepts are applicable

to any graph-based data model (semistructured or otherwise), e.g., [BDHS96, Cat94]. We chose

to implement DOEM and Chorel using the Lore system [MAG+97] by encoding DOEM databases

in OEM, and by translating Chorel queries to Lorel. Finally, our design and implementation of a

query subscription service that permits users to subscribe to changes in semistructured data is an

important �rst application of DOEM and Chorel.

1.3 Related Work

If we consider the general problem of representing and querying the history of a database in addition

to its current state, there are two main approaches. The �rst approach, which we call the snapshot-

collection approach, views the history of a database as a collection of database states (snapshots).

According to this view, a change operation takes a database from one state to the next. The states

are ordered, usually linearly, based on time. In addition to querying the present database state, such

systems allow any other state of the database to be queried. This is the approach taken by temporal

databases [SA86, Soo91]. The second approach, which we call the snapshot-delta approach, views

3

the history of the database as a combination of a single database snapshot and a collection of deltas .

According to this view, we obtain various states of the database by starting with a single snapshot

and applying some sequence of deltas to it. An early, simple example of this approach is the idea

of delta relations , used in active databases [Buc96, WC96] and trigger languages [ISO94], which

represent a set of changes to a relation R using two relations R+ and R�, where R+ = Rnew�Rold,

and R� = Rold�Rnew . More recently, this approach has been used by the Heraclitus/H2O project

to represent changes in relational and object data [DHR96, GHJ92, GHJ96]. Our work di�ers from

the Heraclitus/H20 work in two respects. First, we represent changes in semistructured data, not

just relational and object data. Second, we present a method for querying over changes as �rst-class

entities, as opposed to using changes to generate hypothetical states that are then queried as usual.

We believe that the two approaches are complementary.

1.4 Outline of Paper

The remainder of the paper is organized as follows. Section 2 brie
y reviews the Object Exchange

Model. In Section 3, we extend OEM to represent changes in semistructured data. Section 4 intro-

duces our change query language and Section 5 discusses its implementation. Section 6 describes

the query subscription system we have implemented based on the material in Sections 3{5. We

conclude in Section 7.

2 The Object Exchange Model

The Object Exchange Model (OEM) is a simple,
exible model for representing heterogeneous,

semistructured data. (Recall that semistructured data is data that may be irregular or incom-

plete, and that does not necessarily conform to a �xed schema, e.g., HTML documents describing

restaurants.) In this section, we begin by brie
y describing OEM. Next, we de�ne the basic change

operations used to modify an OEM database. Finally, we introduce the concept of an OEM his-

tory that describes a collection of basic change operations. Histories form the basis of our change

representation model described in Section 3.

Intuitively, one can think of an OEM database as a graph in which nodes correspond to objects

and arcs correspond to object-subobject relationships. Each arc has a label that describes the nature

of the relationship. (Note that the graph can have cycles, and that an object may be a subobject

of multiple objects. Example 2.1 below illustrates these points.) Nodes without outgoing arcs are

called atomic objects ; the rest of the nodes are called complex objects . Atomic objects have a value

of type integer, real, string, etc. An arc (p; l; c) in the graph signi�es that the object with identi�er

c is an l-labeled subobject (child) of the complex object with identi�er p. Each OEM database has

a distinguished node called the root of the database. The root is the implicit starting point of path

expressions in the Lorel query language (described in Section 4.1). Formally, we de�ne an OEM

database as follows:

De�nition 2.1 An OEM database is a 4-tuple O = (N;A; v; r), where N is a set of object iden-

ti�ers; A is a set of labeled, directed arcs (p; l; c) where p; c 2 N and l is a string; v is a function

that maps each node n 2 N to a value that is an integer, string, etc., or the reserved value C (for

complex); and r is a distinguished node in N called the root of the database. A node is a complex

object if its value is C and otherwise it is an atomic object. Only complex objects have outgoing

arcs. We also require that every node be reachable from the root using a directed path. 2

4

n4

"Lytton" "Palo Alto"

guide

address

address

"Janta"

restaurant restaurant

street city10

price

name parkingparking

"Bangkok Cuisine"

name

"usually full""Lytton lot 2"
"moderate"

cuisine

"Indian"

"120 Lytton"

price

address
nearby-eats

comment
n1

n6

n7

Figure 2: The OEM database in Example 2.1.

Example 2.1 We will use as our running example an OEM database describing the restaurant

guide section of the Palo Alto Weekly , introduced in Section 1. Figure 2 shows a small portion of

the data. Note that although the restaurant entries are quite similar to each other in structure,

there are important di�erences that require the use of a semistructured data model such as OEM.

In particular, we see that the price rating for a restaurant may be either an integer (10) or a string

(\moderate"). The address may be either a simple string (\120 Lytton") or a complex object with

subobjects listing the street, city, etc. Note also that although the data has a natural hierarchical

structure, nodes may have multiple incoming arcs (e.g., node n7), and there are cycles (e.g., the

cycle formed by the arcs \parking" and \nearby-eats"). In the sequel, we refer to this data as

Guide. 2

2.1 Changes in OEM

We now describe how an OEM database is modi�ed. Let O = (N;A; v; r) be an OEM database.

The four basic change operations are the following:

Create Node: The operation creNode(n; v) creates a new object. The identi�er n must be new,

i.e., n must not occur in O. The initial value v must be an atomic value (integer, real, string,

etc.) or the special symbol C.

Update Node: The operation updNode(n; v) changes the value of object n, where v is an atomic

value or the special symbol C. Object n must be either an atomic object or a complex object

without subobjects. (The model requires us to remove all subobjects of a complex object n

before transforming it into an atomic object.) The value v becomes the new value of n.

Add Arc: The operation addArc(p; l; c) adds an arc labeled l from object p (the parent) to object

c (the child). Objects p and c must exist in O, p must be complex, and the arc (p; l; c) must

not already exist in O.

Remove Arc: The operation remArc(p; l; c) removes an arc. Objects p and c must exist in O, and

O must contain an arc labeled l from p to c.

