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Today’s topics

• Computing cosine-based ranking
• Speeding up cosine ranking

– reducing the number of cosine computations
• Union of term-wise candidates
• Sampling and pre-grouping

– reducing the number of dimensions
• Random projection
• Latent semantic indexing



Recall doc as vector

• Each doc j is a vector of tf×idf values, one 
component for each term.

• Can normalize to unit length.
• So we have a vector space

– terms are axes
– docs live in this space
– even with stemming, may have 10000+ 

dimensions



Intuition

Postulate: Documents that are “close together” 
in vector space talk about the same things.
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Cosine similarity

Can also compute cosine similarity from a query (vector
of terms, e.g., truth forever) to each document.
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Exercises

• How would you augment the inverted index 
built in lectures 1-3 to support cosine 
ranking computations?

• Walk through the steps of serving a query.



Why use vector spaces?

• Key: A user’s query can be viewed as a 
(very) short document.

• Query becomes a vector in the same space 
as the docs.

• Can measure each doc’s cosine proximity to 
query → ranking.



Efficient cosine ranking

• Ranking consists of computing the k docs in 
the corpus “nearest” to the query ⇒k largest 
query-doc cosines.

• Efficient ranking:
– Computing a single cosine efficiently.
– Choosing the k largest cosine values efficiently.



Computing a single cosine

• For every term i, with each doc j, store term 
frequency tfij.
– Tradeoffs on whether to store term count, freq, 

or weighted by idfi.  (Coding possibilities.)

• Accumulate component-wise sum

More on speeding up a single cosine, later in this lecture.
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Computing the k largest cosines: 
selection vs. sorting

• Typically we want to retrieve the top k docs 
(in the cosine ranking for the query)
– not totally order all docs in the corpus
– just pick off docs with k highest cosines.



Use heap for selecting top k

• Binary tree in which each node’s value > 
values of children

• Takes 2n operations to construct, then each 
of klog n “winners” read off in 2log n steps.

• For n=1M, k=100, this is about 10% of the 
cost of sorting.



Bottleneck

• Still need to first compute cosines from 
query to each of n docs → several seconds 
for n=1M.

• Can select from only non-zero cosines; 
should be << 1M.



Can we avoid this?

• Yes, but may occasionally get an answer 
wrong
– a doc not in the top k may creep into the 

answer.



Term-wise candidates
• Preprocess: Pre-compute, for each term, its 

k nearest docs.
– (Treat each term as a 1-term query.)
– lots of preprocessing.
– Result: “preferred list” for each term.

• Search:
– For a t-term query, take the union of their t

preferred lists - call this set S.
– Compute cosines from the query to only the 

docs in S, and choose top k.



Exercises

• Fill in the details of the calculation:
– Which docs go into the preferred list for a 

term?

• Devise a small example where this method 
gives an incorrect ranking.



Sampling and pre-grouping

• First run a pre-processing phase:
– pick √n docs at random: call these leaders
– For each other doc, pre-compute nearest leader

• Docs attached to a leader: its followers;
• Likely: each leader has ~ √n followers.

• Process a query as follows:
– Given query Q, find its nearest leader L.
– Seek k nearest docs from among L’s followers.



Visualization
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Why use random sampling

• Fast
• Leaders reflect data distribution



General variants

• Have each follower attached to a=3 (say) 
nearest leaders.

• From query, find b=4 (say) nearest leaders 
and their followers.

• Can recur on leader/follower construction.



Exercises

• To find the nearest leader in step 1, how 
many cosine computations do we do?

• What is the effect of the constants a,b on 
the previous slide?

• Devise an example where this is likely to
fail - we miss one of the k nearest docs.
– Likely under random sampling.



Dimensionality reduction

• What if we could take our vectors and 
“pack” them into fewer dimensions (say 
10000→100) while preserving distances?

• (Well, almost.)
– Speeds up cosine computations.

• Two methods:
– Random projection.
– “Latent semantic indexing”.



