CS347

Lecture 4 April 18, 2001

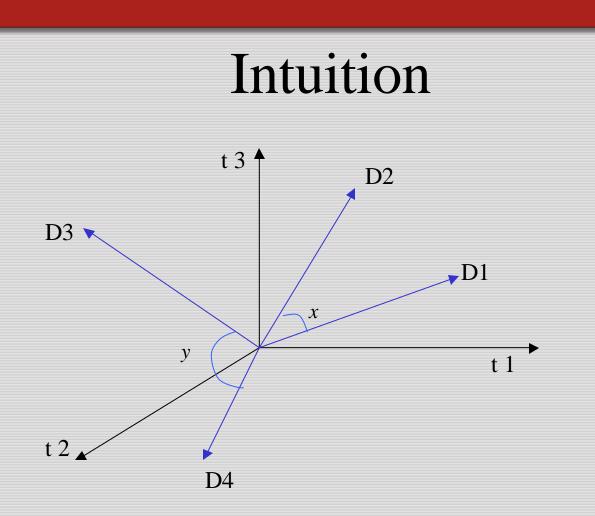
©Prabhakar Raghavan

Today's topics

- Computing cosine-based ranking
- Speeding up cosine ranking
 - reducing the number of cosine computations
 - Union of term-wise candidates
 - Sampling and pre-grouping
 - reducing the number of dimensions
 - Random projection
 - Latent semantic indexing

Recall doc as vector

- Each doc *j* is a vector of *tf×idf* values, one component for each term.
- Can normalize to unit length.
- So we have a vector space
 - terms are axes
 - docs live in this space
 - even with stemming, may have 10000+ dimensions



Postulate: Documents that are "close together" in vector space talk about the same things.

Cosine similarity

Cosine similarity of D_j, D_k : $sim(D_j, D_k) = \sum_{i=1}^m w_{ij} \times w_{ik}$ Aka normalized inner product

Can also compute cosine similarity from a query (vector of terms, e.g., *truth forever*) to each document.

Exercises

- How would you augment the inverted index built in lectures 1-3 to support cosine ranking computations?
- Walk through the steps of serving a query.

Why use vector spaces?

- <u>Key</u>: A user's query can be viewed as a (very) short document.
- Query becomes a vector in the same space as the docs.
- Can measure each doc's cosine proximity to query \rightarrow ranking.

Efficient cosine ranking

- Ranking consists of computing the k docs in the corpus "nearest" to the query $\Rightarrow k$ largest query-doc cosines.
- Efficient ranking:
 - Computing a single cosine efficiently.
 - Choosing the *k* largest cosine values efficiently.

Computing a single cosine

- For every term *i*, with each doc *j*, store term frequency tf_{ij} .
 - Tradeoffs on whether to store term count, freq, or weighted by idf_i . (Coding possibilities.)
- Accumulate component-wise sum

$$sim(D_j, D_k) = \sum_{i=1}^m w_{ij} \times w_{ik}$$

More on speeding up a single cosine, later in this lecture.

Computing the *k* largest cosines: selection vs. sorting

- Typically we want to retrieve the top *k* docs (in the cosine ranking for the query)
 - not totally order all docs in the corpus
 - just pick off docs with *k* highest cosines.

Use heap for selecting top k

- Binary tree in which each node's value > values of children
- Takes 2*n* operations to construct, then each of *k*log *n* "winners" read off in 2log *n* steps.
- For *n*=1M, *k*=100, this is about 10% of the cost of sorting.

Bottleneck

- Still need to first compute cosines from query to each of *n* docs → several seconds for *n=1M*.
- Can select from only non-zero cosines; should be << 1*M*.

Can we avoid this?

- Yes, but may occasionally get an answer wrong
 - a doc *not* in the top k may creep into the answer.