5

20

"Lytton" "Palo Alto"

guide

address

address

"Janta"

restaurant restaurant

street city

price

name parkingparking

"Bangkok Cuisine"

name

"usually full""Lytton lot 2"
"moderate"

"Indian"

"120 Lytton"

price

address

cuisine

comment

"need info"

"Hakata"

name
restaurant

comment

nearby-eats

n1

n2

n3
n4

n5

n6

n7

Figure 3: The OEM database in Example 2.2

If u is a basic change operation that can be applied to O, we say u is valid forO, and we use u(O)

to denote the result of applying u to O. Note that there is no explicit object deletion operation. In

OEM, persistence is by reachability from the distinguished root node (or equivalently, from special

named edges emanating from the root [AQM+96]). Thus, to delete an object it su�ces to remove

all arcs leading to it. A subtlety is that sometimes we need to allow objects to be \temporarily"

unreachable. In particular, when we create a new object, it remains unreachable until we create

an arc that links it to the rest of the database. Thus, when we consider sequences of changes in

Section 2.2, we want to permit the result of atomic changes to (temporarily) contain unreachable

objects. The issue is discussed further in Section 2.2 below. Note that users will typically request

\higher-level" changes based on the Lorel update language [AQM+96]; the basic change operations

de�ned here re
ect the actual changes at the database level.

Example 2.2 Let us consider some modi�cations to the OEM database in Example 2.1. We will

use these modi�cations as a running example in the rest of the paper. First, on January 1st, 1997,

the price rating for \Bangkok Cuisine" is changed from 10 to 20. This modi�cation corresponds

to an updNode operation. On the same day, a new restaurant with name \Hakata" is added

(with no other data). This modi�cation corresponds to two creNode operations for the restaurant

node and its subobject, and two addArc operations to add arcs labeled \restaurant" and \name."

Next, on January 5th, a subobject with value \need info" is added to the \Hakata" restaurant

object via an arc labeled \comment." This corresponds to one creNode operation and one addArc

operation. Finally, on January 8th the parking at \Lytton lot 2" is no longer considered suitable

for the restaurant \Janta," and the corresponding arc is removed; this modi�cation corresponds

to a remArc operation. The resulting modi�ed OEM representation of the Guide data is shown in

Figure 3, with new data highlighted in bold, and the deleted arc represented using a dashed arrow.

2

6

2.2 OEM Histories

We are typically interested in collections of basic change operations, which describe successive

modi�cations to the database. We say that a sequence L = u1; u2; : : : ; un of basic change operations

is valid for an OEM database O if ui is valid for Oi�1 for all i = 1 : : :n, where O0 = O, and

Oi = ui(Oi�1), for i = 1 : : :n. We use L(O) to denote the OEM database obtained by applying the

entire sequence L to O. Also, we say that a set U = fu1; u2; : : : ; ung of basic change operations is

valid for an OEM database O if (1) for some ordering L of the changes in U , L is a valid sequence

of changes, (2) for any two such valid sequences L and L0, L(O) = L0(O), and (3) U does not

contain both addArc(p; l; c) and remArc(p; l; c) for any p, l, and c. We use U(O) to denote the

OEM database obtained by applying the operations in the set U (in any valid order) to O.

We are now ready to de�ne an OEM history. Assume we are given some time domain time

that is discrete and totally ordered; elements of time are called timestamps . Intuitively, consider

an OEM database to which, at some time t1, a set U1 of basic change operations is applied, then

at a later time t2, another set U2 is applied, and so on. A history represents such a sequence of sets

of modi�cations.

De�nition 2.2 An OEM history is a sequence H = (t1; U1); : : : ; (tn; Un), where Ui is a set of basic

change operations and ti is a timestamp, for i = 1 : : :n, and ti < ti+1 for i = 1 : : :n� 1. A history

H = (t1; U1); : : : ; (tn; Un) is valid for an OEM database O if, for all i = 1 : : :n, Ui is valid for Oi�1,

where O0 = O, and Oi = Ui(Oi�1) for i = 1 : : :n. 2

We now come back to the requirement that all objects in an OEM database must be reachable

from the root. An OEM history can be viewed as a sequence L1; :::; Ln of sequences of atomic

changes. Within one sequence Li of changes, we relax the requirement that all objects are reachable

from the root so that we can, e.g., create a node and then create arcs leading to it, as discussed

earlier. However, immediately after each sequence Li has been applied, nodes that are unreachable

are considered as deleted, and the remainder of the history should not operate on these objects.

To simplify, we also assume that object identi�ers of deleted nodes are not reused.

Example 2.3 The history for the modi�cations described in Example 2.2 consists of three sets

of basic change operations. It is given by H = ((t1; U1); (t2; U2); (t3; U3)), where t1 = 1Jan97 ,

t2 = 5Jan97 , t3 = 8Jan97 , and:

U1 = fupdNode(n1; 20); creNode(n2; C); creNode(n3; \Hakata");

addArc(n4; \restaurant"; n2); addArc(n2; \name"; n3)g

U2 = fcreNode(n5; \need info")addArc(n2; \comment"; n5)g

U3 = fremArc(n6; \parking"; n7)g:

This is a valid history for the OEM database of Figure 2. 2

3 Representation of Changes

In this section, we describe how changes to an OEM database are represented by attaching annota-

tions to the OEM graph, thereby turning it into a DOEM (Delta OEM) graph. We �rst introduce

the annotations we use and de�ne a DOEM database as an OEM graph containing these annota-

tions. Next, we describe how an OEM history (de�ned in Section 2.2) is represented using a DOEM

7

database. Finally, we discuss some properties of DOEM databases that make them well-suited for

representing changes in semistructured data.

Intuitively, annotations are tags attached to the nodes and arcs of an OEM graph that encode

the history of basic change operations on those nodes and arcs. There is a one-to-one correspondence

between annotations and the basic change operations. Thus, nodes and arcs may have the following

annotations:

� cre(t): the node was created at time t.

� upd(t; ov): the node was updated at time t; ov is the old value.

� add(t): the arc was added at time t.

� rem(t): the arc was removed at time t.

The set of all possible node annotations is denoted by node-annot, and the set of all possible arc

annotations is denoted by arc-annot.

Using the above de�nitions of node and arc annotations, we now de�ne a DOEM database. In

the following de�nition, the function fN (n) maps a node n to a set of annotations on that node

and the function fA(a) maps an arc a to a set of annotations on that arc.

De�nition 3.1 A DOEM database is a triple D = (O; fN ; fA), where O = (N;A; v; r) is an OEM

database, fN maps each node in N to a �nite subset of node-annot, and fA maps each arc in A

to a �nite subset of arc-annot. 2

3.1 DOEM Representation of an OEM History

Given an OEM database O and a history H = (t1; U1); :::; (tn; Un) that is valid for O, we would

like to construct the DOEM database representing O and H , denoted by D(O;H). D(O;H) is

constructed inductively as follows. We start with a DOEM database D0 that consists of the OEM

database O with empty sets of annotations for the nodes and the arcs of O. Suppose Di�1 is the

DOEM database representing O and (t1; U1); :::; (ti�1; Ui�1), for some 1 � i � n. The DOEM

database Di is constructed by considering the basic change operations in Ui. Since the history

is valid, we can assume some ordering Li of the operations in Ui (De�nition 2.2). Starting with

Di�1, we process the operations in Li in order. Whenever the value of an object is updated, in

addition to performing the update we attach an upd annotation to the node. This annotation

contains the timestamp ti and the old value of the object. When a new object is created or an

arc added, in addition to performing the modi�cation, we attach a cre or add annotation with the

timestamp ti. When an existing arc is removed, we do not actually remove the arc from the graph;

instead, we simply attach a rem annotation to the a�ected arc with the timestamp ti. Observe that

this representation directly stores the changes themselves, not the before and after images of the

changes, and thus takes the snapshot-delta approach discussed in Section 1.3.

