
1

CS347

Lecture 2
April 9, 2001
©Prabhakar Raghavan

Today’s topics

• Inverted index storage
– Compressing dictionaries into memory

• Processing Boolean queries
– Optimizing term processing

– Skip list encoding

• Wild-card queries
• Positional/phrase queries
• Evaluating IR systems

Recall dictionary and postings files

Term Doc # Freq
ambitious 2 1
be 2 1
brutus 1 1
brutus 2 1
capitol 1 1
caesar 1 1
caesar 2 2
did 1 1
enact 1 1
hath 2 1
I 1 2
i' 1 1
it 2 1
julius 1 1
killed 1 2
let 2 1
me 1 1
noble 2 1
so 2 1
the 1 1
the 2 1
told 2 1
you 2 1
was 1 1
was 2 1
with 2 1

Doc # Freq
2 1
2 1
1 1
2 1
1 1
1 1
2 2
1 1
1 1
2 1
1 2
1 1
2 1
1 1
1 2
2 1
1 1
2 1
2 1
1 1
2 1
2 1
2 1
1 1
2 1
2 1

Term N docs Tot Freq
ambitious 1 1
be 1 1
brutus 2 2
capitol 1 1
caesar 2 3
did 1 1
enact 1 1
hath 1 1
I 1 2
i' 1 1
it 1 1
julius 1 1
killed 1 2
let 1 1
me 1 1
noble 1 1
so 1 1
the 2 2
told 1 1
you 1 1
was 2 2
with 1 1

In memory Gap-encoded,
on disk

Inverted index storage

• Last time: Postings compression by gap
encoding

• Now: Dictionary storage
– Dictionary in main memory, postings on disk

• Tradeoffs between compression and query
processing speed
– Cascaded family of techniques

2

Dictionary storage - first cut

• Array of fixed-width entries
– 28bytes/term = 14MB.

Terms Freq. Postings ptr.

a 999,712

aardvark 71

…. ….

zzzz 99

Allows for fast binary
search into dictionary

20 bytes 4 bytes each

Exercise

• Is binary search really a good idea?
• What’s a better alternative?

Fixed-width terms are wasteful

• Most of the bytes in the Termcolumn are
wasted - we allot 20 bytes even for 1-letter
terms.
– Still can’t handle supercalifragilisticexpialidocius.

• Average word in English: ~8 characters.
– Written English averages ~4.5 characters:

short words dominate usage.

• Store dictionary as a string of characters:
– Hope to save upto 60% of dictionary space.

Compressing the term list
….systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo….

Freq. Postings ptr. Term ptr.

33

29

44

126

Binary search
these pointers

Total string length =
500KB x 8 = 4MB

Pointers resolve 4M
positions: log24M=

22bits = 3bytes

3

Total space for compressed list

• 4 bytes per term for Freq.
• 4 bytes per term for pointer to Postings.
• 3 bytes per term pointer
• Avg. 8 bytes per term in term string
• 500K terms ⇒ 9.5MB

 Now avg. 11
 bytes/term,
 not 20.

Blocking

• Store pointers to every k th on term string.
• Need to store term lengths (1 extra byte)

….7systile9syzygetic 8syzygial6syzygy 11szaibelyite8szczecin9szomo….

Freq. Postings ptr. Term ptr.

33

29

44

126

7

 Save 9 bytes
 on 3
 pointers.

Lose 4 bytes on
term lengths.

Exercise

• Estimate the space usage (and savings
compared to 9.5MB) with blocking, for
block sizes of k = 4, 8 and 16.

Impact on search

• Binary search down to 4-term block;
• Then linear search through terms in block.
• Instead of chasing 2 pointers before, now

chase 0/1/2/3 - avg. of 1.5.

4

Extreme compression

• Using perfect hashing to store terms
“within” their pointers
– not good for vocabularies that change.

• Partition dictionary into pages
– use B-tree on first terms of pages

– pay a disk seek to grab each page
– if we’re paying 1 disk seek anyway to get the

postings, “only” another seek/query term.

Query optimization

• Consider a query that is an AND of t terms.
• The idea: for each of the t terms, get its

term-doc incidence from the postings, then
AND together.

• Process in order of increasing freq:
– start with smallest set, then keep cutting

further.

This is why
we kept freq
in dictionary.

Query processing exercises

• If the query is friends AND romans AND
(NOT countrymen), how could we use the
freq of countrymen?

• How can we perform the AND of two
postings entries without explicitly building
the 0/1 term-doc incidence vector?

General query optimization

• e.g., (madding OR crowd) AND (ignoble
OR strife)

• Get freq’s for all terms.
• Estimate the size of each OR by the sum of

its freq’s.
• Process in increasing order of OR sizes.

