

Impact on search

CS347

Lecture 3

©Prabhakar Raghavan

- Binary search down to 4-term block;
- Then linear search through terms in block.
- Instead of chasing 2 pointers before, now

Wild-card queries

- mon*: find all docs containing any word beginning "mon".
- Solution: **index** all *k*-grams occurring in any doc (any sequence of *k* chars).
- *e.g.*, from text "April is the cruelest month" we get the 2-grams (*bigrams*)
 - \$ is a special word boundary symbol

\$a, ap,pr, ri, il,1\$,\$i,is,s\$,\$t,th,he,e\$,\$c, cr,ru,ue,el,le,es,st,t\$, \$m,mo,on,nt,h\$

Today's topics

- Index construction – time and strategies
- Dynamic indices updating
- · Term weighting and vector space indices

Somewhat bigger corpus

- Number of docs = n = 4M
- Number of terms = m = 1M
- Use Zipf to estimate number of postings entries:
- $n + n/2 + n/3 + \dots + n/m \sim n \ln m = 56M$ entries

ourself

No positional info yet

Index construction

- As we build up the index, cannot exploit compression tricks
 - parse docs one at a time, final postings entry for any term incomplete until the end
- At 10-12 bytes per postings entry, demands several hundred temporary megabytes

System parameters for design

- Disk seek ~ 1 millisecond
- Block transfer from disk ~ 1 microsecond per byte
- All other ops ~ 10 microseconds

Bottleneck

- Parse and build postings entries one doc at a time
- To now turn this into a term-wise view, must sort postings entries by term (then by doc within each term)
- Doing this with random disk seeks would be too slow

If every comparison took 1 disk seek, and *n* items could be sorted with *n*log₂*n* comparisons, how long would this take?

Sorting with fewer disk seeks

- 12-byte (4+4+4) records (*term*, *doc*, *freq*).
- These are generated as we parse docs.
- Must now sort 56M such records by *term*.
- <u>Block</u> = 1M such 12-byte records, can "easily" fit a couple into memory.
- Will sort within blocks first, then merge multiple blocks.

Sorting 56 blocks of 1M records

- First, read each block and sort within:
 Quicksort takes about 2 x (1M ln 1M) steps
- Exercise: estimate total time to read each block from disk and and quicksort it.
- 56 times this estimate gives us 56 sorted *runs* of 1M records each.
- Need 2 copies of data on disk, throughout.

Merging 56 sorted runs

- Merge tree of $\log_2 56 \sim 6$ layers.
- During each layer, read into memory runs in blocks of 1M, merge, write back.

Work out for yourself how these transfers are staged, and the total time for *merging*

• Time estimate for disk transfer:

disk block transfer time

• 6 x 56 x $(12M_{23} \times 10^6)$ x 2 ~ 2 hours.

Large memory indexing

- Suppose instead that we had 1GB of memory for the above indexing task.
- Exercise: how much time to index?
- In practice, spidering interlaced with indexing.
 - Spidering bottlenecked by WAN speed.

Improving on merge tree

- Compressed temporary files
 - compress terms in temporary dictionary runs
- Merge more than 2 runs at a time – maintain heap of candidates from each run

Dynamic indexing

• Docs come in over time

postings updates for terms already in dictionary
new terms added to dictionary

• Docs get deleted

Simplest approach

- Maintain "big" main index
- New docs go into "small" auxiliary index
- Search across both, merge results
- Deletions
 - Invalidation bit-vector for deleted docs
 - Filter docs output on a search result
- Periodically, re-index into one main index

More complex approach

- Fully dynamic updates
- Only one index at all times – No big and small indices
- Active management of a pool of space

Fully dynamic updates

- Inserting a (variable -length) record

 a typical postings entry
- Maintain a pool of (say) 64KB chunks
- Chunk header maintains metadata on records in chunk, and its free space

Global tracking

- In memory, maintain a global record address table that says, for each record, the chunk it's in.
- Define one chunk to be current.
- Insertion
 - if current chunk has enough free space
 extend record and update metadata.
 - else look in other chunks for enough space.
 - else open new chunk.

Changes to dictionary

- New terms appear over time – cannot use a static perfect hash for dictionary
- OK to use term char string w/pointers from postings as in lecture 2.

Digression: food for thought

- What if a doc consisted of *components*
 - Each component has its own *access control list*.
- Your search should get a doc only if your query meets one of its components that <u>you</u> have access to.
- More generally: doc assembled from *computations* on components.
- Welcome to the real world ... more later.

