CS347

Lecture 3
April 16, 2001

©Prabhakar Raghavan

Impact on search

 Binary search down to 4-term block;
» Then linear search through termsin block.

* Instead of chasing 2 pointers before, now
chase 0/1/2/3 - avg. of x1.5<2.5.

>
:“
* »U

Blocking

 Store pointersto every kth on term string.
» Need to store term lengths (1 extra byte)

szaibelyite8szczecind szomo. ...
A

Freqg. Postingsptr. Term ptr.

33

= Ui Save 9 bytes 4 bytes on
e yon3 :“ Eerm Ien;hs
= p pointers.

7

Wild-card queries

» mon*: find all docs containing any word
beginning “mon”.

« Solution: index all k-grams occurring in any
doc (any sequence of k chars).

» eg., from text “April isthe cruelest month”
we get the 2-grams (bigrams)
— $ is aspecial word boundary symbol

$a,ap,pr,ni,il,1$,$i,is,;s$,tth,he,e,$c,cr,ru,ue d,le es, stis$,
m,mo,on,nt,h

Today’ s topics

* Index construction
— time and strategies
» Dynamic indices - updating
» Term weighting and vector space indices

Index construction

» Aswe build up the index, cannot exploit
compression tricks
— parse docs one at atime, final postings entry for
any term incomplete until the end
» At 10-12 bytes per postings entry, demands
several hundred temporary megabytes

Somewhat bigger corpus

* Number of docs=n=4M
¢ Number of terms=m= 1M

» Use Zipf to estimate number of postings
entries:

e N+ n/2+n/3+ ..
entries

» No positional info yet

.+ n/m~nlnm=56M

[Your S

System parameters for design

» Disk seek ~ 1 millisecond

» Block transfer from disk ~ 1 microsecond
per byte

 All other ops ~ 10 microseconds

Recall index construction . ™

be
brutus
brutus
capitol
caesar
caesar
caesar
did
enact
hath

Term Doc # did
|

did
» Documents are parsed to extract words

and these are saved with the Document s
ID. e

Doc 1 Doc 2 —_— Killed

s
let

I did enact Julius So let it be with L
ICaesar | was killed Caesar. The noble cocsar

the

i* the Capitol; Brutus hath told you novie

Brutus killed me. | |caesar was ambitious han

vou
caesar

» After all documents e
have been parsed the
inverted fileis sorted by ==
terms wn

NN K NN RN NN N R b bR b R e e
=
g

ambitious

Bottleneck Sorting with fewer disk seeks

* Parse and build postings entries one doc at a * 12-byte (4+4+4) records (term, doc, freq).
time » These are generated as we parse docs.

» Tonow turn thisinto aterm-wise view, Must now sort 56M such records by term.

must sort postings entries by term (then by
doc within each term)

 Doing thiswith random disk seeks would be
00

» Block = 1M such 12-byte records, can
“easily” fit a couple into memory.

« Will sort within blocksfirst, then merge
multiple blocks.

1 disk seek, and nitems could be]

Sorting 56 blocks of 1M records

* First, read each block and sort within:
— Quicksort takes about 2 x (1M In 1M) steps

» Exercise: estimate total time to read each
block from disk and and quicksort it.

* 56 timesthis estimate - gives us 56 sorted
runsof 1M records each.

» Need 2 copies of data on disk, throughout.

Large memory indexing

* Suppose instead that we had 1GB of
memory for the above indexing task.
» Exercise: how much time to index?
* |n practice, spidering interlaced with
indexing.
— Spidering bottlenecked by WAN speed.

Merging 56 sorted runs

» Merge tree of l0g,56 ~ 6 layers.

» During each layer, read into memory runs in
blocks of 1M, merge, write back.

* Time estimate for disk transfer:
* 6x 56 x (12M,x 10°) x 2 ~ 2 hours.

disk block 4

(EERE ork out for yourself how
these transfers are staged, and

Improving on merge tree

» Compressed temporary files
— compress terms in temporary dictionary runs

e Merge morethan 2 runs at atime
— maintain heap of candidates from each run

Dynamic indexing Simplest approach
» Docscomein over time e Maintain “big” main index
— postings updates for terms already in dictionary » New docsgointo “small” auxiliary index
— new terms added to dictionary « Search across both, merge results
» Docs get deleted « Deletions

— Invalidation bit-vector for deleted docs
— Filter docs output on a search result

 Periodically, re-index into one main index

More complex approach Fully dynamic updates
* Fully dynamic updates * Inserting a (variable-length) record
* Only oneindex at all times — atypical postings entry
— No big and small indices * Maintain a pool of (say) 64KB chunks
 Active management of apool of space » Chunk header maintains metadata on
recordsin chunk, and its free space
Header
Free space
Record
Record
[Reod |

Global tracking Changes to dictionary

* In memory, maintain a global record

* New terms appear over time
addresstablethat says, for each record, the

— cannot use a static perfect hash for dictionary

chunk it'sin. « OK to useterm char string w/pointers from
 Define one chunk to be current. postings asin lecture 2.
* Insertion

— if current chunk has enough free space

« extend record and update metadata
— else look in other chunks for enough space.
— else open new chunk.