Example 3.1 Consider the history described in Example 2.3, which transforms the OEM database

of Figure 2 to that of Figure 3. The corresponding DOEM database is shown in Figure 4. We see

that the DOEM database contains several annotations, depicted as boxes in the �gure. For example,

the annotations with timestamp \1Jan97" correspond to the �rst set of updates. Note that the

cre, add, and rem annotations contain only the timestamp, while the upd annotation also contains

the old value of the updated node (10, in our example). Also note that the removed \parking" arc

from the \Janta" restaurant object to the \Lytton lot 2" parking object is not actually removed

from the DOEM database; instead it bears a rem annotation. 2

8

rem
t:8Jan97

t:1Jan97

"Lytton" "Palo Alto"

guide

address

address

"Janta"

restaurant

street city

price

name parkingparking

"Bangkok Cuisine"

name

"usually full""Lytton lot 2"
"moderate"

"Indian"

"120 Lytton"

price

address

cuisine

comment

nearby-eats

upd

"Hakata"

"need info"name

restaurant

restaurant add

add
add

cre cre

cre

20

comment

ov:10

t:1Jan97
t:1Jan97 t:5Jan97

t:1Jan97

t:5Jan97

t:1Jan97

Figure 4: The DOEM object in Example 3.1.

3.2 Properties of DOEM Databases

We have seen above how a DOEM database is used to represent an OEM database and its history.

We now discuss the advantages of this representation. We say that a DOEM database D is feasible

if there exists some OEM database O and valid history H such that D = D(O;H). Note that we

do not require DOEM databases to record all changes since creation, i.e., OEM database O need

not be empty. DOEM databases have the following desirable properties:

� It is easy to obtain the original snapshot O0(D) from a DOEM database D. O0(D) contains

exactly those nodes in D that do not have a cre annotation. The arcs of O0(D) are the arcs

in D that either have no annotations, or have a rem annotation as the annotation with the

smallest (earliest) timestamp.

� It is easy to obtain the snapshot at time t , Ot(D), from a DOEM database D. Starting from

the root object of D, we traverse D in preorder. For each node n we encounter, we do the

following:

1. We �nd the value vt(n) of n at time t as follows: If n has no upd annotations, then

vt(n) = v(n). Otherwise, let upd(t1; ov1); : : : ; upd(tk ; ovk) be the upd annotations in

fN (n). If tk � t, vt(n) = v(n). Otherwise, pick i 2 [1; k] such that ti is the smallest

timestamp greater than t in t1; : : : ; tk; then vt(n) = ovi.

2. If vt(n) = C, continue the preorder traversal by following the arcs emanating from n

that were present at time t. These are the arcs emanating from n that either do not

have any annotation with timestamp less than or equal to t, or have an add annotation

as the annotation with the greatest timestamp less than or equal to t.

� It is easy to obtain the current snapshot from a DOEM database. It is the snapshot at time

c, where c is the current time.

9

� It is easy to obtain the encoded history H(D) from a DOEM database D. The history

H(D) = (t1; U1); :::; (tn; Un) is constructed as follows. First, t1; : : : ; tn is the set of timestamps

occuring in D, ordered by time. For each i = 1 : : :n, Ui contains the following operations:

1. addArc(p; l; c) (remArc(p; l; c)), if the arc (p; l; c) has the annotation add(ti) (respectively,

rem(ti));

2. updNode(n; v), if n has an annotation upd (ti; ov) and v is the next value of n. That is,

v = ov0 if the next (by time) annotation of n is upd(tj ; ov
0), and v = v(n) if n is not

updated after ti;

3. creNode(n; v), if n has the annotation cre(ti), where v is de�ned as in Case 2.

� It is relatively easy to determine if a given DOEM database D is feasible. We construct

the original snapshot O0(D) and the encoded history H(D) for D as above, and test if

D(O0(D); H(D)) = D.

� Most importantly, if D is feasible, we can show that the OEM database O0(D) and the

history H(D) encoded by D are unique. Thus, a DOEM database faithfully captures all the

information about the history of the corresponding OEM database.

� As we will see in the next section, it is easy and intuitive to query the history encoded in a

DOEM database.

4 Querying Over Changes

In Section 3, we have seen how the history of an OEM database is represented by the corresponding

DOEM database. In this section, we describe how DOEM databases are queried. We introduce

a query language called Chorel for this purpose. Chorel is an extension of the Lorel language

[AQM+96] used to query OEM databases. We begin with a brief overview of Lorel, followed by a

description of the extensions that allow us to query over changes.

4.1 Lorel

Lorel uses the familiar select-from-where syntax, and can be thought of as an extension of OQL

[Cat94] in two major ways. First, Lorel encourages the use of path expressions. For instance,

one can use the path expression guide.restaurant.address.street to specify the streets of all

addresses of restaurant entries in the Guide database. Second, in contrast to OQL, Lorel has a very

\forgiving" type system. When faced with the task of comparing di�erent types, Lorel �rst tries

to coerce them to a common type. When such coercions fail, the comparison simply returns false

instead of raising an error. This behavior, while it may be unsuitable for traditional databases, is

exactly what a user expects when querying semistructured data. Lorel also provides a number of

syntactic conveniences such as the possibility of omitting the from clause. Due to space limitations,

we do not describe Lorel in detail here (see [AQM+96]), but only present through a simple example

those features that are needed to understand our extension.

Example 4.1 Consider again the OEM database depicted in Figure 3. To �nd all restaurants that

have a price rating of less than 20.5, we can use the following Lorel query:

select guide.restaurant

where guide.restaurant.price < 20.5

10

Note that the query expresses the price rating as a real number whereas the restaurant entries

for \Bangkok Cuisine" and \Janta" in the OEM database shown in Figure 3 use an integer and a

string, respectively. Furthermore, the third restaurant entry does not have a price subobject at all.

