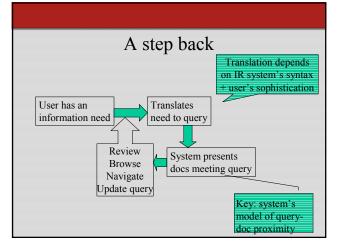
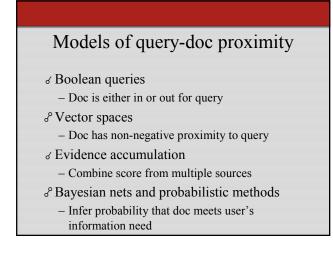
CS347

Lecture 5 April 23, 2001 ©Prabhakar Raghavan

Today's topics

- Generalized query operators – Evidence accumulation and structured queries
- Basics of Bayesian networks – Bayesian nets for Text Retrieval
- Structured+unstructured queries – Adding database-like queries





Evidence accumulation

- View each term in the query as providing partial evidence of match
- $tf \times idf$ + vector space retrieval is one example
- Corpus-dependent (idf depends on corpus)
- In some situations corpus-dependent evidence is undesirable

Corpus-independent evidence

- When is corpus-independent scoring useful?
 - When corpus statistics are hard to maintain
 - Distributed indices more later
 - Rapidly changing corpora
 - When stable scores are desired
 - Users get used to issuing a search and seeing a doc with a score of (say) 0.9303
 - User subsequently filters by score
 "Show me only docs with score at least 0.9"

Corpus-independent scoring

- Document routing is a key application
 - There is a list of standing queries
 - e.g., *bounced check* in a bank's email customer service department
 - Each incoming doc (email) scored against all standing queries
 - Routed to destination (customer specialist) based on best-scoring standing query
- · More on this with automatic classification

Typical corpus-independent score

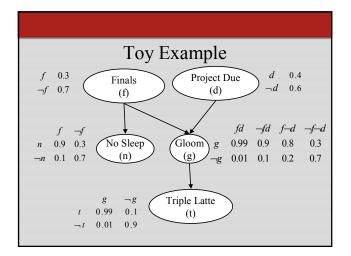
- Use a convex function of tf_{ij}
 - $\text{e.g.}, \text{Score}(i,j) = 1 \exp(-a \times tf_{ij})$
 - -a is a tuning constant
 - gives a contribution of query term i for doc j
- Given a multi-term query, compute the average contribution, over all query terms

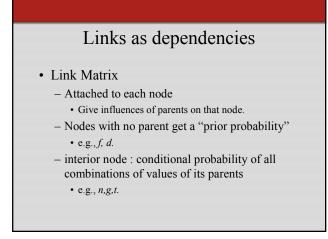
Bayesian Networks for Text Retrieval

- Text retrieval
 - Find the best set of documents that satisfies a user's information need
- Bayesian Network
 - Model causal relationship between events
 - Infer the belief that an event holds based on observations of other events

What is a Bayesian network?

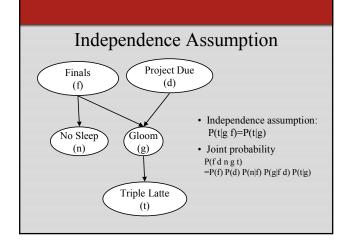
- Is a directed acyclic graph
- Nodes
 - Events or Variables
 - Assume values.
 - For our purposes, all Boolean
- Links
 - model dependencies between nodes





Independence Assumption

- Variables not connected by a link: no direct conditioning.
- Joint probability obtained from link matrices.
- See examples on next slide.



Chained inference

- Evidence a node takes on some value
- Inference
 - Compute *belief* (probabilities) of other nodes
 conditioned on the known evidence
 - Two kinds of inference: <u>Diagnostic</u> and <u>Predictive</u>
- Computational complexity
 - General network: NP-hard
 - \Rightarrow polytree networks tractable.

Key inference tool

• Bayes' theorem: for any two events *a*,*c*

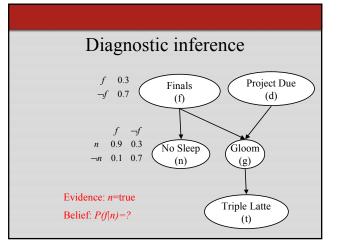
$$P(a \mid c) = P(a \mid c)P(c) = P(c \mid a)P(a)$$

Implies, for instance:

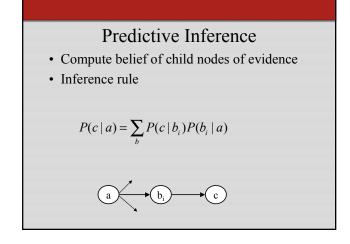
$$P(a \mid c) = \frac{P(c|a)P(a)}{P(c)}$$