Weighting terms

- Relative importance of
 - -0 vs. 1 occurrence of a term in a doc
 - 1 vs. 2 occurrences
 - 2 vs. 3 occurrences ...
- (The Kandy-Kolored Tangerine-Flake Streamline Baby)

Weighting should depend on term

- Which of these tells you more about a doc? - 10 occurrences of *hernia*?
 - 10 occurrences of *the*?

Properties of weights

- Assign a weight to each term in each doc
 - Increases with the number of occurrences *within* a doc
 - Increases with the "rarity" of the term *across* the whole corpus

tf x idf weights

- *tf* x *idf* measure:
 - term frequency (tf)
 - measure of term density in a doc
 - inverse document frequency (*idf*)
 - measure of rarity across corpus
- Goal: assign a *tf* x *idf* weight to each term in each document

- $tf_{ij} =$ frequency of termi in document j
- n =totalnumber of documents

 $\langle \rangle$

 n_i = the number of documents that contain tem *i*

$$idf_i = \log\left(\frac{n}{n_i}\right) =$$
inverse document frequency of term *i*

Doc as vector

- Each doc *j* can now be viewed as a vector of *tf×idf* values, one component for each term.
- So we have a vector space
 - terms are axes
 - docs live in this space
 - even with stemming, may have 10000+ dimensions

	Ľ2	sam	ЛС			
Doc 1:						
Requip is truth	Term	tf in Doc1	tf in Doc2	idf	tfxidf: Doc 1	tfxidf: Doc 2
beauty is truin	beauty	0.33	0.125	0	0	
and truth beauty.	is	0.16666	0.125	0	0	
	and	0.33333	0	- 1	0.33333	
	a	0.10000	0.25	- i .	0.10000	0.2
	thing	0	0.125	1	0	0.125
Doc 2:	of	0	0.125	1	0	0.12
	joy	0	0.125	- 1	0	0.12
A thing of beauty	torever	U	0.125	1	U	0.12:
is a joy forever						
is a joy jorever.						

Why turn docs into vectors?

- First application: Query-by-example - Given a doc *D*, find others "like" it.
- Now that *D* is a vector, find vectors (docs) "near" it.

Desiderata for proximity

- If D1 is near D2, then D2 is near D1.
- If *D1* near *D2*, and *D2* near *D3*, then *D1* not far from *D3*.
- No doc is closer to *D* than *D* itself.

First cut

- Distance between *D1* and *D2* is the length of the vector /*D1-D2*/.
 - Euclidean distance
- Why is this not a great idea?

tf x idf normalization

• Normalize the term weights

v

- longer documents are not given more weight

$$y_{ij} = \frac{tf_{ij} \log(n/n_i)}{\sqrt{\sum_{i=1}^{m} (tf_{ij})^2 [\log(n/n_i)]^2}}$$

Now all docs have the same vector lengths.

Cosine similarity

- Distance between vectors *D1,D2 captured* by the cosine of the angle *x* between them.
- Note this is <u>similarity</u>, not distance.

Cosine similarity

Cosinesimilarity of D_j, D_k : $sin(D_j, D_k) = \sum_{i=1}^{m} w_{ij} \times w_{ik}$ Akanormalized inner product

$$\begin{split} D_1 &= (0.8, 0.6) \\ D_2 &= (0.707, 0.707) \\ Q &= (0.5, 0.866) \\ \cos \mathbf{a}_1 &= 0.9196 \\ \cos \mathbf{a}_2 &= 0.965762 \end{split}$$

So D_2 adjudged closer to query document Q.

Cosine similarity exercises

- Exercise: Rank the following by decreasing cosine similarity:
 - Two docs that have only frequent words (*the*, *a*, *an*, *of*) in common.
 - Two docs that have no words in common.
 - Two docs that have many rare words in common (*wingspan, tailfin*).

What's the real point of using vector spaces?

- **Key**: A user's query can be viewed as a (very) short document.
- Query becomes a vector in the same space as the docs.
- Can measure each doc's proximity to it.
- Natural measure of scores/ranking no longer Boolean.

Vector space issues

- + Can rank docs
- + Uniform view of docs and queries
- Cannot insist all query terms be present in docs retrieved
 - queries are not Boolean
- Each axis treated as independent: *dog*, *canine*
- Computation/selection of top cosines

Notions from linear algebra for next lecture

- Matrix, vector
- Matrix transpose and product
- Rank
- Eigenvalues and eigenvectors.

Resources, and beyond

- MG 5, MIR 2.5.3.
- Next steps
 - Computing cosine similarity efficiently.
 - Dimension reduction.
 - Bayesian nets.
 - Clustering docs into groups of similar docs.
 - Classifying docs automatically.