Lorel successfully coerces the integer price 10 to real, and the comparison succeeds. For the string

encoding of the price (\moderate"), Lorel tries to coerce, but fails, returning false as the result of

the comparison. Finally, for the third restaurant, the missing price subobject simply causes the

comparison to return false. Thus, the result of the above query is a singleton set containing the

restaurant object for \Bangkok Cuisine." Note that this is an intuitively reasonable response to

the original query, despite the typing di�culties and the missing data. 2

Lorel also allows the use of path expressions that include regular expressions and wildcards (e.g.,

\#" matches an arbitrary path of length 0 or more). Such general path expressions are powerful

extensions of the simple path expressions of OQL, and allow Lorel users to specify complex path

patterns in a database graph. Our extension to Lorel for querying changes is also based on extending

the notion of path expressions, but in a di�erent direction. In particular, we extend path expressions

to allow the annotations in DOEM databases to be speci�ed and matched.

4.2 Chorel

We now describe how Lorel is extended to Chorel. In Chorel, path expressions may contain anno-

tation expressions, which allow us to refer to the node and arc annotations in a DOEM database.

Informally, Lorel path expressions can be thought of as being matched to paths in the OEM database

during query execution. Analogously, the annotation expressions in Chorel path expressions can be

thought of as being matched to annotations on the corresponding paths in the DOEM database.

Example 4.2 Consider the DOEM database depicted in Figure 4. To �nd all newly added restau-

rant entries only, we can use the following Chorel query:

select guide.<add>restaurant

The annotation expression \<add>" speci�es that only those objects connected to the \guide" object

by a \restaurant"-labeled arc having an add annotation should be retrieved. For the database

depicted in Figure 4, this Chorel query returns the restaurant object with name \Hakata." 2

Not surprisingly, we use four kinds of annotation expressions in Chorel path expressions: node

annotation expressions \cre" and \upd," and arc annotation expressions \add" and \rem." Recall

that a path expression, e.g., guide.restaurant.price, consists of a sequence of labels. Arc an-

notation expressions must occur immediately before a label, whereas node annotation expressions

must occur immediately after one. (Note that since node and arc annotations use di�erent key-

words, no confusion can arise.) Path expressions containing node or arc annotation expressions are

called annotated path expressions . For instance,

guide.<add>restaurant.price<upd>

is a correct annotated path expression. It requires an add annotation to be present on the arc labeled

\restaurant," and an upd annotation on the \price" node (i.e., on the node at the destination of the

arc labeled \price"). For simplicity, in this paper we do not consider path expressions that have

annotation expressions attached to wildcards or regular expressions, however generalizing to allow

such annotation expressions should not be di�cult.

11

Annotation expressions may also introduce time variables to refer to the timestamps stored in

matching annotations, and data variables to refer to the modi�ed values in matching upd annota-

tions. More precisely, the syntax of annotation expressions is as follows:

< Annot [at timeV] > if Annot is in f add, rem, cre g

< upd [at timeV] [from oldV] [to newV] > for upd

where timeV, oldV, and newV are variables. Note that a DOEM database does not explicitly store

the new value of an updated object, however this information is available implicitly, and can be

determined as follows: To determine the new value nv corresponding to an update annotation

upd(t; ov) on node n, we �nd the upd annotation upd(t0; ov0) on n with the smallest timestamp

greater than t. If no such annotation exists, then nv = v(n), the current value of n; otherwise,

nv = ov0. To simplify the presentation, in the rest of this section we will assume that the new

value nv corresponding to an upd annotation is directly available. In Section 5, we will see how our

translation scheme allows easy access to nv. (A further use of implicit information is considered in

Section 4.2.2.)

Let us consider a Chorel query that uses a time variable. Note that we allow users to enter

timestamps using a textual representation, e.g., 4Jan97. In keeping with Lorel's extensive use of

coercion, any recognizable format is allowed and is converted automatically to an internal timestamp

datatype.

Example 4.3 Consider the DOEM database in Figure 4. To �nd all restaurant entries that were

added before January 4th, 1997, we can use the following Chorel query:

select guide.<add at T>restaurant

where T < 4Jan97

The Chorel preprocessor will rewrite this query to obtain the following. (We will explain this

rewriting shortly.)

select R

from guide.<add at T>restaurant R

where T < 4Jan97

The introduced from clause will bind R to all \restaurant" objects that are connected to the \guide"

object via an arc with an add annotation, and will provide corresponding bindings for T . More

precisely, the evaluation of the from clause will yield the set of pairs hR; T i such that there is a

restaurant arc from the guide object to R that has an add annotation with timestamp T . The

where clause will �lter out the hR; T i pairs for which T does not satisfy the condition. For the

DOEM database in Figure 4, this query returns the restaurant object for \Hakata." 2

Once time and data variables have been bound using annotations, they can be used just like

other variables in Lorel or OQL. This is illustrated by the following query, which uses time and

data variables in the select clause.

Example 4.4 Referring again to the DOEM database in Figure 4, suppose we want to �nd the

names of all restaurants whose price ratings were updated on or after January 1st, 1997 to a value

greater than 15, together with the time of the udpate and the new price. We can use the following

query (on the left):

12

select N, T, NV answer

from guide.restaurant.price<upd at T to NV>, name "Bangkok Cuisine"

guide.restaurant.name N update-time 1Jan97

where T >= 1Jan97 and NV > 15 new-value 20

The result of the above query is a single complex object with three components, as shown on the

right. The label name is chosen by Chorel using the method described in [AQM+96]. For time

and data variables whose labels are not speci�ed by the query, Chorel choses the default labels

create-time, add-time, remove-time, update-time, new-value, and old-value. 2

4.2.1 Chorel Semantics

We now make the semantics of Chorel queries more precise. As is done for Lorel, the semantics is

described by specifying the rewriting of Chorel queries into OQL-like queries. However, we need to

introduce some additional machinery to handle the annotation expressions in Chorel queries.

First, the annotation expressions in a Chorel query are transformed into a canonical form that

includes all variables. For example, \<add>" is rewritten to \<add at T1>," and \<upd from X>"

is rewritten to \<upd at T2 from X to NV2>," where T1, T2, and NV2 are fresh variables. Next,

as in Lorel, we eliminate path expressions by introducing variables for the objects \inside" the

path expressions. For example, the path expression \a.b.c" in a from clause is converted to \a.b

X, X.c Y," where X and Y are new range variables . The details of this rewriting are described

in [AQM+96].

At this stage, we have to give a semantics to range variable de�nitions that may include annota-

tion expressions (e.g., \X.label Y," \X.<add at T>label Y") in the context of a DOEM database.