Term-wise candidates

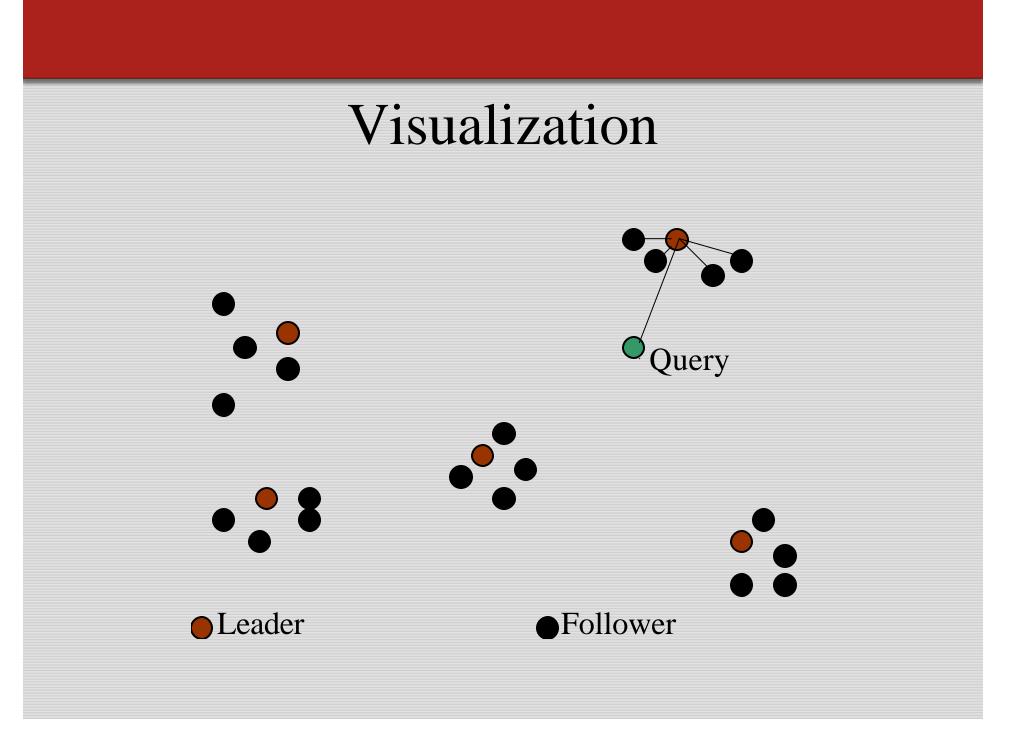
- <u>Preprocess</u>: Pre-compute, for each term, its *k* nearest docs.
 - (Treat each term as a 1-term query.)
 - lots of preprocessing.
 - Result: "preferred list" for each term.
- <u>Search</u>:
 - For a *t*-term query, take the union of their *t* preferred lists call this set *S*.
 - Compute cosines from the query to only the docs in *S*, and choose top *k*.

Exercises

- Fill in the details of the calculation:
 - Which docs go into the preferred list for a term?
- Devise a small example where this method gives an incorrect ranking.

Sampling and pre-grouping

- First run a pre-processing phase:
 - pick \sqrt{n} *docs* at random: call these *leaders*
 - For each other doc, pre-compute nearest leader
 - Docs attached to a leader: its *followers;*
 - <u>Likely</u>: each leader has $\sim \sqrt{n}$ followers.
- Process a query as follows:
 - Given query Q, find its nearest *leader L*.
 - Seek *k* nearest docs from among *L*'s followers.



Why use random sampling

- Fast
- Leaders reflect data distribution

General variants

- Have each follower attached to *a*=3 (say) nearest leaders.
- From query, find *b*=4 (say) nearest leaders and their followers.
- Can recur on leader/follower construction.

Exercises

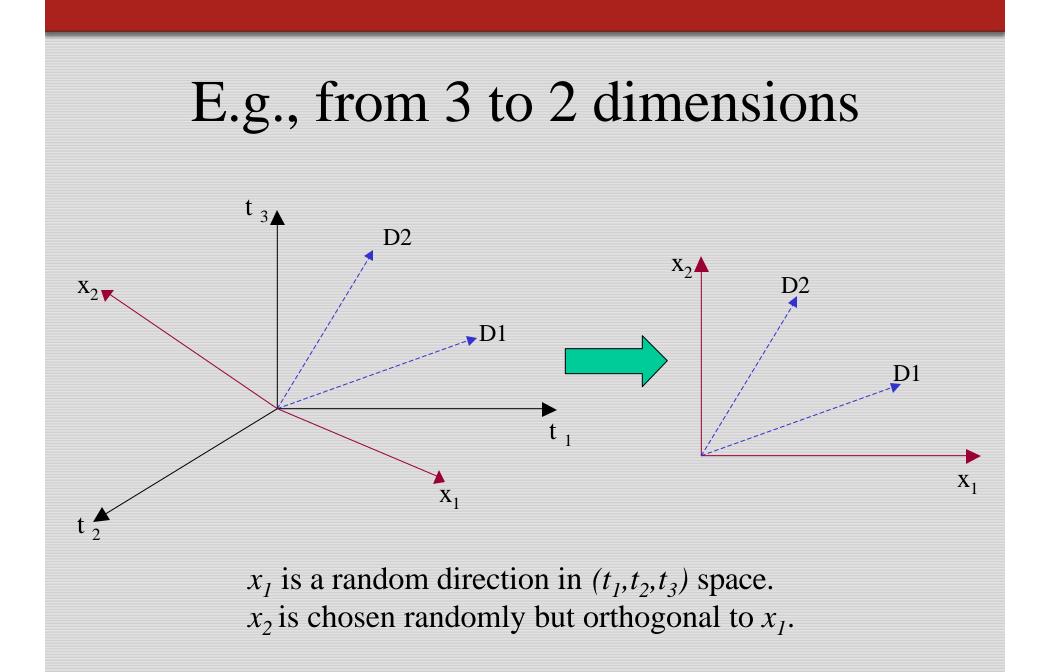
- To find the nearest leader in step 1, how many cosine computations do we do?
- What is the effect of the constants *a*,*b* on the previous slide?
- Devise an example where this is *likely to* fail we miss one of the *k* nearest docs. *Likely* under random sampling.