- Propagate beliefs through parents of a node
- Inference rule

$$P(a \mid c) = \frac{P(a) \sum_{b_i} P(c \mid b_i) P(b_i \mid a)}{P(c)}$$

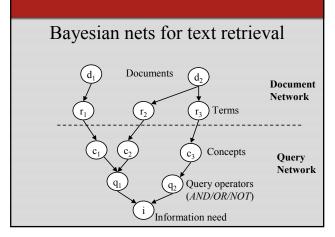


Diagnostic inference		
Normalize	Inference Rule $P(f \mid n) = \frac{P(f)P(n \mid f)}{P(n)} = \frac{0.27}{P(n)}$ $P(\neg f \mid n) = \frac{P(\neg f)P(n \mid \neg f)}{P(n)} = \frac{0.21}{P(n)}$ $P(f \mid n) + P(\neg f \mid n) = 1$ $\Rightarrow P(n) = 0.48$ Beliefs $P(f \mid n) = 0.56$ $P(\neg f \mid n) = 0.44$	

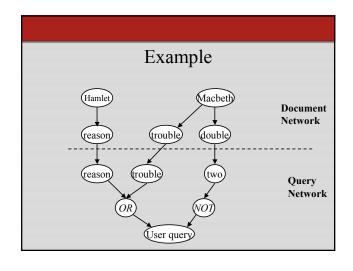


Model for Text Retrieval

- Goal
 - Given a user's information need (evidence), find probability a doc satisfies need
- · Retrieval model
 - Model docs in a *document network*
 - Model information need in a *query network*



Link matrices and probabilities		
 Prior doc probability P(d) = 1/n P(r d) within-document term frequency tf × idf - based 	 P(c r) 1-to-1 thesaurus P(q c): canonical forms of query operators 	



Extensions

- Prior probs don't have to be 1/n.
- "User information need" doesn't have to be a query - can be words typed, in docs read, any combination ...
- Link matrices can be modified over time. – User feedback.
- The promise of "personalization"

Computational details

- Document network built at indexing time
- Query network built/scored at query time
- Representation:
 - Link matrices from docs to any single term are like the postings entry for that term.

Exercise

- Consider ranking docs for a 1-term query. What is the difference between
 - A cosine-based vector-space ranking where each doc has $tf \times idf$ components, normalized;
 - A Bayesian net in which the link matrices on the docs-to-term links are normalized $tf \times idf$?

Semi-structured search

- Structured search search by restricting on attribute values, as in databases.
- Unstructured search search in unstructured files, as in text.
- Semi-structured search: combine both.

Terminology

- · Each document has
 - structured *fields* (aka attributes, columns)
 - free-form text
- Each field assumes one of several possible values
 - e.g., language (French, Japanese, etc.); price (for products); date; ...
- Fields can be <u>ordered</u> (price, speed), or <u>unordered</u> (language, color).

Queries

- A query is any combination of
 - text query
 - field query
- A field query specifies one or more values for one or more fields
 - for numerical values, ranges possible
 e.g., price < 5000.

Example

- Find all docs in corpus with
 - Price < 10000
 - Year > 1996
 - -Model = Toyota, and
 - text matches (*excellent OR good NEAR condition*).
- Don't want to hit underlying database.

– <u>Demo</u>.

Indexing: structured portion

- For each fields, order docs by values for that field
- e.g., sorted by authors' names, language ...
- Maintain range indices (in memory) for each value of each attribute
 - like a postings entry
 - counts are like *freq* in postings.

Query processing

- Given value for each field, determine counts of matching docs
- Process query using optimization heuristics – Lightest axis first
- Merge with text search postings.

Numerical attributes

- Expensive to maintain a separate postings for each value of a numerical attribute
 - e.g., price
- Bucket into numerical ranges, maintain postings for each bucket
- At the user interface, present only bucket boundaries
 - e.g., if index buckets price into steps of \$5000, present only these buckets to user

General ranges

- If the UI allows the user to specify an arbitrary numerical range
 - in the used-car section of <u>cars.com</u>: *price*, *year*
 - e.g., *price* between 1234 and 5678.
- Need to walk through the postings entry for (say) the bucket 0-5000, until 1234 reached
- At most two postings entries need a walk-through

Resources

- MIR 2.6, 2.8.
- R.M. Tong, L.A. Appelbaum, V.N. Askman, J.F. Cunningham. Conceptual Information Retrieval using RUBRIC. Proc. ACM SIGIR 247-253, (1987).

Bayesian Resources E. Charniak. Bayesian nets without tears. *AI Magazine* 12(4): 50-63 (1991).

http://www.aaai.org/Library/Magazine/Vol12/12-04/vol12-04.html

H.R. Turtle and W.B. Croft. Inference Networks for Document Retrieval. Proc. ACM SIGIR: 1-24 (1990).

D. Heckerman. A Tutorial on Learning with Bayesian Networks. Microsoft Technical Report MSR-TR-95-06 http://www.research.microsoft.com/~heckerman/

F. Crestani, M. Lalmas, C. J. van Rijsbergen, I. Campbell. Is This Document Relevant? ... Probably: A Survey of Probabilistic Models in Information Retrieval. ACM Computing Surveys 30(4): 528-552 (1998).

http://www.acm.org/pubs/citations/journals/surveys/1998-30-4/p528-crestani/