CS347

Lecture 7/
April 30, 2001

©Prabhakar Raghavan

Topics du jour

* Finish up web ranking
* Peer-to-peer search
e Search deployment models

— Service vs. software

— External vs. internal-facing search software

* Review of search topics

Tag/position heuristics

* Increase weights of terms 1n titles
 Increase weights of terms 1n <h > tags

* Increase weights of terms near the
beginning of the doc, its chapters and
sections - key phrases

Anchor text

Tiger image

Here 1s a great picture of a

tiger \

Cool tiger webpage >

The text in the vicinity of a hyperlink 1s
descriptive of the page it points to.

Two uses of anchor text

 When indexing a page, also index the
anchor text of links pointing to it.

* To weight links in the hubs/authorities
algorithm from the last lecture.

* Anchor text usually taken to be a window of
6-8 words around a link anchor.

Indexing anchor text

 When indexing a document D, include
anchor text from links pointing to D.

Armonk, NY-based computer
giant [BM announced today

\/» www.ibm.com
Joe’s computer hardware links f
Compagq
HP / Big Blué today announced
IBM

record profits for the quarter

Indexing anchor text

* Can sometimes have unexpected side
effects - e.g., evil empire.

* Can index anchor text with less weight.

Weighting links

 In hub/authority link analysis, can match
anchor text to query, then weight link.

h(x) < Y a(y) ()= w(x,y) a(y)

a(x) < Y h(y) B a(x)ZE wx,) h(y)

Weighting links

 What 1s w(x,y)?

* Should increase with the number of query
terms 1n anchor text.

— Say 1+ number of query terms.

Armonk, NY-based computer
giant IBM announced today

X — www.lbm.com y

Weight of this
link for query
Computer 1s 2.

Weighted hub/authority computation

e Recall basic algorithm:
— Iteratively update all 2(x), a(x);

— After 1teration, output pages with highest /()
scores as top hubs; highest a() scores as top
authorities.

 Now use weights in 1teration.

« Raises scores of pages with “heavy” links.

4?

Do we still have convergence
of scores? To what?

Web sites, not pages

* Lots of pages 1n a site give varying aspects
of information on the same topic.

T)\Y ;
Treat portions of web-sites as a single

Ej / entity for score computations.

Link neighborhoods

* Links on a page tend to point to the same
topics as neighboring links.
— Break pages down into pagelets (say separate

by tags) and compute a hub/authority score for
each pagelet.

Link neighborhoods

Ron Fagin’s links

*Logic links
*Moshe Vardi’s logic page
International logic symposium
*Paper on modal logic

My favorite football team
*The 49ers
*Why the Raiders suck
*Steve’s homepage
*The NFL homepage

Web vs. hypertext search

« The WWW 1s full of free-spirited opinion,
annotation, authority conferral

* Most other forms of hypertext are far more
structured

— enterprise Intranets are regimented and
templated

— very little free-form community formation

— web-derived link ranking doesn’t quite work

Link analysis/search - summary

e Powerful new 1deas

— derived from sociology of web content creation
* Supplemented by other heuristics
* Less useful in intranets
e Challenges from dynamic html

* Application servers and web content
management systems

Behavior-based ranking

* For each query O, keep track of which docs
in the results are clicked on

* On subsequent requests for O, re-order docs
in results based on click-throughs

e First due to DirectHit —AskJeeves

Query-doc popularity matrix B

»Docs

E

Queries

B ;= number of times doc j
clicked-through on query ¢

When query q issued again, order docs by B ; values.

Issues to consider

* Weighing/combining text- and click-based
SCOTES.

« What identifies a query?
— Ferrar1t Mondial
— Ferrar1 Mondial
— Ferrari mondial
— ferrar1 mondial
— “Ferrar1 Mondial”

« Can use heuristics, but search parsing slowed

Vector space implementation

* Maintain a term-doc popularity matrix C
— as opposed to query-doc popularity
— mitialized to all zeros

e Each column represents a doc j

— It docj clicked on query q, update C;«— C; +€ q
(here q 1s viewed as a vector).

* On a query q’, compute 1ts cosine proximity
to C, for all ;.

* Combine this with the regular text score.

Issues

» Normalization ot C; after updating.
* Boolean operators

 Why did the user click on the doc?
e Updating - live or batch?

« All votes count the same.

