CS347

Lecture 9 May 11, 2001 ©Prabhakar Raghavan

Today's topic

- Automatic document classification
 - Rule-based classification
 - Supervised learning

Classification

- Given one or more topics, decide which one(s) a given document belongs to.
- Applications
 - Classification into a topic taxonomy
 - Intelligence analysts
 - Routing email to help desks/customer service

Step back

- Manual classification
 - accurate when done by subject experts
 - consistent when done by a small team
 - difficult to scale
 - used by Yahoo!, Looksmart, about.com, ODP
 - hundreds of subject editors maintain thousands of topics
 - (topics organized in a tree-like navigation structure)

Supervised vs. unsupervised learning

- Unsupervised learning:
 - Given corpus, infer structure implicit in the docs, without prior training.
- Supervised learning:
 - Train system to recognize docs of a certain type (e.g., docs in Italian, or docs about religion)
 - Decide whether or not new docs belong to the class(es) trained on

Challenges

- Must teach machine a model of each topic
- Given new doc, must measure fit to model(s)
- Evaluation: how well does the system perform?
- Threshold of pain: how confident is the system's assessment?
 - Sometimes better to give up.

Teaching the system models

- Through an explicit query
- Through exemplary docs
- Combination

Large scale applications

- Document routing
- Customer service
- Profiled newsfeeds
- Spam/porn filtering

Typical example

- Dow Jones
 - Over 100,000 standing profiles
 - A profile can have >100 atomic terms
 - Common sub-expressions shared by different topics
 - Optimizing this sharing is a hard problem.

Example of sharing

Factors affecting measures

- Documents
 - size, length
 - quality/style of authorship uniformity of vocabulary
- Accuracy measurement
 - need definitive judgement on which topic(s) a doc belongs to
 - usually human

Confusion matrix

- Function of classifier, topics and test docs.
- For a perfect classifier, all off-diagonal entries should be zero.

Confusion measures

- Fraction of docs in topic *i* classified correctly:
- Fraction of docs assigned topic *i* that are actually about topic *i*:
- Fraction of docs classified correctly:

c_{ii} , c_{ij}

Classification by exemplary docs

- Feed system exemplary docs on topic (*training*)
- Positive as well as negative examples
- System builds its model of topic
- Subsequent *test* docs evaluated against model
 - decides whether test is a member of the topic

More generally, set of topics

- Exemplary docs for each
- Build model for each topic – differential models
- Given test doc, decide which topic(s) it belongs to

Recall doc as vector

- Each doc *j* is a vector, one component for each term.
- Normalize to unit length.
- Have a vector space
 - terms are axes
 - -n docs live in this space
 - even with stemming, may have 10000+ dimensions

Classification using vector spaces

- Each training doc a point (vector) labeled by its topic
- Hypothesis: docs of the same topic form a contiguous region of space
- Define surfaces to delineate topics in space

- Assume *linear separability* for now: - in 2 dimensions, can separate by a line
 - in higher dimensions, need hyperplanes.
- Can find separating hyperplane by *linear programming:*
 - separator can be expressed as ax + by = c;

Support Vector Machine (SVM) Support vectors • *Quadratic programming* problem • The decision function is fully specified by training samples which lie on two parallel

hyper-planes

Building an SVM classifier

- Now we know how to build a separator for two linearly separable topics
- What about topics whose exemplary docs are not linearly separable?
- What about >2 topics?

Category: Interest

• Example SVM features

- $w_i t_i$ • 0.70 prime • 0.67 rate • 0.63 interest • 0.60 rates 0.46 discount • 0.43 bundesbank

• -0.33 sees • -0.25 year

 $w_i t_i$

• -0.71 dlrs

• -0.35 world

- 0.43 baker
- -0.24 group • -0.24 dlr • -0.24 january

Separating multiple topics

- Build a separator between each topic and its complementary set (docs from all other topics).
- Given test doc, evaluate it for membership in each topic.
- Declare membership in topics above threshold.

Challenge

- Combining rule-based and machine learning based classifiers.
 - Nonlinear decision surfaces vs. linear.
 - User interface and expressibility issues.

UI issues

- Can specify rule-based query in the interface.
- Can exemplify docs.
- What is the representation of the combination?

Classification - closing remarks

- Can also use Bayesian nets to formulate classification
 - Compute probability doc belongs to a class, conditioned on its contents
- Many fancy schemes exist for term weighting in vectors, beyond simple *tf×idf*.

- R.M. Tong, L.A. Appelbaum, V.N. Askman, J.F. Cunningham. Conceptual Information Retrieval using RUBRIC. Proc. ACM SIGIR 247-253, (1987).
- S. T. Dumais, Using SVMs for text categorization, IEEE Intelligent Systems, 13(4), Jul/Aug 1998.