
Lecture 6
April 25, 2001

©Prabhakar Raghavan



• Link-based ranking in web search engines



• Distributed authorship
– Millions of people creating pages with their 

own style, grammar, vocabulary, opinions, 
facts, falsehoods …

– Not all have the purest motives in providing 
high-quality information - commercial motives 
drive “spamming”. 

– The open web is largely a marketing tool.
• IBM’s home page does not contain computer.



• Some pages have little or no text (gifs may 
embed text)

• Variety of languages, lots of distinct terms
– Over 100M distinct “terms”!

• Long lists of links
• Size: >1B pages, each with ~1K terms.

– Growing at a few million pages/day.



• Two basic approaches
– Universal, query-independent ordering on all 

web pages (based on link analysis)
• Of two pages meeting a (text) query, one will 

always win over the other, regardless of the query

– Query-specific ordering on web pages
• Of two pages meeting a query, the relative ordering 

may vary from query to query



• First generation: using link counts as simple 
measures of popularity.

• Two basic suggestions:
– Undirected popularity:

• Each page gets a score = the number of in-links plus 
the number of out-links (3+2=5).

– Directed popularity:
• Score of a page = number of its in-links (3).



• First retrieve all pages meeting the text 
query (say venture capital).

• Order these by their link popularity (either 
variant on the previous page).



• Exercise: How do you spam each of the 
following heuristics so your page gets a 
high score?

• Each page gets a score = the number of in-
links plus the number of out-links.

• Score of a page = number of its in-links.



• Imagine a browser doing a random walk on 
web pages:
– Start at a random page
– At each step, go out of the current page along 

one of the links on that page, equiprobably
• “In the steady state” each page has a long-

term visit rate - use this as the page’s score.

1/3
1/3
1/3



• The web is full of dead-ends.
– Random walk can get stuck in dead-ends.
– Makes no sense to talk about long-term visit 

rates.

??



• At each step, with probability 10%, jump to 
a random web page.

• With remaining probability (90%), go out 
on a random link.
– If no out-link, stay put in this case.



• Now cannot get stuck locally.
• There is a long-term rate at which any page 

is visited (not obvious, will show this).
• How do we compute this visit rate?



• A Markov chain consists of n states, plus an 
n×n transition probability matrix P.

• At each step, we are in exactly one of the 
states.

• For 1 ≤ i,j ≤ n, the matrix entry Pij tells us 
the probability of j being the next state, 
given we are currently in state i. 

i jPij

Pii>0
is OK.



.1
1

=∑
=

ij

n

j
P• Clearly, for all i,

• Markov chains are abstractions of random 
walks.

• Exercise: represent the teleporting random 
walk from 3 slides ago as a Markov chain, 
for this case: 



• A Markov chain is ergodic if
– you have a path from any state to any other
– you can be in any state at every time step, with 

non-zero probability.

Not
ergodic
(even/
odd).



• For any ergodic Markov chain, there is a 
unique long-term visit rate for each state.
– Steady-state distribution.

• Over a long time-period, we visit each state 
in proportion to this rate.

• It doesn’t matter where we start.



• A probability vector x = (x1, … xn) tells us 
where the walk is at any point.

• E.g., (000…1…000) means we’re in state i.
i n1

More generally, the vector x = (x1, … xn) means the
walk is in state i with probability xi.

.1
1

=∑
=

n

i
ix



• If the probability vector is  x = (x1, … xn) at 
this step, what is it at the next step?

• Recall that row i of the transition prob. 
Matrix P tells us where we go next from 
state i.

• So from x, our next state is distributed as 
xP.



• The steady state looks like a vector of 
probabilities a = (a1, … an):
– ai is the probability that we are in state i.

1 2
3/4

1/4
3/41/4

For this example, a1=1/4 and a2=3/4.



• Let a = (a1, … an) denote the row vector of 
steady-state probabilities.

• If we our current position is described by a, 
then the next step is distributed as aP.

• But a is the steady state, so a=aP.
• Solving this matrix equation gives us a.

– (So a is the (left) eigenvector for P.)



• Recall, regardless of where we start, we 
eventually reach the steady state a.

• Start with any distribution (say x=(10…0)).
• After one step, we’re at xP;
• after two steps at xP2 , then xP3 and so on.
• “Eventually” means for “large” k, xPk = a.
• Algorithm: multiply x by increasing powers 

of P until the product looks stable.



• Preprocessing:
– Given graph of links, build matrix P.
– From it compute a.
– The entry ai is a number between 0 and 1: the 

pagerank of page i.
• Query processing:

– Retrieve pages meeting query.
– Rank them by their pagerank.
– Order is query-independent.



• Pagerank is used in google, but so are many 
other clever heuristics
– more on these heuristics later.



• In response to a query, instead of an ordered 
list of pages each meeting the query, find 
two sets of inter-related pages:
– Hub pages are good lists of links on a subject.

• e.g., “Bob’s list of cancer-related links.”

– Authority pages occur recurrently on good hubs 
for the subject.



• Thus, a good hub page for a topic points to 
many authoritative pages for that topic.

• A good authority page for a topic is pointed
to by many good hubs for that topic.

