
Lecture 7
April 30, 2001

©Prabhakar Raghavan

• Finish up web ranking
• Peer-to-peer search
• Search deployment models

– Service vs. software
– External vs. internal-facing search software

• Review of search topics

• Increase weights of terms in titles
• Increase weights of terms in <h > tags
• Increase weights of terms near the

beginning of the doc, its chapters and
sections - key phrases

Here is a great picture of a
tiger

Tiger image

Cool tiger webpage

The text in the vicinity of a hyperlink is
descriptive of the page it points to.

• When indexing a page, also index the
anchor text of links pointing to it.

• To weight links in the hubs/authorities
algorithm from the last lecture.

• Anchor text usually taken to be a window of
6-8 words around a link anchor.

• When indexing a document D, include
anchor text from links pointing to D.

www.ibm.com

Armonk, NY-based computer
giant IBM announced today

Joe’s computer hardware links
Compaq
HP
IBM

Big Blue today announced
record profits for the quarter

• Can sometimes have unexpected side
effects - e.g., evil empire.

• Can index anchor text with less weight.

• In hub/authority link analysis, can match
anchor text to query, then weight link.

∑←
yx

yaxh)()(

∑←
xy

yhxa)()(yhyxwxa

yayxwxh

xy

yx

⋅=

⋅=

∑

∑

• What is w(x,y)?
• Should increase with the number of query

terms in anchor text.
– Say 1+ number of query terms.

www.ibm.comArmonk, NY-based computer
giant IBM announced todayx y

Weight of this
link for query

Computer is 2.

• Recall basic algorithm:
– Iteratively update all h(x), a(x);
– After iteration, output pages with highest h()

scores as top hubs; highest a() scores as top
authorities.

• Now use weights in iteration.
• Raises scores of pages with “heavy” links.

Do we still have convergence
of scores? To what?

Treat portions of web-sites as a single
entity for score computations.

• Lots of pages in a site give varying aspects
of information on the same topic.

• Links on a page tend to point to the same
topics as neighboring links.
– Break pages down into pagelets (say separate

by tags) and compute a hub/authority score for
each pagelet.

Ron Fagin’s links
•Logic links

•Moshe Vardi’s logic page
•International logic symposium
•Paper on modal logic

•….
•My favorite football team

•The 49ers
•Why the Raiders suck
•Steve’s homepage
•The NFL homepage

• The WWW is full of free-spirited opinion,
annotation, authority conferral

• Most other forms of hypertext are far more
structured
– enterprise intranets are regimented and

templated
– very little free-form community formation
– web-derived link ranking doesn’t quite work

• Powerful new ideas
– derived from sociology of web content creation

• Supplemented by other heuristics
• Less useful in intranets
• Challenges from dynamic html
• Application servers and web content

management systems

• For each query Q, keep track of which docs
in the results are clicked on

• On subsequent requests for Q, re-order docs
in results based on click-throughs

• First due to DirectHit →AskJeeves

Queries

Docs

q

j

Bqj = number of times doc j
clicked-through on query q

When query q issued again, order docs by Bqj values.

• Weighing/combining text- and click-based
scores.

• What identifies a query?
– Ferrari Mondial
– Ferrari Mondial
– Ferrari mondial
– ferrari mondial
– “Ferrari Mondial”

• Can use heuristics, but search parsing slowed

• Maintain a term-doc popularity matrix C
– as opposed to query-doc popularity
– initialized to all zeros

• Each column represents a doc j
– If doc j clicked on query q, update Cj← Cj +ε q

(here q is viewed as a vector).
• On a query q’, compute its cosine proximity

to Cj for all j.
• Combine this with the regular text score.

• Normalization of Cj after updating.
• Boolean operators
• Why did the user click on the doc?
• Updating - live or batch?
• All votes count the same.

– More on this in recommendation systems.

• Time spent viewing page
– Difficult session management
– Inconclusive modeling so far.

• Does user back out of page?
• Does user stop searching?
• Does user transact?

• No central index
• Each node in a network builds and

maintains own index
• Each node has “servent” software

– On booting, servent pings ~4 other hosts
– Connects to those that respond
– Initiates, propagates and serves requests

• The ones you connected to last time
• Random hosts you know of
• Request suggestions from central (or

hierarchical) nameservers

• All govern system’s shape and efficiency

• Send your request to your neighbors
• They send it to their neighbors

– decrement “time to live” for query
– query dies when ttl = 0

• Send search matches back along requesting
path

• Fresh content
– no waiting for the next weekly indexing

• Dynamic content
– results could be assembled from a database or

other repository
– live pricing/inventory information

• Internet:
– Query interpretation up to servent

• spamming potential

– No co-ordination in network
• fragmentation

• Enterprises:
– security and access control
– administration
– distributed replication and caching

Intranet vs. extranet

• As a service
– public, e.g., web search
– access-protected, e.g., proprietary newsfeeds

and content
• As software

– Outward-facing (Walmart, CDNow …)
– Inward-facing within an enterprise

+ Ease of maintenance
+ software as well as

indices

+ Can tune to platform

- To date, not much
proprietary content
– owners of valuable

content don’t hand
over custody

• Inward vs. outward-facing
– very different characteristics

• corpus sizes
• query rates
• languages and localization
• security
• content management

• Relatively small corpora
– typically under 1GB

• Sporadic query rates, high peak loads
• Fairly dynamic corpus

– item prices in a catalog

• Product database (RDBMS) w/product info
– prices, descriptions

• Search engine - spiders DB, indexes
structured+unstructured product info.

• Application server - content assembly,
personalization + Web server

• Back-end inventory RDBMS
– to complete the transaction.

Broker

. . .