In the absence of an annotation expression, the semantics of an expression \X.label Y" is that for

a binding oX of X , Y is bound to all objects oY such that there is an arc labeled label from oX to oY
in the current snapshot. Note that by this semantics a standard Lorel query (without annotations)

over a DOEM database has exactly the semantics of the same query asked over the current snapshot

for that DOEM database. In the presence of annotation expressions, the semantics requires the

existence of the speci�ed annotation, and also provides bindings for the variables in the annotation

expression. The bindings are also speci�ed by a special rewriting. As an example, the query in

Example 4.4 is rewritten to:

select N, T, NV

from guide.restaurant R, R.price P, R.name N, (T, OV, NV) in updFun(P)

where T >= 1Jan97 and NV > 15

Our rewriting uses the following functions, which extract the information stored in annotations:

creFun(node)! ftimeg updFun(node)! f(time; old-value; new-value)g

addFun(source; label)! f(time; target)g remFun(source; label)! f(time; target)g

The function creFun(n) returns the set of timestamps found in cre annotations on node n. (Note

that by our de�nition of change operations in Section 2.1, this set is either empty or a singleton.)

The function updFun(n) returns a set of triples corresponding to the timestamp, the old value,

and the new value in upd annotations on n. The function addFun(n,l) returns a set of (t; c) pairs

such that c is an l-labeled subobject of n via an arc that has an add (t) annotation. The remFun

function is analogous to addFun. Once this rewriting has been performed, the from, where, and

select clauses of the resulting query are processed in a standard manner.

13

Above, we have illustrated how variables introduced in the from clause are interpreted. Vari-

ables may be introduced in the where clause as well. They are treated by introducing existential

quanti�cation in the where clause, extending the treatment of such variables in Lorel [AQM+96].

Consider the following example:

Example 4.5 Consider again the DOEM database of Figure 4. Suppose we want the names of

restaurants to which a \moderate" price subobject was added since January 1st, 1997. We can

write the following Chorel query:

select N

from guide.restaurant R, R.name N

where R.<add at T>price = "moderate" and T >= 1Jan97

The variable T is introduced in the where clause. Therefore, the rewritten where clause is:

where exists (T, P) in addFun(R,"price") : (P = "moderate" and T >= 1Jan97)

2

4.2.2 Virtual Annotations

We have seen how the linguistic construct \to newV" in an \upd" annotation expression refers to

the new value corresponding to an upd operation, which is represented implicitly but not explic-

itly in a DOEM database. Similar linguistic constructs can be introduced to access other implicit

information in a DOEM database. In particular, such constructs can be used to facilitate access

to snapshots other than the current snapshot. (Recall that Chorel \defaults" to the current snap-

shot when annotation expressions are not present.) E.g., we could introduce a construct such as

\guide.restaurant.price<at T>" to refer to the value of an object at a time T , and \guide.<at

T>restaurant" to refer to the existence of an edge at a time T , etc. Such linguistic constructs

can easily be implemented using the information in a DOEM database. We do not discuss such

constructs further in this paper. However, in the next section, we will see how the construct \to

newV" in an upd annotation expression is implemented by a simple translation scheme.

5 Implementing DOEM and Chorel

In this section, we discuss the implementation of DOEM databases and Chorel queries. One

approach is to extend the kernel of the Lore database system [MAG+97] to allow annotations

to be attached to the nodes and arcs of an OEM database. Given these extensions, the Lorel

query engine can be extended to a Chorel query engine in a straightforward manner based on the

semantics speci�ed in Section 4.2.1. We do not discuss this approach further. Instead, we consider

an alternative approach, which is to implement DOEM and Chorel \on top of" Lore. We encode

DOEM databases as OEM databases, and we implement Chorel by translating Chorel queries to

equivalent Lorel queries over the OEM encoding of the DOEM database. In addition to being more

modular than the direct implementation approach (and not a�ecting Lore object layout or query

processing), this approach can also be adapted easily to other graph-based data models, e.g., those

in [BDHS96, Cat94]. We begin by describing how DOEM databases are encoded in OEM, and then

discuss the translation of Chorel queries to Lorel queries for this encoding.

14

5.1 Encoding DOEM in OEM

Let D be a DOEM database. We encode D as an OEM database OD de�ned as follows. For each

object o in D, there is a corresponding object o0 in OD. An atomic object is encoded as a complex

object so that we can record its history. Special labels used by the encoding start with the special

character \&" to distinguish them from standard labels occuring in O. The encoding object o0 has

the following subobjects, listed by their labels. Refer to Figure 5.

� &val: If o is atomic with current value v, there is a \&val"-labeled arc from o0 to an atomic

object with value v. If o is complex, there is a \&val"-labeled arc from o0 to itself.

� &cre: If o has a create annotation cre(t), then o0 has a \&cre"-labeled atomic subobject with

value t.

� &upd: For each update annotation upd(t; ov) attached to o, o0 has an \&upd"-labeled complex

subobject with the following structure: a \&time"-labeled subobject with value t, an \&ov"-

labeled subobject with the value before the update (ov), and a \&nv"-labeled subobject with

the value after the update. Note that this \&nv"-labeled subobject is redundant since the

value after the update is also stored in the \&ov" subobject of the (temporally) next upd

annotation, or the current value of the object if no next upd annotation exists. However,

for e�ciency and ease of translation, we add an edge that represents the \&nv" subobject

explicitly.

� l : If the current snapshot for D contains an arc (o; l; p), then OD contains an arc labeled l

from o0 to the object p0 that encodes p.

� &l-history: If D contains an arc (o; l; p), then OD contains an arc (o0;&l-history; o0l) where

o0l is a complex object that contains the history of the l arcs from o to p. The object ol has

the following structure:

{ &target: There is an arc (ol;⌖ p
0), where p0 is the object encoding p.

{ &add, &rem: For each annotation add(t) (rem(t)) attached to (o; l; p), there is an \&add"-

labeled (respectively, \&rem"-labeled) atomic subobject with value t.

It can be shown that all the information in a DOEM database D is fully represented in D's OEM

encoding using the above scheme.

5.2 Translating Chorel to Lorel

Given the above encoding of a DOEM database as an OEM database, we now discuss how a Chorel

query over a (conceptual) DOEM database is translated into an equivalent Lorel query over an

OEM encoding of the DOEM database. In Section 4.2.1 we described how a Chorel query can be

rewritten into an OQL-like query using special functions creFun, updFun, addFun, and remFun.

Therefore, in the following we assume that we are given such a rewritten query.

We simulate the special functions creFun, updFun, addFun, and remFun with expressions that

extract the required values from the OEM encoding of the annotations. For example, the expression

\(T, OV, NV) in updFun(P)" is replaced with \P.&upd U, U.&time T, U.&ov OV, U.&nv NV."

