
1

CS347

Lecture 3
April 16, 2001

©Prabhakar Raghavan

Blocking

• Store pointers to every k th on term string.
• Need to store term lengths (1 extra byte)

….7systile9syzygetic 8syzygial6syzygy 11szaibelyite8szczecin9szomo….

Freq. Postings ptr. Term ptr.

33

29

44

126

7

 Save 9 bytes
 on 3
 pointers.

Lose 4 bytes on
term lengths.

Impact on search

• Binary search down to 4-term block;
• Then linear search through terms in block.
• Instead of chasing 2 pointers before, now

chase 0/1/2/3 - avg. of 1+1.5=2.5.

Wild-card queries

• mon*: find all docs containing any word
beginning “mon”.

• Solution: index all k-grams occurring in any
doc (any sequence of k chars).

• e.g., from text “April is the cruelest month”
we get the 2-grams (bigrams)
– $ is a special word boundary symbol

a,ap,pr,ri,il,l,i,is,s,t,th,he,e,c,cr,ru,ue,el,le,es,st,t,
m,mo,on,nt,h

2

Today’s topics

• Index construction
– time and strategies

• Dynamic indices - updating
• Term weighting and vector space indices

Somewhat bigger corpus

• Number of docs = n = 4M
• Number of terms = m = 1M
• Use Zipf to estimate number of postings

entries:
• n + n/2 + n/3 + …. + n/m ~ n ln m = 56M

entries
• No positional info yet

Check for
yourself

Index construction

• As we build up the index, cannot exploit
compression tricks
– parse docs one at a time, final postings entry for

any term incomplete until the end

• At 10-12 bytes per postings entry, demands
several hundred temporary megabytes

System parameters for design

• Disk seek ~ 1 millisecond
• Block transfer from disk ~ 1 microsecond

per byte
• All other ops ~ 10 microseconds

3

• Documents are parsed to extract words
and these are saved with the Document
ID.

I did enact Julius
Caesar I was killed

i ' the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble

Brutus hath told you
Caesar was ambitious

Doc 2

Recall index construction
Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

• After all documents
have been parsed the
inverted file is sorted by
terms

Term Doc #
I 1
did 1
enact 1

julius 1
caesar 1
I 1
was 1

killed 1
i' 1
the 1
capitol 1

brutus 1
killed 1
me 1
so 2

let 2
it 2
be 2
with 2

caesar 2
the 2
noble 2
brutus 2

hath 2
told 2
you 2

caesar 2
was 2
ambitious 2

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Bottleneck

• Parse and build postings entries one doc at a
time

• To now turn this into a term-wise view,
must sort postings entries by term (then by
doc within each term)

• Doing this with random disk seeks would be
too slow

If every comparison took 1 disk seek, and n items could be
sorted with nlog2n comparisons, how long would this take?

Sorting with fewer disk seeks

• 12-byte (4+4+4) records (term, doc, freq).
• These are generated as we parse docs.
• Must now sort 56M such records by term.
• Block = 1M such 12-byte records, can

“easily” fit a couple into memory.
• Will sort within blocks first, then merge

multiple blocks.

4

Sorting 56 blocks of 1M records

• First, read each block and sort within:
– Quicksort takes about 2 x (1M ln 1M) steps

•• Exercise: estimate total time to read each Exercise: estimate total time to read each
block from disk and and block from disk and and quicksortquicksort it.it.

• 56 times this estimate - gives us 56 sorted
runs of 1M records each.

• Need 2 copies of data on disk, throughout.

Merging 56 sorted runs

• Merge tree of log256 ~ 6 layers.
• During each layer, read into memory runs in

blocks of 1M, merge, write back.
• Time estimate for disk transfer:
• 6 x 56 x (12M x 10-6) x 2 ~ 2 hours.123

disk block
transfer time Work out for yourself how

these transfers are staged, and
the total time for merging.

Large memory indexing

• Suppose instead that we had 1GB of
memory for the above indexing task.

• Exercise: how much time to index?
• In practice, spidering interlaced with

indexing.
– Spidering bottlenecked by WAN speed.

Improving on merge tree

• Compressed temporary files
– compress terms in temporary dictionary runs

• Merge more than 2 runs at a time
– maintain heap of candidates from each run

5

Dynamic indexing

• Docs come in over time
– postings updates for terms already in dictionary
– new terms added to dictionary

• Docs get deleted

Simplest approach

• Maintain “big” main index
• New docs go into “small” auxiliary index
• Search across both, merge results
• Deletions

– Invalidation bit -vector for deleted docs

– Filter docs output on a search result

• Periodically, re-index into one main index

More complex approach

• Fully dynamic updates
• Only one index at all times

– No big and small indices

• Active management of a pool of space

Fully dynamic updates
• Inserting a (variable -length) record

– a typical postings entry

• Maintain a pool of (say) 64KB chunks
• Chunk header maintains metadata on

records in chunk, and its free space

Record
Record
Record
Record

Header

Free space

6

Global tracking

• In memory, maintain a global record
address table that says, for each record, the
chunk it’s in.

• Define one chunk to be current.
• Insertion

– if current chunk has enough free space
• extend record and update metadata.

– else look in other chunks for enough space.
– else open new chunk.

Changes to dictionary

• New terms appear over time
– cannot use a static perfect hash for dictionary

• OK to use term char string w/pointers from
postings as in lecture 2.

Digression: food for thought

• What if a doc consisted of components
– Each component has its own access control

list.