Broker

Broker

Search servers

• By documents
– Each server has a subset of the docs
– Each has its own dictionary
– Query sent out to “all” servers

• Broker ensures load-balancing, failover

• By terms
– Each server has a subset of the lexicon
– Query sent to server(s) with the query term(s)
– Partition alphabetically→easy query dispatch
– Partition by hashing →uniform spread

• Query optimization is hard
• Works best when query terms are uniformly

spread across servers

• Search within an intranet
• Enterprise portals

“Enterprise” doesn’t have to be a (for profit) company - government,
academe, … any collaborative group with proprietary information.

• Scale - lots of docs, geographically
distributed over non-uniform WAN

• Multiple languages and character sets
– Locale modules for stemming, thesauri

• Multiple document repositories
– Lotus, Exchange, Documentum, Filenet …
– Materialized views of compound documents

• Multiple formats - pdf, MS office, …
– multiple MIME-type attachments

• Each doc has access permissions for groups
• User authenticated for membership in

certain groups; can change with time
• Results of a search should only contain docs

the user can view
– Not sufficient to show a doc in results, then

deny user attempting to access it
• Compound docs made up of pieces

– each piece has own ACL’s

• Enterprise search - inside and outside - are
quite different

• Each different from public web search
service

• Inside enterprise search the most fragile
– tremendous diversity
– flexible, hard-to-administer software vs.

expensive customization

• Dictionary of terms
• Each term points to a series of postings

entries
– Postings for a term point to docs containing that

term

• Store pointers to every kth on term string.
• Need to store term lengths (1 extra byte)

….7systile9syzygetic8syzygial6syzygy11szaibelyite8szczecin9szomo….

Freq. Postings ptr. Term ptr.

33

29

44

126

7

 Save 9 bytes
 on 3
 pointers.

Lose 4 bytes on
term lengths.

• Store list of docs containing a term in
increasing order of doc id.
– Brutus: 33,47,154,159,202 …

• Suffices to store gaps.
– 33,14,107,5,43 …

• Gaps encoded with far fewer than 20 bits,
using γ codes.

• Estimate using crude Zipf law analysis
– Most frequent term occurs in n docs
– Second most frequent term in n/2 docs
– kth most frequent term in n/k docs, etc.

• n/k gaps of k each - use ~2log2k bits for each gap
using γ codes.

• Stemming - Porter’s.
• Case folding.
• Thesauri and soundex
• Spell correction

• Consider a query that is an AND of t terms.
• The idea: for each of the t terms, get its

term-doc incidence from the postings, then
AND together.

• Process in order of increasing freq:
– start with smallest set, then keep cutting

further.

This is why
we kept freq
in dictionary.

• At query time:
• As we walk the current candidate list, concurrently

walk inverted file entry - can skip ahead
– (e.g., 8,21).

• Skip size: recommend about √(list length)

2,4,6,8,10,12,14,16,18,20,22,24, ...

• mon*: find all docs containing any word
beginning “mon”.

• Solution: index all k-grams occurring in any
doc (any sequence of k chars).

• Query mon* can now be run as
– $m AND mo AND on
– But we’d get a match on moon.

• Must post-filter these results against query.

• Search for “to be or not to be”
• No longer suffices to store only

<term:docs> entries.
• Instead store, for each term, entries

– <number of docs containing term;
– doc1: position1, position2 … ;
– doc2: position1, position2 … ;
– etc.>

• Precision: fraction of retrieved docs that are
relevant

• Recall: fraction of relevant docs that are
retrieved

• Both can be measured as functions of the
number of docs retrieved

• Parse and build postings entries one doc at a
time

• To now turn this into a term-wise view,
must sort postings entries by term (then by
doc within each term)

• Block of postings records; can “easily” fit a
couple into memory.

• Sort within blocks first, then merge.

• Inserting a (variable-length) record
– a typical postings entry

• Maintain a pool of (say) 64KB chunks
• Chunk header maintains metadata on

records in chunk, and its free space

Record
Record
Record
Record

Header

Free space

• Each doc j can now be viewed as a vector of
tf×idf values, one component for each term.

• So we have a vector space
– terms are axes
– docs live in this space
– even with stemming, may have 10000+

dimensions

iijij nntfw ×=

 termoffrequency document inverselog

 rmcontain te that documents ofnumber the
documents ofnumber total

document in termoffrequency

in
nidf

in
n

jitf

i
i

i

ij

=


=

=
=

=

• Distance between vectors D1,D2 captured
by the cosine of the angle x between them.

• Note - this is similarity, not distance.

t 1

d 2

d 1

t 3

t 2

x

• Key: A user’s query can be viewed as a
(very) short document.

• Query becomes a vector in the same space
as the docs.

• Can measure each doc’s proximity to it.
• Natural measure of scores/ranking - no

longer Boolean.

• Computing individual cosines
• Speeding up computations

– Avoiding computing cosines to all docs
– Dimensionality reduction

• Random projection
• LSI

d1 d2

r1 r3

c1 c3

q1 q2

i

r2

c2

Document
Network

Query
Network

Documents

Terms

Concepts

Query operators
(AND/OR/NOT)

Information need

• Structured search - search by restricting on
attribute values, as in databases.

• Unstructured search - search in unstructured
files, as in text.

• Semi-structured search: combine both.

• Two basic approaches
– Universal, query-independent ordering on all

web pages (based on link analysis)
• Of two pages meeting a (text) query, one will

always win over the other, regardless of the query

– Query-specific ordering on web pages
• Of two pages meeting a query, the relative ordering

may vary from query to query

• For any ergodic Markov chain, there is a
unique long-term visit rate for each state.
– Steady-state distribution.

• Over a long time-period, we visit each state
in proportion to this rate.

• It doesn’t matter where we start.

• MIR 9.