From the encoding scheme described in Section 5.1, we see that this expression instantiates the

triple (T, OV, NV) to the timestamp, old value, and new value of the update annotations on objects

bound to P. If an expression of the form \(T, C) in addFun(P, l)" occurs in a Chorel query, we

15

o1

5
upd(t2, 2)

o1’

5

2

cre(t1)

&val
&cre

&upd

&time &ov

&nv
DOEM

OEM

DOEM

o2

o3 o4

B
rem(t3)

A

o2’

o4’

A

&rem

t3

o3’

&val

t1

t2

&B-history

&target

&target

OEM

&A-history

Figure 5: Encoding a DOEM object in OEM

replace it with \P.&l-history H, H.&add T, H.&target C." The case for remove annotations,

involving the remFun function, is analogous. Finally, we replace an expression \T in creFun(P),"

with \P.&cre T."

Note that our encoding scheme ensures that only arcs that exist in the current snapshot corre-

sponding to the encoded DOEM database are accessible directly via their labels in the encoding.

If an l-labeled arc does not exist in the current snapshot, its information is stored via an arc with

label &l-history, which does not match the label l.

The only remaining issue is that in the OEM encoding of a DOEM database, the value of an

atomic object is stored in a \&val"-labeled subobject of the encoding object. So, for instance,

when a query compares an atomic object to a value, we want to use the value stored in the \&val"

subobject for this comparison. Therefore, wherever in the query the value of a object variable

is accessed (i.e., in predicates and function arguments) we replace the object variable \X" with

\X.&val." Observe that since there is a \&val"-labeled arc from the encoding of each complex

object to itself, we can safely perform the above transformation for all value accesses of object

variables occuring in the original query, without knowing whether the objects they encode are

atomic or complex (which, in general, we will not know). This transformation is illustrated by the

following example.

Example 5.1 Consider the Chorel query in Example 4.5. In Section 4.2.1, we considered the

OQL-like rewriting of this query. We now complete this rewriting as described above, to yield the

following Lorel query over the OEM encoding of the DOEM database in Figure 4:

select N

from guide.restaurant R, R.name N

where exists H in R.&price-history :

exists P in H.&target :

exists T in H.&add : T >= 1Jan97 and P.&val = "moderate"

Observe how the range speci�cation using addFun(R,"price") is simulated using the \&"-pre�xed

subobjects. Also observe the use of P.&val to access the actual price value (and not the complex

object packaging it with its history). 2

Note that the presence of an object variable in a select clause is not considered a value access,

and is therefore not subject to the above transformation. Rather, it is considered as a request for

16

the DOEM objects satisfying the query. So, for instance, the previous query will return not only

the name of the restaurant but also the history of this name, if that name has changed. Returning

the DOEM object enables a user interface to display both the value and the history of the object,

or only the value if desired.

6 A Query Subscription Service

In Section 1, we introduced an important application of change management: being able to notify

\subscribers" of changes in (semistructured) information sources of interest to them. In this section,

we describe the design and implementation of such an application, called a Query Subscription

Service (QSS), using DOEM and Chorel.

An ordinary query is evaluated over the current state of the database, the results passed to the

client and then discarded.1 An example of an ordinary query is \�nd all restaurants with Lytton

in their address." In contrast, a subscription query is a query that repeatedly scans the database

for new results based on some given criteria and returns the changes of interest. An example of a

subscription query is \every week, notify me of all new restaurants with Lytton in their address."

Below, we describe how subscription queries are speci�ed and implemented in our system.

Supporting subscription queries introduces the following challenges. First, as discussed earlier,

many information sources that we are interested in (e.g., library information systems, Web sites,

etc.) are autonomous [SL90] and typical database approaches based on triggering mechanisms are

not usable. Second, these information sources typically do not keep track of historical information

in a format that is accessible to the outside user. Thus, a subscription service based on changes must

monitor and keep track of the changes on its own, and often must do so based only on sequences

of snapshots of the database states.

Brie
y, our approach to constructing a query subscription service over semistructured, possibly

legacy information sources, is as follows: We access the information sources using Tsimmis wrappers

or mediators [PGGMU95, PGMU96], which present a uniform OEM view of one or more data

sources. We obtain snapshots of relevant portions of the data, and use di�erencing techniques

based on [CRGMW96, CGM97] to infer changes based on these snapshots. Finally, we use DOEM

to represent the changes, and Chorel to specify the changes of interest. We describe our approach

in more detail below.

A subscription consists of three main components; refer to Figure 6. The �rst component is a

frequency speci�cation f that speci�es how often QSS should check the information source for data

and changes of interest. Examples of frequency speci�cations are \every Friday at 5:00pm" and

\every 10 minutes." The frequency speci�cation implies a sequence of time instants (t1; t2; t3; : : :),

which we call polling times . These times are the times when we obtain a new snapshot of the

data. (In the actual system, we also consider two other modes: one in which the snapshots are

obtained following explicit user requests, and the other in which snapshots are obtained as a result

of a trigger on the source database �ring, if the source provides such a triggering mechanism. To

simplify the presentation, we will not consider these modes further here.)

The second component of a subscription is a Lorel query Ql, which we call the polling query .

QSS sends the polling (Lorel) query to the wrapper or mediator at the polling times (t1; t2; t3; : : :) to

obtain results (R1; R2; R3; : : :). An example polling query is the following. Recall from Section 4.1

1Although caching of query results or query plans may occur, such actions are transparent to the issuer of the

query.

17

I1

R1

(t1, U1) (t2, U2) (t3, U3)

Source StatesI2 I3

R2 R3

DOEM

t1 t2 t3Specification
Frequency

time

Change results

Polling Query

Polling Times

R0 = {} Results

History

Filter Query

Figure 6: A Query Subscription Service based on DOEM and Chorel

that \#" is a special character that matches any sequence of zero or more labels in a path. We

also use the Lorel operator like for string matching.

define polling query LyttonRestaurants as

select guide.restaurant

where guide.restaurant.address.# like "%Lytton%"

Let R0 be the empty OEM database, and let Ri be the result of the polling query on the source

at time ti for i = 1; 2; : : :. Further assume that the result of a polling query includes (recursively)

all subobjects of the objects in the query answer, and that the result is \packaged" as an OEM

database. Using di�erencing techniques described in [CRGMW96, CGM97], QSS obtains a history

H = (t1; U1); (t2; U2); : : : corresponding to the sequence of OEM databases (R0; R1; R2; : : :), where

R0 is de�ned as the empty OEM database. That is, Ui(Ri�1) = Ri for all i > 0. Then, QSS

constructs a DOEM database D(R0; H) corresponding to this history H and the initial snapshot

R0, as described in Section 3. Thus, intuitively, in the �rst timestep the results of the polling query

are all \created." Thereafter, each subsequent timestep annotates the DOEM database with the

changes to the result of the polling query since the previous timestep. We identify the DOEM

database corresponding to a polling query using the name of the polling query. Thus the name of

the DOEM database corresponding to the above polling query is \LyttonRestaurants."