Dimensionality reduction

- What if we could take our vectors and "pack" them into fewer dimensions (say 10000→100) while preserving distances?
- (Well, almost.)
 - Speeds up cosine computations.
- Two methods:
 - Random projection.
 - "Latent semantic indexing".

Random projection onto k < < m axes.

- Choose a random direction x₁ in the vector space.
- For i = 2 to k,
 - Choose a random direction x_i that is orthogonal to $x_1, x_2, \dots x_{i-1}$.
- Project each doc vector into the subspace
 x₁, x₂, ... x_k.



Guarantee

- With high probability, relative distances are (approximately) preserved by projection.
- Pointer to precise theorem in Resources.

Computing the random projection

- Projecting *n* vectors from *m* dimensions down to *k* dimensions:
 - Start with $m \times n$ matrix of terms \times docs, A.
 - Find random $k \times m$ orthogonal projection matrix R.
 - Compute matrix product $W = R \times A$.
- *j*th column of *W* is the vector corresponding to doc *j*, but now in *k* << *m* dimensions.

Cost of computation

- This takes a total of *kmn* multiplications. Why?
- Expensive see Resources for ways to do essentially the same thing, quicker.
- Exercise: by projecting from 10000 dimensions down to 100, are we really going to make each cosine computation faster?

Latent semantic indexing (LSI)

- Another technique for dimension reduction
- Random projection was data-independent
- LSI on the other hand is data-dependent
 - Eliminate redundant axes
 - Pull together "related" axes
 - car and automobile

Notions from linear algebra

- Matrix, vector
- Matrix transpose and product
- Rank
- Eigenvalues and eigenvectors.

Overview of LSI

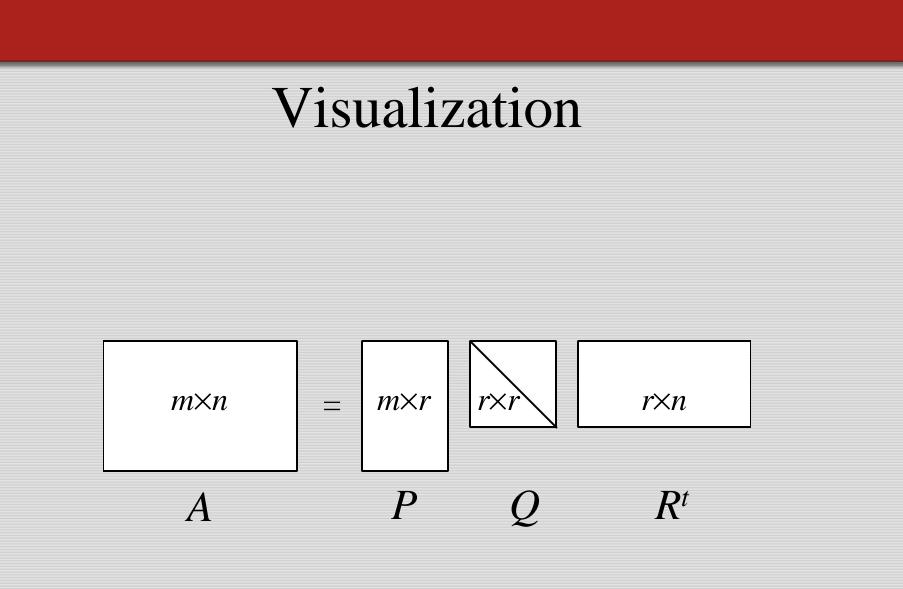
- Pre-process docs using a technique from linear algebra called <u>Singular Value</u> <u>Decomposition.</u>
- Have control over the granularity of this process:
 - create new vector space, details to follow.
- Queries handled in this new vector space.