— More on this in recommendation systems.

Variants

* Time spent viewing page
— Dafficult session management

— Inconclusive modeling so far.
e Does user back out of page?
* Does user stop searching?

 Does user transact?

Peer-to-peer (P2P) search

 No central index

* Each node 1n a network builds and
maintains own index

* Each node has “servent” software
— On booting, servent pings ~4 other hosts
— Connects to those that respond

— Initiates, propagates and serves requests

Which hosts to connect to?

* The ones you connected to last time
 Random hosts you know of

* Request suggestions from central (or
hierarchical) nameservers

« All govern system’s shape and efficiency

Serving P2P search requests

* Send your request to your neighbors
* They send 1t to their neighbors

— decrement “time to live” for query
— query dies when ttl =0

* Send search matches back along requesting
path

The promise of P2P

* Fresh content
— no waiting for the next weekly indexing
* Dynamic content

— results could be assembled from a database or
other repository

— live pricing/inventory information

P2P search 1ssues

 [Internet:

— Query interpretation up to servent

e spamming potential

— No co-ordination 1n network

 fragmentation

* Enterprises:
— security and access control
— administration

— distributed replication and caching

Search deployment

Intranet vs. extranet

Search deployment models

e As a service
— public, e.g., web search

— access-protected, e.g., proprietary newsfeeds
and content

* As software
— Outward-facing (Walmart, CDNow ...)

— Inward-facing within an enterprise

Service deployment 1ssues

+ Ease of maintenance - To date, not much
+ software as well as proprietary content
indices — owners of valuable

+ Can tune to platform content don’t hand

over custody

Software deployment

* Inward vs. outward-facing

— very different characteristics
* COrpus sizes
* query rates
 languages and localization
* security

e content management

Outward-facing search software

« Relatively small corpora

— typically under 1GB
» Sporadic query rates, high peak loads
* Fairly dynamic corpus

— 1tem prices 1n a catalog

Typical eCommerce search setup

* Product database (RDBMS) w/product info

— prices, descriptions

* Search engine - spiders DB, indexes
structured-+unstructured product info.

» Application server - content assembly,
personalization + Web server

* Back-end inventory RDBMS

— to complete the transaction.

Scaling search servers

Broker

Broker

-

Search servers

Partitioning the index

* By documents
— Each server has a subset of the docs
— Each has 1ts own dictionary

— Query sent out to “all” servers

* Broker ensures load-balancing, failover

Partitioning the index

* By terms
— Each server has a subset of the lexicon
— Query sent to server(s) with the query term(s)
— Partition alphabetically—easy query dispatch
— Partition by hashing —uniform spread

e Query optimization 1s hard
 Works best when query terms are uniformly
spread across servers

Inward-facing search software

e Search within an intranet

* Enterprise portals

“Enterprise” doesn’t have to be a (for profit) company - government,

academe, ... any collaborative group with proprietary information.

Issues 1n enterprise search

* Scale - lots of docs, geographically
distributed over non-uniform WAN

« Multiple languages and character sets

— Locale modules for stemming, thesauri

e Multiple document repositories
— Lotus, Exchange, Documentum, Filenet ...

— Materialized views of compound documents

« Multiple formats - pdf, MS office, ...
— multiple MIME-type attachments

Security and results lists

* Each doc has access permissions for groups

» User authenticated for membership in
certain groups; can change with time

» Results of a search should only contain docs
the user can view

— Not sufficient to show a doc 1n results, then
deny user attempting to access it

* Compound docs made up of pieces

— each piece has own ACL’s

Bottom line

* Enterprise search - inside and outside - are
quite different

« Each different from public web search
service

* Inside enterprise search the most fragile

— tremendous diversity

— flexible, hard-to-administer software vs.
expensive customization

Review of search topics

Inverted index

* Dictionary of terms
* Each term points to a series of postings
entries

— Postings for a term point to docs containing that
term

Term storage in dictionary

* Store pointers to every kth on term string.
* Need to store term lengths (1 extra byte)

... 1systile9syzygetic8syzygial6syzygy| IszaibelyiteS8szczecin9szomo... ..

Freq. Postings ptr. Term ptr.

33 e

ii } Save 9 bytes <I:Lose 4 bytes on
on 3 term lengths.
126 J pointers.

Postings file entry

» Store list of docs containing a term in
increasing order of doc 1d.