The third component of a subscription is a Chorel query Qc, called the �lter query , over the

above DOEM database. In Qc, we can use a special time variable \t[0]" to refer to the current

polling time tk . Similarly, we can use \t[-1]," \t[-2]," etc., to refer to the past polling times

tk�1, tk�2, etc., respectively. (If the current polling time is tk, we de�ne t[-i] to be tk�i if i < k,

and negative in�nity otherwise.) The �lter query describes the data and changes of interest to the

user. An example of an �lter query is the following:

define filter query NewOnLytton as

select LyttonRestaurants.restaurant<cre at T>

where T > t[-1]

Given our de�nition of the DOEM database \LyttonRestaurants," this query indicates that the

user should be notifed of new restaurants that have Lytton in their address since the last polling

18

time. At each time instant tk (k > 0) speci�ed by the frequency speci�cation, QSS evaluates Qc

over the DOEM database D(R0; Hk), where Hk = (t1; U1); : : : ; (tk; Uk), and returns the results to

the user.

Example 6.1 Consider again the changes to the Guide data described in Example 2.2. Suppose we

are interested in being noti�ed every night of new restaurants created in the Guide database since

the previous night. We issue the subscription S = hf;Ql; Qci, where the frequency speci�cation f

is \every night at 11:30pm," and the polling query Ql and �lter query Qc are Restaurants and

NewRestaurants (respectively) as de�ned below:

define polling query Restaurants as

select guide.restaurant

define filter query NewRestaurants as

select Restaurants.restaurant<cre at T>

where T > t[-1]

Suppose we create this subscription S on December 30th, 1996, at 10:00am. The polling times

given by our frequency speci�cation are t1 = 30Dec96 , t2 = 31Dec96 , t3 = 1Jan97 , and so on (all

at 11:30pm). At polling time t1, QSS sends the polling query Ql to the Guide OEM database, to

obtain the result R1 consisting of the two restaurant objects in Figure 2. Since R0 is the empty

OEM database by de�nition, both restaurant objects will have a cre annotation in the DOEM

database built by QSS. These annotations all have a timestamp t1, while the variable t[-1] in the

query Qc has value negative in�nity at t1. Therefore, evaluating the �lter query Qc on this DOEM

database returns the two restaurant objects as the initial results to the user.

At polling time t2, the Guide database is unchanged, so the result R2 of the polling query is

identical to R1. Consequently, no changes are made to the DOEM database maintained by QSS.

Note also that at time t2, t[�1] = t1, so that the create annotations on the restaurant objects in the

DOEM database no longer satisfy the predicate T > t[-1] in the where clause of Qc. Therefore,

the result of Qc is empty, and the user does not receive any noti�cation.

Before polling time t3, the Guide database is modi�ed by the addition of a new restaurant

object, with name \Hakata," as described in Example 2.2. Therefore, at t3, the result R3 of the

polling query contains the new restaurant object in addition to the two old restaurant objects. The

new restaurant object is detected by the di�erencing algorithm. Accordingly, the DOEM database

maintained by QSS now includes the new restaurant object, with a create annotation cre(t3) on

it. Note also that at this time, t[�1] = t2, so that this create annotation satis�es the predicate in

the where clause of Qc. Therefore the result of the query Qc over the modi�ed DOEM database

contains the new restaurant object \Hakata," and the user is noti�ed of this result. 2

6.1 QSS Implementation

We now discuss some aspects of our implementation of the Query Subscription Service; refer to

Figure 7. The system has a client-server architecture, with one or more client processes (Query

Subscription Clients , orQSC s) that interact with users, and a server process (QSS) that implements

the core functionality. A single server process serves multiple clients. QSC implements a user

interface that supports subscription creation and deletion, and also delivers noti�cations to the

user. The QSS server is the principal component of the QSS system. It consists of �ve main

modules:

19

� The Subscription Manager handles all the information relevant to subscriptions. For each

subscription, the Subscription Manager maintains the polling query Ql, the �lter query Qc,

the frequency speci�cation f , the identi�er of the current DOEM database (stored in the

DOEM Manager described below), as well as information such as the user name, host name,

etc.

� The Query Manager module is responsible for sending polling queries to the Tsimmis wrapper

or mediator and for collecting the resulting OEM results; it interfaces with the Tsimmis CSL

library [CGMH+94].

� The OEMdi� module implements the di�erencing algorithm in [CRGMW96] to compute the

history from the snapshot results of the polling query.

� The DOEM Manager maintains the DOEM database corresponding to the sequence of polling

query results, using the OEMdi� module to compute changes between successive polling query

results. It uses the Lore system [MAG+97] to store OEM encodings of DOEM databases,

using the scheme described in Section 5.1.

� The Chorel Engine evaluates the Chorel �lter query Qc for each subscription over the corre-

sponding DOEM database. It includes a preprocessor that replaces the special time variables

t[i], if any, in the �lter query with the appropriate timestamps as explained above.

The arrows in Figure 7 depict the
ow of information in QSS. For each subscription, the Sub-

scription Manager uses a timer to invoke the Query Manager with the polling query Ql at each

polling time ti. The Query Manager communicates with the Tsimmis wrapper or mediator to

execute the polling query and to retrieve the result Ri. This result is sent to the DOEM Manager,

which forwards Ri to the OEMdi� module along with the previous results Ri�1, obtained from the

current snapshot of the DOEM database for this subscription.2 The OEMdi� module compares

Ri�1 with Ri to produce the change operations U such that U(Ri�1) = Ri. The DOEM Manager

then incorporates these changes into the DOEM database for this subscription. Finally, the Chorel

�lter query Qc for this subscription is executed over the updated DOEM database by the Chorel

Engine, and the results are sent to the user via the QSC client.

We have implemented the �rst version of QSS, and interfaced it with Tsimmis wrappers over

various information sources. The current prototype supports only two snapshots (current and

previous) of the data per subscription at a given time. Also, it allows only a limited language for

specifying the changes of interest. However, the main architecture is in place and the prototype

easily supports subscriptions such as \notify me daily of all new Thai restaurants." We are currently

working on extending the QSS prototype to support arbitrary change histories and more complex

�lter queries.