Singular-Value Decomposition

- Recall $m \times n$ matrix of terms \times docs, A. – A has rank $r \leq m, n$.
- Define term-term correlation matrix T=AA^t
 A^t denotes the matrix transpose of A.
 - T is a square, symmetric $m \times m$ matrix. \triangleleft Why?
- Doc-doc correlation matrix $D = A^t A$.
 - -D is a square, symmetric $n \times n$ matrix.

Eigenvectors

- Denote by *P* the $m \times r$ matrix of eigenvectors of *T*.
- Denote by *R* the $n \times r$ matrix of eigenvectors of *D*.
- It turns out *A* can be expressed (decomposed) as $A = PQR^t$
 - Q is a <u>diagonal</u> matrix with the eigenvalues of AA^t in sorted order.

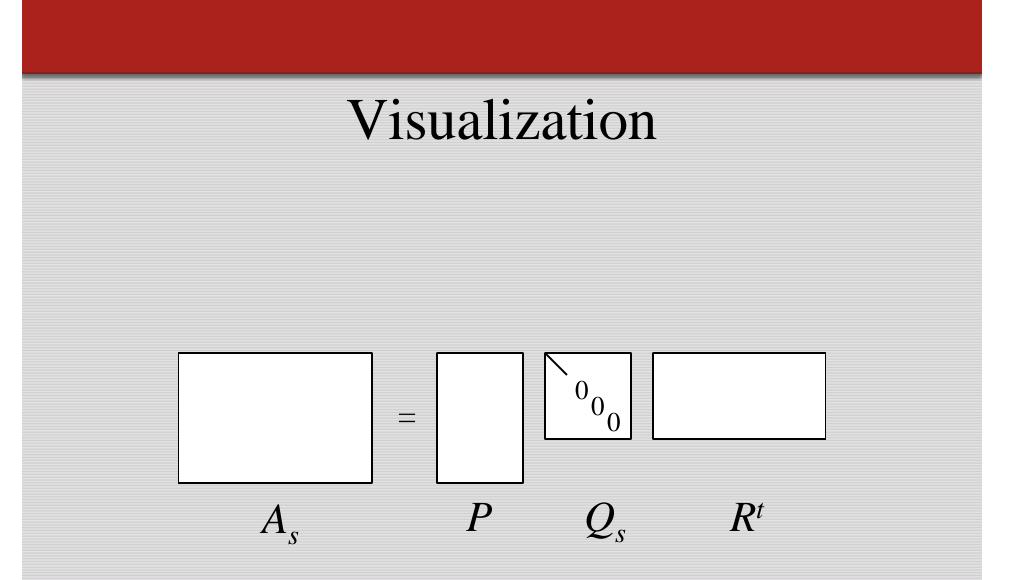


Dimension reduction

- For some *s* << *r*, zero out all but the *s* biggest eigenvalues in *Q*.
 - Denote by Q_s this new version of Q.
 - Typically *s* in the hundreds while *r* could be in the (tens of) thousands.
- Let $A_s = P Q_s R^t$
- Turns out A_s is a pretty good approximation to A.

We'll explain

what this means.



The columns of A_s represent the docs, but in s << m dimensions.

Guarantee

- Relative distances are (approximately) preserved by projection:
 - Of all $m \times n$ rank *s* matrices, A_s is the best approximation to *A*.
- Pointer to precise theorem in Resources.

Doc-doc similarities

• $A_s A_s^t$ is a matrix of doc-doc similarities:

-the (*j*,*k*) entry is a measure of the similarity of doc *j* to doc *k*.

Semi-precise intuition

- We accomplish more than dimension reduction here:
 - Docs with lots of overlapping terms stay together
 - Terms from these docs also get pulled together.
- Thus *car* and *automobile* get pulled together because both co-occur in docs with *tires, radiator, cylinder*, etc.

Query processing

- View a query as a (short) doc: - call it row 0 of A_s .
- Now the entries in row 0 of $A_s A_s^t$ give the similarities of the query with each doc.
- Entry (0,j) is the score of doc j on the query.
- Exercise: fill in the details of scoring/ranking.

Resources

- Random projection theorem: <u>http://citeseer.nj.nec.com/dasgupta99elementary.html</u>
- Faster random projection: <u>http://citeseer.nj.nec.com/frieze98fast.html</u>
- Latent semantic indexing: <u>http://citeseer.nj.nec.com/deerwester90indexing.html</u>
- Books: MG 4.6, MIR 2.7.2.