— Brutus: 33,47,154,159,202 ...

« Suffices to store gaps.
— 33,14,107,5,43 ...

* Gaps encoded with far fewer than 20 bits,
using Yy codes.

Total postings size

« Estimate using crude Zipf law analysis
— Most frequent term occurs in n docs
— Second most frequent term 1n #/2 docs

— kth most frequent term 1n #n/k docs, etc.

* n/k gaps of k each - use ~2log,k bits for each gap
using 'y codes.

What gets indexed?

e Stemming - Porter’s.
 Case folding.
e Thesaur1 and soundex

e Spell correction

Query optimization

* Consider a query that 1s an AND of ¢ terms.

* The 1dea: for each of the ¢ terms, get its
term-doc incidence from the postings, then
AND together. This is why

* Process in order of increasing freq: < we kept freq
in dictionary.

— start with smallest set, then keep cutting
further.

Skip pointers

w7 w7 w7 R
2,4,6,8,10,12,14,16,18,20,22,24, ...

e At query time:
« As we walk the current candidate list, concurrently
walk inverted file entry - can skip ahead

— (e.g., 8,21).
e Skip size: recommend about V(list length)

Wild-card queries

* mon¥: find all docs containing any word
beginning “mon”.

* Solution: index all k-grams occurring in any
doc (any sequence of k chars).

* Query mon™ can now be run as
— $m AND mo AND on

— But we’d get a match on moon.

* Must post-filter these results against query.

Phrase search

 Search for “fo be or not to be”

* No longer suffices to store only
<term.docs> entries.

» Instead store, for each term, entries
— <number of docs containing term;
— docl: positionl, position2 ... ;
— doc2: positionl, position2 ... ;

— etc.>

Precision and recall

 Precision: fraction of retrieved docs that are
relevant

e Recall: fraction of relevant docs that are
retrieved

 Both can be measured as functions of the
number of docs retrieved

Index construction

* Parse and build postings entries one doc at a
time
 To now turn this into a term-wise view,

must sort postings entries by term (then by
doc within each term)

* Block of postings records; can “easily” fit a
couple into memory.

» Sort within blocks first, then merge.

Fully dynamic updates

 Inserting a (variable-length) record
— a typical postings entry
* Maintain a pool of (say) 64KB chunks

e Chunk header maintains metadata on

records in chunk, and its free space
Header

Free space

Record
Record
Record

Record

Doc as vector

* Each doc j can now be viewed as a vector of
t1xidf values, one component for each term.

* So we have a vector space
— terms are axes
— docs live in this space

— even with stemming, may have 10000+
dimensions

tf x 1df
w, =1f, Xlog(n/n,)

if , = frequency of termi in document j

n = total number of documents

n, = the number of documents that contain term i

idf. = 1o g(%) = inverse document frequency of term i

Cosine similarity

» Distance between vectors D1,D2 captured
by the cosine of the angle x between them.

* Note - this 1s similarity, not distance.

t3 4

d?2

dl

t1

t2

The point of using vector spaces

 Key: A user’s query can be viewed as a
(very) short document.

* Query becomes a vector 1n the same space
as the docs.

e Can measure each doc’s proximity to it.

» Natural measure of scores/ranking - no
longer Boolean.

Search using vector spaces

* Computing individual cosines

* Speeding up computations
— Avoiding computing cosines to all docs
— Dimensionality reduction

« Random projection
« LSI

Bayesian nets for text retrieval

Document
Network

e @ Q Concepts Query

Network

Query operators
(AND/OR/NOT)

Information need

Semi-structured search

 Structured search - search by restricting on
attribute values, as 1n databases.

 Unstructured search - search in unstructured
files, as 1n text.

« Semi-structured search: combine both.

Link analysis

* Two basic approaches

— Universal, query-independent ordering on all
web pages (based on link analysis)

« Of two pages meeting a (text) query, one will
always win over the other, regardless of the query

— Query-specific ordering on web pages

e Of two pages meeting a query, the relative ordering
may vary from query to query

Ergodic Markov chains

* For any ergodic Markov chain, there 1s a
unique long-term visit rate for each state.

— Steady-state distribution.

* Over a long time-period, we visit each state
in proportion to this rate.

e [t doesn’t matter where we start.

Resources

« MIR 9.