Digression: food for thought Weighting terms
» What if adoc consisted of components * Relative importance of
— Each component has its own access control — 0 vs 1 occurrence of aterm in adoc
list.

— 1 vs 2 occurrences

* Your search should get adoc only if your — 2 Vs 3 occurrences ...

query meets one of its components that you « (The Kandy-Kolored Tangerine-Flake
have accessto.

Streamline Baby)
» More generally: doc assembled from

computationson components.
» \Welcome to the real world ... more later.

Weighting should depend on
term
» Which of thesetells you more about a doc?
— 10 occurrences of hernia?
— 10 occurrences of the?

tf x idf weights

« tf x idf measure:
— term frequency (tf)
* measure of term density in a doc
— inverse document frequency (idf)
» measure of rarity across corpus
» Goal: assign atf x idf weight to each
term in each document

Properties of weights

» Assign aweight to each term in each doc
— Increases with the number of occurrences
within a doc
— Increases with the “rarity” of the term across
the whole corpus

w; =tf, " log(n/n)

tf; =frequency of termi in document j
n = totalnumber of documents
n, = thenumber of documentsthatcontain temi

idf; = lo Hg:inversedocumentfrequencyof termi

Doc as vector

» Each docj can now be viewed as a vector of
tf" idf values, one component for each term.
» So we have avector space
— terms are axes
— docs live in this space

— even with stemming, may have 10000+
dimensions

Why turn docs into vectors?

* First application: Query-by-example
— Given adoc D, find others “like” it.

» Now that D is avector, find vectors (docs)
“near” it.

Example

Doc 1:
1 Term tfin Docl tfin Doc2 idf tfxidf: Doc 1 tfxidf: Doc 2
Beauty is truth . ooy inpoee i 2

cauty X o

is 0.16666 0.125 [o o

arld trl'lth bwljty' truth 0.33333 o 1 0.33333 o
and 0.16666 o 1 0.16666 o

a o 025 1 o 025

thing 0 0125 1 o 0125

of) 0.125 1 o 0.125

Doc 2 joy 0 0.125 1] 0125
A thi ng of beauty forever o 0.125 1 o 0125

isajoy forever.

Note: idif (and thus tf x idf) can excesd 1.

Intuition

Postulate: Documents that are “close together”
in vector space talk about the same things.

Desiderata for proximity

» |f D1 isnear D2, then D2 isnear D1.

 If D1 near D2, and D2 near D3, then D1 not
far from D3.

* Nodociscloser toD than D itself.

tf x idf normalization

¢ Normalize the term weights
— longer documents are not given more weight

w = tf,; log(n/n,)
C AT, Tog(n/)P

Now all docs have the same vector lengths.

First cut

 Distance between D1 and D2 is the length
of the vector |[D1-D2|.
— Euclidean distance

* Why isthisnot agreat idea?

Cosine similarity

* Distance between vectorsD1,D2 captured
by the cosine of the angle x between them.

* Note - thisissimilarity, not distance.
t34s

.
/ t1

Cosine similarity

Cosinesimilarityof D]-,Dk:
. _m
SimD; D)=, vy W
Akanormalizedinnerproduct
D, =(08,0.6
D, =(0.707,0.707)
Q=(0.50.866)

cos, =0.9196
cosa , = 0.965762

So D, adjudged closer to query document Q.

What' s the real point of using
vector spaces?

» Key: A user’squery can beviewed as a
(very) short document.

» Query becomes a vector in the same space
asthe docs.

» Can measure each doc’s proximity to it.

 Natural measure of scores/ranking - no
longer Boolean.

Cosine similarity exercises

» Exercise: Rank the following by decreasing
cosine similarity:
— Two docs that have only frequent words (the, a,
an, of) in common.
— Two docs that have no words in common.
— Two docs that have many rare words in
common (wingspan, tailfin).

Back to our example

Doc 1:
1 Term tfin Docl tfin Doc2 idf tfxidf: Doc 1 tfxidf: Doc 2
Beauty is truth oo ooz v 2

beauty X o
is 0.16666 0125 0 0 o
and truth beauty truth 0.33333 o 1 033333 0
and 0.16666 o 1 016666 0
a o 025 1 o 025
thing o 0125 1 [0125
of 0 0125 1 o 0125
Doc 2 joy 0 0125 1 0 0125
A thi ng of b%uty forever o 0.125 1 o 0125

isajoy forever.

Dn the query truth forever Doc 1 scores 0.16666,
whtte-Doc-2-scores6:0625:

10

Vector space issues

+ Can rank docs - Cannot insist all query
+ Uniform view of docs terms be present in
and queries docs retrieved

- gueries are not Boolean
Each axistreated as
independent: dog,
canine

- Computation/selection
of top cosines

Resources, and beyond

e MG5, MIR 2.5.3.
* Next steps
— Computing cosine similarity efficiently.
— Dimension reduction.
— Bayesian nets.
— Clustering docs into groups of similar docs.
— Classifying docs automatically.

Notions from linear algebra for
next lecture
Matrix, vector

Matrix transpose and product
Rank

Eigenvalues and eigenvectors.

11