5

Exercise

• Recommend a query
processing order for

(tangerine OR trees) AND
(marmalade OR skies) AND
(kaleidoscope OR eyes)

 Term Freq
 eyes 213312
 kaleidoscope 87009
 marmalade 107913
 skies 271658
 tangerine 46653
 trees 316812

Speeding up postings merges

• Insert skip pointers
• Say our current list of candidate docs for an

AND query is 8,13,21.
– (having done a bunch of ANDs)

• We want to AND with the following
postings entry: 2,4,6,8,10,12,14,16,18,20,22

• Linear scan is slow.

Augment postings with skip
pointers (at indexing time)

• At query time:

• As we walk the current candidate list, concurrently
walk inverted file entry - can skip ahead
– (e.g., 8,21).

• Skip size: recommend about √(list length)

2,4,6,8,10,12,14,16,18,20,22,24, ...

Query vs. index expansion

• Recall, from lecture 1:
– thesauri for term equivalents
– soundex for homonyms

• How do we use these?
– Can “expand” query to include equivalences

• Query car tyres → car tyres automobile tires
– Can expand index

• Index docs containing car under automobile, as well

6

Query expansion

• Usually do query expansion
– No index blowup
– Query processing slowed down

• Docs frequently contain equivalences

– May retrieve more junk
• puma → jaguar

– Carefully controlled wordnets

Wild-card queries

• mon*: find all docs containing any word
beginning “mon”.

• Solution: index all k-grams occurring in any
doc (any sequence of k chars).

• e.g., from text “April is the cruelest month”
we get the 2-grams (bigrams)
– $ is a special word boundary symbol

a,ap,pr,ri,il,l,i,is,s,t,th,he,e,c,cr,ru,ue,el,le,es,st,t,
m,mo,on,nt,h

Processing wild-cards

• Query mon* can now be run as
– $m AND mo AND on

• But we’d get a match on moon.
• Must post-filter these results against query.
• Exercise: Work out the details.

Further wild-card refinements

• Cut down on pointers by using blocks
• Wild-card queries tend to have few bigrams

– keep postings on disk

• Exercise: given a trigram index, how do you
process an arbitrary wild-card query?

7

Phrase search

• Search for “to be or not to be”
• No longer suffices to store only

<term:docs> entries.
• Instead store, for each term , entries

– <number of docs containing term ;

– doc1: position1, position2 … ;
– doc2: position1, position2 … ;

– etc.>

Positional index example

<be: 993427;
1: 7, 18, 33, 72, 86, 231;
2: 3, 149;
4: 17, 191, 291, 430, 434;
5: 363, 367, …>

Which of these docs
could contain “ to be

or not to be”?

Can compress position values/offsets as we did with
docs in the last lecture.

Processing a phrase query

• Extract inverted index entries for each
distinct term: to, be, or, not

• Merge their doc:position lists to enumerate
all positions where “to be or not to be”
begins.

• to:
– 2:1,17,74,222,551; 4:8,27,101,429,433; 7:13,23,191; ...

• be:
– 1:17,19; 4:17,191,291,430,434; 5 :14,19,101; ...

Evaluating an IR system

• What are some measures for evaluating an
IR system’s performance?
– Speed of indexing
– Index/corpus size ratio

– Speed of query processing
– “Relevance” of results

8

Standard relevance benchmarks

• TREC - National Institute of Standards and
Testing (NIST)

• Reuters and other benchmark sets
• “Retrieval tasks” specified

– sometimes as queries

• Human experts mark, for each query and for
each doc, “Relevant” or “Not relevant”

Precision and recall

• Precision: fraction of retrieved docs that are
relevant

• Recall: fraction of relevant docs that are
retrieved

• Both can be measured as functions of the
number of docs retrieved

Tradeoff

• Can get high recall (but low precision) by
retrieving all docs for all queries!

• Recall is a non-decreasing function of the
number of docs retrieved
– but precision usually decreases (in a good

system)

Difficulties in precision/recall

• Should average over large corpus/query
ensembles

• Need human relevance judgements
• Heavily skewed by corpus/authorship

9

Glimpse of what’s ahead

• Building indices

• Term weighting and
vector space queries

• Clustering documents

• Classifying documents
• Link analysis in

hypertext

• Mining hypertext

• Global connectivity
analysis on the web

• Recommendation
systems and
collaborative filtering

• Summarization
• Large enterprise issues

and the real world

Resources for today’s lecture

• Managing Gigabytes, Chapter 4.
• Modern Information Retrieval, Chapter 3.
• Princeton Wordnet

– http://www.cogsci.princeton.edu/~wn/