• Circular definition - will turn this into an 
iterative computation.



                                                   AT&T
 Alice

                                  Sprint
Bob
                                  MCI

Long distance telephone companies

Hubs
Authorities



• Extract from the web a base set of pages 
that could be good hubs or authorities.

• From these, identify a small set of top hub 
and authority pages;
– iterative algorithm.



• Given text query (say browser), use a text 
index to get all pages containing browser.
– Call this the root set of pages. 

• Add in any page that either
– points to a page in the root set, or
– is pointed to by a page in the root set.

• Call this the base set.



Root
set

Base set



• Root set typically 200-1000 nodes.
• Base set may have up to 5000 nodes.
• How do you find the base set nodes?

– Follow out-links by parsing root set pages.
– Get in-links (and out-links) from a connectivity 

server.
– (Actually, suffices to text-index strings of the 

form href=“URL” to get in-links to URL.)



• Compute, for each page x in the base set, a 
hub score h(x) and an authority score a(x).

• Initialize: for all x, h(x)←1; a(x) ←1;
• Iteratively update all h(x), a(x);
• After iteration, output pages with highest 

h() scores as top hubs; highest a() scores as 
top authorities.

Key



• Repeat the following updates, for all x:

∑←
yx

yaxh
α

)()(

∑←
xy

yhxa
α

)()(

x

x



• To prevent the h() and a() values from 
getting too big, can scale down after each 
iteration.

• Scaling factor doesn’t really matter:
– we only care about the relative values of the 

scores.



• Claim: relative values of scores will 
converge after a few iterations:
– in fact, suitably scaled, h() and a() scores settle 

into a steady state!
– proof of this comes later.

• In practice, ~5 iterations get you close to 
stability.



• The American School in Japan 
• The Link Page 
• ‰ª�è�s—§ˆä“c�¬Šw�Zƒz�[ƒ�ƒy�[ƒW 
• Kids' Space 
• ˆÀ�é�s—§ˆÀ�é�¼•”�¬Šw�Z 
• ‹{�é‹³ˆç‘åŠw•�‘®�¬Šw�Z 
• KEIMEI GAKUEN Home Page ( Japanese ) 
• Shiranuma Home Page 
• fuzoku-es.fukui-u.ac.jp 
• welcome to Miasa E&J school 
• �_“Þ�ìŒ§�E‰¡•l�s—

§’†�ì�¼�¬Šw�Z‚Ìƒy
• http://www...p/~m_maru/index.html 
• fukui haruyama-es HomePage 
• Torisu primary school 
• goo 
• Yakumo Elementary,Hokkaido,Japan 
• FUZOKU Home Page 
• Kamishibun Elementary School...

• schools 
• LINK Page-13 
• “ú–{‚ÌŠw�Z 
• �a‰„�¬Šw�Zƒz�[ƒ�ƒy�[ƒW 
• 100 Schools Home Pages (English) 
• K-12 from Japan 10/...rnet and Education ) 
• http://www...iglobe.ne.jp/~IKESAN 
• ‚l‚f‚j�¬Šw�Z‚U”N‚P‘g•¨Œê 
• �ÒŠ—’¬—§�ÒŠ—“Œ�¬Šw�Z 
• Koulutus ja oppilaitokset 
• TOYODA HOMEPAGE 
• Education 
• Cay's Homepage(Japanese) 
• –y“ì�¬Šw�Z‚Ìƒz�[ƒ�ƒy�[ƒW 
• UNIVERSITY 
• ‰J—³�¬Šw�Z DRAGON97-TOP 
• �Â‰ª�¬Šw�Z‚T”N‚P‘gƒz�[ƒ�ƒy�[ƒW 
• ¶µ°é¼ÂÁ© ¥á¥Ë¥å¡¼ ¥á¥Ë¥å¡¼ 

HubsAuthorities



• Pulled together good pages regardless of 
language of page content.

• Use only link analysis after base set 
assembled
– iterative scoring is query-independent.

• Iterative computation after text index 
retrieval - significant overhead.



• n×n adjaceny matrix A:
– each of the n pages in the base set has a row 

and column in the matrix.
– Entry Aij = 1 if page i links to page j, else =0.

1 2

3

1      2      3
1

2

3

0      1      0
1      1      1
1      0      0



• View the hub scores h() and the authority 
scores a() as vectors with n components.

• Recall the iterative updates

∑←
yx

yaxh
α

)()(

∑←
xy

yhxa
α

)()(



• h=Aa.
• a=Ath.

Recall At

is the 
transpose 

of A. 

Substituting, h=AAth and a=AtAa.

Thus, h is an eigenvector of AAt and a is an 
eigenvector of AtA.



• MIR 13
• The Anatomy of a Large-Scale Hypertextual Web Search 

Engine
– http://citeseer.nj.nec.com/brin98anatomy.html

• Authoritative Sources in a Hyperlinked Environment
– http://citeseer.nj.nec.com/kleinberg97authoritative.html

• Hypersearching the Web
– http://www.sciam.com/1999/0699issue/0699raghavan.html

• Dubhashi resource collection covering recent topics
– http://www.cs.chalmers.se/~dubhashi/Courses/intense00.html