• Your search should get a doc only if your
query meets one of its components that you
have access to.

• More generally: doc assembled from
computations on components.

• Welcome to the real world … more later.

Weighting terms

• Relative importance of
– 0 vs. 1 occurrence of a term in a doc
– 1 vs. 2 occurrences

– 2 vs. 3 occurrences …

• (The Kandy-Kolored Tangerine-Flake
Streamline Baby)

7

Weighting should depend on
term

• Which of these tells you more about a doc?
– 10 occurrences of hernia?
– 10 occurrences of the?

Properties of weights

• Assign a weight to each term in each doc
– Increases with the number of occurrences

within a doc
– Increases with the “rarity” of the term across

the whole corpus

tf x idf weights

• tf x idf measure:
– term frequency (tf)

• measure of term density in a doc

– inverse document frequency (idf)
• measure of rarity across corpus

• Goal: assign a tf x idf weight to each
term in each document

tf x idf

)/log(iijij nntfw ×=

 termoffrequency document inverselog

 rmcontain te that documents ofnumber the

documents ofnumber total

document in termoffrequency

i
n
nidf

in

n

jitf

i
i

i

ij

=

=

=
=

=

What is the wt
of a term that
occurs in all
of the docs?

8

Doc as vector

• Each doc j can now be viewed as a vector of
tf×idf values, one component for each term.

• So we have a vector space
– terms are axes

– docs live in this space

– even with stemming, may have 10000+
dimensions

Example

Doc 1:
Beauty is truth
and truth beauty.

Doc 2:
A thing of beauty
is a joy forever.

Term tf in Doc1 tf in Doc2 idf tfxidf: Doc 1 tfxidf: Doc 2
beauty 0.33 0.125 0 0 0
is 0.16666 0.125 0 0 0
truth 0.33333 0 1 0.33333 0
and 0.16666 0 1 0.16666 0
a 0 0.25 1 0 0.25
thing 0 0.125 1 0 0.125
of 0 0.125 1 0 0.125
joy 0 0.125 1 0 0.125
forever 0 0.125 1 0 0.125

Note: idf (and thus tf x idf) can exceed 1.

• First application: Query-by-example
– Given a doc D, find others “like” it.

• Now that D is a vector, find vectors (docs)
“near” it.

Why turn docs into vectors? Intuition

Postulate: Documents that are “close together”
in vector space talk about the same things.

t 1

D2

D1

D 3

D4

D5

t 3

t 2

x

y

9

Desiderata for proximity

• If D1 is near D2, then D2 is near D1.
• If D1 near D2, and D2 near D3, then D1 not

far from D3.
• No doc is closer to D than D itself.

First cut

• Distance between D1 and D2 is the length
of the vector |D1-D2|.
– Euclidean distance

• Why is this not a great idea?

tf x idf normalization

• Normalize the term weights
– longer documents are not given more weight

∑ =

=
m

i iij

ttj
tj

nntf

nntf
w

1
22)]/[log()(

)/log(

Now all docs have the same vector lengths.

Cosine similarity

• Distance between vectors D1,D2 captured
by the cosine of the angle x between them.

• Note - this is similarity, not distance.

t 1

d 2

d 1

t 3

t 2

x

10

Cosine similarity

0.965762cos
0.9196cos

)866.0 ,5.0(
)707.0 ,707.0(

)6.0 ,8.0(

2

1

2

1

=
=

=
=

=

α
α

Q
D

D

. Aka

1

)(

 :, of similarity Cosine

,

product inner normalized

∑
=

×=
m

i ikwijwDDsim

DD

kj

kj

So D2 adjudged closer to query document Q.

Cosine similarity exercises

• Exercise: Rank the following by decreasing
cosine similarity:
– Two docs that have only frequent words (the, a,

an, of) in common.

– Two docs that have no words in common.
– Two docs that have many rare words in

common (wingspan, tailfin).

What’s the real point of using
vector spaces?

• Key: A user’s query can be viewed as a
(very) short document.

• Query becomes a vector in the same space
as the docs.

• Can measure each doc’s proximity to it.
• Natural measure of scores/ranking - no

longer Boolean.

Back to our example

Doc 1:
Beauty is truth
and truth beauty.

Doc 2:
A thing of beauty
is a joy forever.

Term tf in Doc1 tf in Doc2 idf tfxidf: Doc 1 tfxidf: Doc 2
beauty 0.33 0.125 0 0 0
is 0.16666 0.125 0 0 0
truth 0.33333 0 1 0.33333 0
and 0.16666 0 1 0.16666 0
a 0 0.25 1 0 0.25
thing 0 0.125 1 0 0.125
of 0 0.125 1 0 0.125
joy 0 0.125 1 0 0.125
forever 0 0.125 1 0 0.125

On the query truth forever Doc 1 scores 0.16666,
while Doc 2 scores 0.0625.

11

Vector space issues

+ Can rank docs

+ Uniform view of docs
and queries

- Cannot insist all query
terms be present in
docs retrieved
- queries are not Boolean

- Each axis treated as
independent: dog,
canine

- Computation/selection
of top cosines

Notions from linear algebra for
next lecture

• Matrix, vector
• Matrix transpose and product
• Rank
• Eigenvalues and eigenvectors.

Resources, and beyond

• MG 5, MIR 2.5.3.
• Next steps

– Computing cosine similarity efficiently.
– Dimension reduction.

– Bayesian nets.
– Clustering docs into groups of similar docs.

– Classifying docs automatically.

