CS347

Lecture 5
 April 23, 2001

OPrabhakar Raghavan

Today's topics

- Generalized query operators
- Evidence accumulation and structured queries
- Basics of Bayesian networks
- Bayesian nets for Text Retrieval
- Structured+unstructured queries
- Adding database-like queries

A step back

Models of query-doc proximity

${ }^{6}$ Boolean queries

- Doc is either in or out for query
\varnothing° Vector spaces
- Doc has non-negative proximity to query
\checkmark Evidence accumulation
- Combine score from multiple sources
δ° Bayesian nets and probabilistic methods
- Infer probability that doc meets user's information need

Evidence accumulation

- View each term in the query as providing partial evidence of match
- tf $\times i d f+$ vector space retrieval is one example
- Corpus-dependent (idf depends on corpus)
- In some situations corpus-dependent evidence is undesirable

Corpus-independent evidence

- When is corpus-independent scoring useful?
- When corpus statistics are hard to maintain
- Distributed indices - more later
- Rapidly changing corpora
- When stable scores are desired
- Users get used to issuing a search and seeing a doc with a score of (say) 0.9303
- User subsequently filters by score
- "Show me only docs with score at least 0.9 "

Corpus-independent scoring

- Document routing is a key application
- There is a list of standing queries
- e.g., bounced check in a bank's email customer service department
- Each incoming doc (email) scored against all standing queries
- Routed to destination (customer specialist) based on best-scoring standing query
- More on this with automatic classification

Typical corpus-independent score

- Use a convex function of $t f_{i j}$
- e.g., $\operatorname{Score}(i, j)=1-\exp \left(-a \times t f_{i j}\right)$
$-a$ is a tuning constant
- gives a contribution of query term i for doc j
- Given a multi-term query, compute the average contribution, over all query terms

Bayesian Networks for Text Retrieval

- Text retrieval
- Find the best set of documents that satisfies a user's information need
- Bayesian Network
- Model causal relationship between events
- Infer the belief that an event holds based on observations of other events

What is a Bayesian network?

- Is a directed acyclic graph
- Nodes
- Events or Variables
- Assume values.
- For our purposes, all Boolean
- Links
- model dependencies between nodes

Toy Example

Links as dependencies

- Link Matrix
- Attached to each node
- Give influences of parents on that node.
- Nodes with no parent get a "prior probability"
- e.g., f, d.
- interior node : conditional probability of all combinations of values of its parents
- e.g., n, g, t.

Independence Assumption

- Variables not connected by a link: no direct conditioning.
- Joint probability - obtained from link matrices.
- See examples on next slide.

Independence Assumption

Chained inference

- Evidence - a node takes on some value
- Inference
- Compute belief (probabilities) of other nodes
- conditioned on the known evidence
- Two kinds of inference: Diagnostic and Predictive
- Computational complexity
- General network: NP-hard
\Rightarrow polytree networks - tractable.

Key inference tool

- Bayes' theorem: for any two events a, c

$$
P(a \mathrm{I} c)=P(a \mid c) P(c)=P(c \mid a) P(a)
$$

Implies, for instance:

$$
P(a \mid c)=\frac{P(c \mid a) P(a)}{P(c)}
$$

Diagnostic Inference

- Propagate beliefs through parents of a node
- Inference rule

$$
P(a \mid c)=\frac{P(a) \sum_{b_{i}} P\left(c \mid b_{i}\right) P\left(b_{i} \mid a\right)}{P(c)}
$$

Diagnostic inference

Diagnostic inference

Inference Rule
$P(f \mid n)=\frac{P(f) P(n \mid f)}{P(n)}=\frac{0.27}{P(n)}$
$P(\neg f \mid n)=\frac{P(\neg f) P(n \mid \neg f)}{P(n)}=\frac{0.21}{P(n)}$

Normalize $\checkmark P(f \mid n)+P(\neg f \mid n)=1$
$\Rightarrow P(n)=0.48$
Beliefs

$$
\begin{aligned}
& P(f \mid n)=0.56 \\
& P(\neg f \mid n)=0.44
\end{aligned}
$$

