
CS347

Lecture 4
April 18, 2001

©Prabhakar Raghavan

Today’s topics

• Computing cosine-based ranking
• Speeding up cosine ranking

– reducing the number of cosine computations
• Union of term-wise candidates
• Sampling and pre-grouping

– reducing the number of dimensions
• Random projection
• Latent semantic indexing

Recall doc as vector

• Each doc j is a vector of tf×idf values, one
component for each term.

• Can normalize to unit length.
• So we have a vector space

– terms are axes
– docs live in this space
– even with stemming, may have 10000+

dimensions

Intuition

Postulate: Documents that are “close together”
in vector space talk about the same things.

t 1

D2

D1

D3

D4

t 3

t 2

x

y

Cosine similarity

Can also compute cosine similarity from a query (vector
of terms, e.g., truth forever) to each document.

. Aka

1

)(

 :, of similarity Cosine

,

product inner normalized

∑
=

×=
m

i ikwijwDDsim

DD

kj

kj

Exercises

• How would you augment the inverted index
built in lectures 1-3 to support cosine
ranking computations?

• Walk through the steps of serving a query.

Why use vector spaces?

• Key: A user’s query can be viewed as a
(very) short document.

• Query becomes a vector in the same space
as the docs.

• Can measure each doc’s cosine proximity to
query → ranking.

Efficient cosine ranking

• Ranking consists of computing the k docs in
the corpus “nearest” to the query ⇒k largest
query-doc cosines.

• Efficient ranking:
– Computing a single cosine efficiently.
– Choosing the k largest cosine values efficiently.

Computing a single cosine

• For every term i, with each doc j, store term
frequency tfij.
– Tradeoffs on whether to store term count, freq,

or weighted by idfi. (Coding possibilities.)

• Accumulate component-wise sum

More on speeding up a single cosine, later in this lecture.

∑
=

×=
m

i ikwijwDDsim kj 1
)(,

Computing the k largest cosines:
selection vs. sorting

• Typically we want to retrieve the top k docs
(in the cosine ranking for the query)
– not totally order all docs in the corpus
– just pick off docs with k highest cosines.

Use heap for selecting top k

• Binary tree in which each node’s value >
values of children

• Takes 2n operations to construct, then each
of klog n “winners” read off in 2log n steps.

• For n=1M, k=100, this is about 10% of the
cost of sorting.

Bottleneck

• Still need to first compute cosines from
query to each of n docs → several seconds
for n=1M.

• Can select from only non-zero cosines;
should be << 1M.

Can we avoid this?

• Yes, but may occasionally get an answer
wrong
– a doc not in the top k may creep into the

answer.

Term-wise candidates
• Preprocess: Pre-compute, for each term, its

k nearest docs.
– (Treat each term as a 1-term query.)
– lots of preprocessing.
– Result: “preferred list” for each term.

• Search:
– For a t-term query, take the union of their t

preferred lists - call this set S.
– Compute cosines from the query to only the

docs in S, and choose top k.

Exercises

• Fill in the details of the calculation:
– Which docs go into the preferred list for a

term?

• Devise a small example where this method
gives an incorrect ranking.

Sampling and pre-grouping

• First run a pre-processing phase:
– pick √n docs at random: call these leaders
– For each other doc, pre-compute nearest leader

• Docs attached to a leader: its followers;
• Likely: each leader has ~ √n followers.

• Process a query as follows:
– Given query Q, find its nearest leader L.
– Seek k nearest docs from among L’s followers.

Visualization

Query

Leader Follower

Why use random sampling

• Fast
• Leaders reflect data distribution

General variants

• Have each follower attached to a=3 (say)
nearest leaders.

• From query, find b=4 (say) nearest leaders
and their followers.

• Can recur on leader/follower construction.

Exercises

• To find the nearest leader in step 1, how
many cosine computations do we do?

• What is the effect of the constants a,b on
the previous slide?

• Devise an example where this is likely to
fail - we miss one of the k nearest docs.
– Likely under random sampling.

Dimensionality reduction

• What if we could take our vectors and
“pack” them into fewer dimensions (say
10000→100) while preserving distances?

• (Well, almost.)
– Speeds up cosine computations.