Random projection onto k<<m
axes.

• Choose a random direction x1 in the vector 
space.

• For i = 2 to k,
– Choose a random direction xi that is orthogonal 

to x1, x2, … xi-1.

• Project each doc vector into the subspace 
x1, x2, … xk.



E.g., from 3 to 2 dimensions
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x1 is a random direction in (t1,t2,t3) space.
x2 is chosen randomly but orthogonal to x1.



Guarantee

• With high probability, relative distances are 
(approximately) preserved by projection.

• Pointer to precise theorem in Resources.



Computing the random 
projection

• Projecting n vectors from m dimensions 
down to k dimensions:
– Start with m × n matrix of terms × docs, A.
– Find random k × m orthogonal projection 

matrix R.
– Compute matrix product W = R × A.

• jth column of W is the vector corresponding 
to doc j, but now in k << m dimensions.



Cost of computation

• This takes a total of kmn multiplications.
• Expensive - see Resources for ways to do 

essentially the same thing, quicker.
• Exercise: by projecting from 10000 

dimensions down to 100, are we really 
going to make each cosine computation 
faster?

Why?



Latent semantic indexing (LSI)

• Another technique for dimension reduction
• Random projection was data-independent
• LSI on the other hand is data-dependent

– Eliminate redundant axes
– Pull together “related” axes

• car and automobile



Notions from linear algebra

• Matrix, vector
• Matrix transpose and product
• Rank
• Eigenvalues and eigenvectors.



Overview of LSI

• Pre-process docs using a technique from 
linear algebra called Singular Value 
Decomposition.

• Have control over the granularity of this 
process:
– create new vector space, details to follow.

• Queries handled in this new vector space.



Singular-Value Decomposition

• Recall m × n matrix of terms × docs, A.
– A has rank r ≤ m,n.

• Define term-term correlation matrix T=AAt

– At denotes the matrix transpose of A.
– T is a square, symmetric m × m matrix.

• Doc-doc correlation matrix D=AtA.
– D is a square, symmetric n × n matrix.

Why?



Eigenvectors

• Denote by P the m × r matrix of 
eigenvectors of T.

• Denote by R the n × r matrix of
eigenvectors of D.

• It turns out A can be expressed 
(decomposed) as A = PQRt

– Q is a diagonal matrix with the eigenvalues of 
AAt in sorted order.



Visualization
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Dimension reduction

• For some s << r,  zero out all but the s
biggest eigenvalues in Q.
– Denote by Qs this new version of Q.
– Typically s in the hundreds while r could be in 

the (tens of) thousands.

• Let As = P Qs Rt

• Turns out As is a pretty good approximation 
to A. 

We’ll explain
what this means.



Visualization
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Guarantee

• Relative distances are (approximately) 
preserved by projection:
– Of all m × n rank s matrices, As is the best 

approximation to A. 

• Pointer to precise theorem in Resources.



Doc-doc similarities

• As As
t is a matrix of doc-doc 

similarities:
– the (j,k) entry is a measure of the 

similarity of doc j to doc k.



Semi-precise intuition

• We accomplish more than dimension 
reduction here:
– Docs with lots of overlapping terms stay 

together
– Terms from these docs also get pulled together.

• Thus car and automobile get pulled 
together because both co-occur in docs with 
tires, radiator, cylinder, etc. 



Query processing

• View a query as a (short) doc:
– call it row 0 of As.

• Now the entries in row 0 of As As
t give the 

similarities of the query with each doc.
• Entry (0,j) is the score of doc j on the query.
• Exercise: fill in the details of 

scoring/ranking.



Resources

• Random projection theorem: 
http://citeseer.nj.nec.com/dasgupta99elementary.html

• Faster random projection: 
http://citeseer.nj.nec.com/frieze98fast.html

• Latent semantic indexing: 
http://citeseer.nj.nec.com/deerwester90indexing.html

• Books: MG 4.6, MIR 2.7.2.