Predictive Inference

- Compute belief of child nodes of evidence
- Inference rule

$$
P(c \mid a)=\sum_{b} P\left(c \mid b_{i}\right) P\left(b_{i} \mid a\right)
$$

Model for Text Retrieval

- Goal
- Given a user's information need (evidence), find probability a doc satisfies need
- Retrieval model
- Model docs in a document network
- Model information need in a query network

Bayesian nets for text retrieval

Link matrices and probabilities

- Prior doc probability
$P(d)=1 / n$
- $P(r \mid d)$
- within-document term frequency
$-t f \times i d f-$ based
- $P(c \mid r)$
- 1-to-1
- thesaurus
- $P(q \mid c)$: canonical forms of query operators

Example

Extensions

- Prior probs don't have to be $1 / n$.
- "User information need" doesn't have to be a query - can be words typed, in docs read, any combination ...
- Link matrices can be modified over time.
- User feedback.
- The promise of "personalization"

Computational details

- Document network built at indexing time
- Query network built/scored at query time
- Representation:
- Link matrices from docs to any single term are like the postings entry for that term.

Exercise

- Consider ranking docs for a 1 -term query. What is the difference between
- A cosine-based vector-space ranking where each doc has $t f \times i d f$ components, normalized;
- A Bayesian net in which the link matrices on the docs-to-term links are normalized $t f \times i d f$?

Semi-structured search

- Structured search - search by restricting on attribute values, as in databases.
- Unstructured search - search in unstructured files, as in text.
- Semi-structured search: combine both.

Terminology

- Each document has
- structured fields (aka attributes, columns)
- free-form text
- Each field assumes one of several possible values
- e.g., language (French, Japanese, etc.); price (for products); date; ...
- Fields can be ordered (price, speed), or unordered (language, color).

Queries

- A query is any combination of
- text query
- field query
- A field query specifies one or more values for one or more fields
- for numerical values, ranges possible
- e.g., price <5000.

Example

- Find all docs in corpus with
- Price < 10000
- Year > 1996
- Model = Toyota, and
- text matches (excellent OR good NEAR condition).
- Don't want to hit underlying database.
- Demo.

Indexing: structured portion

- For each fields, order docs by values for that field
- e.g., sorted by authors' names, language ...
- Maintain range indices (in memory) for each value of each attribute
- like a postings entry
- counts are like freq in postings.

Query processing

- Given value for each field, determine counts of matching docs
- Process query using optimization heuristics
- Lightest axis first
- Merge with text search postings.

Numerical attributes

- Expensive to maintain a separate postings for each value of a numerical attribute
- e.g., price
- Bucket into numerical ranges, maintain postings for each bucket
- At the user interface, present only bucket boundaries
- e.g., if index buckets price into steps of $\$ 5000$, present only these buckets to user

General ranges

- If the UI allows the user to specify an arbitrary numerical range
- in the used-car section of cars.com: price, year
- e.g., price between 1234 and 5678.
- Need to walk through the postings entry for (say) the bucket 0-5000, until 1234 reached
- At most two postings entries need a walkthrough

Resources

- MIR 2.6, 2.8.
- R.M. Tong, L.A. Appelbaum, V.N. Askman, J.F. Cunningham. Conceptual Information Retrieval using RUBRIC. Proc. ACM SIGIR 247-253, (1987).

Bayesian Resources

E. Charniak. Bayesian nets without tears. AI Magazine 12(4): 50-63 (1991).
http://www.aaai.org/Library/Magazine/Vol12/12-04/vol12-04.html
H.R. Turtle and W.B. Croft. Inference Networks for Document Retrieval.

Proc. ACM SIGIR: 1-24 (1990).
D. Heckerman. A Tutorial on Learning with Bayesian Networks.

Microsoft Technical Report MSR-TR-95-06 http://www.research.microsoft.com/~heckerman/
F. Crestani, M. Lalmas, C. J. van Rijsbergen, I. Campbell. Is This Document Relevant? ... Probably: A Survey of Probabilistic Models in Information Retrieval. ACM Computing Surveys 30(4): 528-552 (1998).
http://www.acm.org/pubs/citations/journals/surveys/1998-30-4/p528-crestani/