• Two methods:
– Random projection.
– “Latent semantic indexing”.

Random projection onto k<<m
axes.

• Choose a random direction x1 in the vector
space.

• For i = 2 to k,
– Choose a random direction xi that is orthogonal

to x1, x2, … xi-1.

• Project each doc vector into the subspace
x1, x2, … xk.

E.g., from 3 to 2 dimensions

D2

D1

x1

t 3

x2

t 2

t 1
x1

x2
D2

D1

x1 is a random direction in (t1,t2,t3) space.
x2 is chosen randomly but orthogonal to x1.

Guarantee

• With high probability, relative distances are
(approximately) preserved by projection.

• Pointer to precise theorem in Resources.

Computing the random
projection

• Projecting n vectors from m dimensions
down to k dimensions:
– Start with m × n matrix of terms × docs, A.
– Find random k × m orthogonal projection

matrix R.
– Compute matrix product W = R × A.

• jth column of W is the vector corresponding
to doc j, but now in k << m dimensions.

Cost of computation

• This takes a total of kmn multiplications.
• Expensive - see Resources for ways to do

essentially the same thing, quicker.
• Exercise: by projecting from 10000

dimensions down to 100, are we really
going to make each cosine computation
faster?

Why?

Latent semantic indexing (LSI)

• Another technique for dimension reduction
• Random projection was data-independent
• LSI on the other hand is data-dependent

– Eliminate redundant axes
– Pull together “related” axes

• car and automobile

Notions from linear algebra

• Matrix, vector
• Matrix transpose and product
• Rank
• Eigenvalues and eigenvectors.

Overview of LSI

• Pre-process docs using a technique from
linear algebra called Singular Value
Decomposition.

• Have control over the granularity of this
process:
– create new vector space, details to follow.

• Queries handled in this new vector space.

Singular-Value Decomposition

• Recall m × n matrix of terms × docs, A.
– A has rank r ≤ m,n.

• Define term-term correlation matrix T=AAt

– At denotes the matrix transpose of A.
– T is a square, symmetric m × m matrix.

• Doc-doc correlation matrix D=AtA.
– D is a square, symmetric n × n matrix.

Why?

Eigenvectors

• Denote by P the m × r matrix of
eigenvectors of T.

• Denote by R the n × r matrix of
eigenvectors of D.

• It turns out A can be expressed
(decomposed) as A = PQRt

– Q is a diagonal matrix with the eigenvalues of
AAt in sorted order.

Visualization

=

A P Q Rt

m×n m×r r×r r×n

Dimension reduction

• For some s << r, zero out all but the s
biggest eigenvalues in Q.
– Denote by Qs this new version of Q.
– Typically s in the hundreds while r could be in

the (tens of) thousands.

• Let As = P Qs Rt

• Turns out As is a pretty good approximation
to A.

We’ll explain
what this means.

Visualization

=

As P Qs Rt

0

The columns of As represent the docs, but in s<<m dimensions.

00

Guarantee

• Relative distances are (approximately)
preserved by projection:
– Of all m × n rank s matrices, As is the best

approximation to A.

• Pointer to precise theorem in Resources.

Doc-doc similarities

• As As
t is a matrix of doc-doc

similarities:
– the (j,k) entry is a measure of the

similarity of doc j to doc k.

Semi-precise intuition

• We accomplish more than dimension
reduction here:
– Docs with lots of overlapping terms stay

together
– Terms from these docs also get pulled together.

• Thus car and automobile get pulled
together because both co-occur in docs with
tires, radiator, cylinder, etc.

Query processing

• View a query as a (short) doc:
– call it row 0 of As.

• Now the entries in row 0 of As As
t give the

similarities of the query with each doc.
• Entry (0,j) is the score of doc j on the query.
• Exercise: fill in the details of

scoring/ranking.

Resources

• Random projection theorem:
http://citeseer.nj.nec.com/dasgupta99elementary.html

• Faster random projection:
http://citeseer.nj.nec.com/frieze98fast.html

• Latent semantic indexing:
http://citeseer.nj.nec.com/deerwester90indexing.html

• Books: MG 4.6, MIR 2.7.2.