For certain polling queries, QSS may need to store a large portion of the underlying database

in order to detect changes accurately. We are exploring the following ways of limiting the space

used for storing DOEM databases: (1) merging the DOEM databases for subscriptions that have

similar polling queries; (2) making the client responsible for storing the DOEM databases for its

subscriptions; and (3) trading accuracy for space by storing a smaller state at the expense of not

being able to detect all changes accurately.

2Alternatively, the DOEM Manager could store the previous result in addition to the DOEM database, thereby

trading space for time.

20

Source

Query

user

CSL

Manager
R1, R2, R3,...

Manager changes

Ri, Ri-1

Source-specific

Results

Subcription
Manager Engine

Chorel

Query

Q_c

Q_l

Subscription

Subscription Notifications

QSC
(client)

QSS
(server)

Subscription
Store

snapshot
results

Interface

Change Notification

DOEM
OEMdiff

Tsimmis

Mediator
Wrapper or

DOEM
Store

Lore

OEM encoding

Figure 7: System architecture of QSS

7 Conclusion and Future Work

We have motivated the need for a uniform representation scheme for changes in semistructured

data, and for a query language that allows direct access to changes. We have presented a simple

data model, DOEM, that allows a wide variety of semistructured data to be represented together

with its changes in an intuitive and compact manner. We have also presented the query language

Chorel, which enables querying both the data and the changes, and discussed its implementation in

Lorel. Finally, we have described the design and implementation of a Query Subscription Service

based on DOEM and Chorel.

Currently, we are in the process of:

� Implementing Chorel in Lore using the translation-based scheme of Section 5.

� Enhancing our initial implementation of QSS to allow access to the full history, rather than

simply two polling intervals.

� Extending QSS to permit more complex �lter queries.

We also plan to investigate the following topics in the near future:

� Extending Chorel to allow annotation expressions to be attached to wildcards and regular

expressions in path expressions.

21

� Designing indexes on annotations (based on their types and timestamps) and studying the

use of such indexes to achieve a more e�cient translation of Chorel queries to Lorel queries.

� Exploring the use of virtual annotations , described in Section 4.2.2, in DOEM and Chorel,

and studying their implementation using indexes.

� Designing an event-condition-action trigger language for OEM based on ideas from DOEM

and Chorel.

� Exploring techniques to conserve space in QSS, as discussed at the end of Section 6.

Acknowledgements

We are grateful to Dan Liu for his substantial implementation e�orts in QSS, and to many members

of the Stanford Database Group (especially the Lore folks) for fruitful discussions about change

management.

References

[Abi97] S. Abiteboul. Querying semistructured data. In Proceedings of the International Conference

on Database Theory, Delphi, Greece, January 1997.

[AQM+96] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel query language

for semistructured data. Journal of Digital Libraries, 1(1), November 1996.

[BDHS96] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A query language and optimiza-

tion techniques for unstructured data. In Proceedings of the ACM SIGMOD International

Conference on Management of Data, Montr�eal, Qu�ebec, June 1996.

[Buc96] A. Buchmann. The active database management system manifesto: A rulebase of ADBMS

features. SIGMOD Record, 25(3):35{42, September 1996.

[CACS94] V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From structured documents

to novel query facilities. In Proceedings of the ACM SIGMOD International Conference on

Management of Data, 1994.

[Cat94] R. Cattell. The Object Database Standard: ODMG-93. Morgan Kaufmann Publishers, San

Francisco, CA, 1994.

[CGM97] S. Chawathe and H. Garcia-Molina. Meaningful change detection in structured data. In

Proceedings of the ACM SIGMOD International Conference on Management of Data, Tuscon,

Arizona, 1997. To appear.

[CGMH+94] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ull-

man, and J. Widom. The Tsimmis project: Integration of heterogeneous information sources.

In Proceedings of 100th Anniversary Meeting of the Information Processing Society of Japan,

pages 7{18, Tokyo, Japan, October 1994.

[CRGMW96] S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom. Change detection

in hierarchically structured information. In Proceedings of the ACM SIGMOD International

Conference on Management of Data, pages 493{504, Montr�eal, Qu�ebec, June 1996.

22

[DHR96] M. Doherty, R. Hull, and M. Rupawalla. Structures for manipulating proposed updates

in object-oriented databases. In Proceedings of the ACM SIGMOD International Conference

on Management of Data, Montr�eal, Qu�ebec, 1996.

[GHJ92] S. Ghandeharizadeh, R. Hull, and D. Jacobs. Implementation of delayed updates in

Heraclitus. In Advances in Database Technology|EDBT '92, Lecture Notes in Computer

Science 580, pages 261{276. Springer-Verlag, Berlin, March 1992.

[GHJ96] S. Ghandeharizadeh, R. Hull, and D. Jacobs. Heraclitus: Elevating deltas to be �rst-

class citizens in a database programming language. ACM Transactions on Database Systems,

21(3):370{426, September 1996.

[Gul] P. Gullixson. The Palo Alto Weekly online edition. Embarcadero Publishing Company, Palo

Alto, California. Available at http://www.service.com/PAW/.

[ISO94] ISO-ANSI working draft: Database language SQL3 (X3H2/94/080 and SOU/003), 1994.

[MAG+97] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A database

management system for semistructured data. Technical report, Stanford University Database

Group, February 1997.

[PAGM96] Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina. Object fusion in mediator

systems. In Proceedings of the International Conference on Very Large Data Bases, Bombay,

India, September 1996.

[PGGMU95] Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, and J. Ullman. A query trans-

lation scheme for rapid implementation of wrappers. In Proceedings of the International

Conference on Deductive and Object-Oriented Databases, Singapore, December 1995.

[PGMU96] Y. Papakonstantinou, H. Garcia-Molina, and J. Ullman. MedMaker: A mediation

system based on declarative speci�cations. In Proceedings of the International Conference on

Data Engineering, pages 132{141, New Orleans, February 1996.

[PGMW95] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchange across het-

erogeneous information sources. In Proceedings of the International Conference on Data

Engineering, pages 251{260, Taipei, Taiwan, March 1995.

[SA86] R. Snodgrass and I. Ahn. Temporal databases. IEEE Computer, 19(9):35{42, September

1986.

[SL90] A. Sheth and J.A. Larson. Federated database systems for managing distributed, heteroge-

neous, and autonomous databases. ACM Computing Surveys, 22(3):183{236, 1990.

[Soo91] M.D. Soo. Bibliography on temporal databases. SIGMOD Record, 20(1):14{24, March

1991.

[WC96] J. Widom and S. Ceri. Active database systems: Triggers and rules for advanced database

processing. Morgan Kaufmann Publishers, San Francisco, CA, 1996.

23

